TESIS DE MAESTRO EN CIENCIAS (FISICA) FACULTAD DE CIENCIAS

00362 1ej. 5

UNAM

TITULO: OBTENCION DE ESPECTROS FONONICOS A PARTIR DE PRIMEROS PRINCIPIOS.

AUTOR : FIS. <u>GERARDO</u> JORGE VAZQUEZ FONSECA (FAC. DE CIENCIAS, UNAM).

DIRECTOR : DR. LUIS FERNANDO MAGAÑA SOLIS; IFUNAM.

00362 1983

México, Diciembre 1983.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

En este trabajo se hace una predicción de las curvas de dispersión fonónicas (espectros fonónicos) de Litio y Aluminio a partir de primeros principios.

El método utilizado comprende tres etapas : La primera consiste en calcular la densidad electrónica alrededor de un ión de carga λZ (λ varía entre 0 v 1), donde λZ es la carga del nucleo del ión metálico. Esto se hace por medio del formalismo de Hohenberg-Kohn y Sham (1) que conduce a un conjunto de ecuaciones autoconsistentes que tienen que ser resueltas numéricamente. La segunda etapa utiliza el teorema de Hellmann-Feynmann ⁽²⁾, a través de la constante de acoplamiento λ , para encontrar el potencial entre dos iones del metal, como función de su separación. La tercera etapa se refiere a la obtención de los espectros fonónicos a partir del potencial interiónico calculado. Para ello se utiliza la Aproximación Armónica Autoconsistente⁽³⁾ Los espectros fueron obtenidos para diferentes temperaturas (0, 10 y 270 °K), sin apreciarse en ellos, cambios notables con la temperatura.

El método es una ampliación, hacia metales más pesados, del utilizado con éxito para el caso de Hidrogeno metálico(?).

Se utilizaron unidades atómicas f=1 ; carga electrónica=1 ; masa electrónica=1. Para el caso del Litio el valor de la frecuencia máxima es mayor en un 40% que el valor experimental. En el c<u>a</u> so de Aluminio la frecuencia máxima es solo mayor en un 20%. Resultados nada desalentadores si se toma en cuenta la nat<u>u</u> raleza de primeros principios del cálculo y lo complicado del mismo.

LISTA DE TABLAS

Tabla 1 Valores de la segunda derivada del potencial para el primer m<u>í</u> nimo de este, para Litio a dif<u>e</u> rentes presiones.

Tabla 2 Valores de la segunda derivada del potencial para el primer m<u>f</u> nimo del potencial interiónico para aluminio para diferntes presiones.

LISTA DE FIGURAS

Figura

ini

- II.1 4Ψr² por la densida electr6_ nica para rs_e y rs_k con λ =1 para Li.
- II.2 477* por la densidad electr6_ nica para rs. y rs. con λ =1 para Li.
- II.3 $4\pi r$ por la densidad electró_ nica para rs. y rs. con $\lambda = 1$ para Al.
- II.4 $4\pi r^{2}$ por la densidad electr6_ nica para rs_y rs_ con $\lambda = 1$ para Al.

Página:

27

27

Página:

17

18

19

20

Figura II.5 47π^a por la densidad electró_ nica para rs. y rs. con λ=1 para Al.

II.6 4Wr^a por la densida electró_ nica para rs, y rs, conλ=1 para Al.

III.1 Potencial interiónico de Li para rs. y rs. .

III.2 Potencial interiônico de Li para rs. y rs. .

III.3 Potencial interiónico de Al para rs. y rs.

III.4 Potencial interiónico de Al para rs. y rs. .

V.1 Curvas de disp. fonónicas de Li para rs. y rs. .

V.2 Curvas de disp. fonónicas de Li para rs. y rs.

1

Página:

21

22

28

29

30

31

37

38

		 Constraint and the second s	
	•		
	Figura		Página:
	V.3	Curvas de disp. fonónicas de	
		Al para rs, y rs, .	39
	V.4	Curvas de disp. fonónicas de	
		Al para rs _e y rs _e .	40
	V.5	Valores experimentales delse <u>s</u>	
nan di seri		pectro fonónico de Li.	41
	V.6	Valores experimentales del es_	
		pectro fonónico de Al.	42

INDICE

ta ang ang ang ang ang ang ang ang ang an		Página
CAPITULO I.	INTRODUCCION	1
CAPITULO II.	CALCULO DE LA DENSIDAD	
· · · · · · · · · · · · · · · · · · ·	ELECTRONICA	3
	1. Formalismo H. K. S.	3
	2. Ecuaciones a resolver.	8
	3. Resultados para la desi_	
	dad.	15
CAPITULO III.	MODELO PARA EL CALCULO DEL	
	POTENCIAL INTERIONICO	23
-	1. Ecuaciones del modelo em	
	pleado.	23
	2. Potenciales obtenidos.	26
CAPITULO IV.	LA APROXIMACION ARMONICA AU	
	TOCONSISTENTE	32
CAPITULO V.	CURVAS DE DISPERSION FONONI	
	CAS (ESPECTROS FONONICOS).	35
CAPITULO VI.	COMENTARIOS Y CONCLUSIONES	43
APENDICE A.	Matriz de densidad y valores	
	esperados (Mecánica Cuántica)	46

48
58
64

REFERENCIAS

67

a:

CAPITULO I INTRODUCCION

Al tratar de calcular propiedades de los sólidos cris talinos, se encuentra que muchas de ellas pueden ser obtenidas considerando al cristal como si fuera perfecto, con átomos que solo tienen pequeños desplazamientos oscilatorios alrededor de sus posiciones de equilibrio, estos movimientos son tratados por la llamada dinámica de las redes, por medio de ella se hace posible el tratamiento de propiedades tales como la conductividad térmica, el calor específico de los cristales, etc.

Ya que los fonones son identificados con la energía de los modos normales de vibración del sistema (cristal), el tener las curvas de dispersión fonónicas (espectros fonónicos), es un primer paso para obtener otras propiedades termodinámicas y de transporte.

En este trabajo se intenta reproducir las curvas de dispersión fonónicas de Litio y Aluminio, partiendo de primeros principios.

Los metodos utilizados fueron, el formalismo de Hohenberg-Kohn-Sham ⁽¹⁾, para obtener las densidades electrónicas; el teorema de Hellmann-Feynmann ⁽²⁾ para los potenciales interiónicos y finalmente la aproximación armónica autoconsistente ⁽³⁾ para obtener las curvas de dispersión fonónicas.

En el capitulo IIse revisa el formalismo H.K.S.. Es

te método supone una redistribución de carga negativa alrededor de un potencial externo, pero además incluye un término de correlación. En este método la densidad electrónica juega un papel importante, por eso se le conoce también como formalismo funcional de la densidad.

El potencial interiónico se obtiene en el capítulo III el modelo usado para esto parte de primeros principios y ut<u>i</u> lizando un metal en el cual se introducen dos impurezas, alrededor de las cuales se produce una redistribución de carga. Esta redistribución de carga se calcula utilizando el formalismo de H.K.S. y se obtiene el potencial utilizando el teorema de Hellmann-Feynmann.

En el capítulo IV se expone brevemente la teoría de la aproximación armónica autoconsistente (SCHA) la cual propone una forma armónica para el Hamiltoniano del sistema, pero obtiene variacionalmente la mejor selección de las constantes de fueza, obteniendo que deben ser el promedio térmico de las segundas derivadas del potencial.

Los espectros fonónicos obtenidos en este trabajo son mostrados en el capítulo V, para construirlos se usaron las : segundas derivadas de los potenciales obtenidos en el capít<u>u</u> lo III.

Tanto las densidades electrónicas, los potenciales interiónicos, como los espectros fonónicos fueron recalculados sometiendo a presión a los materiales.

Los resultados obtenidos fueron los esperados físicamente.

Existen, en este trabajo, varios apéndices donde se desarrollan muchas expresiones de las empleadas en el cálc<u>u</u> lo.

2

CAPITULO II

CALCULO DE LA DENSIDAD ELECTRONICA

Para sistemas reales, tales como átomos, moléculas, sólidos. etc., la densidad electrónica no es uniforme. Pero se puede utilizar un gas homogeneo como una aproximación para estudiar sistemas inhomogéneos.

Hohenberg y Kohn y Kohn y Sham ⁽¹⁾ desarrollaron una teorfa usualmente conocida como formalismo de la funcional de la densidad ó formalismo H.K.S.. Esta teorfa nos sirve para obtener un conjunto de ecuaciones autoconsistentes las cuales incluyen, en una manera exacta, efectos de intercambio y correlación, para un gas de electrones que interactúa con un potencial externo.

Si consideramos una colección de un número arbitrario de electrones dentro de una gran caja, moviendose éstos, bajo la influencia de un potencial externo v(r) y la mutua repulsión coulombiana. El Hamiltoniano de este sistema tendrá la forma:

$$H = T + U + V \qquad \dots \quad I.1$$

donde

$$T = \frac{1}{2} \int \nabla \mathcal{Y}^{\dagger}(\mathbf{r}) \nabla \mathcal{Y}(\mathbf{r}) \, \mathrm{d}\mathbf{r} \quad \dots \quad \mathbf{I} \, . \, 2$$

 $V = \begin{cases} v(r) \ \psi^{\dagger}(r) \ \psi(r) \ \mathrm{d}r \ \cdots \ \mathrm{II.3} \end{cases}$

 $U = \frac{1}{2} \int \frac{1}{|\mathbf{r} - \mathbf{r}'|} \psi^{\dagger}(\mathbf{r}) \psi^{\dagger}(\mathbf{r}') \mathcal{V}(\mathbf{r}') \psi(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$... II.4

Donde T es la energía cinética, V es la energía poten cial de los electrones en presencia de un potencial externo $v(\underline{r})$ y U es la repulsión Coulombiana entre los electrones. $\psi(\underline{r})y \psi(\mathbf{r})$ son los operadores de campo.

Se encuentra que existe una función universal de la densidad, F[n], la cual es independiente de cualquier campo externo aplicado $v(\underline{r})$. Dicha función hace que la expresión para la energía total

 $E_{v}[n] = \int v(r) n(r) I^{3}r + F[n(r)] \qquad \dots II.5$

tome su valor mínimo para la correcta $n(\underline{r})$ del estado base, este valor mínimo es la energía correcta del estado base.

Las afirmaciones anteriores son fáciles de demostrar. Esto se hace en dos partes ⁽¹⁾. En la primera, se demuestra que el potencial externo v(\underline{r}) es una función única de n(\underline{r}), salvo una constante aditiva. Como v(\underline{r}) determina el Hamiltoniano H, el cual a su vez determina el estado base del sistema formado por los electrones, vemos pues, que todas las propiedades del estado base son una función única de n(\underline{r}). La segunda parte consiste en demostrar que Ev[n] toma su v<u>a</u> lor mínimo con respecto a las funciones densidad n' (\underline{r}) asociadas con algún potencial externo v' (\underline{r}) tomando la restricción de que el número total de partículas se mantiene con<u>s</u> tante, de tal modo que Ev[n] alcanza su valor mínimo para la densidad n(\underline{r}), correcta, del estado base, esto se demuestra por reducción al absurdo.

Separaremos en F[n] la energía coulombiana, es decir:

- 4

$$F[n] = \frac{1}{2} \int \frac{n(r) n(r')}{|r-r'|} dr dr' + G[n] \cdots I.6$$

tal que Ev se puede, escribir como $E_{v}[n] = \int v(r)n(r) dr + \frac{1}{2} \int \frac{n(r)n(r')}{|r-r'|} dr dr' + G[n] \cdots I.7$

La función G[n] es una función universal, como F[n], y se puede expresar como:

 $G[n] \equiv T[n(r)] + E_{xc}[n(r)] \qquad \cdots II. 8$

El primer término es la energía cinética de un gas de electrones no interactuantes de densidad $n(\underline{r})$, y $E_{xc}[n]$ es la energía de intercambio y correlación de un gas de electrones con densidad $n(\underline{r})$.

