ESTIMACION DEL PARAMETRO DE ATENUACION USANDO ESPECTROS DE MOVIMIENTOS FUERTES EN LA COSTA DE GUERRERO, MEXICO.

ROSA ADRIANA ANGUIANO ROJAS

TESIS

Presentada a la División de Estudios

de Posgrado de la

FACULTAD DE INGENIERIA

de la

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

como requisito para obtener

el grado de

MAESTRO EN INGENIERIA

(EXPLORACION)

CIUDAD UNIVERSITARIA, ENERO 1989.

	IS.	CON	
FALLA	CE	ORIC	Bin

Zes.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

En este trabajo se estimó el parámetro de atenuación para la zona de Guerrero a partir de los espectros de los acelerogramas obtenidos por la red acelerográfica de Guerrero para sismos ocurridos en 1985, 1986 y 1987.

La estimación de la atenuación se obtuvo siguiendo los lineamientos presentados principalmente por Singh et al. (1982), Anderson y Hough (1984), y Hough y Anderson (1988), quienes relacionan la parte de la atenuación independiente de las frecuencias con un parámetro de decaimiento espectral llamado kappa (k), para su modelo de espectro de amplitud; $A(f) = A_0 e^{-\prod kf}$. k también ha sido relacionado con la distancia a la que ocurre el sismo, $k(r)=k_0+\mu r$, de manera que el valor de kappa para una distancia r=0, representa la atenuación debida a la geología subyacente a la zona donde se encuentra ubicada la estación acelerográfica mientras que la pendiente μ , representa la atenuación debida a una geología más regional.

En este trabajo se obtuvieron valores de ko y μ para la mayoría de las estaciones que constituyen la red de Guerrero, y se encontró una ko=0.034 seg y una μ =1.82×10⁻⁴ seg/km promedio para la zona.

Los valores encontrados complementan los obtenidos por Singh et al. (1989a) para la atenuación dependiente de la frecuencia en la zona de Guerrero.

I	INTRODUCCION			••••	1
II	ANTECEDENTES	••••••••••			2
III	PROCESO SEGUIDO				·
	III.1 Otención d	le Informac	ión		8
	III.2 Obtención	del Paráme	tro Kappa	1	10

T

INTRODUCCION

Uno de los parámetros más criticos para el diseño de edificios y estructuras, es el factor de calidad sismica Q. 1 Debido a que este factor juega un papel muy atenuación de ondas importante la. sismicas en \mathbf{a} frecuencias mayores de 1 Hz, se están realizando varios estudios para observar el comportamiento de la atenuación en las altas frecuencias buscando la forma de predecir el comportamiento de los espectros al ocurrir temblores fuertes.

Algunos investigadores han relacionado la parte de la atenuación, que es independiente de la frecuencia, con un parámetro de decaimiento espectral que se ha ilamado k (kappa), el cual ocurre en las altas frecuencias del espectro de aceleración. Dicho parámetro ha sido relacionado con la distancia y con la geologia subyacente al lugar dondo se realiza el registro del acelerograma.

En 1985, se inició la instalación de la red acelerográfica digital de Guerrero, por lo que se cuenta con registros acelerográficos de sismos ocurridos desde 1985. En este trabajo se obtuvieron valores de k para eventos ocurridos en 1985, 1986 y 1987, teniendo que localizar y procesar los eventos de 1987 para obtener dicho parámetro.

ANTECEDENTES

и

El factor de calidad sismico Q en las altas frecuencias ($f \ge 1$ Hz), ha sido estudiado por los investigadores usando esencialmente dos caminos. El primero consiste en obtener la atenuación de la coda ó de ondas Lg (Aki y Chouet. 1975; Aki, 1980 a,b; Singh y Herrmann, 1983). Y el segundo a partir del espectro de la onda P y/ó S. Para nuestro estudio consideramos la segunda opción.

El espectro de aceleración de un punto en la superficie de una tierra elástica, homogénea e isotrópica, en ausencia de atenuación anelástica, puede ser descrito como:

$$A(f,R) = C S(f) / R$$
 (1)

donde A(f, R) es el espectro de aplitudes a una frecuencia y una distancia al hipocentro R, S(f) es la fuente del espectro de aceleración y

$$C = R_{Ad} (2\Pi)^2 F P/(4\Pi\rho\beta^3)$$

donde $R_{\theta\phi}$ es el promedio del patrón de radiación, ρ y β son la densidad y la velocidad de las ondas S, F considera el efecto de superficie libre, y P representa la partición de la energía en dos componentes horizontales.

Si el efecto de Q es incluído en la propagación de ondas sísmicas, la ecuación (1) se representa como:

$$A(f,R) = C S(f) e^{-\prod C} / R$$

donde

$$t^{\bullet} = \int \frac{dR}{Q \beta}$$
(3)

(2)

Ahora escribimos 1/Q como (Singh et al., 1982; Hough et al., 1988):

$$1/Q = 1/Q_1 + 1/(Q_0 f)$$
 (4)

donde Q₁ es independiente de la frecuencia y Q₀ es una constante. Muchos estudios reportan a $Q \propto f^n$ (0 < n < 1), tal dependencia puede ser parametrizada por una apropiada elección de Q₁ y Q₀. La ecuación (3) puede ahora ser reescrita como:

 $A(f,R) = C S(f) e^{-\prod f} \int_{\bar{Q}_1^-}^{dR} \bar{\beta}^- \cdot e^{-\prod \int_{\bar{Q}_2^-}^{dR}} \beta / R$

Si representamos el promedio de Qi, Qo y β a lo largo de la trayectoría por Qi, Qo y β , respectivamente, entonces:

$$A(f,R) = C S(f) e^{-\prod f R / (\beta Q_1)} e^{-\prod R / (\beta Q_0)} / R$$
(5a)

 $\lambda(f,R) = C S(f) e^{-(\mu C)} / R$ (5b)

Supóngase que para sismo dado, con una un localización conocida, se tlenen diferentes registros disponibles a diferentes distancias R. Del espectro de estos registros A(f.R), usando la ecuación (5), podemos obtener S(f), Qi y Qo. Singh et al. (1982), siguieron este método para los registros de sismos ocurridos en el Imperial Valley. Ellos notaron que la forma del espectro no cambiaba con la distancia, esto es, $fR/(\beta Q_1)$, era aproximadamente independiente de R. Para explicar esto, ellos consideraron que la corteza estaba compuesta de una

З

capa delgada sobre un medio espacio con un $\beta i/\beta 2$ tan pequeño que las ondas S en la capa superior se propagaban casi verticalmente (figura 1). t en la ecuación (5b) puede ser representado por:

$$t^{*} \approx \left[r/(Q_{1}^{(2)}\beta_{2}) + d/(Q_{1}^{(1)}\beta_{1}) \right] + \left[r/(Q_{0}^{(2)}\beta_{2}f) + d/(Q_{0}^{(1)}\beta_{1}f) \right] (6)$$

Como la forma espectral no cambia con la distancia, Singh et al. (1982) asumieron que:

$$r/(Q_1^{(2)}\beta_2) \ll d/(Q_1^{(1)}\beta_1)$$

y el segundo paréntesis en la ecuación (6) fue considerado por ellos como:

$$r/(Q_0^{(2)}\beta_2 f) + d/(Q_0^{(1)}\beta_1 f) \approx R/(Q_0\beta f)$$
 (7)

donde β es el promedio pesado de la velocidad de corte a lo largo de la trayectoria. La ecuación (5a) ahora puede escribirse como:

$$A(f,R) = C S(f) e^{-\prod f d/(Q_1^{(1)}\beta_1)} e^{-\prod R/(Q_0\beta)}/R$$
(8)

ó

$$A(f,R) = C S(f) e^{-\prod f t} e^{-\prod R/(Q_0\beta)}/R$$
(9)

Como d es constante en la ecuación (8), el espectro observado no cambia con la distancia.

Como el primer tórmino exponencial no depende de la distancia a la fuente, en la formulación de Singh et al. (1982), lo que puede ser obtenido es Q_0 y

$$G(f) = S(f) e^{-\prod f t_1}.$$

Para estimar t_i se deben hacer consideraciones sobre la fuente del espectro S(f). Un modelo comúnmente aceptado, el cual explica más ó menos bien la mayoría de las observaciones sismológicas es el modelo de ω^{-2} (Aki, 1967; Brune, 1970).

Este modelo de fuente espectral de aceleración esta dado por:

$$S(f) = M_0 f_0^2 / (1 + f_0^2 / f^2)$$
(10)

donde Mo es el momento sísmico escalar, y fo, es la frecuencia de esquina dada por Brune (1970) como:

donde ro es el radio de la fuente. Nótese que:

$$S(f) = M_0 f_0^2 \qquad ; f \gg f_0$$

Esto es, el espectro de aceleración de la fuente es plano para frecuencias $f \gg f_0$.

Considerando ω^{-2} como modelo de fuente Singh et al. (1982), estimaron $t_1^{\bullet} = 0.047$ seg para el Imperial Valley. Si un modelo ω^{-3} es asumido, entonces $t_1^{\bullet} = 0.027$ seg para el Imperial Valley.

Retomando el primer término en el primer paréntesis de la ecuación (6) y considerando a (7) todavía como válida, podemos escribir:

 $A(f,R) = CS(f)e^{-\prod f(d/(Q_1^{(1)}\beta_1) + r/(Q_1^{(2)}\beta_2))}e^{-\prod R/(Q_0\beta)}/R$ (11)

Si consideramos que ω^{-2} es el modelo de fuente, entonces como se mencionó antes, $S(f) = M_0 f_0^2$ es plano para $f \gg f_0$. Ha sido una experiencia común el observar que el espectro de aceleración decae en las altas frecuencias. En la formulación de la ecuación (11) este decaimiento debe de ser atribuído al primer término exponencial, puesto que el segundo término exponencial no cambia la forma espectral de la fuente. Por consiguiente el espectro de aceleración de cualquier registro en las altas frecuencias (f > f_0) puede ser representado como:

$$A(f) = A_0 e^{-\int |f|^2 K}$$

en donde de la ecuación (11)

$$k = d/(Q_1^{(1)}\beta_1) + r/(Q_1^{(2)}\beta_1) = k_0 + \mu r \qquad (13)$$

(12)

donde $k_0 = d/(Q_1^{(1)}\beta)$ y $\mu = 1/(Q_1^{(2)}\beta_2)$.

Notese que k_0 es lo mismo que t_1 de Singh et al. (1982).

La ecuación (12) puede ser reescrita como:

$$\ln A(f) = \ln A_0 - \prod kf$$

esto es, si el modelo de fuente ω^{-2} es correcto, entonces la pendiente del decaimiento espectral al graficar A(f) vs f nos da el valor de k. Esta es la proposición que ha sido seguida por Anderson y Hough (1984), Anderson (1986), Hough y Anderson (1988) y Hough et al. (1988). Nótese que este método no da una estimación del Q₀ de la ecuación (11).

Ahora bien, si se tienen muchos registros acelerográficos para una estación, de diferentes eventos, a diferentes distancias, podemos obtener k para cada uno de estos registros y graficar a k como una función de la distancia al epicentro \mathbf{r} , $k = k_0 + \overline{k}(\mathbf{r})$.

