DISEÑO DE ALMACENAMIENTOS EN DOMOS SALINOS

JUAN MANUEL MARTINEZ RODRIGUEZ

TESIS

Presentada a la División de Estudios de

Posgrado de la

FACULTAD DE INGENIERIA

de la

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

como requisito para obtener

el grado de

MAESTRO EN INGENIERIA (Mecánica de Suelos)

CIUDAD UNIVERSITARIA, Julio de 1986

FALLA EE OR.COM

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. DISEÑO DE ALMACENAMIENTOS EN DOMOS SALINOS

RESUMEN

Los domos salinos son cuerpos intrusivos compuestos principalmente por cloruro de sodio. Se utilizan como fuente de materiales, como almacenamiento subterráneo de gases y líquidos y como depósitos de desperdicios tóxicos.

En el presente trabajo se estudia la factibilidad técnica de un proyecto de almacenamiento de hidrocarburos, desde el punto de vista de Mecánica de Roces, en un domo salino. Con tal fin se hicieron pruebas de laboratorio, para obtener parametros de comportamiento de la sal, y se desarrollo un modelo matemático para predecir el comportamiento de la sal al construir y operar las cavidades.

INDICE Pagina 1. INTRODUCCION 1 2. PROFIEDADES REOLOGICAS DE LA SAL 2.1. PRUEBAS DE LABORATORIO 2.1.1. OBTENCION DE LAS MUESTRAS з 2.1.2. EQUIPO DE LABORATORIO 2.1.2.1. Clasificación del Material З 2.1.2.2. Relajación (DRBI) 4 2.1.2.3. Fluencia en extensión triaxial ć. 2.1.3. RESULTADOS DE LAS PRUEBAS 7 2.1.3.1. Clasificación 8 2.1.3.2. Relajación (DRBI) 8 2.1.3.3. Fluencia en extensión triaxial 9 2.2. INTERPRETACION DE LOS RESULTADOS 11 2.2.1. ETAPA HIDROSTATICA 11 12 2.2.2. RELAJACION 2.2.3. FLUENCIA 2.2.3.1. Antecedentes 15

DISEÑO DE ALMACENAMIENTOS EN DOMOS SALINOS

2.2.3.2. Interpretación de las pruebas de fluencia en	
extensión triagial	19
2.2.4. CONCLUSIONES DE LA INTERPRETACION	<u>.</u>
3. MODELO MATEMATICO DEL ESTADO DE ESFUERZOS Y DE	
DEFORMACIONES EN EL CONTORNO DE LA CAVIDAD	24
3.1. HIPOTESIS DEL MODELO ANALITICO	24
3.2. CAVIDAD CILINDRICA	26
3.3. CAVIDAD ESFERICA	30
4. RECOMENDACIONES DE DISENO	22
4.1. ZUNA DE INFLUENCIA DE LA CAVERNA	32
4.2. REDUCCION DEL DIAMETRO DE LA CAVERNA	33
4.3. VARIACION DEL VOLUMEN DE ALMACENAMIENTO	33
4.4. VARIACION DE LOS ESFUERZOS CON EL TIEMPO	34
4.5. ESTABILIDAD DE LAS PAREDES DE LA CAVERNA	34
5. CONCLUSIONES Y COMENTARIOS	36
6. REFERENCIAS Y BIBLIOGRAFIA	39

7. FIGURAS

ANEXO 1. PROCEDIMIENTOS Y ANOTACIONES PARA EL MANEJO DE LA CAMARA TRIAXIAL DE ALTA PRESION

85

 9ϵ

ANEXO 2. CORRELACION DE ESFUERZOS TECTONICOS Y TAMANO DE SUBGRANOS EN LOS CRISTALES DE SAL

1. INTRODUCCION

Los domos salinos son cuerpos intrusivos de sal que penetran a través de grandes espesores de rocas sedimentarias suprayacientes. Se pueden diferenciar de otras formaciones geológicas que involucran sal, por la forma burdamente circular o elíptica que tienen en sección horizontal y por tener sus dimensiones horizontales del mismo orden de magnitud o menor, que las verticales, como se ilustra en la figura 1.1.

Tienen como componente, principal el Cloruro de Sodio o Halita (NaCl); otros componentes, aunque menos abundantes, son la Silvita (KCl) y la Carnalita (KCl.MgCl2:6H2O). Además es común que presenten inclusiones de goethita o hematita, lo mismo que intercalaciones de anhidrita, arcillas o materia carbonosa.

En las dos últimas décadas se ha incrementado la utilización de cavidades creadas por lixiviación en domos salinos, además de fuente de materiales, como almacenamiento subterráneo de gases y líquidos, y como depósitos de desperdicios tóxicos, principalmen-, te radioactivos.

Desde el punto de vista de almacenamiento ofrecen "características muy especiales:

-Son particularmente impermeables a los hidrocarburos, debido a la deformabilidad plástica que presentan en un amplio rango de presiones, temperaturas y velocidades de deformación; esta propiedad evita que se abran grietas o que, de producirse, permanezcan abiertas.

-El sistema constructivo es relativamente simple ya que se generan cavidades mediante disolución de la sal, circulando agua dulce a través de un pozo y recuperando la salmuera, tal como se muestra en la figura 1.2. -Con respecto a los almacenamientos superficiales en tanques, requieren de menores instalaciones para su operación; esta operación, como puede verse en la figura 1.3, es sencilla.

-Se generan cavernas de gran volumen (100.000 a 1'000.000 de metros cúbicos), en áreas reducidas.

-Son menos vulnerables a los riesgos de explosiones, incendios y huracanes.

El objetivo del presente trabajo es obtener los parametros de diseño para predecir, a través de un modelo matemático, el comportamiento de la sal, bajo diferentes condiciones de esfuerzo y de deformación, así como su variación con el tiempo, al construir y operar cavidades utilizadas en el almacenamiento de hidrocarburos.

.....

...

Los principales aspectos que interesa conocer son: la reducción del volumen de la caverna con el tiempo, la distribución de esfuerzos en el contorno del almacenamiento para distintos tiempos, la zona de influencia de la excavación, la distancia mínima entre cavernas y la deformación a largo plazo de la zona central entre cavernas.

La investigación comprende dos partes principales:

- Estudio de las propiedades reológicas de la sal por medio de pruebas de laboratorio: fluencia en compresión simple, fluencia en pruebas triaxiales de extensión y ensayos de relajación. Para la realización de las pruebas fue necesario hacer algunas modificaciones y adaptaciones al equipo con que contaba el Instituto de Ingeniería de la UNAM, en cuyas instalaciones se llevó a cabo el estudio experimental.

- Desarrollo de un modelo matemático a partir de consideraciones propias de la caverna, con algunas simplificaciones geométricas y de carga y de acuerdo con los resultados de las pruebas de laboratorio.

Los resultados de las pruebas de fluencia en compresión simple no se incluyen en el presente trabajo porque pertenecen a un estudio paralelo que se lleva a cabo en el Instituto de Ingeniería (Rodríguez Cuevas 1986).