Hasta este punto el desarrollo hecho es exacto, pero en la práctica, se introducen aproximaciones debido a que ne se conoce completamente la función $E_{yc}[n]$. Una aproximación usada (aproximación de la densidad local) para el caso de tener una densidad de gradientes no muy grandes, es la siguiente

$$E_{xc}[n(r)] \approx \int n(r) \epsilon_{xc}(n(r)) dr \cdots II.$$

donde \mathcal{E}_{xc} es la energía de intercambio y correlación por electrón en un gas de electrones uniforme con densidad n(<u>r</u>).

As I, la energía puede reescribirse como:

$$E_{v}[n] = \int v(r) n(r) dr + \frac{1}{2} \iint \frac{n(r) n(r)}{|r - r'|} dr dr' + \int T_{s}(n(r)) dr + \int n(r) \mathcal{E}_{xc}(n(r)) dr \cdots II.10$$

Minimizando la ecuación II.10, imponiendo la condición

$$\left(E_{r}[n] = 0 \right)$$

obtenemos $\int v(r) fn(r) dr + \int \int \frac{n(r) fn(r')}{|r - r'|} dr' dr + \int \frac{fT_s(n)}{1 n (r)} fn(r) dr' dr + \int \mathcal{M}_{xc}[n(r)] dn(r) dr = 0 \cdots \mathbb{I}.12$ 6 sea: $\int fn(r) \left[\phi(r) + \frac{fT[n(r)]}{d n (r)} + \mathcal{M}_{xc}[n(r)] dr = 0 \cdots \mathbb{I}.13$ donde: $\mathcal{M}_{xc}[n(r)] \equiv \frac{f[n(r) \mathcal{E}_{xc}[n(r)]]}{Jn(r)} \cdots \mathbb{I}.14$ $\psi(r) = v(r) + \int \frac{n(r')}{|r - r'|} dr' \cdots \mathbb{I}.15$

· ·· TI.11

 $A_{M_m}[n(\underline{r})]$ se le puede considerar como la contribución de intercambio y correlación al potencial químico de un gas de electrones de densidad, $n(\underline{r})$.

Ya que el número de partículas se conserva, la varia ción de n(r) debe cumplir con:

$$\int \sin(\mathbf{r}) \, d\mathbf{r} = 0 \qquad \cdots \quad \mathbf{II}.16$$

Las ecuaciones II.13 y II.16 son las que se obtienen para un sistema de electrones no interactuantes que se mueven en un potencial

 $v_{\text{ef}}(n(r)) = \phi(r) + \mathcal{M}_{\text{xc}}[n(r)]$

Si proponemos que n(r) se puede escribir como

 $n(\mathbf{r}) = \mathbf{z} |\mathbf{Y}_i|^2 = \mathbf{Y}_i^* \mathbf{Y}_i^* \dots \mathbf{I}_i^{17}$ donde las $\mathbf{Y}_i(\mathbf{r})$ son funciones de onda de particula independiente. Así tendremos

б.

 $sn(r) = \int \Psi_{i}^{*} \Psi_{i} + \Psi_{i}^{*} \int \Psi_{i}$

Utilizando el método de multiplicadores de Lagrange con las ecuaciones II.13 y II.16, obtenemos la ecuación de Schrodinger para la partícula i

 $\begin{bmatrix} -\frac{1}{2} \nabla^2 + v_{+}(n(\mathbf{r})) \end{bmatrix} \Psi_{c}(\mathbf{r}) = \xi_{i} \Psi_{i}(\mathbf{r}) \qquad \text{ii. II.18}$ donde ξ_{i} son los multiplicadores de lagrange. Resolviendo el conjunto de ecuaciones II.18 podemos obtener $n(\mathbf{r})$, utilizando la ecuación II.17 con N igual al número de electrones.

Las funciones de onda Υ , obtenidas de la ecuación II.18, no tienen significado físico directo, a diferencia de la teoría de Hartree-Fock, pero la energía total y la densidad total, estan bien definidas a pesar de la dificultad de interpretar las funciones de onda.

Un crucial paso en la teoría H.K.S. es el haber sus tituido la derivada variacional $\sqrt[4]{I_s/(n(r))}$ para la energía cinética por el operador $\frac{1}{2} \nabla^4$.

2.- Ecuaciones a resolver.

La distribución de la densidad de carga electrónica, que rodea a la impureza de carga Z, que será nuestro poten-Cial externo. se obtiene resolviendo autoconsistentemente

las ecuaciones

$$\begin{bmatrix} -\frac{1}{2} \nabla^{2} + \nabla_{e_{1}}(r) \end{bmatrix} \Psi_{i}(r) = \mathcal{E}_{i} \Psi_{i}(r) \qquad \cdots \qquad \text{I. 19}$$

$$n(r) = \sum_{i=1}^{n} |\Psi_{i}(r)|^{2} \qquad \cdots \qquad \text{I. 20}$$

$$c_{i}(r) = \phi(r) + i \mathcal{A}_{in}(r)$$

donde $\phi(\mathbf{r})$ es

$$\phi(\mathbf{r}) = -\frac{2}{r} + \int \frac{\mathbf{n}(\mathbf{r})}{|\mathbf{r}-\mathbf{r}'|} dr' -$$

esta 🖗 satisface la ecuación de Poisson

 $\nabla^2 \phi(\mathbf{r}) = -4\pi \left[\mathbf{n}_{\bullet} - \mathbf{n}(\mathbf{r}) \right]$

Para obtener $v_{ef}(\underline{r})$, se utilizó la expresión del potencial de intercambio y correlación, $\mathcal{A}_{\mu_{e}}(\underline{r})$, propuestas por Hedin y Lundqvist⁽⁵⁾ que esta basada en un trabajo de Singwi <u>et al</u>⁽⁴⁾, ellos expresan $\mathcal{A}_{\mu_{e}}$ como sigue:

$$\mathcal{M}_{xc}(\mathbf{r}) = \beta(\mathbf{r}_{s}(\mathbf{r})) \mathcal{M}_{x}(\mathbf{r}_{s}(\mathbf{r})) \dots \square 22$$

$$\frac{1}{\mathbf{r}_{s}(\mathbf{r})} = \left(\frac{4}{3} \operatorname{Tr} \mathbf{n}(\mathbf{r})\right)^{1/3} \dots \square 23$$

TT. 21

con

 β es conocida como el factor de aumento por correl<u>a</u> ción, cuya expresión es

$$\beta(r_{5}) = 1 + B \times \ln(1 + \frac{1}{x}) \quad j = x = \frac{r_{5}}{A} \quad \cdots \quad II.29$$

 $\mathcal{M}_{\mathbf{x}}$ es el potencial de intercambio debido a Kohn y Sham dado por:

$$M_{x}(r) = -\frac{1}{2} (3\pi^{2} n(r))^{3}$$
 ... II. 25

Las constantes A y B de la ecuación II.24 son consta<u>n</u> tes de ajuste, así

$$\mathcal{M}_{xc} \left(\mathcal{T}_{s}(\mathbf{r}) \right) = \mathcal{M}_{x} \left(\mathcal{T}_{s}(\mathbf{r}) \right) + B \chi \ln \left(1 + \frac{1}{x} \right) \mathcal{M}_{x} \left(\mathcal{T}_{s}(\mathbf{r}) \right)$$
$$= \mathcal{M}_{x} \left(\mathcal{T}_{s}(\mathbf{r}) \right) + \mathcal{M}_{c} \left(\mathcal{T}_{s}(\mathbf{r}) \right)$$

de la expresión anterior se escogen A y B para ajustar $\mathcal{M}_{\epsilon}(\mathbf{r}_{s})$ a los valores tabulados por Singwi <u>et al</u>⁽⁶⁾.

Este ajuste se hace a través de la función λ (r,) que esta determinada por la derivada de $\mathcal{M}_{ac}(\mathbf{r}_{a}(\mathbf{r}))$

 $\mathcal{M}_{kc}^{\prime}(r_{b}) = \mathcal{V}_{k}\mathcal{M}_{k}^{\prime}(r_{b}) \qquad ; \mathcal{V}(r_{b}) = \beta(r_{b}) - r_{b}\beta^{\prime}(r_{b})$ que en términos de la energía de correlación se escribe como

 $\lambda^{\prime}(r_{0}) = 1 - \frac{4r_{0}^{2}\Pi}{6} \left(r_{0} \frac{d^{2}\epsilon_{1}}{dr_{0}^{2}} - 2 \frac{d\epsilon_{0}}{dr_{0}} \right)$ al sustituir los valores de la energía de correlación dados por Singwi <u>et al</u> es casi lineal la forma de**l**, es decir

 $Y(r_0) = 1 + \frac{Bx}{1+x}$; $x = \frac{r_0}{A}$ aquison ajustados los valores de A y B.

aquíson ajustados los valores de A y B.

La expresión final de A.con valores apropiados para las constantes A y B, es:

 $\mathcal{M}_{yL}(T_{s}) = -0.02109 \left[\frac{21}{T_{s}} + 0.7734 \left| \ln \left(1 + \frac{21}{T_{s}}\right) \right] : T_{s} = T_{s}(T) \cdots \mathbb{1}.24$

Para que el potencial desaparezca cuando r→∞ se redefine como $V_{xc}(r_s) = \mathcal{M}_{xc}(n_s + \Delta n(r)) - \mathcal{M}_{xc}(n_s) \qquad \cdots \qquad \mathbb{I}_{\cdot, 27}$

donde n(r) esta dada por:

 $n(r) = n_{\bullet} + \Delta n(r)$... II. 27 b con n_o la densidad electrónica no perturbada.

De esta manera se sustituye tambien $n(\underline{r})$ por $\Delta n(\underline{r})$ en la ecuación II.21 para hacer que el potencial desaparezca cuando r $\rightarrow \infty$. Una vez hecho ésto, se pueden resolver autoconsistentemente las ecuaciones II.19 a II.21.

El cálculo de la densidad electrónica se hizo supon<u>i</u> endo:

 Que los iones en el metal estan lo suficientemente aisla dos, así, la densidad electrónica total, n_t (<u>r</u>), se puede tomar como:

$$n_{\varepsilon}(\mathbf{r}) = \sum n(\mathbf{r} - \mathbf{R}_{\varepsilon})$$

Donde la <u>R</u>t son las posiciones de los iones en el metal.
2) Se tomó, para el cálculo, un núcleo de carga Z, en un gas de electrones infinito, con densidad no perturbada no, y se calculó la distribución electrónica alrededor de él.

Debido a las suposiciones 1 y 2 tenemos simetría esférica. Por tanto, la expresión para el potencial efectivo,

ec. II.21 queda dada por : $\mathcal{V}_{ef}(\Sigma) = -\frac{2}{r} + \frac{1}{r} \int_{0}^{r} 4\pi r'^{2} \Delta n(\Sigma) d\Gamma' + \int_{r}^{\infty} 4\pi r' \Delta n(\Gamma') d\Gamma' + V_{ec}(\Gamma)$ donde se utilizó el hecho de que $1/|\underline{r} - \underline{r}|$ es la función generadora de los polinomios de Legendre y las propiedades de ortogonalidad de estos, y la ecuación de Schrödinger se reduce a $\left(-\frac{1}{2}\frac{d^2}{dr^2} + \mathcal{V}_{ej}(r) + \frac{f(f+1)}{r^2} - F_{w}\right)r R_{fw}(r) = 0 \quad \cdots \quad \text{II. 29}$ donde $R_{fw}(r)$ es la función de onda electrónica radial con momento angular 1, en el estado electrónico k y E_{w} son los eigenvalores de la ecuación de Schodinger de una partícula II.17, para el estado electrónico k,

Para estados no localizados: $E_{k}\approx 1/2k_{*}^{2}$ donde <u>k</u> es el vector de onda electrónica (recuerdese m=1). Las funciones de onda radiales para estados ligados con energías $E_{k} < 0$, los denotamos como $R_{k}(\underline{r})$.