La intersección en r=0 (en el epicentro), da cl valor de k_0 el cual representa la atenuación cerca del sitio. $\overline{k}(\mathbf{r})$ puede ser representada como $\overline{k}(\mathbf{r})=\mu\mathbf{r}$, como se espera de la ecuación (13). μ parece estar relacionada con la estructura regional a profundidad (Hough et al., 1988).

Para nuestro trabajo, usamos datos obtenidos de la red de acelerógrafos digitales de Guerrero para estimar k

en diferentes sitios siguiendo los procedimientos de Anderson y Hough (1984).

Fuente

Figura 1. Modelo de corteza propuesto por Singh et al. (1982) en el cual β_1 / β_2 es tan pequeño que las ondas 5 se propagan casi vertical mente en la capa superior.

PROCESO SEGUIDO

III.1 OBTENCION DE INFORMACION.

Se recopilaron las gráficas de los acelerogramas obtenidos 1987 en por la Red de Guerrero: se seleccionaron los eventos que fueron registrados por más de dos estaciones acelerográficas; todos los registros fueron ordenados tomándose en cuenta aquellos eventos para los cuales los registros eran claros y precisos, es decir se podía contar con la hora de inicio del registro con una aproximación de décimas de segundo. En algunas ocasiones no se obtuvo esta precisión en el tiempo ya que algunos registros presentaban una resolución al segundo. Cuando este era el caso se tomo medio segundo más del tiempo inicial, de manera que el error de lectura fuera de ±0.5 seg en vez de 1 seg. Los registros donde se pudo leer S-P tamblén fueron tomados en consideración para dicha selección.

A continuación se procedió a la obtención de las lecturas de llegadas S y P (cuando fue posible) ó S sólamente, de manera de ir creando un archivo de datos (ARCH-87) el cual fue posteriormente complementado con los datos disponibles del Servicio Sismológico Nacional (SSN), de SISMEX y de la Red Telemétrica de Guerrero.

La localización de los eventos de 1987 se realizó auxillándose del programa HYPO71 (Lee y Lahr, 1975).

Fue necesario crear un nuevo archivo que contuviera todas las estaciones tanto de la red acelerográfica, como de la red telemétrica, así como las estaciones del SSN y de SISMEX en el cual se incluyeron las coordenadas y la altitud de cada estación.

Cada evento fue localizado de manera particular buscando un número adecuado de lecturas a las cuales se les dió un peso dependiendo del grado de conflabilidad de las misma y de la distancia del foco a la estación. El modelo de la corteza utilizado para la localización es el empleado por el Instituto de Ingeniería.

Se obtuvo la localización de los eventos, cuya calidad dependió de la cantidad y calidad de los registros de tipo local que se tenían, tanto de la red acelerográfica ó de la red telemétrica, como de aquellos de tipo regional proporcionados por la red del SSN y la red de SISMEX. Puede decirse, que dicha localización fue más adecuada que la que hubiera podido hacerse usando los datos de cada una de las redes en forma independiente.

En las tablas I y II se presentan los eventos, las estaciones y los epicentros obtenidos; en la figura 2 se muestra la posición de las estaciones de la red de Guerrero y en la figura 3, se presentan las posiciones en el mapa de los eventos localizados.

Una vez localizados los eventos se procedió a obtener los datos digitales de los acelerogramas para cada una de las estaciones que habían registrado los eventos de 1987. El acceso a esta información fue

complicado y tardado, ya que se tuvieron que pasar los datos de un archivo binario a ASCII, y después transmitirios al sistema PRIME para "formatearlos" de manera adecuada para que pudieran ser usados en otro programa llamado TERRE. Los eventos de 1985 y 1986 ya Se encontraban en formato TERRE, por lo que se localizaron, clasificaron y se leyeron de cinta para utilizarlos.

III.2 OBTENCION DEL PARAMETRO KAPPA

Con base en la teoría descrita con anterioridad, se procedió en el sistema PRIME a arreglar los archivo de manera que pudieran ser leídos por el programa TERRE (Mena y Carmona, 1986), con dicho programa se pudó graficar, cortar, transformar y obtener valores de kappa en los espectros normales y suavizados para cada una de las componentes de los registros acelerográficos, de cada estación, para cada evento.

La secuencia seguida para la obtención de kappa fue: -Una vez obtenidos los registros en forma digital se procedió a quitar los "glitches".

-Se graficó el registro de aceleración para cada componente: la Norte-Sur, la Este-Oeste, y la Vertical, para cada estación, de cada evento.

-Para cada componente, de cada registro acelerográfico, para cada evento, la ventana de tiempo se tomo de tal forma que incluyera las llegadas directas de la onda S y,

cuando no era muy clara su terminación, la coda de S (figuras 4 y 5). De cualquier manera se observó que la forma del espectro no era sensible al tamaño de la ventana escogida, aún en el caso extremo que se muestra en la figura 8.

- Se obtuvo la transformada de Fourier de dicha ventana y se graficó el espectro de amplitudes de la aceleración obteniéndose el valor de kappa, entre las frecuencias donde se aprecia que el espectro decae, por el método de minimos cuadrados (figura 6).

- A continuación se suavizó el espectro de aceleración para volver a obtener los valores de kappa como se muestra en la figura 7. La razón de obtener kappa de espectros suavizados y no suavizados se debió a la inquietud surgida al observar que a veces la tendencia decreciente de los espectros no suavizados era un poco diferente a la presentada por el espectro ya suavizado. Por lo anterior se decidió encontrar datos para ambos casos y observar cuándo los datos son más consistentes.

Una vez obtenidos estos valores de kappa para todos los eventos, se procedió a formar una base de datos, tanto para los valores obtenidos de gráficas suavizadas como para las no suavizadas, como se muestra en la tabla III, para cada estación. A partir de dicha base de datos se graficaron los valores de kappa contra la distancia a la estación para cada uno de los diferentes eventos.

Figura 2. Ubicación de las estaciones que constituyen la Red Acelerógrafa de Guerrero.

Figura 6. na escogida.

Figura 8. En la primera gráfica se muestra el espectro de aceleración de un acelerograma de 16.66 seg de duración, mientras que en la inferior se tiene el espectro para una ventanade 7.21 seg.

-

FECHA DEL EVENTO HORA 870104 19:17

870326 18:38

870402

16:01

870514

21:36

05:13

870607

870603

13:30

ESTACIONES DE LA RED QUE REGISTRARON

> Coyuca Xaltianguis Mesas Paraíso

Venta

Xaltianguis Coyuca Ocotito

Cerro de Piedra

Ocotillo Cerro de Piedra Coyuca Xaltianguis Venta

Paraíso Xaltianguis

Las Vigas Xaltianguis

Copala Las Mesas Las Vigas San Marcos Cerro de Piedra Ocotito Xaltianguis Ocotillo Coyuca Tonalapa Filo de Caballo

TABLA I (continua)

8	7	0	6	0	9
---	---	---	---	---	---

15:37

Las Mesas Ocotillo Venta Xaltianguis Cerro de Piedra Coyuca Ocotito Las Vigas Filo de Caballo

Papanoa Petatlán

870621	13:00	Paraíso
		Atoyac
		Xaltianguis
870705	05:11	Coyuca
		Xaltianguis
870705	18:18	Copala
		Ocotito
		Las Vigas
870708	10:46	Xaltianguis
		Ocotito
070716	27.26	
810172	07:16	Tonalapa
		Teacalco
		Ocotito
870810	00:59	Atoyac
		Paraíso
871025	04:31	La Llave

TABLA I (continuación)

871106	01:34
871122	05:11
871122	12:30
871203	12:06

Petatlán

La Llave

Xaltianguis Ocotillo

Papanoa La Llave

Papanoa La Llave Petatlán

TABLA I (continuación).

				ang pangan digita di				
FECHA	ORIGEN	LAT N	LONG W	PROF.	Nc	RMS	ERH	ERZ
870104	1917 48.45	17-17.02	100- 4.60	19.01	3.67	1.43	50.7	77.0
870326	1838 26.15	16-49.99	100- 5.13	20.00	4.61	0.33	3.4	1.1
870402	16 1 51.88	16-50.67	99-40.93	20.11	4.02	0.23	2.3	2.8
870514	2136 11.57	17-18.91	99-58.96	20,90	3.64	0.52	8.4	10.5
870603	513 3.78	16-52.45	99- 9.72	22.23	3.78	0.29	4.5	4.3
870607	1330 15.08	16-42.27	98-55.50	19.58	4.69	2.00	14.8	6.4
870609	1537 5.52	16-56.89	99-50.04	28,53	4.17	0.22	1.6	1.8
870621	1300 44.99	16-47.28	100-16.57	51.39	3.90	0.89	11.3	9.4
870705	511 35.93	16-55.02	100- 5.17	26.00	3.54	0.28	4.0	2.3
870705	1818 53.01	16-27.06	98-46.14	15.00	4.80	1.94	31.3	7.0
870708	1046 37.10	17- 3.53	99-49.66	28.09	3.90	8.28	59.7	59.8
870715	716 15.21	17-20.29	97-21.66	57,70	5.18	1.02	6.1	15.3
870810	059 31.81	17-34.45	100-32.96	75,67	3.66	1.84	118.7	95.1
871025	431 50.55	17-22.03	101- 8.75	20.83	4.55	0.14	2.3	0.9
871106	134 56.60	17-17.72	101-14.46	19.04	3.83	0.13		
871122	511 53.59	17- 2.87	99-59.84	32.93	4.16	0.09	4.1	2.5
871122	1230 31.70	17-12.56	100-59.56	15.00	4.44	0.01		
871203	12 6 2.57	17-26.35	101- 6.14	15.00	4.00	0.69	10.5	9.1

TABLA II

TABLA	III
(conti	nua)

