

5

" INFLUENCIA DE LA EXCENTRICIDAD DEL AGITADOR EN LA DISTRIBUCION DE TIEMPOS DE RESIDENCIA EN UN REACTOR DE MEZCLA COMPLETA. PARTE 4: ANGULO DE 90º ENTRE LA BOCA DE ENTRADA Y SALIDA."

WINERSIDAD

TESIS PROFESIONAL

QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO PRESENTA GERARDO FRAUSTO CHAGOYA ASESOR: I.Q. MA. DEL CONSUELO LOPEZ LIMON.

GUADALAJARA, JAL.

1989

TESIS CON FALLA LE CR.GEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

INTRODUCCIÓN	2
NOMENCLATURA	4
CAPÍTULO 1: Teoría.	6
CAPÍTULO II: Parte Experimental.	17
CAPÍTULO III: Resultados Obtenidos.	25
CAPÍTULO IV: Discusión de los Resultados.	49
RESUMEN	58
CONCLUSIONES.	61
APÉNDICE I: Rutina de Cálculo.	62
APÉNDICE II: Nétodos Estadísticos.	65
APÉNDICE III: Tablas de Datos.	75
BIBLIOGRAFÍA.	94

INTRODUCCION

El objetivo de este estudio es el de conocer la in----fluencia que tiene la excentricidad del agitador y la localización de las boquillas de entrada-salida, sobre la dis-tribución de tiempos de residencia de un reactor de mezcla completa.

El análisis se lleva a cabo comparando las curvas de tiempos de residencia que se obtienen del reactor experimen tal, al cual previamente se le ha introducido un trazador o material inerte que nos dará la información, con la curva de tiempos de residencia del modelo teórico de mezcla com-pleta.

Para este trabajo, el agitador se colocó a la mitad -del nivel de operación del líquido; usando dos combinacio-nes de entrada-salida, distantes entre sí en un ángulo de -90 . En cada una de ellas, el agitador tuvo cinco diferentes posiciones, haciendo un total de diez pruebas por dupl<u>i</u> cado, de las cuales, en dos, el agitador estuvo en la posición del centro y, en las ocho restantes tuvo una excentricidad igual, del borde al centro del reactor experimental.

Se obtuvieron diez curvas de distribución de tiempos de residencia que se compararon estadísticamente con la cur va del modelo teórico del reactor de mezcla completa, para determinar si había diferencia significativa entre ellas, y teniendo este conocimiento, saber la influencia de la excen tricidad del agitador y la localización de las boquillas -de entrada-salida en la distribución de tiempos de residencia_uen el reactor experimental empleado.

NOMENCLATURA

C, C(t) : Concentración del trazador en el tiempo t, ab-sorbancia. Co : Concentración de fluido en la corriente de en-trada. Abs Prom : Lectura promedio de las dos réplicas, en absorbancia. : Diferencia entre Fe teo y Fe exp. Dexp # Función de distribución acumulada teórica. Fe teo : Función de distribución acumulada experimental. Pe exp : Distribución de tiempos de residencia teórica, Ee teo basada en el parámetro adimensional 0. : Distribución de tiempos de residencia experimen Le exp tal, basada en el parámetro adimensional 0. ; Medida adimensional del tiempo, $\theta_{\underline{v}}$ Teta (8) : Tiempo espacial, $f = \frac{V}{0}$, min. ч t : Tiempo en minutos. : Caudal del fluido en litros/min. Q. ٧ : Volumen de operación del reactor en litros. : Desviación máxima entre la Fe teo y la Fe exp. Dmax Dtablas S Valor máximo permisible para la prueba estadística de Kolmogorov-Smirnov. ∆t, dt : Incremento de tiempo, min. : Nivel de significancia para la prueba estadísti ca. Ч, п⁺, : Cantidad (moles) de trazador contenidos en la invección, en gramos.

P(t)	: Función de probabilidad de residencia de una
	partícula de trazador en el reactor, en el in
	tervalo t a t dt.

- : Número de sucesiones o rachas en la prueba est<u>a</u> dística de Wald-Wolfowitz.
 - Nivel de significancia para cada prueba estadí<u>s</u> tica.
- E(t) : Función de distribución de tiempos de residen-cia basada en el tiempo.
- F(t) : Función de distribución acumulada en función -del tiempo.
- J(t) : Función de distribución a la salida del reactor en tiempos mayores a t.

RPM : Revoluciones por minuto.

min : Minutos.

π

1t : Litros.

UV : Ultravioleta.

ml : Mililitros.

n1, n2 ; Número de diferencias positivas o negativas, reg pectivamente prueba de Wald-Wolfowitz.

CAPÍTULO I

TEORÍA

FUNCIONES QUE DEFINEN EL TIPO DE FLUJO EN UN REACTOR Y MÉTODOS DE DETERMINARIAS

Las bases que caracterizan y asocian el tipo de flujo en el reactor y el fenómeno de mezclado, son la determina-ción de una de las tres funciones de tiempo de residencia definidas para un reactor.

a) La probabilidad de frecuencia de las funciones, E(t), define la fracción de volumen, en la corriente de salida, dde los elementos del fluido, con un tiempo de residencia en el reactor, entre el intervalo t y t+ Δt .

b) La distribución de probabilidad F(t), la cual es eva-luada en el tiempo t, da la fracción de volumen, en la co-rriente de salida, de los elementos del fluido como una fun ción de los tiempos de residencia en el reactor, acumulada en el intervalo de 0 a t.

c) Las funciones J(t) definen la fracción volumétrica, en la corriente de salida, de los elementos del fluido como -una función del tiempo de residencia del reactor, en tiem-pos mayores al tiempo t.

Las siguientes ecuaciones se obtuvieron para las fun--ciones antes mencionadas:

$$\int E(t) \, dt = 1 \qquad (1-1)$$

 $F(t) = \int_{E}^{t} (t) dt$ (1-2)

J(t) = 1 - F(t) (1-3)

Si se introduce en estas funciones un valor adimensio-nal del tiempo, $\theta \cdot t/\tau$, donde τ es el tiempo espacial del reactor, se obtienen las ecuaciones:

E(8)	*	T	E(t)	•	•		(1-4)
F(0)	=	F	(t)				(1-5)
J(8)	=	J	(t)				C	1-6)

La técnica experimental usa métodos del tipo estímulorespuesta para la determinación de estas funciones, en donde el método de estímulo generalmente sirve para determinar la función E(θ), mientras que el método de cambios discre-tos de concentración, es para determinar las funciones F(θ) é J(θ).

En el primero de los métodos antes mencionados, el impulso o estímulo debe de ser una sustancia seleccionada ---adecuadamente (por lo general un electrolito o una solución inactiva), con una cantidad de moles de A, la cual es inye<u>c</u> tada en un tiempo infinitesimalmente pequeño en la corriente de entrada al reactor de volumen V. Recordando que el --cambio de concentración de esta sustancia, en la salida, --depende del tiempo y permite la determinación de la función de distribución de tiempos de residencia, en la cual, la -concentración es función del tiempo y es anotada C(t) y archivada; F(0) está descrita por la ecuación:

$$E(0) : \frac{C(t) V}{m'_A}$$
 (1-7)

donde m'_A es la cantidad de trazador contenidos en la in-yacción, en gramos. El método de cambio discreto de concentración en la -entrada del reactor, desde el valor C_0 hasta el valor $\tilde{C_0} > C_0$ hace posible, con anotaciones de los cambios de concentra-ción C(t) en la salida, la determinación de la función F(Θ), de acuerdo con la ecuación:

$$F(\theta) = \frac{C(t) - C_0}{C_0 - C_0}$$
 (1-8)

Conociendo las funciones $F(\Theta)$ y $F(\Theta)$ se hace posible la asignación de un modelo teórico, limitado a el fenómeno de flujo que existe en el reactor y que es investigado.

En el presente estudio se utilizó el método de estímulo, siendo este estímulo una inyección de una solución ina<u>c</u> tiva (o trazador) en la corriente de fluido que entra al reactor, en el tiempo t=0, siendo ésta una señal instantá-nea. La respuesta que se obtiene, es la medida de la conce<u>n</u> tración del trazador en la corriente de fluido que sale del reactor.

Si se llama C a la concentración que se mide en el --tiempo t, el número de partículas que salen entre los tiempos t y t+dt, es proporcional a C(t)dt; por lo que, el núm<u>e</u> ro total de partículas, para todos los tiempos, será $\int_{c}^{\infty} (t)dt$, (conocido como el factor de normalización).

Entonces, la fracción de partículas que sale del reactor en el lapso de tiempo t y t+dt será:

$$P(t) = \frac{C(t)dt}{\int C(t)dt} \qquad (1-9)$$

Este valor corresponde a un número E, que representa la función de distribución del tiempo de residencia.

La concentración promedio (concentración normalizada) en la corriente de salida del reactor en el tiempo t, nos representa la esperanza matemática de que un elemento de -trazador tenga ese tiempo de residencia en el reactor. A e<u>s</u> ta esperanza le llamamos E, que viene siendo la función de distribución de tiempos de residencia del fluido, por con-siguiente tendremos:

$$\int_{p}^{p} (t) dt = \int_{e}^{e} dt = 1 \quad (1-10)$$

aproximando a elementos finitos:

Ahora, si se mide el tiempo en función del tiempo es-pacial, nos dará un valor adimensional:

entonces se puede definir E(0) de la siguiente forma:

$$\theta F(\theta) = t B(t)$$
 (1-13)

dandonos finalmente:

$$E(0) = \overline{C}E(t)$$
 (1-14)

que es la ecuación del método de impulso o estímulo antes - mencionado.

La normalización se efectuó inyectando un volumen de trazador, igual al usado en las corridas experimentales ---en el reactor, teniendo las mismas condiciones del estado estacionario, hecha la excepción de que no había entrada ni salida de fluido, y dejando a que se homogenizara; y se determinó la concentración, la cual corresponde a la integral de 0 a ∞ de la concentración en función del tiempo - $\int C(t) dt$.

Ahora si definimos la concentración promedio ($\overline{\mathbf{C}}$) co-mo:

y la cantidad de trazador contenido en la inyección, de la siguiente forma:

$$\mathbf{M} = Q \int_{\mathbf{C}}^{\mathbf{C}} (t) dt \qquad (1-16)$$

y combinando con las ecuaciones (1-9), (1-12) y (1-13) tendremos:

$$Be = \frac{C}{\overline{C}}$$
(1-17)

Cuando entra al reactor, una corriente de fluido que no contiene trazador; y se le impone una señal de trazador del tipo escalón, de concentración Co en la corriente de en trada de fluido, nos dará una curva midiendo la concentra-ción de solución trazadora a la salida del reactor, en función de su concentración de entrada (C/Co) contra el --tiempo adimensional O; a esta curva se le denomina curva Fe la cual siempre es ascendente desde O hasta l, como se mue<u>s</u> tra en la figura 1-1.

Si se quiere relacionar Es con Fe, tenemos que considerar un fluido blanco que circula, en estado estacionario, por un recipiente y en el tiempo $t \ge 0$, se introduce un --fluido rojo en lugar del fluido blanco. Entonces, el aumento en la corriente de salida, de la concentración del fluido rojo, nos representa la curva Fe. Para cualquier instante $t \ge 0$ el fluido rojo, en la corriente de salida, tiene una edad inferior a t (como se menciona en el segundo mé-todo).

Por consiguiente tenemos:

we get the second state of the

el término de la izquierda es simplemente el valor de Fe, mientras que el término de la derecha está dado por la ecua ción:

$$\int_{0}^{0} \mathbf{R} \cdot d\theta \quad (1-18)$$

en consecuencia tenemos que, para cualquier valor de O:

$$F_{\Theta} = \int_{0}^{\Theta} \overline{R}_{\Theta} \, d\Theta \qquad (1-19)$$

Para el modelo teórico del reactor de mezcla completa se tiene:

Re teo = exp
$$(-\theta)$$
 (1-20)

For two =
$$\int_{0}^{\theta} \exp(-\theta) d\theta$$
 (1-21)

Fe teo = $1 - \exp(-\theta)$ (1-22)

Ahora bien, si se obtiene el valor de Es experimen---talmente, el valor acumulado E Es AO puede considerarse -aproximadamente, que es el valor de Fe.

INTERPRETACIÓN DE LA INFORLACIÓN OBTENIDA DE UN TRAZADOR

(a) A set of the set of t set of the set

El fenómeno de mezclado tiene gran interés en los res<u>c</u> tores actuales, y se puede partir de los dos modelos teóricos básicos: flujo de pistón y mezcla completa.

Cuando se trata de determinar la curva experimental, de algún reactor, por medio de la técnica de trazadores; -depende bastante del tipo de agitación y el mezclado que se lleve a cabo dentro del reactor que se utilize.