A grandes distancias el núcleo es apantallado totalmente, así, $rV_{e\downarrow}$ $(r\rightarrow \infty$)=0. Las funciones de onda radiales para los estados no localizados tienden a una forma asintótica, que puede ser obtenida a través del análisis de ondas parciales; ésta es:

 $R_{\mu\nu}(r) = \cos \eta_{\mu} J_{\mu}(\kappa r) - s \alpha \eta_{\mu} \eta_{\mu}(\kappa r)$... $\prod .30$ donde $J_{\mu} y \eta_{\mu}$ son las funciones de onda de Bessel esféricas de primera y segunda especie y η_{μ} depende de k. Para estados ligados la forma debe ser:

$$r R_{\rm L}(r) \sim e^{-\kappa r}$$
 ... II.3)

donde

 $K_{\bullet} = \sqrt{-2 E_b}$

A tayes del teorema de Levinson⁽⁷⁾ se obtienen los estados ligados, este teorema dice que

$$\lim_{k \to 0^{+}} \eta_{k}(k) = \eta_{0}(\lambda) \eta_{1}$$

donden_e (1) es el número de estados ligados de momento angular 1. Para obtener el cambio, Δ n(<u>r</u>) en la densidad electrónica, tomando en cuenta que las funciones de onda para los electrones, cuando no está el núcleo, son $\int_{A} (\kappa r) y$ utilizando la ecuación II.17 para calcular n(<u>r</u>), llegamos a:

 $\Delta n(r) = n(r) - n_o$

$$= \frac{1}{Tr^{2}} \int_{0}^{K_{F}} \frac{2\pi a_{F}}{k^{2}} (2l+1) \left[\left| R_{a_{K}}(r) \right|^{2} - \left| J_{a}(kr) \right|^{4} \right] + 2 \left| R_{b}(r) \right|^{2} \\ \dots \text{ II.32}$$

En la ecuación II.32 se ha tomado que k_{τ} es la misma para $R_{d_{k}}$ y \int_{d} . Sólo consideramos las funciones radiales $R_{d_{k}}$ (r) ya que, como existe simetría esférica las partes an<u>gu</u> lares de las funciones de onda, sumadas sobre el número cuá<u>n</u> tico m dan una constante. Además, la suma sobre el número cuántico de momento angular, λ , se toma para un número fin<u>i</u> to y no hasta infinito como debería ser, ésto es porque el potencial efectivo en la ecuación II.29, para λ grande, está dominada por el término $\lambda (\lambda + 1)/r^{2}$, por lo que la función de onda $R_{d_{k}}$ (r) no es muy diferente de \int_{d} (r).

Para el potencial efectivo v_{e4} , se debe tener que el número de electrones desplazado sea igual a la carga del nú cleo. Si esto se cumple, se debe tener ... TT. 33

$$Z = \frac{1}{\pi} \int_{z=0}^{\infty} (z A+1) \eta_{z}(k_{r})$$

donde Z es la carga del núcleo y \mathcal{V}_{ℓ} (K_{r}) son los defasamientos evaluados en el nivel de Fermi, La ecuación II.33 es co nocida como la regla de suma de Friedel⁽¹⁷⁾.

Debemos señalar que el conjunto de ecuaciones de H.K.S. II.32, II.28 y II.29 que se resuelven autoconsistentemente

no tienen una convergencia automática. Es decir, si propon<u>e</u> mos un potencial solución ϕ (<u>r</u>) no tienen una convergencia automática. Es decir, si proponemos un potencial solución y resolvemos las ecuaciones, el nuevo potencial no mostrará, en general, convergencia. Para lograr convergencia se util<u>i</u> zó un artificio^(S) por medio del cual se puede obtener una convergencia automática. Tal artificio consiste en lo siguiente:

Se plantea la ecuación de Poisson como:

 $(\nabla^2 - k^2) \phi(\mathbf{r}) = -4\pi f(\mathbf{r}) - k^2 \phi(\mathbf{r}) \cdots \mathbf{II}.39$ donde ϕ (r) es un potencial debido a la distribución de car ga $f(\mathbf{r})$ y K es una constante.

De la ecuación II.34 obtenemos una relación de recurrencia para el potencial dada por;

$$\phi^{(i)}(\underline{\mathbf{r}}) = \int d\mathbf{r}' \frac{e^{-K|\mathbf{r}-\mathbf{r}'|}}{4\pi i (\mathbf{r}-\mathbf{r}')} \left[4\pi f(\underline{\mathbf{r}}') + \mathbf{k}^* \phi^{(i-i)}(\underline{\mathbf{r}}') \cdots \mathbf{I}.35 \right]$$

Es decir se propone un potencial inicial $\phi^{(n)}$ que se sustituye en II.18 y se calculan las funciones de onda, con ellas se contruye la densidad II.18, La densidad obtenida junto con $\phi^{(n)}$ se sustituyen en II.35 y se obtiene $\phi^{(i)}$ este proceso se repite hasta lograr la convergencia. La constante K acelera el proceso de convergencia esta se escoge dependiendo de los valores de la suma de Friedel y generalmente es menor que tres.

Teniendo la expresión para la densidad de carga eléc trica, para nuestro problema, dada por:

 $f(r') = n(r') = (r - qr) \int (r') - n_r (r')$

donde Z es la carga del núcleo, QE el número de electrones que no son de valencia y n la densidad electrónica de vale<u>n</u> cia, el potencial queda dado por:

 $\phi^{(i)}(\underline{\mathbf{r}}) = \int d\mathbf{r} \quad \frac{e^{-\kappa |\mathbf{r} - \underline{\mathbf{r}}'|}}{4\pi |\underline{\mathbf{r}} - \underline{\mathbf{r}}'|} \left[-4\pi n_{*}(\underline{\mathbf{r}}') + k^{*} \phi^{(i-i)}(\underline{\mathbf{r}}') \right] + \frac{z - QE}{r} e^{-\kappa \mathbf{r}}$ 11.36

3.- Resultados para la densidad electrónica.

El cálculo de las densidades, se hizo para dos materiales, Li y Al. Aunque solo se graficó λ =1 con Z=3 para Li y Z=13 para Al, las densidades fueron obtenidas para valores de λ entre 0 y 1 con incrementos de 0.25/3 para Li y de 1/13 para Al.

Además, todas las densidades se volvieron a calcular aplicando presión al material. Esto fué hecho a través del parámetro rs, que representa el radio que en promedio ocupa un electrón y está dado por:

$$rs_{\bullet} = \left(\frac{2}{\sqrt{3\pi}n_{\bullet}}\right)^{V_{3}}$$

con

n = N

Así, al disminuir r, , la densidad n, aumenta, tenien do, de esta manera, más electrones por unidad de volumen.

Las variaciones de r, tanto para Al como para Li fue ron de la siguiente manera

$$r_{S_{H}} = r_{S_{H}} (1 - N^{*}0, 01)$$

donde N es un entero. Se disminuyó r_{s_s} con esta expresión ha<u>s</u> ta un 25%, pero solo se reportaron los valores de N=0,2 y 4 ya que en laboratorio se trabajan variaciones entre cero y ocho por ciento. N=0 representa presión atmosférica.

El valor de r_{s.} empleado para Li fué 3.236 u.a. y para Al fué 2.0641 u.a.

las gráficas I.1 a I.6 muestran comparaciones para diferentes rs (rs, rs, y rs,), para cada elemento, es decir, al variar r_{50} con la presión, en estas gráficas vemos que existe un cambio de periodo de la densidad a medida que cambia la presión, ésto puede verse al considerar la expresión asintótica (oscilaciones de Friedel) de la densidad que va como

 $\Delta n \ll A \cos \left(2K_F r + \varphi\right)$

Como $k_{\mu}=1.92/r_{s_{\mu}}$, al disminuir r_s aumenta k_{μ} , por lo que el periodo cambiará, es decir, deben existir más máximos y mínimos dentro de un mismo intervalo. Esto sucede no sólo en la forma asintótica sino en todo el perfil de la densidad mostrado en las gráficas, aunque en ellas, para los primeros valores de r las densidades coinciden practicamente.

Nosotros esperamos que este corrimiento de los máximos y mínimos que da una forma diferente para las oscilaci<u>o</u> nes de Friedel se refleje en los potenciales interiónicos.

16

그는 것이 가격 가방을 돌았다.

engen i den en en engenen en egenen enter weerde en etergele eter

19

. .

CAPITULO III

MODELO PARA EL CALCULO DEL POTENCIAL INTERIONICO

1.-Ecuaciones del modelo empleado

El modelo que se utilizó para el cálculo del potencial interiónico, está basado en el formalismo de la funcional de la densidad (H.K.S.). Este modelo consiste en un gas de ele<u>c</u> trones uniforme, el\cual está contenido dentro de un volumen muy grande. Dentro de este gas se colocan dos núcleos de ca<u>r</u> ga Z.

Si H_o es el Hamiltoniano correspondiente al gas uniforme de electrones, cuya densidad denotamos por n_o, al introducir los dos núcleos de carga Z, poniendo éstos sepados una distancia R encontrándose uno en el origen, el Hamiltoniano del sistema cambiará por una cantidad H' dada por

$$H'(r) = -\int \psi'(r) \left(\frac{2}{r} + \frac{2}{|r-\underline{B}|} \right) \psi(r) dr \qquad \dots \text{ III.1}$$

Así, el nuevo Hamiltoniano para el sistema de electrónes será:

$$H_{\tau} = H_{\rho} + H'$$

πг

En este cálculo se introduce el Hamiltoniano $H(\lambda)$ con λ variando de cero a uno, de tal manera que:

$$H_{L}(\lambda) = H_{a} + \lambda H^{1}$$

cumpliendose, $H_{T_{e}}(0) = H_{o} y H_{T_{e}}(1) = H_{T_{e}}$.

El Hamiltoniano $H_{T_{L}}(\lambda)$ describe el mismo sistema que $H_{T_{L}}$, pero $H_{T_{L}}(\lambda)$ tomando una carga externa λ Z en lugar de Z.

La función de onda del sistema de muchos electrones correspondiente al Hamiltoniano $H_{T_e}(\lambda)$ depende, también, de Esta función de onda será denotada como $\Psi(\lambda)$.

Debido a la presencia de los dos núcleos, tendremos un cambio en la energía del sistema; el cambio en la energía del estado base, ΔE_{μ} del sistema de electrones se puede ob tener utilizando el teorema de Hellmann-Feynmann^(A). Dicho cambio está dado por la siguiente expresión

 $\Delta E_{z} = \int \frac{d\lambda}{\lambda} \langle \mathcal{Y}(\lambda) | \lambda H' | \mathcal{Y}(\lambda) \rangle \qquad \dots \quad \mathbb{III}. 4$

Incluyendo ahora los núcleos, el cambio de energía total, ΔE_{τ} , está dado por:

$$\Delta E_{r} = \frac{2^{2}}{R} + \Delta E_{z}$$

$$= \frac{2^{2}}{R} + \int_{0}^{1} d\lambda \langle \Psi(\lambda) \rangle - \left(\frac{2}{r} + \frac{2}{|\mathbf{r} - \mathbf{E}|}\right) | \Psi(\lambda) \rangle$$

$$= \frac{2^{2}}{R} - 2 \int_{0}^{1} d\lambda \int f_{\lambda}(\mathbf{r}) \left[\frac{1}{r} + \frac{1}{|\mathbf{r} - \mathbf{E}|}\right] d\mathbf{r}$$
... III.5

En la ecuación III,5 se introdujo la densidad de car

ga electrónica f_{λ} (<u>r</u>) en el estado $|\Psi(\lambda)\rangle$. Hemos usado las un<u>i</u> dades e=ħ=m=1, donde e es la carga del electrón, ħ es la co<u>n</u> stante de Planck dividida por 2 π y m la masa del electrón.

Por simplicidad, en el modelo usado, suponemos que la densidad f_{λ} es la superposición de las densidadesdesplazadas $\Delta n_{\lambda}(\underline{r})$ alrededor de cada núcleo, esto se hace para tener simetría esférica. Así f_{λ} queda dada por :

 $f_1(\underline{r}) \approx \Delta n_1(\underline{r}) + \Delta n_1(\underline{r}-\underline{R}) + n_0 \qquad \cdots \qquad \underline{II}.6$ la validez de esta aproximación se verá hasta tener los resultados de los fonones.