2. PROPIEDADES REOLOGICAS DE LA SAL

2.1 PRUEBAS DE LABORATORIO

2.1.1 OBTENCION DE LAS MUESTRAS

Con el fin de estudiar la factibilidad técnica de un proyecto de almacenamiento de petróleo, PEMEX y el Instituto Mexicano del Petróleo (IMP), perforaron el pozo exploratorio Tuzandepetl #300, en el domo salino Tuzandepetl, localizado al sur de Coatzacoalcos, Veracruz, y dentro de la cuenc**e**salina del sureste de México.

El IMP comisionó al Instituto de Investigaciones Eléctricas (IIE), la extracción de núcleos de las muestras provenientes de campo. Los especímenes utilizados en las pruebas fueron entregodos por el IMP al Instituto de Ingeniería de la UNAM (II), ya cortatos en forma cilíndrica, con sus caras perpendiculares a la generatriz longitudinal del cilindro y con las superficies de las caras aceptablemente terminadas. Este trabajo lo realizó el IIE siguiendo las normas establecidas por la International Society of Rock Mechanics (ISRM),(IIE,1985). Las muestras cilíndricas tenían aproximadamente 5.1 cm de diámetro y de 10 a 13 cm de longitud.

2.1.2 EQUIPO DE LABORATORIO

2.1.2.1 Clasificación del Material

En todas las probetas se realizo la medición de la velocidad de onda de compresión, a temperatura ambiente y sin presión de confinamiento. A las probetas utilizadas en las diferentes pruebas se les hizo una nueva medición de velocidad una vez finalizado el ensayo. Antes de cada medición se verifico la calibración del dispositivo utilizado: un generador de ondas (V-meter), de propiedad del II.

En todos los especímenes se estimó su peso volumétrico, calculando el volumen a partir de sus dimensiones físicas, medidas con calibrador de 0.005 cm de resolución y tomando el peso en balanza de 0.01 gr de sensibilidad.

2.1.2.2 Relajación (Prueba DRBI)

2

El objetivo del dispositivo de relajación biaxial isotérmica (DRBI) es poner en evidencia las características de elasticidad, plasticidad y viscosidad de la sal. Consiste en aplicar una presión radial (de cámara), en aumento, y determinar la presión axial necesaria para que la longitud del espécimen cilíndrico se mantenga constante.

٣.,

Todas las pruebas, al igual que las de fluencia en extensión triaxial, se efectuaron en la celda triaxial de alta presión (II,1976) del laboratorio de enrocamientos. En la figura 2.1 se muestra un esquema de la celda.

Alrededor del cuerpo de la celda triaxial se colocó un recinto de madera, con el fin de mantener la temperatura constanlos con un error de 11°C. Las pruebas se efectuaron a 49°C. El dememento de temperatura se logró mediante dos focos de 100 maits; el control de la temperatura se tuvo mediante un sensor electrónico. Adicionalmente se colocó un ventilador en una pared de la caja para hacer circular el aire interior y lograr homogeneidad en las temperatura. El control real de temperatura que se tuvo fue de 13°C para todas las pruebas de relajación y las de las muestras 14 y 15 de fluencia; en las pruebas de las muestras 13 y 20 se tuvo un control de 11°C. La primera de éstas por su corta duración y la segunda, por que se le implementó un regulador de voltage y se aisló el motor del ventilador del control de temperatura.

Como se ilustra en el esquema de carga de la figura 2.2 la presión de la cámara se obtiene mediante presión de aceite inducida por un sistema nuemático de bombas y se registra en un manómetro. Se pueden alcanzar hasta 700 kg/cm2, con aproximación de 1 kg/cm2.

El sistema de carga axial oriminal se modificó con el fin de tener control independiente durante las pruebas: la celda de presión axial se conecto a un dispositivo de presión Amsler. Asi mismo se modificó la celda triaxial con objeto de medir directamente con transductores de presión, la presión actuante en la Durante la realización de las pruebas cabeza de la muestra. de. fluencia de las muestras 13, 14 y 15 el sistema Amsler exigió control m**anual pa**ra mantener la carga constante; por ser manual se desconectó durante la noche, lo que implicó una variación de la carga axial de 25%. Para evitar tal variación se le adaptó un servo-mecanismo que permitio un control constante y estricto del esfuerzo vertical aplicado durante todo el tiempo de le prueba 20. resultando que en este caso la variación en el esfuerzo vertical no sobrepasó el 3 %. La deformación axial se midió con micrómetro de 0.0001" (0.000254 cm) de resolución, que equivale a una deformación de 0.0025%. La celda triaxial no tiene sistema para medir deformación radial. En cada lectura se tomaron datos de tiempo, temperatura, carga axial, presión de cámara y desplazamiento axial.

La calibración del equipo se llevó a cabo antes de iniciar las pruebas (se incluye dentro del Anexo 1). Se calculó la fricción que afecta la presión axial, generada por el rozamiento de los arosellos del gato. Se montó la cámara sin muestra pero llema de aceite; al dar presión de cámara se observó la presión generada en el aceite del gato utilizando la lectura del transductor de presión. Se deberían igualar ambas presiones (de cámara y de gato); su diferencia corresponde al efecto de frieción. Se estimó el máximo valor que se alcanza en 14 kg/cm2.

Para aislar las muestras del aceite de la cámara se utilizó una membrana de hule de 0.2 cm de espesor.

PROCEDIMIENTO

Las pruebas DRBI comprendieron tres etapas a partir del montaje de la muestra y del momento en que el conjunto alcanza su equilibrio con respecto a la temperatura, que también fue de 49°C.

En la primera etapa se sometió a la muestra a un estado de esfuerzos hidrostático, hasta alcanzar 50 kg/cm2 y a una tasa de 100 kg/cm2/hr para las muestras 6, 10 y 11 y de 50 kg/cm2/hr para la muestra 5. En la segunda etapa se incrementa la carga radial o de cámara, al tiempo que se da la presión axial necesaria para mantener la longitud de la muestra constante. Se utilizó la misma tasa de carga descrita para la primera etapa. La presión axial se varió mediante el dispositivo de presión Amsler. Se alcanzo una presión radial máxima de 300 kg/cm2 en las cuatro pruebas.

En la tercera etapa, al llegar la presión radial a 300 kg/cm2, se realizo un último incremento de la misma a 325 kg/cm2, de tal manera que se indujo un esfuerzo desviador y una pequeña deformación instantáneos. Se dejo el conjunto en este estado el tiempo (días) suficiente para observar la relajación de los esfuerzos.

2.1.2.3 Fluencia en Extensión Triaxial

El objeto de esta prueba es conocer el comportamiento de la sal con el tiempo, cuando tiene el esfuerzo confinante y el esfuerzo desviador constantes (ensayo de creep). Una muestra se someticó a varias etapas de esfuerzo incrementando el esfuerzo desviador (ensayo múltiple).