							SIN SU	AVIIAR							SUAVIZ	AÐA					÷.
1. A	FECHA	DIS	Fl	F2	N-S (k)	F1	F2	E-N (k)	Fl	F2	VER (k)	Fl	F2	N-5 (k)	Fi	F2	E-N (k)	Fl	F2	VER (k)	MAG
	ARTEAGA																				<i>,</i>
. 1	860430	88.2	4.37	40.46	0.040	4.47	37,28	0.040	2.49	38.06	0.040	4.37	36.64	0.042	4.47	36.25	0.039	2.15	31.54	0.049	6.4
	860619	78.8	7.62	38.72	0.024	4.59	46.39	0.027	7.42	38.39	0.024	7.02	40.72	0.025	4.98	46.58	0.026	6.93	33.30	0.028	4.8
	ΔΤΟΥΔΓ																				
	250919	797 9	0.22	18 87	0.056	0.02	12.75	0.049	0.02	39.54	0.054	2.51	34.23	0.057	10.52	45.25	0.034	4.13	37.93	0.051	8.1
1	950971	147 9	Δ 91	19.62	0.045	9.13	17.79	0.038	0.74	34.29	0.056	6.40	31.79	0.056	9.82	45.71	0.036	7.52	40.00	0.049	7.5
,	970421	192.1	7 47	71.05	0.059	7 91	17 70	0 035	6.15	32.73	0.044	8.70	29.31	0.061	7.32	34.29	0.038	9.18	32.03	0.039	3.9 :
	970910	4 17 1	1101	11 7	C 0 019	19 55	17 07	0.059	17.58	43.14	0.043	20.51	48.83	0.045	17.97	19.05	0.058	19.75	44.73	0.076	3.6
	A 7140	ATANEIN	10.30	1101	0.011	10.35		0.030				10000								01010	
	850919	144 0	0.72	38.41	0.051	0.51	41.14	0.055	2,56	25.17	0.043	1.37	41.38	0.046	2.52	43.90	0.051	2.56	26.05	0.041	9.1
	950919	22.4	3.32	25.9	3 0.035	10.16	11.99	0.049	19.34	33.50	0.052	2.73	32.23	0.031	9.37	35.16	0.046	19.17	33.70	0.051	4.3
.	550921	46.5	0.79	78.53	0.048	3.08	43.02	0.049	1.37	45.44	0.031	3.02	48.34	0.045	3.25	41.39	0.044	3.09	49.71	0.029	7.5
	950929	70.5	1 77	76 1	7 0 074	1 84	10.01	0 044	2.54	37.0	1 0.073	2.05	18.07	0.055	2.54	19.74	0.059	2.25	35.16	0.022	4.5
	051205	77.0	9.20	30.0		7 47	15 74	3 044	7.91	32.40	0 079	9.98	42.36	0.033	8.20	34.77	0.036	7.13	34.42	0 029	11
	010120	27 5	2 14	5 T& 1	9 9 91	2 74	11 99	0 044	2 51	1 74 5	7 0 032	4 59	25 39	0 057	10 74	34 52	0.040	2 53	29 10	0 072	4.7
	010121	27.5	10 14	58.7	2 0 091	10 35	21 12	0.077	11 13	24.7	6 0.031	11 91	25.00	0.054	10.35	25.00	0.046	10.35	28.91	0.041	4.7
	010110	77 9	17 19		9 0.109	A 49	33 14	0.012	4.30	1 19.0	6 0.030	4.59	10.9	2 0.028	4 49	44.14	0.043	19.14	78.91	0.095	4.5
	910010	44 0	10 94	29.1	870.0	3 71	26 00	910.019	4.30	31.0	6 0.079	4.40	26.2	7 0.043	4.49	26.07	0.042	3.52	31.25	0.029	4.9
	BASIOA	47.4	9.11	n 78.9	t 0.039	9.50	1 33.11	0.041	19.3	1 35.7	4 0.036	9.50	34.0	9 0.032	8.11	34.61	0.037				4.9
		DE CAMPIO	5						••••												
	850919	19.9	0.6	1 34.7	9 0.051	3.00	35.50	0.064	19.80	38.4	8 0.071	0.90	36.5	7 0.057	3.20	32.01	0.063	19.12	41.31	0.065	B. 1
	850919	• • • •	1.7	2 27.5	9 0.071	1.2	7 23.3	0.099	0.7	8 32.3	0.0.051	3.2) 18.7	5 0.088	3.42	24.0	2 0.086	18.40	32.6	7 0.072	8.1
	851029	55.8	12.8	9 36.0	4 0.073	4.5	7 31.3	5 0.064	23.2	4 38.8	7 0.040	11.5	2 37.1	1 0.069	2.93	34.7	0.062	5.98	40.6	3 0.057	3.0
	860430	39.0	2.9	8 34.5	12 0.060	5.0	3 34.9	6 0.068	6.6	4 39.1	8 0.051	4.7	9 37.2	6 0.058	5.47	36.1	3 0.067	6.40	37.9	4 0.050	6.4
	860505	+ 27.8	12.8	9 42.7	7 0.060	8.4	9 45.0	2 0.051	22.1	7 47 3	1 0.056	12.6	3 41.8	0 0.054	5.74	40.9	2 0.050	22.17	44.0	9 0.059	5.6
	EL CAY	ACO																			
	850919	305.9	0.0	5 29.7	4 0.071	3.4	2 30.6	2 0.072	0.0	2 28.3	4 0.061	6.6	4 25.1	5 0.071	3.60	5 26.7	6 0.070	13.04	1 26.7	3 0.072	8.1
	850921	168.1	5.2	7 30.	12 0.069	3.9	1 33.8	4 0.066	1.3	7 31.	SO 0.058	7.3	2 27.8	4 0.063	5.0	3 29.2	5 0.069	1.6	1 30.1	8 0.057	7 7.5
	LA COM	UNIDAD																			
	860611	+ 56.6	18.3	6 59.4	76 0.049	16.2	1 64.0	6 0.040	16.6	0 47.6	35 0.056	19.3	6 62.6	9 0.043	17.7	8 61.3	4 0.037	16.6	50.7	8 0.051	4.7
	COPALA	i i				-															
	, 870705	28.5	i 10.0	6 41.	11 0.039	11.2	3 41.6	0 0.034	3.9	48.7	73 0.026	9.9	6 37.3	1 0.035	9.9	6 33.4	0 0.044	3.4	2 48.0	5 0.02/	4.8
	COYUCA	1																			
	850707	43.4	5.8	36 37.	50 0.050	6.2	5 37.5	0 0,040	11.7	2 44.	14 0.05B	3 6.Z	5 37.8	39 0.041	24.6	1 46.4	8 0.046	11.3	3 37.0	6 0.05	0 3.9
	850919	325.3	3 0.4	46 19.	19 0.11	0 5.9	73 17.3	8 0.131	1.8	33 16.	92 0.09	5 1.8	3 16.	72 0.114	5.0	3 18.5	il 0.124	2.0	5 16.9	2 0.08	0 8.1
	850921	186.0	2.7	73 24.	02 0.09	5.2	27 20.1	1 0.116	2.0)5 19.	75 0.082	2 4.7	8 21.0	04 0.108	6.4	0 23.1	0 0.079	2.9	8 20.1	1 0.07	5 7.5
	- 86061/	50.4	6 4.	10 25.	58 0.05	1 6.1	64 26.	76 0.055	12.3	21 27.	83 0.04	0 4.0	0 26.	37 0.049	7.0	3 31.1	14 0.043	11.3	3 31.5	73 0.03	6 4.3
	B70104	31.8	8 5.6	86 26,	37 0.05	1 7.5	52 23.8	3 0.030	5.3	27 28.	13 0.013	2 7.0	3 27.	73 0.044	8.2	0 31.3	15 0.024	6.2	5 32.2	23 0.01	4 3.7
	87032	6 1 26.	34.	20 49.	12 0.03	7 9.	77 49.	75 0.043	12.	16 49.	71 0.03	7 11	13 39.	16 0.043	11.5	2 49.	51 0.042	2 11.1	3 49.1	56 0.03	4 4.6
	87040	2 46.	6 6.3	59 28.	13 0.06	3 8.3	20 31.	15 0.054	10.	94 30.	47 0.05	5 6.4	54 29.	49 0.053	8.9	19 33.	D1 0.044	10.5	i5 33.(01 0.04	5 4.0
	97060	7 127.	8 6.	93 16.	70 0.11	2 7.	03 19.	73 0.094	F 5.	66 16.	99 0.09	0 6.	84 16.	21 0.118	3 8.	10 17.	04 0.11	3 6,3	35 16.	50 0.07	8 4.7
	87060	9 27.	84.	49 31	64 0.04	2 7.	52 29.	20 0.040) 10.	55 34,	57 0.03	6 4.	88 31.	64 0.03	5 8.:	20 37.	31 0,03	t 11.	13 32.	81 0.03	5 4.2
	87070	5 23.	0 12.	31 41	.99 0.03	51 14.	65 50.	20 0.03	0 10.	55 40.	.63 0.03	5 20.	70 38.	07 0.03	7 14.	06 48.	82 0.03	0 10.	94 42.	58 0.03	31 3.5
	CERRO	DE PIEDR	A																		
	85091	9 379.	9 0.	46 11	89 0.13	56 0.	90 15.	99 0.093	30.	46 12	.57 0.11	2 1.	61 13.	48 0.12	50,	90 16.	92 0.09	30.	46 12.	35 0.1	13 0.1
	85092	21 240.	.0 1.	.37 14	.62 0.1	15 0.	22 14.	87 0.07	8 0.	.02 16	.24 0.08	35 1.	37 15	.53 0.11	2 4.	79 16.	70 0.09	Z Ø,	68 17.	60 0.0	83 7.5
	. 85102	19 + 22,	0 11.	33 38	.67 0.02	28 10.	94 42.	19 0.03	3 10.	94 35	.94 0.04	14 7.	81 41	41 0.02	4 11.	72 41.	41 0.02	6 10.	16 40.	62 0.0	34 3.0
	86051	18 + 19.	.7 8.	.59 40	.63 0.0	26 10.	,94 46.	49 0.04	4 10	.94 50	.00 0.0	42 8.	20 21	.01 0.03	4 11.	72 28	52 0.00	0 11.	72 46.	07 0.0	44 3.0
	86052	29 75.	5 9.	47 29	.61 0.0	65 10.	.06 29.	98 0.05	6 9.	.86 30	.57 0.03	57 10.	55 30	.27 0.05	5 9.	96 29.	10 0.05	3 9.	86 33.	.79 0.0	48 3.1
	86061	16 + 45.	.1 8.	. 59 32	.81 0.0	62 10	.55 30.	.27 0.06	2 11	. 33 33	.70 0.0	43 8.	40 26	.17 0.07	1 12.	89 42	,47 0.03	5 8.	20 34.	.96 0.0	39 4.3
	87032	26 48.	.9 8,	40 34	.67 0.0	55 8.	79 43.	56 0.04	2 7	62 34	.38 0.03	52 8.	40 23	.58 0.07	5 12.	21 33.	59 0.04	8 8.	40 34,	67 0.0	49 4.6
	8704	02 # 21	.1 7.	. 81 41	.80 0.0	49 9.	.57 46	.98 0.04	8 8	.59 39	.45 0.0	44 7.	42 43	.35 0.04	3 9.	18 43	.94 0.04	13 8.	79 42	.97 0.0	36 4.0
	97060	D7 75.	.6 7.	.91 29	.79 0.0	60 5.	. 66 28.	71 0.06	0 9.	.38 31	.64 0.04	48 8.	40 22	.85 0.06	7 6.	25 29	78 0.0	ið 9.	38 33	.79 0.0	44 4.7