Sustituyendo III.6 en III.5, redefiniendo el origen de energía para eliminar el término producido por n_o, que es una constante, y reteniendo sólo la parte que depende de R, obtenemos:

$$\Delta E_{T}(R) = \frac{2^{2}}{R} - 2 \int \int_{0}^{1} \left[\frac{\Delta n_{2}(r)}{1r-R} + \frac{\Delta n_{3}(r-R)}{r} \right] d\lambda d^{2}r$$

en otra manera, el potencial interiónico V(R) será:

$$V(R) = \frac{7^2}{R} - 22 \iint \frac{\Delta N_1(r)}{|r-B|} d\lambda dr \qquad \dots \text{III}.7$$

Utilizando los polinomios de Legendre con sus propi<u>e</u> dades de ortogonalidad y teniendo en cuenta que $1/|\underline{r} \cdot \underline{r}'|$ es la función generadora de los polinomios, la ecuación III.7 se puede reescribir como:

$$V(\mathbf{R}) = \frac{\mathbf{z}^{2}}{R} - \frac{2\mathbf{z}}{R} \int_{0}^{1} \mathbf{L} \left[\int_{0}^{R} \frac{4\pi \mathbf{r}^{2}}{r^{2}} \Delta n_{2}(\mathbf{r}) d\mathbf{r} + \int_{0}^{\infty} \frac{4\pi \mathbf{r}^{2}}{r^{2}R} \Delta n_{2}(\mathbf{r}) d\mathbf{r}^{2} \cdots \mathbf{I} \mathbf{I} \cdot \mathbf{S} \right]$$

Para calcular el potencial interiónico, V(R), es necesario conocer Δ n_{λ}(<u>r</u>) y como se mencionó anteriormente, ésta se obtiene a partir del formalismo de H.K.S.. 2.- Potenciales obtenidos.

Las tablas 1 y 2 muestran los valores para la segunda derivada del potencial en el primer mínimo, vemos que el valor de ésta se incrementa cuando aumentamos la presión. La razón de esto puede darse, considerando a los iones del cris tal que se mueven dentro del pozo de potencial, como si cada uno estuviera en una caja sujeto con resortes, al aplicarle la presión reducimos el tamaño de la caja, debido a ésto, la frecuencia con la que oscila el ión es mayor y tomando la r<u>e</u> lación $\omega = \sqrt{k/m}$ se tiene que K tambien debe aumentar, esta k es la constante del resorte y es proporcional a la segunda derivada del potencial, por tanto ésta también aumentará.

Así, al aumentar la presión aumentara el valor de la segunda derivada del potencial.

Las gráficas III.1 a III.4 muestran comparaciones en tre los potenciales obtenidos para Li (δ Al) a diferentes presiones (rso, rs₁ y rs₂).

En las gráficas se aprecia que al aumentar la presión los máximos y mínimos se hacen más agudos, esto se observa mejor para los resultados de Aluminio.

Para A1 los cálculos del potencial fueron repetidos con 50 puntos en λ , no observandose cambios apreciables con respecto a los obtenidos con 13 puntos en λ .

26

rs _n =	RS (1 - N*U.01	Valor de la segunda deriva da en el primer mínimo deT potencial. (u.a)
RS. =	3.236	.01113
RS ₂ =	3.1713	.01231
RS4 =	3.1066	. 01 37 5
TABLA	 Valores de 1 para el prim diferentes p 	a segunda derivada del potencial er mínimo de este, para Litio a resiones.
RS _N =	R _S (1-N*0.01)	Valor de la segunda deriva da en el primer mínimo del potencial (u.a)
RS。 =	2.0641	.1188
RS ₂ =	2:0228	. 1234
RS ₄ =	1.9815	.1317
TABLA	2. Valores de l mínimo del p	a segunda derivada para el primer otencial interiónico para aluminio

para diferentes presiones.

Figura III.2 Potencial intreiónico de Li para rs, (····) y rs, (++++)

CAPITULO IV

LA APROXIMACION ARMONICA AUTOCONSISTENTE

Una vez obtenido el potencial interiónico, se procedio a obtener las curvas de dispersión fonónicas (espectros fonónicos) para cad uno de los materiales. Para ello se ut<u>i</u> lizó la aproximación armónica autoconsistente⁽³⁾.

En los problemas vibracionales, generalmente se considera que la energía potencial total es función unicamente de las posiciones nucleares, es decir, se asume el siguiente Hamiltoniano:

 $H = \sum_{i} \frac{1}{2M} \nabla_{i}^{a} + \frac{1}{2} \sum_{ij} \nabla \left(\frac{R_{i}}{R_{j}} + \frac{H_{i}}{4} - \frac{H_{j}}{4} \right) \dots \quad IV. 1$ donde <u>u</u>: es el desplazamiento del átomo i de su posición de equilibrio R_i.

La energía potencial, v, se puede aproximar por un de sarrollo de Taylor, alrededor de las posiciones de equilibrio de los átomos. Así, la energía potencial queda dada por un término constante más un término cuadrático y otros de orden mayor en las potencias de los desplazamientos atómicos. Si únicamente el término cuadrático es importante, (aproximación armónica), el problema de vibración de la red se puede resol ver completamente en términos de ondas elásticas independien tes, caracterizados por un vector de onda q, el vector \mathcal{E} que que describe la dirección en la cual los átomos se mueven es llamado vector de polarización y por su frecuencia ω . En me cánica cuántica, la energía de cada onda elástica esta cuantizada y se dice que existe un fonón para cada cuanto de energía fiu.

Dentro de la aproximación armónica autoconsistente (SCHA), el cristal se describe como un conjunto de osciladores armónicos. la idea principal en esta teoría es la de s<u>e</u> feccionar un Hamiltoniano de prueba que tenga la forma del correspondiente a un oscilador armónico, es decir

$$H_{\mathbf{k}} = \underbrace{\overline{\xi}}_{-\frac{1}{2}\mathbf{H}} \nabla \widehat{c}^{*} + \underbrace{\frac{1}{2}}_{\overline{\xi}} \underbrace{\overline{\xi}}_{+} (\underline{\omega}_{1} - \underline{\omega}_{2}) \cdot \underbrace{\overline{\mathcal{A}}}_{\overline{\omega}} \cdot (\underline{\omega}_{1} - \underline{\omega}_{2}) \quad \dots \ \underline{\mathbf{T}}, 2$$

La mejor selección de \mathbf{A} , de este conjunto de osciladores, fué encontrada por Boccara y Sarma⁽⁹⁾ por un método variacional. En este método las constantes de fuerza en el Hamiltoniano de prueba son los parametros variacionales que se obtienen minimizando la energía libre,

En la aproximación SCHA, las frecuencias fonónicas y los vectores de polarización estan dadas por la ecu<u>a</u> ción de eigenvalores⁽³⁾, (ver apéndice)

 $\omega_{\lambda}^{2}(\underline{f}) \mathcal{E}_{\lambda}^{4}(\underline{f}) = \sum_{\beta} \mathcal{D}_{4\beta}(\underline{f}) \mathcal{E}_{\lambda}^{\beta}(\underline{f}) \qquad \dots \quad \underline{II}.3$ donde $\mathcal{E}_{\lambda}^{4}(q)$ es la componente cartesiana del vector de polarización $\overline{\mathcal{E}}_{\lambda}(q)$, y la matriz dinámica esta dada por

 $D_{\alpha\beta}(\alpha) = \frac{1}{n} \sum_{\alpha} (1 - \cos(\alpha, \underline{R}_{\alpha})) (\overline{p}_{c_{\alpha}})_{\alpha\beta} \cdots \mathbb{I}_{a}$

En la cual, la matriz de constantes de fuerza (R_{*}) (R_{*}), esta dada por el promedio térmico de las segundas derivadas del potencial

 $\oint_{up} (\underline{R}_s) = \frac{1}{(8\pi^3 \operatorname{Jet} \lambda_p)^{\gamma_2}} \left(d^{2}u \exp\left(-\frac{1}{2} \sum_{y_3} u_s(\lambda_p)^{\gamma_3} u_y\right) \right)$ $X v_{ap} (\underline{R}_{a} + \underline{U}) \dots \underline{I} \underline{V}.5$

:33

En la ecuación IV.5, <u>u</u> es el vector correspondiente al desplazamiento del átomo λ de su posición <u>R</u> y <u>v(R</u> + <u>u</u>) es la derivada tensorial del potencial interiónico, y λ es la función de correlación desplazaminto-desplazamiento d<u>a</u> da por

$$\begin{split} \lambda_{ap} &\equiv \left\langle \left(\underline{U}_{a} - \underline{U}_{p} \right) \left(\underline{U}_{a} - \underline{U}_{p} \right) \right\rangle = \\ & \frac{1}{MN} \sum_{(\mathbf{y})\lambda} \left(1 - \cos \underline{\mathbf{y}} \cdot \underline{\mathbf{R}}_{p} \right) \mathcal{E}_{\lambda}^{\mathbf{y}^{a}} \left(\underline{\mathbf{x}} \right) \mathcal{E}_{\lambda}^{\mathbf{y}^{a}} \left(\underline{\mathbf{x}} \right) \\ & \chi \operatorname{coth} \left(\frac{1}{\lambda} \beta K \, \omega_{\lambda} (\underline{\mathbf{x}}) \right) / \omega_{\lambda} (\underline{\mathbf{x}}) \dots \mathbf{D}. 6 \end{split}$$

Las constantes de fuerza $\oint_{P} (\underline{\mathbf{R}}_{R})$ juegan el mismo pa pel que $\mathbf{v}_{n}(\underline{\mathbf{R}}_{R})$ en la aproximación armónica, (HA).

El calculo de las curvas de dispersión fué hecho incluyendo interacciones entre las primeras 22 capas de vecinos, tanto para el aluminio como para el Litio.

Para ello, se utilizó el método dado por la referencia 3 para calcular los elementos de la matriz dinámica. El método relaciona las constantes de fuerza del modelo axialmente simétrico para n vecinos⁽¹⁰⁾, (A.S.) con las del modelo de tensor de fuerza. Esto se muestra en el apéndice C.

CAPITULO V

CURVAS DE DISPERSION FONONICAS (ESPECTROS FONONICOS)

Se han calculado los valores de las frecuencias de oscilación, utilizando la aproximación armónica autoconsistente, los resultados obtenidos se comportan bien físicame<u>n</u> te al variar la presión.

El método autoconsistente se inicia dando como primer valor para las \oint_{i_0} los valores de la segunda derivada del potencial calculado en el capítulo III, estos valores se sus tituyen en la ecuación IV.4 obteniendo los elementos de la matriz dinámica con estos valores para la matriz dinámica se encuentran los valores de las frecuencias $\omega_{e_{i}}$, a partir de la ecuación IV.3. Esta valores corresponden a las frecuencias en la aproximación armónica, con estas frecuencias se calcu lan los valores de λ usando la ecuación IV.6 y con estos va lores se obtienen las nuevas \oint_{i_j} a partir de la ecuación IV.5 se prosigue asi hasta lograr convergencia en ω . Hay que ha cer notar que los valores de la segunda derivada del potencial obtenidos en el capítulo III se conservan durante todo el proceso dentro de la integral de la ecuación IV.5.

El método empleado, SCHA, tiene una convergencia rápida, ya que sólo necesitó alrededor de cinco iteraciones para que convergieran los resultados.

Las gráficas V.1 a V.4, muestran comparaciones entre

las curvas de dispersión obtenidas, observandose cómo se in crementa el valor de las frecuencias, aunque sigue mantenien dose la forma de las curvas.

Hay discrepancias en cuanto a la máxima frecuencia obtenida. Para Litio es mayor en un 40% con respecto a los resultados experimentales y para el caso del Aluminio la d<u>i</u> ferencia es de solo 20%. Estos resultados son alentadores, dado que es un cálculo de primeros principios y es sumamente complejo. Probablemente pueda mejorarse tomando una mejor aproximación para la densidad expresada en la ecuación III.6. En las gráficas V.5 y V.6 se muestran los valores experime<u>n</u> tales para las curvas de dispersión fonónicas de Li y Al^(II).