La celda triaxial que se utilizó en estas pruebas es la misma mencionada en los ensayos de DRBI. Por lo tanto las anotaciones con respecto al equipo (control de temperatura, sistema de carga, modificaciones, sistema de medida, calibración, etc.) son válidas también para estas pruebas.

Los ensayos triaxiales de fluencia fueron conducidos en extensión:

 $\sigma_1 = \sigma_2 > \sigma_3$, $\sigma_1 = 200 \ kg/cm^2 \ y \ 38 \le \sigma_3 \le 120 \ kg/cm^2$

Se decidio hacer ensayos en extensión con el fin de simular las condiciones que se presentan en el contorno de la caverna. Estas pruebas tienen la ventaja adicional de evitar el efecto de rigidez de la membrana.

PROCEDIMIENTO

El procedimiento seguido, en términos generales, fue el

siguiente: se montó el espécimen y se dejó un mínimo de dos días hasta que se estabilizó la temperatura. Luego, se sometió a un estado de esfuerzos hidrostático incrementando la presión con una tasa de 50 kg/cm2 cada veinte minutos, hasta alcanzar la presión de confinamiento. Se dejó reposar para que alcanzara su nuevo punto de equilibric.

Por medio del sistema Amsler se redujo la carga axial para inducir instantáneamente el esfuerzo desviador midiéndose la deformación al cabo de un minuto. Al inicio de la prueba se tomaron lecturas cada minuto, mas adelante se espaciaron. En el caso de la prueba múltiple el cambio en el esfuerzo desviador se hizo reduciendo aun más el esfuerzo axial.

El esfuerzo axial se corrigió eventualmente, de acuerdo con la deformación axial de la muestra; la necesidad y frecuencia de las correcciones dependieron de la tasa de deformación de especimen. Suponiendo que mantiene su forma cilíndrica y suponiendo incompresibilidad ($c_n = -c_a/2$), el área corregida será

	Ar =	Ac $(1 - 0.5 \epsilon a)^2$
donde:	Art	Area corregida de la muestra.
	Aor	Area inicial de la muestra.
	ca:	Deformación axial unitaria
	С <u>,</u> 1	Deformacion radial unitaria.

En los casos en que, debido al menor diámetro de la probeta, se utilizó relleno, el área corregida esta dada por

 $Ar = \pi/4 \quad (D_0 - 70.5 \ \epsilon_a \ D_p)$

donde:	Art	Area corregida de la muestra.
	Do:	Diámetro de la cabeza y base.
	Dp :	Diámetro inicial de la muestra.

2.1.3. RESULTADOS DE LAS PRUEBAS.

El IMP entrego al I.I., 20 muestras del pozo Tuzandepet1#300, particularmente de los núcleos 6, 7, 13 y 14 que corresponden aproximadamentea profundidades de 750, 350, 1200 y 1300 m respectivamente.

En total se realizaron seis pruebas de fluencia en compresión simple, cuatro pruebas de fluencia en extensión triaxial y cuatro de relajación.

2.1.3.1. Clasificación.

En la tabla 2.1 se presentan las principales características de las muestras utilizadas en las pruebas mecánicas.

La composición mineralógica de la sal no se analizó en el presente estudio. Con base en los datos del IMP, 1985, que por tratarse de una correlación geofísica debe manejarse con cautela, del registro de perforación del pozo (Geostok, 1985) y de las observaciones directas de las muestras se puede estimar que:

- Entre 700 y 980 m el domo está compuesto principalmente Por halita, en un 75 a 85%, de cristales pequeños, intercalado con anhidrita, presentando estratificación inclinada.

- Luego de un estrato de anhidrita (980 a 1000m), la halita se presenta en cristales medianos a grandes, sin que se tenga la estratificación observada arriba. El contenido de halita es mayor (85 a 95%).

Se encontró que tanto el peso volumétrico como la medida de velocidad de onda son similares para ambas unidades. El peso volumétrico varía de 2.10 a 2.19 gm/cm3. La velocidad de ondas longitudinales medida antes de efectuar las pruebas varía entre 3.08 y 3.90 km/seg; la reducida velocidad de propagación de ondas de las muestras del núcleo 13 no se tomó en cuenta por ser poco confiable, ya que por efecto del fracturamiento no se logró buen contacto entre las muestras y el generador de ondas. Al finalizar las pruebas se midió de nuevo la velocidad de ondas longitudinales encontrándose una variación entre 3.52 y 4.33 km/seg que muestra claramente el efecto de las presiones aplicadas en el cierre de las fisuras en dirección vertical.

2.1.3.2 Relajación (Prueba DRBI).

a.

Se realizaron las pruebas de DRBI con las muestras 5, 6, 10 y 11; las dos primeras pertenecen al núcleo 7 y las otras al núcleo 14 de la perforacion.

El comportamiento de las muestras durante la primera etapa de la prueba (hidrostática) se muestra en las curvas de la figura 2.3.

El comportamiento del material en la segunda y tercera etapas se ilustra así: en las figuras 2.4 a 2.7 se muestra la variación con el tiempo de los esfuerzos aplicados y en las figuras 2.8 a 2.11 la variación del esfuerzo axial en función del esfuerzo radial.

2.1.3.3 Fluencia en Extensión Triaxial.

Se realizaron las pruebas de fluencia en extensión triaxial con las muestras 13, 14, 15 y 20, todas correspondientes al núcleo é de la perforación.

- En la figura 2.3 se muestran las curvas esquerzo-deformación en la etapa de compresión hidrostática. En las figuras 2.12 a 2.15 se presentan los resultados de las pruebas. Todas se efectuaron (con una presión confinante de 200 kg/cm2 que se asemeja a la presión tectónica hidrostática que actúa a 900m de profundidad. La duración de las pruebas fue de 260 min., 28 días, 3 días y 32 días para las muestras 13, 14, 15 y 20 respectivamente. En las figuras 2.16 a 2.19 se ilustra el comportamiento esfuerzodeformación del material en cada prueba y la variación de la carga.

Cabe señalar que la prueba de la muestra 13 se suspendió a los 260 minutos por falla de la membrana de la muestra.

A la muestra 14, luego de 28 días de fluencia, se le redujo rápidamente el esfuerzo desviador con objeto de medir la deformación en descarga. La curva de este proceso se presenta en la figura 2.20.

La muestra 15.55 mantuvo con un esfuerzo desviador de 38 kg/cm2 durante los primeros tres días; luego se incremento instantáneamente hasta 120 kg/cm2 y se mantuvo constante hasta el día 25. A partir de ese día se permitió la relajación del esfuerzo desviador manteniendo la deformación de la muestra constante hasta el día 42 como se ilustra en la figura 2.21.

