

DIVISION DE ESTUDIOS DE POSGRADO Facultad de Ingeniería

0/163 2es

Deformabilidad de Arcillas, Incluyendo Compresión Secundaria

WALTER IVAN PANIAGUA ZAVALA

TESIS

PRESENTADA A LA DIVISION DE ESTUDIOS DE POSGRADO DE LA

FACULTAD DE INGENIERIA

DE LA

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

COMO REQUISITO PARA OBTENER

EL GRADO DE

MAESTRO EN INGENIERIA

Mecánica de Suelos 🔰

CIUDAD UNIVERSITARIA, NOVIEMBRE, 1989.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

Se presenta un panorama general de los modelos de deformabilidad de arcillas, que incluyen la compresión secundaria, estudiándose con detalle los modelos de Terzaghi ampliado, Burger modificado, Juárez-Badillo, Marsal, y Zeevaert.

Se describe un consolidómetro con medición de presión de poro, así como los ensayes que se realizaron en éste, y paralelamente en un consolidómetro convencional, comparándose los resultados. Los datos se utilizan, aplicando los modelos estudiados, en la predicción de hundïmientos de una cimentación en la Ciudad de México y a un terraplén de prueba en la Presa Tamesí, Tamps.

Con base en estas predicciones, y las hipótesis en la que se basan los modelos estudiados, se hace la comparación entre ellos. Finalmente, se dan las conclusiones generales de la investigación.

Deformabilidad de Arcillas,

Incluyendo Compresión Secundaria.

INDICE

SIMBOLOGIA

1. INTRODUCCION

2. CONSOLIDACION UNIDIMENSIONAL DE ARCILLAS

2.1 Introducción

2.2 Teoria de Consolidación de Terzaghi

2.3 Teorias de Consolidación

2.4 Compressión Secundaria

2.5 Relación Campo-Laboratorio

2.6 Medición de Presión de Poro

2.7 Conclusiones

3. MODELOS DE DEFORMABILIDAD EN ARCILLAS

3.1 Modelo de Terzaghi Ampliado

3.2 Modelo de Burger Modificado

3.3 Modelo de Juárez-Badillo

3.4 Modelo de Marsal (Teoria de Consolidación X)

3.5 Modelo de Zeevaert (Viscosidad Intergranular)

4. PRUEBAS DE LABORATORIO

- 4.1 Ensayes convencionales
 - a) Descripción del equipo, calibracion
 - b) Descripción del ensaye
 - c) Posibles fuentes de error
- 4.2 Ensayes con medición de presión de poro
 - a) Descripción del equipo, calibración
 - b) Descripción del ensaye
 - c) Posibles fuentes de error
- 4.3 Suelos ensayados
- 4.4 Discusión de los resultados
- 4.5 Ensaye de consolidación con velocidad de deformación controlada

5. ESTUDIOS COMPARATIVOS

5.1 Ciudad de México

- a) Estratigrafía
- b) Geometría y cargas
- c) Parámetros ajustados
- d) Cálculo de hundimientos

5.2 Presa Tamesi

- a) Estratigrafía
- b) Geometría y cargas
- c) Cálculo de hundimientos

6. CONCLUSIONES

6.1 Modelos estudiados

6.2 Equipo diseñado

80

6.3 Ensayes de laboratorio

6.4 Ejemplos de aplicación

7. REFERENCIAS

8. TABLAS Y FIGURAS

APENDICE : Detalles del consolidómetro con medición de presión de poro

SIMENULOGIA.

· · · ·

Los símbolos se definen a lo largo del texto, y esta lista se incluye como una guía.

a	parametro
Bb	contrapresión
b	parámetro; constante de Darcy
Cα	coeficiente de compresión secundaria (ec.3.1)
Ct	pendiente del tramo recto en la curva de consolidación
Cuu	resistencia no drenada la corte
CV	coeficiente de consolidación
сX	deformación específica calculada
E	módulo de elasticidad
e	relación de vacios
exp	base de los logaritmos neperianos, 2.7182
Ť	porosidad
Gr	módulo elástico maxwelliano
Gk	módulo elástico kelviniano
Gw	grado de saturación
1-1	altura; longitud de drenaje
k	coeficiente de permeabilidad
Ко	coeficiente de empuje de tierras en reposo
L'n	logaritmo natural
log	logaritmo decimal
Ma	módulo diferido
Mi	módulo instantáneo
m∨ _	coeficiente de compresibilidad volumétrica
N	parámetro de Lamé
ų	presión total

	5	parámetro de Lamé	
	Ss :	densidad de edidos	
	t	ter en la companya de la companya d La companya de la comp	
	t*	tiempo: caracteristico	
معرف المعرف	-1 v	factor tiempo	
 	2 U	grado de consolidación; grado de compresión	
n a Linear	u .	nresión de noro	
	N.	volúmon	•
	v .	Vordmen	
· · · · ·	W	contenido de agua natural	
	X	deformación específica; decremento de volúmen	
	Z -	profundidad	
· · · · · · · ·			
			
	α .	parámetro reológico; coeficiente de relajación	
1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997	ß	relación entre la compresibilidad secundaria y primaria	- <u></u>
	7v	peso volumétrico del agua	
	Δ.	incremento	
	S	desplazamiento; coeficiente de viscosidad volumétrica	• • •
	 	deformación unitaria	
د منتقل . منتقل المراجع الشعور ومقر	εν _	deformación volumétrica unitaria	
	_ Ζα -	coeficiente de compresión secundaria	•
	η	coeficiente de viscosidad maxwelliano	
	μ	parámetro adimensional de la teoría de Biot	
	ν	relación de Poisson	
	ξ	parámetro definido por la ec. 3.35	
	π	relación geométrica entre la circunferencia y el diámetro d Circulo, 3.1416	e un
•	Σ	Sumatoria	
н. н	о . О	esfuerzo eroctivo de tributo de la composición de la composición de la composición de la composición de la comp	
••			
-			
			• •

🗢 esfuerzo	critico.
------------	----------

τ tiempo de relajarión.

$au = ext{tremp}$ o de repardamiento

 ϕ parámetro reológico

z coeficiente de Fröhlich

1. INTRODUCCION

1.1 Antecedentes.

El fenómeno de consolidación ha sido observado cualitativamente desde hace mucho tiempo. Desde la época de los aztecas, en México, se apreciaron hundimientos en las construcciones, asociándolos a la "consolidación" del suelo. Sin embargo, no se contaba con una explicación del fenómeno (principio de esfuerzos efectivos) ni con una teoria que lo modelara, hasta la publicación del libro de Terzaghi (1925), "Erdbaumechanik".

Por otro lado, las predicciones de hundimientos hechas con la teoría de Terzaghi no siempre reflejan el comportamiento de laboratorio y de campo observado. En muchos casos se presentan asentamientos mayores (y durante más tiempo), que se deben al fenóeno de "consolidación secundaria". Para explicarlo, se han propuesto modelos alternativos al de Terzaghi, surgiendo un gran número de éstos.

En las arcillas de la Ciudad de México, se ha observado que la consolidación secundaria es muy importante (por ejemplo Zeevaert, 1957 y Marsal y Mazari, 1959), más que en otros suelos del mundo, por lo que surge la necesidad de estudiar el fenómeno con mayor acuciosidad.

Así, se plantea la pregunta de cuál modelo utilizar. Para esto, se debe tomar en cuenta la similitud de las predicciones con las observaciones de laboratorio y campo, sencillez de aplicación, hipótesis, etc., por lo que se hace necesaria una comparación entre algunos de los modelos. Además, el estudio del problema, desde distintos puntos de vista, puede ayudar a una mejor comprensión del mismo.

Por otra parte, el proceso de consolidación definido por Terzaghi sólo considera la parte hidrodinámica del proceso de deformación del suelo, por lo que se requiere realizar mediciones directas de la disipación del exceso de presión de poro (en el laboratorio) durante la consolidación, para verificar lo señalado por Terzaghi y como ayuda en el estudio de la consolidación secundaria.

Por estos motivos, se eligió estudiar la deformabilidad de las arcillas, desde distintos puntos de vista, y realizar mediciones directas de deformabilidad y disipación de presión de poro en el laboratorio.

1.2 Objetivos

a) Mediante un ejemplo, mostrar cuál es el impacto, en el diseño de una cimentación, al utilizar diversos modelos de predicción de asentamientos en arcillas.

b) Mostrar cuál modelo (o modelos) define con mejor aproximación el comportamiento del suelo, con base en resultados experimentales y observaciones en campo.

c) Señalar las ventajas y limitaciones para la obtención de parámetros de cada modelo estudiado, así como su aplicación en la práctica.

d) Mostrar la utilidad de realizar ensayes odométricos con medición de presión de poro, y aplicando contrapresión al espécimen de suelo, construyendo un equipo ex profeso.

e) Mostrar la manejabilidad y grado de confiabilidad del aparato diseñado.

f) Comparar los resultados de ensayes de consolidación unidimensional, con los resultades de los ensayes con contrapresión y medición de presión de poro.

1.3 Alcances.

En el capítulo 2 se hace una breve descripción del fenómeno de consolidación, y se comentan algunos de los trabajos que se han publicado sobre su estudio en suelos arcillosos. Asimismo, se comentan brevemente evidencias de campo y laboratorio de la importancia de la compresión secundaria. También se mencionan los trabajos que se han realizado para medir la presión de poro en prue-

з

bas odométricas, con énfasis en las arcillas lacustres de la Ciudad de México.

Con base en la revisión bibiográfica del capítulo 2, se seleccionaron algunos modelos de deformabilidad de suelos blandos, señalando las principales hipótesis, ventajas, limitaciones y métodos de ajuste a datos experimentales. En el capítulo 3 se presentan los modelos estudiados, que son: Terzaghi ampliado, Burger modificado, Juárez-Badillo, Marsal, y Zeevaert.

Para observar el comportamiento del suelo, en el laboratorio, se realizaron ensayes odométricos convencionales, y con medición de presión de poro. En el capítulo 4 se hace una descripción de los equipos utilizados, los sistemas de medición, y propiedades indice de los suelos estudiados, así como los resultados obtenidos y las probables fuentes de error.

Con base en los resultados de las pruebas odométricas convencionales, y ajustando los parámetros de los diferentes modelos, en el capítulo 5 se analizaron los resultados de deformabilidad y consolidación, que se obtendrían siguiendo uno u otro modelo, planteando un ejemplo de aplicación práctica, enfocado a una cimentación parcialmente compensada de una estructura en la Ciudad de México.

Esto mismo se hizo para analizar el comportamiento de un terraplén de prueba en la presa Tamesí, comparando los resultados con las observaciones hechas in situ.

Finalmente, en el capitulo 6 se presentan las conclusiones más importantes de esta investigación.

2. CONSOLIDACION UNIDIMENSIONAL DE ARCILLAS.

2.1 Introducción.

Los suelos, en general, están constituídos por tres fases: sólida, líquida y gaseosa. La fase sólida está compuesta por partículas de minerales, las cuales forman el esqueleto del suelo. Esta estructura tiene cavidades que ocupan las otras dos fases. En lo que sigue, se estudiarán materiales bifásicos, particularmente, arcilla saturada. La fase líquida se considera que es agua.

Si el suelo se sujeta a un incremento de esfuerzo, su volumen se reducirá. La reducción de volumen se debe a un cambio en los vacios de la estructura, que provoca un desplazamiento relativo entre los granos del suelo; éstos son forzados a ocupar posiciones más estables, haciendo el material más compacto.

Asi, la deformabilidad del suelo se debe a la facilidad con la que los granos cambian de posición y del tipo y rigidez de la estructura del suelo. La estructura del suelo se define, no solamente como el arreglo geométrico de los constituyentes del suelo, sino como el enlace entre las partículas y consiste de los siquientes elementos:

a) Propiedades de las partículas- minerales de arcilla, forma, tamaño, rigidez.

b) Acomodo y arreglo de las partículas- orientación, tamaño de los poros, distribución, número de contacto entre partículas.

c) Fuerzas interparticulares- fuerzas repulsivas (electrostáticas, hidratación iónica de la superficie), fuerzas de atracción (electrostática, electromagnética), cementación, esfuerzos capilares.

Considérese una masa de arcilla saturada, bajo carga, en la cual no se permite el drenaje; la compresibilidad del esqueleto mineral del suelo es muy grande comparada con la del agua. Al aplicar un incremento de presión, toda la carga se traduce en un exceso de presión en el agua de poro. Si se permite entonces el drenaje, el gradiente hidráulico resultante provoca un flujo de agua hacia afuera de la masa de arcilla, y ésta comienza a comprimirse. Una porción del esfuerzo aplicado se transfiere al esqueleto mineral, que a su vez causa una reducción de la presión de agua de poro. Este proceso de compresión gradual con flujo de agua y transferencia del exceso de presión del agua al esqueleto mineral, se llama <u>consolidación primaria</u>.

Para el estudio del fenómeno en el laboratorio, Terzaghi ideó un dispositivo llamado <u>odómetro</u>, o consolidómetro, que se muestra esquemáticamente en la Fig. 2.1. La probeta de suelo es cilin-

drica y se confina lateralmente con un anillo y en sus extremos se colocan sendas piedras porosas. Con este arreglo, la deformación lateral es nula, y sólo se permite deformación en sentido vertical (unidimensional). Por tanto, el flujo del agua intersticial es tan solo vertical.

La deformación impuesta por el odómetro es un caso especial de compresión combinado con distorsión por cortante, en la cual la deformación lateral está impedida, como se muestra en la Fig. 2.2.

La trayectoria de esfuerzos a la que se somete al suelo en esta prueba se muestra en la Fig. 2.3. Se ha preferido utilizar el plano p-q, ya que permite visualizar la trayectoria de esfuerzos en el espécimen de suelo durante la consolidación, y en distintas etapas de carga.

Para condiciones de deformación lateral nula, la relación entre los esfuerzos efectivos principales es igual al coeficiente de empuje de tierras en reposo, Ko.

La trayectoria de esfuerzos efectivos para un incremento de carga es, siguiendo la línea Ko, del punto O al C en la Fig.2.3. Un segundo incremento de carga seria del punto C al D, etc.

La trayectoria de esfuerzos totales está representada con los puntos ON - NC - CM - MD; los puntos N y M representan el instante en el cual el incremento de carga es soportado totalmente por el agua intersticial. El recorrido hasta los puntos C y D, respectivamente, se lleva a cabo durante la consolidación.

8

the second second second second second second

Con base en este anàlisis, es posible observar que el estado de esfuerzos en consolidación unidimensional incluye esfuerzos desviadores — a partir del punto N, que provocan cambios de forma (los de volumen son generados por esfuerzos compresionales) en el suelo, hecho que debe tomarse en cuenta.

2.2 Teoría de Consolidación de Terzaghi.

Terzaghi (1925) describió el fenómeno de consolidación de los suelos, y propuso una teoría para simularlo. Esta teoría se basa en las siguientes hipótesis:

1) La compresión del suelo y la trayectoria del drenaje del agua son unidimensionales.

El agua y los granos de suelo son incompresibles.

3) Un cambio en el esfuerzo efectivo provoca un cambio en la oquedad; su relación es líneal durante cualquier incremento de esfuerzo. El cambio en la relación de vacios (o la deformación volumétrica) se aproxima a un valor finito, al final del proceso de consolidación.

4) La masa de suelo está saturada, es homogénea e isótropa. 5) El agua expulsada sólo corresponde al agua libre —o gravítacional— que sale de los poros de la estructura del suelo; la ley de Darcy se considera válida.

6) El incremento de carga se aplica instantaneamente.

7) Los coeficientes de permeabilidad y compresibilidad del suelo permanecen constantes para un incremento de presión determinado. 8) La presión aplicada es uniforme a lo largo de un plano horizontal. Al inicio, el exceso de presión hidrostática es uniforme en toda la arcilla.

9) El peso del suelo no se toma en cuenta.

Supóngase un elemento de suelo, como el mostrado en la Fig.2.4. El propósito de la Teoría de Consolidación es encontrar las condiciones esfuerzo-cambio volumétrico en cualquier punto en un tiempo determinado, durante el cual la masa se encuentra sometida a una carga sostenida. Con base en las hipótesis anteriores, la ecuación diferencial que gobierna el proceso es:

$$\frac{\partial u}{\partial t} = c_V - \frac{\partial^2 u}{\partial z^2}$$
(2.1)

donde : u : presión en el agua intersticial t : tiempo Z : profundidad cv = k / mv yv : coeficiente de consolidación k : coeficiente de permeabilidad mv : coeficiente de compresibilidad volumétrica yv : peso volumétrico del agua

Las condiciones de frontera que se presentan, para el caso de la Fig. 2.4, son: para t = 0 y $0 \le Z \le H$ $\Delta u = \Delta p$ para t > 0 y Z = H $\Delta u = 0$ para t = ∞ y $0 \le Z \le H$ $\Delta u = 0$ La solución queda expresada como:

$$u(Z,t) = \sum_{m=0}^{\infty} \frac{-2\Delta p}{M} \quad \text{sen } M - \frac{Z}{H} \quad \text{exp} \left\{ -\frac{M^2}{H^2} - cv t \right\}$$
(2.2)

donde : $M = 1/2\pi (2m + 1)$

La ec. 2.2 puede ser representada por un conjunto de isócronas, como se muestra en la Fig.2.5, que muestran la variación del exceso de presión hidrostática con la profundidad, para varios tiempos.

Es de mayor importancia la representación del porcentaje de consolidación promedio de todo el elemento de suelo, para que el asentamiento pueda ser referido con el tiempo. Definiendo el grado de consolidación medio U, y el factor tiempo Tv :

$$U = \delta t / \delta \omega \tag{2.3}$$

$$Tv = cv t / H^2$$
 (2.4)

donde de y doo son los asentamientos en un tiempo t y a infinito, respectivamente. La solución en estos términos es:

$$U = 1 - \sum_{m=0}^{\infty} \frac{2}{M^2} \exp(-M^2 T_V)$$
 (2.5)

La función U = F(Tv), se muestra graficada, en escala semilogarítmica, en la Fig.2.6. Se observa que la curva se vuelve asintótica rápidamente, para valores de Tv mayores o iguales que la unidad. Considérense dos estratos igualmente drenados, con espesores 2H1 y 2Hz, respectivamente. Para el mismo porcentaje de consolidación medio, los tiempos de consolidación siguen la siguiente proporción:

$$\frac{c_{V4}}{c_{V2}} \frac{t_1}{t_2} = \frac{(H_4)^2}{(H_2)^2}$$
(2.7)

Esta relación permite comparar la consolidación en especímenes de diferentes características; o bien, relacionar el campo con el laboratorio.

Los parámetros involucrados son el coeficiente de consolidación (y el coeficiente de compresibilidad volumétrica. Para determinar el coeficiente de consolidación, existen numerosos procedimientos; los más usuales son los debidos a Casagrande y Taylor. El coeficiente de compresibilidad volumétrica, de acuerdo con la

definición de Terzaghi, es:

$$m_{V} = \frac{\Delta S_{V}}{\Delta \sigma}$$
 (2.7)

donde Δ5v es el incremento de deformación volumétrica, bajo el incremento de esfuerzo Δσ.

En esta teoría, se han supuesto constantes el coeficiente de permeabilidad y el de deformación volumétrica, para un incremento dado: sin embargo, estos valores no pueden considerarse estrictamente constantes durante el proceso. La interpretación se efectúa con base en que los valores medios son independientes del

incremento de esfuerzo efectivo aplicado, y del tiempo.

En todo momento se ha supuesto que el principio de esfuerzos efectivos es válido:

$$\Delta p = \Delta \sigma - \Delta u \qquad (2.8)$$

donde p, u y & son las presiones total, de poro y esfuerzo efectivo, respectivamente. Esto implica que en forma gradual, durante el proceso, se aplica sobre el material el esfuerzo de acuerdo al porcentaje de consolidación:

$$\Delta \sigma = \Delta p F(Tv)$$
(2.9)

La ec.2.9 deberá verificarse con la misma rapidez que la deformación de la estructura, para que el concepto de aplicación de esfuerzo efectivo no se altere y F(Tv) sea válida.

El razonamiento anterior indica que la teoría de Consolidación de Terzaghi es válida para los fenómenos elasto-plásticos instantáneos de deformación intergranular.

Por otro lado, solamente la segunda y tercera hipótesis mencionadas del modelo de Terzaghi son válidas en campo (y aúm en laboratorio), además de que se han observado discrepancias en el comportamiento esfuerzo-deformación-tiempo del suelo, respecto de las predicciones hechas con esta teoría.

Sin embargo, el trabajo de Terzaghi ha servido como base para desarrollar otros modelos, algunos de los cuales se describen a continuación.

2.3 Teorías de consolidación.

El fenómeno de consolidación se estudia desde dos grandes enfoques, según Scott y Ko (1969) y Murayama (1985): Micrométrico (o estructural) y Macrométrico (o fenomenológico):

A. <u>Enfogue micrométrico</u>. Con este enfogue se describe el comportamiento global del suelo, a partir del nivel de su estructura. Por ejemplo, los análisis geométricos de arreglos ideales de esferas iguales se usaron como base para proponer ecuaciones constitutivas; enfogues estadisticos que se basan en la distribución probabilística de partículas, de fuerzas de contacto, etc.

El enfoque micrométrico se utiliza de dos maneras básicamente:

i) Como un medio para la formulación de leyes constitutivas del comportamiento general del suelo bajo carga, y

ii) Como un medio para el análisis de la estructura del suelo y su cambio bajo acciones externas.

Algunos modelos que emplean este enfoque son los propuestos por: Mitchell et al (1968): Murayama (1983) y Wu et al (1966).

Es <u>Enfoque macrométrico</u>. Se describe el comportamiento global del suclo a partir de la observación fenomenológica. Es decir, se hace caso omiso de la estructura del suelo. Así, el suelo puede

ser representado como un contínuo ideal, elástico, elasto-plástico, viscoelástico, viscoelasto-plástico, etc. Es el enfoque que más ha sido utilizado para el estudio de suelos.

Para la descripción del proceso de consolidación, entre los modelos basados en este enfoque, se encuentran: Terzaghi (1925), Schiffman et al (1964), Zeevaert (1986), Marsal (1961), Juárez (1985), y otros.

2.4 Compression secundaria.

A partir de datos de campo y laboratorio, la consolidación de las arcillas se puede dividir en tres fases:

a) Deformación inicial. Se lleva a cabo casi simultáneamente con la aplicación del incremento de carga y antes de iniciar el drenaje. Es un fenómeno de naturaleza elástica a bajos niveles de carga y elastoplástica a niveles altos. Es decir, que una parte (o toda) de esta deformación (instantánea) es recuperable, una vez retirada la carga.

b) Consolidación primaria. Es el proceso de compresión gradual con flujo de agua hacia afuera de la masa de suelo, con transferencia de carga hacia el esqueleto mineral. Si se considera únicamente este efecto, se puede describir adecuadamente el fenómeno con la teoria de Terzaghi.

c) Consolidación secundaria. Es la deformación debida al reacomodo de la estructura interna de la masa del suelo; no es recuperable. Ladd et al (1977) han distinguido dos líneas de pensamiento al respecto:

c.1) <u>Hipótesis A</u>. Supone un comportamiento logarítmico líneal decreciente con el tiempo, en la curva deformación-tiempo(esc. log.) en el intervalo secundario, después de haber finalizado la consolidación primaria. Este enfoque implica que se separen los efectos de consolidación primaria y de la consolidación secundaria, considerando que ésta última se desarrolla una vez terminada la primaria (o que se consideren despreciables los efectos secundarios al ínicio).

Algunos de los autores que así lo han ⊂onsiderado son: Leonards (1977), Ladd et al (1977), Jamiolowski et al (1985), Mesri y Choi (1985).

c.2) <u>Hipótesis</u> <u>B</u>. Con base en el comportamiento observado (Crawford, 1986), se supone que tanto la consolidación primaria como la secundaria se inician simultáneamente. Implica que se obtendrian mayores asentamientos al final de la consolidación primaria que los calculados con la teoría de Terzaghi.

Algunos autores que así lo han supuesto: Sukile (1957), Bjerrum (1967), Leroueilet al (1987), Zeevaert (1986), Marsal (1961).

Cabe señalar que la ASTM (1983) acepta los términos compresión secundaria y consolidación secundaria, indistintamente.

1 E.

2.5 Relación campo-laboratorio.

Los efectos secundarios pueden resultar de una gran variedad de causas y puede ser impráctico desarrollar una teoría basada directamente en el fenómeno físico, como en el caso de la consolidación primaria. En cambio, la mayoría de los autores ha preferido recurrir a modelos reológicos (basados en enfoques macrométricos), cuyos parámetros tienen poca o ninguna equivalencia fisica.

El efecto secundario fué apuntado por primera vez por Taylor (1930). Desde entonces, diversos investigadores han publicado estudios que evidencian la existencia de la compresión secundaria en campo, como Moran et al (1958). Marsal y Mazari (1959), Bjerrum (1967). Recientemente se han reportado suelos exhibiendo compresión secundaria en campo, con base en mediciones a largo plazo, por ejemplo Magnan et al (1987), Aguirre et al (1987), Mieussens y Magnan (1987), Zeevaert (1986), Montañez et al (1980).

En laboratorio, se han publicado evidencias de presencia de compresión secundaria, como las de Taylor (1942), Marsal (1961), Zeevaert (1964), Mesrï et al (1975).

En laboratorio, la compresión secundaria se manifiesta claramente por la deformación posterior a la disipación del exceso de presión hidrostática del agua (o sea, al finalizar la consolidación

primaria). Existen procedimientos empíricos para determinar el tiempo para el cual ocurre el 100 % de consolidación primaria (por ejemplo, los debidos a Casagrande y Taylor), aunque es preferible medir la presión de poro durante la consolidación. Esto se comentará con detalle más adelante.

Existen pocos estudios que comparen el comportamiento camporlabor ratorio incluyendo compresión secundaria; sin embargo, se pueden citar los siguientes:

Marsal y Mazari (1959) presentan varios casos de comportamiento de cimentaciones de edificios; Kabbaj et al (1988), analizan el comportamiento a largo plazo de tres terraplenes en Canadá; Mesri y Choi (1985), hacen una comparación detallada del terraplén de Vasby, en Suecia; Horn y Lambe (1964) reportan el comportamiento de los edificios del MIT; Pelletier et al (1979) presentan resultados de observaciones de hundimientos y niveles piezométricos bajo terraplenes de carreteras, cerca de Portland, Maine; Montañez et al (1980) muestran el comportamiento de terraplenes en el sitio de la Presa Tamesí.

La representación del compertamiento de campo con base en resultados de laboratorio se ve afectada por los aspectos siguientes: a)muestra de suelo, b)equipo de ensaye, c)procedimiento de prueba y modelo empleado.

a) <u>Muestra de Suelo.</u>

- Representatividad de la muestra. Se considera que la pastilla de suelo (de unos cuantos centímetros cúbicos), es representativa de las propiedades mecánicas a lo largo de un estrato, tanto en sentido vertical como horizontal.

- Grado de alteración. La calidad de una probeta de suelo depende del muestreo. Es decir, el método empleado debe conservar las siguientes condiciones que el suelo tiene in situ: contenido de agua, relación de vacios, composición química, estructura, estado de esfuerzos. Con las técnicas actuales de muestreo en suelos blandos, es posible mantener todas ellas, excepto la última. Además la muestra puede alterarse durante la manipulación para su labrado (Van Zelst, 1948). Se ha observado que la mayor alteración puede ocurrir durante el enrasado de las caras del espécimen.

b) Equipo de ensaye.

- Condiciones de confinamiento. Para que la masa de suelo se encuentre bajo condiciones de deformación lateral nula, es necesario que el área cargada sea muy grande comparada con el espesor del estrato de suelo. En la mayoría de los casos de la práctica, esto no se cumple.

- Fricción en el anillo. Leonards y Girault (1961) mostraron la importancia que tiene la fricción lateral durante la prueba del

odómetro (efecto) que no ocurre en campo); este problema ha sido solucionado satisfactoriamente mediante el uso de anillos de materiales poco friccionantes con el suelo.

- Flujo unidimensional. Es muy probable que en campo el flujo no sea unidimensional, sino bi y tridimensional. Aunque ya se han desarrollado equipos y modelos que toman en cuenta este efecto, las hipótesis en las que están basadas y la complejidad de las soluciones al problema, hacen que se siga utilizando la consolidación unidimensional.

c) Procedimiento de prueba.

- Tipo de ensaye. Fundamentalmente se refiere a la manera en que el suelo es cargado:

* Carga incremental sostenida (STD). Es el ensaye realizado convencionalmente, en el cual se aplican a la muestra de suelo incrementos de carga que se mantienen constantes durante un cierto tiempo, generalmente 18 a 24 horas.

* Velocidad de deformación controlada (CRS). La muestra se somete a una deformación vertical aplicada a una velocidad constante.

* Velocidad de carga controlada (CRL). El esfuerzo aplicado al espécimen de suelo se incrementa monotónicamente, con una velocidad constante.