•

: .3

-1	370609	29.2	11.33 50.19 0.0	034 12.89 50.20 0.03	13.09 48.44 0.037	12.50 49.81 0.030	11.91 49.41 0.037	12 70 50 10 0 015	4.0
	FILO DEL C	CABALLO						17110 JALLA 41411	7.4
1	960430	342.7	0.70 10.74 0.1	171 1.15 4.44 0.20		1 17 7 47 4 949			
	870607	141.9	2 59 22 71 0		1 1413 8423 V.143	1.17 7.03 0.242	1.81 5.01 0.238	2.30 10.52 0.095	6.4
1	870609	77 0	5 01 11 05 A /		1.40 13.87 0.040	2.39 15.55 0.076	2.73 15.97 0.064	2.73 12.26 0.099	4.7
	1 A FLADE		3.00 20.73 0.0	Jai 8.98 27.15 0.05.	4.49 28.51 0.030	8.57 18.16 0.091	9.77 27.93 0.053	5.27 31.15 0.025	1.7
	LH LLAVE								112
	840115	\$3.7	22.85 59.18 0.4	043 19.34 59.96 0.03	7 22.27 63.67 0.036	22,46 55,86 0.040	17.58 55.08 0.039	15.41.66.90.0.014	7 4
64 C.	960124	38.3	6.84 35.16 0.	060 8.20 40.82 0.04	3 6.45 38.09 0.048	7.23 33.20 0.060	6.84 31.06 0.044	10 55 56 76 A AFA	3.8
÷	860129	65.1	5.66 39.45 0.	054 5.27 34.77 0.05	4 6.64 37.01 0.051	9.18 35.55 0.049	5 94 11 11 0 010		2.8
	860611	73.2	14.84 45.70 0.	041 17.38 46.19 0.04	0 16.70 37.01 0.036	7.03 41.50 0.040	7 12 17 07 0 014	0.13 34.47 0.034	1.1
	961214	13.0	23.24 59.38 0.	038 17.19 55.86 0.03	9 17 59 51 54 0 040	15 17 15 10 0 014	10 02 57 12 0 025	10.10 42.97 0.938	4.7
<u> </u>	871025	45.1	4 15 49 12 0	045 7 17 44 07 0 04	7 7 53 17 71 8 80		14.42 37.42 0.033	16.41 58.01 0.040	4.3
	971104	11 1	5 86 40 47 4	(13) (13) (10) (10)	2 7.32 47.38 0.044	4.54 40.92 0.048	7.51 43.35 0.042	7.32 47.56 0.041	4.6
	071100	7047	3.00 10.03 0.1	037 8.23 43.31 0.03	4 7.05 51.37 0.026	6.64 41.41 0.040	6.64 48.44 0.033	8.01 53.51 0.023	3.8
	5/1122	20.3	6.45 49.12 0.	038 7.23 49.81 0.03	9 6.84 44.14 0.039	16.40 49.42 0.040	16.21 46.29 0.043	7.81 48.24 0.035	4.4
	871203	31.7	7.81 47.95 0,	040 17.38 47.61 0.04	5 7.23 47.27 0.038	7.03 49.22 0.044	7.62 53.71 0.039	7 73 47 44 0 037	1.0
	LAS MESAS							/110 1//10 01/01	7.0
	850919	388.0	1.37 20.56 0.4	075 0.02 25.83 0.06	5 0.44 19.43 0.070	2 05 21 24 0 075	1 77 77 99 0 0/1		. .
	860218	26.3	25.20 29.57 0.	036 21.09 57 03 0 03	5 15 04 19 41 0 017	0 10 E0 70 0 ATL	1.37 27.00 0.001	0.99 14.14 0.099	8.1
	860529	58.4	7 96 57 54 0	010 71 LT 57 77 0 07	0 13407 11431 0.03. 0 13 40 60 46 0 034	1.18 34.38 0.031	A'28 49'88 0'029	13.09 52.54 0.034	4.0
	840414	12 1	17 17 59 57 5	VSV 23.83 J2.73 0.03	1 13.48 47.41 0.035	8.50 57.62 0.030	9.77 56.45 0.036	13.4B 44.53 0.039	5.0
	070374	17.1	13.87 34.37 0.	031 10.73 50.78 0.04	8 15.04 35.08 0.032	8.01 42.70 0.028	18.36 60.94 0.040	11.52 63.09 0.033	4.3
-	070320	07.7	9.01 51.85 0.0	035 8.69 34,38 0.04	3 12.11 32.23 0.076	9.38 37.11 0.040	8.98 30.55 0.050	11.91 33.79 0 070	
	810201	64.9	7.81 58.50 0.	037 8.69 50.39 0.04	2 9.18 34.57 0.065	8.38 55.86 0.034	9.08 44 53 0 044	9 39 30 44 6 6 674	4 7
•	870609	40.7	10.35 65.43 0.	030 9.96 57.42 0.03	4 11.52 52.54 0.037	9, 18 54, 10 0, 031	9 77 57 51 6 674		
	OCOTILLO						1.11 33.31 0.034	13.04 28.42 0.033	4.2
	850323	26,0	10.55 48.24 0.	037 11.77 47.44 0.03	7 17 17 19 11 0 077	10 11 40 07 0 077			
	860201 +	43.5	8.20 40 43 0		1 11 01 50 AD A AU	10.10 10.03 0.03/	10.94 43.36 0.035	11.72 44.92 0.031	4.2
	R70402	20 1	4 10 10 11 0		3 14.84 20.00 0.04/	10.74 48,65 0.024	10.35 48.63 0.026	16.02 50.00 0,036	4.0
	970407	107 1	7 47 77 15 4	030 7.03 48.03 0.03	u 6.45 49.22 0.028	4.30 38,28 0.030	9.57 42.77 0.031	5.86 47.27 0.027	4.0
	010007	107.1	3.42 33.13 0.	038 1.61 34.03 0.03	9 4.98 30.67 0.035	3.81 24.61 0.051	2.44 29.98 0.043	4.79 31.35 0 031	1.7
	810804 +	31.2	6.94 49.61 0.	033 8.89 50.10 0.03	8 18.95 49.81 0.045	5.66 43.55 0.031	16.02 40.82 0.038	75 98 47 44 0 041	1.7
	8/1122	26.2	9.18 48.83 0.	024 7.03 49.61 0.03	3 9.77 45.31 0.027	0.57 48.44 0.077	11.91 37 70 0 030	0 55 11 00 0 001	1.2
	0001110						11	0.00 41.00 V.VZ/	4.2
	850405	51.7	8.20 25.39 0.	075 9.77 25.78 0.10	1 11.33 25 39 0 114	0 TO TA 47 0 070	0 60 00 /0 0 0/7		
	850919	374.8	3.88 19.19 0	196 3 70 17 82 0 10		7.30 JV.47 V.070	0.37 27.67 0.06/	8.20 25.39 0.090	3.1
	860124 85	52.3	0.00 17717 0.	010 7 01 57 77 6 67		2.10 14.92 0.041	2.75 18.52 0.108	1.50 15.54 0.094	8.1
. ••	840201	74 0	5 01 51 17 5		1 0.012			0.012	4.6
	040210	44 7	J.50 25.17 V.	060 3.08 27.34 9.07	0 5.86 17.97 0.098	5.08 29.10 0.058	5.08 33.59 0.055	5.66 18.75 0.091	4.0
	000218	41.7	11.43 39.05 0.	051 3.22 41.80 0.03	9 8.98 36.82 0.039	5.96 44.82 0.038	4.98 42.09 0.036	10.16 44.53 0.029	1.0
	860329	1218	4.30 37.50 0.	054 2.98 35.99 0.05	1 5.76 32.91 0.052	4.40 41.41 0.049	3.32 39.65 0.046	A 15 35 45 0 045	5 0
	861216	45.0	4.98 33.50 0.	038 3.81 34.96 0.04	9 5.25 36.04 0.033	13.48 36.91 0.044	6.15 37.99 0.043	5 74 77 74 0 071	3.0
	870326	76.7	6.15 26.32 0.	060 6.10 28.71 0.05	9 9.08 32.23 0.048	6.01 27 01 0 054	7 10 77 70 0 059	0.76 37.21 0.031	1.3
	870607	85.5	3,91 29,69 0,	074 4.10 32.91 0.95	0 5.27 36.13 0.051	6 01 TI 44 0 050	7.10 27.70 0.027	8.74 35.94 0.041	4.6
	870409	43.0	5.76 35.65 0.	038 4.15 37.56 6 45	0 8 12 13 13 0 011 1 0 11 0 11 0 11 0 010	1 IE 77 IA A AM	J. 23 34.62 U.049	5.4/ 41.99 0.042	4.7
	870705	118.6	1 10 24 02 0				7.42 35.35 0.950	3.01 31.78 0.041	4.2
	870708	70 p	2 27 50 00 0	007 - 2070 29071 U,UA 075 - 5 00 00 00 0 01	7.30 22.83 0.062	4.59 22.17 0.061	4.30 25.59 0.059	8.50 20.80 0.070	3.5
	970715	520 7	7 40 74 64 5	via – 5.08 ZY.28 0.04	7 5.27 27.15 0.035	7.23 33.98 0.023	7.62 31.25 0.033	5.08 27.73 0.033	3.9
	010113	**0./	3.42 34.05 0,0	U40 7.08 29.93 0.04	7.52 27.44 0.055	4.79 35.89 0.040	7.08 33.35 0.044	8.01 30.18 0 044	5 7
	raranua								3.2
	850821	37.3	22.27 44.53 0.0	043 22.66 49.22 0.05	4 19.53 39.85 0.034	7.03 30.0R 0.021	9 59 29 19 6 6 615	17 30 43 50 4 474	. .
	850822 +	23.8	26.00 45.90 0.4	057 23.05 48.05 0.05	4 16.99 46.88 0.011	5.90 30 00 0 004	7 61 70 10 6 617	13.28 42.38 0.036	3.6
	850904	38.9	22,27 46.58 0.4	067 24.12 49.61 0 04	L 16.11 47 70 0 040	7 37 76 30 6 611	7.03 29.69 0.015	13.63 49.22 0.026	2.3
	850919	218.0	5,74 46.97 0	054 6 18 17 10 0 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.23 30.08 0.011	1.62 29.79 0.003	12.99 42.97 0.041	4.0
	850921	70.0	20.40 30 34 4	000 0,10 11,00 0,03 005 05 00 10 11 0 0,03	· 7.00 40./V V.V31	0.94 29.74 0.041	7.37 29.84 0.034	12.35 49.46 0.047	8.1
	850971	17 0	11 57 71 17 4	VOJ 23.20 42.16 0.0/	15.26 49.19 0.049	5.66 20.06 0.021	13.18 29.98 0.023	14.06 49.12 0.043	7.5
ŀ	050021 -	74.0	17.00 10.00 0.0	040 12.70 14.41 0.03	5 13.4B 33.89 0.043	7.42 29.78 0.034	7.42 29.69 0.028	12.89 35.35 0 019	4 7
	010721 4	49.0	13.28 49.22 0.0	045 14.06 50.00 0.05	3 17.97 46.49 0.036	12.50 29.67 0.051	13.28 29.69 0.052	19.75 49 22 0 070	7.4
	830424	62.7	10.98 36.33 0.	043 12.11 49.22 0.03	2 12.50 32.42 0.051	11.33 30.08 0.044	11.72 30 08 0 074	13 50 30 17 0 17	7+1 7-4
	820928	23.9	6.64 45.90 0.0	037 7.52 41.50 0.04	1 13.28 50.20 0.034	6.06 29.88 0.014	9 18 10 00 0.021	10.00 11 00 1.00/	3.1
- 1	851003 •	30.4	7.91 47.36 0.	042 13.48 46.87 0.05	1 14.84 44.09 0.057	7.03 10 00 0 000	13 00 70 00 0.028	12.67 46.88 0.033	4.5
	851009 4	27.9	25.39 48.05 0.1	057 25.78 50.00 A AS	1 19.57 49 22 A AAA	21 07 10 00 0 0021	12.07 30.08 0.039	19.84 49.22 0.047	4.4
6-4				TRILD 30144 0103	- 11133 41142 VIV40	TT-B1 JATOR 01035	25.78 30.08 0.046	20.70 42.19 0.039	3.3

-à

. . .