								1)	-21	- 31	-41	4,5]	
Nuestra	Profundidad (=)	Micleo	Parte	Altura (cm)	Diam. (cm)	Peso Vol. g/cm ¹	Vel ond enter	la km/s despuls	Ensayo	т 'с	oc <u>kg/cm^t</u>	°a kg/en ^t	Observaciones
			_										
20	750.		9	10,107	5.110	2.18	3157	4.01	7C	49.0	200	125	Presentan estratif <u>i</u>
15	750.30	é	,	10.247	5.110	2.19	3.42	3.82	¥C.	49.0	200	162 y 🗈	Cacion inclineda Cristales essuence
14	751.30	6	10	13.047	5.108	2.17	3.58	3,88	TC	49.0	200	60	La muestra 2 tione
13	752.0	6	10	10.040	5.108	2.18	3,26	3.76	¥C.	48.7	200	24	una fisura a 3 cm de
6	848.35	7	10	10.530	5.078	2.17	3.46	4,12	DRBI	48.5			In care superior.
5	848.43	7	10	10.430	5.100	2.16	3.53	4.33	DREI	49.5	•		La muestra 8 scesso-
7	648.95	7	10	10.393	5.095	2.18	3.83	1	71		0	2.58	ta un conducto de
8	849.10	7	10	10.330	5.088	2.17	3.90		71		0	4.84	dimolución
1	849.60	· · ·	11	10.417	5.100	2.16	1.69				ň	2:58	
,	848 AL	,	11	10 481	\$ 085	2.10	3 43					4 18	
				11.455	3.093		3,04		71		U	0,/9	Opacas, de cristales
19	1198.15	13		11.074	5.110	2.13	1.49				•		Bediánso, Fresentan Fracturamianto,
18	1198.43	13	8	10,392	5.112	2.14	2.11						
17-,	1201.0	13	13	10.612	5.112	2.10	1.22						tacto para modit ve-
16-	1201.45	13	13	12.183	5.110	2.15	2.78			•			locidad de onda,
3	1299.75	14	6	10.403	5.092	2.15	3.36		71		0	6.79	Opacas, de gristales
4	1300.0	14	6	10,545	5.092	2.15	3.08						medianos a grandes.
12	1301.75	14	10	10,217	5.090	2.15	3.50						miento, sero no es-
/ 11	1301.90	14	10	10,243	5.105	2.15	3.44	4.36	DRBI	48.8			traficación,
	1302.05	14	10	10.217	5.093	2.15	1.10				0	4 84	
	1103 18	i	10	10.100	3.033	* 17	3,10		F 4		v	4104	
1 10	1302.13	14	10	10.398	5.097	2.14	2.00	3.32	DELL	97.0			

TABLA 2.1 Identificación de muestras

1] Velocidad de onda de compresión medida "antes" y "despura" del ensayo 2] Ensayos: Fl: fluencia un compresión simple FC: fluencia confinada, ensayo de extensión

٠.

- DRBI: dispositivo de relejación biaxial isotérnica

3] Temperatura a la que se hiso el ensayo

4] o presión confinante

o presión axial

5] Doble numeración indica varias etapas del ensayo

Ч

2.2 INTERPRETACION DE LOS RESULTADOS

El comportamiento de la sal es notablemente variable de acuerdo con la temperatura y el nivel de esfuerzos a que esté sometida: para bajas temperaturas y bajos esfuerzos su comportamiento es frágil; al ir incrementando estos factores el mecanismo de deformación cambia y eventualmente llega a ser predominante la deformación ductil.

Cuando la estructura del mineral no cambia, como en el caso de tener bajas temperaturas y bajos niveles de esfuerzo, la deformación que se produce puede interpretarse por medio de la teoría lineal de la elasticidad. A medida que se incrementan el nivel de esfuerzos y la temperatura, la estructura del mineral es alterada, bien sea en el contacto entre granos o bien dentro de los cristales mismos (mecanismos intragranulares) y la respuesta de la sal adquiere un carácter no lineal. Adicionalmente, la no linealidad se destaca al producirse el fenómeno de fluencia cuando se mantiene constante en el tiempo, un esfuerzo desviador aplicado.

2.2.1 ETAPA HIDROSTATICA

De la etapa confinada de las pruebas de DRBI se puede deducir los valores del módulo de Young E, suponiendo que el material es elástico lineal e isótropo y que la relación de Poisson es igual a la calculada durante los primeros incrementos de esfuerzo de la segunda etapa de la prueba ($\nu = 0.3$). Los valores del módulo de. Young se/presentan en la tabla 2.3, calculados con la expresión

$$E = \frac{\sigma_c}{\epsilon_a} (1 - 2 v) \tag{1}$$

siendo ε_{α} la deformación axial y σ_{α} el esfuerzo de confinamiento

TABLA 2.3

MUESTRA	E (kg/c	m⊇)
5	10 880	
. 6	21 060	
10	17 320	
11	11 380	

En comparación con los valores reportados en la literatura (Hansen et.al.1984), los valores de la tabla 2.3 son notablemente inferiores. La diferencia puede ser real, tratándose entonces de una sal particularmente blanda, o deberse a alteraciones de la sal durante su muestreo, transporte y/o almacenamiento.

En la figura 2.22 se presentan las curvas esfuerzo-deformación volumétrica para la etapa hidrostática de las pruebas de fluencia confinada, suponiendo que el material es isótropo. Burante esta etapa de la prueba

$$\varepsilon_y = 3 \varepsilon_a$$
 (2)

· • 5

12

siendo $\varepsilon_{\mathcal{V}}$ la deformación volumétrica y ε_{α} la deformación axial.

De acuerdo con el criterio de Walsh (1965) se puede establecer la porosidad de fisuración del material prolongando el tramo recto de la curva que en este caso pareciera desarrollarse para una presión confinante algo mayor de 150 kg/cm2. Se encontro que el volumen de las fisuras varía entre 0.2 y 1.1% del volumen total del material.

2.2.2 RELAJACION

Etapa II: Incremento de σ_{μ} , sin deformación axial

Al incrementar el esfuerzo radial o de cámara o, sin permitir deformación axial se trabaja con esfuerzos cercanos al confinante, de tal manera que los esfuerzos desviadores aplicados son tan bajos que no se altera la estructura cristalina de la sal y resulta válido determinar parametros elásticos a partir de los resultados de esta etapa de la prueba.

La deformación axial esta dada por

$$a = \frac{1}{E} \left(\sigma_a - v (\sigma_x + \sigma_y) \right) \tag{3}$$

para este caso:

 σ_{α} = esfuerzo axial σ_{x} = σ_{y} = σ_{o} = esfuerzo radial o de cámara. ε_{a} = 0, deformación axial nula. por lo que de la ecuación (3) resulta

$$\sigma_a = v (2 \sigma_a)$$

y la relación de Poisson se calcula como

 $v = \frac{a}{2\sigma_a}$

(4)

En las figuras 2:8 a 2.11 se aprecia que la variación del esfuerzo axial σ_{c} , ono es proporcional a la del esfuerzo radial σ_{c} . Por tanto la valación de Poisson varía con el nivel de esfuerzos: desde 0.2 para esfuerzos confinantes pequeños hasta 0.6 para esfuerzos confinantes medios y alcanza el valor de 0.5 para esfuerzos confinantes altos.