* Gradiente constante (CG). Los incrementos de carga se aplican de tal manera, que la diferencia de la presión de poro entre las caras superior e inferior de la muestra se mantenga constante.

* Relación de la presión de poro/carga, constante (CPR). La carga es aplicada de tal manera que la presión de poro en la cara sin drenaje siempre mantiene una proporción, respecto de la presión total.

* Flujo controlado (RFC). La velocidad de drenaje es restringida con una válvula, de tal manera que la presión de poro en la cara drenada de la muestra decrezca lentamente hasta alcanzar el valor de la contrapresión aplicada; el gradiente hidráulico a lo largo de la muestra permanece relativamente pequeño.

* Control de contrapresión (BPC). Inicialmente, la contrapresión es igual a la presión de poro en la muestra, y se reduce paulatinamente, hasta un valor final constante.

En la Fig. 2.8 se muestran gráficamente los diagramas de carga para los siete procedimientos. Es de hacerse notar que para realizar cualquiera de estos ensayes -a excepción del primero-, es necesario medir la presión de poro durante la consolidacion.

Además, se observa que los tipos de prueba mencionados se llevan a cabo con mucha mayor rapidez que el convencional de carga incremental (STD), por lo que no muestran con la misma claridad la componente de compresión secundaria, que requiere de tiempo para percibirse. Es necesario constatar la validez de los ensayes no convencionales en el laboratorio, cuando los suelos estudiados presentan compresión secundaria. En la Tabla 2.1 se muestra una comparación general entre estos procedimientos, señalando sus ventajas e inconvenientes.

- Duración del incremento. En las pruebas de carga incremental sostenida, la duración convencional de los incrementos es de 24 horas, que según algunos autores (por ejemplo Zeevaert, 1986; Kabbaj et al, 1988) es tiempo suficiente para efectuar predicciones de asentamientos a largo plazo. Luego entonces, la duración minima para cada incremento es de 24 horas, si el suelo exhibe compresión secundaria, aunque esto también depende del nivel de esfuerzos.

- Magnitud del incremento. La relación incremento de carga-esfuerzo aplicado (RIC) es uno de los factores importantes en la configuración de las curvas de consolidación (por ejemplo, Leo-

nards y Girault, 1961; Xiangyue, 1985). En general, se acepta que la magnitud de la compresión secundaria es mayor si se utiliza una RIC menor a 0.1. Asimismo, la magnitud del esfuerzo crítico se ve disminuida si la RIC es igual o mayor a la unidad.

- Grado de saturación. Lowe et al (1964) señalaron por primera vez, que el alívio de esfuerzos provocado al muestrear el suelo, puede generar la formación de burbujas de gas en los especimenes que en el campo estén saturados , conteniendo un alto porcentaje de gas disuelto. Para simular las condiciones originales, se aplica una contrapresión al espécimen de suelo, para disolver las burbujas, y aumentar el grado de saturación que tiene después de ser muestreado. El hecho de aplicar esta presión al suelo provoca cambios en las curvas de compresibilidad y consolidación.

d) Modelo empleado.

Es necesario que la teoría empleada sea conceptualmente correcta. Las hipótesis supuestas en el modelo escogido deben aproximarse a las condiciones de campo, y las diferencias inherentes despreciables.

Dado que cada modelo utiliza parámetros, la determinación de éstos en el laboratorio debe ser precisa y sin ambigüedades. Lo más deseable es que estos parámetros se obtengan en forma práctica y sencilla.

2.6 Medición de presión de poro.

La medición de la presión del agua intersticial en la prueba del odómetro se realizó originalmente con el propósito de corroborar las predicciones hechas con la teoría de Terzaghi; posteriormente, se ha llevado a cabo para realizar pruebas diferentes a la convencional, como las mencionadas en el inciso 2.5.

Taylor (1942) fue el primero en reportar mediciones de este tipo, con suelos remoldeados; posteriormente, Marsal (1944) utilizó el mismo equipo, pero con suelos inalterados.

Marsal y Mazari (1959) reportaron las primeras mediciones en la arcilla lacustre de la Ciudad de México, señalando desviaciones de la teoría de Terzaghi, hecho que fué corroborado por Leonards y Girault (1961). Whitman et al (1961) señalaron la importancia que tiene la flexibilidad de los sistemas de medición utilizados hasta entonces, los errores que generaban, así como la sugerencia de utilizar transductores electrónicos para minimizar los efectos apuntados.

Desde entonces, se han publicado diversos resultados de medición de presión del agua intersticial durante la consolidación en diferentes arcillas. Las mediciones realizadas en arcillas de la Ciudad de México por Marsal y Mazari (1959), Leonards y Girault

(1961), Marsal (1961), y Mesri y Choi (1980) coinciden en los siguientes aspectos:

- En especímenes de dimensiones similares, y con alturas de anillo de alrededor de 2 cm y una sola superficie de drenaje (en la otra superficie se realiza la medición de presión intersticial), el exceso hidrostático se disipa después de 10-20 minutos de haberse iniciado la consolidación , en la rama de recompresión.

- Para relaciones de incremento-carga (RIC) mayores que la unidad, la teoría de Terzaghi tiene una aproximación aceptable, pero se eclipsa el efecto secundario. Dado que la práctica aconsejable en este tipo de depósito es de realizar ensayes con RIC pequeños, las mediciones señalan que la disipación se lleva a cabo con mucha mayor rapidez que la predicha por la teoría de Terzaghi.

- El método de Casagrande para predecir el 100 % de consolidación en forma teórica es aplicable si la RIC es igual o mayor que la unidad. El método de Taylor se ajusta con mejor aproximación a las mediciones experimentales si la RIC es pequeña.

Estos efectos se ejemplifican en la Fig. 2.9.

Se apunta la necesidad de realizar un mayor número de ensayes con medición de presión de poro durante la consolidación, con el objeto de corroborar lo señalado anteriormente, y como ayuda en la obtención de parámetros en algunos modelos.

2.7 Conclusiones.

* Existen numerosos modelos para describir el fenómeno esfuerzodeformación-tiempo del suelo; debe elegirse el que represente con mayor fidelidad su comportamiento en el campo, pero debe ser posible efectuar predicciones con base en pruebas de laboratorio. De la revisión bibliográfica, se seleccionaron algunos modelos, para realizar el estudio comparativo objeto de este trabajo.

* Las pruebas en el odómetro, en arcillas blandas como las de la Ciudad de México, deben efectuarse con relaciones de incrementocarga pequeñas, con una duración minima de 24 horas por incremento, para permitir que el suelo refleje su componente de compresión secundaria. En estas condiciones, la teoría de Terzaghi no es aplicable.

* El modelo de comportamiento que se elija debe representar las características de compresibilidad de la arcilla bajo estudio. Asi, se ha observado que el fenómeno de compresión secundaria es de gran importancia en las arcillas de la Ciudad de México, por lo que el modelo empleado debe contemplar el efecto secundario.

3. MODELOS DE DEFORMABILIDAD DE ARCILLAS.

Para fines de estudio, se seleccionaron los modelos de Terzaghi ampliado, Burger modificado, Juárez Badillo, Marsal y Zeevaert.

En este capítulo se describen estos modelos, sus principales hipótesis, ventajas, limitaciones y métodos de ajuste a datos experimentales.

3.1 Terzaghi Ampliado.

Con este nombre se ha designado al modelo más sencillo para tomar en cuenta la compresión secundaria. Consiste en prolongar la porción recta de la curva de consolidación, como se muestra en la Fig.3.1.

Se acepta que la compresión secundaria se debe a la deformación de granos individuales (por ejemplo, compresión de fibras orgánicas o páquetes de arcilla), y al movimiento relativo de los granos (por ejemplo, cambios en el espaciamiento promedio de las partículas provocado por esfuerzos cortantes). El considerarlo de esta forma, implica que:

* Al inicio de la consolidación, sólo tiene lugar el fenómeno hidrodinámico, o bien, se desprecia el fenómeno secundario,; 'es decir, se aplica la teoría de Terzaghi.
* La compresión secundaria tiene lugar despues de la consolidación primaria; es decir, se sigue la hipótesis A, mencionada en el inciso 2.4.

* La compresión secundaria obedece una ley logaritmica con el tiempo; así, en un gráfico semilogarítmico, la porción secundaria aparece como una línea recta.

* Los suelos con una compresibilidad alta exhibirán fuerte compresión secundaria.

El parámetro con el que se determina la magnitud de la compresión secundaria es la pendiente de dicha recta, definida como coeficiente de compresión secundaria, Co (Mesri, 1973):

$$C\alpha = -\frac{\Delta e}{\Delta \log t} \alpha \tag{3.1}$$

Donde ∆e es el cambio en la relación de vacíos durante e 1 intervalo de tiempo Alog t. Otra manera usual de definir el coeficiente de compresión secundaria es mediante incremento 21 en la – deformación volumétrica. Ac:

$$\varepsilon_{\alpha} = -\frac{\Delta \delta}{\Delta \log t} = -\frac{C\alpha}{1+e}$$
(3.2)

Las ecs.3.1 y 3.2 son utilizadas también para predecir asentamientos por compresión secundaria.

En la Fig.3.2 se muestran los coeficientes de compresión secundaria para diferentes depósitos; se observa que en los suelos

con un «a menor de 0.1 %, la compresión secundaria no es significativa; asimismo, el valor de «a rara vez es mayor de 10 %. La magnitud de «a ha servido para clasificar la compresibilidad secundaria de los suelos, como se muestra en la Tabla 3.1.

Los factores que influyen en el valor del coeficiente de compresión secundaria son (Mesri 1973,1987): tiempo de permanencia de la carga, nivel de esfuerzos, relación de incremento de carga, tipo de estructura, estado de esfuerzos, velocidad de deformación.

Asimismo, se han desarrollado algunas leyes fenomenológicas que relacionan el coeficiente de compresión secundaria con otros parámetros; por ejemplo:

Relación con el índice de compresión, Co.Se piensa que la relación entre ambos coeficientes es lineal:

(3.3)

Donde α es un coeficiente de proporcionalidad; el valor de α puede variar entre 0.02 y 0.08, para todos los materiales geotécnicos, incluyendo arcillas, arenas, enrocamientos. Para la mayoría de las arcillas inorgánicas, $\alpha = 0.04 \pm 0.01$. Por ejemplo, para la arcilla de la Ciudad de México se ha encontrado $\alpha = 0.046$ (Mesri et al, 1975), y valores de C α comprendidos entre 0.1 y 0.001, dependiendo del nivel de esfuerzos (Jaime, 1988).

La principal ventaja de este modelo radica en su sencillez, tanto

para aplicarlo, como en la obtención del único parámetro involucrado, es decir, el coeficiente de compresión secundaria (ya sea en términos de relación de vacios o de deformación volumétrica; ecs. 3.1 y 3.2, respectivamente).

El asentamiento por consolidación secundaria se calcula con:

 $\varepsilon v = \varepsilon \alpha \log (t/tp)$

(3.2a)

Se observa que el límite de la ec. 3.2a, cuando t→ ∞ , es εv → ∞. Sin embargo, la razón de decremento de εv tiende a:

 $\lim_{t \to \infty} \frac{d(\log t/tp)}{dt} = \lim_{t \to \infty} (1/t)(1/tp) = 0$

Si se compara la función logarítmica (ec.3.2a) con una lineal creciente, se aprecia lo siguiente: para valores de t iguales a 1, 10, 100, 1000, la ec.3.2a varía como 0, 1, 2, 3; a diferencia de una función lineal, en la que la relación es directamente proporcional.

Por otro lado, desde el punto de vista ingenieril, la vida útil de las obras es de 30 a 50 años, y en ese intervalo de tiempo, la ley logarítmica define adecuadamente el comportamiento de consolidación secundaria en el tiempo.

3.2 Modelo de Burger Modificado.

Para el estudio de la consolidación de arcillas, uno de los enfoques más utilizados ha sido el de los modelos reológicos (por ejemplo, los propuestos por Gibson y Lo,1961; Keedwell, 1984). Los modelos más utilizados han sido combinaciones de los modelos de Hooke y de Newton (por ejemplo, Kelvin, Maxwell) que se muestran en la Fig.3.3; Leonards y Altschaeffl (1964) presentan un estudio comparativo entre diversos modelos de este tipo. Zeevaert (1964) demuestra que la teoría de Terzaghi es equivalente a una serie de unidades de Kelvin.

Varios autores han señalado (por ejemplo, Yong y Warkentin, 1966; Rodríguez, 1970) que el modelo de Burger (es decir, un cuerpo de Maxwell en serie con uno de Kelvin) presenta varias ventajas para representar al suelo, cuando se incluye la compresión secundaria. El modelo de Burger se muestra esquemáticamente en la Fig.3.4 (Rodríguez, 1976). Al adoptar este modelo, se hacen las siguientes hipótesis:

* La compresión inicial es elástica (instantánea y recuperable) y está representada por un cuerpo de Hooke.

≭ La consolidación primaria se modela de acuerdo con el cuerpo de Kelvin (que es equivalente a la teoría de Terzaghi).

* La compresión secundaria se representa con un cuerpo de Newton,

con viscosidad lineal. Esto implica que la deformación diferida tiende a ser infinita.

* Los cuerpos de Kelvin y de Newton actúan simultáneamente; es decir, la consolidación secundaria ocurre desde el inicio (hipótesis B, inciso 2.4).

* El suelo se encuentra confinado lateralmente.

La ecuación diferencial que rige el modelo es la siguiente:

 $\sigma + \phi \mathbf{1} \sigma + \phi \mathbf{2} \sigma = \alpha \mathbf{1} \varepsilon + \alpha \mathbf{2} \varepsilon$

(3.4)

donde σ : esfuerzo ε : deformación unitaria α 1,2 : constantes elásticas φ 1.2 : constantes de fluidez ,'' : la y 2a derivadas respecto del tiempo, respectivamente.

Se ha preferido plantear la solución de la ec.3.4 en términos de constantes con un significado fenomenológico, relacionadas con las de la ec.3.4; la solución es:

> $x = \frac{c}{\sigma} = \frac{1}{Gr} + \frac{t}{\tau - \tau} + \frac{1}{\tau - \tau} (1 - 1/c_0) [1 - exp(-t/\tau k)]$ (3.5) $\sigma = \frac{c}{Gr} + \frac{1}{T} +$

donde

t : tiempo Gr, η, Gk, τk : constantes que dependen del suelo exp : base de los logaritmos neperianos. X = ε/σ : deformación específica. Ko : coeficiente de empuje de tierras en reposo El término que involucra al coeficiente de empuje de tierras en reposo simula al confinamiento que se le aplica a la muestra en el ensaye del odómetro (Rodríguez, 1970).

En la Fig.3.5 se muestra el significado físico de las constantes involucradas, por medio de una gráfica deformación específica vs. tiempo.

Para determinar los parámetros se hace un ajuste de los puntos experimentales obtenidos en el ensaye de consolidación, con la curva teórica representada por la ec.3.5. Esto puede hacerse con el método numérico propuesto por Rodriguez (1976):

Considérese que una serie de valores experimentales de deformación específica vs. tiempo, como los mostrados en la Fig.3.5 : (to,Xo), (t1,X1), ..., (tn,Xn)

 Se seleccionan cuatro puntos notables entre los valores experimentales. Se les denomina con los subindices o,1,2,3.
 Se define Gm = 1/Xo. Xo debe ser la deformación específica inicial.

(3.6)

3) Se calcula

 $F_{4} = (t_{9} - t_{4}) / (t_{2} - t_{4})$

4) Se inicia el cálculo suponiendo:

5) Calcular Gk, n como:

$$\eta = \frac{ta + tz}{\chi_{3} - \chi_{1} + -\frac{1}{CF} \left[\exp(-ta/\tau k) - \exp(-ta/\tau k)\right]}$$
(3.9)

6) Se obtienen los valores de la deformación específica calculados, cX; estos valores representan aproximadamente a X experimental.

$$cX = \frac{1}{GR} + \frac{1}{\eta} = \frac{1}{Gk} [1 - exp(-t/\tau k)]$$
(3.10)
GR η Gk

7) Se determinan los cocientes Xi/cXi; asimismo, se calcula el promedio de estos valores, que debe estar comprendido entre 0.95 y 1.05, para tener un 5 % de aproximación; en caso contrario, se calcula un nuevo valor de Tk y se reinicia el cálculo a partir de (4), hasta que se satisfaga esta condición.

Este modelo ha sido aplicado para describir el comportamiento del suelo (por ejemplo. Montañez et al, 1980; Rodriguez, 1988). Aunque el plantemiento se hace con variables poco usuales (por ejemplo, deformación específica), es de fácil aplicación, y el método de ajuste tiene una convergencia relativamente rápida (40 ciclos); su principal desventaja radica en la suposición de una viscosidad lineal en el comportamiento secundario del suelo (Montañez et al, 1979).

3.3 Modelo de Juárez-Badillo.

Este autor ha presentado dos formulaciones que modelan la deformabilidad -repecto del tiempo- del suelo; una para consolidación primaria (Juárez, 1986), y otra para compresión secundaria (Juárez, 1985). Dado que no existe aún una conexión clara entre ambas (Juárez, 1989),se prefirió utilizar solamente la de compresión secundaria, para que fuera comparable con los otros modelos estudiados.

La principal hipótesis en la cual está basado es la siguiente : la ecuación que relaciona los cambios de volumen en el tiempo depende de un parámetro adimensional, independientemente de puntos críticos, que satisface las condiciones de frontera; es decir, para un tiempo inicial, el suelo tiene un volumen inicial conocido y para un tiempo infinito, el suelo llega a un volumen final. El autor postula que:

* El dominio del tiempo es completo; es decir, de O a co

* El dominio del volumen es incompleto; es decir, de un volumen inicial a uno final (Vi a Vf). Se requiere una función, denominada f(V), para la cual f(V) = 0 si t = 0, y f(V) = ∞ si t = ∞ . En la Fig.3.6 se muestra de manera esquemática, el razonamiento para la obtención de esta función , la cual resulta ser :

$$f(V) = -\frac{1}{V - Vt} - \frac{1}{Vt - Vt}$$
(3.11)

* La relación entre el tiempo y f(V) es:

$$\frac{\mathrm{d}f(V)}{f(V)} = \delta - -\frac{\mathrm{d}t}{t} -$$
(3.12)

Donde 6 es un parámetro de proporcionalidad, adimensional, llamado coeficiente de viscosidad volumétrica.

Integrando la ec.3.12 entre los límites (ti,Vi) y (t,V), multiplicando el numerador y el denominador por (Vi - Vf), y realizando el cambio de variable :

$$VI - V = \Delta V = X$$
(3.13)

donde X y XT son el cambio volumétrico, para tiempo t y para t = ∞, respectivamente, la ec. 3.14a se convierte en:

$$\frac{\chi_{\overline{x}}}{\chi} = 1 + \left(\frac{\chi_{\overline{x}}}{\chi} - 1\right) \left(-\frac{t_{\overline{x}}}{t}\right)^{\delta}$$
(3.14b)

Definiendo el grado de compresión $U = X/X\tau$:

$$\frac{1}{U} = 1 + \left(\frac{1}{U_{\pm}} - 1\right) \left(-\frac{t}{t}\right)^{\delta}$$

Y si t^{*} es el tiempo para el cual Ui = 0.5, la ec. 3.14c queda como:

36

(3.140

Esta ecuación permite modelar el fenómeno.

En la práctica, la determinación de los parámetros involucrados (ó. t^{*}) depende del tipo de datos experimentales.

Usando un gráfico semilogarítmico, la curva de consolidación se puede dividir en tres partes, (c), (s), (c), que indican una porción curva, una recta, y nuevamente curva. Se denominará a las curvas experimentales con las tres porciones (csc); con dos tercios, (cs) o (sc), etc.

Considérese que se cuenta con datos del tipo (cs) : (ts, Xs) corresponden a un punto inicial, (t1, X1) a un punto intermedio, y (t2, X2) a un punto final. Los últimos dos puntos deben estar localizados en las zonas inicial y final de la porción recta, respectivamente.

1) Suponer un valor para XT como sigue : encontrar el valor al inicio de la porción recta X = a; entonces XT = 3a.

2) Calcular δ con los puntos 1,2, utilizando la ec.3.15, pero en términos de grado de compresión (X) :

$$\delta = \frac{\log -\frac{Xz}{X_1} - \frac{XT}{XT} - \frac{X_1}{XZ}}{\log -\frac{tz}{t_1}}$$

3) Verificar el valor de XT :

37

(3.15)

(3.16)

$$\frac{X_T}{X_3} = 1 + \left[-\frac{X_T}{X_4} - 1\right] \left[-\frac{t_4}{t_3}\right]^6$$
(3.17)

4) Repetir los pasos 1 a 3, en caso de que la ec.3.17 no sea satisfecha, cambiando el valor de XT (con un valor mayor de XT, se obtiene un mayor valor de XB calculado).

5) Calcular el tiempo característico con el punto 2 :

$$\left(-\frac{t}{tz}\right) = \frac{\chi_T - \chi_Z}{\chi_Z}$$
(3.18)

6) Los valores obtenidos de X τ , δ , t^{*} pueden ser usados en la ec.3.15, o bien, en términos de cambio de volúmen o de cambio de altura (preferible en consolidación unidimensional) :

$$V = Vi - \Delta V = Vi - ---- \frac{(\Delta V)T}{1 + \left(-\frac{\xi}{t}\right)^{\delta}}$$
(3.19)

$$H = H_{L} - \Delta H = H_{L} - \frac{(\Delta H) T}{1 + \left(-\frac{t}{t}\right)^{\delta}}$$
(3.20)

Para los casos en los que se cuente con otro tipo de datos experimentales (por ejemplo, curvas (sc), (csc), etc.), el procedimiento es similar, Juárez (1985).

Se observa que este modelo es relativamente sencillo de utilizar;

sin embargo, los parámetros involucrados carecen de un significado físico, lo cual los hace intangibles. Además, no se conoce que factores influyen en estos parámetros.

Por otro lado, son contados los casos reportados en los cuales se ha utilizado para predecir asentamientos a largo plazo (por ejemplo, Aquirre et al, 1987).

Asimismo, la curva experimental que permite el mejor ajuste de los parámetros es del tipo (csc), que para obtener en el laboratorio, generalmente, implica una duración de incremento de carga mayor de la usual, lo que lo hace poco práctico.

١.

3.4 Modelo de Marsal (Teoría de Consolidación X).

El modelo de Marsal es una modificación a la teoría de Terzaghi, con base en el hecho de que los desplazamientos de las particulas sólidas del suelo no ocurren simultáneamente al incrementar el esfuerzo efectivo, sino con cierto retardo que se supone función exponencial del tiempo. Este modelo está desarrollado a partir de observaciones de laboratorio y de campo (Marsal, 1944 y 1961; Marsal y Mazari, 1959).

Las hipótesis en las que se basa son :

El suelo está saturado y es homogéneo.

* Es válida la ley de Darcy para el flujo del agua intersticial;

éste es incompresible comparado con la matriz sólida.

* El proceso de deformación de la fase sólida se divide en dos componentes, una instantánea y otra diferida en el tiempo. La consolidación secundaria ocurre simultáneamente con la primaria (hipótesis B, inciso 2.4).

* La componente instantánea de la deformación es función lineal del incremento de esfuerzos efectivos. El coeficiente de proporcionalidad es el módulo de deformación instantánea Mi.

* La deformación diferida es proporcional al incremento de presiones efectivas y a una función exponencial del tiempo. Los parámetros involucrados son un módulo diferido, Md, y un coeficiente de relajación, α.

* La deformación volumétrica total es la suma de las componentes instantánea y diferida.

* Tanto el coeficiente de relajación como los módulos instantáneo y diferido son constantes en cada incremento de esfuerzos efectivos; es decir, el problema se trata como un proceso lineal a pasos, y en consecuencia, las soluciones encontradas deben restringirse a incrementos de carga relativamente pequeños.

De acuerdo con estas hipótesis. Marsal propone el modelo reológico tridimensional que se muestra esquemáticamente en la fig.3.7. Está integrado por tres cilindros conectados a un tubo y a la válvula

A. Dentro de los cilindros pueden desplazarse sin fricción pistones unidos a otros tantos resortes. El sistema hidráulico se encuentra total o parcialmente lleno con un líquido incompresible. Los tres resortes concurren al cuerpo B, que desliza sobre una superficie Ω .

Los resortes son el asiento de las deformaciones instantáneas. mientras que las diferidas ocµrren al moverse el cuerpo E sobre la superficie Ω. En los cilindros del modelo también se toman en cuenta las presiones de poro.

Supóngase que el suelo es ensayado en el odómetro. Los puntos M y N (Fig. 3.7) permanecen en su posición original, y según la dirección 1, en L se aplica una fuerza P. Si la válvula A está completamente abierta, de modo que las presiones en el líquido contenido en los cilindros se disipan con rapidez, y no afectan a los desplazamientos que tienen lugar en los resortes y en el mecanismo B- Ω , simultáneamente a la acción de P, tiene lugar una deformación instantánea en el resorte 1 y comienza a deslízar B sobre Ω . Debido alas deformaciones diferidas, los resortes 2 y 3 se comprimen, transfiriendo cargas a los puntos M y N; este efecto representa el confinamiento.

Cuando se cierra parcialmente la válvula A para reproducir condiciones de drenaje restringidas, o un suelo poco permeable, el flujo hidráulico interfiere con la deformación de la fase sólida. La evolución de la presión del líquido que llena los cilindros dependerá de la apertura de la válvula A y de las leyes de deformación asignadas a los resortes y al mecanismo $B-\Omega$.

La ecuacion diferencial que rige al fenómeno es la siguiente :

 $\frac{k}{2} = \frac{\partial^2 u}{\partial z^2} = \frac{1}{ML} \frac{\partial u}{\partial t} + \frac{\alpha}{Md} \left[[u(\alpha) - \Delta \alpha] = \exp(-\alpha t) + \int_{\alpha}^{t} \frac{\partial u}{\partial t} = \exp(-\alpha (t-\tau) d\tau \right]$ (3.21)donde : coeficiente de permeabilidad k : peso volumétrico del agua 2V. : presión de poro u. : profundidad Ζ Mi, Ma : módulos inicial y diferido, respectivamente : coeficiente de relajación Δa : incremento de esfuerzo t : tiempo T. . tiemvo caracter1stico

Se hace notar que la ec.3.21 es equivalente a la propuesta en la teoría de Terzaghi (1943), si α es igual a cero, o Med tiende a infinito; ambás condiciones implican que el proceso diferido de deformación de fase sólida (es decir, compresión secundaria) no existe.

Para un suelo con espesor 2H, sujeto a un incremento de esfuerzo Ao, ylas mismas condiciones iniciales y de frontera que las usadas en la teoría de Terzaghi, la solución es :

$$u(Z,t) = \Delta \sigma \sum_{m=0}^{\infty} \frac{2}{N} \frac{(b-1)e^{2}E(-Bnt) - (b-1)e^{2}E(-2nt)}{N} \frac{n\pi Z}{2H}$$

(3.22)

 $N = -\frac{\pi}{2} - (2m+1)$ (3.23) n = 2m+1 (3.24)

donde

$$b = \alpha \left(1 + \frac{ML}{Md} \right)$$
(3.25)

$$\binom{\beta n}{\gamma n} = \frac{1}{2} \left[b + \frac{k M i n^2 \pi^2}{\gamma v \ 4 \ H} + \frac{k M i n^2 \pi^2}{\gamma v \ 4 \ H^2} \right] \frac{2}{\gamma v \ 4 \ H^2} \frac{k M i n^2 \pi^2}{\gamma v \ 4 \ H^2} \right]$$

$$(3.26)$$

El grado de consolidación, $U = 1 - \frac{u}{\Delta \sigma}$, se evalúa con la siguiente expresión :

$$U = 1 - \sum_{m=0}^{\infty} \frac{2(b - \beta n) e \times p(-\beta n t) - (b - \chi n) e \times p(-\chi n t)_{sen} n - \pi - Z}{\gamma n - \beta n}$$

$$(3.27)$$

Asimismo, la expresión que gobierna el fenómeno deformación~tiempo es la siguiente :

$$c = \Delta \sigma \cup \left[\frac{1}{Mt} + \frac{1}{Md} \right] - \frac{\Delta \sigma}{Md} \sum_{m=0}^{\infty} \frac{2}{N^2} \left[gn (exp(-\alpha t) - exp(-\beta n t)) - hn (exp(-\alpha t) - exp(-\gamma n t)) \right]$$

$$(3.28)$$

donde

$$g_n = -\frac{\beta_n (b - \beta_n)}{(\gamma_n - \beta_n)(\beta_n - \alpha)}$$
(3.29)

$$hn = \frac{\chi_n(b-\chi_n)}{(\chi_n - \beta_n)(\chi_n - \alpha)}$$
(3.30)

Para encontrar los parámetros α, Mi, Md, se cuenta con la ec.3.28; puesto que se tienen tres incógnitas, es necesario plantear tres

ecuaciones simultâneas, con los datos experimentales. Se eligen tres puntos en la curva experimental, los cuales se sustituyen en tres ecs. 3.28. Por iteraciones, se proponen valores de los parámetros, hasta que las tres ecs. se satisfagan, con un margen de error aceptable. Se observa que la ec.3.28 es exponencial, por lo que el procedimiento implica el uso de una computadora digital.