.

TABLA III (continuación)

	851103	217.0	21.69	43 17	0.041	77 67	40 17															
- 7	951172	28 7	7 67	17 17	0.000	23.03	40.63	0.064	19.92	45.70	0.057	20.90	29.88	0.070	20.70	29.38	0.063	19.14	11 97	0 040		
ł	851205	17 0	33 67	11.21	0.04/	14.06	42.97	0.05Z	13.07	43.36	0.053	7.03	29.69	0.031	13.67	30.08	0.024	17 00	42.14	0.000	1.0	
	851221	10 /	22, 38	37.84	0.060	21.39	42.77	0.055	17.58	35.94	0.042	7.91	30.18	0.009	7.32	29.79	A AAD	15 01	14.14	0.043	3.8	
6.3	951221	17.0	20.70	48.05	0.056	21.48	49.61	0.046	10.55	44.53	0.036	7.03	30.08	0.013	6 25	10 00	0.001	13.04	40.45	0.037	4, 4	
÷	051221	14.1	13.67	45.31	0.044	28.91	44.92	0.114				12.99	30.08	0.017	0.01	30.00	0.007	10.19	42.47	0.029	3.7	
ţ		24.5	13.28	48.44	0.047	13.67	42.58	0.046	10.15	41.02	0.052	17.50	30.08	0.017	17 17	30.08	0.002		_		3.4	
	851224 4	25.4	13.67	41.80	0.045	13.67	42.19	0.049	10.15	36.72	0.061	12 50	30.00	0.020	13.67	30.08	0.037	9.77	37.89	0.053	3.6	
ھتے.	RP0103 4	26.2	14,45	38,29	0.047	14.45	45.31	0.046	11.33	49.93	410.0	17 00	70.00	0.034	13.28	70.08	0.024	9.38	36.72	0.060	3.3	
, i	860115	43.7	13.18	48.34	0.039	28.91	43.94	0.086	17.6B	19 13	0.014	11.07	30.98	0.018	13.28	33.20	0.014	10.55	17.61	0.034	3.4	
	860119 +	23.0	7.03	48,24	0.034	7.03	49.91	0.029	14.45	50 20	0.075	7 17	30.08	9.005	13.28	29.88	0.003	16.79	45.31	0.031	3.6	
	860124	30.0	6.74	49.12	0.034	5.84	44.83	0.032	12 50	10.10	0.032	1.23	24.98	0.007	6.64	30.27	0.000	14.06	43.16	0.031	4.1	
	860126	26.2	7.03	49.90	0.037	7.17	19 01	0.032	12.30	17.03	0.036	0.04	30.27	0.026	6.75	25.30	0.018	13.87	49.03	0.031	4.6	
	860126	22.1	6.84	48 93	0 012	7 01	10 17	0.031	7,76	49.14	0.033	6.64	29.69	0.030	15.53	27.98	0.037	8.99	41.50	0.032	1.0	
	860129	41.1	7 42	10 41	0.014	7.03	17.14	0.027	9.4/	40,65	0.030	7.03	0.38	0.021	13.09	30.08	0.000	9.47	45.72	0.027	τ ο	
	860207	54.9	7 11	70 71	0.010	7.71	13,10	0.043	4.46	40.62	0.048	7.03	27.08	0.031	13.38	29.69	0.028	14.84	47.38	0.040	1 7	
	860324	70 A	1.11	20.32	0.038	8.01	37.31	0.038	10.94	26.76	0.059	7.42	29.79	0.035	9.11	29.98	0.038	9 19	71 57	0.05/		
	941176	71.0	11, 24	10.05	0.351	23.53	45.12	9.079	21.09	49.83	0.947	15.43	29.89	0.040	13.97	79 88	0 018	14 20	10.J/	V-938		
	001110	31.0	23.34	41.41	0.071	31.54	44.53	0.086	13.28	38.38	0.046	16.02	30.08	0.005	6.84	29 29	0.015	17 77	72.JB	0.036	4.5	
	001214 +	51.1	29.60	45,22	0.107	31.84	49.22	0.079	13.87	49.22	0.034	6.06	29.30	0 075	8 01	70 10	0.013	13.11	-2.38	01042	3.7	
	8/1025 +	28.7	12.30	47.27	0.050	12.30	46.97	0.050	9.96	48.44	0.047	6.55	30.08	0 070	0.01	30 00	0.010	13.40	47.27	0.031	4.3	
	8/1122 1	23.0	20.61	47.61	0.058	25.10	49.41	0.063	21.29	49.05	0.043	7 42	70 20	0.020	7.07	27.08	0.007	13.18	49.71	0.042	4.5	
	871203 +	28.7	29.10	44.40	0.083	27.64	48.44	0.077	79 10	50 20	6.057	1.75	27.00	0.007	7.03	20.08	0.002	24.22	50.10	0.044	4.2	
	PARAISO				-					34.20	01031	0.13	47.00	0.000	5ar JO	JU. 0Z	0.003	27.10	49.81	0.055	4.3	
	350919	300.0	8.45	45.25	0.049	7.09	38 42	A 047	10 50	70 70												
	850921	153.5	8.10	25.19	0.040	1 10	77 7/	0.007	10.74	20124	0.085							10.28	31.78	0.080	8.1	
	860611	58.7	0 01	57 54	0.000	0.13	22.30	0,058	10.30	20.85	0.085	8.06	34,89	0.044	6.35	23.58	0.058	9.96	20.31	0.087	7.5	
	860414	49 7	10 55	10.11	0.024	10,00	30.20	0.036	11.52	42,38	0.051	10.16	57.03	0.019	10.55	38.67	0.041	11.52	41 RO	0 051	1.7	
•	961 216	11 0	10.33	47.41	0.040	11.52	42.58	0.052	11.62	33.79	0.067	14.16	61.52	0.025	12.50	40.04	0.048	11.23	77 01	0.073		
	970774	53.8	8.24	36.84	0.036	8,40	55.47	0,041	10.74	48.24	0.037	13.28	68.36	0.029	9.57	67 19	0 075	10 74	12.71	0.072	4.3	
	070520	20.2	8.01	41,60	0.047	8.11	43.07	0.041	11.33	40.92	0.041	9.47	39.26	0.047	8.94	19 74	0 040	10.74	12.27	0.021	4-3	
	870314	24.9	8.30	45.41	0.036	6 B4	48.15	0.037	11.33	48.83	0.038	12.11	41.40	0 034	8 40	50 70	0.010	10.30	43.36	0.074	4.6	
	870521	11.5	8.01	64.65	0.027	7.23	71.69	0.028	11.52	53.48	0.023	8 01	70 70	0.030	0.40	30.70	0.034	10.65	49.90	0.035	3.6	
	870810	43.7	11.52	57.62	0.026	6.64	53.52	0.034	9.18	52.75	0.017	9 10	10.10	0.020	0.78	18-12	0.023	12.31	58.59	0.024	3.9	
	PETATLAN										V.V.J.L	1.10	02.31	0.025	8.20	57.62	0.032	13.07	52.15	0.023	3.7	
,	871025	22.8	7.01	62.89	0.028	11.91	58 99	0.031	18.04	54 50												
	871106 +	34.5	22.66	55.47	0.034	10.75	20.70	0.071	17.01	34.37	0.032	11.72	50.78	0.029	11.91	52.34	0.033	13.28	55.0B	0.032	4.6	
. 1	871203	19.0	11.52	58 79	0 010	10.75	61.00	0.031	17.38	65.23	0.027	23.83	62.50	0.029	17.97	60.55	0.031	17.38	61.72	0.029	3 0	
	SAN MARCON	3		20111	0.030	12.31	32.41	0.029	14.45	56,25	0.027	10.94	55.86	0.030	11.72	55.86	0.028	13.87	56 45	0 027	1.0	
- 1	970407	51 0	5 10	17 10	A AE2															0.021	7.0	
	EL CILCUTI	7110	7.10	23.94	0.002	5,25	26,42	0.062	28.61	46.09	0.064	5.08	27.73	0.058	7.62	40.53	0.034	76 16	15 0.			
	05/010			.														10:00	·J. 70	0.034	4.7	
	050717	261.0	1.37	24,95	0.082	2,56	21.95	0.095	2.56	16.21	0.107	2.05	27.20	0 072	3 42	21 05 /	0.007	7				
	820921	125.2	1.27	25.78	0.075	1.22	27.25	0.073	2.25	24.41	0.040	1.91	76 95	0 010	3.12	74 70	0.070	3+23	17.99	0.084	8.1	
	TEACALCO													V.001	2.03	31./7	0.062	2.15	25.05	0.055	7.5	
	820919	372.7	Ú.68	23.78	0.103	0.40	17.35	0.123	2.45	14 74	0 1 1 1	1 11	10 00	A 175								
	850921	223.7	0.93	18.07	0.120	1.81	20.56	0.106	2.05	17 50	0.101	1 1 1	10.17	0.133	1.83	14.68	0.117	1.37	16.44	0.125	8.1	
	B70715	262.9	2.25	39.06	0.030	2.75	20 11	0 077	1 15	27.15	0.101	1.61	14.42	0.115	2.05	19.43	0.106	2.30	18.51	0.075	7.5	
	TUNALAPA						~~~~	4.471	5-11	21143	0.024	3. 47	20.51	0.040	6.64	18.95	0.091	6.94	29.30	0.032	5.2	
	960703 NS	86.5	8.50	41 57	0 070	7 07	74 77	0.070														
÷	860718 NG	26.4	15 07	79.10	A A17	1.03	37.11	0.029													3.4	÷
	861714 NC	100 4	10172	41 44	0.025	14.45	30.66	0.024	18.95	22.48	0.025							19.73	33.50	0.035	1 7	(
	970107	114	0.10	41.15	0.020	6,64	26.51	0.033												4.457	3.3	1
	074715	100.0	2.15	21,00	0.063	2.73	19.97	0.058	2.15	18.85	0.062	2.39	16.07	0.076	7.10	17.10	0 017	1 00	17 00	A 453	- 3	ì
	310113	247.9	2.25	30,37	0.043	1.61	34.52	0.040	2.73	30,42	0.032	8.89	32.47	0.040	0 13	70 74		3.00	11.72	0.057	4.7	1
	LH UNIUN									_				*****		-1.17	·· • 10	0.54	4U.36	0.039	5.2	÷
	860112 +	16.4	20.12	64.26	0.040	21.09	63.09	0.032	17.58	44.94	0.029	20.12	48 47	A 477								
•	979996	32.1	10.05	43.15	0.038	-			4.90	19 05	9 00L	10 74	47	0.03/	21-98	a 8 , 74	v.028	20.12	61.91	0.025	4.7	
	961104 ±	36.1	3.91	49.BO	0.03R	17.50	37 11	0.040	7 14	10.01	0.070	19174	47.07	0.040				5,76	52.15	0.026	4.6	-
:	LA VIGA							01000	0,13	77.91	0.030	1.23	54.69	0.035	12.89	33.98 (0.059	6.45	51.95	0.028	4.8	1
:	850506	120.5	9.64	74 10	0 047				.										_			5
			0107	94110	0.043	8.10	43.25	0.041	8.11	43.07	0.036	8,94	34.03	0.038	8.79	42.68 (0.042	11.82	IT 31.	0 0.17		÷
										m+ -										****	4.4	1
									· <u>T</u> A	ъргу	III											ł
									(cor	ntin	uaci	on)										
																						ſ
																					· ·· •	

.