En base a esto e interpretando la información que nos provee el trazador, se puede concluir si ocurre alguno de los siguientes fenómenos en el reactor en estudio:

- a) BY-PASSING (Circuito Corto).- Es el fenómeno que se presenta cuando la entrada al reactor y la salida están muy cerca. En la curva de Ee vs 0 de la -figura 1-2, el primer pico indica la cantidad de brazador que sale del reactor en un tiempo muy corto (de 0.1 a 0.2 del tiempo de residencia, aprox.) después que entró al sistema; esto es como conse--cuencia del circuito corto.
- b) ESPACIOS O VOLÚMENES MUERTOS. Según la construcción o geometría del reactor (cuadrado, fondo plano, -mámparas, etc.), puede haber un estancamiento de -fluido en ciertas zonas del mismo; el tiempo de per manencia aquí, es mucho mayor que en el resto del -

tanque (5 a 10 veces más). A estas zonas se les llama volúmenes o espacios muertos. En la curva Eo vs θ de la figura l-3 se muestra como una señal se retrasa en el tiempo debido a la -agitación. Cabe aclarar que el área bajo las dos -curvas, la ideal y la del volumen muerto, es la mig ma.

Es necesario hacer este tipo de análisis de la inform<u>a</u> ción de un trazador, para construir o elegir un buen modelo de flujo.

ŧ

CARACTERÍSTICAS LÍNILAS PARA UN TRAZADOR

- a) Deberá tener completa solubilidad y propiedades físicas similares a las del fluido que se usa.
- b) Tendrá que ser detectable en pequeñas concentracio---nes, de manera que al entrar al sistema no altere el -flujo normal.
- c) La medición de su concentración debe de ser fácil y sencilla.
- d) Debe ser químicamente inerte en las condiciones a que se va a emplear.
- No debe sufrir absorción o adsorción sobre paredes o sólidos dentro del reactor.
- f) El estímulo no debe ser alterado, ni antes de entrar ni al salir del reactor.

CAPÍTULO II

PARTE EXPERIMENTAL

DESCRIPCIÓN DEL EQUIPO EMPLEADO

El tanque utilizado para este estudio fue de forma cilindrica de lámina galvanizada de 0.125 cm de grosos. Tiene 42 cm de sección recta, el fondo es un casco semiesférico de 2 cm de profundidad.

El reactor tiene 34.8 cm de diámetro y está provisto de una boquilla de entrada (llamada entrada 2) situada a 29 cm del fondo del tanque y dista 90 grados circunferencial-mente de las boquillas de salida, teniendo en cuenta que -por las cuales pasaría una línea recta imaginaria y esta a su vez por el centro.

El reactor posee 7 boquillas de salida; numeradas, del l al 7, de arriba hacia abajo. De las cuales solo se trabajó con la 4 y la 7. La boquilla 4 dista 18 cm del fondo y la número 7 dista 3 cm.

Todas estas boquillas utilizadas (entrada y salidas) son de un diámetro interno de 7 mm y una longitud de 5.08 cm.

Como en el estudio que realizamos es el de la influencia de la excentricidad del agitador en la Distribución de Tiempos de Residencia, se tuvo que adaptar al tanque, un -aro metálico, el cual en su interior posee una cruz con or<u>i</u> ficios en el centro de cada una de sus ramas (los orificios de las ramas estaban a 1/2 Radio); esto fue con objeto de colocar exactamente el agitador en cada posición para cada una de las corridas (en cada perforación, se colocaba el -agitador), ver figura 2-1.

El agitador era de aspa plana, de 7.6 cm de diámetro y 2.7 cm de altura; este se adaptó a un motor para agitador marca Caframo de 60 hertz, 70 watts y 115 voltios.

El volumen de operación, para nuestro estudio, fue de 35.5 litros (volumen real del tanque: 40 litros). Para mantener este volumen constante, se tenía un tanque de alimentación por encima del reactor (2.3 metros), el cual siempre mantenía su nivel gracias a un rebosadero que poseía. Aparte, en el mismo reactor se contaba con un medidor de nivel, que se estuvo verificando constantemente.

El fluido utilizado, para este estudio, fue agua; y la substancia inerte o trazador fue el colorante rojo uva. Para medir la concentración del trazador en las muestras (en absorbancia), se utilizó un espectrofotómetro modelo Spec--tronic 20 marca Bausch & Lomb.

FIGURA 2-1 . Vista superior del reactor usado.

Esta figura nos muestra las diferentes posiciones del agitador en el reactor, así como la separa ción circunferencial entre las boquillas de entrada y salida.

ACOTACION: cm

DESCRIPCIÓN DE LAS PRUEBAS

DESARROLLO EXPERIMENTAL

Se realizaron diez pruebas experimentales, cada una de ellas se hizo por duplicado.

Los parámetros que se mantuvieron constantes para to-das las pruebas son:

- 1.- Nivel de operación del líquido, 36 cm del fondo del tanque.
- 2.- El volumen de solución trazadora que se introducía, 30 cc.
- 3.- La velocidad de agitación, 240 RPM.

4.- La posición de entrada de fluido al tanque.

Los parametros que se mantuvieron constantes, pero que variaron de una prueba a otra son:

1.- La posición de salida de fluido del tanque.

2.- La posición del agitador dentro del tanque.

La variable que se tomó en consideración fue la posi-ción del agitador dentro del reactor para cada experimento.

Se colocó el agitador vertical en 4 posiciones fuera del centro del reactor, teniendo cada una de ellas una ex-centricidad igual y, también se probó, la posición central de comparación (posiciones 1,2,3,4 y 5 respectivamente). Es tas posiciones se muestran en la figura 2-1.

Las pruebas realizadas se describen de la siguiente -forma:

PRUEBA	ENTRADA-SALIDA-POSICION				
1	2	4	1		
2	2	4	2		
3	2	4	3		
4	2	4	4		
5	2	4	5		
6	2	7	1		
7	2	7	2		
8	2	7	3		
9	2	7	4		
10	2	7	5		

DESCRIPCIÓN DE LA TÉCNICA EMPLEADA

Previamente se prepara una solución de colorante rojo -uva (solución trazadora), con 33g de éste y aforados a 1 1 con agua destilada. Se le tomó, a una muestra de la solu---ción, un UV para conocer su longitud de onda en la que ab--sorbe, y poderla establecer en el espectrofotómetro que se va a emplear.

La forma en que se obtuvieron los datos fue la siguien te:

- 1.- Se escoge la posición deseada y se coloca el agita-dor.
- 2.- Se escogen las bocas de entrada y salida, y se cone<u>c</u> ta el tubo de hule que viene del recipiente de alime<u>n</u> tación y el tubo de descarga respectivamente.
- 3.- Se llena el recipiente de alimentación y el reactor hasta su nivel de operación.
- 4.- Se enciende el agitador y se procede a establecer -el estado estacionario en el reactor de la manera siguiente: se regulan las boquillas de salida y de en-trada al mismo, hasta que el nivel de operación se -mantenga constante.
- 5.- Se prepara la cantidad suficiente de tubos de ensaye para la recolección de las muetras.
- 6.- Se inyectan 30 ml de la solución del colorante rojo uva, mediante una jeringa hipodérmica, en el tubo de hule conectado a la boquilla de entrada al reactor. -En este mismo instante se pone en marcha un cronóme--

tro y se toma la primera muestra.

7.- Se toman 11 muestras más, espaciadas 5 segundos.
8.- Se toman 8 muestras espaciadas 10 segundos.
9.- Se toman 10 muestras espaciadas 20 segundos.
10.-Se toman 10 muestras espaciadas 30 segundos.
11.-Se toman 10 muestras espaciadas 60 segundos (1 min).
12.-Se toman 10 muestras espaciadas 120 s (2 min).

13.-Se toman 10 muestras espaciadas 180 s (3 min).

- 14.-Se sigue tomando muestras espaciadas 300 segundos (5 min), hasta que no se detecte trazador en las mues-tras.
- 15.-Se calibra a cero el espectrofotómetro (fotocolorí-metro).
- 16.-Se procede a efectuar las lecturas de absorbancia --(concentración) de traxador en las muestras, que más tarde se estudiarán
- 17.-41 terminar cada corrida se debe lavar el tanque con bastante agua para que este completamente limpio para la siguiente prueba.

^{18.-}Cada experimento se hace por duplicado.

CAPÍTULO III

RESULTADOS OBTENIDOS

Los valores de absorbancia (concentración) obtenidos -en las dos réplicas de cada prueba experimental se promediaron para utilizarlos en los cálculos de Eo experimental (ver apéndice I).

El tiempo espacial del sistema que se empleó fue el siguiente:

 $\nabla_{liq} = 35.5 \ litros$ $\tilde{L} = \nabla_{liq}/Q = 35.5/1.48 \cdot 23.99 \ min.$ Q = 1.48 litros/min

Se elaboraron 10 tablas de resultados, constando cada una de ellas con la siguiente información: en la primera columna se lista el número de la muestra; en la segunda columna se lista el parámetro adimensional "TETA"; enseguida se lista la absorbancia promedio; después la Ee teórica; posteriormente la Ee experimental y por último se lista la dife-rencia entre las funciones de distribución acumulada de Ee teórica y Ee experimental (Dexp). Cabe hacer mención que en la parte superior de cada tabla se indica la posición de la boquilla de entrada, la boquilla de salida y la posición del agitador; en el orden mencionado (entrada-salida-posi--ción).

する	er	۸.	- 1		
+ -		.	-	٠	-

		an a			
	· _	1 - A - A -			26
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			and the second
1. A. A.		11. A.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A State of the	and the second second
		T,	SELA 2.1.		
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	TETA. AE	S PROM 1	Et Teo.	E0 Exp.	D EXP.
				_ ;	
1	0.0000	0.0000	1.0000	0.0000	0.0000
2	0.0035	0.0440	0.9965	0.2504	0.0026
3	0.0069	0.2890	0.9931	1.6448	0.0003
- 4	0.0104	0.2095	0.9896	1.1924	0.0004
5 -	0.0139	0.1730	0.9862	D. 9846	0.0003
6	0.0174	0.1695	0.9828	0.9647	0.0003
7	0.0208	0.1690	0.9794	0,9619	0.0002
. 8	0.0243	0.1680	0.9760	0,9562	0.0001
9.	0.0278	0.1665	0.9726	0,9476	0.0000
- 10	0.0313	0.1655	0.9592	0.9419	0.0001
11	0.0347	0.1640	0.9659	0.9334	0.0002
12	0.0382	0.1635	0.9625	0,9305	0.0003
13	0.0452	0.1635	0.9558	0,9306	0.0005
14	0.0521	0,1635	0.9492	0.9306	0.0005
15	0.0591	0.1615	0.9426	0,9192	0:0008
16	0.0660	0.1595	0.9361	0.9078	0.0010
17	0.0730	0.1585	0.9295	0.9021	0.0013
18	0.0799	0.1575	0.9232	0.8964	0.0015
19	0.0869	0.1560	0.9105	0.00/7	0.0010
20	0.0938	0.1555	0.9105	0.0000	0.0022
. 21	0.10//	0.1545	0.0379	0.0793	0.0026
. 22	0.1216	0.1525	0.0033	0.0000	0.0020
23	0.1355	0.1500	0.0722	0.0337	0.0033
24	0.1494	0.14/5	0.0012	0.0395	0.0032
25	0.1633	0.1455	0.0493	0.0201	0 0041
20	0.1772	0.1435	0.0010	0 7997	0.0045
27	0.1911	0,1405	0.0407	0 70/0	0.0049
28	0.2050	0.1395	0.0147	0.7940	0.0053
29	0.2189	0.1370	0.0004	0.7712	0.0056
30	0.2328	0.1355	0.7723	0 7508	0.0062
31	0.2536	0.1335	0.7750	0 7427	0.0067
32	0.2745	0,1305	0.7000	0.7920	0.0074
33	0.2953	0.1265	0.7942	0.7057	0.00%1
34	0.3162	0.1240	0.7209	0 7001	0.0084
35	0.3370	0.1230	0 6000	0 6744	0.0091
35	0.3578	0.1195	0.0772	0.6689	0.0096
37	0.3787	0.11/5	0.0040	0.6608	n.0102
38	0.3995	0.1140	0.0700	0.6318	0.0109
3.4	0.4294	0.1000	0.6208	0 6204	0.0115
- 40	9.4412	0.1030	0.0-03		

TABLA 3.1 (Cont.)

· · ·	TETA.	ABS FROM 1	Et Te:.	E÷ Exp.	D EXP.
	0.4828	0.1055	0.5170	0.6005	0.0127
	• V.5247 0 5449	0.1000	0.5919	0.5592	0.0142
	0.5552	0.0955	0.5075	0.5435	0.0157
44	0.6040	0.0910	0.5444	0.51/9	0.0173
42	0.6497	0.0980	0.5200	0.5009	0.0186
40	0.6914	0.0830	0.5009	0.4724	0.0202
47	0.7331	0.0795	0.4804	0.4525	0.0218
48	0.7747	0.0765	0.4608	0.4354	0.0233
49	0.8164	0.0725	0.4430	0.4126	0.0249
50	0.8581	0.0700	0.4240	0.3984	0.0204
51	0.9415	0.0555	0.3900	0.2728	0.0292
52	1.0249	0.0600	0.3588	0.2415	0.0319
53	1.1083	0.0535	0.3301	0.3045	0.0352
54	1.1915	0.0500	0.3037	0.2846	0.0379
55	1,2750	0.0455	6.2794	0.2590	0,0405
56	1.3584	0.0415	0.25/1	0.2362	0.0433
57	1.4418	0.0390	0.2365	0.2220	0.0453
58	1.5252	0.0350	0.2176	0.1992	0.0476
59	1,6085	0.0215	0.2002	0.1793	0.0501
60	1.6919	0.0300	0.1942	0.1707	0.0519
61	1.8170	0.0275	0.1625	0.1565	0.0540
62	1.9421	0.0230	0.1434	0.1309	0.0557
63	2.0671	0.0195	0.1265	0.1110	0.0597
64	2.1922	0.0185	0.1117	0.1053	0.0514
65	2.3173	0.0170	0.0985	0.0968	0.0524
66	2.4423	0.0140	0.0870	0.0797	0.0640
6/	2.5674	0.0120	0.0767	0.0563	0.0557
68	2.6925	0.0100	0.0577	0.0569	0.0070
69	2.8175	0.0085	0.0598	0.0484	0.0595
70	2.9425	0.0075	0.0527	0.0427	0.0712
71	3.1511	0.0070	0.0428	0.0398	0.0728
72	3.2595	0.0055	0.0349	0.0313	0.0744
73	3.5680	0.0040	0.0292	0.0220	0.0751
74	3.7764	0.0025	0.0229	0.0142	0.0755
75	3.9849	0.0015	0.0185	0.0085	0.0810
76	4.1933	0.0007	0.0151	0.0040	9.0837
77	4.4019	0.0000	0.0123	0.0000	U.U865#
78	4.6102	0.0000	0.0044	0.0000	0.0000
79	4,8187	0,0000	0.0081	6.0000	0.0000
80	5.0271	9.0000	0.0066	0.000d	0.0000

FO EXP.