Dado que en la actualidad esta herramienta es de fácil acceso, se elaboró la Tabla 3.2, donde se calcula la deformación volumétrica, para un determinado tiempo, y una serie de valores de M1, Md, k y a.

Se observa que la convergencia de la serie se logra después de tomar en cuenta 10 términos de la misma, para una precisión de 1×10^{-5} en el valor de U. Obsérvese que los resultados son extremadamente sensibles al valor de α , que no es más que un factor de proporcionalidad, sun significado físico (Marsal, 1961), en el que pudieran influir el espesor, la relación de incremento de carga/carga aplicada, nivel de esfuerzos, tipo de material, etc.

Marsal (1961) recomienda calcular una serie de curvas deformación-tiempo, dando valores a los parámetros k. Mi, Md y «, con los cuales se determinaría el orden de magnitud de éstos. La Tabla 3.2 muestra la obtención de un punto en una de estas gráficas, para el juego de valores mostrado.

Este procedimiento es sumamente impráctico, aúm con la ayuda de

una computadora digital, en términos del tiempo y esfuerzo necesarios para obtener los parámetros reales de la prueba y el nivel de esfuerzos considerados, por lo que su aplicación se ve poco promisoria en la práctica de la Ingeniería, tal como lo sugiere Marsal (1961).

3.5 Modelo de Zeevaert (Viscosidad Intergranular).

Este modelo fué planteado inicialmente en 1951, y desde entonces ha sido refinado en varias ocasiones. En este escrito se describirá brevemente la última versión publicada (Zeevaert, 1986).

Las principales hipótesis son :

* El suelo está formado por dos estructuras, con diferentes propiedades reológicas; una de ellas es la estructura primaria, y la otra la secundaria (Fig.3.8). Casagrande (1936) propuso una descripción del suelo arcilloso muy similar.

* La estructura primaria (Fig. 3.8) está constituída con granos más gruesos, formando un esqueleto continuo, capaz de soportar esfuerzos efectivos. La deformación volumétrica de esta estructura tiene la tendencia a ser finita hasta la disipación del exceso hidróstático en la presión del agua intersticial. El modelo de Terzaghi es aplicable. Los poros de esta estructura están saturados con agua libre, y el comportamiento de deformación volumétrica es solamente de naturaleza elasto-plástica para un

determinado incremento de esfuerzo.

* La estructura secundaria (Fig. 3.8) está formada por suelo muy fino, que forma "grumos" entre los granos más grandes de la estructura primaria. Los poros de la estructura secundaria están llenos de agua de diferente viscosidad que los poros de la estructura primaria; esta agua debe ser drenada debido a la presión aplicada durante el proceso de consolidación.

Debido a que estructura secundaria esta la constituída minerales de principalmente de granos de arcilia. el desplazamiento relativo entre ellos se considera un fenómeno de características altamente viscosas, debido a la película de aqua adsorbida que rodea los minerales de arcilla.

De estas hipótesis, se concluye que la deformación volumétrica total del suelo ($\Delta \varepsilon v$) es la suma de la deformación debida a la estructura primaria ($\Delta \varepsilon v$ i) más la debida a la estructura secundaria ($\Delta \varepsilon v$ 2) : ($\Delta \varepsilon v$) = ($\Delta \varepsilon v$ 2) + ($\Delta \varepsilon v$ 2) (3.31)

De la ec.3.31, se observa que la consolidación secundaria ocurre simultáneamente con la primaria (hipótesis B, inciso 2.4). La estructura primaria se representa con una unidad Kelvin (Fig.3.9), que contiene un elemento resistente, en paralelo con un elemento de Newton, de fluidez lineal ϕ_1 , simulando la fluidez del agua de poro.

La estructura secundaria se representa con una "unidad - Z", formada por elementos de viscosidad no lineal (como los sugeridos

por Buisman, 1936 y Koppejan, 1948), que simulan la compresión de los grumos de minerales de arcilla bajo esfuerzo cortante; actuando en paralelo con elementos de Newton, que simulan el retraso hidrodinámico de Δενε, debido a la fluidez φε del agua en los poros de la estructura secundaria (Fig.3.9).

La acción de estas dos unidades requiere que la presión en el elemento de Newton de la unidad Z sea siempre igual o mayor que la presión del elemento de Newton de la unidad Kelvin, para que el agua de la estructura secundaria fluya hacia las superficies de drenaje durante la consolidación primaria.

Se ha demostrado que la teoría de Terzaghi es una suma de unidades Kelvin (Zeevaert, 1964, 1982), por lo que la deformación volumétrica de la estructura primaria se puede escribir como :

(3.32)

 $\Delta \varepsilon_{V1} = (m_V \Delta p) F(T_V)$

donde : coeficiente de compresibilidad mν $\Delta e v / \Delta \sigma$ volumétrica Δb : incremento de presión F(Tv) : función de Terzaghi (por ejemplo, Terzaghi, 1943) = $cv t / H^2$; factor tiempo Tν cν = k / mv yv ; coeficiente de consolidación : coeficiente de permeabilidad ĸ t : tiempo H : longitud mínima de drenaje 24 # peso volumétrico del agua libre

La ecuacion diferencial de la unidad-Z, de acuerdo con lo mostrado en la Fig.3.9, resulta :

$$\Delta \boldsymbol{b} \boldsymbol{v} \boldsymbol{z} = - - - - - \frac{\mathbf{a}}{\mathbf{b}} \qquad (3.33)$$

$$\mathbf{b} + \mathbf{a} / \boldsymbol{\phi} \boldsymbol{z} + \mathbf{t}$$

Donde a,b son constantes del amortiguador no lineal, de la Unidad-Z (Fig.3.9).

Integrando la ec.3.33, y sustituyendo algunas de las relaciones Kelvín-Terzaghi (Zeevaert, 1964), la solución-greda :

$$\Delta \sigma v 2 = m L \Delta p \log \left[1 + \frac{4.61}{\beta} - \frac{\phi_2}{\phi_4} - T_v \right]$$
(3.34)

donđe mt = Ct/2HΔơ ;coeficiente de compresibilidad volumétrica para viscosidad intergranular (compresión secundaria) β = mt / mv

Llamando

$$\xi = -\frac{4.61}{\beta} - -\frac{\phi^2}{\phi_1}$$
(3.35)

y sustituyendo las ecs. 3.32 y 3.34 en la e.c.3.31, la deformación volumétrica total es :

$$\Delta \sigma \mathbf{v} = \mathbf{m} \mathbf{v} \, \Delta \mathbf{p} \left[F(\mathbf{T} \mathbf{v}) + \beta \log \left(1 + \xi \, \mathbf{T} \mathbf{v}\right) \right] \qquad (3.36)$$

Para determinar los parámetros involucrados en la ec.3.36, Zeevaert (1986) ha clasificado las curvas de consolidación en cuatro tipos, de acuerdo al nivel de esfuerzos que se encuentre el incremento aplicado, respecto de la curva de compresibilidad, como se muestra en la Fig.3.10. Los métodos de ajuste existentes se limitan a las curvas tipo I y II, es decir, antes del esfuerzo crítico.

Curvas tipo I

En las curvas tipo I, Zeevaert (1986) encontró que el valor límite teórico para ξ es de 5, por lo que la ec.3.36 (en términos de desplazamiento) toma la forma :

 $\delta = \delta v F(Tv) + Ct \log (1 + 5 Tv)$

donde:

Y

 $\delta = \Delta c v 2H$ $\delta v = m v \Delta P 2H$ $Ct = mt \Delta P 2H$

El cálculo de los parámetros es como sigue :

 Determinar el valor de CL, pendiente de la porción recta de la curva de consolidación (es equivalente al εα mencionado en 3.1), seleccionando dos puntos para valores grandes del tiempo :

 $\delta z - \delta i = C t \log t z / t i$

2) Obtener el valor de δ_V , seleccionando un punto B, inmediatamente después del quiebre de la curva de consolidación, de coordenadas δ_B , to, en el cual se pueda suponer F(Tv) \approx 1 y Tv \approx 2 . Así

$$\delta B = \delta v + Ct \log(1 + 5 \cdot 2)$$
 (3.39)
 $\delta v = \delta B - 1.04 Ct$ (3.40)

3) Calcular el valor de δ so, para el cual se tiene el 50 % de

49

(3.38)

consolidación primaria, y Tv ≈ 0.2

$$\delta so = \delta v/2 + 0.3 \text{ Ct}$$
 (3.41)

4) Con el valor de δ50, leer de la curva experimental el valor de t50, y calcular el coeficiente de consolidación :

$$c_{v} = -\frac{0.2 H^{2}}{t so}$$
 (3.42)

Con los parámetros obtenidos en las ecs. 3.38, 40 y 42, es posible aplicar la ec.3.37, que rige el fenómeno.

Curvas tipo II

1) Se determina el valor de C4 con la ec.3.38.

2) Se calcula el parámetro auxiliar a, y el tiempo de relajamiento τ :

$$a = 2.303 (\delta m - \delta F) / Ct$$
(3.43)
$$\tau = \frac{E \times F(a) t F - t B}{1 - E \times F(a)}$$
(3.44)

donde *SF*, tF son coordenadas de un punto al final de la porción recta de la curva de consolidación.

3) Calcular el valor de
$$\delta v$$
:
 $\delta v = \delta \mathbf{s} - Ct \log(1 + t \mathbf{s}/\tau)$ (3.45)

4) Con el valor de $\delta v/2$ se encuentra un valor aproximado para tso, y se calcula el coeficiente de consolidación cv con la ec.3.42. Se

calcula el valor de \xi :

$$\boldsymbol{\xi} = -\frac{H^2}{\tau c_v} \tag{3.46}$$

5) Se determina un valor más realista del *6*50 usando la expresión

$$\delta 50 = \delta v/2 + C \log(1 + 0.2 H^2/\tau c v) \qquad (3.47)$$

Con este valor, se determina en la curva experimental un nuevo valor para t50, y consecuentemente nuevos valores para cv y ξ . Sustituyendo en la ec.3.47 se calculan nuevos valores de δ 50, t50. El proceso se repite hasta que cv y ξ no cambien sustancialmente. La ec. que rige el fenómeno es la 3.36.

Este modelo ha sido utilizado con éxito para predecir el comportamiento del suelo, tanto en laboratorio como en campo (Zeevaert, 1986). Pudiera ser perfeccionado si los valores de ϕ_1 y ϕ_2 se consideran variables en el tiempo (Zeevaert, 1988), aunque esto implicaría un mayor grado de dificultad en el ajuste para la obtención de parámetros. 4. PRUEBAS DE LABORATORIO.

En el cap.2 se señaló la importancia que tiene el realizar ensayes de consolidación, con medición de presión de poro. Con este fin, se construyó un equipo capaz de realizar este tipo de ensayes, y paralelamente se realizaron pruebas en el odómetro convencional, con muestras semejantes. En este capítulo se describen los equipos y materiales utilizados, programación de ensayes, probables fuentes de error, y resultados obtenidos.

4.1 Ensayes convencionales.

El objeto de una prueba de consolidación unidimensional, es determinar el cambio de volumen, y la velocidad con que ocurre, en un espécimen de suelo confinado lateralmente, y sujeto a una carga axial.

Durante la prueba se aplican una serie de incrementos crecientes de carga axial. El cambio de volumen se mide con un extensómetro montado en un puente fijo, y conectado a la placa de carga.

Para cada incremento de carga, se miden los cambios volumétricos, en el transcurso del tiempo. Con estos datos, se obtiene una curva de consolidación, para ese incremento en particular.

El incremento de carga se mantiene el tiempo suficiente para que el tramo recto de consolidación secundaria se defina claramente.

A) Descripción del equipo, calibración.

<u>Consolidómetro</u>. El equipo, diseñado originalmente por Terzaghi (1925), es llamado odómetro (del griego oidema, expansión). Posteriormente fue modificado por Casagrande, Gilboy y otros.

Consiste en un anillo, dos piedras porosas, extensómetro de carátula (con aproximación de 0.01 mm) y cazuela con base rígida. El consolidómetro puede ser de anillo flotante o anillo rígido. Para este trabajo, se utilizó un anillo del tipo flotante. Un esquema del conjunto se muestra en la Fig. 4.1a.

El anillo utilizado es de acero inoxidable, con un área de 50 cm≈, y altura de 20 mm, aproximadamente.

Las piedras porosas deben ser más permeables que el suelo ensayado (cuando menos de 100 a 1000 veces más permeables), para permitir el libre drenaje del agua del suelo. Sus dimensiones deben ajustarse al diámetro interior del anillo de consolidación, con una holgura de 0.25 mm. Además, deben tener forma cónica, para que no se apoyen en el anillo durante la prueba.

Entre las piedras porosas y el espécimen, se colocan discos de papel filtro, con permeabilidad mucho mayor que la del suelo.

En la Fig. 4.1b se muestra el equipo utilizado.

Se realiza una calibración para determinar la compresibilidad del equipo, fundamentalmente de las piedras porosas, sustituyendo al espécimen por una placa rígida, aplicando carga y observando las deformaciones resultantes. La deformación del equipo bajo carga se muestra en la Fig. 4.2.

<u>Sistema de Carga</u>. (Fig. 4.3) La carga se aplica por medio de pesos colocados en una ménsula, que cuelga del extremo de la viga de carga. La carga se transmite al marco por medio de un cable apoyado en una rótula fija, ligada al pedestal del aparato. La viga de carga puede girar alrededor de la rótula. La relación del brazo de palanca de la ménsula de carga y del radio, es del orden de 10. En la Fig. 4.4 se muestra la gráfica de calibración para el sistema de carga, que se llevó a cabo con un anillo calibrado en lugar de la muestra de suelo, y aplicando carga en el portapesas. La relación de brazos, para el equipo utilizado, resultó ser de 11.11.

El peso de la viga y la ménsula de carga se balancean con el contrapeso A (Fig. 4.3). El peso del marco de carga se balancea, a su vez, con el contrapeso B.

<u>Equipo para el labrado del espécimen</u>. Torno de labrado, cortador, arco de alambre y enrasador. Esto se muestra en la Fig. 4.5a.

<u>Varios</u>. Placas de vidrio, balanza con precisión de 0.01 g, cronómetro, agua destilada, capsulas para determinar contenido de agua, horno, etc.

B) Procedimiento.

<u>Labrado</u>. El procedimento se describe con detalle en Lambe (1951) o Head (1986). Se debe cuidar que el especimen esté totalmente confinado en el anillo, para evitar deformaciones laterales. El labrado se realiza dentro de un cuarto húmedo.

<u>Piedras porosas</u>. Para suelos naturales bajo el nivel de agua freática, las piedras porosas y el papel filtro deben saturarse previamente. Una manera de lograrlo es hirviendo las piedras en agua destilada, por unos minutos. Entre las piedras porosas y el espécimen, se colocan discos de papel filtro.

<u>Secuencia de carga</u>. Una vez colocada la cazuela de consolidación, con el espécimen dentro del anillo, en el marco de carga, se ajusta el extensómetro y se inicia el ensaye:

1) Inundación. Se inunda totalmente la cazuela, liberando así el efecto capilar remanente sobre el espécimen. Por este motivo, el suelo trata de expandirse, lo cual se impide colocando la carga mínima, para evitar que esto ocurra.

2) Una vez sustituído el esfuerzo capilar remanente, se aplica el primer incremento de carga. La magnitud de los incrementos -antes del esfuerzo crítico- se calcula para que se alcance el esfuerzo crítico entre 5 y 7 incrementos. El criterio para estimar el esfuerzo crítico se muestra en la Tabla 4.1.

Durante el ensaye, se grafica la deformación vs. tiempo, para cada incremento, y la deformación volumétrica vs. esfuerzo efectivo. Esto se hace con objeto de observar, paso a paso, si el ensaye sigue el comportamiento programado.

Todos los incrementos se mantienen durante 24 horas.

3) Después del esfuerzo crítico, la magnitud de los incrementos aumenta paulatinamente, hasta que el último incremento es igual al esfuerzo efectivo aplicado hasta ese momento.

Los ensayes se programaron para realizarse con 8 a 10 incrementos.

4) Una vez finalizada la etapa de carga, se descarga el espécimen con decrementos iguales a los incrementos aplicados, pero en orden inverso. Cada decremento se mantiene durante 1 minuto, para que sólo se presente la recuperación elástica del suelo.

5) Se determina el peso volumétrico, contenido de agua y densidad de sólidos para cada espécimen. Con estos datos se calcula la relación de vacíos y el grado de saturación.

C) Posibles fuentes de error.

1) Debidos a la muestra.

- Alteración de la probeta durante su preparación. Los cambios en la estructura del suelo afectan la relación esfuerzo-deformacióntiempo.

- Los residuos del labrado para la determinación de la densidad de sólidos y contenido de agua, pudieran no ser representativos de la muestra.

2) Debidos al equipo.

- Corrientes galvánicas en el consolidómetro. Se impiden utilizando materiales no corrosivos (por ejemplo, plástico, acero inoxidable) en el anillo.

- Fricción entre la muestra y el anillo. Para disminuírla, se aplica una capa delgada de grasa de silicón en el interior del anillo, antes del labrado.

- Rozamiento de las piedras porosas con el anillo.

- Permeabilidad insuficiente en las piedras porosas.

3) Debidos al procedimiento.

 La probeta no llena completamente el anillo de consolida⊂ión.
 Secado del espécimen, si no se hace el labrado en el cuarto búmedo.

Variaciones apreciables de la temperatura durante la prueba.
 Esto afecta la viscosidad del agua y las lecturas de deformación.
 Relación de incremento de cargamesfuenzo actuante inadecuado.
 Impactos al aplicar las cargas.

4.2 Ensayes con medición de presión de poro.

El objetivo de estos ensayes es obtener la misma información de las pruebas convencionales, y medir la disipación del exceso de presión hidrostática en el agua intersticial; adicionalmente, se somete al espécimen a una contrapresión, con el propósito de reproducir las condiciones de campo, y al mismo tiempo aumentar su grado de saturación (y que la medición de la presión del agua intersticial sea confiable).

A) Descripción del equipo, calibración.

El equipo diseñado se muestra en las Figs. 4.6 y 4.7, y consta de las siguientes partes:

1) Câmara inferior. Se compone de un cilindro de lucita de 5º de diâmetro, una placa base, anillo de consolidación fijo (de 50 cm²

de área y 20 mm de altura), dos piedras porosas (similares a las descritas en 4.1), y placa de purga/transmisión de carga. La cámara inferior aloja al espécimen y se encuentra llena de agua sometida a presión.

La placa base tiene dos orificios que conectan al exterior de la cámara: uno al centro de ella, para medir la presión del agua intersticial: y el otro, a un lado del anillo, para inundar la cámara inferior y aplicarle presión.

El anillo de consolidación se encuentra fijo a la placa base, y a un anillo que contiene una piedra porosa (esta piedra porosa no forma una superficie de drenaje, sino que permite medir la presión del agua en la base del espècimen). El anillo de la piedra porosa cuenta con dos aro-sellos, en las caras superior e inferior (Fig. 4.6), para sellar al espècimen del resto de la cámara.

La placa de transmisión de carga se coloca sobre la piedra porosa que se encuentra arriba del espécimen (para permitir el drenaje).

2) Cámara superior. Se compone de un cilíndro de lucita de 5" de diámetro, placa tapa y extensómetro de carátula (con aproximación de 0.01 mm).

La placa tapa tiene dos orificios que conectan al exteriors uno para transmitir la carga (presión total) sobre el espécimen en forma neumática, y otro para purgar de aire la cámara inferior, a través de una manguera.

Las cámaras superior e inferior se encuentran separadas por una membrana de hule, de forma circular. La membrana cuenta con una conexión con la placa tapa, para permitir la salida del aire al inundar la cámara inferior. Asimismo, se colocó una base rígida sobre la membrana, para apoyo del extensómetro.

Las placas (base y tapa están unidas por tres barras, perpendiculares a éstas, y colocadas a 120°.

La descripción detallada de estos elementos se encuentra en el Apéndice A.

La presión de poro se midió con un transductor electrónico, marca Wykeham Farrance, con las siguientes características:

> Tino : WF17060 Intervalo : 10 kg $_{r}$ /cm² Señal de excitación : 10 v CD Señal de salida : 10 mv Sensibilidad : 100.08 mv a 25° C No linealidad e histéresis : +/- 0.2 % BSL Rango de compensación por temperatura : + 10 a + 40° C Banda de error por temperatura : +/- 0.5 %

La señal del transductor se leyó en un acondicionador de señal digital. Este equipo permite medir la presión con una resolución de 0.01

kg/cm².

.

El arreglo general se muestra en las Figs. 4.8 y 4.9. Se observa que la presión hacia la cámara inferior se transmite a través de

un recipiente cerrado. Entre este recipiente y la cámara, se encuentra la válvula (3), que controla el drenaje de la cámara (y el desplazamiento del espécimen).

El funcionamiento del equipo es como sigue (Fig.4.10):

1) Se coloca el espécimen en la cámara inferior, y se inunda (Fig. 4.10a), Si se desea, se aplica una presión a través del recipiente cernado de la Fig. 4.8.

2) Con el drenaje cerrado (válvula-3, Fig.4.8), se da un incremento de presión (de aire), a través de la cámara superior. Como la presión se transmite por medio de la membrana, tanto al espécimen, como al agua dentro de la cámara inferior, el esfuerzo efectivo no cambia y no hay consolidación (Fig. 4.10b).

3) Se permite el drenaje, y entonces el incremento de carga lo toma el suelo. Al deformarse la membrana, un poco de agua es expulsada fuera de la cámara, hacia el recipiente cerrado. La membrana permanece deformada, transmitiendo la carga al espécimen (Fig. 4.10c).

La compresibilidad del equipo se mide colocando en lugar del espécimen, una placa rígida. Se inunda la cámara inferior y se registra en el extensómetro la deformación bajo carga (con el drenaje cerrado). La calibración por deformación del equipo se muestra en la Fig. 4.11.

Simultáneamente, se mide con el transductor de presión de poro la carga que se transmite al agua dentro de la celda, con el objeto de determinar la magnitud de la carga absorbida por la deformación de la membrana. Se obervó que la respuesta era igual a la carga aplicada, es decir, la carga se transmite integramente al espécimen.

b) Procedimiento.

MONTAJE

1) Labrado. Se hace de manera similar a los ensayes convencionales. Debe ponerse especial cuidado al enrasar la cara inferior del espécimen, para evitar un remoldeo excesivo, que eclipse la medición de presión de poro (que se realiza en la base). Asímismo, se colocan discos de papel filtro en ambas caras del espécimen.

2) Se coloca sobre la placa base una piedra porosa (dentro de un anillo) y, sobre ésta, el anillo de consolidación; el anillo con la piedra porosa y el de consolidación se fijan a la placa base con tres tornillos (Fig.4.12a). Es recomendable aplicar un poco de grasa a la cabeza de los tornillos, para evitar su oxidación, ya que permanecerán bajo agua durante todo el ensaye.

3) Se coloca la piedra porosa superior y el cilindro de lucita de la cámara inferior (Fig.4.12b).

4) Se coloca la placa de transmisión de la carga (que tiene atornillada la membrana y una placa para soporte del extensómetro) sobre la piedra porosa. Debe cuidarse que la membrana apoye uniformemente sobre el cilindro de lucita.

5) Se coloca el cilindro de lucita de la cámara superior sobre la membrana, que se encuentra extendida sobre el cilindro inferior. Ambos cilíndros sujetan la membrana.

6) Se coloca la tapa (con el extensómetro atornillado) sobre el cilindro de la cámara superior. En esta posición, la manguera de purga que tiene la membrana (Fig. 4.13a) se conecta a la tapa. Debe cuidarse que el extensómetro tenga carrera suficiente para la deformación esperada, ya que no es posible manipular el extensómetro durante el ensaye. Esto se puede lograr ajustando el tornillo que sujeta el extensómetro a la tapa (Fig. 4.6).

7) La tapa se apoya sobre el cilindro de lucita superior, y se atornilla por medio de tres barras a la base. Debe sujetarse con la presión suficiente para que los cilindros opriman la membrana de hule, y ésta selle las cámaras superior e inferior (Fig. 4.13b) del consolidómetro.

SATURACION DEL SISTEMA (Referirse a la Fig.4.8)

8) Con las válvulas 2,3,4,6 y 8 cerradas, se abren las válvulas 1 y 5, para permitir que el agua del depósito, deposidada y desaire-

63

ada, inunde las líneas del sistema. La bureta y el recipiente cerrado deben contener un pequeño tirante de agua, así como la linea entre la válvula 4 y la piedra porosa de la placa base.

9) Se permite que escurra un poco de agua por el tornillo de purga de la válvula de block del transductor de presión (Fig. 4.14). Posteriormente, se cierra el tornillo de purga y se abre la válvula 6, dejando escurrir agua. Es posible llenar los conductos de la válvula de block del transductor utilizando una jeringa con aguja, a través del orificio del tornillo de purga, cuidando de no dañar la membrana de medición del transductor.

10) Después de circular el agua por las líneas por algunos segundos, se cierra la válvula 6 y la alimentación de agua (válvulal); asimismo, se abren las válvulas 2 y 8, correspondientes a la bureta y al recipiente cerrado, repectivamente.

11) Se aplica una presión, a través de la bureta y del recipiente cerrado, de 1 a 2 kg/cm²; entonces, se deja salir un poco de agua, abriendo y cerrando rápidamente la válvula 6, cuidando que siempre exista un tirante de agua en la bureta y en el recipiente. En caso de vaciarse alguno de los dos, es necesario regresar al punto (9). Se registra la lectura en la bureta.

12) Se retira la presión aplicada, y se observa el cambio de lectura en la bureta; la diferencia de lecturas no debe ser mayor de 1 mm. Una lectura mayor indica la presencia de aire atrapado en

64

.

el sistema, por lo que es necesario repetir el procedimiento a partir del punto (11).

INUNDACIÓN (Referirse a la Fig.4.8)

13) Una vez saturadas las lineas, se procede a la inundación de la muestra, cerrando las válvulas 2,5, y 8. Se abre la válvula 1, de alimentación de agua, la válvula 3, de entrada de agua a la cámara inferior, y la válvula 7, para permitir la salida de aire de la cámara inferior.

14) Se llena de agua la cámara inferior, con una velocidad tal, que se evite la presencia de burbujas en su interior.

15) Se permite que salga un poco de agua a través de la válvula 7, para asegurar la saturación de la cámara inferior; una vez inundada la cámara, se cierran las válvulas 1 y 7 simultáneamente.

16) Al inundarse el espécimen, éste trata de expanderse debido a la liberación del efecto capilar remanente. Esta expansión se evita aplicando presión en la cámara superior.

APLICACIÓN DE CONTRAPRESIÓN (BP) (Referirse a la Fig.4.8)

17) Se abren las válvulas 2,3 y 4. Se aplica la presión deseada (contrapresión) a través del recipiente cerrado y, simultánea-

mente, se aplica esa misma presión a la cámara superior, con el objeto de evitar que exista un cambio de esfuerzos efectivos en el espécimen.

18) La contrapresión se mantiene el tiempo suficiente para que se disuelvan las burbujas de gas; Black y Lee (1983), reportan el tiempo señalado para incrementar la saturación de los especimenes (Fig. 4.15). En todos los casos, la contrapresión se mantuvo 24 horas.

CARGA INCREMENTAL

1

19) Para iniciar un incremento de carga, se cierra la válvula 3, (Fig. 4.8), y se aplica el incremento de presión deseado a la cámara superior.

Se observa el aumento de la presión de poro, así como el tiempo que tarda en ocurrir. Si el espécimen se encuentra muy cercano al 100 % de saturación, la presión de poro se incrementará en la misma magnitud que el incremento de presión en la cámara superior, y casi de inmediato. La relación entre el aumento de presión de poro y el aumento de presión en la cámara, se puede considerar similar al parámetro B de Skempton. Black y Lee (1973), muestran valores típicos del parámetro B vs. el grado de saturación (Fig. 4.16), que dan una idea del grado de saturación logrado en el espécimen.

20) Una vez estabilizada la lectura de presión de poro (usualmente entre 15 y 40 min.), se registra la magnitud de la deformación instantánea ocurrida en esta etapa, antes de iniciar la consolidación.

21) Se inicia la consolidación al abrir el drenaje, con la válvula 3. Se toman lecturas de deformación volumétrica (en el extensómetro) y de presión de poro (en el puente digital), respecto del tiempo.

Dado que los ensayes con medición de presión de poro se hicieron paralelos a los convencionales, se aplicaron los mismos incrementos, durante 24 horas cada uno.