-Para calcular, con base en esta prueba, las constantes mecánicas de la sal se considera el criterio de falla de Morh-Coulomb. De la gráfica σ_{α} va. σ_{σ} (figura 2.23a) se tiene una curva cuya ecuación es

 $\sigma_a = a \sigma_c + b \tag{5}$

para el caso en que $\sigma_a < \sigma_a$

Del círculo de Morh (figura 2.23b) se tiene

$$\tan \phi = \frac{c}{k}$$

$$\operatorname{Sen} \phi = \frac{R}{k + \frac{\sigma_{0} + \sigma_{a}}{2}}$$

$$\operatorname{Sen} \phi = \frac{\frac{\sigma_{c} - \sigma_{a}}{2}}{\frac{c}{tan \phi} + \frac{\sigma_{c} + \sigma_{a}}{2}}$$

siendo φ la cohesión y ϕ el angulo de fricción interno del material. Despejando σ_{μ} de la última ecuación se llega a

$$a = \frac{1-sen}{1+sen} \phi a = \frac{2o \cos \phi}{1+sen} \phi$$
(6)

Comparando (5) y (6) se obtiene

$$a = \frac{1 - 8 en}{1 + 8 en} \frac{\phi}{\phi} = tan^2 (45 - \phi/2)$$
(7)
$$b = -\frac{2c \cos \phi}{1 + 8 en} \phi$$

De tal manera que de la curva 2.23a se determina a y b y por medio de las ecuaciones (7) se obtienen los valores de ϕ y σ .

Para el caso en que $\sigma > \sigma$ la interpretación da como resultado

 $a = \frac{1 + Ben}{1 - Ben} = tan^2 (45 + \phi/2)$

$$b = -\frac{2\sigma \cos \phi}{1 - \sin \phi} \tag{8}$$

Con la interpretación deserita, las constantes mecánicas obtenidas en las pruebas son las que se presentan en la tabla 2.4

TABLA 2.4.

MUESTRA No.	•	COHESION MAXIMA(kg/cm2)	COHESION 🎽 FINAL(kg/cm2)	ANGULO DE FRICCION
5		5	O.	1.5
6		12 -	0	2.0
10-		13 7	5	6.0
11		12	5	1.0

Etapa III : Relajación a 🖉 constante:

El esfuerzo desviador en las pruebas de DRBI y al cabo de 1700 minutos de relajación no sobrepasa una magnitud de 2 kg/cm2 en el caso de las muestras 5,6 y 10 y de 15 kg/cm2 en la muestra 11.

Al finalizar la prueba de fluencia de la muestra 15, se efectuó una etapa de relajación a deformación constante (figura 2.21) .La cohesión última obtenida fue de 17.5 kg/cm2. En consecuencia la cohesión a largo plazo de esta sal varía entre 0 y 17.5 kg/cm2 de acuerdo con las diferentes pruebas efectuadas.

2.2.3 FLUENCIA

2.2.3.1 Antecedentes

El comportamiento de la fluencia en los metales, que ha sido aplicado también en mecánica de rocas (Jaeger y Cook,1979), se ha planteado como se ilustra en la figura 2.24: al aplicar un esfuerzo desviador constante al material aparece la deformación instantánea, c2, que es seguida por una etapa de fluencia transitoria (I) con la velocidad de la deformación disminuyendo con el tiempo. Luego, aparece una etapa de fluencia constante (II) o rango en el que la velocidad de deformación permanece constante. Por último, la etapa final (III) en la que la velocidad de deformación se incrementa alcanzando la ruptura.

Para jel caso de la sal, comparando las variadas leyes de fluencia (Hansen 1977, Horseman et. al. 1984, Jamer et.al. 1979, Langer 1984, Lindner et.al.1984, Ode 1968, Stagg et.al.1968) existen discrepancias respecto a la existencia o no de la etapa de fluencia constante (II). Se plantean así dos tipos de comportamiento: el primero supone que la sal fluye siguiendo todas las etapas descritas para los metales; el segundo supone que la fluencia de la sal solo tiene etapa transitoria lo que implica que la velocidad de deformacion siempre disminuye con el tiempo. Los resultados de las pruebas de "corta duracion" (menos de un año) son igualmente ajustables a ambos conceptos. El impacto de la diferencia en la respuesta de los dos tipos de modelo comienzan a ser importantes para largos períodos de tiempo donde las predicciones divergen significativamente.

En los resultados de las pruebas de fluencia en extensión triaxial no se definió claramente la etapa de fluencia constante por lo que la interpretación de los resultados se hace suponiendo que al aplicar carga sobre la muestra se produce la deformación instantánea ε_c , seguida de una deformacion diferida ε_d , siempre decreciente con el tiempo.

LEYES DE FLUENCIA

El comportamiento de la sal ha sido representado por numerosas ecuaciones matemáticas que se pueden agrupar básicamente en (1) reológicas, (2) empíricas y (3) fenomenológicas.

16

LEYES REOLOGICAS

La teoría lineal de la reología involucra el uso de varios elementos simples, solos o combinados, para tener en cuenta el comportamiento elástico, inelástico y viscoso del material. Los elementos representan relaciones entre deformación, velocidad de deformación y/o velocidad de aplicación de carga y pueden ser combinados para formar una ecuación constitutiva general. La selección de los elementos apropiados para formar modelos de1 material está basada en resultados empíricos. Cuando se han determinado los valores de cada parámetro se podrá predecir la respuesta bajo diferentes condiciones de esfuerzo y deformación.

Adicionalmente, un mode**ro** complejo puede ser facilmente subdividido con respecto a los tipos de comportamiento (elástico, plástico, etc.) para permitir la conceptualización. Por lo tanto, el procedimiento no es totalmente empírico ni fenomenológico, sino una combinación de ambos.

Se han construido modelos reológicos de variada complejidad (figura 2.25) aplicables cuando las relaciones esfuerzo-deformacion son lineales, es decir para bajos niveles de esfuerzo y bajas temperaturas donde la estructura de los cristales de halita no es alterada. Tal es el caso de las pruebas de fluencia en compresión simple, / realizadas con las muestras del pozo Tuzandepet1 300 (Rodríguez Cuevas 1986).

LEYES EMPIRICAS

Fueron desarrolladas en el estudio de la fluencia en metales basándose en observaciones experimentales. Para la sal, se han reportado multitud de leyes empíricas de fluencia (Hansen et al. 1980, Horseman et al.1984, Le Compte 1965, Lindner et al.1984, Nair et al.1970, Ode 1968, Stagg et al.1968) con características similares como:

-Las principales variables que influyen en la respuesta a la fluencia son el esfuerzo desviador y la temperatura; en ambos casos su incidencia en el comportamiento es altamente no lineal.

-La velocidad de deformación decae con el tiempo.

. 1

-La variable de referencia para expresar estas leyes`es generalmente tomada como tiempo, pero podría ser expresada en términos de deformación.