0.9012

_

En la columna 6 de cada tabla se indica con un asteria co (*) cual es el mayor valor de "Dexp" obtenido.

Los datos de las columnas 2 y 5, TETA y Eo experimen-tal respectivamente, fueron usados para obtener la gráfica correspondiente. Se obtuvo un par de gráficas por cada ta-bla de datos, una con escala uniforme y otra, asignándole a la computadora que, en el eje de las "equis" diera un espaciamiento igual entre los puntos, sin tomar en cuenta el distanciamiento real que tienen entre sí; esto se hizo con el fin de apreciar mejor las diferencias entre las dos curvas, la experimental y la teórica. A este tipo de gráficas se les denominó, con el número correspondiente a cada tabla seguido de un asterisco.

En el apéndice I se da una explicación más detallada -de la obtención de los resultados mostrados.

مستركب أربيه

· · · · · · · · · · ·

.

and the state of the

.....

CAPITULO IV

DISCUSION DE LOS RESULTADOS

Después de haber analizado los datos y resultados obt<u>e</u> nidos, se puede decir los siguiente:

1.- La tabla 4-1 nos muestra un resumen de los resultados -que se obtuvieron al utilizar la prueba estadística de --Kolmogorov-Smirnov, para las funciones de distribución -de tiempos de residencia obtenidas para cada uno de los experimentos, comparadas con la del modelo teórico de --mezcla completa.

Se puede observar, en dicha tabla que, en las pruebas el valor Dexp es menor que el valor de Dtablas, excepto en las pruebas No. 2 y 7, ver las figuras 4-2 y 4-7 para una mejor visualización de las condiciones de operación en cada una de ellas. En consecuencia, en estas dos pru<u>e</u> bas se rechaza la hipótesis nula de igualdad entre la -función de distribución de tiempos de residencia teórica y la función de tiempos de residencia experimental; o -sea, que sí existe una diferencia significativa entre am bos modelos a un nivel de significancia <=5%.

Haciendo cita a una de las referencias para este trabajo, Rodelo (11):"Influencia de la Excentricidad del Agitador en la Distribución de Tiempos de Residencia en un Reactor de Mezcla Completa. Parte 3: Ángulo de 135"entre la boca de entrada y salida"; en la que, como se especifica, usa un ángulo de 135"entre las bocas de entrada y

الأراب بالتوسير والمعاوية الومانيون بالتصاب الأكار

-

TABLA 4-1

CUADRO COMPARATIVO DE RESULTADOS

(Prueba de Kolmogorov-Smirnov)

Prueba	Clave	Dexp	Dtablas	
1	(2-4-1)	0.0865	0.1096	
2	(2-4-2)	0,1628	0.1096	
3	(2-4-3)	0.0914	0.1103	
4	(2-4-4)	0.0624	0.1089	
5	(2-4-5)	0.0849	0.1089	
6	(2-7-1)	0.0545	0.1096	
7	(2-7-2)	0.1392	0.1096	
8	(2-7-3)	0.0601	0.1096	
9	(2-7-4)	0.0498	0.1096	
10	(2-7-5)	0.0498	0.1082	

Los valores de Dexp provienen de las tablas 3-1 a 3-10. Los valores de Dtablas son para un nivel de significancia $\alpha = 5\%$ (Ver apéndice II). salida, pero los demás parámetros se mantienen en las -mismas circunstancias que en este trabajo. Rodelo, no -tiene uns diferencia significativa entre ambos modelos -(teórico y experimental), en ninguna de las pruebas; sin embargo, con el ángulo 90°, sí se obtienen diferencias en 2 pruebas, utilizando la prueba de Kolmogorov, lo --cual hace sospechar que el ángulo entre las bocas de entrada y salida, combinado con la excentricidad del agit<u>a</u> dor, influye en la distribución de tiempos de residencia experimental. Tal vez esto se deba a que, si se observan las figuras 4-2 y 4-7, se nota que la línea de flujo, -dentro del reactor, no es tocada por la agitación.

فالمحتصون التعدن تجريج ويحاط ويوجد طر

2.~ La tabla 4-2 muestra una síntesis de los resultados obtenidos al aplicar la prueba estadística de Wald-Wolfo-witz a la función de distribución de tiempos de residencia obtenidas para cada una de las pruebas, comoaradas con la del modelo teórico de mezcla complete.

Como se nuede observar el valor crítico de Ze de todas las pruebas no se encuentra dentro del intervalo $-Z_{\frac{1}{2}}$ y - $+Z_{\frac{1}{2}}$. En consecuencia se rechaza la hipótesis nula de que las diferencias entre las funciones de distribución teórica y experimental sean debidas al azar, lo que nos dice que sí hay una diferencia significativa entre ambos modelos a un α -5%.

Si comparamos (mediante esta prueba estadística) el pr<u>e</u> sente trabajo con el de Rodelo, se afirma que los resultados arrojados en este estudio, son muy similares a los arrojados con el estudio del ángulo de 135°, rechazando

FIG. 4-10. En esta figura, la posición del agitador es la #5, la entr<u>a</u> da #2 y la salida #7, --(2-7-5).

FIG. 4-9. La entrada y la

salida son iguales que en

la figura anterior, la po sición del agitador es la #4, (2-7-4).

En las figuras, de la 4-l a la 4-l0, se muestra en forma general, la entrada de flujo al tanque, la salida de flujo del tanque y la posición del agitador.

Además, con una línea punteada se muestra la posible -trayectoria del flujo por el tanque y, la flecha cercana al agitador, nos muestra el sentido de giro del propio agitador. la igualdad entre el modelo teórico y el experimental pa ra todas las pruebas, cosa que también sucede con el ángulo de 90. Pero, a diferencia del ángulo de 135, con el ángulo de 90° se ve que el valor Zc de dos pruebas es infinito (ver tabla 4-2), demasiado alejado del intervalo "Ze y + Ze; éstas pruebas son la No. 3 y 7 (2-4-3 y 2-7-2 respectivamente), para visualizar sus condiciones de ope ración, se recomienda observar las figuras 4-3 y 4-7. No obstante, no hay algún indicio de que estas dos pruebas se lleguen a relacionar entre si. Sin embargo, existe la probabilidad de que, al comparar cada una de estas pruebas con su similar, es decir la 3 con la 8 y la 7 con la 2, se observa que al estar el agitador en la posición 3, la agitación se lleva el material hacia salidas bajas. ocasionándonos un estancamiento; y, al estar el agitador en la posición 2, la agitación se lleva el material ha-cia salidas a la misma altura del nivel del agitador, -ocasionando el estancamiento cuando la salida está muy por abajo del agitador.

3.- Analizando los resultados obtenidos a través de los dos métodos estadísticos, y analizando las figuras de la 3-l a la 3-l0, se observa una clara tendencia a la no --idealidad; es evidente la tendencia hacia el By-pass, --con excepción de las pruebas No. 3 y 7, en las que se --observa un estancamiento (ver las figuras 3-3 y 3-7).

Rodelo obtuvo, en todas las pruebas, una tendencia al -By-pass, aunque si se compara la figura similar, correspondiente a las pruebas No. 3 y 7 de este trabajo, se n<u>o</u> ta que el pico no es demasiado grande y el resto de la curva siempre sigue por abajo de la curva teórica, lo -que pudiera indicar, también, un estancamiento. Ahora, si se ve desde el punto de vista industrial, el By-pass ocasionaría, si se pone por ejemplo la fabrica-ción de resinas, una salida de material a un tiempo muy corto, lo que se reflejaría en su Peso Molecular y su -corta cadena que, tal vez llegaría a influir en nuestro producto final; y el estancamiento, ocasionaría la salida del material en un tiempo muy largo, lo que nos daría una resina de alto peso molecular, reflejándose en el -producto final.

55

4.- Si comparamos las figuras de la 3-1 a la 3-10, por pa-res de gráficas correspondientes, de tal forma que coincidan en todas las condiciones y difieran tan solo en la posición de la boca de salida, v.gr: 2-4-1 y 2-7-1 (ver figuras 4-1 y 4-6); se observa claramente como los experimentos que utilizaron la boquilla de salida No. 4 mues tran un retraso en la señal y un pico muy grande en comparación con las pruebas que utilizaron la boquilla de salida No. 7, que nos indica un By-pass, excluyendo a la prueba 2-4-3 (ver figuras 3-3 y 4-3) en la que se observa que, la señal siempre va por abajo de la teórica, indicando un estancamiento. En las pruebas que utilizaron la boquilla de salida No. 7, no se observa el pico muy pronunciado pero, si se observa el retraso en la señal, que significa una ausencia de buen mezclado a la entrada del reactor, conduciendonos hacia un By-pass. En el expe rimento 2-7-2 se encontró indicios de la sustancia traza dora después de un tiempo considerable, lo que equivale a un estancamiento en el reactor por falta posiblemente de un buen mezclado en todo el tanque.

.

Se observa, por lo tanto, que los experimentos que util<u>i</u> zaron la boquilla de salida No. 4 tienden mayormente al By-pass, que las pruebas que usaron la salida No. 7, es probable que se deba a que las paletas del agitador se encontraban a esta altura, de la boquilla No. 4 (ver -las figuras de la 4-1 a la 4-5).

Esto se ve más claro, y se puede llegar a una afirma--ción, ya que en el trabajo de Rodelo se nota lo mismo al comparar de igual modo las gráficas, las pruebas de la boquilla de salida 4 tienden mayormente al By-pass que las rpuebas de la boquilla de salida 7.

5.- En las pruebas realizadas con el agitador en una posi-ción fuera del centro, se observó la ausencia del típico vórtice que aparece en la posición central, así como tam bién se observó un barboteo en la superficie del líquido cercano al eje del agitador, tomándolo como una agita--ción vertical dentro del tanque, y que probablemente en algunas pruebas, esta agitación no tocó la línea de en-trada-salida de trazador, por lo que se obtienen los datos mostrados anteriormente.

En las pruebas en posición excéntrica del agitador se vio, en general, una turbulencia de agitado diferente a la posición central del agitador.

56

TABLA 4-2

CUADRO COMPARATIVO DE RESULTADOS

(Prueba de Wald-Wolfowitz)

Prueba	Clave	Zc	1 Z ≠/s	
1	(2-4-1)	-6.2630	±1.96	
2	(2-4-2)	-6.2630	n	
3	(2-4-3)	00	ч	
4	(2-4-4)	-4.8819		
5	(2-4-5)	-3,3061	11	
6	(2-7-1)	-7-3827	n	
7	(2-7-2)	ω	н	
8	(2-7-3)	-7.2208	n	
9	(2-7-4)	-7.8358	"	
10	(2-7-5)	-7.5742	7	

Para obtener el valor de Zc consulte el apéndice II. El valor de Z \sim /2 es para un nivel de significancia $\alpha = 5\%$, (tablas estadísticas).

RESULTER

El objotivo de este estudio fue el de conocer la in-fluencia de la posición de las boquillas entrada-salida y la excentricidad del agitador sobre la distribución de --tiempos de residencia de un reactor de mezcla completa.

Para la obtención de las curves de un reactor existen varios métodos. En este caso se eligió el método estímulo respuesta, definido por la ecuación: $\Theta = t = t(t)$. Este se desarrolló mediante la utilización de una solución ine<u>r</u> te que se introduce a la entrada del sistema y se mide su concentración, a la salida del tanque, en función del tie<u>m</u> po:

La solución trazadora se preparó con 33 g de colorante rojo uva aforados a un litro con agua destilada. Se le tomó su longitud de onda en que absorbe la luz, mediante un espectrofotómetro do absorción atómica, y así se pudo calibrar el espectrofotómetro que se utilizó.

Se eligió la posición del agitador dentro del reactor; teniendo en cuenta que, por el centro pasan dos líneas per pendiculares entre sí, formando una cruz; y, exactamente a la mitad de la distancia del borde al centro, se encontraba una posición en cada brazo de la cruz, numerándolas en el centido de giro de las manecillas del reloj. También se escogió la boquilla de salida a utilizar y, hasta haber -usado todas las posiciones del agitador (4 y la central) por duplicado, se cambió a la otra boca de salida. Esta bo quilla distó circunferencialmente en 90° de la boca de - ontruic.