DESCAROA.

22) Una vez terminado el proceso de carga, se inicia la descarga con el procedimiento inverso: se cierra la válvula 3 (de drenaje) y se disminuye la presión en la cámara superior. Para iniciar la descarga, se abre el drenaje.

Se permitió la descarga durante 1 minuto, para cada decremento, para observar únicamente el fenómeno de recuperación elástica del suelo.

c) Posibles fuentes de error.

Además de las mencionadas para los ensayes convencionales, se tienen las siguientes:

i) Debidas al equipo.

- Fugas entre el anillo de la piedra porosa, el anillo de consolidación, y la placa base. Exíste comunicación entre el espécimen y la cámara inferior; es decir, el drenaje no se encuentra impedido en la base, y no es posible medir la disipación del exceso de presión de poro.

- Fugas en la membrana. La presión de la cámara superior se transmite a la inferior, y el esqueleto del suelo no recibe carga.

- Fugas de presión en la cámara superior. No se mantiene la carga constante.

- Variaciones en la presión de la cámara superior, debidas a mal funcionamiento de los reguladores de presión de aire, o a interrupciones en el suministro de aire a presión.

— Inclinación de la placa de transmisión de carga durante el ensaye. Esto puede deberse a hetereogeneidades en el espécimen, o a un deterioro de la membrana.

2) Debidas al procedimiento.

- Lineas del sistema con burbujas de aire atrapadas. Esto genera errores en la medición de presión de poro.

- Contrapresión inadecuada. Si es pequeña, puede ser insuficiente para generar la saturación deseada; y si es muy grande, puede ocasionar daños en la estructura del suelo. Lowe et al (1964), recomiendan utilizar el valor de la presión de poro que la muestra tenía in situ.

- Tiempo de aplicación de contrapresión insuficiente para garantizar la saturación.

4.3 Suelos ensayados.

Los materiales utilizados fueron arcillas típicas de la Ciudad de México, particularmente de la zona sur-oriente, del sondeo denominado "Mexicaltzingo" (Jaime y Romo, 1987), cuya ubicación se muestra en la Fig. 4.17.

Se eligieron 5 muestras de suelo. En la Tabla 4.2 se presentan los datos de profundidad, propiedades indice (contenido de agua, peso volumétrico, relación de vacios inicial, densidad de sólidos, grado de saturación) y estado de esfuerzos.

Se realizaron ensayes paralelos en especímenes gemelos labrados de la misma muestra, en el equipo convencional y con medición de presión de poro. El número de incrementos programado fué de 8 a 10. con una duración de 24 horas cada uno.

Con objeto de alcanzar el esfuerzo crítico entre el quinto y séptimo incremento, se estimó el valor del esfuerzo crítico con una correlación empírica entre este valor y la resistencia a la compresión simple (Zeevaert, 1984). En este caso, se contaba con información de la resistencia no drenada del suelo (Jaíme y Romo, 1987).

La programación de los incrementos se muestra en la Tabla 4.1, así como el valor de la contrapresión aplicada (igual a la presión de agua que ésta tenía in situ).

Los resultados de los ensayes (convencionales y con medición de presión de poro) se muestran en las Figs. 4.18 a 4.81. Se presentan las curvas de compresibilidad, de consolidación y de disipación de exceso de presión de poro, respecto del tiempo.

Se ha preferido presentar las curvas de compresibilidad en términos de deformación volumetrica, para que sean comparables, ya que en términos de relación de vacios, puede haber diferencias debidas a la oquedad inicial de la muestra de suelo.

4.4 Discusión de Resultados.

En general, se observa que:

- Las curvas de compresibilidad entre un tipo de ensaye y otro, son similares, con una pequeña disminución en la compresibilidad de las muestras saturadas con contrapresión.

- El valor del esfuerzo critico entre los ensayes convencional y con saturación es aproximadamente el mismo.

- La forma de las curvas de consolidación de todos los ensayes es similar a las reportadas por Zeevaert (1986) y Marsal et al (1951).

- La deformación secundaria es mayor que la primaria. La deformación primaria ocurre en tiempos entre 100 y 1000 seg.

- El tiempo para el 100 % de consolidación aumenta con el incremento de esfuerzo para los datos experimentales, en concordancia con lo que se desprende de los modelos aquí estudiados, y otros.

- La disipación del exceso de presión no se asemeja a la variación propuesta por Terzaghi. Leonards y Girault (1961) lo atribuyen a que la relación incremento-esfuerzo aplicado es pequeña, como fué el caso de los ensayes realizados.

Con fines ilustrativos, se graficaron algunas curvas de consolidación de los ensayes con medición de presión de poro y de los convencionales (Figs. 4.82 a 4.85), considerando en los últimos

un atraso del cuádruple del tiempo, ya que la longitud de drenaje es del doble (ec. 2.7). Asimismo, en un recuadro se muestra la gráfica de la deformación vs. la raíz del tiempo, para obtener el 100 % de consolidación primaria con el procedimiento de Taylor. En estas mismas gráficas, se muestra el tiempo experimental para la disipación del exceso de presión de poro.

El método de Taylor se explica en la Fig. 4.82.

Este mismo análisis se hizo para todas las curvas de consolidación, observándose lo siguiente:

- La interpretación del 100 % de consolidación primaria, ya sea con el método de Casagrande o con el de Taylor es subjetiva, pudiéndose determinar distintos valores según el criterio de la persona que realice los cálculos.

- A partir del esfuerzo crítico (o un poco antes de éste), no es posible aplicar el método de Casagrande, ya que las curvas no presentan ningún punto de inflexión.

- Se observa un retraso de los resultados experimentales, respecto del 100 % de consolidación teórica obtenido con el método de Casagrande. La relación entre el tiempo para u = 0 y el determinado con el método de Casagrande es del doble. Esto se muestra en la Fig. 4.86, donde se observa que el espécimen que presenta menos dispersión es el M39-3, que tiene una permeabilidad mayor

que el resto de los especímenes (Tabla 4.2). Asimismo, el 100 % teórico obtenido con el método de Taylor es más errático (Fig.4.87 y 4.88).

- No se pudo relacionar adecuadamente el tiempo de 100 % de consolidación primaria (con el método de Casagrande) entre los ensayes convencionales (multiplicando por 4 los tiempos, para seguir la relación de longitudes de drenaje) y con medicion de presión de poro, como se muestra en la Fig. 4.89, aunque la dispersión no es grande. Esto se adjudica a que la consolidación primaria no es la única presente al inicio del fenómeno de consolidación y la ec. 2.7 no es totalmente válida.

- En las figs. 4.87a 4.89 no se observa ninguna tendencia apreciable de los valores del 100 % de consolidación primaria, con la presencia del esfuerzo crítico.

- La deformación instantánea es nula en los especimenes a los que se les aplicó contrapresión. Esta deformación se midió antes y después de aplicar el incremento de carga, con el drenaje cerrado. En todos los casos, se midió únicamente la deformación del equipo.

- En los ensayes convencionales, se calculó la deformación instantánea, tomando en cuenta el O % de consolidación primaria (calculado con el método de Casagrande), y se muestra en la Fig.4.90. Se observa que a partir de un cierto esfuerzo, la de-

formación instantánea se vuelve nula; esto se atribuye a que se requiere únicamente cierto nivel de esfuerzo para comprimir las burbujas de gas remanentes en el espécimen.

- En ocasiones, existe un retraso en el valor máximo de la relación incremento de presión de poro/incremento de esfuerzo. Esto se puede atribuir a varias razones:

a) Remoldeo en la base del espécimen. Es posible que una capa de suelo amasado impida que la medición se realice en forma instan~ tánea.

b) Flexibilidad del sistema de medición, como lo apuntan Whitman et al (1961); aunque las conexiones del sistema son rigidas, el agua que llena esas conexiones tiene una cierta compresibilidad, que puede aumentar, dependiendo de la cantidad de aire que conserve.

c) Retraso explicado por la teoría de consolidación de Biot, que se comenta más adelante.

- En ocasiones los valores de la relación incremento de presión de poro/incremento de esfuerzo son mayores que la unidad (Fig. 4.91). Esto se atribuye a un error experimental , o bien, a un incremento generado por la estructura del suelo, de acuerdo con la teoría de consolidación de Biot, como se explica en lo que sigue.

En la Fig. 4.92, se muestra la variación del incremento de presión de poro/incremento de esfuerzo ($\Delta u/\Delta \sigma$) vs. factor tiempo, para la teoría de Biot de consolidación tridimensional, suponiendo que la muestra de suelo es una esfera.

La teoría de Terzaghi tridimensional, predice la disipación del exceso de presión de poro inmediatamente que 5 e inicia 1a consolidación (Cryer, 1963), mientras que la teoría de Biot predice un aumento de u-al-inicio-delproceso en condiciones tridimensionales.

En la teoría de Biot, el aumento inicial de la presión de poro depende de un parámetro adimensional μ (Fig. 4.92; Cryer, 1963) :

$$\mu = -\frac{N}{2N+S}$$
 (4.1)

donde N, S son las constantes de Lamé (Malvern, 1969):

$$N = \frac{E}{2(1+\nu)}$$
(4.2)

$$S = \frac{\nu E}{(1+\nu)(1-2\nu)}$$
(4.3)

Donde E y v son el módulo de elasticidad y la relación de Poisson, respectivamente. Además, es posible relacionar los parámetros de la teoría de Terzaghi con los de Biot (Cryer, 1963):

$$mv = \frac{1}{2N + 5}$$

$$cv = \frac{f^2(2N + 5)}{b}$$

$$k = \frac{f^2 \chi v}{b}$$

(4.6)

(4.4)

(4.5)

donde :

mv : coeficiente de compresibilidad volumétrica cv : coeficiente de consolidación k : coeficiente de permeabilidad b : constante de Darcy yv : peso volumétrico del agua f : porosidad

Combinando las ecs. 4.1 a 4.3, se llega a:

$$\mu = \frac{1}{1 - \frac{2\nu}{\nu}} \tag{4.8}$$

Para un valor de $\mu = 0.25$ corresponde uno de $\nu = 0.43$ y para uno de $\mu = 0.50$, $\nu = 0.33$, que son valores razonables para la relación de Poisson. Por otro lado, en la Fig. 4.92 se observa que, teóricamente:

> $(\Delta u / \Delta \sigma) \max = 1.2$ si $\mu = 0.25$ $(\Delta u / \Delta \sigma) \max = 1.55$ si $\mu = 0.50$

El hecho de que la muestra de suelo tenga una relación de Poisson cercana a 0.5 (como sucede en las arcillas saturadas de la Ciudad de México), indica que es posible obtener incrementos de presión de poro mayores que el esfuerzo aplicado, según la Teoría de consolidación de Biot.

En los ensayes realizados, los valores máximos de la relación $\Delta u/\Delta \sigma$ fueron de 1.3 (Fig.4.91), que indican un valor de μ entre 0.25 y 0.5.

Este fenómeno se observó, con mayor frecuencia, para relaciones incremento de carga/esfuerzo aplicado (RIC) pequeñas (menores que la unidad).

Sin embargo, en las curvas para las cuales la RIC es cercana a la unidad, se encontró una buena correlación entre la teoría de Terzaghi, y los resultados experimentales.

En las Figs. 4.93 a 4.96 se muestra la variación del exceso de presión de poro, respecto del tiempo, comparada con la predicción becha con la teoría de Terzaghi, para algunos incrementos.

Se observa que la curva teórica se acerca bastante a los datos experimentales, con valores más altos para grados de consolidación menores al 50 %, a partir de los cuales la dispersión es mínima.

La Fig. 4.96 tiene un comportamiento distinto a lo antes mencionado, lo cual se atribuye a la diferencia en la permeabilidad y compresibilidad de este material (M39-3), como se observa en la Tabla 4.2.

4.5 Ensaye con velocidad de deformación controlada.

Gracias a la versatilidad del equipo diseñado, es posible realizar otro tipo de ensayes, poco convencionales. Sin embargo, un estudio exhaustivo de éstos sale del alcance de este trabajo, por lo que sólo se comentarán algunos puntos relevantes.

Se realizó un ensaye con velocidad de deformacion controlada, de acuerdo a lo propuesto por Smith y Wahls (1969) y Wisa et al (1971). En la Fig. 4.97 se muestra el consolidómetro con medición de presión de poro, modificado para realizar este ensaye, colocado sobre una máquina de deformación controlada. La carga se aplicó a través de un vástago.

Con estas modificaciones al equipo, es posible realizar otro tipo de ensayes, como el de gradiente controlado, y velocidad de carga continua.

El ensaye consiste en deformar de manera continua al espècimen, con una determinada velocidad. En la Tabla 4.3 se muestran las velocidades sugeridas por Smith y Wahls (1969).

Sin embargo, dada la poca experiencia de este tipo de ensayes en las arcillas lacustres de la Ciudad de México, se eligió una velocidad arbitraria de 0.003 %/min. El espécimen se saturó con una contrapresión igual a la correspondiente presión de agua intersticial in situ.

Los resultados de compresibilidad se comparan con los obtenidos con un ensaye convencional (Jaime y Romo, 1987), y se muestran en la Fig. 4.98. Los valores del esfuerzo critico no son similares. En la Fig. 4.99 se muestra el desarrollo del incremento de presión de poro en la base del espécimen. Se observa que existe un aumento significativo después del esfuerzo critico.

En la Fig. 4.100 se muestra la variación de la relación de vacios vs. la presión de poro generada. Smith y Wahls (1969) indican que si la curva tiene una concavidad hacia abajo (como la mostrada), la velocidad de deformación es la adecuada, sucediendo lo contrario si la concavidad es hacia arriba.

Asimismo, siguiendo la metodología propuesta por Smith y Wahls (1969), se calculó el coeficiente de consolidación, y el coeficiente de compresibilidad volumétrica. Los puntos de inflexión en estas gráficas indican el valor del esfuerzo crítico, como se muestra en las Figs. 4.101 y 4.102, respectivamente.

Dada la gran magnitud de la componente secundaria en este tipo de arcillas, este ensaye no proporciona la información necesaria para conocer la consolidación secundaria. Se recomienda realizar un mayor número de ensayes, variando la velocidad de aplicación de carga. Si la velocidad fuera muy lenta, es posible que se reguiara un equipo de adquisición automática de datos.

ESTA TESIS NO DEBE 79 SALIR DE LA LIBLIDTECA

5. ESTUDIOS COMPARATIVOS

5.1 Ciudad de México.

Con objeto de mostrar cuál seria el impacto en el diseño de una cimentación, al utilizar un modelo u otro de los descritos en el cap.3, se planteó en forma simplificada, el diseño de una cimentación parcialmente compensada en la Ciudad de México. Las características generales del problema se comentan a continuación:

a) Estratigrafía. El sitio en el cual se diseñará la cimentación corresponde a la Plaza "Mexicaltzingo" (Fig. 4.17), cuya estratigrafía general se muestra en la Fig. 5.1 (Jaime y Romo, 1987). El estado de esfuerzos, total y efectivo, para estas condiciones, se muestra en la Fig. 5.2.

Sin embargo, la estratigrafía se simplificó, para fines del ejemplo, como se muestra en la Tabla 5.1, donde se observa que se redujo a cinco estratos compresibles (representados por los cinco ensayes de <u>compresibilidad convencionales</u> del cap.4.1).

Se considera que se mantiene el estado de esfuerzos mostrado en la Fig. 5.2.

b) Geometría y cargas. En la Fig. 5.3, se muestra un corte y planta esquemáticos del edificio por cimentar. Consta de 7 niveles y un sótano, desplantado a 3.0 m de profundidad. Obsérvese que el NAF se encuentra a 3.3 m de profundidad.

El esfuerzo de contacto es de 6.5 ton/m², y el esfuerzo en el suelo, al nivel de desplante es de 5 ton/m², lo cual genera una sobrecarga al suelo de 1.5 ton/m².

Se calculó la distribución del alívio de esfuerzos debidos a la excavación, a partir del nivel de desplante, con la Teoría de la Elasticidad, considerando un coeficiente de Fröhlich X=2, ya que se trata de una masa de suelo estratificada, pero con poca variación en la compresibilidad (Zeevaert, 1982). La variación del alívio de esfuerzos con la profundidad, se muestra en la Fig. 5.4.

Con el mismo criterio, se calculó el aumento en el esfuerzo efectivo debido a la sobrecarga, que se muestra en la Fig. 5.5. En esta figura, se observa que el esfuerzo efectivo más la sobrecarga, se acerca al esfuerzo crítico al llegar a los 20 m. Esto genera hundimientos mayores respecto de los que se producirían si la transmisión de esfuerzos por sobrecarga fuera menor (por ejemplo, con una excavación más profunda), alejándose del esfuerzo critico.

c) Parámetros ajustados. Utilizando los resultados de los ensayes convencionales (cap.4), se calcularon los parámetros involucrados para predecir hundimientos, para Cada uno de los modelos. La variación de los parámetros respecto del esfuerzo efectivo, se muestra en las Figs. 5.6 a 5.14. Debido a que el modelo de Marsal no es práctico (cap.3.4), no se utilizará en el ejemplo.

En algunos de los parámetros se detectaron algunas tendencias generales, que se comentan a continuación:

Modelo de Terzaghi ampliado:

- Coeficiente de compresión secundaría (≤∞, Figs. 5.6a y 5.6b). Se observa una tendencia de aumento con el nivel de esfuerzos, con un crecimiento desproporcionado después del esfuerzo crítico.

- Coeficiente de compresibilidad volumétrica (m_y, Fig. 5.7). En general, hay un aumento al incrementarse el nivel de esfuerzos. En el ensaye M39-3 el aumento es notablemente menor, respecto de los otros especimenes.

- Coeficiente de consolidación (c., Fig. 5.8). Se mantiene dentro del mismo orden de magnitud, para el nivel de esfuerzos ensayado.

Modelo de Burger modificado.

- Módulo elástico kelviniano (G₆, Fig. 5.9). Hay una tendencia general a la disminución, al aumentar el esfuerzo.

- Coeficiente de viscosidad maxwelliano (m. Fig. 5.10). Se observa que se mantiene casi constante, para cada ensaye. Sin embargo, dado su orden de magnitud, es muy sensible con la variación del esfuerzo.

- Tiempo de retardamiento (Tk Fig. 5.11). No se observa ninguna tendencia. Sin embargo, para el ensaye M34-2, existe una disminución al aumentar el nivel de esfuerzo.

~ Módulo elástico maxwelliano (G_r). Dado que no se presentó deformación instantánea, a partir de cierto nivel de esfuerzos (Fig. 4.90), no se tomó en cuenta el término que involucra al mó~ dulo elástico maxwelliano.

Modelo de Juárez-Badillo:

- Coeficiente de viscosidad volumétrica (delta, Fig. 5.12). No se observa ninguna variación, aunque existe poca disparidad y los valores se encuentran dentro del mismo orden de magnitud.

- Tiempo característico (t*, Fig. 5.13). No se observa ninguna tendencia. Los resultados son dispersos.

Modelo de Teevaert:

- Relación entre la compresibilidad secundaria y la primaria (Beta, Fig. 5.14). Se observa un aumento con el incremento del nivel de esfuerzo. Esta tendencia coincide con la señalada por Zeevaert (1982).

- El coeficiente de compresibilidad volumétrica y el coeficiente de consolidación (mep, cv) se consideraron iguales a los utilizados en el modelo de Terzaghi ampliado.

d) Cálculo de hundimientos. Se utilizó la siguiente metodología:

- Se evaluaron los parámetros de cada modelo, para el nivel de esfuerzos medio, que se muestra en la Tabla 5.2. Se consideró que todos los estratos están doblemente drenados, ya que se encuentran intercalados por lentes de arena, vidrio volcánico, etc. (Fig. 5.1).

- Para el cálculo de hundimientos respecto del tiempo, se utilizaron las expresiones mostradas en el cap.3. En las Tablas 5.3 a 5.7 se detallan los cálculos, para 1, 2, 4, 8 15 y 30 años :

MODELO	EXPRESION	CALCULOS
xeesstader::		
Terzaghi ampliado	ec. 3.2a	Tabla 5.3
Burger modíficado	ec. 3.5	Tabla 5.4
Juarez-Badillo	ec. 3.20	Tabla 5.5

Zeevaert	•	e⊂. 3.37	Tabla 5.6
Terzaghi		ec. 3.32	Tabla 5.7

Se hace notar que se utilizó el modelo de Terzaghi, que no in→ .cluye la compresión secundaria.

Para el modelo de Burger modificado, se considero un valor del coeficiente de empuje de tierras en reposo igual a 0.5.

En la Fig. 5.15 se muestra la evolución de los hundimientos con el tiempo, para los modelos utilizados. Dado que el tiempo para que se lleve a cabo el 100 % de consolidación primaria es menor a un año, a partir de este tiempo sólo interviene la consolidación secundaria. Obsérvese que debido a esto, los hundimientos predecidos con el modelo de Terzaghi se mantienen constantes con el tiempo (a diferencia del Terzaghi ampliado).

El comportamiento de los modelos de Terzaghi ampliado, Zeevaert, y Juárez-Badillo es muy similar, con diferencias de entre 50 y 25%. Por el contrario, el modelo de Burger modificado predice un asentamiento que se acentúa a partir de los cuatro años, producto de la hipótesis de viscosidad lineal en el suelo (Nontañez et al, 1979).

Los protelos de Terzaghi ampliado y el de Zeevaert se mantienen dasi paralelos, en el transcurso del tiempo. Las diferencias en

el hundimiento son mínimas; por tanto, utilizar uno u otro de éstos llevaría a las mismas conclusiones.

La velocidad de hundimiento, respecto del tiempo, se muestra en la Fig. 5.16, donde se observa que la tendencia general es la misma, y a partir de 8 años con poca diferencia entre un modelo y otro. El modelo de Burger modificado mantiene una velocidad casi constante con el tiempo, y de una magnitud mayor que la del resto de los modelos, por lo que se comentó en el párrafo anterior.

5.2 Presa Tamesi.

En el capítulo anterior, no fué posible decidir sobre alguno de los modelos, ya que no se cuenta con mediciones de campo, debido a que el ejemplo es hipotético. Por este motivo, se escogió un terraplén de prueba en el sitio de la Presa Tamesi, del cual se cuenta con información geotécnica (Montañez et al, 1979).

a) Estratigrafía. La Presa Tamesí se encuentra cerca de la desembocadura del Río Pánuco, como se muestra en la Fig. 5.17. La estratigrafía, a un costado del eje de la presa, se muestra en la Fig. 5.18, correspondiente al sondeo 5-1.

Superficialmente se encuentra una arcilla CL, cuyo espesor es de 4 a 6 m. Le sigue un lente de arena fina. A partir de 7 m de profundidad, se encuentra un estrato de arcilla gris blanda, inte-

rrumpido por un pequeño estrato de conchas, a 28 m. Le subyacen, de manera alternada, arcillas limosas duras y arenas arcillosas que aparentemente constituyen la cubierta intemperizada de las areniscas, margas y lutitas (Montañez et al, 1979), que conforman la base de los depósitos de suelo.

b) Geometría y cargas. A un lado del eje de la presa, se construyeron dos terraplenes de prueba. Estos terraplenes se instrumentaron y se midieron los hundimientos a lo largo de cuatro años.

Se cuenta con observaciones de hundimientos en un terraplén, con las siguientes características: altura 5 m, ancho de corona 10 m, taludes 4:1, longitud 100 m.

Se supuso una distribución de esfuerzos con la profundidad con base en la Teoría de la Elasticidad, con la solución de Osterberg (Montañez et al, 1980). Se utilizó esta solución a pesar de que la rigidez de la costra superficial y de la arena subyacente es mayor que la del depósito arcilloso. Sin embargo, debido a que la relación entre el ancho de la base del terraplén es grande en comparación con el espesor de la costra arcillosa y la arena, la rigidez de los primeros 6.5 m no modifica apreciablemente la distribución de esfuerzos al centro del terraplén.

Con estas hipótesis, se calculó el incremento de esfuerzos, al centro del terraplén, como se muestra en la Fig. 5.19.

c) Cálculo de Hundimientos. Se hicieron las siguientes simplificaciones:

- El asentamiento de la superficie del suelo se debe a la compresibilidad de dos estratos :

* El correspondiente a la costra superficial (estrato
 S), drenado por ambas fronteras.

* El depósito de arcilla gris blanda, drenado por el estrato arenoso en su parte superior y por el lente de conchas, en la frontera inferior.

- El estrato de arcilla gris blanda está compuesto por cuatro su bestratos: A, B, C y D.

Esta estratigrafía simplíficada se muestra en la Tabla 5.8, además del contenido de agua y relación de vacios representativos de cada estrato.

Se cuenta con cinco ensayes de consolidación, denominados OD-1
a OD-5, que se consideran representativos de los estratos S, A,
B, C y D, respectivamente. En la Fig. 5.20 se muestran las curvas
de compresibiliad para los cinco ensayes. En la Tabla 5.9 se
muestran los esfuerzos efectivo y crítico para cada ensaye.
Los asentamientos bajo el terraplén se calcularon como la suma
de dos hundimientos parciales:

* Uno, debido al incremento de esfuerzo, desde el esfuerzo efectivo inicial, hasta el esfuerzo crítico, y

Otro, por el incremento de esfuerzo, desde el esfuerzo crítico, hasta el esfuerzo producido por la sobrecarga.

Esto se muestra gráficamente en la Fig. 5.19 y los valores, al centro de cada estrato, en la Tabla 5.9.

- Se evaluaron los parámetros para cada incremento de esfuerzos, y para cada modelo, a partir de las curvas de consolidación, para el nivel de esfuerzos requerido, tomadas de Montañez et al (1979).

Para el cálculo de los hundimientos, se utilizaron las mismas expresiones señaladas en el inciso 5.1d. Los cálculos se encuentran resumidos en las Tablas 5.10 a 5.14, para cada uno de los modelos: Terzaghi ampliado, Burger modificado, Juárez-Badillo, Zeevaert y Terzaghi, respectivamente. En estas mismas tablas se muestran los parámetros utilizados para cada estado de esfuerzos, distinguiéndose como INC ESF1 e INC ESF2, para las dos condiciones antes mencionadas. El hundimiento total es la suma de los dos efectos.

La variación del hundimiento, respecto del tiempo, se muestra en la Fig. 5.21, junto con las observaciones de campo.

Debido a que el tiempo para el 100 % de consolidación primaria es en este caso muy grande (entre 20 y 50 años, para los subestratos A a D Tabla 5.10), los modelos de Tercaghi y Tercaghi ampliado no presentan ninguna diferencia, ya que la consolidación secundaria se toma en cuenta al finalizar la primaria en este modelo. Debido a este hecho, los hundimientos son mucho menores que los observados y los calculados con otros modelos.

El modelo de Burger modificado presenta el mismo problema que se mencionó en el inciso 5.1d: indica un comportamiento viscoso lineal, que no es el que se observa en el suelo. Este hecho había sido señalado, para estos materiales, por Montañez et al (1979).

El modelo de Zeevaert presenta hundimientos muy similares a los observados, acercándose más a los valores predichos al aumentar el tiempo.

Los hundimientos evaluados con el modelo de Juárez-Badillo son muy similares a los observados inicialmente: sin embargo, la tendencia que siguen a largo plazo los aleja del hundimiento real del terraplén.

Las velocidades de hundimiento, respecto del tiempo, se muestran en la Fig. 5.22. Los modelos de Terzachi y Juárez-Badillo son los

-90

que se acercan más al comportamiento observado. Los modelos de Burger modificado y Terzaghi amplíado forman las fronteras superior e inferior, con diferencias hasta del 50 % respecto de lo observado. 6. CONCLUSIONES

6.1 Modelos estudiados.

a) Se estudiaron cínco modelos de deformabilidad de arcillas: Terzaghi ampliado, Burger modificado, Marsal, Juárez-Badillo y Zeevaert. Se señalaron las hipótesis, ventajas, limitaciones y métodos de ajuste a datos experimentales para cada uno de ellos.

b) Muchos autores han empleado funciones de tipo logarítmico para predecir los asentamientos por consolidación secundaria, ya que estas funciones pueden ajustarse adecuadamente a los asentamientos observados en el campo. En la mayoría de los casos se aprecia una alta velocidad de asentamiento al inicio, la cual disminuye con el tiempo. Esto puede representarse a través de una ley logarítmica.

c) Los modelos de Burger modificado, Marsal y Zeevaert consideran que la consolidación secundaria se lleva a cabo desde el inicio del proceso de consolidación. El modelo de Terzaghi ampliado supone que la compresión secundaria se lleva a cabo al finalizar la consolidación primaria. El modelo de Juárez-Badillo sólo toma en cuenta la consolidación secundaria.

d) Los modelos de Terzaghi ampliado y Zeevaert suponen un comportamiento logarítmico, con el tiempo, en la consolidación secunda-

ria, mientras que el modelo de Burger supone un comportamiento lineal con el tiempo. Esto genera fuertes diferencias en la predicción de asentamientos con el tiempo.

e) Ninguno de los modelos estudiados toma en cuenta los esfuerzos cortantes que se generan en el ensaye de consolidación unidimensional, en la prueba del odómetro. Por este motivo, no es posible evaluar o predecir el valor del esfuerzo crítico con estos modelos.

f) Los parámetros de ajuste del modelo de Marsal deben obtenerse proponiendo valores y haciendo iteraciones de la ec.3.28 para tres o más puntos. Esto, aún con la ayuda de una computadora digital, es sumamente laborioso, engorroso y requiere de un trabajo excesivo. como el propio autor lo apunta (Marsal, 1961).

g) El grado de complejidad de cada modelo se analizó de acuerdo a tres criterios: su expresión matemática, número de parámetros involucrados, y dificultad en el ajuste a datos experimentales. Se asignó un valor del 1 al 5 para el segundo y tercero de los criterios, con un valor creciente con el grado de dificultad.