. .

-

: 1

				+																			
	050702		E				16 21	41.07	0 057	12 70	10 00 1	1 176	0 00	20.07	0 023	17 77 '	79 L9 A	010	11 77 /		1 025		
	050704	27		7.38 1	17.00 1	0.040	10.10	11+92	0.033	12.30	97.UZ 1 38 33 4	1.020	0,70	10,00	0.023	31.17	LI. 16 A	071	14 17 4	17471 V 17471 V	, 013	3.7	
	050307	230		0.17 3	33.ZU (J. 010 0. 057	10.02	23.90	0.041	10./9	21.22	1.010 0.017	15 74	27,17	0.037	1.37	70 00 0		10.15 4	2.07 (3.043	4.0	
	050707	100		a.02 .	38.6/ 1	0.03/	19.92	41.80	0.065	12.30	22.90	0.043	13.24	27.67	0.031	8.78	20.08 0	0.028	12.89	1.64	0.03/	3.8	
	R2011A	118	.6 1	2.01	37.89 (0.031	8.30	38.4/	0.027	12.01	35.72	3.014	11.13	29.88	0.025	8.54	24.88 0	.031	13.09 3	3.99 (810.0	4.0	
	860218	28	3.3 2	23.05	43.65	0.056	21.87	43.75	0.048	20.61	40.24	0.037	25.59	47.17	0.051	25.79	49.41 (0.054	18.95	14.92	0.030	4.0	
	860529	+ 49	.2	5.57	(B.93 (0.041	6.25	46.48	0.048	9.57	48.44	0.037	5.90	20.65	0.012	6,50	15.25 0	0.059	B.40 /	19.61	0.033	5.0	
	860529	39	1.7 1	10.15	46.00	0.038	8.01	40.92	0.043	12.31	42.97	0.033	10.35	49.51	0.036	5.70	42.30	0.045	15.50	44.14	0.027	4.3	,
1	860616	54	1.2 1	15.02	37.50	0.046	11.52	41.40	0.042	16.21	35.35	0.040	15,43	39.85	0.039	11.52	37.89 (0.041	16.21	36.91	0.032	4.3	
•	840427	27	7.1	11.52	12.22	0.040	10.94	39.06	0.046	10.94	42.97	0.028	16.90	49.61	0.040	10.16	41.41	0.040	9.77	45.70	0.027	4.0	
•	870603	28	3.0	25.20	50.20	0.054	21.88	42.58	0.048	20.32	48.93	0.024	25.70	49.41	0.054	17.54	43,31 (0.048	28.52	49.90	0.026	2.9	
_	879607	2:	3.4	7.13	49.71	0.045	7.37	48.99	0.045	16.02	49.61	0.032	8.11	49.42	0.042	1.32	40.00	0.043	1/.14	44.40	0.031	4.7	
•	870609	- 63	7.2	10.15	37.70	0.046	11.43	38.38	0.039	10.45	27.03	0.044	10.16	40.14	0.042	11.33	38.28	0.042	12.01	23.24	0.057	4.2	
	870705	6	0.2	10.94	47.08	0.037	10.94	36,13	0.947	8,20	40.04	0.038	10.55	47.27	0.039	15.41	49.81	0.055	10.34	40.22	0.037	4.8	
	LA VILL	ITA																					
-	850919	B	0.1	1.95	23.39	0.069	1.81	25.81	0.060	4.20	36.60	0.038	3.17	25.20	0.058	4.03	49.29	0.038	4.47	39.16	0.034	8.1	
	850921	7	4.5	0.54	25.88	0.076	2.39	27.88	0.061	1.56	29,93	0.053	2.83	25.54	0.071	2.59	26.66	0.052	2.15	26.90	0.053	7.5	
	LA VENTI	A																					
	850919	35	5.7	0.20	18.56	0.105	1.37	19.07	0.112	0.68	15.53	0.122	1.07	22.66	0.086	3.61	21.48	0.070	0.58	15,72	0.121	9.1	
	850921	21	5.0	2.54	24.90	0.074	1.37	21.48	0.092	1.56	16.50	0.108	3.61	24.90	0.072	2.25	25.78	0.078	1.56	16.90	0.101	7.5	
	870326	3	0.0	8.69	67.68	0.024	7.32	61.72	0.023	6.15	67.39	0.020	10,55	65.63	0.023	8.20	63.09	0.023	5.96	75.88	0.018	4.6	
	870402	+ 2	7.0	14.84	67.19	0.032	11.13	\$ 60.35	6 0.035	10.74	69.05	0.027	16.80	49.22	0.053	7.03	58.59	0.038	10.05	67.68	0.025	4.0	
• •	870609	÷ 2	8.7	11.92	59.38	0.031	7.62	\$9.76	0.028	39.71	78.13	0.032	12.70	58.40	0.027	7.42	58.21	0.024	33.11	86.43	0.027	4.2	
-	XALTIAN	ISUIS																					
	850919	35	8.4	1.12	32.66	0.038	0.93	36.13	0.040	0.05	33.15	0.042	19.73	35.40	0.069	18.26	38.38	0.050	0,44	34.46	0.044	8.1	
4	850921	21	2.8	20.22	37.31	0.079	18.95	i 28.94	0.068	16.70	34.86	0.068	19.43	39.06	0.074	2.49	45.26	0.034	17.92	37.70	0.064	7.5	
	851029	HN 3	5.2	24.22	53.13	0.040	28.91	50.78	0.049	19.53	57.03	0.042	24,22	40.63	0.063	32.03	50.78	0.039	17.19	50.78	0.045	3.0	
:	860124	4	0.1	26.17	46.09	0.093	31.64	1 55.08	3 0.068	19.53	46.88	0.057	24.61	41.90	0.077	20.70	48.05	0.043	17.58	49.22	0.059	3.8	
	860128	2	7.0	29.69	60.16	0.039	26.56	63.26	8 0.054	32.42	46.10	0.108	26.55	46.10	0.082	24.22	62.50	0.050	27.34	45.31	0.087	2.6	
	860201	+ 5	54.1	24.02	47.56	0.075	23.73	5 47.70	6 0.051	24.02	42.97	0.081	24.41	44.14	0.078	24.02	57.81	0.034	22.27	42.97	0.073	4.0	
	860218	KK 5	5.1	24.71	40.23	0.077	20.80	42.53	8 9.045	20.12	39.06	0.077	24.71	38.67	0.082	23.05	46.19	0.043	19.24	40.23	0.071	4.0	
	860306	88 3	38.2	23.83	43.75	0.051	27.7	3 46.04	9 0.038	23.05	5 40.63	0.047	25.00	35.55	5 0.085	26.56	38.28	0.080	21.09	37.50	0.072	3.4	
	960312	1	2.0	24.22	49.22	0.078	25.00	3 48.44	0.065	28.91	45.31	0.103	23.44	50.00	0.073	21.88	44.53	0.066	23.44	42.97	0.088	2.4	
	850421	HH I	31.0	25.78	53.91	0.050	27.3	4 60.1	6 0.032	32.0	3 53,12	0.058	3 25.00) 48.4-	4 0.049	25.78	52.34	0.030	32.03	53.91	0.046	2.2	
	. 860430	NS 34	58.2	1.61	27.20	0.038	0.2	4 18.7	5 0.048	1.37	7 14.85	0.063	5						2.05	12.55	0.065	6.4	•
	860503	+ :	35.3	23.44	52.73	0.055	24.6	1 51.1	7 0.048	3 24.2	2 47.27	0.074	10.9	4 54.6	9 0.043	14.45	51.56	0.030	25.20	47.07	0.066	3.4	
	860529	8	0.88	26.76	46.19	9.063	28.5	6 41.8	5 0.967	21.20	0 39.55	0.084	25.5	7 42.04	4 0.075	27.64	41.85	0,062	20.12	40.72	0.081	5.0	
	860615		35.7	19.75	66.41	0.054	29.3	0 59.3	7 0.064	4 23.4	4 59.70	0.058	3 17.9	7 54.6	9 0.064	29.10	61.33	0.049	25.00	53.12	0.055	4.3	
	860622	HH C	30.6	25.00	47.27	0.056	30.4	7 47.2	7 0.057	25.0	0 54.69	0.036	3 26.5	50.0	0 0.050	23.44	47.66	0.040	24.22	39.26	0.069	3.0	
	860709		33.0	23.83	41.02	2 0.114	28.1	3 46.8	8 0.067	7 28.5	2 44.93	2 0.08	3 24.2	2 40.5	2 0.103	26.56	49.22	0.055	26.56	44.92	0.071	3.5	
	960806	KH .	13.0	23.83	38.67	0.093	26.5	6 43.7	5 0.049	22.2	6 42.58	8 0.074	\$ 24.6	1 37.8	9 0.073	26.95	i 39.84	0.051	21.49	41.41	0.070	3.3	
	850819	6H	49.5	24.61	35.16	6 0.152	28.5	2 60.1	6 0.02	5 25.0	0 33.20	0.14	8 26.5	6 36.7	2 0.107	29.13	\$ 51.95	0.030	26.56	37.11	0.102	3.3	
	860819	115	37.4	26.17	36.72	0.102	28.3	2 49.6	1 0.03	5 26.5	6 41.99	0.046	3 25.3	9 37.3	1 0.084	27.34	53.13	0.034	26.95	35.16	0.049	3.5	
	860906		31.7	24.61	38.67	0.081	27.3	4 39.0	6 0.11	9 24.2	2 48.4	1 0.05	5 24.6	1 34.7	7 0.085	25.7	39.06	0.094	24.22	44.53	0.062	2.9	
	860921	XH ·	22.8	27.73	51.37	0.036	23.8	3 50.0	0 0.030	17.3	8 41.50	0.050	0 25.2	0 41.8	0 0.054	29.30	45.51	0.038	19.34	43.14	0.044	3.2	
	860972		26.4	22.85	39.75	5 0.081	20.5	1 51.1	7 0.04	3 19.1	9 35.8	9 0.05	9 22.6	6 41.4	1 0.081	21.8	3 55.47	0.037	20.12	40.45	0.056	3.4	
	851014	KN	63.8	21.98	38.46	0.085	20.5	44.1	4 0.039	9 1R.7	5 37.3	0.06	4 21.8	8 37.5	0 0.078	23.4	46.09	0.029	18.75	34.35	0.071	7.0	
	861031		7.9	25.76	45.31	0.071	20.3	1 50 4	9 0.02	5 23.0	5 47.1	9 0.04	2 74 7	2 47 9	7 0.055	26.5	\$ 75.00	0,020	23.4	39.29	3 0.014	7 /	
	861214	ŧ	41.8	28.12	41.80	0.049	29.0	0 51.4	6 0.04	5 26.2	6 44.1	3 0. 07	6 27.4	4 42.0	9 0.092	24.9	53.07	0.045	24.71	41.5	5 0.071	4 7	
	870104		43.3	30.44	45.5	0.077	32.4	4 49.4	1 0.01	9 32.0	3 44.1	8 0.05	6 28.1	3 46.0	9 0-08	32_R	44.14	0.059	30.47	43.3	5 0.074	37	
	870324		48.5	27.44	56.91	5 0 0 79	27.4	4 55 3	2 0.04	2 29.1	2 50.7	3 0.05	8 78.9	1 55 0	8 0.044	26.5	50.49	0.047	27.46	50.7	5 0.055	1.4	
	970407		7.00	25.10	54.49	3 0.045	24.9	0 11 0	4 0.03	0 22.9	5 59.0	3 0 04	0 27 2	5 51 4	6 0.04	24.2	7 55 0	0.037	23.0	5 55.74	0.011	A. 0	
	870514		37.1	28.7	50.99	0.055	74.0	8 45.7	0 0.07	4 29.1	0 45.1	2 0.09	2 79.8	8 44.1	4 0.091	23.2	53.32	0.032	29.40) 45.5	0, 184	3.4	
	970603	5	64.2	27.4	55.43	7 0.034	15.4	3 51 9	12 0.02	6 21.0	9 44.T	4 0.05	4 28.1	3 49.4	1 0.04	17_1	9 49.91	5 0.079	20.3	45.1	2 0.050	3.0	
•	870407		94.3	26.21	40.74	1 0.097		A 10 0	2 0.07	5 19.4	3 39.0	6 0.09	7 25 1	5 39.1	1 0.079	77 L	4 43 44	0.057	18 0	1 47 A	F 0.010	4 1	
	870409		33.4	76.0	1 56.4	1 0.051	31 9	1 50.1	0 0.01	7 24 2	7 51 4	5 0.04	2 27 0	3 50.1	0 0.07	2 71 0	5 50 0	, 0,037 , 0,044	10.01	57 0	1 0 05	1.1	
	870471	•	18 1	74 0	5 17 0. 5 17 0.	- 0.03/ 1 0 07!	31.J	, , , , , , , , , , , , , , , , , , ,	10 0.00	T 10.1	., JI.0 17 0	7 4 40	0 25 0	1 77 D	10 0.001 16 A A74	5 70 4	u u7,70 7 10 F	1 V.V.M 1 A AT!	5 4749. . 26 D4	C 44 4	1 0 071	7.2	
	010011	•	20.3			2 31 417	20.5	4 4143	1 0103	7 40.f	1 1417		v 6417	A 4999	v.v/.		/ 10.14	1 11030	40.7		4 0.0/1	3.7	