Se procedió a catablecer el estado estacionario.

Se invectó 30 ce de la solución trazadora en la ontrada al reactor, e inmediatamente se procedió a la colección de nuestras a la salida, en tubos de onsaye, para su posterior loctura de absorbancia (concentración).

Se sacó una concentración promedio inyectando los mismos 30 cc de trazador, pero sin tener entruda ni salida de fluido; y, dejando un tiempo considerable para su total homogenización.

Con estas variables se obtuvieron 10 gráficas (curvas) de distribución do tiempos de residencia, que se compararon estadísticamente con la distribución de tiempos de residencia teórica del reactor utilizado, por los mótodos de Kolmo gorov-Smirnov, prueba de rachas de Wald-Wolfowitz y la prue ba del rango de confiabilidad de las medias; teniendo los siguientes resultados:

Con la prueba de Kolmogorov-Smirnov se vie como colo las pruebas 2-4-2 y 2-7-2 se desvían del modelo ideal a un nivel de significancia x = 5%.

Con la prueba de Wald-Wolfowitz se observó que las ---pruebas en general no siguen completamente el modelo teórico, y esta tendoncia se nota con mayor claridad en las prue bas 2-4-3 y 2-7-2 no teniendo ninguna relación entre si, y en las que se observó un estanecmiento; por las demás se --observó una clara tendencia al hy-pass.

Se unaron dou concentraciones promedio diferentes para dos grupos de experimentos, debido a que el abastecimiento de fluido provino de dos fuentes diferentes; no obstante, al aplicarles, a las medias de cada grupo por separado, la prueba del rango de confiabilidad de las medias, se dieron por aceptadas estas dos concentraciones promedio.

CONCLUSIONES

Se ha alcanado el objetivo de analizar la influencia de la excentricidad del agitador en la Distribución de --Tiempos de Remidencia en un reactor de mezcla completa -con un ángulo de 90° entre la boca de entrada y salida.

Las desvicciones de la idealidad son suficientemente pequeñas para no ser significativas, excepto en dos pruebas. Pero las diferencias, cunque pequeñas no son al azar, o sea, muestran una tendencia clara al by-pass y/o a la formación de zonas estancadas.

En las pruebas, on las que la salida se encuentra al mismo nivel del agitador, el by-pass es mayor que en las pruebas en que la salida estaba en el fondo del tanque.

En pruebas en que se usó posiciones excéntricas del agitador y el cual quedaba fuera de la línea de flujo entrada-salida es mayor la tendencia hacia el by-pass o a un estancamiento.

Se observa la tendencia del flujo del material a ser llevado hacia las paredes del recipiente, primero al mismo nivel del agitador y posteriormente hacia el fondo del tanque.

E Т ۴

Ι

62

APÉNDICE I

EJEMPIO DE UNA RUTINA DE CALCULO

A partir de los datos experimentales obtenidos en<u>c</u>ada corrida experimental, se procedió de la siguiente manera -para obtener los resultados mostrados en el capítulo 3.

- 1- Se calculó el parámetro adimensional TETA (0).
- 2- Se calculó la absorbancia promedio (concentración), ejemplo en la tabla II-1.
- 3- Se calculó Es teórico (Es teo)
- 4- Se calculó la Ee experimental (Ee exp).
- 5- Se calculó la función de distribución acumulada de Ee teórico, F(Eo teo), que es Fe teo.
- 6- Se calculó la función de distribución acumulada de Ee experimental, F(Ee exp), que es Fe exp.
- 7- Se calculó la diferencia absoluta entre la función de distribución acumulada de Ee teo y la función de distribución acumulada de Ee exp, (D exp).

Para realizar los cálculos descritos anteriormente, se usó una hoja electrónica de cálculo (LOTUS 123).

TABLA I = 1

.

CALCULO DE LA ABSORBANCIA PROMEDIO Ejemplo: corrida (2-4-1)

O TETA	la. Prueba	2a. Prueba	Promedio
ο '	0	0	0
0.0035	0.0160	0.0720	0.0440
0.0069	0.3100	0.2680	0.2890
0.9104	0.1990	0.2200	0.2095
0.9139	0.1730	0.1730	0.1730
0.0174	0.1690	0.1700	0.1695
0.0208	0.1670	0.1710	0.1690
0.0243	0.1650	0.1710	0,1680
0.9278	0.1630	0.1700	0.1665
0.0313	0.1610	0.1700	0.1655
0.0347	0.1600	0.1690	0.1640
0.0382	0.1600	0.1680	0.1635
0.0452	0.1600	0.1670	0.1635
0.0521	0.1590	0.1680	0.1635
0.0591	0.1590	0.1640	0,1615
0.0660	0.1580	0.1610	0.1595
0.9729	0.1570	0.1600	0.1585
0.9799	0.1550	0.1600	0.1575
0.0868	0.1530	0.1590	0.1560
0.0938	0.1520	0.1590	0.1555

Así se continuó hasta el último valor de 0.

APÉNDICE II

APENDICE II

METODOS ESTADÍSTICOS

En este estudio se utilizaron las siguientes pruebas estadísticas:

1- PRUEBA DE KOLMOGOROV-SMIRNOV PARA FUNCIONES DE DISTRIBUCIÓN

La prueba de Kolmogorov*Smirnov es apropiada únicamente para funciones continuas; por lo que en este trabajo se utilizó para probar la hipótesis de que la función F(x) es la función de distribución de una población, cuya variable es continua, de la cual se ha tomado una muestra X_1, \ldots, X_n . En este trabajo se uso para contrastar las siguientes hipótesis:

Hipótesis nula: Fe exp = Fe teo Hipótesis alterna: Fe exp \neq Fe teo

Para rechazar o no la hipótesis nula se deben hacer -los siguientes pasos:

 a) Calcular los valores de la función de distribución -acumulada experimental=(Fe exp) con la ecuación:

Fe experimental=F(Ee exp)= \mathbb{Z} Ee exp $\triangle \Theta$

Para cada uno de los valores de θ y Ze exp, se usó el valor de Ee mostrado en las tablas 1 a 10, y no un pr<u>o</u> medio o algún otro.

 b) Calcular los valores de la función de distribución -acumulada teórica (Fe teo) con la ecuación:

Fo teo = F(Ee teo) =
$$\int_0^{\theta} Ee d\theta = \int_0^{\theta} exp(-\theta) d\theta = 1 - exp(-\theta)$$

para todos los valores de 8 y Ee teo.

c) Determinar la desviación máxima entre la Fe teo y la Fe exp.

D máx = Fe teo - Fe exp

Se elige un nivel de significancia A,(5%, 1% o algún otro valor semejante.

- d) Buscar en tablas estadísticas el valor máximo permisj
 ble "D" (D tablas) para el tamaño de muestra usado y ~
 el valor del nivel de significancia escogido.
- e) Se compara "D máx" con "D tablas", y si "D máx" es ma yor o igual que "D tablas" se rechaza la hipótesis nula; en caso de que "D máx" sea menor que "D tablas" no se rechaza la hipótesis nula.

2- PRUEBA DEL RANGO DE CONFIABILIDAD DE LAS MEDIAS

Esta prueba se utilizó para saber si todos los valores de concentración promedio obtenidos experimentalmente son estadísticamente iguales.

Esta prueba consiste en que en cada experimento se toma un número n de muestras y se determina la media (\overline{X}) de cada experimento ($\overline{X} = 1/n \sum_{i=1}^{n} X_{i}$). A continuación se calcula el promedio de las medias ($\overline{\overline{X}}$), este se obtiene a partir de las k medias obtenidas anteriormente ($\overline{\overline{X}} = 1/k \sum_{i=1}^{n} \overline{X}_{i}$).

Por lo que los límites de confiabilidad para la media serán los siguientes:

LSC = X + A	\overline{R} LIC = $\overline{X} - A \overline{R}$
En donde;	LSC - Linite superior de confiabilidad
	LIC . Limite inferior de Confiabilidad
	X Promedio de los rangos de cada -
	experimento (R = 1/k Z R)
	R • Rango de cada experimento (mayor
	valor de x - menor valor de x).
	A•3/(d ₁ (n) para cada n empleado (t <u>a</u>
	hlas).

Todo lo anterior es bajo la suposición de que las me--dias provienen de una muestra de una población normal. 68

APLICACIÓN DEL RANGO DE CONFIABILIDAD DE LAS MEDIAS

Corrida	С	ī⊄r	Corrida	C	Ċ∕R
I	0.170	0.1742/0.007		0.175	0.1742/0.007
	0.173		6	0.177	
	0.174			0.170	
	0.175			0.174	
	0.176			0.173	
	0.177			0,176	
	0.178	0.1770/0.005	8	0.174	0.1770/0.005
	0.179			0.176	
2	0.178			0.178	
3	0.174			0.178	
	0.176			0.179	
	0.177			0.177	
4	0.179	0.1758/0.910	9	0.177	0.1760/0.009
	0.169			0.176	
	0.177			0.177	
	0.176			0.177	
	0.177			0.179	
	0.177			0,170	

69
orrida	С	Č∕R
,	0.193	
	0.199	
2	0.192	
E	0.198	0.1992/0.009
	0.199	
	0.190	
	0.190	
	0.193	
5	0.191	0.1920/0.003
·	0.193	
	0.192	
	0.193	
	0.109	
	0.195	
	0.100	
7	0 102	0.1952/0.009
	0.100	
	0.100	
	0.170	
	0.195	
	0.198	
	0.198	-
10	0.199	0.1981/0.005
	0.199	
	0.200	

Aplicando las fórmulas anteriores:

 $\overline{X} = 1.0542/6 = 17.57$ $\overline{R} = 0.043/6 = 0.0071$ Para n=6 A₂ = 0.483 (Tablas estadísticas) Por lo que tendremos: LSC = 0.1757 + 0.483(0.0071) = 0.1791 LIC = 0.1757 - 0.483(0.0071) = 0.1723

Como puede verse, todos los valores promedio de concen tración (Ĉ), para estas seis corridas (1,3,4,6,8 y 9) caen dentro del rango de confiabilidad obtenido; por lo que se puede trabajar con un promedio de promedios de concentra--ción.

Para las otras 4 corridas experimentales se hizo lo -mismo; esto fue debido a que en estos experimentos se usó agua que provenía de una fuente diferente a la empleada en las demás corridas. Como puede verse a continuación, tam--bién los valores de concentración promedio (\overline{C}) de estas corridas, caen dentro de los límites de confiabilidad que se han obtenido para ellas; (corridas 2,5,7 y 10).

Usando las fórmulas: $\overline{X} = 0.7805/4 = 0.1951$ $\overline{R} = 0.26/4 = 0.0065$ para n = 6 A₂ = 0.483 (Tablas estadísticas) por lo que tenemos: LSC = 0.1951 + 0.483(0.9065) = 0.1982 LIC = 0.1951 = 0.483(0.9065) = 0.1920 3* PRUEBA DE RACHAS DE WALD-WOLFOWITZ.

12.

والمحاجز والأفريجي معتصر للتناري التن

En esta prueba se le llama "racha" o "secuencia" a una sucesión de datos bordeada a ambos lados por datos de otro tipo.

Lo más común al analizar un grupo de datos es hacer la suposición de que las observaciones constituyen una muestra aleatoria de una población dada. Esta prueba que se presenta a continuación, proporciona una forma de decisión para saber si esta suposición es válida.

En esta prueba se usa el número de secuencias (U) como una medida de la aleatoreidad de la muestra. Los datos se--rán una serie de observaciones tomadas en orden de ocurrencia.

Les observaciones las dividiremos en dos tipos; por -decir en positivas y negativas.

Las hipótesis que se contrastan son:

Hipótesis nula: El proceso de generación de la muestra (No) es alestorio.

Hipótesis alterna: Les variaciones aleatorias en la su cesión son dependientes, o se distribu yen diferentes unas de otras.

En el caso de que n_1 y n_2 (número de eventos de una -clase y, número de eventos de otra clase respectivamente) sean mayores que 20, se puede utilizar una aproximación a la normal usando como estadístico Zc, donde Zc es:

$$2c - \frac{U - M_{v.}}{G_{v.}}$$

donde:

Entonces, la regla de decisión va a ser:

Rechazar Ho si $Z_{C} < Z_{\frac{1}{2}}$ o $Z_{C} > Z_{\frac{1}{2}}$ y se concluye que a un nivel de significancia de X \checkmark la muestra no es aleatoria, ($\alpha \cdot x \checkmark$). Donde $\frac{1}{2}$ Z₁ se busca en tablas estadísticas para el nivel de significancia elegido.

EJEMPLO DE APLICACIÓN DE ESTA PRUEBA

En este ejemplo se utilizaron los datos de la corrida experimental # 6.

- 1- Se calcula las diferencias entre Ee teo y Ee exp.
- 2- Se le llamó n₁ al número de diferencias con signo positivo (+) y n₂ a las de signo negativo (-).
- 3. Se cuenta el número de rachas o secuencias (U) que hubo (las rachas se tomaron como el número de veces que cambio el signo en las diferencias).

4- Se calcula Zc en la forma explicada anteriormente.