Así, se tiene que una ley empírica general aplicable a 105 casos en que la fluencia de la sal tenga un comportamiento no lineal es del tipo:

> $e_d = f_1(\sigma_1 - \sigma_3) f_2(t) f_3(T)$ (9)

siendo c_d la deformación diferida y f_{12} f_2 y f_3 funciones no li-neales del esfuerzo desviador, el tiempo y la temperatura respec-tivamente. La función del tiempo, f_2 (t), proporciona la descripción de la curva de respuesta del material con el tiempo. En términos matemáticos representa la integral con respecto al tiempo de una expresión de la velocidad de deformación para cualquier instante.t.

Les funciones f_1 , f_2 , f_3 que más se han utilizado son las de potencia, de tal sugrte que una expresión muy común es

$$\varepsilon_d = k (\sigma_1 - \sigma_3)^n t^\alpha T^n$$
 (10)

siendo ed: deformación diferida

01-01: esfuerzo desviador constante aplicado t : tiempo

- T : temperatura absoluta

k, n, c, m + constantes propias del material.

Por último cabe señalar que para la etapa de fluencia transitoria los modelos basados en las leyes empíricas presentan - un muy buen ajuste de los púntos experimèntales con respecto a -1a expresión matemática.

LEYES FENOMENOLOGICAS

Parten de la suposición de que los mecanismos intragranulares dominan la fluencia y que deben ser inicializados aplicando cierta cantidad de energía.

El mecanismo intragranular que mejor ha explicado el proceso de deformación es la teoría de las dislocaciones que se expone a continuación.

Los cristales de Cloruro de Sodio difícilmente se presentan perfectos: contienen numerosos defectos que a su vez son los encargados de darle algunas de sus características físicas al cristal (deformación plástica, fluencia, color, etc.). Las dislocaciones son imperfecciones muy importantes pues determinan, con su movimiento e interacción, el comportamiento de fluencia de los cristales. Se distinguen dos tipos de dislocaciones que se ilustran en la figura 2.26:

(1) Dislocación de borde que es equivalente a una capa parcial extra de iones en la estructura cristalina.

(2) Dislocación de tornillo que es equivalente a un plano parcial de corte.

Al presentarse de manera conjunta los dos tipos de dislocaciones, se le llama circuito de dislocación. Si un cristal es sometido a esfuerzo cortante se produce movimiento de las dislocaciones denominado "deslizamiento" (figura 2.27). Cada deslizamiento contribuye con pequeños incrementos a la deformación ine-. lástica del cristal.

La atracción existente entre cada átomo en un plano y su vecino inmediato en el plano adyacente se cuantifica con la energía de activación. Para romper tal atracción y producir un deslizamiento se hace necesario aplicar cierta cantidad de energía equivalente a la de activación.

Cuando el esfuerzo aplicado /supera a la energía de activación, las dislocaciones se propagan sobre distancias relativamente grandes llegando a acercarse unas con otras, cruzándose o combinándose, es decir interaccionando. A medida que aumenta la deformación aumenta a su vez la densidad de dislocaciones por lo que se requiere un esfuerzo creciente para seguir deformando el material; este mecanismo se denomina endurecimiento por deformación. Simultáneamente se producen procesos de recuperación o ablandamiento que provocan un efecto opuesto al de endurecimiento. Para temperaturas bajas, la recuperación del material se explica por el "deslizamiento cruzado", que consiste en desviaciones de la dirección del movimiento de la dislocación, mecanismo que o evita obstáculos en el plano de deslizamiento o aniquila dislocaciones al cruzarse dos de ellas y anular cada una el efecto de la otra (Hayden et al.1968).

En suma, la velocidad de deformación resulta ser un balance entre los procesos de endurecimiento y los de recuperación, que depende del esfuerzo aplicado, de manera no lineal. Se puede expresar de la forma

$$\dot{c} = A e^{-\frac{Uo - B(\sigma_1 - \sigma_3)}{RT}}$$
(11)

con

Т

Vo : energía de activación bajo esfuerzo desviador nulo R : constante universal de los gases

- : temperatura absoluta
- A, B 🕤 : constantes propias del material.

El numerador de la exponencial representa la émergía necesaria para que las dislocaciones venzan obstaculos fijos que encuentran (por ejemplo impurezas). Sin embargo conforme la deformación progresa las dislocaciones se acumulan en ciertos puntos agolpandose en contra de obstáculos infranqueables, creándose esfuerzos internos que se oponen al esfuerzo actuante. Este efecto se puede traducir en un término que depende de la magnitud de la deformacion diferida y que ha de restarse del relativo al esfuerzo actuante, obteniéndose la ecuación

$$\dot{\varepsilon} = A \ e^{-\frac{U_0}{RT}} - \frac{B(\sigma_1 - \sigma_3) + g(\varepsilon_d)}{RT}$$
(12)

siendo g (¢d)una función de la deformación diferida alcanzada

$$cd = c - c_i$$

conde c; es la deformación instantánea y c la deformación total.

2 2.3.2 Interpretación de las Pruebas de Fluencia en Extensión Triaxial

Considerando que el nivel de esfuerzos con que se ha traba-Jado en las pruebas, simulando las condiciones de las cavernas $(\sigma_1 - \sigma_3 = 70 a 90 kg/cm2)$, es alto, por lo que se presentan cambios estructurales, se decidió hacer la interpretación de los ensayos por medio de una ley fenomenológica, derivando a la postre una ecuación similar a las de tipo empírico.

Partiendo de la ecuación (12) y tomando $g(^{c}d)$ proporcional a la deformación

$$g(\varepsilon_d) = g(\varepsilon - \varepsilon_i) = c (\varepsilon - \varepsilon_i)$$

con C constante, la ecuación (12) se torna en

$$\dot{\epsilon} = A \ e^{-\frac{Uo - B(o_1 - \sigma_3) + o(\epsilon - \epsilon_i)}{RT}}$$
(13)

integrando esta ecuación, suponiendo que ni el esfuerzo desviador ni la temperatura varían con el tiempo, se obtiene

$$\varepsilon = \varepsilon_i + a \ln (bt + c) \qquad (14)$$

En caso de tomar $g(\epsilon_d) = Ln (\epsilon - \epsilon_i)^{\gamma}$ se obtiene por integración de (13)

$$\varepsilon = \varepsilon_{i} + \beta t^{\alpha} \tag{15}$$

For su forma de potencia se decidió trabajar con la ecuación (15), cuyos términos se han valorado de la siguiente manera:

- La deformación instantanea e; ,de acuerdo con los resultados de los ensayos 13,14,15 y 20 no es proporcional a los esfuerzos desviadores aplicados, pues e; es igual a 0.022, 0.185, 0.492 y 0.058 por ciento para esfuerzos desviadores aplicados de 38, 120, 176 y 76 kg/cm2. En consecuencia se establece

$$\varepsilon_i = k \left(\sigma_1 - \sigma_3 \right)^n \tag{16}$$

con K comprendido entre 1.2 y 4.0 x 10E-9 y n igual a 2.7 .El valor de n se obtuvo de la figura 2.28 en la que se expresaron los valores de la ecuación (16) en forma logarítmica. Los valores de K y n en extensión triaxial se confirman al analizar la curva enfuerzo-deformación de descarga de la muestra 14 (figura 2.12) cuvos cálculos se muestran en la tabla 2.5.