MODELO .	NUMERO DE PARAMETROS	COMPLEJIDAD	AJUSTE A DATOS
	REQUERIDOS	MATEMATICA	EXPERIMENTALES
┍┯ _╪ ╘⋩ ӯ ┲ҽੑਖ਼ヹ	39696 596626666868929		도망 ^드 코고취위로드드림뉴규는
Terzaghi ampliado	7	2	1
Burger modificado	4	2	3
Juárez-Badillo	2	1	4
Marsal	, 4	5 、	5
Zeevaert	4	3	2

6.2 Equipo diseñado.

a) Se diseñó y construyó un consolidómetro con medición de presión de poro en la base del espécimen, con carga neumática y posibilidad de aplicación de contrapresión. Se muestra, paso a paso, el montaje y desarrollo del ensaye con este equipo.

b) El consolidómetro con medición de presion de poro es sencillo de manejar, y no se requiere de equipo sofisticado para su uso. La información obtenida es de gran ayuda para explicar el comportamiento del suelo. Sin embargo, dado que interviene un mayor número de factores, las fuentes de error son más numerosas que las de los ensayes convencionales.

c) Los resultados de compresibilidad y consolidación se consideran confiables, aunque existen dos diferencias notables entre los

ensayes convencionales y los realizados con medición de presión de poro: el uso de contrapresión y que sólo exista una superficie de drenaje.

d) La versatilidad del equipo permite realizar ensayes de velocidad de deformación controlada (CRS), de carga continua y de gradiente controlado, con adaptaciones minimas.

e) En este trabajo se realizó, a manera de ejemplo, un ensaye CRS. Dada la gran velocidad (respecto de los ensayes convencionales) con la que se realiza este ensaye, no es posible obtener información acerca de la compresibilidad secundaria de la muestra de suelo. Es necesario realizar un mayor número de ensayes de este tipo para que sean comparables con los ensayes convencionales de carga incremental.

6.3 Ensayes de laboratorio.

a) Se realizaron cínco ensayes en el consolidómetro con medición de presión de poro, y en muestras gemelas, cínco ensayes en el equipo convencional. Los materiales utilizados fueron arcillas típicas de la Ciudad de México.

b) En las curvas de compresibilidad no se observaron diferencias notables entre los ensayes con medición de presión de poro (y contrapresión) y convencionales en las curvas de compresibilidad,

aunque existe una pequeña disminución en la compresibilidad de los especimenes con contrapresión. Los valores del esfuerzo crítico son aproximadamente los mismos para ambos ensayes.

c) Las curvas de consolidación no se correlacionaron adecuadamente, suponiendo únicamente diferencias en las longitudes de drenaje. Se considera que esto se debe a que el fenómeno hidrodinámico no es el único que gobierna la compresibilidad, al inicio de la consolidación. Es decir, el efecto de compresión secundaria aparece desde el inicio.

d) Empleando el método de Casagrande para determinar el 100 % de consolidación primaria, se obtienen valores del tiempo de aproximadamente la mitad, de los medidos experimentalmente (Fig. 4.86).

e) El método de Taylor para determinar el tiempo del 100 % de consolidación primaria, es muy errático al compararlo con los datos experimentales (Fig. 4.87).

f) La disipación del exceso de presión hidrostática se asemeja a la predecida con la teoría de Terzaghi, para relaciones incremento de carga/esfuerzo (RIC) aplicado cercanas a la unidad (figs. 4.93 a 4.96).

Cuando la RIC es pequeña, se observan discrepancias respe⊂to de la teoria de Terzaghi, e inclusive un aumento de la presión al

inicio del proceso. Esto se explica mediante la teoría de consolidación de Biot.

g) A partir de un cierto nivel de esfuerzos, no se registraron deformaciones instantáneas en los ensayes convencionales. En los ensayes con medición de presión de poro no se observaron deformaciones instantáneas en ningún caso.

.

h) En materiales como los ensayados, es conveniente utilizar RIC pequeñas por dos motivos; uno, para que se defina con mayor claridad el esfuerzo crítico en la curva de compresibilidad, y dos, en las curvas de consolidación, los puntos de inflexión se muestran menos abruptamente y es posible un mejor ajuste en los parámetros utilizados.

i) Durante la compresión secundaria se observó flujo de agua fuera del espécimen, pero con un gradiente tan pequeño, que no fué posible medirlo. Esto se manifiesta ya que, al cerrar el drenaje en el ensaye de consolidación, al término de la consolidación primaria, la deformación en el espécimen se detiene, y al volver a abrir el drenaje. la deformación continúa.

j) El ensaye convencional permite obtener resultados muy similares a los de contrapresión, excepto en la estimación del tiempo de 100 % de consolidación primaria. Dada la sencillez de los primeros, es más práctico emplearlos en los ensayes de rutina.

6.4 Ejemplos de aplicación.

a) Se realizaron dos ejemplos de aplicación; uno, el comportamiento de una cimentación en la Ciudad de Mexico, utilizando los resultados de los ensayes convencionales de este trabajo; y otro, el comportamiento de un terraplén de prueba en la presa Tamesí.

b) Para el ejemplo en la Ciudad de México, se calcularon los par rámetros involucrados en los modelos estudiados. Se comentaron algunas tendencias generales de la influencia del nivel de esfuerzos aplicado, en el valor de los parámetros.

c) En el ejemplo en la Ciudad de México, al calcularse los hundimientos con uno u otro modelo, se observo que no existe gran diferencia al utilizar los modelos de Terzaghi ampliado y de Zeevaert; en cambio, las predicciones hechas con el modelo de Burger modificado se alejan notablemente de las hechas con los otros modelos. El modelo de Juárez-Badillo predice hundimientos menores que los señalados por los tres modelos anteriores.

d) Las velocidades de hundimiento resultantes son muy similares para todos los modelos.

e) En los cálculos, se incluyó el modelo de Terzaghi, que no incluye compresión secundaria. Dado que para este ejemplo el 100 % de consolidación primaria se presenta antes de un año, no se presentan hundimientos para tiempos mayores, de acuerdo con este modelo. Esto implica diferencias importantes respecto de los modelos que si consideran el efecto secundario.

f) En el ejemplo del terraplén en la presa Tamesi, los hundimientos predecidos con los modelos de Zeevaert y Juárez-Badillo son los que mejor se aproximan a las observaciones de campo. Los modelos de Terzaghi y Terzaghi ampliado predicen el mismo comportamiento, dado que los tiempos para el 100 % de consolidación primaria son muy grandes, y el efecto secundario no se toma en cuenta. El modelo de Burger presenta una deformación viscosa lineal, que se aleja totalmente del comportamiento observado.

g) Se considera que, si el suelo presenta compresión secundaria, y el tiempo para que ocurra el 100 % de consolidación primaria es relativamente corto, es posible realizar adecuadamente las predicciones de hundimientos con los modelos de Zeevaert o de Terzaghi ampliado.

Si el tiempo para que o⊂urra el 100 % de consolidación primaria es relativamente largo, se sugiere utilizar el modelo de Zeevaert.
h) No es posible representar el comportamiento del suelo con el modelo de Burger modificado, debido a la hipótesis de viscosidad lineal en la deformación.

i) Es necesario investigar los factores que influyen en los parámetros del modelo de Juárez-Badillo, así como encontrar una conexión con la consolidación primaria, para evaluar adecuadamente los hundimientos. 7. REFERENCIAS

Abreviaturas utilizadas en las referencias:

ASCE : American Society of Civil Engineers
ASTM : American Society for Testing and Materials
ICSMFE : International conference on Soil Mechanics and
Foundation Engineering
JSMFD : Journal of the Soil Mechanics and Foundations Division
SMMS : Sociedad Mexicana de Mecánica de Suelos
UNAM : Universidad Nacional Autónoma de México

Aguirre L.M., Juárez E. and Zárate M. (1987), "Geotechnical problems in designing an apron on ancient Texcoco Lake", Memorias del Simposio Internacional de Ingeniería Geotécnica de Suelos Blandos, SMMS, México.

ASTM (1983) "Standard Definitions of Terms and Symbols Relating to SDIL AND RDCK MECHANICS", Committee D-18 on Soil and Rock for Engineering Purposes.

Bjerrum L. (1967), "Engineering Geology of Norwegian normaly Consolidated Marine Clays as related to settlements of buildings", Géotechnique, 17:81-118.

Black, D.K. and Lee, K.L. (1973) "Saturating laboratory samples by back pressure", JSMFD, ASCE, Vol. 94, pp.234-251.

101

(1) I and a mean result of a second result of a Black, D.K. and Lee, K.L. (1983) "Time to disolve an air bubble in a drain line", JSMFD, ASCE, Vol. 98. pp. 181-194.

Buisman, A.S.K. (1936) "Results of Long Duration Settlement Tests", Proc. 1st ICSMFE, Cambridge, Mass.,(1) pp.103-106.

Crawford, C.B. (1986) "State of the Art: Evaluation and Interpretation of Soil Consolidation Tests", Consolidation of Soils : Testing and Evaluation, ASTM SPT 892, pp.71-103.

Cryer, C.W. (1963) "A comparison of the three-dimensional consolidation theories of Biot and Therzaghi". Quart. Journal of Mechanics and Applied Math., Vol. XVI, pp.401-412.

Gibson, R.F. and Lo, K.Y. (1961) "A Theory of Consolidation for Soils Exhibiting Secondary Consolidation", Acta Polytech. Scand.296.

Head, K.H. (1986) "Manual of Soil Laboratory Testing", ELE International Limited, London. Vol. 2 y 3.

Horn, H.M. and Lambe, T.W. (1964) "Settlement of Buildings on the MIT Campus", JSMFD, ASCE. SM5 pp.95-107.

Jaime, A. (1988) "Geotecnia y Sismicidad en el Valle de México". Publicación No. D-29, Instituto de Ingeniería, UNAM.

Jaime, A. y Romo M. (1987) "Características del suelo en el sitio Mexicaltzingo", Proyecto 6504, Instituto de Ingeniería, UNAM.

Jamiolowski M., Ladd C.C., Germaine J.J. and Lancellotta R. (1985) "New Developments in Field and Laboratory Testing of Soils: General Report", Proc. 11th ICSMFE, San Francisco, EUA (2) pp. 587-590.

Juarez Badillo, E. (1985) "General Time Volume Change Equations for Soils", Proceedings 11th ICSMFE, San Francisco, EUA.

Juárez Badillo, E. (1986) "General Theory of Consolidation for Clays", Consolidation of soils: Testing and Evaluation, ASTM STP 892.

Juárez Badillo, E. (1989). Comunicación personal.

Juárez, E. y Rico, A. (1973) "Mecánica de Suelos", Tomo -I, Fundamentos de la Mecánica de Suelos. 3a ed., LIMUSA, México.

Kabbaj M., Tavenas F. and Lerouil S. (1988) "In situ and Laboratory Stress-strain Relationships", Géotechnique 38, No.1 pp.83-100.

Keedwell, M.J. (1984) "Rheology and Soil Mechanics", Elsevier Applied Science Publishers.

Koppejan, A.W. (1948) "A Formula Combining the Terzaghi Load-Compression Relationship and the Buisman Secular Time Effect", Proc. II ICSMFE, Rotterdam, Holanda, Vol. III, pp.32.

Ladd C.C., Foott R. Ishihara K. Schlosser F. and Poulos H.J. (1977) "Stress Deformation and Strength Characteristics", Proc. 9th ICSMFE, Tokyo, Japon, pp.421-494.

Lambe, T.W. (1951) "Soil Testing for Engineers", John Wiley and Sons, New York.

Leonards G.A. and Girault P. (1961) "A Study on the One-Dimensional Consolidation Test", Proc. 5th ICSMFE, Paris, Francia, pp.213-218.

Leonards, G. and Altschaeffl (1964) "Compressibility of Clay", JSMFD, ASCE, Vol. 90 pp.133-155.

Leonards, G.A. (1977) Discussion. Proc. 9th ICSMFE, Tokyo, Japon, (3) pp.384-386.

Lerouil S., Kabbaj M., Tavenas F. and Bouchard R. (1985) "Stressstrain-strain rate Relation for the Compresibility of Sensitive Natural Clays", Géotechnique 35, No.2 pp.159-180.

Lo, K.Y. (1961) "Secondary Compression of Clays", JSMFD, ASCE, Vol.87, No. SM4 pp. 61d-88.

Lowe J. III, Zacheo F., and Feldman H. (1962) "Consolidation Testing with Backpressure", JSMFD, ASCE, SM5, pp.69-102.

Magnan J.P., Mieussens C. and Queyroi D. (1987), "Ten years of observations and numerical analyses of Cubzac-Les-Ponts Test Fill B", Memorias del Simposio Internacional de Ingeniería Geotécnica de Suelos Blandos Tomo I, SMMS, México.

Malvern, L.E. (1969) "Introduction to the mechanics of a continuous medium". Prentice-Hall, New Jersey.

Marsal, R.J. (1944) "Investigation of Consolidation and Plastic Resistance of Clays", SM Thesis at MIT.

Marsal, R.J. (1961), "Estudio sobre la predicción teórica de asentamientos y presiones de poro en suelos saturados", Publicacion No.38, Instituto de Ingeniería, UNAM, México.

Marsal, R.J. y Mazari M. (1959), "El subsuelo de la Ciudad de Mexico", Instituto de Ingeniería, UNAM.

Marsal, R.J., Sandoval R., e Hiriart F. (1950) "Curvas 'Deformación-Tiempo' en las Arcillas del Valle de México", Ingeniería Civil, Cologio de Ingenieros Civiles de México, Año II, No.V.

Mesri G. and Choi Y.K. (1980) "Excess Pore Water Pressure and Preconsolidation Effect Developed in Normally Consolidated Clays of Some Age", Discussion, Soils and Foundations, Vol. 20, pp.131-136.

Mesri G. and Choi Y.K. (1985) "The Uniqueness of end-of-primary (EOP) void ratio effective stress relationship", Proc. 11th 1CSMFE, San Francisco, (2) pp.587-590.

Mesri G., Rokhsar A., Bohor B.F. (1975) "Composition and Compressibility of Typical Samples of Mexico City Clay", Géotechnique 25, No.3, pp.527-554.

Mesri, G. (1973) "The Coefficient of Secondary Compression", JSMFD, ASCE, SM1, pp. 123-137.

Mesrí, G. (1987) "The Fourth Law of Soil Mechanics : The Law of Compressibility", Memorias del Simposio Internacional de Ingeniería Geotécnica de Suelos Blandos Tomo I, SMMS, México.

Mieussens C. and Magnam J.P. (1987), "Long term behaviour of soft clays under embankments", Memorias del Simposio Internacional de Ingeniería Geotécnica de Suelos Blandos Tomo I, SMMS, México.

Mitchell J.K., Campanella R.G. and Singh A. (1968), "Soil creep as a rate process", JSMFD, ASCE, (94), SM1, 29-61.

Montañez L., Jaime A., Santoyo E. y Argüello M. (1980), "Proyecto Tamesí. Estudio' del Subsuelo de los Terraplenes de Prueba y del Comportamiento de éstos", Proyecto 8069, Instituto de Ingeniería, UNAM.

Moran, Proctor, Meuser and Rutledge (1958), "Study of deep soil stabilization by vertical sand drains", Publ. PB 151692, U.S. Department of Commerce, Washington, D.C.

Murayama S. (1983), "Formulation of strain-time behavior of soils under deviatoric stress condition", Soils and Foundations, (23), 2, 41-57.

Murayama S. (1985) "Draft of the state of the art report on constitutive laws of soils", ISSMFE Subcommittee on Constitutive Laws of Soils.

Olson, R.E. (1986), "State of the Art: Consolidation Testing", Consolidation of Soils: Testing and Evaluation, ASTM STP 892, R.N. Yong and F.C. Townsend, Eds. pp. 7-70.

Pelletier J.H., Olson R.E., and Rixner J.J. (1979) "Estimation of Consolidation Properties of Clay from Field Observations", Geotechnical Testing Journal, Vol.2, pp.341-346.

Peters, J.F. (1986) "Report on Consolidation Behavior", Consolidation of Soils : Testing and Evaluation, ASTM SPT 892, pp.129-134.

Rodríguez, N. (1970) "Efecto de las Presiones de Confinamiento sobre el Comportamiento Mecánico de los Materiales", Proc. II Conferencia Internacional de Tecnología de Materiales.

Rodríguez, N. (1976) "Introducción a la Mecánica del Medio Continuo", Apuntes de clase, DEPFI, UNAM. No publicados.

Rodriguez, N. (1989). Comunicación personal.

Schiffman R.L. and Ladd C.C. (1964), "The secondary consolidation of clay" IUTAM Symposium on Rheology and Soil Mechanics, Grenoble, 273-304.

Scott R.F. and Ko Hon-Yim (1969), "Stress deformation and strength characteristics", 7th International Conference ISSMFE, State of the Art Volume, 1-48.

Sukjle, L. (1969) "Rheological aspects of Soil Mechanics", London, Wiley.

Taylor, D.W. (1942) "Research on Consolidation of Clays", Serial 82, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

Terzaghi, K. (1925) "Erdbaumechanik auf Bodenphysikalischer Grundlage", Deuticke, Leipzig.

Terzaghi, K. (1943), "Theoretical soil mechanics", John Wiley and Sons.

Van Zelst, T.W. (1948) "An Investigation of the Factors Affecting Laboratory Consolidation of Clays", Proc. 2nd ICSMFE, Rotterdam, pp.52-61.

Whitman R.V., Richardson A., and Healy K. (1961) "Time-Lags in Pore Pressure Measurements", Proc. 5th ICSMFE, Paris, Vol.1, pp.407-411.

Wu T.H., Reséndiz D. and Neukirchner R.J. (1966), "Analysis of consolidation by rate process theory", JSMFD, ASCE, SM6, 229-248.

Yong, R.N. and Warkentin B. (1966) "Introduction to Soil Behavior", McMillan Co., N.Y.

Zeevaert, L. (1951) "Ecuación Completa de Consolidación para Depósitos de Arcilla que Exhiben Fuerte Compresión Secundaria", Revista Ingeniería, Nos. 6-8.

Zeevaert, L. (1964) "Propiedades Esfuerzo-deformación-tiempo", Apuntes de Mecánica de Suelos, UNAM.

Zeevaert, L. (1982) "Foundation Engineering for Difficult Subsoil Conditions", 2nd Edition, Van Nostrand Reinhold, N.Y.

Zeevaert, L. (1984) "Condiciones Ambientales en el Diseño de la Cimentación de Edifícios", Séptima Conferencia Nabor Carrillo, Querétaro, México, SMMS.

Zeevaert, L. (1986), "Consolidation in the intergranular viscosity of highly compressible soils", Consolidation of soils: Testing and Evaluation, ASTM STP 892.

Zeevaert, L. (1988). Comunicación personal.

8. TABLAS Y FIGURAS

CARACTERISTICAS DE LAS PRUEBAS DE CONSOLIDACION ESTANDAR Y CONTINUAS (Head, 1986)

TIPO DE ENSAYE	VENTAJAS	DESVENTAJAS	REQUERIMIENTOS ESPECIALES
ESTANDAR, carga incremental (STD)	Equipo sencillo Sencillo de realizar Procedimientos e in- terpretación bien es- tablecidos	Lenta (hasta 2 semanas) Se obtienen puntos aislados Es necesario un ajuste en la curva	Constante atención Analisis manual Decisión en la magnitud y duración del incremento
VELOCIDAD DE Deformacion con- trolada (CRS)	Fácil de realizar Existen normas estan- darizadas (ASTM) Maís rápida Condición estable con velocidades bajas No es esencial la con- trapresión	Debe elegirse la velo- cidad de deformación No se ha correlacionado completamente con pruebas estandár Diversos criterios para graficar	Marco de carga Celéa especial y pistón de carga Velocidad de deformación muy lenta
VELOCIDAD DE CARGA CONSTANTE (CRL)	Interpretación inme- diata	La velocidad de carga debe selaccionarse y controlarsa	Controlador de carga
GRADIENTE CONS- TANTE (CG)	Se puede controlar con un medidor de desplazamiento nulo Los retardos en la medició de la presión de poro no son importantes Simple de interpretar	Servo-sistemas sensibles Debe elegirse el gradiente n	Control computarizado
RELACION DE PRE- SION CONSTANTE (CPR)	Tienpos de ensaye menores de un día Se obtiene el esfuerzo crítico a partir de diversas gráficas	Control con computadora, forzoso	Control computarizado
FLUJO RESTRINGI- DO (RFC)	Solamente se aplica una carga Na se requiere control Tiempo de ensaye aprox. medio día	Depende de la eficacia del controlador de flujo	Controlador de fiujo Transductor diferencial de presión Es deseable una celda ex profeso
CONTROL DE CONTRA- PRESION (BPC)	Solamente se aplica una carga La velocidad de decremen- to de carga es sencilla de aplicar La contrapresión puede de- pender del tiempo, o cual- quier otro parametro	La contrapresión es esencial Debe decidirse la velocidad de decremento de la contra- presión	Control co*putarizado

TABLA 3.1

CLASIFICACION DE LOS SUELOS BASADA EN SU COMPRESIBILIDAD SECUNDARIA (Mesri, 1973)

Coeficiente de compresión secundaria Xa, como porcentaje

الهصمر الاداديات المعامم بيعي المطفطيطين مساهد

Compresibilidad Secundaria

·		
< 0.2		muy baja
0.4		baja
0.8		media
		- 1 +
1.6		A178
3.2		muy alta
> 6.4	a ha ta shekara na shekara na ta shekara na s Markara na shekara na sh	extremadamente alta
esta esta da la companya de la comp A servicio de la companya de la comp A servicio de la companya de la comp		
	22	

TABLA 3.2 (cont). CALCULO DEL GRADO DE CONSOLIDACION Y LA DEFORMACIÓN VOLUMETRICA PARA EL MODELO DE MARSAL

TJENPO		ALFA	HL .	NØ -	K	5	N		28X	Bn	Ganan	548	u	Gæ	Ha	5 WA	DEF VOL
seg-		L/seg	kg/ca2	ky/ca2	ca/seg												
******	*******	*******		ecetszży	22222242	******	2:2222222	£2322222		*****	25223222	25 3 3 32 % 1	92282223	*******	*******	*****	\$3¥\$\$\$2£
7	· •	3.005-03	20	5	1.002-07	0.015	1.5709	i	0.002467	0.016920	0.000546	0.797212	0.202787	39.09869	0.196764	29.34979	-5.01926
7	1	3.008-03	20	5	1.001-07	0.015	4.7124	3	0.022206	0.034814	0.002391	0.077577	0.125210	203.7121	1.529713	17.67157	-9.37297
7	2	3.00E-03	20	5	1.001-07	9.015	7.854	5	0.061685	0.073539	0.003145	0.021456	0.103755	277.1995	-3.64044	8.865254	-11.1513
7	3	3.006-03	20	5	1.001-07	9.015	10.9956	7	0.120903	0.132480	0.003422	0.007405	0.096349	303.4303	-0.72702	4.904165	-12.1340
7	•	3.001-03	20	5	1.006-07	0.015	14.1372	9	0.199860	0.211313	0.003546	0.002692	0.093657	314.9581	-0.35759	3.077746	-12.7502
7	5	3.00E-03	20	5	1.002-07	0.015	17.2788	11	0.298556	0.309944	0.003612	0.000979	0.092678	320.9418	-0.21933	2.099417	-13.1704
7	6	3.00E-03	20	5	1.001-07	0.015	20.4204	13	0.416992	0.428342	0.003650	0.000357	0.092320	324.4254	-0.14994	1.519478	-13.4744
7	7	3.00E-03	20	5	1.001-07	0.015	23.562	15	0.555167	0.566492	0.003675	0.000137	0.092182	326.6260	-0.10954	1.1149029	-13.7042
7		3.008-03	20	5	1.001-07	0.015	26.7036	17	0.713082	0.724390	0.003691	0.000060	0.092122	328.1029	~0.08376	0.898594	-13.8839
7	9	3.00E-03	20	5	1.001-07	0.015	29.8452	19	0.890735	0.902032	0.003703	0.000031	0.092091	329.1414	-0.06623	0.721628	-14.0293
7	10	3.00E-03	20	5	1.001-07	0.015	32.9868	21	1.088128	1.099417	0.003711	0.000019	0.092071	329.8991	-0.05374	0.592064	-14.1467

TTEMPO		ALFA	M1	MD	K	•	N		aux	5a	6awan	5 W B	U	Gn	Ha	s ea	DEF	VOL
184		1/seg	kg/cm2	kg/ca2	c=/s+g													
*******	Seas Stars	*****	*******	******	22524285	32492272	*******	#2281233	******	* ********	*=======		£828282	2==E8386	*******	*****	****	vzes.
7	0	1.00E-04	20	5	1.006-07	0.0005	1.5708	1	0.00246	7 0.002639	0.000107	0.796704	0.203295	8574.909	-1.95600	6945.643	-1389	9.07
7	1	1.002-00	29	5	1.001-07	0.0005	4.7124	3	0.02220	6 0.022583	0.000122	0.077113	0.126182	9832.113	-0.09006	684.7298	-1566	5.04
7	2	1.00E-04	20	5	1.00E-07	0.0005	7.854	5	0.06168	5 0.062061	0.000124	0.021067	0.105115	9939.332	-0.03109	321.9813	-163(0.44
7	3	1.002-04	20	5	1.001-07	0.0005	10.9956	1	0.12090	3 0.121278	0.000124	0.007107	0.098008	9969.015	-0.01568	164.7702	-1663	3.40
7	4	1.008-04	20	5	1.001-07	0.0005	14.1372	9	0.19986	0 0.200235	0.000126	0.002477	0.095530	9981.248	-0.00944	99.79993	-1683	3.36
7	5	1.00E-04	20	5	1.00E-07	0.0005	17.2788	±1	0.29855	6 0.298932	0.000124	0.000833	0.094696	9987.444	-0.00630	66.85049	-1698	5.73
7	6	1.00E-04	20	5	1.001-07	0.0005	20.4204	13	0.41699	2 0.417367	0.000124	0.000262	0.094434	9991.009	-0.00451	47.68078	-1706	5.30
7	7	1.00E-04	20	5	1.001-07	0.0005	23.562	15	0.55516	7 0.555542	0.000124	0.000076	0.094358	9993.246	-0.00338	35.971%	-1713	3.50
7	8	1.00E-04	20	5	1.001-07	0.0005	26.7036	17	0.71308	2 0.713457	0.000124	0.000020	0.094337	9994.742	-0.00263	28.01007	-1719).10
7	•	1.00E-04	20	5	1.002-07	0.0005	29.8452	19	0.89073	5 0,891111	0.000124	0.000005	0.094332	9995.790	-0.00210	22.42594	-1723	5.58
1	10	1.002-04	20	5	1.001-07	0.0005	32.9868	21	1.08812	8 1.088504	0.000124	0.000001	0.094331	9996.554	-0.00172	18.35914	-1727	.26

TABLA 3.2. CALCULO DEL GRADO DE CONSOLIDACION Y LA DEFORMACIÓN VOLUMETRICA PARA EL MODELO DE MARSAL

.