▲ un ≪ = 5% +24 = 1.96 g -24 = -1.96

Como - 7.38 < -1.96 a un < = 5% se rechama la hipótesim nula (Ho) y se concluye que las diferencias entre los valo-res de Ee teo y Ee exp no son debidos al azar, o sea que no existe diferencia significativa entre ambos modelos.

E N D I С P Е I TABLA 3.2

	TETA.	ABS PROM 2	E0 Tec.	E0 Exp.	D EXP.
- <u>-</u>	0.0000	0.0000	1.0000	0.0000	0.0000
	0.0035	0.1070	0.9965	0.5487	0.0010
3	0.0069	0.2975	0.9931	1.5250	0.0003
- 4	0.0104	0.2205	0.9890	1.1821	0.0009
5.	0.0139	0.1945	0.9862	0.9974	0.0010
<u> </u>	0.0174	0.1885	0.9828	0.9667	0.0009
	0.0208	0.1810	0.9794	0.9282	0.0007
В.	0.0243	0,1760	0.9760	0.9026	0.0005
9.	0.0278	0,1720	0.9726	0.8821	0.0002
10	0.0313	0,1700	0.9692	0.8718	0.0002
11	0.0347	0,1700	0.9659	0.8718	0,0005
12	0.0382	0.1685	0.9625	0.8641	0.0009
13	0.0452	0.1675	0.9558	0.8590	0,0016
14	0.0521	0.1670	0,9492	0.8564	0.0022
15	0.0591	0.1665	0,9426	0.8538	0.0029
16	0.0660	0.1640	0.9361	0.8410	0.0036
17 -	0.0730	0.1610	0.9296	0.8256	0.0043
18	0.0799	0.1600	0.9232	0.8205	0.0050
- 19	0.0869	0.1600	0,9168	0.8205	0.0057
20	0.0938	0,1585	0.9105	0.8128	0.0064
. 21	0.1077	0.1570	0.8979	0.8051	0.0078
. 22	0.1216	0.1525	0.8855	0.7821	0.0093
23	0.1355	0.1510	0.8733	0.7744	0.0108
24	0.1494	0.1495	0.8612	0,7667	0.0122
25	0.1633	0.1490	0.8492	0.7641	0.0135
26	0.1772	0.1470	0.8376	0.7538	0.0147
27	0.1911	0.1440	0.8261	0.7385	0.0160
28	0.2050	0.1415	0.8147	0.7256	0.0173
29	0.2189	0.1400	0.8034	0.7179	0.0186
30	0.2328	0,1390	0.7923	0.7128	0.0198
31	0.2536	0.1365	0.7760	0.7000	0.0215
32	0.2745	0.1325	0.7600	0.6795	0.0234
33	0.2953	0.1300	0.7443	0.6667	0.0251
34	0.3162	0.1285	0.7289	0.6590	0.0268
35	0.3370	0.1265	0.7139	0.6487	0.0283
36	0.3578	0.1205	0.6992	0.6179	0.0301
37	0.3787	0,1185	0.6848	0.6077	0.0319
38	0.3995	0,1175	0.6706	0.6026	0.0334
39	0.4204	0.1130	0.6568	0.5795	0.0352
40	0.4412	0,1105	0.6433	0.5667	0,0369

TABLA 3.2 (Cont.)

1.5	TETA.	ABS PROM 2	Eə Teo.	E9 Exp.	D EXP.
1.11					
-41	0.4829	0.1000	0.6170	0.5530	0.0401
42	0.5246	0.1015	0.5918	0,5205	0.0436
43	0.5663	0.0975	0.5676	0.5000	0.0469
44	0.6080	0.0925	0.5444	0.4744	0.0503
45	0.6497	0.0880	0.5222	U.4513	0.0537
46	0.6914	0.0845	0.5009	0.4333	0.0570
47	0.7331	0.0805	0.4004	0.4128	0.0602
48	0.7747	0.0790	0.4608	0.4051	0.0630
49	0.8164	0.0760	0.4420	0.2897	0.0655
. 50	0.8581	0.0715	0.4240	0.3667	0.0683
51	0,9415	0.0675	0.2900	0.3462	0.0734
52	1.0249	0.0625	0.3588	0.3205	0.0778
53	1,1083	0.0575	0.3301	0.2949	0.0820
54 🗇	1.1916	0.0505	0.3037	0.2590	0.0868
55	1,2750	0.0480	0.2794	0.2462	0.0905 *
56	1.3584	0.0430	0.2571	0.2205	0.0945
57	1.4418	0.0400	0.2365	0.2051	0.0980
58 -	1.5252	0.0370	0.2176	0.1897	0.1011
59	1.6085	0.0340	0.2002	0.1744	0.1039
60	1,6919	0.0300	9.1842	0.1538	0.1071
61	1.8170	0.0275	0.1625	0.1410	0.1111
62	1.9421	0.0220	0.1434	0.1128	0.1161
63	2.0671	0.0200	0.1265	0.1026	0.1202
64	2.1922	0.0175	0.1117	0.0897	0.1238
65	2.2173	0.0150	0.0995	0.0769	0.1273
66	2.4423	0.0125	0.0870	0.0641	0.1309
67	2.5674	0.0115	0.0767	0,0590	0.1337
68	2.6925	0.0100	0.0677	0.0513	0.1364
69	2.8176	0.0085	0.0598	0.0436	0.1389
70	2.9426	0.0075	0.0527	0.0385	0.1411
71	3.1511	0.0065	0.0428	0.0333	0.1440
72	3.3595	0.0045	0.0348	0.0231	0.1473
73	J.5680	0.0030	0.0282	0.0154	0.1506
-74 -	3.7764	0,0020	0.0229	0.0103	0.1538
75	3,9849	0.0010	0.0186	0.0051	0.1570
76	4.1923	0.0005	0.0151	0.0026	0.1600
77	4,4018	0.0000	0.0123	0.0000	0.16284
78	4.6102	0.0000	0.0099	0.0000	0.0000
79	4.8187	0.0000	0.0081	0.0000	0.0000
90 .	5.0271	0.0000	0.0066	0.0000	0.0000
	and the second second				

'9 exp,

0.8249

					and the second second
· ·	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			•	
					78
		- T/	AELA 3.3		
	TETA.	ABS PROM 3	E⊖ Teo.	E9 Exp.	D EXP.
A					
1	0.0000	0.0000	1.0000	0.0000	0,0000
2	0.0035	0.0180	0.9965	0.1024	0.0031
- B	0.0069	0.1245	0.9931	0.7086	0.0041
4	0.0104	0.1525	0,9896	0.8680	0.0045
5	0.0139	0.1645	0.9862	0.9363	0.0047
6	0.0174	0.1700	0.9828	0.9676	0.0048
7	0.0208	0.1700	0.9794	0.9676	0.0048
. 8	0.0243	0.1695	0.9760	0.9647	0.0049
9	0.0278	0.1675	0.9726	0.9533	0.0049
10	0.0313	0.1675	0.9692	0.9533	0.0050
11	0.0347	0.1670	0.9659	0,9505	0.0051
12	0.0382	0.1655	0.9625	0.9419	0.0051
13	0.0452	0.1640	0.9558	0.9334	0.0053
14	0.0521	0.1625	0.9492	0.9249	0.0055
15	0.0591	0.1615	0.9426	0.9192	0,0057
16	0.0660	0.1605	0,9361	0,9135	0.0059
17	0.0730	0.1595	0.9296	0.9078	0.0060
18	0.0799	0.1590	0.9232	0.9050	0.0062
19	0.0869	0.1575	0.9168	0.8954	0.0064
20	0.0938	0.1560	0.9105	0.80/9	0.0005
21	0.10//	0.1540	0.8979	0.8705	0.0089
22	0.1216	0.1510	0.0000	0.0594	0.0074
23	0.1355	0.1500	0.0733	0.000	0.0077
24	0.1494	0.1495	0.0014	0.0305	0.0082
25	0.1633	0.1475	0 0276	0.0393	0.0002
20	0.17/2	0.1455	0.8378	0.0201	0.0004
27	0.1911	0.1413	0.8201	0.8054	0.0000
20	0.2030	0.1400	0 9034	0 7911	0 0093
29	0.2109	0.1330	0 7022	0 7797	0 0096
. 30	0.2320	0.13/0	0.7760	0 7627	0.0100
31	0,2330	0.1340	0.7700	. 0 7456	0 0105
32	0.2/43	0.1310	0.7600	0 7371	0.0108
33	0.2933	0.1293	0.7299	0.7143	0.0113
24	0.3102	0 1225	0.7130	0.6972	0.0118
33	0.3370	0.1225	0 6992	0.6801	0.0123
20	0.3370	0 1175	0 6849	0.6688	0.0128
- 27	0.3/0/	0.1145	0.6706	0.6517	0.0134
30	0.3993	0.1195	0 6568	0.6403	0.0138
-24	0.4204	0.1142	0 6433	: 0.6261	0 0143

•

.

.

• 1 · · . ESTESTATESTESISIA NORTHOEBE Souther A

TETA ABS FROM 3 E÷ Teo. E9 Exp. D EXP. 41 0.4829 0.10500.6170 0.5976 0.0157 42 0.5246 0.1005 0.5918 0.5720 0.0170 43 U. 5663 0.0970 0.5521 0.5676 0.0182 44 0.6080 0.0925 0.5444 0.5265 0.0194 45 : 0.6497 0.0880 0.5222 0.5009 0.0208 46 . 0.6914 0.0850 0.5009 0.4838 0.0219 47 0.7331 0.0815 0.4804 0.4639 0.0230 48 0.7747 0.0780 0.4608 0.4439 0.0242 49 0.8164 0.0735 0.4420 0.4183 0.0255 50 0.8581 0.0700 0.4240 0.3984 0.0270 51 0.9415 0.0665 0.3900 0.3785 0.0293 52 1.0249 0.0610 0.3588 0.3472 0.0316 53 1.1083 0.0560 0.3301 0.3187 0.0337 54 1.1916 0.0510 0.3037 0.2903 0.0359 55 1.2750 0.0470 0.2794 0.2675 0.0379 56 1.3584 0.0425 0.2571 0.2419 0.0401 57 1.4418 0.2220 0.0390 0.2365 0.0422 58 1.5252 0.0355 0.2176 0.2020 0.0442 59 1.6085 0.0320 0.2002 0.1821 0.0464 60 1.6919 0.0295 0.18420.1679 0.0495 61 1.8170 0.0260 0.1625 0.1480 0.0516 62 1.9421 0.0225 0.1434 0.12810.0547 63 2.0671 0.0200 0.1265 0.1138 0.0573 64 2.1922 0.0175 0.1117 0.0996 0.0597 65 2.3173 0.0155 0.0985 0.0882 0.0618 66 2.4423 0.0140 0.0870 0.0797 0.0635 67 2.5674 0.0115 0.0767 0.0655 0.0655 68 2.6925 0.0577 0.0100 0.0569 0.0674 69 2.8176 0.0085 0.0599 0.0484 0.0693 70 2.9426 0.0075 0.0527 0.0427 0.0710 71 3.1511 0.0060 0.0428 0.0341 0.0738 72 3.3595 0.0040 0.0348 0.0228 0.0771 73 0.0025 3.5680 0.02820.01420.0807 74 3.7764 0.0015 0.0229 0.0085 0.0842 75 3.9849 0.0005 0.0186 0.0028 0.0879 76 4.1933 9.0000 0.0151 0.0000 0.0914 🛩 77 4.4018 0.0000 0.0123 0.0000 0.0000 78 4.6102 0.0000 0.0099 0.0000 0.0000 79 4.8187 0.0000 0.0001 0.0000 0.0000 80 5.0271 0.0000 0.0066 0.0000 0.0000

Fe exp.

0.8935

TABLA 3.4

	TETA.	ABS PRON 4	EO Tec.	E0 Exp.	D EXP.
1	0.0000	0.0000	1.0000	0.0000	0.0000
. 2	0.0035	0.0895	0.9965	0.5094	0.0017
з	0.0069	0,1985	U.9931	. 1.1298	0.0012
4	0.0104	0.2005	0,9896	1.1411	0.0007
5	0.0139	0.1850	0.9862	1.0529	0.0005
6	0.0174	0.1750	0.9828	0.9960	0.0004
7	0.0208	0.1700	0.9794	0.9676	0.0005
8	0.0243	0,1690	0.9760	0,9619	0.0005
9	0.0278	0.1680	0.9726	0.9562	0.0006
10	0.0313	0.1680	0.9692	0.9562	0.0007
11	0.0347	0.1675	0.9659	0.9533	0.0007
12	0.0382	0.1665	0,9625	0.9476	0.0008
13	0.0452	0.1660	V.9558	0,9448	0.0009
14	0.0521	0.1640	0.9492	0.9334	0:0010
15	0.0591	0.1620	0.9426	0.9220	0.0012
16	0.0660	0.1610	0.9361	0.9163	0.0013
17	0.0730	0.1605	0.9296	0.9135	0,0015
18	0.0799	0.1595	0.9232	0.9078	0.0016
19	0.0869	0.1590	0.9168	0.9050	0.0017
20	0.0939	0.1580	0.9105	0.8993	0.0018
21	0.1077	0.1560	0.8979	0.8879	0.0020
22	0.1216	0.1540	0.8855	0.8765	0.0022
23	0.1355	0.1505	0.8733	0.8566	0.0025
24	0.1494	0.1495	0.8612	0.8509	0.0028
25	0.1633	0.1480	0.8493	0.8423	0.0030
26	0.1772	0.1460	0.8376	0.8310	0.0031
27	0.1911	0.1440	0.8261	0.8196	0.0033
28	0.2050	0.1425	0.8147	0.8110	0.0034
29	0.2189	0.1405 .	0.8034	0.7997	0.0036
30	0.2328	0.1395	. 0,7923	0.7940	0.0036
31	0.2536	0.1365	0.7760	0.7769	0.0038
32	0.2745	0.1325	U.7600	0.7541	0.0041
33	0,2953	0.1295	0.7443	0.7371	0.0044
34	0.3162	0.1275	0.7289	0.7257	0.0046
35	0.3370	0.1230	0,7139	0,7001	0.0050
36	0.3578	0.1200	0.6992	0.6830	0.0055
37	0.3787	0.1195	0.6848	0.6801	0.0058
28	0.3995	0:1155	0.6706	0.6574	0.0062
39	0.4204	071135	0.6568	0.6460	0.0065
	0 4410	0 1110	0 6433	0 6318	0.0069

.