Las gráficas muestran las ramas acústicas en las direcciones (q00),(qqq) y (qq0), en ese orden,para el caso de Litio y (q00),(qq0) y (qqq) para el caso de Aluminio; se ha indicado cuales son las ramas transversales denotandolas con la letra T y cuales las longitudinales indicandolo con la letra L.

Figura V.2 Curvas de dispersión fonónicas para Li pare rs (----) y rs (

V:3 Curvas de dispersión fonónicas para Al para rs (____) y rs (

Figura V.6 Valores experimentales del espectro fonónico de Al

CAPITULO VI

COMENTARIOS Y CONCLUSIONES

El método empleado en la referencia 4, para obtener las densidades electrónicas y potenciales interiónicos de Li, ha sido extendido en este trabajo para el caso de Aluminio, con resultados cuyo comportamiento al someterlos a presión es el físicamente esperado.

Los resultados para el Li, que también fueron aquí obtenidos para diferente intervalo de valores de la presión (disminuyendo el parámetro r_{s_0} 2 y 4%) que en la referencia 12, siguieron comportandose en forma físicamente adecuada.

La magnitud de la frecuencia de corte obtenida, es un poco mayor (~401) que la de las curvas de dispersión experimentales $\binom{n}{2}$ para Li y solo del 201 para el caso de Al.

Una razón para justificar el hecho de que para el Li se tenga una diferencia mayor, con respecto a los resultados experimentales, que para el caso de Al, es que para el Li se tienen problemas de no localidad.

Los espectros fueron obtenidos para diferentes temperaturas (0,10 y 270 °K), sin apreciarse en ellos cambios no tables con la temperatura. Las curvas de dispersión mostradas en las gráficas son para temperatura 0 °K.

Existen calculos recientes con los que se obtienen potenciales interiónicos utilizando teoría de pseudopoten-

-43

ciales y a partir de ellos, propiedades termodinámicas, con con buenos resultados para metales simples. Estos cálculos tienen desventaja, físicamente hablando, ya que no son completos, como es el caso del trabajo de W.A.Harrison, <u>et al</u>⁽¹³⁾ (1982), que combina teoría de pseudopotenciales de segundo orden con la función dieléctrica de Thomas-Fermi y no incl<u>u</u> ye efectos de intercambio y correlación (este trabajo no d<u>i</u> ce qué sucede en el caso de usar otra función dieléctrica, como la de Singwi⁽⁶⁾ por ejemplo). Otros trabajos, como el de J.P. Chelikowsky⁽¹⁴⁾(1980), obtienen un pseudopotencial a partir de una densidad electrónica, construida de expone<u>n</u> ciales, que reproduce la densidad de carga obtenida por el método de H.K.S. solamente fuera de cierta región esférica de tamaño arbitrario.

Manninen <u>et al</u>^(/5) (1981) utilizan H.K.S. para calc<u>u</u> lar la densidad electrónica y posteriormente teoría de pse<u>u</u> dopotenciales. Reconstruyen la densidad de carga para <u>r</u> pequeñas en términos de un polinomio y a partir de esta reco<u>n</u> strucción definen unpseudopotencial local. La manera que dan para reconstruir la densidad no es única.

Los dos trabajos mencionados anteriormente (14,15) remueven los " rizos " de la densidad de carga cerca del origen por diferentes métodos. Por tanto,cierta arbitrariedad (6 conveniencia) permanece en sus cálculos. Los trabajos con pseudopotenciales como los anteriores tienen la ventaja de poder dar muy buenos resultados ajustando parámetros co<u>n</u>

venientemente.

De lo anterior, podemos ver que nuestro cálculo (au<u>n</u> que no reproduce con alta precisión los resultados experime<u>n</u> tales) tiene ciertas ventajas conceptuales con respecto a los trabajos mencionados que resultan ser no completamente ab initio, como se plantea en los trabajos,

Sentimos que el método puede ser mejorado, en particular en la suposición dada por la ecuación III.6.

Por lo que toca al cálculo de las curvas de dispersión, creemos que puede ser extendido a materiales HCP.

Por último, también se puede considerar que en lugar de introducir un ión en el jellium, cuando se calcula la de<u>n</u> sidad, el introducir ese ión en una vacancia del jellium, método utilizado ya con frecuencia $(^{15})$. En el primer caso corresponde a introducir el ión en un sitio intersticial mientras que en el segundo caso se introduciría el ión en una vacancia (sustitucional).

APENDICE A

Matriz de densidad y valores esperados (Mecánica Cuántica)

Dado un ensemble de N sistemas idénticos con N>1, caracterizado por el Hamiltoniano Ĥ para el tiempo t, la fun ción de onda $\Psi^{n}(\mathbf{r}, \mathbf{t})$ es la correspondiente al estado físico del sistema k del ensemble, donde k=1,2,...,N.

La variación en el tiempo de la función $\mathcal{P}^{\kappa}(\mathbf{r},\mathbf{t})$ está dada por la ecuación de Schrodinger

$$\widehat{H} \Psi^*(t) = i \mathcal{K} \Psi^*(t) \qquad \dots \quad A.1$$

La función de onda $\gamma^{\mu}(t)$ se puede escribir en términos de un conjunto completo de funciones de onda ortonormales γ_{n} , es decir:

$$\Psi^{*}(t) = \sum_{n=1}^{\infty} a_{n}^{*}(t) \varphi_{n}$$
 ... A. 2

CON

$$a_n^*(t) = \int \mathcal{Y}_n^* \mathcal{Y}^*(t) \, dt \qquad \dots A.3$$

Definimos ahora el operador de densidad \hat{f} (t) como

$$\int_{mn}(t) = \int_{N} \sum_{k=1}^{N} \{a_{m}^{*}(t) a_{n}^{**}(t)\} \cdots A. \forall$$

estos elementos de matriz $\hat{f}(t)$ son el promedio del ensemble de la cantidad $\mathfrak{q}_m(t) \mathfrak{d}_n^{\mathfrak{q}}(t)$, que varía de miembro a miembro del ensemble. Los elementos de la diagonal $\mathfrak{f}_{nn}(t)$ son el pro medio de ensemble de la probabilidad $|\mathfrak{Q}_n(t)|^{\mathfrak{q}}$, donde $|\mathfrak{Q}_n(t)|^{\mathfrak{q}}$ misma es un promedio (mecánico-cuántico).

Así, tenemos un doble promedio, uno debido al aspecto probabilistico de las funciones de onda y otro debido al a<u>s</u> pecto estadístico del ensemble. La cantidad $f_{nn}(t)$ representa la probabilidad de que un sistema escogido al azar en el ensemble, se encuentre en el estado f_n .

El valor esperado del operador \widehat{A} , está determinado por el doble promedio, es decir

$$\langle \hat{A} \rangle = \frac{1}{N} \sum_{k=1}^{N} \left(\mathcal{Y}^{k \times k} \hat{A} \mathcal{Y}^{k} d \tau \right)$$
$$= \frac{1}{N} \sum_{k=1}^{N} \left[\sum_{m,n}^{N} a_{n}^{n \times k} a_{m}^{k} A_{n \times m} \right]$$

con

$$A_{nm} = \int \mathcal{Y}_n^* \hat{A} \mathcal{Y}_m \, dT$$

o en términos de la matriz de densidad $\langle \hat{A} \rangle = \sum_{mn} f_{mn} A_{nm} = \sum_{m} (\hat{f} \hat{A})_{mm} = t_r (\hat{f} \hat{A})$

APENDICE B

Aproximaciones armónica (H.A.) y armónica autoconsistente (SCHA)

Para un sólido que tenga un átomo por celda unitaria, si tomamos como vectores base <u>a,b</u> y <u>c</u>, las posiciones de equ<u>i</u> librio del cristal estan dadas por

R. = m.a + m.b + m.c

donde m., m. y m. son enteros,

Si denotamos el desplazamiento de la posición de equi librio del átomo i por \underline{u}_{ℓ} , el vector posición del átomo i será:

Por otro lado, tenemos que la energía potencial total es la contribución de todos los distintos pares de átomos, es decir:

$$U = \frac{1}{2} \sum_{ij} \mathcal{V} (\underline{r}_i - \underline{r}_j) = \frac{1}{2} \sum_{ij} \mathcal{V} (\underline{r}_i - \underline{R}_j + \underline{u}_i - \underline{u}_j) \cdots \mathbf{R}_{\mathbf{A}}$$

Así, el Hamiltoniano del sistema está dado por:

$$H = \sum_{i}^{2} \frac{P_{i}^{2}(\underline{R}_{i})}{2M} + U$$

donde $\mathbb{P}(\underline{\mathbf{R}}_{c})$ es la cantidad de movimiento y la posición de equilibrio para cada átomo es $\underline{\mathbf{R}}_{c}$ y M la masa atómica.

Haciendo un desarrollo en serie del potencial U, que

es función del desplazamiento de los iones, con respecto a sus posiciones de equilibrio, en potencias de los desplazamientos <u>u</u>, tenemos:

$$U = \underbrace{\mathcal{M}}_{i} \underbrace{\mathcal{Z}}_{i} \upsilon (\underline{R}_{i}) + \underbrace{1}_{i} \underbrace{\mathcal{Z}}_{i} (\underline{u}_{i} - \underline{u}_{j}) \nabla \upsilon (\underline{R}_{i} - \underline{R}_{j}) \\ + \underbrace{1}_{i} \underbrace{\mathcal{Z}}_{i} \left[(\underline{u}_{i} - \underline{u}_{j}) \cdot \nabla \right]^{2} \upsilon (\underline{R}_{i} - \underline{R}_{j}) + \mathcal{D}(\underline{w}^{2}) \qquad \cdots \text{ B. } 4$$

.. B.S

B. 6

El primer término de la ecuación B.4 es el potencial del cristal en equilibrio, p'_{\bullet} , el segundo término es la fu<u>e</u> rza sobre el átomo i que ejercen los demás átomos, en equilibrio. Esta fuerza es cero.

El primer término de corrección al potencial de equi librio Á, que no se anula, es el término cuadrático. En la aproximación armónica todos los términos de orden mayor son despreciados.

El Hamiltoniano queda:

 $H = \frac{\vec{P}_i(\vec{r})}{2M} + \vec{p}_i + \frac{1}{4} \sum_{ij} \sum_{ij} D_{-p} u_i^{-} u_j^{-}$

donde

y

$$\mathcal{P}_{e} = \frac{N}{1} \stackrel{2}{\underset{c}{\leftarrow}} \mathcal{P}\left(\frac{R_{i}}{R_{i}}\right)$$

$$\mathcal{D}_{e} = \left(\frac{J^{2} \mathcal{V}\left(\frac{R_{i}}{L_{i}}-\frac{R_{j}}{L_{i}}\right)}{J u_{i}^{*} u_{j}^{*}}\right),$$
e con:

cumple con:

y las ecuaciones de movimiento son

Definimos unas coordenadas Q_K,tales que

$$U_{i}^{*} = \frac{1}{(NM)^{V_{1}}} \sum_{\mu_{3}} \xi_{\mu_{3}}^{*} \quad Q_{\mu_{3}} \in \ell^{(\bar{\mu},\bar{\mu}_{i})} \qquad \dots \quad B.7$$

donde $\vec{\epsilon}_{kj}$ son los vectores de polarización y la ecuación B.6 queda

$$- \ddot{Q}_{k_{1}} \mathcal{E}_{k_{1}}^{*} = Q_{k_{2}} \sum D_{a \rho} (F) \mathcal{E}_{k_{3}} \qquad \dots B. B$$

donde $D(\underline{k})$ es la matriz dinámica. Los elementos de esta matriz son

$$D_{ap}(\underline{k}) = M^{-1} \sum_{k=1}^{\infty} D_{ap}(R) e^{-i E \cdot R_{cj}} \dots B.9$$

Las frecuencias ω de las ondas descritas por Q_{*3} se obtienen de la ecuación de eigenvalores para los vectores de polarización

$$\sum_{\mu} D_{\mu\rho}(\underline{k}) \mathcal{E}_{\mu1}^{\mu} = \omega_{\mu}^{\mu} \mathcal{E}_{\mu1}^{\mu} \qquad \dots \quad \mathbf{B}. \ / \mathbf{0}$$

donde los vectores $\overline{\mathcal{E}}_{\mathbf{h}_{1}}$ cumplen con

 $\bar{\mathcal{E}}_{K1}\cdot\bar{\mathcal{E}}_{K1}=J_{11}, \quad ; \quad \sum_{\lambda} \bar{\mathcal{E}}_{K1} = J_{+\rho}$

es decir forman un conjunto completo,

En la aproximación armónica autoconsistente⁽³⁾, el Hamiltoniano

$$H := - \frac{\overline{P_i(R)}}{2M} + \frac{1}{2} \sum_{ij} v \left(\overline{R_i} - \overline{R_j} + \underline{u_i} - \underline{u_j} \right) \cdots B. II$$

es sustituido por el Hamiltoniano de prueba, dado por:

$$H_{L} = -\frac{7}{2} \frac{\overline{P}_{1}^{2}(\mathbf{R})}{2M} + \frac{1}{2} \frac{7}{2} \frac{1}{2} (\underline{u}_{1} - \underline{u}_{1})_{e} (\underline{\rho}_{ij})_{ep} (\underline{u}_{i} - \underline{u}_{j})_{e} \cdots B. 12$$

donde las $(\phi_{ci})_{\rho}$ serán determinadas variacionalmente.