TEORIA DE	CONSOLID	ACION 1			H = 2 cm		inc est :	× 1 kg/cm	2								
TIENPO sty	•	ALFA 1/stg	HL kg/ca2	MD kg/ca2	K cs/stg	3	Ħ		AWX	Bn	Gaman	sun	U	Gn	Ha	548	DEF VOL
*******	2811V\$28	********		******	22222222	*******	#2633222	222222222	********	111291122	ustacosc	해양은 유고도 알고	325 2 9332	BERERES	*******		522 23222
1	0	1.00E-03	20	5	1.00E-07	0.005	1.5708	1	0.002467	0.007028	0.000438	0.796865	0.203134	307.8397	0.541234	245.7683	-49.1028
7	1	1.00E-03	20	5	1.00E-07	0.005	4.7124	3	0.022206	0.026145	0.001061	0.077260	0.125873	842.9914	-2.70133	75,46981	-64.2161
1	2	1.00E-03	20	5	1.002-07	0.005	7.854	5	0.061685	0.065508	0.001177	0.021190	0.104683	940.5739	-0.39506	30,24321	-70.2701
1	3	1.002-03	20	5	1.00E-07	0.005	10.9956	7	0.120903	0.124691	0.001212	0.007201	0.097481	969.3229	-0.17536	15.90240	-73.4523
7	4	1.00E-03	20	5	1.00E-07	0.005	14-1372	9	0.199860	0.203633	0.001226	0.002545	0.094935	981.3585	-0.10082	9.740610	-75.4011
7	5	1.00E-03	20	5	1.001-07	0.005	17.2788	11	0.298556	0.302322	0.001234	0.000880	0.094055	987.4934	-0.06585	6.561955	-76.7137
7	6	1.00E-03	20	5	1.006-07	0.005	20.4204	13	0.416992	0.420753	0.001239	0.000292	0.093763	991.0344	-0.04650	4.715303	-77.6568
7	7	1.00E-03	20	5	1.00E-07	0.005	23,562	15	0.555167	0.558926	0.001241	0.000095	0.093667	993.2606	-0.03463	3.549756	-70.3668
7	8	1.00E-03	20	5	1.00E-07	0.005	26.7036	17	0.713082	0.716838	0.001243	0.000033	0.093634	994.7504	-0.02681	2.767815	-78.9204
7	9	1.00E-03	20	5	1.002-07	0.005	29.8452	19	0.890735	0.894491	0.001244	0.000013	0.093621	995.7959	-0.02138	2.218115	-79.3640
7	10	1.00E-03	20	5	1.001-07	0.005	32.9868	21	1-089128	1.091893	0.001245	0.000007	0.093613	996.5577	-0.01745	1.817122	-79.7274
TIEMPO		ALFA	NI	MD	ĸ		H	A	aax	Bn	Gaman	548	U	6 n	Ha	sua	DEF VOL
589		1/s+g	kg/ca2	kg/ca2	ca/seg												
*******	#21×±±±22	FILLERGE	******	********	32368228		******	EECCRERS	23355363	22220CC3	39287578	********	\$25527 2 2	22223222	********	======	zessayes
7	0	2.00E-03	20	5	1.001-07	0.01	1.5708	1	0.002467	0.011951	0.000516	0.797040	0.202959	85.31919	0.288481	66.41161	-13.2315
1	1	2.00E-03	20	5	1.001-07	0.01	4.7124	3	0.022206	0.030379	0.001827	0.077420	0.125538	356.8821	3.031610	31.26400	-19.5037
7	2	2.00E-03	20	5	1.002-07	0.01	7.854	5	0.061685	0.069465	0.002220	0.021324	0.104214	442.1521	-1.16745	14.12189	-22.3334
7	2	2.00E-03	20	5	1.00E-07	0.01	10.9956	7	0.120903	0.128551	0.002351	0.007304	0.096909	469.6960	-0.40570	7.645386	-23.8643
7	- 4	2.00E-03	20	5	1.00E-07	0.01	14.1372	9	0.199860	0.207451	0.002408	0.002619	0.094289	481.4881	-0.21828	4.741230	-24.0132
1	5	2.00E-03	20	5	1.00E-07	0.01	17.2788	11	0.298556	0.306118	0.002438	0.000930	0.093359	487.5498	-0.13853	3.214180	-25.4563
7	6	2.00E-03	20	5	1.001-07	0.01	20.4204	13	0.416992	0.424537	0,002455	0.000325	0.093033	491.0628	-0.09634	2.318010	-25.9200
1	7	2.00E-03	20	5	1.001-07	0.01	23,562	15	0.555167	0.562701	0.002466	0.000116	0.092916	493.2765	-0.07109	1.748971	-26.2698
7	8	2.00E-03	20	5	1.001-07	0.01	26.7036	17	0.713082	0.720608	0.002473	0.000046	0.092870	494.7599	-0.05471	1.365750	-26.5429
7	9	2.005-03	20	5	1.00E-07	0.01	29.8452	19	0.890735	0.898256	0.002479	0.000022	0.092847	495.8020	-0.04344	1.095649	-26.7621
7	10	2.00E-03	20	5	1.001-07	0.01	32.9868	21	1.089128	1.095646	0.002482	0.000013	0.092834	496.5617	-0.03535	0.898257	-26.9417

.

TABLA 3.2 (cont). CALCULO DEL GRADO DE CONSOLIDACION Y LA DEFORMACIÓN VOLUMETRICA PARA EL MODELO DE MARSAL

TEOREA BI	E CONSOLI	DACION X			H = 2 ce		inc est	= 1 kg/ca	2									
TIENPO seg		ALFA 1/seg	Hl kg/ca2	ND [†] kg/ca2	K ca/seg	Þ	N	٩	90X	Bn	Gasan	548	U	ûn	Ha	580	DEF VO	L
******	EESST035			86283958	*******	*******	3232222	29229250	Bastuana	*=======	¥222223	23123552	XECTORES		F=d====	37202223	******	=
7	0	2.00E-04	20	5	1.00E-07	0.001	1.5708	1	0.002467	0.003279	0.000188	0.796722	0.203277	3686.764	4.153323	2979,220	-595.79	3
1	1	2.00E-04	20	5	1.001-07	0.001	4.7124	3	0.022206	0.022964	0.000241	0.077129	0.126148	4833.154	-0.19323	434.5294	-682.71	ł
7	2	2.006-04	20	5	1.00E-07	0.001	7.854	5	0.061685	0.052439	0.000246	0.021080	0.105067	4939.459	-0,06354	159.8749	-714.69	8
1	3	2.00E-04	20	5	1.00E-07	0.001	10.9956	1	0.120903	0.121654	0,000248	0.007117	0.097949	4969.048	-0.03174	82.06073	-731.11	2
<u> </u>	4	2.001-04	20	5	1.001-01	0.001	14.13/2		0.144800	0.200611	0.000249	0.002485	0.095463	4781.260	-0.01902	49.76539	-/41.06	6
1	2	2.001-04	20	2	1.00E-07	0.001	17.2/88	11	0.298556	0.299307	0.000249	0.000839	0,094624	4987.450	-0.01267	33.35621	-147-13	1
<u> </u>	6	2.001-04	20		1.00E-0/	0.001	20.4204	15	0.416992	0.417/43	0.000249	0.000265	0.094359	4991.012	-0.00905	23.09963	-/52.51	1
1		2.002-04	20	2	1.001-07	0.001	23.362	13	V.55316/	0.535418	0.000249	0.000018	0.094280	4993,248	-0.005/8	17.95943	-/36.10	7
1	8	2.001-04	20	2	1.002-07	0.001	26.7035	10	0.713082	0./15852	0.000249	0.000021	0.094259	4994./42	-0,00527	13.78648	-/58.90	ŗ
	9	Z.001-04	20	2	1.001-07	0.001	29.8432	13	0.890735	0.871486	0.000249	0.000006	0.094252	4993.191	-0.00422	11.19929	-/61.14	6
		2.000		J		0.001	52.7000		1.009123	1.000817	0.000249	0.00002	0.074230		0.00343	7. 60 / 010	-102170	Ÿ
TIEMPO		ALFA	HI	MD	x	þ	N	n	aux	Ba	Gaman	511	U	Gn	Ha	sua	DEF VO	L
589		L/seg	kg/cm2	kg/ca2	Cø/seg													
********	21322388	SECSTRFE	*******	#223222	*******	22294722		42242593	*2252224	82233333	TESSTEL	27882223	1::::::::::::::::::::::::::::::::::::::	2528232	SECTORES	3581285 3	#863212	*
1	0	3.00E-04	20	5	1.00E-07	0.0015	1.5708	<u>i</u>	0.002467	0.003718	0.000248	0.796740	0.203259	2131.354	1.753318	1720.961	-344.14	1
1	1	3.005-04	20	5	1.00E-07	0.0015	4.7124	3	0.022206	0.023350	0.000356	0.077146	0.126113	3167.591	-0.31311	284,5447	-401.06	,9
1	2	3.001-04	20	5	1.00E-07	0.0015	7.854	5	0.061685	0.062817	0.000368	0.021094	0,105018	3272,923	-0.09779	105,8441	-422.24	.3
1	3	3.00E-04	20	5	1.00E-07	0.0015	10.9956	7	0.120903	0.122031	0.000371	0.007128	0.097890	3302.414	-0.04817	54.49171	-433.14	.3
1		3.00E-04	20	5	1.00E-07	0.0015	14.1372	9	0.199860	0.200987	0.000372	0.002492	0.095397	3314.605	-0.02873	33.08747	-439.76	2
1	5	3.00E-04	20	5	1.00E-07	0.0015	17.2788	11	0.298556	0.299683	0.000373	0.009844	0.094553	3320.788	-0.01910	22.19155	-444.20	0
1	6	3.00E-04	20	5	1.00E-07	0.0015	20.4204	13	0,416992	0.418118	0.000373	0.000269	0.094284	3324.348	-0.01362	15.90597	-447,38	1
7	1	3.09E-04	20	5	1.00E-07	0.0015	23.562	15	0.555167	0.556293	0.000374	0.000080	0.094203	3326.583	-0.01020	11.95529	-449.77	2
7	0	3.00E-94	20	5	1.002-07	0.0015	26,7036	17	0.713082	0.714207	0.000374	0.000023	0.094180	3328.077	-0.00773	9.311967	-451.63	S
1	5	3.80E-04	20	5	1.001-07	e.C015	29.8452	19	0.890735	0.891661	0.000374	0.000007	0.094173	3329.125	-0.00634	7.457088	-453.12	6
1	10	: 2.00E-94	20	5	1.00E-07	0.0015	32.9869	21	1.098128	1.089254	0.000374	0.000002	0.094170	3329.008	-0.00518	6.105728	-454.34	7

TABLA 4.1 PROGRAMACION DE ENSAYES

•

MUESTRA	PROF.	BP	Cuu	or*	06	Δσ	No.
·• ·	n 	kg/cm ²	kg/cm ²	kg/cm ²	kg/⊂m ²	kg∕⊂m ²	Incr.
EP conv	05	-	-	_	2.00	0.10	10
EP bp	0.0	0.60	_	-	1.70	0.10	10
M17-3 ⊂onv	14.0	. .	0.64	1.66	1.20	0.20	5*
M17-3 bp	- •	1.00	e ingenier.		1.40		
M24-3 conv	19.2		0.52	1.35	1.08	0,25	-*- €+
M24-3 bp		1.60			1.12		
M34-1 conv M34-1 bp	26.6	-	1.27	3.30	2.10	0.20	9*
M 39-3 conv M39-3 bp	30.6	2.70	1.18	3.06	2.60 2.40	0.40	8
SIMBOLOGIA BP : Cor Cuu : Res Cuu : Est cos : Est	i istencia istencia iuerzo ci iuerzo ci	ión a no drer rítico ob crítico, c	iada al c tenido c estimac rc [*] = 1.3	corte del ensay do con- 3 (2Cuu)	/e (Ze	evaert, 1	984)
NOTAS :							
+ La placa incremento Profundidad	a de tra: 1 del NA	nsmisión F : 3.30	de carga m	a se incl	linó a par	tir de es	e`
El valor de	BP es	igual a l	la presid	ón de por	ro que ten	la el sue	lo en el
sitio. Se u	upuso u	na distri	bución d	te presid	5n igual a	la hidro	stática.

TABLA 4.2. PROPIEDADES INDICE DE LAS MUESTRAS ENBAYADAS

MUESTRA	PROF. m 	w %	5s	e o	Gw %	γnat ton/m ⁸	o∿ kg/cm ²
EP COnv	0.50	220.1	~ ~ ~	5.04	98.67	1.197	.
EP bp	3.00	215.6	2.20	4.93	98.76	1.202	0.30
M17-3 con	•	300.1	-1	6.93	99.2	1.156	
M17-3 bp	14.0	302.7	2.29	6.94	99.9	1.162	0.96
M24-3 con	v	340.6		7.89	99.3	1.140	
M24-3 bp	19.2	336.4	2.30	7.75	99.8	1.146	1.05
M34-1 ⊂on	v	238,4		5.56	99.5	1.197	•
M34-1 bp	26 .6	245.8	2.32	5.73	99.5	1.192	1.44
M39-3 con	IV	120.3		2.91	97.5	1.329	
M39-3 bp	30.6	110.7	2.36	2.65	98.7	1.364	1.65

SIMBOLOGIA:

พ %	: Contenido de agua natu	ral
Ss	: Densidad de sólidos	
ēo	: Relación de vacíos inid	cial
Gw %	I Grado de saturación in	icial
ynal :	Peso volumétrico natura	1
~	· Estuarto efectivo vert	ical

TABLA 4.2 (cont.)

MUESTRA	DESCRIPCIÓN
EP	Arcilla limosa color café oscuro. Consistencia suave a
	firme. Compresibilidad alta.
17-3	Arcilla limosa color gris oscuro. Consistencia firme.
	Compresibilidad alta.
24-3	Arcilla limosa color café oscuro~rojizo. Consistencia firme
	a muy firme. Compresibilidad alta.
34-2	Arcilla limosa color gris oscuro-verde olivo. Consistencia
	firme. Compresibilidad alta.
39-2	Limo arcilloso color gris oscuro. Consistencia firme. Com-
	presibilidad alta.

7ABLA 4.3. VELOCIDADES DE DEFORMACION PARA ENSAYES CRS SUGERIDAS POR Smith y Wahls (1969)

Interval	del	límite líquido %	Velocidad de deformación % por minuto
	más	de 40	0.04
	40	- 60	0.01
	60	- 80 1	0.004
	80	- 100	0.001
	100	- 120	0.0004
	120	- 140	0.0001

NOTA : Estas velocidades también son sugeridas por la

ASTM D 4186-82

TABLA 5.1. ESTRATIGRAFIA SIMPLIFICADA

SITIO MEXICALTZINGO

ESTRATO DE	PROF. A	ESPES DE	OR COMPR A	ESPESOR	DESCRIPCION
- m ·	an a	л	m	m	-
42020 2050;					
A 3.3	10.4	3.3	4.6	6.5	Arcilla y arcilla
•		4.6	5.5		limosa, con lentes
		C C	7 5		
		0.0	1 - Q		de vidrio voicanico
		8.1	10.4		y arena
5 10 4			10 0	= 0	
5 IV.4	·	10.4	12.7	0.0	Arcilla con rosilles
		13.8	17.1		y lentes de arena
C 17.1	20.9	17.1	20.9	3.8	Arcilla con fósiles)
D 20.9	27.6	20.9	24.0	6.7	Arcilla con fósiles
		24 0	27.6	·	v lentes de videio
		2.44 0.00	A. F. 6		y rentes de vidrio
					VOICANICO
E 30.0	32.3	30.0	32.3	2.3	Arcilla limosa

TABLA 5.2 ESFUERZOS UTILIZADOS EN EL CALCULO DE HUNDIMIENTOS SITIO MEXICALTZINGO

ESTRATO	ENSAYE	PROF.	PROF.	~°0	Øs	CTIN
	Parada	m 8===0	m =====	kg∕cm² =======	kg/cm ² seases	kg/cm ² ======
A	11-EP	8.5	6.85	0.73	0.84	0.78
в	#17-3	14.0	13.75	0.95	1.00	0.97
C	124-3	19.2	19.00	1.06	1.09	1.08
D	n34-2	26.6	24,25	1.21	1.23	1.22
E	139-3	30.6	31.15	1.47	1.48	1.475

al centro del estrato '

σο : Estmerro efectivo inicial

σ= : Esfxerzo efectivo, incluyendo la sobrecarga

om : Estierzo medio = (oo + oo)/2

TABLA 5.3. Cálculo de hundimientos. Sitio Mexicaltzingo.

TERZAGHI AMPLIADO

=====		275522222	========	ceruser=	=========	assesses	
ESTRATO	ESPESOR	INC ESF	mν	ςv	Ea	tp lab	tp campo
-	⊂ m	kg/cm2	cm2∕kg	cm2/seg	%	años	años
=======					*******	27622222	========
А	650	0.12	0.0900	0.0060	0.0032	80	0.28
в	580	0.06	0.2800	0.0098	0.0018	250	0.69
C	380	0.03	0.2400	0.0070	0.0007	150	0.18
D	670	0.01	0.2000	0.0058	0.0016	250	0.93
E	230	0.10	0.0600	0.0070	0.0015	125	0.05

	1	2	4	8	15	30
	año	años	ឧភ័ពទ	ลหัตร	ឧភ័ចទ	ลกับร
*******		=========		========	*****	=======
ESTRATO	hund	hund	hund	hund	hund	hand
-	C M	⊂ m	сm	c m	⊂ m	⊂ m
easar===	=======			=======	********	RERECCE
А	8.1	8.7	9.3	9.9	10.5	11.1
в	9.1	9.4	9.7	10.0	10.3	10.6
С	2.9	3.0	3.1	3.2	3.3	3.3
D	1.4	1.7	2.0	2.3	2.6	3.0
E	1.8	1.9	2.0	2.1	2.2	2.3
TOTAL cr	n 23.3	24.7	26.2	27.6	28.9	30.4
VELcm/año)	1.4	0.7	5 0.3	5 0.1	9 0.10

TABLA 5.4. Cálculo de hundimientos, Sitio Mexicaltzingo.

BURGER MODIFICADO

			======		======	*=
ESTRATO	ESPESOR	INC ESF	Gr	n	Gk	Tk
<i>'</i> ↔	c m	kg∕cm2	-	kg-s/cm2	kg/cm2	seg
	=======		200255550	========		======
А	650	0.12		6.598+09	5.56	32
В.	580	0.06		5.02E+09	1.79	19
C.	380	0.03	-	2.225+09	2.08	30
D	670	0.01		5.306+09	2.50	38
E	230	0.10	-	9.96+08	8.33	20

	1	2	4	8	15	20
	año	ลห้อร	ลกัดธ	ลกัดร	años	ลพัธร
	acc=====	24222822	========	*======	=======	=======
ESTRATO	hund	hund	hund	hund	hund	hund
-	CM	ርጠ	⊂m	CM	C M	cm
=======				=		==========
A	7.3	7.6	8.4	9.8	12.4	17.9
в	9.1	9.3	9.7	10.5	11.9	14.9
C	2.9	3.1	3.4	4.0	5.2	7.6
D	1.4	1.4	1.5	1.7	1.9	2.5
Ε	2.1	2.8	4.3	7.2	12.4	23.4
TUTAL cm	22.8	24.3	27.3	33.3	43.8	66.3
VELcm/año	э •	1.50) 1.50) 1.5	50 1.50	1.50

TABLA 5.5. Cálculo de hundimientos. Sitio Mexicaltzingo.

JUAREZ-BADILLO

======		========	=====	65222233	zsezzzaz	
ESTRATO	ESPESOR	INC ESF	DEF TOT	DELTA	t*	
-	⊂m	kg/cm2	CM	-	seg	
	=======	*=====				
Α	650	0.12	20.15	0.32	5.26+11	
в	580	0.06	46.98	0.39	3.5E+11	
C	380	0.03	30.78	0.45	7.6E+09	
D	670	0.01	23.81	0.2	6.0E+09	
Ε	230	0.10	8.05	0.35	2.16+09	
	+	2	4	0	15	30
				- 20 c	10	
		arananan		2005	anus	anus
ESTRATO	hund	hund	hund	hund	hund	bund
-	Cm	⊂m	⊂ m	cm	сm	⊂m
	== = =====	======		Sassess		4222reso
A	0.9	1.1	1.3	1.6	1.9	2.4
в	1.2	1.6	2.1	2.7	3.3	4.3
¢	2.4	3.2	4.2	5.5	6.9	8.7
Ď	7.5	8.3	9.1	10.0	10.8	11.8
E	1.5	1.8	2.2	2.6	3.0	3.5
TOTAL CM	: 13.5	15.9	18.9	22.3	26.0	30.5
VELcm/año	•	2.4	10 1.5	50 0.E	5 0.52	0.30

the second s

TABLA 5.6. Cálculo de hundimientos. Sitio Mexicaltzingo.

ZEEVAERT

======	=======					
ESTRATO	ESPESOR	INC ESF	mep	⊂∨	beta	
	⊂ a	kg/cm2	cm2/seg	cm/seg	-	
Α	650	0,12	0.0900	0.0060	0.302	
в,	580	0.06	0.2800	0.0098	0.114	
с	380	0.03	0.2400	0.0070	0.100	
D	670	0.01	0,2000	0.0058	0.800	
E	230	0.10	0.0600	0.0070	0.250	
	1	2	4	8	15	30
	año	años	ង ស័ ០ ទ	años	ឧទី០ទ	años
22253222	========	======	22202222		********	=======
ESTRATO	Fillind	hund	hund	hund	hund	hund
	C IL	⊂ m	C m	⊂m	CM	⊂៣
	=======		UE839282	=======		
A	9.0	9.6	10.2	10.8	11.3	12.0
в	10.2	10.5	10.8	11.1	11.4	11.7
С	3.1	3.2	3.3	3.4	3.5	3.5
D	2.4	2.7	3.0	3.3	3.6	3.9
E	2.0	2.1	2.3	2.4	2.4	2.6
TUTAL cm:	26.8	28.1	29.5	31.0	32.3	33.7

.

TABLA 5.7. Cálculo de hundimientos. Sitio Mexicaltzingo.

TERZAGHI

		#2##2 # ##	========			
ESTRATO	ESPESOR	INC ESF	m∨	Cν		
-	C M	kg/cm2	⊂m2/kg	cm2/seg		
		=======	******			
• A	650	0.12	0.0900	0.0040		
в	580	0.06	0.2800	0.0093		
С	380	0.00	0.2400	0.0070		
D	670	0.01	0.2000	0.0058		
E	230	0,10	0.0600	0,0070		
					•	
	1	2	4	8	15	30
	año	តាំបទ	años	ត ទី០ s	ឧតីចន	ลพือร
			2522292	n==2c===		allessanes
ESTRATO	hund	hund	hund	tound	hund	hund
	c m	⊂m	CM	⊂ m	ជា	C (II)
263522 25 2		#026988#			********	********
A	6.9	6.9	6.9	6.9	6.9	6.9
. в	8.9	8.9	8.9	8.9	8.9	8.9
С	2.7	2.7	2.7	2.7	2.7	2.7
D	1.3	1.3	1.3	1.3	1.3	1.3
E	1.4	1.4	1.4	1.4	1.4	1.4
TOTAL C	n 21.3	21.3	21.3	21.3	21.3	21.3
VELcm/año	. 0.0	0.0	0.0	0.0	0.0	0.0

TABLA 5.8 ESTRATIGRAFIA SIMPLIFICADA

SITIO TAMESI

ESTRATO	DE	PROF A	ESPESOR	W	e o	DESCRIPCIÓN
an=2_20	m =====	₩ ₩₩₩	n =======	% ======	- 6236	
S	0.0	4.0	4.0	30.4	0.75	Costra superficial
· A	6.55	11.45	4.7	57.0	1.57	Arcilla gris blanda
B	11.45	16.85	5.4	64.7	1.79	Arcilla gris blanda
¢	16.85	22.15	5.3	54.8	1.51	Arcilla gris blanda
D	22.15	27.85	5.7	58.1	1.59	Arcilla gris blanda

3

w % : Contenido de agua, en porcentaje

eo : Relación de vacios inicial

TABLA 5.9 ESFUERZOS UTILIZADOS EN EL CALCULO DE HUNDIMIENTOS SITIO TAMESI

ESTRA	En el ensaye de ESTRATO ENSAYE <u>consolidacion</u>				<u>Al centro del estrato</u>				
	22	CONS.	PROF. m	⊘o kg/cm ³ =====	øb kg/⊂m ² ⊐⊐==⊐=	PROF. M	0°0 kg/cm² =======	·∆o r kg/cm ² ======	∆ơc kg/cm ² ======
· · S		OD-1 -	2.5	0.28	0.88	2.0	0.23	0.67	0.32
А		00~2	8.80	0.81	1.05	9.0	0.82	0.34	0.53
B		0D-3	14.0	1.35	1.12	14.8	1.13	0.31	0.44
С		OD-4	19.6	1.45	2.20	19.5	1.45	0,30	0.35
D		0D-5	24.6	1.75	1.80	25.0	1.78	0.25	0.33

- co : Esfuerzo efectivo inicial
- ob : Esfuerzo critico
- Δσr i Incremento de esfuerzo, desde el esfuerzo efectivo inicial, hasta el esfuerzo crítico
- Δσε i Incremento de esfuerzo, desde el esfuerzo crítico, hasta el esfuerzo producido por la sobrecarga

TERZAGHI AMPLIADO

ļ

1

1

. . .

.'

	=======		*******			
ESTRATO	ESPESOR	INC ESF1	mν	GV	Ea	tp campo
-	CA	kg∕cm2	cm2/kg	⊂m2/seg	%	ลกับร
S	400	0.67	0.0300	0.0007	0.0161	3.62
A	470	0.34	0.0370	0.0002	0.0098	19.03
B	540 670	0.31	0.0390	0.0002	0.0145	28.90
r v	530	0.30	0.0210	0.0002	0.0031	22.21
D	0.0	0.20	0.0480	0.0001	.0.0077	41.01
	1	2	4	8	15	30
	año	ลหัอร	años	años	ลกับร	ឧទ័០ទ
=======	cznemen	DEBRESED			========	sesse=ss
ESTRATO	ti und	hund	hund	hund	hund	hund
-	⊂ <i>m</i>	⊂ <i>m</i>	CW	cm	⊂m	⊂ m
========		======	SEESECCE.		266888062	
5	2.1	7.6	S.O	S.0	8.0	8.1
А	2.2	3.1	4.3	5.4	6.1	6.2
в	2.1	3.0	4.2	5.5	6.5	6.5
C	1.1	1.6	2.2	2.8	3.2	3.3
, D	1.4	2.1	3.0	4.2	5.5	6.5
CGTRATO	Febreine	INC SEET				the compo
CORMIQ	2372304	ka(co2	mv cm2/ka		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	vp Cempo a≊ne`
S	00b	0.32	0.0370	0.0006	0.0225	5.96
Å	490	0.53	0.0650	0.0002	0.0200	22.39
R	540	0.44	0.0650	0.0001	0.0100	66.05
č	530 530	0.35	0.0260	0.0002	0.0034	22.27
n	570	0.33	0.0590	0.0001	0.0072	51.51
Ľ	070	0.00	0.0070	0.0001	010012	01.01
	1	2	4.	8	15	30
	สกับ	años	aios	años	años	ลกับร
********	****					
ESTRATO	hund	hund	hund	hund	hund	hund
_	CA	Cm	C (f)	CW	C M	CW
			=======			
S	1.7	2.4	3.3	4.2	4.7	4.8
A	5.4	7.8	10.8	14.3	16.7	16.9
B	5.1	7.4	10.0	13.1	14.7	15.4
c	1.5	2.2	3.1	4.1	4.8	4.8
D	3.7	5.3	7.2	9.4	10.5	11.1
TOTAL CO	26.2	42.5	56.2	71.2	80.7	83.6
VEL cm/año)	16	10 Se P	3 7 7 7	; · · · · ·	2 0 10
	-	τ υ •.			· ±•30	, U.TR
			· ····································	ويحمد والمحمد والمعالم والمعالم والمعالم والمحمد والمحم والمحمد والمحمم والمحم والمحم والمحمم والمحمم ووممم والمحمم والمحمم والمحمم والمحمم وا	e de la servició de l	e de la companya de l

TABLA 5.11. Cálculo de hundimientos. Sitio Tamesí.