TABLA 3.4 (Cont.)

	TETA.	ABS PROM 4	Et Teo.	EQ_EXP.	D_EXP.
41	0.4829	0.1065	0.6170	0.6061	0.0079
42	0.5246	0.0995	0.5918	0.5663	0.0095
43	0.5663	0.0955	0.5676	0.5435	0.0110
44	0.6080	0.0910	0.5444	0.5179	0.0126
45	0.6497	0.0880	0.5222	0.5009	0.0140
46	0.6914	0.0845	0.5009	0,4809	0.0152
47	0.7331	0.0810	0.4804	0.4610	0.0165
48	0.7747	0.0785	0.4608	0.4468	0.0175
49	0.8164	0.0755	0.4420	0,4297	0.0184
50	0.8581	0.0715	0.4240	0.4069	0.0195
51	0.9415	0.0670	0.3900	0.3813	0.0216
52	1.0249	0,0615	0.3580	0.3500	0.0236
53	1.1083	0.0570	0.3301	0.3244	0.0252
54	1.1916	0.0520	0,3037	0,2960	0.0270
55	1.2750	0.0485	0.2794	0.2760	0.0283
56	1.3584	0.0445	0.2571	0,2533	0.0295
57	1.4418	0.0405	0.2365	0.2305	0.0308
58	1.5252	0.0370	0.2176	0.2106	0.0322
59	1.6085	0.0335	0.2002	0.1907	0.0337
60	1.6919	U.0310	0.1842	0.1764	0.0350
61	1.8170	0.0270	0.1625	0.1537	0.0374
62	1.9421	0.0240	0,1434	0.1366	0.0395
63	2.0671	0.0215	0.1265	0,1224	0.0410
64	2.1922	0.0185	0.1117	0.1053	0.0427
65	2.3173	0.0165	0,0985	0.0939	0.0441
66	2.4423	0.0145	0.0870	0.0825	0.0454
67	2.5674	0.0130	0.0767	U.0740	0.0463
68	2.6925	0.0115	0.0677	0.0655	0.0472
69	2.8176	0.0100	U.0598	0.0569	0.0480
70	2.9426	0.0090	0,0527	0.0512	0.0486
71	3.1511	0.0070	0.0428	0.0398	0.0503
72	3.3595	0.0060	0.0348	0.0341	0.0512
73	3.5680	0.0040	0.0282	0.0228	0.0530
74	3.7764	0.0030	0.0229	0.0171	0.0547
75	3.9849	0.0020	0.0186	0.0114	0.0567
76	4.1933	0.0015	0.0151	0.0085	0.0584
77	4.4018	0.0010	0.0123	0.0057	0.0600
78	4,6102	0.0000	0.0099	0.0000	0.0624
79	4.8187	0.0000	0.0081	0.0000	0.0000
80	5.0271	0.0000	0.0066	0.0000	0.0000

Fe exp.

22

0.9277

TABLA 3.5

	TETA.	ABS PROM 5	E0 Teo.	E0 Exp.	D EXP.
· 1	0.0000	0.0000	3.0000	0.0000	0.0000
2	0.0035	0.0335	0.9965	0 1718	0 0029
3	0.0069	0.1975	0.9931	1 0178	0.0028
4 .	0.0104	0.1970	0.9896	1.0103	0.0027
5.	0.0139	0.1985	0.9862	1.0179	0.0026
6	0.0174	0.1865	0.9829	0.9564	0.0027
7	0.0208	0.1850	0.9794	0.9487	0.0028
8	0.0243	0.1845	0.9760	0.9462	0.0030
9	0.0278	0.1885	0.9726	0.9667	0.0030
10	0.0313	0.1880	0.9692	0.9641	U.0030
11	0.0347	0.1860	0.9659	0.9538	0,0031
12	0.0382	0,1860	0.9625	0.9538	0.0031
13	0.0452	0.1850	0.9558	0.9487	0.0032
14	0.0521	0.1835	0.9492	0.9410	0,0032
15	0.0591	0,1815	0.9426	0.9308	0.0033
16	0.0660	0.1810	0.9361	0.9282	0.0034
17	0.0730	0.1795	0,9296	0.9205	0.0035
18	0.0799	0.1795	0.9232	0.9205	0.0036
19	0.0869	0.1780	0.9168	0.9128	0.0036
. 20	0.0938	0.1750	0,9105	0.9026	0.0037
21	0.1077	0.1735	0.8979	0.8897	0.0039
22	0.1216	0.1/15	0.8855	0.8795	0.0041
23	0.1355	0.1695	0.8733	0.8692	0.0042
24	0.1494	0.1000	0.0012	0.8813	0.0043
26	0.1033	0.1615	0.0455	0.8482	0.0044
27	0 1011	0 1605	0.0370	0.0232	0.0040
28	0.2050	0.1580	0 8147	0.8103	0.0049
29	0.2189	0,1560	0.8034	0.8000	0.0050
30	0.2328	0.1530	0.7923	0.7846	0.0052
31	0.2536	0.1505	0.7760	0.7718	0.0054
32	0.2745	0.1480	0.7600	0.7590	0.0056
33	0.2953	0.1450	0.7443	0.7436	0.0058
34	0.3162	0.1415	0.7289	0.7256	0.0060
35	0.3370	0,1390	0.7139	0.7128	0.0062
36	0.3578	0.1380	0.6992	0.7077	0.0062
37	0.3787	0.1325	0,6848	0.6795	0.0064
38	0.3995	0.1300	0.6706	0.6667	0.0067
39	0.4204	0.1275	0.6568	0.6538	0.0069
40	0.4412	0.1230	0.6433	0.6308	0.0073

TA RLA . (Cont

			and the second			
	TETA.	ABS PROM 5	EO Teo.	EƏ Exp.	D EXP.	
41	0.4829	0.1195	0.6170	0.6128	0,0090	
42	0.5246	0,1130	0.5918	0.5795	0.0090	
43	0.5663	0,1080	0.5676	0.5538	0.0101	
44	0.6080	0.1015	0.5444	0.5205	0.0116	
45	0.6497	0.0980	0.5222	0.5026	0.0129	
46	0.6914	0.0945	0.5009	0.4846	0.0140	
47	0.7331	0.0905	0.4804	0.4641	0.0151	
48	0.7747	0,0860	0.4608	0.4410	0.0163	
49	0.8164	0.0820	0.4420	0.4205	0.0176	
50	0.8581	0.0785	0.4240	0.4026	0.0189	
51	0.9415	0.0715	0.3900	0.3667	0.0222	
52	1.0249	0.0670	0.3588	0.3436	0.0248	
53.	1.1083	0.0620	0.3301	0.3179	0.0270	
54	1.1916	0.0565	0.3037	Q.2897	0.0292	
55	1.2750	U.US10	0.2794	0.2615	0.0317	
56	1.3584	0.0475	0.2571	0.2436	0.0338	
57	1.4418	0.0435	0.2365	0.2231	0.0357	
58	1.5252	0,0395	0.2176	0.2026	0.0377	
59	1.6085	0,0365	0.2002	0.1872	0.0395	
60	1.6919	0.0340	0.1842	0.1744	0.0410	
61	1.8170	0.0295	0.1625	0.1513	0.0438	
62	1.9421	0.0265	0.1434	0.1359	0.0459	
63	2.0671	0.0210	0.1265	0.1077	0.0493	
64	2.1922	0.0185	0.1117	0.0949	0.0523	
65	2.3173	0.0160	0.0985	0.0821	0.0551	
66	2.4423	0.0140	0.0870	0.0718	0.0577	
67	2.5674	0.0120	0.0767	0.0615	0,0603	
68	2.6925	0.0105	0.0677	0.0538	0.0625	
69	2.8176	0.0100	0.0598	0.0513	0.0641	
70	2.9426	0.0085	0.0527	0.0436	0.0657	
71	3.1511	0,0070	0.0420	0.0359	0.0681	
72	3.3595	0.0055	0.0348	0.0282	0.0702	
73	3.5680	0,0040	0.0202	0.0205	0,0725	
74	3.7764	0.0025	0.0229	0.0128	0.0752	
75	3.9849	0.0015	0.0186	0.0077	0.0779	
76	4.1933	0.0010	0.0151	0.0051	0.0803	
77	4.4018	0.0005	0.0123	0.0026	0.0826	
78	4.6102	0.0000	0.0099	0.0000	0.08494	
79	4,8187	0,0000	0.0081	0.0000	0,0000	
80	5.0271	0.0000	0.0066	0.0000	0.0000	

0.9051

TABLA 3.6

	TETA.	ABS PROM 6	E⇔ Teo.	E0 Exp.	D EXP.
1					
.,	0.0000	0.0000	1.0000	0.0000	0.0000
7	0 0040	0.0000	0.9965	0.0000	0.0035
7	0.0009	0.0505	0.9931	0.2874	0.0059
	0.0104	0.1345	0.9896	0.7655	0.0067
	0.0139	0.1720	0.9862	0.9789	0.0067
2	0.0174	0.1700	0.9828	0.9676	0.0068
á	0.0208	0.1730	0.9794	0.9846	0.0068
- C	0.0243	0.1/10	0.9760	0.9732	0.0068
10	0.0278	0.1705	0.9726	0.9704	0.0068
11	0.0313	0.1700	0.9692	0.9676	0.0068
11	0.0347	0.1710	0.9659	0.9732	0.0068
14	0.0382	0,1700	0.9625	0.9676	0,0068
13	0.0452	0.1700	0.9558	0.9676	0.0067
14	0.0521	0,1695	0.9492	0.9647	0.0067
15	0.0591	0.1690	0.9426	0.9619	0.0065
10	0.0660	0.1675	0.9361	0.9533	0.0064
1/	0.0730	0.1680	0.9296	0.9562	0.0063
18	0.0799	0.1640	0.9232	0.9334	0.0062
19	0.0869	0.1615	0.9168	0.9192	0.0062
20	0.0938	0,1605	0.9105	0.9135	0.0062
21 -	0.1077	0.1600	0.8979	0.9106	0.0062
22	0.1216	0.1580	0.8855	0.8993	0.0060
23	0,1355	0.1565	0.8733	0.8907	0.0059
24	0.1494	0.1520	0.9612	0.8651	0.0059
25	0.1633	0,1505	0.8493	0.8566	0.0059
26	0.1772	0.1500	0.8376	0.8537	0.0058
27	0.1911	0.1475	0.8261	0.8395	0.0057
28	0.2050	0.1465	0.8147	0.8338	0.0055
29	0.2189	0.1420	0.8034	0.8082	0.0055
30	0.2328	0.1405	0.7923	0.7997	0.0055
31	0.2536	0,1400	0.7760	0.7968	0.0052
32	0.2745	0,1385	0.7600	0.7883	0.0048
33	0.2953	0.1355	0.7443	0.7712	0.0044
34	0.3162	0.1315	0.7289	0.7484	0.0041
35	0.3370	0.1300	0.7139	0.7399	0.0037
36	0.3578	0.1280	0.6992	0.7285	0.0033
37	0.3787	V.1225	0.6848	0.6972	0.0032
39	0.3995	0.1205	0.6706	0.6858	0.0030
39	0.4204	0.1185	U.6568-	0.6744	0.0028
40	0.4412	9,1165	0.6433	0.6631	0.0025

TABLA 2.6 (Cont.)