El Hamiltoniano H en términos de el Hamiltoniano pru<u>e</u> ba esta dado de la siguiente manera:

$$H = H_{h} + \frac{1}{2} \sum_{ij} \tau(\underline{R}_{i} - \underline{R}_{j} + \underline{u}_{i} - \underline{u}_{j}) - \frac{1}{2} \sum_{ij} \frac{1}{2} (\underline{u}_{i} - \underline{u}_{j})_{a} (\underline{\theta}_{i})_{a} (\underline{u}_{i} - \underline{u}_{j})_{a}$$

La matriz de densidad correspondiente al Hamiltoniano prueba es

$$f_{\rm h} = e^{-\beta H_{\rm h}} / t_{\rm r} \{ e^{-\beta H_{\rm h}} \} \dots B.13$$

La matriz de densidad del Hamiltoniano real queda d<u>a</u> da como $U = H - N_h$

$$f(H) = e \times P\left(-\frac{H}{kT}\right) / \left\{ e^{-\rho H} \right\} = e \times P\left(-\frac{(H_{h}+U)}{kT}\right) / \left\{ e^{-\rho (H_{h}+U)} \right\}$$

si U es pequeño tendremos

$$F = -KT \ln tr S(H) \simeq -KT \ln tr P_n = Formeton$$

O de otra manera

$$F_{\text{pruchen}} = \text{Tr} \left\{ f_h + \beta^{-1} l_h f_h \right\} = \left\langle H + \beta^{-1} l_h f_h \right\rangle \quad \dots \quad B. 1 Y$$

si tambien escribimos

$$F_{n} = \langle H_{n} \neq \beta^{2} | n \beta_{n} \rangle \qquad \dots \quad B.$$

e introducimos la matriz

$$(\lambda_{i})_{ap} = \langle (\underline{u}_{i} - \underline{u}_{j})_{a} (\underline{u}_{i} - \underline{u}_{j})_{p} \rangle \dots B. 16$$

podremos reescribir la ecuación B.14 como

$$F_{proceba} = F_h + \frac{1}{2} \sum_{ij} \langle \mathcal{V}(\underline{R_i} - \underline{R_j} + \underline{U_i} - \underline{U_j}) \rangle$$

$$- \frac{1}{4} \sum_{ij} \langle \mathcal{I}_{ij} \rangle_{ap} (\underline{\mathcal{I}}_{ij})_{ap} \qquad \dots \quad B. 17$$

Sabiendo que para cualquier función $f(\underline{r})$ se tiene que

$$f(r+u) = e^{u} f(r),$$

podemos escribir que :

$$\langle v(\underline{R}_{i}-\underline{R}_{j}+\underline{U}_{i}-\underline{U}_{j})\rangle = \langle exp[(\underline{u}_{i}-\underline{u}_{j})\cdot \nabla]\rangle v(\underline{R})|$$

 $R = R_{i} = \underline{R}_{i} - \underline{R}_{j}$

y utilizando la propiedad de los osciladores armónicos que establece(16):

$$\langle e^{y\cdot\sigma} \rangle = e^{xP} [\langle (y\cdot\sigma)^2 \rangle /2],$$

obtenemos finalmente que:

Sustituyendo la ecuación B.17 vemos que F_{proba} es función de λ y β . Minimizando F_{proba} con respecto a estos par<u>á</u> metros obtenemos:

$$\frac{\int F_{\text{Privada}}}{\int (\lambda c_i)_{ap}} = \frac{1}{4} \left\langle \nabla \nabla \nu \left(\underline{e}_{ij} + \underline{u}_i - \underline{u}_i \right) \right\rangle - \frac{1}{4} \left(\underline{\phi}_{ij} \right)_{ap} = 0 \dots B.19$$

$$\frac{\int F_{\text{product}}}{\int (\phi_{is})_{ap}} = \frac{\int F_{a}}{\int (\phi_{is})_{ap}} - \frac{1}{4} (\lambda_{is})_{ap} = 0 \qquad \dots \quad B.20$$

La ecuación B.19 nos dice que la mejor selección de $(\phi_{ij})_{\mu}$ es el promedio térmico de las segundas derivadas del potencial interiónico, mientras la ecuación B.20 nos da una relación entre ϕ y λ .

La matriz dinámica puede ser obtenida como en la apro ximación armónica, así:

$$D_{ab}(k) = \sum_{k} (1 - \alpha^{-k})(\phi_{ij})_{ab} \dots B_{ab}$$

$$u_{k1}^{2} \mathcal{E}_{k1}^{k} = \sum_{\rho} D_{\rho} \mathcal{E}_{k1}^{\rho} = \sum_{r_{3}} (1 - e^{-i\underline{K}\cdot \underline{R}\cdot \underline{r}}) (\mathcal{P}_{r_{3}})_{\rho} \mathcal{E}_{r_{3}}^{\rho} \dots B.22$$

$$u_{k1}^{2} \mathcal{E}_{k1}^{k} = \sum_{\rho} (1 - e^{-i\underline{K}\cdot \underline{R}\cdot \underline{r}}) \langle \nabla \nabla \nabla (\underline{R}\cdot\underline{i} + \underline{u}\cdot -\underline{u}) \rangle \rangle \mathcal{E}_{r_{3}}^{\rho}$$

De los resultados anteriores se puede obtener una expresión para F_h en términos de ω . Para ésto se tomarán las coordenadas normales:

 $U_{a}^{d} = \frac{1}{\sqrt{N\pi}} \sum_{k_{\lambda}} \mathcal{E}_{k_{\lambda}}^{d} \mathcal{E}_{k_{\lambda}}^{k+2}; P_{a}^{d} = \sqrt{M} \sum_{k} \mathcal{E}_{k}^{d} P_{k_{\lambda}} \bar{\mathcal{E}}^{(k+2)} \dots B.22a$ donde

$$Q_{\mathbf{k}_{\lambda}} = \sqrt{\frac{1}{2\omega_{\mathbf{k}_{\lambda}}}} \left(a_{\mathbf{k}} + q_{-\mathbf{k}}^{+}\right); \quad i \quad f_{\mathbf{k}_{\lambda}} = \sqrt{\frac{\omega_{\mathbf{k}_{\lambda}}}{2}} \left(a_{\mathbf{k}} - q_{-\mathbf{k}}^{+}\right)$$

Siendo $a_{\mathbf{k}} \vee q_{\mathbf{k}}^{+}$ los operadores de ascenso y descenso

Sustituyendo la ecuación B.23 en la expresión B.12 para H., usando B.22 obtenemos que:

$$H_{N} = \frac{1}{4} \left(\sum_{N_{A}} P_{N_{A}} P_{-N_{A}} + \omega_{N_{A}}^{2} Q_{N_{A}} Q_{-N_{A}} \right)$$

б

$$I_{\mu} = \frac{1}{2} \sum_{\mu_{\lambda}} (P_{\mu_{\lambda}} P_{-\mu_{\lambda}} + W_{\mu_{\lambda}}^{*} Q_{\mu_{\lambda}} Q_{-\mu_{\lambda}})$$

y en términos de los operadores de creación y aniquilación:

$$H_{h} = \frac{1}{4} \sum_{\mu_{J}} W_{\mu_{J}} \left(a_{\mu} a_{\lambda}^{\dagger} + q_{\mu}^{\dagger} a_{\mu} \right) = \sum_{\mu_{J}} W_{\mu_{J}} \left(\frac{1}{4} + a_{\mu}^{\dagger} a_{\mu} \right) \dots B^{23}$$

La ecuación B.23 nos da los eigenvalores para la ener

gía

$$E(\dots n_{\mu}\dots) = \sum_{\mu_{2}} \omega_{\mu_{2}} \left(\frac{1}{2} + n_{\mu} \right) \dots B_{-2\gamma}$$

De la ecuación para la función de partición

$$\mathcal{C}^{\rho_{F_n}} = T_r \mathcal{C}^{\rho_{F_n}} = \sum_{\dots, n_{n-1}} \mathcal{C}^{\rho_{F_n}} = \prod_{n=1}^{\infty} \mathcal{C}_{n_1}$$

54

donde 2r1 esta dado por:

$$Z_{k_{\lambda}} = \frac{e^{-\frac{1}{2}} \beta \omega_{k_{\lambda}}}{1 - e^{-\frac{1}{2}} \beta \omega_{k_{\lambda}}} = \frac{1}{2 \operatorname{Sen} h\left(\frac{1}{2} \beta \omega_{k_{\lambda}}\right)}$$

y de ésto obtenemos la expresión para F_b

Sustituyendo la expresión B.25 en la ecuación B.20

obtenenos:

$$\frac{\int F_{n}}{\int \left(A_{j}\right)_{kp}} = \frac{\sum}{k} \frac{\beta^{-1} \frac{\beta}{2}}{2} \frac{2 \cosh\left(\frac{1}{2} \beta \omega_{k_{j}}\right)}{2 \sinh\left(\frac{1}{2} \beta \omega_{k_{j}}\right)} \frac{\int \omega_{k_{j}}}{\int \left(B_{j}\right)_{kp}} \cdots B.26$$

De la ecuación B.22 y utilizando las propiedades de $\overline{\xi}_{\kappa_{\lambda}}$, obtenemos al multiplicar de ambos lados por $\zeta_{\kappa_{\lambda}}^{\prec}$ y su mar sobre \prec

$$\omega_{\mu_{\lambda}}^{*} = (MN)^{-1} \sum_{\rho} \sum_{j} \left[1 - e_{XP}(i\underline{K} \cdot \underline{R_{ij}}) \right] \mathcal{E}_{\mu_{\lambda}}^{*} \left(\dot{P}_{ij} \right)_{\rho} \mathcal{E}_{\mu_{\lambda}}^{\rho}$$

$$\frac{\int \omega_{k_1}}{\int (\vec{R}_{s})_{\mu\rho}} = \frac{1}{2\omega_{\mu_1}} \frac{\int \omega_{k_1}}{\int (\vec{Q}_{s_1})_{\mu\rho}} = \frac{1}{2\omega_{\mu_2}} (HN)^{-1} [1 - exp(ik \cdot \underline{R}_{s_1})] \xi_{\mu_2}^{-1} \xi_{\mu_2}^{\rho}$$

Sustituyendo la expresión anterior en la ecuación B.26 obtenemos:

$$\frac{\int F_{h}}{\int (\beta_{13})_{40}} = \sum_{k,\lambda} \frac{1}{4} \left(H N W_{k3} \right)^{-1} \left(o \dagger h \left(\frac{1}{2} \int W_{k3} \right) \left[1 - exp(i \underline{k} \cdot \underline{R}_{11}) \right] \xi_{k\lambda}^{2} \xi_{k\lambda}^{2}$$