BURGER MODIFICADO

	======					Decamenc
ESTRATO	ESPESOR	INC ESF1	Gr	'n	Gk	tk
-	C O	ka/cm2	_	ka-s/cm2	ka/cm2	sea
				2======	========	
	400	0.47		1 (75+00	42.76	10507
5	400	0.07	-	1.676409	10.00	17020
A	490	0.54	-	4.156+09	13.51	20010
в	540	0.31		2.56E+09	12.82	18744
Ċ	530	0.30	· 🛶	1.16E+10	23.81	24981
Ð	570	0.25		3.88E+09	10.41	20102
			A	· .	15	70
	- ~ -		- ~	ي. مانية	1	- 20
	ano	anos	anos	anos	an 0 5	anos
		=======		*******		=====
ESTRATO	hund	hund	hund	hund	hund	hund
	Cm	ሮጠ	ርጠ	CW	с m	CU
5	13.1	18.2	28. X	48.6	⊜d. 1	160.2
~	7 4	0 7	11 0	16 3	05.0	44 1
~ ~	7.4	0.7	11	10.0	2J.2 77 E	44.1
· H	8.5	10.7	14.8	20.0	J/ J	68.4
C	3.8	4.2	5.1	6.8	9.8	16.3
D D	s.o	9.2	11.5	16.1	24.2	41.6
		•				
	*******	*****			=======	
FETRATO	FSPESOR	INC ESE2	Gin	17	Głz	+1.
LUINAIO			- -	Lange Lamo	lice (mm?)	00
—	с III	R G V C III C		Kg-szenz	NGZEMA	şey
S	400	0.32	-	1.70E+09	13.51	17650
A	490	0,53		3,176+09	7.69	19712
E	540	0.44		5.26E+09	7.69	16532
C.	530	0.35	-	1.23E+10	19.23	20980
D	570	0.33	-	5.5E+09	8.47	22897
-						
					a r=	70
	1	4	, Lļ	3	10	30
	ลกับ	años	anos	años	anos	años
*****	~~~~~~			265=3222		
ESTRATO	hund	hund	hund	hund	hund	hund
	сm	ດທ	⊂៣	сm	⊂m	сm
		=======		=======		
9	7.1	9.5	14.2	23.7	40.4	76.0
<u>л</u>	10 6	00.1	27.2	37 4	55 4	94 4
2	17.0	40 7	21.2	24 9		
0	18.3	10.0	×1·1 × × 7	40.0	12.0	10 1
с. т	0.3	U.U.	0.7	40.0		1/1
D	1	د.دا	15.4	17.8	21.3	40.0
			la strandi			
			والمرجع والمحاد	e see e di see e	ang an an an	
TOTAL Cm:	101.9	119.8	155.6	227.4	352.9	621.9
VELCm/año	5	17.9	17 0	17 9	S	17
	-		1.3	· · · · · · · · · · · · · · · · · · ·		- / •
		and the second		さっていたい たいちぞう とうりょうい		

TABLA 5.12. Cálculo de hundimientos. Sitio Tamesí

JUAREZ~BADILL0

zzaczezc		=======	===e==e=	========		
ESTRATO	ESPESOR	INC ESF1	DEF TOT	DELTA	t*	
-	⊂ п .	kg∕cm2	⊂m		seg	
		*******	********			
S	400	0.67	20.00	0,23	3.2E+11	
A	490	0.34	54.00	0.29	2.56+11	
B	540	0.31	43.00	0.35	6.5E+Q9	
С.	530	0.30	39.00	0.20	4.0E+09	
a	570	0.25	40.00	0,40	1.0E+09	
	1	2	4	8	15	30
	aio	สถับร	años	ឧភ័០៩	ត ភ័ ០ ទ	สกับร
					==========	
ESTRATO	frun d	hund	hund	hund	foured	hund
	⊂a	ជា	Cm	CM	⊂ ጠ	- Cin
	***	_========	********		======	
S	2.1	2.5	2.8	3.2	3.7	4.2
Α	3.7	4.5	5.4	6.5	7.6	9.0
в	5.8	7.1	8.6	10.4	12.3	14.5
C:	10.7	11.8	13.0	14.2	15.4	16.7
D	8.0	9.9	12.2	14.6	17.0	19.8

=======	≠≈≈z=c=		Resuerse			
ESTRATO	ESPESOR	INC ESF2	DEF TOT	DELTA	t*	
· •	Ch	kg∕cm2	⊂ m		seg	
	======	a== m =a=a		*****	******	
S	400	. 0.32	16.00	0.23	3.2E+11	
Α '	490	0.53	49.00	0.29	2.5E+11	
B	540	0,44	44.00	0.35	6.5E+09	
C	530	0,35	42.00	0.20	4.08+09	
D	570	0.33	40.00	0.40	1.0E+09	
	1	2	4	8	15	30
	añ 0	តភ័ទទ	ลกับร	años	años	- តុភិចទ
*******	******	*******				
ESTRATO	hund	hund	tourid .	hund	hund	hund
-	CM	ርጠ	сm	۵	់ 	. ⊂ n
*******	*=====	============				
S	1.7	2.0	2.3	2.6	2.9	3.3
А	3.4	4.1	4.9	5.9	6.9	8.2

в	5.9	7.3	'8. 8	10.7 12.6	14 S
C:	11.6	12.8	14.0	15.3 16.6	18.0
D	8.0	9.9	12.2	14.6 17.0	19.8
TOTAL cm:	61.0	71.9	84.3	98.1 111.9	128.2
VELCの/A首の		10.9	6.20	3.45 1.97	1.08

ZEEVAERT

33%52 26 8	5도대 ####도	≈≈≈≈≈≈≈	=======	#SSSF####	2282322E	
ESTRATO	ESPEDR	INC ESF1	mep	cν	beta	
-	C#	kg/cm2	cm2/seg	⊂m∕seg	-	
*******	=======	25225252		=99228222		
S	400	0.67	0.0300	0.0007	0.800	
A	490	0.34	0.0370	0.0002	0.730	
в	540	0.31	0.0390	0.0002	1,200	
С	530	0.30	0.0210	0.0002	0.490	
D	570	0.25	0.0480	0.0001	0.640	
	1	2	4	8	15	30
	3 50	años	ងទ័០ទ	ឧទី០ទ	ង ភ័០ s	años
unnu>une			*******			
ESTRATO	hund	hund	hund	hund	hund	hund
-	CB.	¢m	⊂m	⊂m	CIA	ĢM
5	5.8	12.8	15.0	16.8	18.5	20.4
A	5.0	4	5.7	Ş. 7	10.7	12.1
н	3.1	4.8	7.1	10.1	12.7	14.8
C	1.4	2.1	2.9	3.9	4.6	5.2
D	18	2.7	4.1	6.0	8.1	10.1
						·
ESTRATO	r spittig	THE ESE?			hota	
CONMIC	COFLOR	10/002	en Cana)) e va	
*** 2 *** *** *** ***		- Kg/ Cm2	C11127 5 2 9			÷
				0.0004	1 200	•
53	400	0.04	0.0370	0.0008	1.700	
74 T	440	0.00	0.0650	0.0002	. 0.080 0.750	
5	040	0.44	0.0650	0.0001	0.000	
C.	530	0.55	0.0260	0.0002	0.570	
D	570	ပ္နည္း	0.0590	0.0001	0.370	
					. .	
-	తం	años 	años	años 	años	años Enerrana
FSTRATO	bund	burd	busd	bund	bund	hund
	(141)A (7)				- - - - - - - - - - -	m
C	A	5 A	12 7	11 1 1 A 1	10 0	21.7
5	7.0	10.6	12.7	20.2		70 7
н 5	5.0	5 O	10.2	15 0	17 5	10 5
р С	4 0		7 C	10.0	11.0	4 9
n n	1.0				15.0	14.5
D	410				1	1410
T.0.7.0.		ه شبه م				
- FULAL CM	: 39999 	(3.4 - (2		1. 11. 1. 1. 2. 1 . 1 . 1. 1. 2. 1 . 1 .	100.8	100.4
VELCHZAN	Ο .	23.	7 11.7	6.7	3.1	1.2
		· · · · · ·		and an an an an an an ann. Anns an anns an an an an an an		
· · · · ·	· · · · · ·					

TABLA 5.14. Calculo de hundimientos. Sitio Tames1.

TERZAGHI

eses#e\$e	*=====	프한머프로프로		527225222
ESTRATO	ESPESOR	INC ESF1	ΨV	CV.
	C M	kg/cm2	⊂m2/kg	⊂m2/seg
****		=======	*******	=c===
S	400	0.67	0.0300	0.0007
A	490	0.34	0.0370	0.0002
в	540	0.31	0.0390	0.0002
С	530	0.30	0.0210	0.0002
D	570	0.25	0.0480	0.0001

	1	2	4	8	15	30
	ลห้อ	ลกัดร	años.	años	ลกับร	ឧភ័ពទ
		≈≈≈≈≈≈≈≈	26256633	manacaes		
ESTRATO	hund	hund	hund	hund	hund	hund
•	⊂ m	CU	⊂m	CM	CO	⊂m
=========		******	3656666 6	≈s≈s≈s≈s	*======	
5	2.1	7.6	8.0	8.0	8.0	8.0
А	2.2	3.1	4.3	5.4	6.1	6.2
в	2.1	3.0	4.2	5.5	6.5	6.5
C	1.1	1.6	2.2	2.8	3.2	3.3
Б	1.4	2 1	3.0			6.5

			₩¥¥¥¥¥	Spc≓s≡z≓
ESTRATO	ESPESOR	INC ESF2	mγ	CV .
	C (II	kg/cm2∘	cm2∕kg	⊂m2/seg
********	=0 <u>=</u> %2 % 2%		5=\$\$5382	
5	400	0.32	0.0370	0.0006
A	490	0.53	0.0650	0.0002
н	540	0.44	0.0650	0.0001
C,	530	0.35	0.0260	0.0002
D	570	0.33	0.0590	0.0001

	1	2	4	8	15	30
	ลถึง	ลกับร	años	ឧតិ០ទ	ลสังร	ลกับร
******	******	ng======		*******		*******
ESTRATO	bund	hund	hund	hund .	hund	hund
-	c.m	C M	⊂m	⊂m	CM	cw
e=anade=	********	=======	*=====		=====	*======
5	1.7	2.4	3.3	4.2	4.7	4.7
А	5.4	7.6	10.8	14.3		16.9
в	5.1	7.4	10.0	13.1	14.7	15.4
С	1.5	2.2	• 3.1	4.1	4.8	4.8
D	3.7	5.3	7.2	9.4	10.5	11.1
			· · · · ·	- 2014	·	
TOTAL C	n 26.2	42.5	56.2	71.2	80.7	83.6
VELom/añ	D	16.3	6.8	5 37	5 1 3	9 0 1

Fig. 2.1. Odómetro (Terzaghi, 1925)

La deformación a la que se somete al suelo (a) puede ser idealizada por una combinación de los efectos de distorsión por cortante simétrico (b),y la compresión sin distorsión (c).

El aparato también impone la condición de deformación lateral nula.

Fig. 2.2. Deformación impuesta a una muestra de suelo en el odómetro.

Fig. 2.3. Trayectoria de esfuerzos para la prueba del odómetro.

Fig.2.4. Elemento en una masa, bajo consolidación unidimensional.

Fig. 2.5. Curvas isócronas.

Fig. 2.6. Grado de consolidación vs. factor tiempo. a)Escala aritmética y b)Escala semilogarítmica.

- a) Carga incremental
- b) Deformación controlada
- c) Velocidad de carga constante
- d) Gradiente constante
- e) Relación de presión de poro / carga constante
- f) Flujo restringido
- g) Control de contrapresión

Fig. 2.8. Representación de los diagramas de carga para las pruebas de conscilidación (Head,1986).

tiempo , min.

- a) Marsal y Mazari (1959)
- b) Leonards y Y Girault (1961)
- Fig. 2.9. Ejemplos de la desviación de los resultados experimentales,respecto de la Teoría de Terzaghi,para RIC mayores que la unidad.

tiempo, esc. log.

Fig. 3.1. Modelo de Terzaghi ampliado: prolongar la porción recta de la curva de consolidación.

Fig. 3.2. Coeficiente de compresión secundaria vs.contenido natural de agua, para depósitos naturales (Mesri, 1973).

Fig. 3.3. Modelos reológicos. a) Modelo de Hooke, b) Modelo de Newton, c) Modelo de Kelvin y d) Modelo de Maxwell

Fig. 3.4. Modelo de Burger modificado

Fig. 3.5. Significado de las constantes en el modelo de Burger modificado.

3.6. Esquema para la obtención de la función f(V). Fig.

Fig. 3.7. Modelo reológico para la Teoría de Consolidación X. (Marsal, 1961).

Fig. 3.8. Concepción artística de la estructura de arcilla. (Zeevaert, 1982).

Fig. 3.9. Modelo reológico en la Teoría de Zeevaert (1986).

1.11

Fig. 4.1b.Cazuela, anillo de consolidación, piedras porosas y papel filtro.

Fig. 4.2. Calibración por deformación del equipo.

deformación, mm

Fig. 4.4. Calibración del brazo de palanca. Consolidómetro convencional.

CARGA EN LA MUESTRA, kg

Fig. 4.5a. Herramientas para labrado del espécimen.

Fig. 4.5b. Espécimen montado en el consolidómetro convencional.

Fig. 4.6. Consolidómetro con medición de presión de poro. Diagrama esquemático.

Fig. 4.7. Consolidómetro con medición de presión de poro.

- R: Regulador de presión
- T: Transductor de presión

Fig. 4.9. Diagrama general de conexiones del consolidómetro con medición de presión de poro.

🝸 válvula cerrada

X válvula abierta

- a) Inundación y saturación por contrapresión (BP). b) Aplicación de incremento de carga,sin permitir el drenaje.
- c) Consolidación.

Fig. 4.10. Esquema del funcionamiento general del consolidómetro con medición de presión de poro.

Fig. 4.11. Calibración por compresibilidad del aparato.

deformación, mm

Fig. 4.12. Montaje del consolidómetro con medición de presión de poro.

(b)

(a)

Fig. 4.14. Válvula de block para el transductor de presión. (Head, 1986).

Fig. 4.15. Tiempo requerido para la saturación, bajo la contrapresión adecuada, realacionado con el grado de saturación inicial (Black y Lee, 1983).

Fig. 4.16. Valores típicos del coeficiente de presión de poro B de Skempton, relacionados con el grado de saturación y la rigidez del suelo (Black y Lee, 1973).

Fig. 4.17. Croquis de localización del sondeo "Mexicaltzingo".

period Alizabet States

	<u>Î Î Î Î Î Î Î Î Î Î Î Î</u>			
		Lonpb, Seg. 1000		
		ο		
				Q
			0 0 0 0 0 0 0 0 0 0 0 0 0	
Fig. 4.19.	Curva deformacion-ti	empc: MEBP. conv.		

.

- e e e e a col	E E E E E E E E E E E E E E E E E E E			
		100	· - 10000	
		0		
μο.55 ···································				
р. 69			0.5:	
			9.7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
D.20	Curva deforma			
				· •

0 0				
A B A B			Llempo, seg. 1000	
n 30 n 40 n 30 n 40 n			0 − − − 0 − − − 0 − − − − − − − − − − − − −	
h 30 30 40 40 40 40 40 40 40 40 40 4				
$\frac{1}{\sqrt{2}}$				
pro- $f_{1,0}$ $f_{1,0}$				
$\lambda \sigma$ g = 1.5 $\Lambda \sigma = 0.2$ 1.9^{51} r_{ig} , 4.21 . Curve deformación-tiempo. M-EP conv	69101111111111111			
1.45			$\overline{\mathbf{G}}_{\mathbf{G}} = 1.5$ $\overline{\mathbf{A}}_{\mathbf{G}} = 0.2$	
	14951,	Curva deformación-ta	ampo. M-EP conv	

		114				T	i i	pb		i lie		seg.		iboo					100		dudada:		
				$\sum_{i=1}^{n}$	X																		
							\mathbf{X}											I II	H				
								N.													brint. Attack		
		曲日							ÎN														
						主脚					N.												
<u>اللا</u> غة أنابية						日期						X											
													X										
														\mathbf{N}									
															×								
													da e da e da e			N							11.)
50						7			Νσ.	+ 1.6	kg/a	m7											
		園日																			llirf:		
																	-pida. Spin	*					
9 <u>-</u>			1																				
						j																	牌
	Fi	g.4.	22.	Cur	va (lefo	rmac	ión	421	empo	5. M	-EP	co	nv						Ţ		U	
<u>, , , , , , , , , , , , , , , , , , , </u>	<u>nta tilita</u>		<u>11111</u>	<u>it:Piel</u> i	14 6	1 [66]	<u>494 </u>	1111		12101-0	[i.].,]	<u>.</u>	• [•]	11					11				tii Lii

NU	L U G J D C +	- 0 1 0 4 4 4 6 1 0 -		<u>001-00</u>
		— — Lienpe, 1999-	0	
.80				
		*	ΛO = 0.1	
το <u>β</u>				
F19	4.23. Curva pres	ion de poro-tiempo.M-Ep		

		 	·		-540 1	36A 0181010	nes n	O 4 C OR PU	GAD	1. K. 1. N.		-		-	•				,	·	- سببا ،	 *	•	
	N		0		o.				8 .	[4	3 4		0			iempo,	seg.	21 2 	 100	00	<u>×</u>			
Q,E0	enento est uerzo																							
0.20	Andrewento U / Ince														*		×		×	= 0.50 = 0.20	kg/cm ²			
6.68																								
		Fig	1	.24	•	Çur	va <u>r</u>	ores	iðn	do	p	oro	-tie	mpo.	M-I	IP								

D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>						,	.	w		. 11	a ·	<u>a n e</u>	_		N		,	<u> </u>	22	<u></u>	T D			<u></u>		<u></u>	-	<u>13 (</u>	<u>* 1</u>	
		N D	Latalit:		(O)	H H			:1::1		::::::		òo :		t	Longo	.	sog.			1	000	•							
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0														il:i						. <u> </u>	<u> </u>	1		11						
0.80 0.80 0.80 0.90						9		19	+1									÷.			11	1 : :								
0.40 0.40				1 0												:::: 			:::		1.17	<u> </u>							1	
0.00 0.00 0.00 0.00 0.00 Fig. 4.25. Curva presión de paro-tiempo.M-EP		Trainilities			1:::;	1		12					<u>.</u>								1.1.		••••							
0.40 0.40									1.1.1			- 14	L									. :			•					
0.40 0.40	TUTT		tt:										19		d	. ≓ [0.	2	kg/c	m²		<u></u> .							<u>:</u> :[:::		
0.20 - 0.50 - 0.50	0.80			<u> </u>					+					\mathbf{V}		= 0	2	,					•••]						
6.00 0.00 0.00 0.00 Fig. 4.25. Curva presión de pero-tiempo.M-EP						-					*			IN			ļ					1.		- :		1		•		
a.co a.co b.co c.co						1			÷.,						X		1			: 1.										
d:0.9 d:0.9 0.00 -0.													×		$ \cdot\rangle_{\mathbf{Q}}$						{:}:									4
0.20 0.20	- 0.00					1 H								\cdot		$\sum_{i=1}^{n}$							4 4							
0.20 0.20					1:::	1					1		;		XX	X				.				1						1
6.70 						JJ ¥.	6.9	1						:	N								•	:::]						
0.20 -6.00 - Fig. 4.25. Curva presión de pero-tiempo.M-EP			,			u.⇒.	0.2							::::				1.			11									
0.20 - 6.00 - 76.00 - 76.00														:		Ľ.	<u> </u>]	N				1 	: 1.							_
0.20 -0.00 -0.						4 - 4 - 4 []]]]					;			: : : :			Ń		N					-	: ::Ľ					;
-0.00 Fig. 4.25. Curva presión de poro-tiempo.M-EP	0.20					•														\mathbf{N}	Ų.	i		i					[].	
-io.bo. Fig. 4.25. Curva presión de poro-ti.empo.M-EP					1										.,,			- X		1	1.2	-							[] <i>:</i>	
Fig. 4.25. Curva presión de poro-tiempo.M-EP						1																-		~a.		: 			Ľ.	
Fig. 4.25. Curva presión de poro-tiempo.M-EP					1	:	· · · · ·						1				<u> . </u>				1.1		\geq	-			•			-
Fig. 4.25. Curva presión de poro-tiempo.M-EP																- 					1.1				 					
Fig. 4.25. Curva presión de poro-tiempo.M-EP					1													- : .]												
Fig. 4.25. Curva presión de poro-tiempo.M-EP				111	· .	:	1		<u>.</u>											···)										
Fig. 4.25. Curva presión de poro-tiempo M-EP																	i					ί.	• • • • • •	. 1						
Fig. 4.25. Curva presión de poro-tiempo.M-EP) - J 		÷														· •		· · · · • • • • • • • • • • • • • • • •					•••
이 나는 나는 것이 있는 것이 있							i i	nre	si	in le	le	porc	Lic	empo	M-1	3P					1.1									
			119		l i · ·				12						 ;				-	-1		•			. :10	1			:	-

.

- N <u>LL</u> A <u>LZ</u> AUCE.	N 67 25 17	анта	10 1. 0 0 0 <u>2 0 -</u>	<u>. u</u>
io :		100 tie	npo, seg. 1000	
		1		
		in and a second se		a de la secta de la construcción de la construcción de la construcción d la construcción de la construcción d
0.80				
0.60 811				
	x			
	ΔU = 0.2	8		
	αΠ=:1:3		\mathbf{X}	
	$\Delta \sigma = 0.2$		No	an a
· · · · · · · · · · · · · · · · · · ·				
			حر ا	
		and a second sec		<pre></pre>
Fig. 4.26.	Curva presión	le poro-tiempo M-EP		

DIVISIONES FOR PULGADA,

<u> </u>	<u>v v v</u>	AAA	P 4 5 6 5 1 5 1 5 1	x 2 5 15 6 J 6 6
		100	Liempo, sed. 1000	
				2. A state of the second se
. 0.10				
		1999 - 19		2
	relations of a second s	(p) and produce the state of		
		afil an ann an ta ta la fairtean ann an ta ta ta ta ta ta Mhailtean an ta ta la fairtean an ta ta ta ta ta ta		8
		in pine and a single statement of the second s		
		$\Delta \sigma = 0$		
0.20		 a and a set of the property of th		
			對國際總統 计长行 住下了	
Fig	4.27. Curva pres	ión de poro-tiemn	O M-ED	
		<u></u>		
			Standard Constants and the second second	

e <u>ř. ř. é é ister</u>				
	iiiiii: -100	Liempo; iseg.	000.	10000
	\sim			
9.30				
		0.0 .g/cm ²		
		1. = 0.2		
-O•●5				
			i i i i i i i i i i i i i i i i i i i	
Eig.4.29.	Curva deformació	5n-tlempo. M17-3 co	nv	
	1999年1月1999月1月1日日本(1997年1月1日日本) 1999年1月1999月1日日本(1997年1月1日日本)	i fil fil om i som vinder og som statet for som	<u>e i territ dictoria (e c.)</u>	a a a a a a a a a a a a a a a a a a a

<u> </u>	<u>i i i i i i i i i i i i i i i i i i i </u>				
	(11) (12) (12) (12) (12) (12) (12) (12)	10, tiempo, segi	00	10000	
		×.			
				×	
		Λ(1 = 0.2) Kg/cn ⁴	<pre>i = t = t = t = t = t = t = t = t = t =</pre>		
					N.
ττιμική τη	Curva deformación	-tiempo, M17-3 com			

	<u>í rtrinn</u>			
			200 i i i i i i i i i i i i i i i i i i	
			0 r 0.00 ss/m²	
			$c_1 = 0.6$ $Ac_1 = 0.2$	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1. Curva deformaci	.δη-t1empo- M17-3con		

r í feilifeadha 💷			
	Curva de formación-tiem	ро. M17—3солу	

÷

			. <u></u> .						1		· · · <u></u>		
			10			bo	ICLERPO, ISE		1000		1000	o	
				Ň									
). 44 8 												
						σι= ο.	20 kg/cm ² 20						
	2. sd .11.												
												X	
												$\langle \rangle$	
	-+		9.14.	35.Curva	deformad	ión-ti	empo. Ml	7 - 3BP					
<u>131</u>	<u> 11111111</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>1997 1 1 1 1 1 1 1 1 1 1 1</u>	11134 (18719) (m. 187	<u>! 'edir496 'el*']</u>	<u>] 1] </u>	<u>anti titobis</u>	<u></u>		i : liter i :		<u>+111111</u> 6-36-3 -	

	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t.cempo, šýg. 1000.	10000	
		G-4, xy/cm ²⁻¹		
		G-2		
Fig 74.36.	Curva deformación-t	icmpo. M17-3BP		

r v ratadi			
		tiempo, sep. 1000	
$\begin{array}{c} \mathbf{A} = \left\{ \begin{array}{c} \mathbf{A} \\ \mathbf$			
	37. Curva deformación-ti	этро. М17-ЗВР	

.:

ા ગાંધ છે.	<u>a i a i a i a i a</u>	<u></u>	L N W P II P	160 2	<u> </u>
			CO	1000	
0.80 					
			v = 0; 2; ka/cm		
0.20	$\Delta \sigma = 0.0$				
Fig	.4.38. Curva	presión de porc	-tiempo M17-3		

	4 2 4		10 N N N N N	- 4 9 2	<u> </u>
		100	tiempo, sog.	1000	
	• • • • • • • • • • • • • • • • • • •	an a			
9					
0.80		$\sum_{i=1}^{n}$			
			$\Delta \sigma = 0.6 \text{ kg/cm}^2$		
0.0					· · · · · · · · · · · · · · · · · · ·
Δο	0.2				
					· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·
·····		· · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·
Fig. 4.39	Curva presión	de poro-tie	mpo.M17-3		

			<u></u>	<u> </u>		<u>.</u>		<u>ت</u> ــــــــــــــــــــــــــــــــــــ				1	<u>.</u>	,		<u>t:</u> [5:4]	<u>.</u>		;- 	ລ .	<u>, </u>	1	<u></u>					í ·	÷									<u>.</u>	<u> </u>		<u>.</u>		<u>.a.</u> 1	<u>-1 - 3</u> 1' - 1	<u>i 0</u> i
										0	11											10	o Li				ie	, oq	80	g.	·	· : .		100	00				:	•					
				-	-		•															-													•	•	• • •								
	1.1		- 					,			11	o				}		1	' 11,	•		4	1		; ; ; ;							4					• •				1.				, ,
	• • •				1						H				111			1		Π	Ţ	\square		$\overline{\langle}$:					1			!						1		1: -			
			-															1.			Ì	Ν	*		\mathbf{N}										· · ·										
											•••			11								1		\mathbf{N}		X								1	• •	•••									
0.8	<u> 8</u>			1							<u>:</u> :					 							::-		X	::: :	X										• -				1::				4
	8										ļ,								1				: 1			N.:		$\left \right\rangle$:	÷				· · • • • •					
	8									•		Li:				••••										X			X					1							1	-	-		
0.6		it i																									X			9		-		1											
	<u></u>			 					-		· 												::					X#			X	-	+	Δσ	1	σ.	2			···· (····	-		<u>.</u>		
	5									::	11				••••								÷ :		::::			. Ŋ			\mathbb{N}	N.		-		:							-		
0.5	14	1 • • • •									÷																•••••		X			N			· · · ·	::.	• • • •				H		-		
																				- 0	.8									<u>_</u>			N				-						:		
	<u><u> </u></u>								-						• • • •			^	π	• •	2	T					••••		 	- -	Ś	-4 1		Ś		• • •		i.					-		
0.2										÷	::]													ì	Y.		i	1	1				••••• ••••	$\left \cdot \right $				
											: ::	; : :	.		••••							11	• •						1					e											
								••••	.														::								j.			$\sum_{i=1}^{n}$				\leq		· .		ŀ			
0.0		· • • • • •											-					1.1			-	++									- 1-	_	+ +			_	~		$\overline{}$				<u> </u>		-
<u>:::</u>						····	· ·				-			· · · ·		· ••					÷		::							. 		. † . "						•	 		1.1				
																		1			ł.						•••				1.	1		i		•		: 1							
			-				1			•	-	!	.				4	÷	•••••						·										• • •	•					<u> </u>				-
												•						1			1										1			i		• •									
••••		-		<u>.</u>		 			! -		: •	:	÷					-				- E	÷			• • • •	• • • •					: j						• ••••			-				
· · ·				11	ŕ.							<u>i</u> .	1	• • •			: L	· ; ;		₽ - I	••••	1.	: :	•••	: · • •		: 1	1	-t			1	11	÷ į							de e	1 :	100	tert:	

<u>**</u>	N	ω	4.	<u>i u</u>	3.	1 10 2	<u> </u>		<u>،</u>	t.	t.	អា (กป	n e			N	tst.	<u> </u>		3 1 3	· · ·			12		<u> </u>	3	4.30
							0							10	o 		С	lenpo,	seg	•		10	000						
- 1.0				-	6					•			<u> </u>																
									/					/-/	/								•						
0.8															*	4	//				1 - 100 1 - 1 1 -								· · · · · · · · · · · · · · · · · · ·
10.6 2			•••••••••••••••••••••••••••••••••••••••															\backslash	$\langle \rangle$				_σ Δσ	= 1.4 = 0.2	kg/cr	,2			
/ increm													:11 1.1.2							$\langle \rangle$									
													• 0,2									¢,							
						444 444 444 444 444 444 444 444 444 44																		Ja					
																							· · ·						
0.0								• · · · •				··· •			· · · · ·														
							• • • •						····											•					
								• • • • • • • • • • • • • • • • • • •				, , ,				, , , , , , , , , , , , , , , , , , , ,							• • • •						
			F	ig.	4	.41		urv	a pr	esi	ốn	de	ро	ro	-tieı	npo .	M17	-3						· .					

and the Mean and the

. .