	TETA.	ABS PROM 6	EO Tec.	E0 Exp.	D EXP.
41	0.4829	0.1100	0.6170	0.6261	0.0027
42	0.5246	0.1075	0.5918	0.6118	0.0024
43	0.5663	0.1010	0.5676	0.5748	0.0025
44	0.6080	0.0940	0.5444	0.5350	0.0034
45	- 0.6497	0.0910	0.5222	0.5179	0.0041
46	0,6914	0.0880	0.5009	0.5009	0.0045
47	0.7331	0.0835	0.4804	0.4752	0.0051
48	0.7747	0.0800	0.4608	0.4553	0.0058
49	0.8164	0.0770	0.4420	0.4382	0,0063
50	0.8581	0.0720	0.4240	0.4098	0,0073
51	0.9415	0.0680	0.3900	0.3870	0.0089
52	1.0249	0.0620	0.3588	0.3529	0.0107
53	1,1083	0.0575	0.3301	0.3273	0.0121
54	1.1916	0.0520	0.3037	0.2960	0.0139
55	1,2750	0.0495	0.2794	0.2760	0.0152
56	1,3584	0.0450	0.2571	0.2561	0.0161
57	1.4418	9,0400	0.2365	0.2277	0.0177
58	1.5252	0.0380	0.2176	0.2163	0.0186
59	1.6085	0.0350	0.2002	0.1992	0.0194
60	1.6919	0,0305	0.1842	0.1736	0.0210
61	1.8170	0.0285	0.1625	0.1622	0.0223
62	1.9421	0.0225	0.1434	0.1281	0.0254
63	2.0671	0.0200	0.1265	0.1138	0.0280
64	2,1922	0.0185	0.1117	0.1053	0.0297
65	2,3173	0.0175	0.0985	0.0996	0.0304
66	2.4423	0.0145	0.0970	0.0825	0.0317
67	2.5674	U.0115	0.0767	0.0655	0.0337
68	2.6925	0,0100	0.0677	0.0569	0.0356
69	2.8176	0.0095	0.0598	0.0541	0.0368
70	2.9426	0.0085	0.0527	0.0484	0.0379
71	3,1511	0.0075	0.0428	0.0427	0.0388
72	3.3595	0.0055	0.0348	0.0313	0.0403
73	3,5680	0.0035	0.0282	0.0199	0.0427
74	3.7764	0,0020	9.0229	0.0114	0.0457
75	3.9849	0.0010	0.0186	0.0057	0.0468
76	4,1933	0.0005	0.0151	0.0028	0.0517
77	4.4018	U.UOOO	0.0123	0.0000	0.0545#
78	4.6102	0.0000	0.0099	0.0000	0.0000
79	4.8187	0.0000	0.0081	0.0000	0.0000
80 -	5,0271	0.0000	0.0066	0.0000	0.0000

Fe exp.

0.9332

τ

TABLA 3.7

	TETA.	ABS PHOM 7	E6 Tec.	EO Exp.	D EXP.
1 .	0,0000	0.0000	1,0000	0.0000	0.0000
2	0,0035	0.0000	0.9965	0.0000	0.0035
. 3	0,0069	0.0380	0.9931	0.1949	0.0062
4	0.0104	0.1315	0,9896	0.6744	0.0073
5	0.0139	0.1412	0.9862	0.7241	0.0083
Ġ	0,0174	0.1510	0.9828	0.7744	0.0000
7	0.0208	0.1655	0.9794	0.8487	0.0095
8	0.0243	0.1705	0.9760	0.8744	0.0098
ġ	0.0278	0.1685	0.9726	0.8641	0.0102
10	0.0313	0.1685	0.9692	0.8641	0.0106
11	0.0347	0.1700	0.9659	0.8718	0.0109
12	0.0382	0.1700	0,9625	0.8718	0.0112
13	0.0452	0.1700	0,9558	0.8718	0.0118
14	0.0521	0.1695	0.9492	0.8692	0,0124
15	0.0591	0.1685	0,9426	0.8641	0.0130
15	0.0660	0.1680	0.9361	0.8615	0.0135
17	0.0730	0.1670	0,9296	0.8564	0.0140
18	0.0799	0.1655	0.9232	0.8487	0.0146
10	0.0869	0.1630	0,9168	0.8359	0.0152
20	0.0938	0.1610	0,9105	0.8256	0.0158
21	0.1077	0.1605	0.8979	0.8231	0.0169
77	0.1216	0.1590	0,8855	0.8154	0.0180
22	0 1355	0.1570	0,8733	0.8051	0.0190
24	0.1494	0.1535	0,8612	0.7872	0.0201
30	0.1633	0.1515	0.8493	0.7769	0.0212
25	0 1772	0.1500	0,8376	0.7692	0.0222
27	0 1917	0.1485	0,8261	0.7615	0.0232
20	0 2050	0.1470	0.8147	0.7538	0.0241
20	0 2189	0.1435	0.8034	0.7359	0.0252
20	0 2328	0.1410	0.7923	0.7231	0.0262
20	0.2536	0.1395	0,7760	0.7154	0.0276
21	0 2746	0 1370	0.7600	0.7026	0.0290
22	0.2053	0 1340	0.7443	0.6872	0.0303
- CC	0 2162	n 1310	0.7289	0.6718	0.0317
24	0.3102	0 1285	0.7139	0.6590	0.0330
35	0.3370	0 1250	0,6992	0.6410	U.0344
30	0.3370	0 1210	0.6848	0.6205	0.0358
37	0.3/0/	0 1200	0.6706	0.6154	0.0371
38	0,3995	0.1200	0.6568	0.6026	:0.0384
39	0.4204	0.1175	0.6433	0.5821	0.0398
/. I 3					

TABLA 3.7 (Cont.)

	TETA.	AES PROM 7	ES Tec.	E Q Exp.	D EXP.
41	0.4829	0,1100	0.6170	0.5541	0.0425
42	0.5246	0.1045	0.5918	0.5359	0.0454
43	0.5663	0.0995	0.5676	0.5103	0.0483
44	0.6060	0.0950	0.5444	0.4872	0.0512
45	0.6497	0.0915	0.5222	0.4692	0.0539
46 -	0.6914	0.0875	0.5009	0.4487	0.0565
47	0.7331	0.0840	0.4804	0.4308	0.0590
48	0.7747	0.0800	0.4608	0.4103	0.0615
49	0.8164	0.0775	0.4420	0.3974	0.0637
50 🔅	0.8581	0.0775	0.4240	0.3974	0.0652
51	0.9415	0.0675	0.3900	0.3462	0.0703
52	1.0249	0.0630	0.3589	0.3231	0.0745
53	1.1083	0.0580	0.3301	0.2974	0.0784
54 ::	1.1916	0.0525	0.3037	0.2692	0.0924
-55	1.2750	0.0490	0.2794	0.2513	0.0858
56	1.3584	0.0455	0.2571	0.2333	0.0886
57	1.4418	0.0415	0.2365	0.2128	0.0915
58	1.5252	0.0380	0.2176	0.1949	0.0941
59	1.6085	0.0350	0.2002	0.1795	0.0966
60	1.6919	0.0325	0.1942	0.1667	0.0987
61	1.8170	0.0285	0.1625	0.1462	0.1021
62	1.9421	0.0230	0.1434	0.1179	0.1064
63	2.0671	0.0215	0.1265	0.1103	0.1095
64	2.1922	0.0195	0.1117	0,1000	0.1119
65	2.3173	0.0155	0.0985	0.0795	0.1151
66	2.4423	0.0150	0.0870	0.0769	0.1170
67	2.5674	0.0130	0.0767	U.0667	0.1189
68	2.6925	0.0110	0.0677	0.0564	0.1209
69	2.8176	0.0100	0.0598	0.0513	0.1224
70	2.9426	0.0095	0.0527	0.0487	0.1233
71	3.1511	0.0080	0.0428	0.0410	0.1247
72	3.3595	0.0060	0.0349	0.0208	0.1264
73	3.5680	0.0045	0.0202	0.0231	0.1281
74	3.7764	0.0025	0.0229	0.0128	0.1307
75	3.9849	0.0015	0.0186	0.0077	0.1334
76	4.1933	0.0005	0.0151	0.0026	0.1364
77	4.4018	0.0000	0.0123	0.0000	0.1392 🕊
78	4.6102	0.0000	0.0099	0,0000	0.0000
79	4.8187	0.0000	0.0081	0.0000	0.0000
80	5.0271	0.0000	0.0066	0.0000	0.0000

FH EXP.

0.8485

TABLA 2.8

E0 Exp. ABS PROM 6 E9 Tec. D EXP. TETA 0.0000 1 0.0000 1.0000 0.0000 0.0000 22 0.0035 0.0080 0.9965 0.0033 0.0455 0.0069 0.0530 0.9931 0.3017 0.0057 4 0.0104 0.9896 0.0920 0.5236 0.0073 5 0.0139 0.9862 0.0078 0.1520 0.8651 6 7 0.0174 0.1720 0.9829 0.9739 0.0078 0.0208 0.9794 0.9960 0.0077 0.1750 8 0.9760 0.9846 0.0243 0.1730 0.0077 ģ 0.0278 0.1715 0.0726 0.9761 0.0077 10 0.9692 0.0313 0.1715 0.9761 0.0077 11 0.0347 0.1710 0.9659 0.9732 0.0077 12 0.0382 0.1705 0.9625 0.9704 0.0076 13 0.0452 0.1695 0.95580.9647 0.0076 14 0.0521 0.9492 0.9647 0.0075 0.1695 15 **U.US91** 0.9426 0.9590 0.0074 0.1685 16 0.0660 U.1680 0.9361 0.9562 0.0073 17 0.0730 0.9296 0.9533 0.0072 0.1675 18 0.9232 0.9448 0.0070 0.0799 0.1660 19 0.0869 0.1640 0.9168 0.9334 0.0070 20 0.0938 0.9105 0.9249 0.0069 0.1625 21 0.1077 0.8979 0.9135 0.0067 0.1605 22 0.1216 0.1590 0.8855 0.9050 0.0066 23 0.1355 0.1565 0.8733 0.8907 0.0064 24 0.0063 0.1494 0.1535 0.8612 0.8736 25 0.1633 0.1520 0.8493 0.8651 0.0062 0.1772 0.8376 0.8527 0.0060 26 0.1500 0.8423 0.0059 27 0.1911 0.1480 0.8261 0.8253 0.0058 29 0.2050 0.1450 0.8147 0.0057 29 0.2189 0.1435 0.8034 0.8167 0.7923 0.8025 0.0056 30 0.2328 0.1410 0.7911 0.0055 0.7760 31 0.2536 0.13900.7769 32 0.2745 0.1365 0.7600 0.0053 0.7443 0,7740 0.0049 33 0.2953 0.1360 0.7289 0.7484 0.0046 0.3162 0.1315 34 0.7139 0.7228 0.0046 35 0.3270 0.1270 0.3579 0.6992 0.7001 0.0047 36 0.1230 0.6773 0.6848 0.0050 37 0.3797 0.1190 0.0053 0.3995 0.6706 0.6659 38 0.1170 0.6517 0.0055 0.6568 39 0.42040.1145 0.0060 0.6433 0.6289 40 0.4412 0.1105

TABLA 2.8 (Conti)

FTA ABS PROM 8 Eé Tec. F≌ Exp. D EXP. 41 0.4829 0.1070 0.6170 0.6090 0.0068 0.1010 42 0.5246 0.5918 0.5748 0.0081 43 0.0975 0.5676 0.5663 0.5549 0.0091 44 0.6080 0.0920 0:5444 0.8293 0.0102 45 0.6497 0.0890 0.5222 0.5065 0.0113 46 0.5914 0.0865 0.5009 0.4923 0.0121 0.7331 47 0.0835 0.4804 0.4752 0.0128 48 0.7747 0.0800 0.4608 0.4553 0.0134 0.4420 49 0.8164 0.0775 0.4411 0.0138 50 0.8581 0.0735 0.4240 0.4193 9.0144 51 0.9415 0.0690 0.3900 0.2927 0.0156 52 1.0249 0.0640 0.3598 0.26430.0164 53 1.1083 0.0590 0.3301 0.3358 0.0171 54 1.1916 0.0545 0.3037 0.31020.0177 55 1,2750 0.0485 0.2794 0.2760 0.0190 56 1.3584 0.0455 0.2571 0.2590 0.0197 57 1.4418 0.0415 0.2365 0.2362 0.0206 58 1.5252 0.0390 0.2176 0.2220 0.0210 59 1.6085 0.0350 0.2002 0.1992 0.0218 60 1.6919 0.0315 0.1842 0.1793 0.0229 61 1.8170 0.0275 0.1625 0.1565 0.0250 62 1.9421 0.0235 0.1434 0.1338 0.0273 63 2.0671 0.0205 0.1265 0.1167 0.0296 64 2.1922 0.0175 0.11170.0996 0.0320 0.0985 65 2.3173 0.0155 0.0882 0.0341 66 2.4423 0.0140 0.0970 0.0797 0.0357 67 2.5674 0.0120 0.0767 0.0683 0.0374 0.0677 68 2.6925 0.0100 0.0569 0.0393 69 2.8176 0.0090 0.0599 0.0512 0.0409 70 2.9426 0.0080 0.0527 0.0455 0.0422 71 3.1511 0.0065 0.0428 0.0370 0.0444 72 3.3595 0.0050 0.0348 0.0285 0.0465 72 3.5680 0.0035 0.0282 0.0199 0.0489 74 3.7764 0.0025 0.0229 0.0142 0.0513 75 3.9849 0.0010 0.0186 0.0057 0.0544 76 4.1933 0.0005 0.0151 0.0029 0.0573 4.4018 77 0.0000 0.0123 0.0000 0.06016 78 4.6102 0.0000 0.0099 0.0000 0.0000 79 4.8187 0.0000 0.0081 0.0000 0.0000 80 5.0271 0.0000 0.0066 0.0000 0.0000

F9 exp.