Otro par de valores que se pueden ajustar a la ecuación (16) son K entre 0.6 y 1.5 x10E-9 y n igual a 3.0. Estos valores se incluyeron dentro del análisis paramétrico que se menciona mas adelante.

 En numerosas pruebas de fluencia sobre materiales viscoplásticos (Norlier 1966) se ha notado que

$$\beta = B \epsilon_{i} \qquad (17)$$

siendo B una constante. La ecuación (15) queda entónces

$$\varepsilon = k(\sigma_1 - \sigma_3)^n + B k (\sigma_1 - \sigma_3)^n t^\alpha$$
(18)

por lo que el término

$$\epsilon_d = B k \left(\sigma_1 - \sigma_1 \right)^n t^\alpha \tag{19}$$

corresponde a la deformación diferida que a su vez tiene la forma de la ley empírica (10) expresada de manera general en la ecuación (9) y particularizada en este caso al suponer la temperatura constante durante todo el tiempo de fluencia.

Al comparar la deformación instantánea de las muestras 14,15 y 20 con su deformación diferida a un día resulta, al expresar t en días

$$c_1 dia - c_i = \beta$$

y por tanto

$$B = \frac{\varepsilon_1 \, dia - \varepsilon_i}{\varepsilon_i}.$$

De los datos experimentales resulta que B varía entre 2 y 4.

La constante ª de la expresión (15) puede obtenerse experimentalmente escribiendo que

$$Log(\varepsilon - \varepsilon_i) = Log B \varepsilon_i + \alpha Log t$$

en papel doblemente logarítmico la relación ($\varepsilon - \varepsilon_i$) versus t queda respesentada en forma recta (figura 2.29), para cada una de las pruebas de fluencia. El análisis de las rectas presentadas en la figura 2.4 permite determinar el valor de α que en el caso de las muestras 13, 14, 15 y 20 vale respectivamente 0.27, 0.32, 0.43 y 0.45.º Conviene recordar que los resultados correspondientes a las muestras 13 y 20 (en su parte inicial) son los más confiables porque la variación del esfuerzo desviador es insigníficante. Opuestamente las notables variaciones en la magnitud del esfuerzo desviador aplicado a las mustras 14 y 15 ocasiona errores apreciables en la valoración del coeficiente α .

^{(o} v ^{-o} rinicial ⁾ kg/om ²	. ^с а, [%]	^{(c} ainicial ^{-c} a ⁾	$K = \frac{\varepsilon_{a \text{ inicial}} - \varepsilon_{a}}{(\sigma_{v} - \sigma_{v \text{ inicial}})^{n}}$
		•	_ 9
73	2.24	0.04	3.7 x 10
96	2.23	0.05	2.2×10^{-9}
145	2.17	0.11	1.6×10^{-9}
167	2.13	0.15	1.5 x 10 ⁻⁹
195	2.06	0.22	1.4×10^{-9}
213	1.95	0.33	1.7×10^{-9}
240	1,95	0.33	1.2×10^{-9}
257	1.76	0.52	1.6×10^{-9}
284	1.60	0.68	1.6×10^{-9}
313	1.10	1.18	2.2×10^{-9}
331	0.73	1.55	2.4×10^{-9}
355	0.39	1.89	$2,5 \times 10^{-9}$
• 			

TABLA 2.5 Descarga de la muestra 14

NOTA: $v_{inicial} = 85 \text{ kg/cm}$ $\varepsilon_{a inicial} = 2.28 \text{ kg/cm}$ n = 2.7

2.2.4 CONCLUSIONES DE LA INTERPRETACION

De acuerdo con las pruebas de laboratorio efectuadas se obtienen los siguientes intervalos de variación de los parámetros representativos del comportamiento de la sal del pozo Tuzandepetl 300.

(1) Cohesión última Co, de O a 17.5 kg/cm2 Angulo de fricción interna O

(2) Deformación total

$$\varepsilon = k (a_1 - a_2)^n (1 + B t^{\alpha})$$

con

σ1

k : coeficiente que varía entre 1.2 y 4 x10E-9 ó entre 0.6 y 1.5 x10E-9 م ما م م and the same

: coeficiente igual a 2.7 o a 3.0 t

: tiempo en días

 $\varepsilon = \varepsilon, + \varepsilon,$

α : parámetro cuya magnitud varía entre 0.27 y 0.43 В

: coeficiente variable entre 2 y 4

Tomando en consideración los errores. (3)experimentales. variables de una prueba a otra, los valores mas probables de estos parametros son:

> $Co = 13 \text{ kg/cm}^2$ k = 3 x 10E-9 = 2.7 'n = 3.5 B = 0.27 a

Sin embargo en el capítulo 4 se efectuará un análisis paramétrico que permita valorar la importancia en el diseño de la obra, de la variabilidad de estos parámetros.

23

(20)

3. MODELO MATEMATICO DEL ESTADO DE ESFUERZOS Y DE DEFORMACIONES EN EL CONTORNO DE LA CAVIDAD

El estado de esfuerzos y de deformaciones en el contorno de la cavidad, así como su variación con el tiempo, puede ser analizado de dos formas:

1. Mediante una solución analítica explícita.

Mediante mélodos numéricos (elemento finito).

La solución analítica presenta en este caso algunas ventajas:

- Permite analizar fácilmente varios casos modificando los parametros del comportamiento mecánico de la sal, las dimensiones de la cavidad y las presiones actuantes sobre las paredes de la misma.\ Fuede efectuarse, por tanto, un estudio paramétrico del problema evidenciando las magnitudes físicas mas relevantes.

- Resulta fácil considerar el caro de deformaciones grandes.

- No requiere definir arbitrariamente las fronteras laterales de la masa de sal analizada.

Estas ventajas se consideraron para justificar la adopción del enfoque analítico.

3.1 HIPOTESIS DEL MODELO ANALITICO

Para establecer el modelo analítico se requiere considerar el comportamiento mecánico de la sal, la geometría de la caverna y las condiciones iniciales.

El comportamiento mecánico de la sal, de acuerdo con la interpretación de las pruebas efectuadas (capítulo anterior) se caracteriza por:

 Variación volumétrica nula al variar el esfuerzo desviador, cuando el nivel de esfuerzo confinante es alto (del orden de 200 kg/cm2).

2. Deformación del material siguiendo la ley

$$\varepsilon = k (\sigma_1 - \sigma_3)^n [1 + f(t)]$$
(21)
con f(t) = 0 para t = 0 v

Recordando que f(t) se interpretó como

$$f(t) = Bt^{\alpha}$$

y que la deformación se divide en su parte instantanza, e_i $e_i = k (o_1 - o_3)^n$

y su parte diferida, e,

$$\varepsilon_d = k \left(\sigma_1 - \sigma_3\right)^n f(t)$$

S. La resistencia a largo plazo de la sal es puramente cohesiva, siendo nulo el ángulo de fricción interna.

La geometría de la cavidad se ha idealizado así:

4. En la cercanía de la parte central se supone que la cavidad es cilíndrica y el estado de deformaciones es plano. En las partas superior e inferior de la misma se supone que la caverna es esférica (figura 3.1)

Las condiciones iniciales del problema son:

- Estado de esfuerzos horizontales iniciales similares en todas las direcciones (q en la figura 3.2). Adicionalmente se encontró, como se describe en el Anexo 2, que el estado tectónico inicial de la masa es hidrostático.