<u> </u>	<u></u>				
			CLEMPO, SCI. JOOO	100dd	
		φ 			
	g. 4.43. Curv	a deformación-ti	BmpO · M24-3conv		

r r r r r r r r r r r r		<u> </u>			
		Clempo, s			
			φ ¹ = 0,23 Να/ο η(10,11) - (Δη ² = 0,23 Να/ο η(10,11) - (Δη ² = 0,23 Να/ο (φ ² = 0,23 Να/ο		
		//			
		ο Λσ	• 0,46 • 0,299 • 0,299 • 0,000	×	
Fig. 44.	curva derormación-	tiempo. M	24-3conv		

.:

	<u> </u>		
		111 enport seg. 11 1000	
1. 1. 1. 1. 1. 1. 1. 1.		26 Kg / Sg / Sg	
	lurva deformación-ti	empo. M24-3conv	
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	<u></u>	<u>annan 1943 (1970) (1981 - 19</u> 73)	

•

	т. т. 1 ро	tieapo, seg. 1. 1000	10000	
Ö.S				
	Δ Ο΄ = Ο, 25			
Fig. 4.47	Curva deformación-ti	етро. М24-ЗВР		

.

<u>r</u>				
		iticapo; scs. itili loco	100	
	λσ			
1.19. A	a. Curva derormacio	n-tiempo. M24-38P		

/

	ta ta		10000	
		9/ch 4		
rig. 4.49.	Curva deformación-tiemr	о. "M2A-3ВР		
				<u> </u>

	100	tiampo, sec. 1000	1000D	
		X		
		N		
2.2.2	oi = 10.7	5 kg/cm		

	······································			
		100	L.compo, seg.	
:				
:				
		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	0. kg/cm ²	
		ΔΟ = Ο 	25	
ļ				
	Fig. 4.51. (urva deformación ti	empo. M24-3BP	

	F. Lemps , Jarg	
 и — 1. Ди — 6.	5 ku/ca ²	
 Curva-deformación-ti	н т епро. • M24-ЗВР	

	<u>13 (J</u>	6 0 3 -	1.1 2	10 10 1	<u>, u o -)</u>		<u>, n</u>	<u>N N D N D</u>	2	N N	<u>). R 10 4 16 6</u>
			10			00	tiempo,	seg.	1000	. · · · · · · · · ·	常*生生生生
							a ing a gara a		1	1	
			$= = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $	-		1 · · · · · · · · · · · · · · · · · · ·					
					and a second						
1.1.0			ald HHN								ter in the second s
	i tradaterreter	111 111 11.11		X	tariturati dall	1::::		1		1	r i rituri
(: : : : : : : : : : : :				N							
<u> </u>			1991 1991 1997 1997 1997 1997 1997 1997							ļi i i i i i i i i i i i i i i i i i i	· · · · · · · · · · · · · · · · · · ·
		1-10									
0.8											
	· · · · · · · · · · · · · · · · · · ·		\mathbf{X}				· · · · · · · · · · · · · · · · · · ·		••		
				= = = = = = =							
			\mathbf{N}	. X							
0.6			tit: Di Yana da		NE El Balante						
1			\sim		X						
		1			$\pm \lambda$	Q.,	0. kg/cm ²		i fan i se fa die die		
:::::s							25		1		
0.4				·	N. N. S. S. S.						
: : : : : : : : : : : : : : : : : : : :				X							
				- a			· · · · · · · · · · · · · · · · · · ·				
						\mathbb{N}					
0.2										1 11 11	
		2	Q.25								
		1. 1. AO	0-25								
							0	×			
<u>• 0.0 } </u>							-1.	, 			• • • • • • • • • • • • • • • • • • •
							,		· · · · · · · · · · · · · · ·		
									11 : .		
										£11 1 1 1 1 1 1	
1.1.1.1	:::::::::::::::::::::::::::::::::::::::										
								, 111			
			· [· [·] · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							
			5					1 11 144			
		rig. 4	-pot Cur	va presio	on de porc	-tiempo.	M24-3				
								and the second			

	ພ :-	·# 1	4 3 4 4	N 41	8 F.	a -1 e e		K 9	5 7 5	a 2	<u>v 2</u>	<u> </u>
	ւ եւ պետունո	وبد والمربية ومرابق		a dan bertan bard		tert i h	on	+ Lonno		1000	: 1	and the product of the first
			······································		1. T 1. T			creation,	acy.	1000	1111	
					and and a state of	والتواجع وتقوا					:	o si tarihi di Lataka
												· · · · · · · · · · · · · · · · · · ·
	e e line					lin agerte			eta le cinto	111	1	
											1 4 4	i de la desta de la de la de
i seglete por la	en friger for	·									1.1.111.1	
1101			فسيطالد			محيناتيه		<u> </u>			 	
										and the states of		
	nder die die	아이는 돈 !					K: : : : : h:::					
									uhu in Landsa da	t de la construire	•••••••••	ավագետվում ուկես է։
· · · · · · · · · · · · · · · · · · ·			***				1 : ° 🔨 : : :					
			이 나라				\rightarrow		e fan in de service en la service de la s		1	
1 0 at 11 1 1 1 1	:	· · · · ·	and in the last									
ha sa	• <u>[</u> •••]••				.1					1.1.1		
												· · · · · · · · · · · · · · · · · · ·
나는 사람님이다.	· · · · · · · · · · · ·	1111.1.2	ant la contra d			1.11.11	1	11 		111		
- E - E	1	2 I T			1 1 1	1-1-1-1-2	\sim	$1 \sim 1 \sim N^{-1}$		111	4	
<u> </u>		11 J				1.11.1.1.	1:1:1 <u>1</u> 12					
0.61 0	이 같아. 같이							INTERNE.	X 9			
		11 I I I				i di kata		1 X 1			· · · i	
입 입								lt. Nul	1:2			
			·····					· · · · · · · · · · · · · · · · · · ·		1 2 3 3 3 3 3 3	2 100/002	,
[월 .]								IN IN			i nur cm	
- 1			1114 (1. 1 . 1				• • •	$ \cdot $		$\Delta 0 = 0.2$	5	
0.4									X	0		u in paper de la company
	•••								: INVIII III III	X is the second seco		
3										IN .	••••••••••••••••••••••••••••••••••••••	
1 : : : : : : : ::::::		tinte ba							I N I I	1 N $1 1 1 1 1$		
	••••	· · · · · · ·	ini a i i i i i i i i i i i i i i i i i	ա հանդեննել		= 0.50	1.0.22			11N 12000	le sime	
1					- Ao	+ 0 25			The second second			· · · · · · · · · · · · · · · · · · ·
••••• \$			· · · · · · · · · · · · · · · · · · ·					de ser la co	H CHERN	\mathbb{H}^{1} \mathbb{N}^{1}		
0.2									$i \rightarrow 1 \rightarrow N$	$\mathbf{M} \in \mathbf{N}$		o na i na indo indo in
	· · · · · · · · · · · ·									\mathbb{N}^{1} \mathbb{N}^{1}		
								· • • • • • • • • • • • • • • • • • • •		$+N \rightarrow N$	łe sijemie	
	•••			e haebi				the set of the set		$ \mathbf{H} \times \mathbf{T} $	Nut	
										4.4.1 · · · · · · · · · · · · · · · · · · ·		
- 0.0	••••[••••]•••[••	er fræfen		••••••••••••••••••••••••••••••••••••••	- 1 - 4 - 1 - 4 -	here and a fee	1 + + + + + + + + + + + + + + + + + + +	<u> 11 - 11 - 11 - 11</u>				
	····					· · · · · · · · · · · · · · · · · · ·		4	· · · · · · · · · · · · · · · · · · ·	1-	ka se ing ing	the second se
		70 J. 1411		1 - 1 711710403		1.1.1.1.1.			a anal a character	144 1 1 1 1	1	
				· · · · · · · · · · · · ·		tr Lairt :	1::::t:::			11111111111	1.1.1.1	
						1 1 1 1						
					1:1			1. 171 1.				
			6			1	1 E.S.			111 - C	1	
										1 F I ' ' ' ' ' ' ' ' ' ' ' ' '	1	
		1 1 to 1	[*****		1.1	1 1 1 1	1			1 - 2 - 1 1 - 7 - 1	1	
				1 1 1 1 1 1 H		4 4 4 4	1	4	4 - 4 - 1 - 1 - 1	1.1.1	• ··• · •	· · · · · · · · · · · · · · · · · · ·
	inter de		i. . 			1			i ma balanta		1	
	·· · · · •		Helefat i e i e	· · · · · · · · · · · ·	1	化化化物	Less Ett					
	: . :	Fig	1 5 1 0		100 0		L+ iomoo	MOALS -		prise a se	.	
				urva pres	rou la	e poro	стяшьо		a da tata da ta	121.111.1	Lt	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· • • • •	- 1 - I - I	C T C T			4 mm 4 4 1	1 1	1.0	1 C F C F (#)	+ + + + + + + + + + + + + + + + + + +		

<u> (</u>

	N	<u></u>	3 4 3 3 4	<u>N</u>	<u>6 6 6 6</u>	-1 m 2	<u>N</u>	<u>v v v o</u> .	<u></u>	<u>. n 7 a a i</u>	<u></u>
1.111			. :: io. :			1. 100	Lie	mpo, seg.	1000		
									444 1 1 4		
-1.0-						······					
1											
				. her er handere							
			· · · · · · · · · · · · · · · · · · ·	•							
	÷				•						-1-1
	8								••••••		
	i III			1.1.	×	· · · · · ·					
	2						L				
0.6	F				$1 \rightarrow 1$						11
							×				
	2								(7') = 1.25 K	97cm	
	Į.,								$\Delta u = 0.60$		
	8							R			44
	<u>-</u>										
					.0				XII		
					25						
P 12											-1-1
									×		
				· · · · · · ·					n an		<u>, </u>
		ana ing sa									11
											1:1
1 t t t				· · · ·							
	•										計
									· · · · · ·		
L		rig	4.5p.	Curva pr	esion de	porortien	про "M24-;	3			<u>.1 -1-</u>

	0=1 0.51 ×1/CF2		
	λ σ= 0.2		
	$\mathbf{d} = \mathbf{d}_{2}$		
	н С. С. 9 С. 9 С. 9 С. 9 С. 9 С. 9 С. 9 С		

- <u>; ; ; ; ; , ; ; ; </u>	<u>i i i i i i i i i i i i i i i i i i i </u>			
		Liempo, 503.		
	Curva deformación+ti	empo . M34-2conv		
	D'anning (1996) Popologi (1997) 11	<u>an an a</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	

Freeding Labor Labor			
	1 0 0 Kg/tm ²		
	$ \begin{array}{c} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$		
С	611. Curva deformaçãon-t	алро., М34-2ар	
	—		en anten al anten de ser la catalan de periode de ser la catalante de la catalante de la catalante de la catal La catalante de la catalante de

<u> </u>				
		tiempo, sej. 1000	10000	
	AC = 2.5 KG Cm			
Р: В5. 	σ. = 0.7			
Fig. 4.62.	Curva deformación-ti	этро. • M342Вр		
:				·

r r r r r r r r d			
	1100 (())	(flempo, scy. 1000	10000
	7 0.9 Kg/cm		
· · · · · · · · · · · · · · · · · · ·			
Α9.	= 0.2		
11111111111111111111111111111111111111	Curva deformación+t	empo M34-2BP	

.

.
		tionpo, seg. 10001	10000	
	S - 13 XU/Cm			
	AG = 0:2			
	11 ΔU-= 0.2			
F19. 4.64.	Curva deformación-tie	тро. M34-2вр		

			tionpo, seg. 1000		10000	
						1-70-
			0	1. d.	7•xg/cm*r+ 2	
				×	(escizq.)	
The second secon	1-1-149					
		• A		/×		
1.2 1.2 1.4 1.5 1. Curva de formación+tiempo - M34-289						
32 32 33 33 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					<u>N</u>	
						INTERN
r	-1.75					
r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-						
r. rlg.: 4.65. Curva deformeción-tlenco. M34-28P						
r: rig.:4.65. Curva deformación-tlenco. M34-ZBP						
	rlg. 4.65		enpo: M34-2BP			
		ATTERNATE CONTRACTOR AND A	antinan tinan kanala na kata ana ana ana ana ana ana ana ana ana	<u>135</u>		<u>namen e. son or neerrooms</u>

<u> </u>			<u>_</u>			5	•	1.		-		_		N)		_6	•	1.		1	\$.		•	•							_			÷				•			N	٥		ω.		<u>.</u>	11	<u>.</u> 1	-	ພ_ຄ	ی ز
									1	0														00					ti.	emţ		se					10	000													
1.0										-1-1-																																									
												*			l																														-						
0.8													•••		$\left \right $										4 4 														•												
													••••				X								•) 						-						:											
									· · · · · · · · · · · · · · · · · · ·		•		•						N				•		•••		Δσ 	- (2.2								1	:		•		 									
0.4											•														• •																••••										
											p.	-	0.0							::::					٩														• •												
0.2					 						σ		0.5												×														•						•						
0-0													:																¢.	1-1-		/	5			-			• •	: 					· · ·						
						1									İ																													-							
						ļ											••••					-	-	: 		-					, 					-							-								
						 					•••		•										i.												:			•	•				: - - - - - - - - - -								
	:::	••••••••••••••••••••••••••••••••••••••	<u> .</u>	j.	E.1	<u>19</u>	11	.	06	<u>†</u>		C	12 \ 		p	ré	si	.ōr		de	I		rọ	†t	ie	mr	0	M3	34	-2			-	<u>i</u>		<u>.</u>	<u> </u>								-						-

- N W かなしいし-	N 6 2 3 5 4 5 6 4 5 6	<u>8 6 8 6 8 4 6 9 4</u>	<u>x : 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>
	1¢0	ticmpo, seg. 1000	
		$\Delta p_{-n} = p_* p_* k_1 / cm^{-1}$	
D - A - A			
	$\vec{\mu} = 0.7$		
Fig. 4.67.	Curva presión de poro-tiempo	.m34-2	

1.12.141.1

1.1.1.4

• • • • •

		•		•		च र	(VESIC)	MCi_1	6681	ruca				-																
	13	<u>u 1.</u>	<u>, (p</u>	<u></u>	30	·		*1	ł.	·	2.	n a	-1	3. 7	<u>.</u>				•			4	<u></u>	<u>.</u>		<u>۰</u>	2	<u>s u</u>	ת.	4 0
				0	n ic		•		•				//	10	0		e 	1empc		seg.		··· ·	1	000	· · · ·			in i		
<u></u>				×		1									<u>Sa</u>						1		11							
																								• • • • • •	· · ·					
0.B																						-	• .	•						
0619																\mathbb{N}		X											· · · · · · · · · · · · · · · · · · ·	
																	X		\langle			Δσ	= 1 = 0	3 kg/	cm4					
-0.4 B													1.1						\mathbf{X}						· · · ·					
											Δc	ļ	C:2		· · · ·					X	X									
0.2 6															••••) \\			•					
<u> </u>															•	1					1	\mathbb{N}	XI.		.		<u> </u>	· · · · · · · · ·		
-0.0			<u></u>	· • [· •] •	 	· · · ·	<u> </u>			<u>- - </u>						11 -			<u>-</u>	- 1 - 1 			1	1	<u> </u>	1	. 	1 <u>1</u> 1.		1 -
			-				•								: • • •										ing." A C					
											.													ļ .						
						: :	1				.,										•									
			Fig.	4.	68.	· · · ·	Curi	va	pre	Бić	5n	đe	po	rof	tie	ipο.	м34	-2			1									

	ю	ω 1.	L.C.	L. E				23	t.	- 1	•	នេ_ច	- 1	n a	•		8			:			<u>م ث ث</u>			<u> </u>	<u></u>	<u> </u>			<u> </u>	<u> </u>	4
	1.1.1		·] : .		1 10		1:1:1	1			•		1	10	o; ; ; ;	1.1	::;;t	iön	po, S	seg.	Ì		' _ 1	000				1		1			l
		· · · · · ·				<u></u>	1:::	1:4:				. 11 11 1			111			1				:	: :					1			·	i	Ŀ
	linghiir					111	•	Lui		4												÷.	+ +	·† :	۰. •	••••		: t			†		ŀ
	1.1.1 100			thi Hu		114			\sim								ł.			Et:	····	.::t:		1 : :		::::				:14		11	ŀ
								HH		\sim	-				1.11					<u>.</u>			:1:1:	1::	11		:. :	z	:::::		••••)	1
1.0	[····		(1 - 1)				۹	<u> </u>	11111		~						1			1	1	- 1-	$\frac{1}{1}$	<u>,</u>				!		1			í
				6				1::-				\geq			::::						1	::P	-[-]-										ł
1:1:1:1:1			::::										~				1				11	::i	11		• •								l
	IIII.				<u> (1</u> 27)					피스	\leq	! '					1			1.1.	1		1.1.		Ξ.		· .	:: [::		<u></u>		-	1
	httijt:::				1212	1111			ЩЦ.			\sim					£							1	. :			:::		tt:			ļ
0.8						• • • •	1				~	-1					::::		····)		.		. [: .] .	.	. :		::-i:	:_[:			::: : [1
			.								::t:	<u> </u>	+				1::::		,		1 4		11				1. 1			44			ļ
							: [. : :	1.1		t i				\sim	No.			l::			ļ. 1	1	11										j
							- - -	1.9	kale	2	. . [11]				· X		$ \Sigma_{\mathbf{k}} $																
0.6							Λσ =	0.2									1	N		1.1		. 1		1.			• •	. ·	·				l
						÷::,						::::[:				1:2	10		\sim			11		1 .			· ••			::::.}:	: : f		
					- 9-		Λπ	14.0		12			-		••••		(1)×	\sim	- N				1-1-	1 • •	112				···· •				Ì
2						111	40 =	0-2	p::				:				1		N	N		- 1	11:	·	÷						·		I
					[.]	::::	ļα ⊒	1.5		-4-1	. 1.			<u></u>					1	$\langle \rangle$		<u>.</u>	1										
			[Δ <u>α</u>	0.2								1		11.		\sim	\mathbf{N}		E.	1 :	÷.*		::::t:	::t:					1
.							j								· : •	1: .	1:::.	ŀ., †		1	0)			1		·		::		1			ļ
	1							1.:::		4			<u>-</u>				1	· · · ·				\sim		4									i
9			i.]::::			: ::		1 1						10 m		1	1		F			11	N.										ļ
0.2						÷	-	1		11	1										: 1		1.	Ś.			i.,	•	1.1	11	::‡		ļ
·····					[]			1			1		:::::		1.1	1:22	1:1:	i:	• • • • • •	i	(1.	18		、 ·	11		1					I
	Here .			•••		1.1		1		1	4	- L			• • •	1::::						1		\sim	~	Į I		°.∤.	. : :	- 4	. :‡		ļ
	li ni ni		, , , , , , , , , , , , , , , , , , ,	: <u> </u> ::::			. :	1.		1							1					÷.					<u> </u>	- I ⁻ .		1			
	1					••••••	1	1			;		1	1		1	<u></u>		•••••	1		I		1		1	<u> </u>			į.).	••••	
			· 1					ł		. 1	, 1					11.	1	1				1		:		1	· · •	.: .:	111	11	[Ì
								1.1			i. Here					: †::: ::	1				j ;	- 4 -	4.4.	4 1									
				· · · · · · · · · · · · · · · · · · ·			1	1		:		j.			•		1::::		1			1.			- <u>-</u>	1				- I			į
				1.11			•	ŧ			:										1		hi.	:		i			•				
			<u> </u>			• • • • •	• • • • •					•					1		•••••		:		+		· · ·		••••••••	:: ::		<u></u>			İ
								1				•					1	Ľ [11.	1			4.1	;;;	1				-11	• ::‡:		ì
		·	:1	• •		•	1	1 1	:		:	• [• • •	1::::	1::::	1					11.	i : ·				· [1
	1		. <u>1</u>			••••	· • • • •	É		1							1																
			Fig.	4.	69	• . •	Cur	va	pre	sić	วีท	de	þq	ro	-tie	mpo	МЗ	4 – 2	2 👌					1	:	- : :	:::[:	:::	11			:	i
	1		- T				•	1		÷. 1			11			4	1	i 4	·• •	F • •	1 - 1	- 1 -	1 1	:	•	<u>-</u>	• • • • ! • •	<u>. 1</u> .	· · · · ·		· · · · f·		ŝ

	i i i i i i i i i i i i i i i i i i i			
		tiempo, seg. 1000	1Coop	
		$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	0 kg/pm [*]	
		e (0,2) - (0,3)		
5.49	Curva deformación-tie	mpo. M39-2conv		

÷

		0 11000	
0)60		$\sigma = 0.8$	
Φσ.4 0.65 Fig. 4.72	Curva deformaci		

N	TTTTT			
		t ctepo, see. 1	000	
		C = 1.6 kg/s=1		
		$\begin{array}{c} 0 & 0 \\$		
311g. 4.73. Cur	a deformación-	tiempo. M39-2cor		

•

					1.10-10	·····	
– r r r r r r r	ÎĔĔ	Î Î Î Î					
		-100	t copo;	507. 10	000		
	.5 kg/m						
					//		
					\sum	×	
F 1 9 • 4.74	Curva def	ormación-	tiempo.	439-2con	w		

÷

ti	srg: 1000		
	x = 0,2180 ∴ x = 0,3		<u> </u>
	$\Delta \sigma = 0.3$	0	
 Curva deformación-tiempo. /	139-2BP		
<u>, 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>		<u></u>	

.

	·····		i terretit ∏issit. I i i	[129/09/7] [29/09/04]	i hereand herean ann an	I man share I re-
<u></u>) <u>i</u> i					
			tienno, seg.	1000	10000	
					$\Delta \sigma = 0.4$	K(7 cs ²)
				9	0 /	
					σ 43	2
	4.76. Curva	deformación-ti	ешро. M39-2B	P		

	<u>i rrind</u>			
	100	timp; seq. 1000	10000.	
7-9-597				
			·····································	
		ρ. μ . 2. ο.		0.95
F19 .4.77.	Curva deformació	5стемро. М39-2вр	a la	
			<u></u>	<u>eral, else sur la posecienza</u>

<u>n w h</u>	<u> </u>	w r a a d a w	N the state of a second s	<u> </u>
	10 10	100	ticnpo, seg. 1000	
-0				
	•			
	N	a) ji strani and a set		
	\mathbf{N}		Δ3 = 0.3	
.6 9			AS = 0.5	
			$\Delta \sigma \cdots = 0.4$	
2.	\mathbf{N}			
.2 5		N		
F	ig. 4.79. Curva r	resión de poro-tiemp	o-M39-2	

	.s 6	ь вачо <u>ка —</u>	N 2 N A CO	<u> </u>
10		100	tiempo, seg. 1000	
0.8	$0 = 1.6 \text{ kg/cm}^2$			
				1 A set of the set
-9+4				
A0 = 0.4				
	× °	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
0.0				
Fig. 4.80	Curva presi	6n de poro-tiempo	M39-2	

ŕ

-		13	ω	t.	12	а. ч	1 2	U			N		6°	1.	13	a 4	. .				ы.		10	•			1 0	<u> </u>			N				2 6	<u> </u>	60
								10										100				1	enpo,	se	g.	;		. 10	00								
																																	· · · · · · · · · · · · · · · · · · ·				
									H																												
0.8								_	::								i li si		• • • •						-					· ·	! 						
				\mathbf{N}					C Ac	= ; = ;	.5 k	g/ct	2								:	-								•							
0.4	0-120																																				
	to est					X			X	-									•																		
0.4	CT CHICH				 														÷				•						•••••								
	4					n			Ϊ			\geq					-								-				· · · ·	· · · ·							
0.2	ento:			Δσ	= 0	.5				\mathbf{i}				\rangle	$\left \right\rangle$				• • •										· · ·								
	D								•			$\left \right\rangle$					\mathbf{i}	\downarrow	~																		
-0.0																		4.	x	\square	Ì	<u> </u>		. 	0			*									
									••••																				••••	•		::) 					
									•										:										· · · ·	•••••			 				
																		İ.											•		::						
	•			F	ig.		- 8	1.		Cur	va	pr	esi	δn	đe	p		0-1	ie	mpo	M	39-	-2:											-			
		1	1	1	1.	[].	- <u> </u> .	. .			<u> </u>			1	<u> </u>	<u> </u> †	. <u> </u>	··· }		1	<u>.</u>]		1 .	4 -		<u>·</u>	<u> - -</u>	<u>, :</u>		<u>! · · · ·</u>	<u> </u>				<u>· ··</u>	<u></u>	<u> -</u> -

 \tilde{D}

, site

1. A. A. A.

a successful and the

Fig. 4.85. Curvas de consolidación, ensayes convencional y con medición de presión de poro.

.

Fig. 4.86. Tiempos para el 100% de consolidación primaria vs. esfuerzo.

(t100)exp / (t100)eas

Fig. 4.87. Tiempos para el 100 % de consolidación primaria vs. esfuerzo.

(t100)exp / (t100)taylor

Fig. 4.88. Tiempos para el 100 % de consolidación primaria vs. esfuerzo

(t100)cas / (t100)bylor

1.5

Fig. 4.89. Tiempos para el 100% de consolidación primaria vs. esfuerzo.

(t100)bp / (t100)cas corv x

def instantanea, mm

Fig. 4.90. Deformación instantánea, en ensayes convencionales vs. esfuerzo.

Fig. 4.91. Incremento presión de poro / incremento de esfuerzo vs. esfuerzo efectivo.

 $\frac{1}{2}$

Fig 92. Teo 510 н C C ç D ٥ ö ü ò 00 Ó ሰ σ resión de poro,en ۲a

inc. presión de poro / inc. esfuerzo

Fig. 4.93. Curvas de disipación de presión de poro vs. tiempo.

hic u ∕inc estuerzo

lne u ∕ Inc estuerzo

Inc u ∕ Inc estuerzo

· · · / to-

.

: برين

Fig. 4.97. Consolidómetro con medición de presión de poro, adaptado para ensayes con velo cidad de deformación controlada (CRS).

Fig. 4.98. Curvas de compresibilidad STD y CRS. M27-2.

Fig. 4.99. Presión de poro vs. esfuerzo efectivo.

presión de poro, kg/cm2

Fig. 4.100.Relación de vacíos vs. presión de poro.

relación de vacíos

Fig. 4.101. Coeficiente de consolidación vs. esfuerzo.

CV, cm2/seg

Fig. 4.102.Coeficiente de compresibilidad volumétrica vs. esfuerzo.

• •

Fig. 5.1. Estratigrafía en el sitio Mexicaltzingo. (Jaime y Romo, 1987)

÷

Fig. 5.2. Estado de esfuerzos en el sitio Mexicaltzingo.

ESFUERZO, T/m2

Fig. 5.3. Geometría y cargas del problema en el sitio Mexicaltzingo.

SITIO MEXICALTZINGO

Fig. 5.4. Alivio de esfuerzos al excavar.

ESFUERZO, T/m2

Fig. 5.5. Incremento de esfuerzos debido a la sobrecarga.

ESFUERZO, T/m2

Fig. 5.6. Parámetros ajustados. Coeficiente de compresión secundaria.

.

Fig. 5.7. Parámetros ajustados, Coeficiente de compresibilidad volumétrica.

Fig. 5.9. Parámetros ajustados. Módulo elástico Kelviniano.

Fig.5.10. Parámetros ajustados.Coeficiente de viscocidad maxwelliana.

Fig. 5.11. Parámetros ajustados. Tiempo de retardamiento.

 $\mathbf{p} \in \mathbf{k}$

Fig. 5.13. Parámetros ajustados tiempo característico

BETA

Fig. 5.15. Hundimiento vs. tiempo

16.49

TERZAGHI

Hundlmento, cm

Vel hundlmlento, cm/año

Fig. 5.17. Localización de la presa Tamesí (Montañez et al ,1979)

Fig. 5.18. Perfil estratigráfico del sondeo S-1 (Montañez et al ,1979).

Estuerzo, kg/cm2

Hundlmento, cm

Fig. 5.22. Velocidad de hundimiento vs. tiempo.

Vel hundimlento, cm/año

APENDICE : DETALLES DEL CONSOLIDOMETRO CON MEDICION DE FRESION DE PORO

En el cap.4 se mostré el funcionamiento y montaje del consolidómetro con medicion de presión de poro. En este apéndice se presentan detalles de los elementos que lo componen.

En la Fig. Al se muestra un esquema del conjunto, con sus principales dimensiones. En la Fig. A2 se presenta cada elemento; de izquierda a derecha :

a) Placa base con barras de sujeción

b) Anille para piedra porosa inferior

c) Anillo de consolidación

d) Tubo de lucita para la camara inferior

e) Membrana de fule y placa para transmisión de carga

f) Tubo de lucita para la cámara superior

q) Placa tapa y extensionetro

En las Figs. A3 y A4 se muestran las placas base y tapa, respectivamente, así como el tipo de conexiones. Ambas placas son de acero inoxidable.

En las Figs. A5 y A6 se muestran los anillos de consolidación y de la piedra porosa inferior, y la placa de transmisión de carga, respectivamente. Estos elementos son de aluminio anodizado.

presión de poro.

Fig. A2. Elementos del consolidómetro con medición de presión de poro.

Fig. A3. Placa base.

Fig. A5. Anillos de a)consolidación y b)de la piedra porosa inferior.

Fig. A6. Placa de transmisión de carga.