0.9276

D EXP. EXP Teo ABS PROM £θ 0.0000 0.0000 1.0000 6,0000 0.0000 0.0035 0.9965 0.0000 0.0000 2 0.0035 0.5236 0.0051 0.9931 0.0920 3 0.0069 0.0057 0.8167 0.9896 0.0104 0.1435 4 0.0056 1.0330 0.9862 5 0.0139 0.1815 0.0054 0.9828 1.0245 6 0.0174 0:1800 0.0054 0.9960 0.9794 0.1750 7 0.0208 1.0017 0.0053 0:9760 0.1750 8 0.0243 0.0052 0.9932 0.1745 0.9726 0.0378 9 0.9932 0.0051 0.9692 0.0313 0.1745 10 0.0050 0.9659 0.9960 0.0347 0.1750 11 0.0049 1.0017 0.9625 0.1760 0.0382 12 0.9875 0.00.7 0.9558 13 0:0452 0.17350.9846 0.0045 0.9492 0.1730 0.0521 14 0.9761 0.0043 0.9426 0.0591 0.1715 15 0.9361 0.9732 0.0040 0.1710 0.0660 16 0.0038 0.9647 0.9296 0.1695 0.0730 17 0.9533 0.0036 0.9232 0.1675 18 0.0799 0.0034 0.9476 0.9168 0,1665 19 0.0869 0.0032 0.9449 0.9105 0.1660 0.0938 20 0.0028 0.9363 0.8979 0.1645 21 0.1077 0.0023 0.9249 0.8855 0.1216 0.1625 22 0.0019 0.9733 0.9106 0.1600 23 0.1355 0.0013 0.9078 0,1595 0.8612 24 0.1494 0.0090 0.8907 0.8493 0.1565 25 0.1633 0.0004 0.8736 0.8370 0.1535 26 0.1772 0.0000 0.8594 0.8261 0.1510 27 0.1911 0.0004 0.8480 0.8147 0.1490 28 0.2050 0.0008 0.9395 0.8034 0,1475 29 0.21890.0012 0.7923 0.8310 0.1460 30 0.2328 0.0019 0.7760 0.81390,1430 31 0.2536 0.0025 0.7600 **v.7997** 0.1405 32 0.2745 0.0031 0.7797 0.7443 0.1370 33 0.2953 0.0036 0.7627 0.7289 0.1340 34 0.3162 0.0041 0.7427 0.7139 0.1305 35 0.3370 0.0045 0.7285 0.6992 0.1280 36 0.3578 0.0050 0.7143 0.6848 0.1255 0.3787 27 0.0055 0.7001 0.6706 0.1230 0.3995 28 0.0058 0.6801 0.6568 0.1195 0.420439 0.0063 0.6716 0.6433 9.11800.4412 40

TABLA 3.9

TABLA 3.9 (Cont.)

	TETA.	ABS PRON 9	E0 Teo.	E⇔ Exp.	D EXP.
•					
41.	0.4829	0,1120	0,6170	0.6375	0.0066
42	0.5246	0,1060	0.5918	0.6033	0.0065
.43 .	0.5663	0.1020	0.5676	0.5805	0.0066
44	0.6080	0.0075	9.5444	0.5549	0.0065
45	0.6497	0.0950	0.5222	0.5407	.0.0068
46	0.6914	0.0905	0.5009	0.5151	0.0070
47	0.7331	0.0265	0.4804	0.4923	0.0071
48	0.7747	0.0920	0.4608	0.4667	0.0059
49	0.8164	0.0785	0.4420	0.4468	0.0057
50	0.8581	0.0760	0.4240	0.4326	0.0067
51	0.9415	0.0690	0.3900	0.3927	0.0055
52	1.0249	0.0645	0.3588	0.3671	0.0049
53	1.1083	0.0590	0,3301	0.3358	0.0042
54	1.1916	0.0525	0.3037	0.2988	0.0027
55	1.2750	0.0485	0.2794	0.2760	0.0014
. 56	1.3584	0.0455	0.2571	0.2590	0.0007
57	1.4418	0.0405	0.2365	0.2305	0.0007
58	1.5252	0.0375	0,2176	0.2134	0.0019
59	1.6085	0.0250	0,2002	0.1992	0.0026
60	1.6919	0.0320	0.1842	0.1821	0.0034
61	1.8170	0.0265	0.1625	0.1508	0.0052
62	1.9421	0.0235	0.1434	0.1338	0,0025
63	2.0671	0.0200	0,1265	0.1128	0.0112
64	2.1922	0.0180	0.1117	0.1024	0.0133
65	2.3173	0.0155	0.0985	0.0882	0.0154
66	2.4423	0.0125	0.0870	0.0/11	0.0180
67	2.5674	0.0105	0.0767	0.0244	0.0208
68	2.6925	0.0042	0.0677	0.0541	0.0230
69	2,8176	0.0080	0.0598	0.0455	0.0255
70	2.9426	0.0070	0.0527	0.0398	0.01/4
/1	3.1511	0.0000	0.0428	0.0341	0.0302
72	3.3595	0.0040	0.0340	0.0220	0.0235
13	3.5680	0.0020	0.0282	0.0171	0.0304
74	3.7764	0.0015	0.0429	0.0000	0.0400
75	2.9849	0.0002	0.0100	0.0040	0.0437
	4.1933	0.0002	0.0102	0.0011	0.0406*
<u></u>	4.4018	0.0000	0.0123	0.0000	0.0000
18	4.0102	0.0000	0.0084	0.0000	U 0000
	4.818/	0.0000	0.00001	0.0000	0.0000
40	5.02/1	ϕ , $\phi\phi\phi\phi$	0.0000	0.0000	0.0000

Fe exp.

-

0.9379

TABLA 3.10

	TETA.	ABS PROM 10	E0 Teo.	E0 Exp.	D EXP.
1 .	0.0000	0.0000	1.0000	0,000.0	0.0000
2	0.0035	0.0000	0.9965	0.0000	0.0035
3	0.0069	0.0930	0.9931	0 4769	0.0053
4	0.0104	0.1140	0,9896	0.5846	0.0067
5	0.0139	0.1800	0.9862	0.9231	0.0069
6	0.0174	0,1865	0.9828	0.9564	0.0070
7	0,0208	0,1900	0.9794	0.9744	0.0070
8	0.0243	9.1910	0.9760	0.9795	0.0070
9	0.0278	0,1905	0.9726	0.9769	0.0070
10	0.0313	0.1900	0.9692	0,9744	0.0070
11	0.0347	0.1905	0.9659	0.9769	0.0070
12	0.0382	0,1905	0.9625	0.9769	0.0069
13	0.0452	0,1895	0.9558	0.9718	0.0068
14	0.0521	0.1880	0.9492	0.9641	0.0068
15	0.0591	0.1870	0.9426	0,9590	0.0067
16	0.0660	0.1855	0.9361	0.9513	0.0066
17	0.0730	0.1835	0.9296	0.9410	0.0065
16	0.0799	0,1825	0.9232	0.9359	0.0065
19	0.0869	0,1810	0.9168	0.9282	0.0064
20	0.0938	0.1805	0.9105	0.9256	0.0063
21	0,1077	0,1790	0.8979	0.9179	0.0061
22	0.1216	0,1765	0.8855	0.9051	0.0059
23	0.1355	0.1730	0.8733	0.8872	0.0058
24	0.1494	0.1705	0.9612	0.8744	0.0057
25	0.1633	0,1695	0.8493	0.8692	0.0080
26	0.1772	0.1670	0.8376	0.8564	0.0054
27	0.1911	0,1635	0.8261	0.8385	0.0053
29	0.2050	0.1630	0.8147	0.8359	0.0051
29	0,2189	0.1600	0.8034	0.8205	0.0049
30	0.2328	0.1580	0.7923	0.8103	0.0047
31	0.2536	0.1525	0.7760	0.7821	0.0048
32	0.2745	0.1510	0.7600	0.7744	0.0046
33	0.2953	0.1490	0.7443	0.7641	0.0044
34	0.3162	0.1470	0.7289	0.7538	0.0040
35	0.3370	0,1430	0.7139	0.7333	0.0038
36	0.3579	0.1400	0.6992	0.7179	0.0035
37	0.3787	0,1370	0.6848	0.7026	0.0033
38	0.3995	0,1345	0.6706	0.6897	0.0031
39	0.4204	0,1310	0.6568	0.6718	0.0029
40	0.4412	0,1300	U.6433	0.5567	0.0025

TAPLA 3.10 (Cont.)

	JETH.	ABS PROM 10	원들 (박종). 	E⇒ Eva.	D 83 PV
41	11.450.9	011010	0.6170	11. m.T.Y.M.	0.0017
42	0.5045	0.1185	0.5419	0.5974	0.0030
4	0.5563	л. 1135.	1. 5.5 76	の、もなった	0.0033
44	8.6050	0.1075	0.5444	0.5519	9,0035
45,	6 6407	0.10:0	0.5222	0.5179	6.0042
46	0.6914	8.0975	0.5002	0.5000	0.2647
47	0.7332-	0,0930	0.4204	しいがらう	0.0050
48	0,7742	0.0835	$0.4 \pm 0 \odot$	$f_{n-1}(x) = f_{n-1}^{n-1}$	0.0057
43	\mathcal{C}_{*}	0 , $0 \le \epsilon$	0.44 <u>10</u>	计,在并分支	0. (694)
50	6.8CH1	0.0829	9. A2.43	1. 1. 1. 1. 1.	0.70 ± 2
5-1	机合金成合		0.28ee	n v s prē T	1991 - CANER DA
72	1,924.2	3.5.5.55		10 a 2 5 4 4	令,建立这样
53	1,1990			C. Shei	1.21948
5 A	1.1915	14 - 14 - 12 - 12 - 12 - 12 - 12 - 12 -	0121137	0.2192	.9111
	1.2750	9.0.40	1.2794	0.17:P	5.83 <u>1</u> 2
55	1.0394	0.04999	0.1371	9.2517	
	1.4415	2,0455			
- 12 -	1.7273	보고 부분되	やいごたでも	(• 21 <u>-</u>	1911년 1월 12일 1911년 1월 12일 1911년 1월 12일
	1.4640	21. H 3 FT			
Ξû	1.4713		a ta		
5 i j		California -	상태 한 국민교 관		a start i
4 Q	1,2421		0.1424		
19 - C				Q . A	1 / 1
				213052	
= =					· · · · · · · · · · · · · · · · · · ·
				ine dia s	
·	2.25 - 4 	<i>V. 019</i> 1			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			
100	·····································				
	ын 299 жийн 18 - 196 тор	11.00 × 7.1 10.00 × 10.00	• 1 • 1 • 1 •		• • • • • • • • • • • • • • • • • • •
	2.1.2.1.1.1 1.1.45.2.45	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
-,-	202222 12 1-2 202	1000 Marca 2000 1000 Marca 2000	1. 4 2 2 4 7 2 3 4 1 1 1 1 1 1 1 1		
13	್ರಾ ಬಿಡಿ ಅಂಶ ನಿಂದ ಶಾಗಿ ಬಿಡಿ	Con Constant		م با بوراد از از ایر بوره ای ا	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2 4934		1.11		10 21 23 3 20 22 2 2
	2.1993	C • C • C • C			
				2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	シンコーシュー ひょう ひょう ひょう ひょう
70			an a		144 STA 2
		Sec. Section 1	14.125	1. for the second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
- 11	4.11271	10 . (14) (1	0 0064	3.6.55	6. 1.00
	•				5 6 6 6 7 7 1

두 🚽

· · ·

U. 9421

7

93

ŧ

BIBLIOGFAFIA

- 1.- A. PURSHARDT, L. Lipowska; Mixing phenomena in a contimuos tank reactor. Part I. International Chemical Engineering, Vol 13, No 2, April 1973.
- 2.- A. BURGHARDT, L. Lipowska; Mixing phenomena in a continuous tank reactor. Part II. International Chemical Engineering, Vol 14, No 1, January 1974.
- 3.- LEVENSPIEL, Octave, Ingeniería de las reacciones químicas, 2a. ed., Reverte, Barcelona, 1981.
- 4.- SMITH, J.M., Ingeniería de la cinética química, 2a. ed. Continental, Néxico, 1984.
- 5.- DE LA PEÑA MANRIQUE, Ramón, Introducción al análisis -ingenieril de los reactores químicos, la. ed., Limusa, México, 1981.
- 6.- DENBIGH, Mennet, Teoría del reactor químico, la. ed., -Alhambra, Madrid, 1968.
- 7.- KEEYSZIG, Erwin, Introducción a la estadística matemá-tica, la. ed., Limusa, México, 1979.
- 8.- MILLER, Irwin, F.E. Jhon, Probabilidad y estadística <u>pa</u> ra ingenieros, la. ed., Reverte, Móxico, 1980.

9.- GODOY ROMERO, José Manuel, Estudio de la distribución de tiempos de residencia on un reactor -continuo de mezcin completa con un trazador como componente no reactivo, (tesis), U.A.G., 1980.

10. RAMÍREZ BECERRA, Zeferino Ismael, Influencia de la pos<u>i</u> ción del agitador en la distribución de tiempos de residencia, Farte I: Alimentación del tanque cercana a la mitad del n<u>i</u> vel del líquido, (tesis), U.A.G., 1981.

11. RODELO PEREZ, Luis Guillermo, Influencia de la excentr<u>i</u> cidad del agitador en la distribución de tiempos de residencia en un reactor de -mezcla completa. Parte 3: Angulo de 135 entre la boca de entrada y salida, (tesis) U.A.G., 1986.

12. INFANTE, S., Apuntes del curso: Métodos estadísticos no paramétricos, Cuarta escuela de verano, -IPN, 1979.

75