1

.,

TABLA III (continuación) 870705 43.7 57.62 38.48 0.097 33.20 45.51 0.067 25.78 41.80 0.074 27.73 38.67 0.112 26.56 48.83 0.047 20.31 41.41 0.066 3.5 870708 12.1 22.17 48.93 0.056 18.95 51.46 0.036 22.17 40.92 0.065 22.66 42.97 0.064 18.95 53.52 0.036 21.00 43.22 0.053 3.9 871122 • 46.7 27.44 40.72 0.095 20.31 44.34 0.045 19.92 40.23 0.063 27.34 43.75 0.088 21.48 55.86 0.039 21.00 43.85 0.060 4.2

*DISTANCIA OBTENIDA S-P F1 FRECUENCIA DE CORTE INICIAL F2 FRECUENCIA DE CORTE FINAL MAGNIAGNITUD (CODA)

20.7

TABLA III (continuación)

DISCUSION DE RESULTADOS

El área en donde se encuentran colocadas las estaciones acelerográficas está constituida por rocas competentes (figura 9). Debido a esto la atenuación puede predecirse como baja. Sin embargo, debe hacerse la observación de que en la zona se presentan muchos cambios litológicos y estructurales que pueden provocar que existan cambios en la atenuación entre una y otra estación.

A continuación se detallan los pasos y observaciones que se fueron realizando a partir de los valores obtenidos de kappa.

Primeramente se graficaron los valores de k contra la distancia al epicentro n para los valores de los espectros suavizados y no suavizados (figura 10). Se observó que no existian diferencias significativas entre uno y otro optándose por ocupar los espectros suavizados.

Se obtuvo nuevamente el parametro k para las componentes horizontales a manera de revisión observándose que casi no existe variación entre las lecturas anteriores y las nuevas; en esta revisión se imprimieron las gráficas de cada espectro para conservar su registro.

Se graficaron nuevamente los valores de k contra la distancia al epicentro, ó contra la distancia obtenida por lecturas de S-P según el caso, con las siguientes

observaciones:

a) No todas las estaciones tienen suficientes datos como para obtener una regresión , por lo que se graficaron sólo aquellas estaciones para las cuales se tenían dos ó más valores de kappa. No obstante, las estaciones donde sólo existe un valor se tomaron en cuenta para la gráfica general de estaciones.

b) Para cada estación se separaron los valores de kappa para los registros que tenían lecturas S-P a través de las cuales se obtuvo la distancia. Las gráficas de dichos valores presentaban la misma dispersión que aquellos cuya distancia fue obtenida a partir de la localización del epicentro (figura 11).

c) Se graficaron las magnitudes de coda contra la distancia \mathbf{r} , para saber cual era el orden de magnitudes con el que se estaba trabajando a las diferentes distancias (figura 12a). Para observar que tanto influía el tamaño de la fuente, se consideraron sólo los eventos que fluctuaron entre $3 \leq M_{\rm e} \leq 5$ (figura 12b). La dispersión de los valores de kappa para este intervalo de magnitudes no varió. A continuación se observaron las magnitudes para los registros donde se tenían lecturas S-P, para dichos registros, exceptuando dos casos, la magnitud estaba dentro del rango mencionado, por lo cual la dispersión de kappa en las estaciones de estos registros no parece deberse a la magnitud del evento.

d) A continuación se observaron los eventos para las estaciones Papanoa y Xaltianguis, las cuales tienen el

mayor número de eventos, de acuerdo con su ubicación como se muestra en el mapa de la figura 13. Para dichos eventos no parece haber diferencia en la dispersión de los datos entre los eventos ocurridos en zona oceánica y los ocurridos en zona continental. Sin embargo no se puede confiar en la localización de los hipocentros ya que algunos fueron obtenidos con muy pocos datos de tipo local lo que provoca que exista cierta incertidumbre en cuanto a su localización.

e) Para obtener la ecuación que representa la dependencia de k de la distancia, para cada estación se promediaron los valores de las componentes horizontales y se realizó la regresión lineal para las estaciones donde existen más de 3 datos; para los casos en que sólo se tienen dos datos esta regresión sólo se presenta en forma gráfica.

En las gráficas de la figura 14, se muestran los valores de kappa de las dos componentes horizontales sobre las que se realizó la regresión lineal y se muestra también el valor de la componente vertical.

f) En la figura 15, se muestran todos los valores de kappa obtenidos para todas las estaciones graficados contra la distancia, de esta manera se puede observar la tendencia general de la zona. La regresión de esta gráfica así como la de las anteriores se encuentran dadas en la tabla V.

g) Se trató de hacer una correlación entre la pendiente y
 la litologia de cada estación, a partir de la tabla IV.
 pudiéndose observar que las estaciones que presentan

pendientes casi planas, en la gran mayoría están constituídas por rocas plutónicas muy competentes; en las estaciones que presentan pendientes suaves, tenemos rocas plutónicas ó semimetamóficas; mientras que en las estaciones que presentan pendientes muy grandes tenemos rocas de tipo metamórfico ó volcánico no muy competentes (Tabla VI). Sin embargo, según la teoría descrita con anterioridad, la pendiente representa una atenuación de tipo regional y una variación tan grande en las pendientes entre una estación y otra debe de tomarse con reservas ya que en la mayoría de las estaciones, los valores claves que están dando la dirección de la pendiente en las grandes distancias son sólo uno ó dos, por lo que será conveniente contar con más valores de kappa a grandes distancias para poder confirmar que dichas pendientes son las representativas de la zona.

Los valores de ko obtenidos para la zona de Guerrero, en promedio, no muestran una diferencia muy significativa con respecto a los valores que Anderson y Hough (1984), encontraron para la estaciones de roca cristalina competente en la zona de San Fernando como se puede observar en la figura 16.

También se puede observar que el valor de k_0 obtenido para todas las estaciones puede representar de manera burda el de la zona, y es muy parecido al encontrado por ellos para roca dura.

La pendiente μ , encontrada para todas las estaciones puede ser la promedio de la zona. Este valor de μ es

1.82×10⁻⁴ seg/km. Como $\mu = 1/(Q_1^{(2)}\beta)$ (ecuación 13), Q1⁽²⁾= 1570 para $\beta = 3.5$ km/seg. Para la región de Anza, California Hough y Anderson (1988), reportaron el valor de Q1⁽²⁾ entre 564 y 1024.

Para la costa del Pacifico en México, Singh et al. (1989a), reportaron para la ecuación (11) una Qo de 100 seg. Para el tipo de roca promedio de la costa del Pacifico, el espectro de Fourier de la aceleración puede ser escrito como (ver ecuación 11):

 $A(f,R) = CS(f)e^{-\prod f(k_0 + \mu r)}e^{-\prod R/(Q_0\beta)}/R$ (14)

donde $k_0=0.034$ seg, $\mu=1.82\times10^{-4}$ seg/km (Tabla V), y Q_0=100 seg. Nótese que μ r puede ser descartado si lo comparamos con k_0 para r≤50 km. El primer término exponencial afecta al espectro en las altas frecuencias. Estas frecuencias son de gran interés en la ingenieria sismica.

Ciertamente, la aceleración pico a distancias mayores de 200 km ocurre a frecuencias mayores que 5 Hz.