Empleando la igualdad B.18, desarrollando $v(\underline{R})$ en se ries de Fourier y realizando la suma en el espacio k tendre mos

$$\left\langle \mathcal{V}(\underline{R_{i3}} + \underline{U_i} - \underline{U_i}) \right\rangle = \int d^3 \mathcal{U} \, \mathcal{V}(\underline{R_{i3}} + \underline{U}) \int d^3 \mathcal{U}(2\pi)^{-3}$$

$$X \, e \, X \, P \left(-i \, \underline{q} \cdot \underline{U} - \underline{1} \, \underline{q} \cdot \mathcal{I}_{i3} \cdot \underline{q} \, \right) \cdots B.2$$

Para realizar la integral sobre q en la ecuación B.27 se introdujo la matriz unidad

$$\mathbf{I} = \lambda_{cs} \quad \lambda_{cs}^{-1}$$

Por lo que podemos escribir la componente « de u como:

$$U_{a} = \sum_{\mu_{j}} (\lambda_{i_{j}})_{\mu_{j}} (\lambda_{i_{j}})_{\mu_{j}} U_{j} \qquad \cdots \quad B.28$$

Utilizando

reescribimos la parte de la integral en q de B,27 como

$$\int d^3q \exp\left[-\frac{1}{2} \sum_{i=1}^{n} q_a \left(\lambda_{ij}\right)_{ij} q_a - \sum_{i=1}^{n} q_a \left(\lambda_{ij}\right)_{ij} \left(\lambda_{ij}\right)_{ij} \left(\lambda_{ij}\right) \cdots B.29$$

donde se usó la igualdad B.28; sumando y restando el térmi-
no $\frac{1}{2} \sum_{j=1}^{n} (\lambda_{ij}^{-1})_{ij}^{(i)} (\lambda_{ij}^{-1})_{ij} (\alpha_{ij} + \alpha_{ij}) = 0$
en B.29 obtenemos:
 $\left(\lambda_{ij}^{2} \exp\left[-\sum \left(\sum \frac{1}{2} \left(\lambda_{ij}^{-1}\right)_{ij} \left(\lambda_{ij} + \frac{1}{2} q_a\right) \left(\lambda_{ij}\right)_{ij} \left(\sum \left(\lambda_{ij}^{-1}\right)_{ij} \left(\alpha_{ij} + q_a\right) q_a \right)\right)\right)$

= exp [$F_{a} = \frac{1}{2} U_{s} (2i_{s})_{sp} U_{a}$] $\int [exp(<math>F_{a} = \frac{y_{a}}{2} (2i_{s})_{sp} y_{a}) d^{3}y] \cdots B.30$

donde

$$y_{x} = q_{x} + \sum_{j} (\lambda_{ij})_{xj} (u_{j})_{y}$$

 $dy_{x} = dq_{x} ; d^{3}y = dy_{1}dy_{2}dy_{3}$

La integral sobre y, en la ecuación b.30, tiene la forma:

$$I = \int exp_{\frac{1}{2}} \left[-y_{1}^{*} \left(\chi_{u} \right)_{1} - y_{1} \right] dy_{1}$$

donde

$$\mathcal{L}_{=} \mathcal{L}_{2} \left[(\lambda_{3})_{r2} + (\lambda_{i})_{r1} \right] + \mathcal{L}_{3} \left[(\lambda_{0})_{ij} + (\lambda_{0})_{ij} \right]$$

Completando el cuadrado en el argumento de la exponen cial, obtenemos:

$$I = e_{XP} \frac{c^2}{8D_{11}} \int e_{XP} \left(-\frac{D_{11}}{2} \left\{ Y_1 + \frac{c}{2D_{11}} \right\}^2 \right) dY_1$$
indo
$$X = 4$$

tomando

$$\mathbf{I} = e_{\mathbf{Y}} P \underbrace{c^{*}}_{\mathbf{B} \mathbf{A}_{1}} \int e_{\mathbf{X}} P \left(-\frac{p_{11}}{2} \mathcal{H}^{*}\right) d\mathcal{Y} = e_{\mathbf{X}} P \left(\frac{c^{*}}{\mathbf{B} p_{1}}\right)^{2} \int e_{\mathbf{X}} P \left(-\frac{p_{11}}{2} \mathcal{H}^{*}\right) d\mathcal{Y}$$

$$I = e_X P\left(\frac{c^*}{BD_{i1}}\right) \frac{\Gamma\left(\frac{12}{2}\right)}{\left(\frac{D_{i1}}{2}\right)^{1/2}} = e_X P\left(\frac{c^*}{BD_{i1}}\right) \frac{\sqrt{\pi}}{\left(\frac{D_{i1}}{2}\right)^{1/2}} \cdots B.3$$

do

$$\int_{a}^{m} \chi^{m} e^{-a\chi^{n}} d\chi = \frac{\Gamma\left(\frac{m+1}{n}\right)}{n e^{(m+1)/n}}$$

Las integrales para y₂ y y₃ son similares, si se realizan tomando en cuenta que $(\lambda_{ij})_{\mu}$ ($\lambda_{ij})_{\mu}$ la expresión B,30 resulta

57

exp [= - 4 4 (2.5'), 4 .] Jexp (= - 4. (2.5), 4.) 134 = (277) = exp [= - + u, (201) = u,] | det list - ... B.32

Sustituyendo el resultado B.32 en la expresión B.27 obtenemos finalmente $\langle v(\underline{R}_{...} + \underline{U}_{...} - \underline{U}_{...}) \rangle = [(2\pi)^{3} J_{e} t(\lambda_{...})]^{-V_{e}} \int J^{3}u \, \underline{v}_{p}(\underline{R}_{...}; \underline{r}_{...})$ $\chi \exp(-\frac{1}{2} \overline{u} \cdot (\lambda_{...})^{-1} \overline{u}) \qquad \cdots B.33$

APENDICE C

Modelos axialmente simétrico (1^{0}) y de tensor de fuerza.

Si la energía potencial de interacción de dos átomos separados una distancia <u>R</u> es $\phi((\underline{R}))$, al existir un desplazamiento u entre ellos tenemos que

$$\phi(\underline{I}\underline{R}+\underline{u}\underline{I}) = \phi(\underline{R}) + \frac{d\phi}{dR} \frac{\underline{u}\cdot\underline{R}}{R} + \frac{1}{2} \frac{d\phi}{dR} \frac{(\underline{R}\times\underline{u})}{R^{2}} + \frac{1}{2} \frac{d\phi}{dR} \frac{(\underline{R}\times\underline{u})}{R^{2}} + O(u^{2}) \cdots C.1$$

donde el tercer término corresponde al desplazamiento relativo perpendicular a \underline{R} , que produce una fuerza de "doblamiento " (bond-b-nding) y el cuarto término es productor de una fuerza central o fuerza de "estiramiento " (bond-stret ching).

Si todas las direcciones perpendiculares a <u>R</u> son equ<u>i</u> valentes las fuerzas son axialmente simétricas (A.S.).

Para el átomo i en la celda unidad cero, la energía potencial asociada a él puede escribirse de la ecuación C.1 como:

ð:

$$\phi'(\mathbf{R}_{*}^{*}) = \frac{1}{2} \sum_{p} \sum_{n} |\mathbf{R}_{p}^{*}|^{-2} [C_{n}(\boldsymbol{\beta},\boldsymbol{\alpha}')(\mathbf{R}_{p}^{*}\cdot\mathbf{U}_{p}^{*})^{2} + C_{0}(\boldsymbol{\beta},\boldsymbol{\alpha})(\mathbf{R}_{p}^{*}\times\mathbf{U}_{p}^{*})^{2}] \dots C.2$$

$$\phi(\mathbf{R}_{*}^{*}) = \frac{1}{2} \sum_{p} \sum_{n} |\mathbf{R}_{p}^{*}|^{-2} [\{C_{n}(\boldsymbol{\beta},\boldsymbol{\alpha}) - C_{0}(\boldsymbol{\beta},\boldsymbol{\alpha})\}(\mathbf{R}_{p}^{*}\cdot\mathbf{U}_{p}^{*})^{2} + |\mathbf{R}_{p}^{*}|^{2} [\mathbf{U}_{p}^{*}]^{2} C_{0}(\boldsymbol{\beta},\boldsymbol{\alpha})] \dots C.3$$

donde \underline{R}_{p} es el vector de posición de equilibrio y \underline{u}_{p} el vector desplazamiento del átomo β , en la celda \prec , con respecto del átomo i. C y C son las constantes de fuerza de "estiramiento " y " doblamiento " respectivamente.

TESIS NO

LA BIBLIATECA

Para obtener los elementos de matriz dinámica usamos la expresión B.9 es decir

 $M D_{m_{\ell}} \left(\frac{q}{2} \right) = \sum_{i} \left(\frac{q}{2} \right)_{\ell} e^{i \overline{q} \cdot \overline{k}_{i}}$

CON

$$(\phi)_{ne} = \frac{\int^{2} \phi(\underline{u}_{p})}{\int(\underline{u}_{p})_{n}} \frac{(\underline{u}_{o})_{e}}{\int(\underline{u}_{p})_{e}} \frac{(\underline{u}_{o})_{e}(\underline{u}_{p})_{e}}{|\underline{u}_{p}|} \left[\frac{\phi''(\underline{u}_{p})_{e}}{2} - \frac{\phi'(\underline{u}_{o})}{|\underline{u}_{p}|} + \frac{I_{me}}{|\underline{u}_{p}|} \phi'(\underline{u}_{o}) - \frac{\phi'(\underline{u}_{o})_{e}}{2} - \frac{\phi'(\underline{u}_{o})_{e}}{|\underline{u}_{p}|} \right]$$

Calculando las derivadas de la expresión para y sustituyendo en la ecuación C.4 se obtiene:

$$M D_{m,q} (\underline{q}) = \frac{1}{2} \sum_{i} \sum_{p} \sum_{i} \left\{ |\underline{R}_{p}^{*}| \right\}^{-2} (C_{i} (\underline{\beta} \times i) - C_{p} (\underline{\beta} \times i))$$
$$X 2 (\underline{R}_{p}^{*})_{m} (\underline{R}_{p}^{*})_{q} + 2 \int_{m,p} C_{B} (\underline{\beta}, \infty i) \right\} e^{i \underline{q} \cdot \underline{B}_{p}^{*}}$$

Que puede reescribirse como

$$M D_{m} (q) = A(0) - A(q)$$

donde $A(\underline{x}) = \frac{2}{5} \left(- k_{1}(s) | R_{n}(s)|^{-2} \frac{1}{3q_{1}g_{1}} + C_{B}(n) \int_{m_{R}} \right) G(s)$ $G(s) = \sum_{n(s)} exp(i q \cdot \underline{R}_{n(s)})$ y

$$K_1(s) = C_1(n) - C_0(n)$$

Para obtener la expresión C.5 se ha utilizado

$$(\underline{R}_{\rho})_{\mu} (\underline{R}_{\rho})_{\rho} e^{\underline{C} \underline{q} \cdot \underline{R}_{\rho}^{\sigma}} = - \frac{J}{J_{\pi} J_{\eta}^{2}} e^{\underline{C} \underline{r} \underline{r}}$$

además, se ha separado el término q=0, para tener A(0)-A(q)haciendo explícito que se tiene una relación de dispersión para modos acústicos (si el signo fuera positivo, i.e. A(0)+A(q) se tendrían modos ópticos). También, se han cambiado las sumas, sin dejar de abarcar los mismos elementos, es decir, el simbolo n(s) significa que la suma estárestrin gida a los átomos de la capa s y se suma sobre todas las ca pas.