En un modelo recientemente desarrollado por Singh et al. (1989b), la aceleración pico es obtenida de un espectro estimado de Fourier de la aceleración usando la teoría de vibraciones aleatorias y la duración de la fase intensa del movimiento del terreno, (ver Boore, 1986). Singh et al. (1989b), presentan la aceleración máxima esperada en el campo cercano para diferentes valores de k_0 . Las curvas correspondientes a $k_0=0.045$ seg, dadas por estos autores, daría la aceleración máxima esperada

Como Singh et al. (1989b) lo muestra, las

-16

estimaciones son muy sensibles al valor de k_0 . Por lo que entre más conozcamos sobre k, mejor podrán predecirse los espectros, y por lo tanto, la aceleración máxima esperada.


~~~







## MAGNITUD VS DISTANCIA



200 DISTANCIA (FM) D MAGNETUD Figura 12b

• 00

300

400

MAGNITUD

٥

MAGNITUD



- Figura 12.
- (a) Valores de magnitud correspondientes a los eventos para los acelerogramas procesados.
  (b) Eventos que se encuentran dentro del rango de magnitud dado.
- (c) Magnitudes para las cuales los registros -tenían lecturas S-P.



Figura 13. (a) Sismos para los que se tienen valores de kappa en las estaciones Papanoa y Xaltianguis. Para dichas estaciones, se separaron los valores de pendiendo si los sismos ocurrían en zona conti nental u oceánica. (ver figuras 13b y 13c).





Figura 13b



Figura 14 ARTEAGA



ATOYAC



= N-5 - E-W - VERT

# A. ZIHUATANEJO



# CALETA DE CAMPOS



- N-S - E-W - VERT





# CERRO DE PIEDRA



' N-S - E-W - VERT

Figura 14 COYUCA



FILO DE CABALLO



" N-S + E-W \* VERT

Figura 14

# LA LLAVE



LAS MESAS



# Figura 14 OCOTILLO

0.2 XAPPA (seg)

0.15

0.1

0.05

0 50 100 150 200 250 300 350 400 DISTANCIA (KM)

S + E-W \* VERT

OCOTITO





# PAPANOA



## Figura 14

PETATLAN



EL SUCHIL







# TONALAPA





LA VIGA





LA VENTA





Figura 14. Gráficas de las estaciones de los valores de kappa contra la distancia. La línea puntea da representa la regresión lineal del promedio de los valores de kappa para las componentes horizontales.

# XALTIANGUIS

# TODAS LAS ESTACIONES



13 N-S + E-W \* VERT

Figura 15. Gráfica de todos los valores de Kappa para todas las estaciones contra la distancia.





### TABLA IV LITOLOGIA DE LAS ESTACIONES ACELEROGRAFAS (Anderson et al., 1987)

ESTACION TIPO DE ROCA ARTEAGA TONALITA ALTERADA ATOYAC GRANODIORITA A. ZIHUATANEJO TONALITA CALETA DE CAMPOS BRECHA VOLCANICA METAMORFIZADA (ANDESITICA) ALUVION ANDESITA GNEISS GRANITICO ALTERADO GNEISS GNEISS ANDESITA PORFIRITICA GRANITO (INTEMPERIZADO) GNEISS GRANITICO GABRO MONZONITA MUY ALTERADA LEUCOCRATICOS DIQUES EN ZONA UNA INTRUSUVA INTEMPERIZADA DIORITA ALTERADA CUARZODIORITA GRANODIORITA GRANODIORITA TOBA RIODACITICA CAPAS DE DEL SUR LUTITAS INTERESTRATIFICADAS CON ARENISCAS BRECHA VOLCANICA RECRISTALIZADA CUARZO MONZONITA ALTERADA GRANODIORITA GNEISS GRANITICO

EL CAYACO LA COMUNIDAD COPALA COYUCA (DE BENITEZ) CERRO DE PIEDRA FILO DE CABALLO LA LLAVE LAS MESAS **OCOTILLO** OCOTITO PAPANOA

PARAISO PETATLAN SAN MARCOS EL SUCHIL TEACALCO TONALAPA

LA UNION

LAS VIGAS LA VILLITA LA VENTA XALTIANGUIS

TONALITA

| TT A  | DAT  | - W |  |
|-------|------|-----|--|
| - I A | HAL. | V.  |  |

| ESTACION             | ko    | pendlente  |
|----------------------|-------|------------|
|                      | (seg) | (seg/km)   |
| ATOYAC               | 0.051 | -0.000023  |
| A. ZIHUATANEJO       | 0.044 | 0.0000141  |
| CALETA DE CAPOS      | 0.049 | 0.0003033  |
| COYUCA               | 0.034 | 0.0003195  |
| CERRO DE PIEDRA      | 0.034 | 0.0002283  |
| FILO DE CABALLO      | 0.000 | 0.0006853  |
| LA LLAVE             | 0.041 | 0.0000692  |
| LAS MESAS            | 0.032 | 0.0000943  |
| OCOTILLO             | 0.025 | 0.0001863  |
| OCOTITO              | 0.038 | 0.0001404  |
| PAPANOA              | 0.017 | 0.0001508  |
| PARAISO              | 0.025 | 0.0001953  |
| PETATLAN             | 0.029 | 0.0000291  |
| TEACALCO             | 0.050 | 0.0001883  |
| LA UNION             | 0.025 | 0.0003034  |
| LA VIGA              | 0.044 | -0.0000440 |
| LA VENTA             | 0.029 | 0.0001583  |
| XALTIANGUIS          | 0.058 | 0.000069   |
| TODAS LAS ESTACIONES | 0.034 | 0.0001819  |
|                      |       |            |

### TABLA VI

### PENDIENTE CASI PLANA

| GRANODIORITA (ROCA PLUTONICA)     |
|-----------------------------------|
| TONALITA (ROCA PLUTONICA)         |
| CUARZO MONZONITA (ROCA PLUTONICA) |
| TONALITA (ROCA PLUTONICA)         |
|                                   |

### PENDIENTE SUAVE

| LA LLAVE  | GRANITO INTEMPERIZADO (PLUTONICA) |
|-----------|-----------------------------------|
| LAS MESAS | GNEIS GRANITICO (METAMORFICA)     |
| OCOTILLO  | GABRO (PLUTONICA)                 |
| OCOTITO   | MONZONITA ALTERADA (PLUTONICA)    |
| PAPANOA   | DIQUES LEUCOCRATICOS (INTRUSIVO)  |
| PARAISO   | DIORITA ALTERADA (PLUTONICA)      |
| LA VENTA  | GNEIS GRANITICO (METAMORFICA)     |

### PENDIENTE GRANDE

| CALETA DE CAMPO | BRECHA VOLCANICA    |
|-----------------|---------------------|
| COYUCA          | GNEIS (METAMORFICA) |
| CERRO DE PIEDRA | GNEIS (METAMORFICA) |

#### CONCLUSIONES

Los espectros presentaron en su mayoría una tendencia decreciente en las altas frecuencias, y se pudieron obtener los diferentes valores de  $k_0$  para las distintas estaciones de la red de Guerrero.

Los resultados obtenidos son consistentes con los obtenidos por Anderson y Hough (1984), para el temblor de San Fernando en las estaciones de roca dura en donde  $k_0=0.040$  seg, así como los obtenidos por Hough et al. (1988), para las estaciones que se encuentran en el batolito del Sur de California en donde el valor promedio es de ko≈0.030 seg.

La diferencia en los valores encontrados para la misma estación a distancias muy similares obtenidas por lecturas de S-P, si seguimos considerando un modelo de fuente  $\omega^{-2}$ , nos indica que debe de existir alguna diferencia en cl camino que siguen las ondas hasta llegar a la estación. Se espera que las localizaciones que se obtengan más adelante, considerando que existen más estaciones que las que se tenían para los años con que se trabajo, sean más adecuadas y al tener esta confiabilidad en el hipocentro, se pueda empezar a especular sobre las causas que puedan estar provocando diferencias en los valores.

#### BIBLIOGRAFIA

Aki K. SCALING LAW OF SEISMIC SPECTRUM. J. Geophys. Res. 72, pp. 1212-1231, 1967.

Aki K. and Chouet. B. ORIGEN OF CODA WAVES: SOURCE, ATTENUATION, AND SCATTERING EFFECTS. J. Geophys. Res. 80, pp. 3322-3342, 1975.

Aki K. ATTENUATION OF SHEAR WAVES IN THE LITHOSPHERE FOR FREQUENCIES FROM 0.05 TO 25 Hz. Phys. Earth Planet Interiors 26, pp. 241-243, 1980a.

Aki K.

SCATTERING AND ATTENUATION OF SHEAR WAVES IN THE LITHOSPHERE.

J. Geophys. Res. 85, pp. 6496-6504, 1980b.

Anderson J. G. and Hough S. A MODEL FOR THE SHAPE OF THE FOURIER AMPLITUDE SPECTRUM OF ACCELERATION AT HIGH FRECUENCIES. Bulletin of the Seismological Society of America, Vol. 74, pp. 1969-1994, 1984. Anderson J. G., J. Prince, P. Bodin and M.Oñate. THE GUERRERO STRONG MOTION ACCELEROGRAPH ARRAY. Informe Técnico Final, National Science Foundation, Institute of Geophysics and Planetary Physics, University of California, San Diego e Institutos de Ingeniería y Geofísica de la UNAM, 1987.

#### Boore D.M.

THE EFFECT OF FINITE BANDWIDTH ON SEISMIC SCALING RELATIONSHIPS, en <u>EARTHQUAKE SOURCE MECHANICS</u>. Geophysical Monograph 37 (Maurice Ewing 6), American Geophysical Union, pp. 275-283 . 1986.

Brune J.N. TECTONIC STRESS AND SPECTRA OF SEISMIC SHEAR WAVES FROM EARTHQUAKES. J. Geophys. Res. 75, pp. 4997-5009, 1970.

California Institute of Technology Earthquake Engineering Research Laboratory. STRONG-MOTION EARTHQUAKE ACCELEROGRAMS DIGITIZES AND

PLOTTED DATA.

Vol. II Corrected Accelerograms and Integrated Ground Velocity and Displacements Curves.

Cormier Vernon F.

THE EFFECT OF ATTENUATION OF SEISMEC BODY WAVES.

Bulletin of Seismological Society of America, Vol. 72, No. 6,

pp S169-S200, December 1982.

Hanks Thomas C. fmax. Bulletin of the Seismological Society of America, Vol. 72, No. 6, pp. 1867-1879, December 1982.

Hough S.E., Anderson J.G., Brune J., Vernon III F., and Berger J. ATTENUATION NEAR ANZA, CALIFORNIA. Bulletin of the Seismological Society of America, Vol. 78 pp/ 672-691, 1988.

Hough S. E., and Anderson J. G. HIGH FREQUENCY SPECTRA OBSERVED AT ANZA, CALIFORNIA: IMPLICATIONS FOR Q STRUCTURE. Bulletin of the Seismological Society of America, Vol.78, pp. 692-707, 1988.

Lee W. H. K. and Lahr J. C. HYPO71 (REVISED): A COMPUTER PROGRAM FOR DETERMINING HYPOCENTER, MAGNITUDE, AND FIRST MOTION PATTERN OF LOCAL EARTHQUAKES.

Unites Satates Departmen of the Interior, Geological Survey.

Junio 1975.

Mena S. E. y Carmona C. TERRE: SISTEMA PARA PROCESO DE ACELEROGRAMAS, VOL II Nº SIS - 4. Publicación del Insituto de Ingeniería. Junio, 1986.

Singh S. K., Apsel R. J., Fried J., and Brune J. N. SPECTRAL ATTENUATION OF SH WAVES ALONG THE IMPERIAL FAULT. Bulletin of the Seismological Society of America, Vol. 72, No. 6, pp. 2003-2016, December, 1982.

Singh S.K., E. Mena, J.G. Anderson, J. Lermo, and R. Quaas. SOURCE SPECTRA AND RMS ACCELERATION OF MEXICAN SUBDUCTION ZONE EARTHQUAKES. Pure and Appl. Geophysics, (sometido), 1989a.

Singh S.K., M. Ordaz, J.G. Anderson, M. Rodriguez, R. Quaas, E. Mena, M. Ottaviani, and D. Almora. ANALYSIS OF NEAR-SOURCE STRONG MOTION RECORDINGS ALONG THE MEXICAN SUBDUCTION ZONE. Bulletin of the Seismological Society of America, (sometido), 1989b.

Singh S. and R.D. Herrmann. REGIONALIZATION OF CRUSTAL CODA Q IN THE CONTINENTAL UNITES STATES. J. Geophys. Res. 88, pp. 527-538, 1983.