Si tomamos un cristal (FCC 6 BCC) con constante de red igual a 2a, con todos sus átomos de masa M, y tomamos las coordenadas del n-ésimo punto de la red de la s-ésima capa que tiene n⁵ puntos, como h, a, h₂ a, h₃ a con h, \gg h₃ \gg 0, y además utilizamos la expresión C.5 y tomamos las combinaciones de h₁, h₂, h₃ obtuvimos que: $G(S) = \frac{8n^{s}}{48} \left\{ \cos(ah_{1} q_{x}) \left[\cos(ah_{1} q_{y}) \cos(ah_{1} q_{y}) + \cos(ah_{1} q_{y}) \cos(ah_{2} q_{z}) \right] + \cos(ah_{1} q_{y}) \left[\cos(ah_{1} q_{y}) \cos(ah_{2} q_{z}) \right] + \cos(ah_{1} q_{y}) \left[\cos(ah_{1} q_{y}) \cos(ah_{2} q_{z}) + \cos(ah_{1} q_{y}) \cos(ah_{2} q_{z}) + \cos(ah_{1} q_{y}) \cos(ah_{2} q_{z}) \right] \right\}$

+ $(os(ah_3q_2)cos(ah_3q_x)]$ + $cos(ah_1q_2)[cos(ah_2q_x)cos(ah_3q_y)$

+ cos (a h3qx) cos (ah2 q5)]} ... C.6

y por medio de las ecuaciones C.6 en C.5 los elementos de la matriz dinámica quedan como

$$\begin{split} M D_{ic} &= \sum_{s}^{s} C_{B}(s) \left(N^{s} - \binom{N_{0}^{s}}{2} \right) \left\{ \cos(ah_{1}q_{x}) \cos(ah_{s}q_{e}) \right. \\ &+ \cos(ah_{s}q_{y}) \cos(ah_{2}q_{e}) \right] + \cos(ah_{1}q_{y}) \left[\cos(ah_{2}q_{e}) \cos(ah_{s}q_{x}) \right] \\ &+ \cos(ah_{s}q_{x}) \cos(ah_{2}q_{x}) \right] + \cos(ah_{1}q_{y}) \left[\cos(ah_{2}q_{x}) \cos(ah_{s}q_{y}) \right] \\ &+ \cos(ah_{s}q_{x}) \cos(ah_{2}q_{y}) \right] \right\}) \\ &+ \sum_{s}^{s} k_{i}(s) \frac{N^{s}}{6} \left(2 - \binom{1}{h^{s}} \right) \left\{ h_{i}^{2} \left(\cos(ah_{1}q_{x}) \left[\cos(ah_{2}q_{y}) \cos(ah_{i}q_{e}) \right] \right. \\ &+ \left. \left. \sum_{s}^{s} k_{i}(s) \frac{N^{s}}{6} \left(2 - \binom{1}{h^{s}} \right) \left\{ h_{i}^{2} \left(\cos(ah_{1}q_{x}) \left[\cos(ah_{2}q_{y}) \cos(ah_{i}q_{e}) \right] \right. \\ &+ \left. \left. \left. \left(\cos(ah_{1}q_{x}) \left[\cos(ah_{2}q_{y}) \cos(ah_{i}q_{e}) \right] \right. \right] \right\} \right\} \\ &+ \left. \left. \left(\cos(ah_{1}q_{x}) \right] \cos(ah_{2}q_{z}) \right] \right\} \right\} \\ &+ \left. \left(\cos(ah_{1}q_{y}) \cos(ah_{2}q_{z}) \right] + h_{s}^{2} \cos(ah_{2}q_{y}) \left[\cos(ah_{i}q_{e}) \right] \right\} \\ &+ \left. \left(\cos(ah_{1}q_{y}) \cos(ah_{3}q_{z}) \right] \right\} + h_{s}^{2} \cos(ah_{2}q_{y}) \cos(ah_{i}q_{e}) \right] \right\} \end{split}$$

 $MD_{ej} = \sum K_1(s) \frac{n^s}{\epsilon} (\frac{1}{h^2}) \left\{ h_1 h_2 \cos(ah_3 q_{\epsilon}) \left[seu (ah_1 q_x) seu(ah_2 q_3) \right] \right\}$

+ sen(ah, q_x)sen (ah, q_y)]+ h, h, cos(ah, q_x)[sen(ah, q_x) sen (ah, q_y) + sen(ah, q_x)sen(ah, q_y)] + h, h, cos(ah, q_x)[sen(ah, q_y) sen(ah, q_y)+ sen(ah, q_x) sen(ah, q_z)]

donde $h^2 = h_1^2 + h_2^1 + h_3^2 y n^5$ para vecinos hasta la capa 12 son

62

	F.	c.c	•			B.C.C.		
5	· h	h	h	n		h - h	h	n
i	1	1	0	12	a Alas 19 talah sebagai	1.1	1	8
2	2	0	0	6		20	0	6
5	2	1	1	24		22	0	12
1	2	2	0	, 12		31	1	24
5	3	1	0	.24		22	2.	8 .
5	2	2	2	8		4 0	0	6
7	3	2	1	48		33	1	24
3	4	0	0	6 -		4 2	0	24
)	3	- 3	_0	12		4 2	2	24
0	4	1	1	24		33	3	8
11	4	2	0	24		51	1	24
12	3	3	2	24		4 4	0	12

En el modelo de tensor de fuerza las constantes de fuerza interatómicas correspondientes al s-ésimo punto de la red estarán representadas como la matriz \mathbf{A}_{ij}^{s} , Esta considera la fuerza sobre el átomo s en la dirección i, cuando éste se mueve en la dirección j. Esta matriz tiene la forma

$$\phi_{c,s}^{s} = \begin{pmatrix} \prec_{i}^{s} & \beta_{s}^{s} & \beta_{s}^{s} \\ \beta_{s}^{s} & \prec_{s}^{s} & \beta_{s}^{s} \\ \beta_{s}^{s} & \rho_{s}^{s} & \prec_{s}^{s} \end{pmatrix}$$

Los elementos de la matriz dinámica D(g) del modelo de tensor de fuerza, para el s-ésimo punto considerado en el modelo A.S. son iguales a los obtenidos en A.S., sólo cambian los siguientes coeficientes

C _D (s)	$+ \frac{h_i^2}{h_i^2} k$	- (s) =	≺ ,* `) c.10
C 8 (s)	$+\frac{h_{1}^{2}}{h^{2}}$	<, (s) =	<i>⊲</i> ′ ³	
<u>Св</u> (S)	+ 13	<u>kı (s)</u> =	= ~; ^{\$})
(hehs/42) k1 (3)	=== \$;	- 7	
(hs h,/2) } k, (s)	= (°3		c.)]
(h, h 2/h2) Ki (5)	$) = \beta_{s}^{s}$	÷ J	

Es decir, en lugar de las expresiones de la izquierda en las ecuaciones C.10 y C.11 se tienen las de la derecha como coeficientes en las expresiones C.7 y C.8.

Al comparar los modelos de tensor de fuerza y axialmente simétrico, no se ha querido cambiar de modelo para ca<u>1</u> cular los elementos de matriz, sino unicamente obtener de las relaciones C.10 y C.11, cuáles elementos de la matriz C.9 son cero y cuales son iguales entre ellos.
APENDICE D

Teorema de Hellmann-Feynmann⁽²⁾

El teorema de Hellmann-Feynmann da la diferencia de energía, para el estado base, de un sistema con Hamiltonia_ no H. y el mismo sistema pero perturbado, ésta pertubación lleva asociado un Hamiltoniano H., asi el Hamiltoniano to_ tal sistema perturbado es

$$H_{T_c} = H_c + H_1$$

D. 1

Este Hamiltoniano puede ser escrito en términos de una variable de acoplamiento χ , es decir

$$H_{\tau_{n}}(\lambda) = H_{n} + \lambda H_{1}$$

·donde

у

 $H_{Te}(0) = H_{0}$, $H_{Te}(1) = H_{Te}$

de esta manera podemos reproducir tanto el Hamiltoniano perturbado D.1 como el Hamiltoniano sin perturbar, H_o .

La ecuación de Schrodinger independiente del tiempo, para un valor arbitrario de λ , que tenemos que resolver es:

 $H_{T_{e}}(\lambda) | \Psi_{e}(\lambda) \rangle = E(\lambda) | \Psi_{e}(\lambda) \rangle \cdots \rho_{2}$

donde Υ . We corresponde a la función de onda de muchos cuerpos, para el estado base, que depende formalmente de λ y $E(\lambda)$ es el correspondiente eigenvalor de la energía para el valor de λ tomado. El vector de estado cumple con

$$\langle \Psi_{*}(z) | \Psi_{*}(z) \rangle = 1$$
 ... D.3

es decir, está normalizado.

Al multiplicar escalarmente la ecuación D.2 por $\langle \Psi_o(\lambda) |$ obtenemos:

$$E(\lambda) = \langle \Psi_{\lambda}(\lambda) | \Psi(\lambda) \rangle \longrightarrow DY$$

Si derivamos la expresión de E(λ), ec. D.4, con re<u>s</u> pecto a λ obtenemos:

$$\frac{d}{d\lambda} E(\lambda) = \langle \frac{d \Psi(\lambda)}{d\lambda} | \Psi(\lambda) | \Psi(\lambda) \rangle$$

+ $\langle \Psi(\lambda) | \Psi(\lambda) | \frac{d \Psi(\lambda)}{d\lambda} \rangle$ + $\langle \Psi(\lambda) | \frac{d H(\lambda)}{d\lambda} | \Psi(\lambda) \rangle$
= $E(\lambda) \frac{d}{d\lambda} \langle \Psi(\lambda) | \Psi(\lambda) \rangle$ + $\langle \Psi(\lambda) | \Psi(\lambda) \rangle$

 $\frac{dE}{dx} = \left\langle \frac{\Psi_{0}(\chi)}{4} \right| \frac{\Psi_{0}(\chi)}{4} \cdots \Delta S$

donde se hizo uso de la condición D.3 para obtener la últi

ma expresión.

Si integramos la expresión D.5 con respecto a λ , de cero a uno, tomando en cuenta que la energía del sistema sin perturbación y la del sistema perturbado son $E(0)=E_o$ y E(1)=E, respectivamente, llegamor a

$$E-E_{o} = \int_{0}^{1} \frac{d\lambda}{\lambda} \langle \Psi_{o}(\lambda) \rangle_{\lambda} H_{1} | \Psi_{o}(\lambda) \rangle \cdots D_{o} G$$

Así, obtenemos la diferencia de energía en términos de χ H, .

REFERENCIAS

- P.Hohenberg y W. Kohn, Phys. Rev. B, 136 864 (1964)
 y W. Kohn y L.J. Sham, Phys. rev A 140 1133 (1965)
- (2) A.L. Fetter, J.D. Walecka, Mc. Graw- Hill Book Company, 1971
- (3) E.R. Cowley y R.C. Shukla, Phys. Rev. B 9, 1261 (1974)
- (4) F.Magaña, M.D. Whitmore y J.P. Carbotte Canadian Journal of Phys. 60, 424 (1982)
- (5) L. Hedin y B.I. lunqvist, J. Phys. C. Sol: St. Phy. 4, 2064 (1971)
- (6) K.S. Singwi, A. Sjolander, M.P. Tosi Y R.H. Land, Phys. Rev. B1 1044 (1970)
 - (7) Taylor J.R. 1972, Scattering Theory (New York : Wiley) p.227
 - (8) M. Manninen, R Nieminen, P. Hautojarvi, Phys. Rev. B, 12, 4012 (1975)
 - (9) N. Boccara y G. Sarma, Physics 1, 219 (1965)
- (10) R.C. Shukla, Jour. Chem. Phys. 45, 4178 (1966)

(11) L. Dagens, M. Rasolt y R. Taylor Phys. Rev. 2717, (1975)

- (12) G.J. Vázquez, Tesis Profesional, Fac. Ciencias UNAM 1981
- (13) W.A. Harrison y John M. Wills, Phys. Rev. B 25. 5007 (1982)
- (14) J.R. Chelikowsky, Phys. Rev. B 21,3074 (1980)
- (15) M. Manninen, P. Jena, R.M. Nieminen y J.K. Lee, Phys. Rev. B 24, 7057 (1981)
- (16) W. Jones y N.H. March, Theoretical solid state physics, Wiley-Interscience Vol.1 (1973)
- (17) G.L. Squieres, Arkiv Fysik 25, 21 (1963)
- (18) P. Roman, Advanced quantum theory, Wiley (1965)
- (19) J. Friedel, Phil. Mag., 43, 153 (1952)
- (20) N.S. Gillis, N.R. Werthamer y T.R. Koehler, Phys. Rev. 165, 951, (1968)