- El proceso de excavación se idealiza suponiendo que se mantiene, durante todo el proceso de líxiviación y hasta alcanzar la geometría inicial de la cavidad, una presión interna de la cavidad igual a la presión tectónica hidrostática q. Se considera entonces, una reducción brusca de la presión interna del fluído de q a p (figura 3.2). El momento en que se reduce la presión del fluído se considera como origen del tiempo.

3.2 CAVIDAD CILINDRICA

En coordenadas polares y con la notación presentada en la figura 3.2, **las velocidad**es de deformación radial y tangencial son, en al caso general:

$$\dot{\epsilon}_{p} = \frac{\partial \dot{u}_{p}}{\partial_{p}}$$
$$\dot{\epsilon}_{t} = \frac{\dot{u}_{p}}{p} + \frac{1}{p} - \frac{\partial \ddot{u}_{\theta}}{\partial \theta}$$

Como se trata de un problema axisimétrico, los desplazamientos radial y tangencial son independientes del ángulo polar ,de donde

En virtud de las ecuaciones (22) puede escribirse:

$$\mathbf{r} \frac{\partial \varepsilon_t}{\partial r} + \dot{\varepsilon}_t - \dot{\varepsilon}_r = 0$$
 (23)

al introducir las hipótesis aceptadas

 $\dot{\varepsilon}_{v} = \dot{\varepsilon}_{r} + \dot{\varepsilon}_{t} + \dot{\varepsilon}_{g} = 0 \qquad (\varepsilon_{v} = 0)$ $\dot{\varepsilon}_{g} = 0$ $\partial \dot{\varepsilon}_{\perp} = \dot{\varepsilon}_{\perp}$

resulta

$$\frac{\partial \tilde{e}_t}{\partial r} = -2 \frac{\tilde{e}_t}{r}$$

e integrando

$$\varepsilon_t = \frac{A(t)}{r^2} = \frac{\check{u}_r}{r}$$

(24)

(22)

come $\dot{u}_n \neq 0$ cuando r $\Rightarrow \infty$

$$\dot{u}_{r} = \frac{A(t)}{r}$$
(25)
$$\dot{\varepsilon}_{t} = -\dot{\varepsilon}_{r} = \frac{A(t)}{r^{2}}$$
(26)

De acuerdo con la ley de deformación de la sal

$$\sigma_t = k(\sigma_t - \sigma_r)^n (1 + f(t))$$

se obtiene

$$\dot{\varepsilon}_{t} = kn(\sigma_{t} - \sigma_{p})^{n-1}(1 + f(t)) (\dot{\sigma}_{t} - \dot{\sigma}_{p}) + k(\sigma_{t} - \sigma_{p})^{n} f'(t)$$
 (27)
Igualando (26) y (27)

$$\frac{A(t)}{r^2} = k(\sigma_t - \sigma_p)^{n-1} [n(\dot{\sigma}_t - \dot{\sigma}_p) (1 + f'(t)) + (\sigma_t - \sigma_p) f'(t)]$$
(28)

De acuerdo con las condiciones de equilibrio

$$r \frac{\partial \sigma_r}{\partial_r} + \sigma_r - \sigma_t = 0$$
 (29)

.de dond∉

$$\sigma_t - \sigma_p = r \frac{\partial \sigma_p}{\partial p}$$
(30)

e introduciando (SO) en (28)

$$\frac{A(t)}{r^{2}} = K(r \frac{\partial \sigma_{r}}{\partial r})^{n-1} \left[n(r \frac{\partial \dot{\sigma}_{r}}{\partial r}) (1 + f(t)) + (r \frac{\partial \sigma_{r}}{\partial r}) f'(t) \right]$$

$$\therefore \quad \frac{A(t)}{Kr^{2+n}} = n(\frac{\partial \sigma_{r}}{\partial r})^{n-1} \left(\frac{\partial \dot{\sigma}_{r}}{\partial r}\right) (1 + f(t)) + (\frac{\partial \sigma_{r}}{\partial r})^{n} f'(t) \quad (31)$$

Para integrar la ecuación (31) se plantea

$$\frac{\partial o_r}{\partial r} = \frac{C(t)}{r\frac{2+n}{n}}$$

$$\frac{\partial \dot{\sigma}_r}{\partial_r} = \frac{\dot{c}(t)}{r^{\frac{2+n}{n}}}$$

(32)

ahora la expresión (31)se transforma en:

$$\frac{A(t)}{Kr^{2+n}} = n \frac{C^{n-1}(t)\dot{c}(t)}{r^{2+n}} (1 + f(t)) + \frac{C^{n}(t)}{r^{2+n}} f'(t)$$
(33)

••
$$A(t) = kn C^{n-1}(t)C(t)(1 + f(t)) + k C^{n}(t) f'(t)$$

Integrando la ecuación (32)

$$\sigma_{r} = -\frac{n}{2} \frac{C(t)}{r^{2/n}} + D(t)$$
(34)

Las condiciones en la frontera del problema, de acuerdo con la solución elástica de Lamé, se expresa como:

gr = p para r= 4 independientemente del tiempo,t
0r = q - Co para r= c independientemente del tiempo, t
siendo p: presión del fluído sobre la pared de la cavidad
q: esfuerzo tectónico hidrostático lejos de la cavidad
Co: cohesión de la sal, a largo plazo
a: radio de la cavidad cilíndrica, en el instante t
c: radio de influencia de la excavación, definido en forma
tal que para r > c el comportamiento del material es
elástico.

Introduciando estas condiciones en la ecuación (34) resulta

$$p = -\frac{n}{2} \frac{C(t)}{a^{2}/n} + D(t)$$

$$q - Co = -\frac{n}{2} \frac{C(t)}{a^{2}/n} + D(t)$$

de donde

2

$$C(t) = \frac{2}{n} (q - p - C_0) \frac{(ac)^{2/n}}{c^{2/n} - a^{2/n}}$$
(35)

$$D(t) = \frac{pa^{2/n} - (q - Co) c^{2/n}}{a^{2/n} - c^{2/n}}$$
(36)

Combinando (34), (35) y (36) se obtiene

$$\sigma_{p} = \frac{c^{2/n}}{c^{2/n} - a^{2/n}} \left[(q - C_{o} - p) \left(1 - (\frac{a}{r})^{2/n} \right) \right] + p \qquad (37)$$

y utilizando la ecuación (29)

re

$$\sigma_t = \frac{a^{2/n}}{e^{2/n} - a^{2/n}} \left[q - p - Co \right] \left[1 - \left(\frac{\alpha}{r} \right)^{2/n} \left(1 + \frac{2}{n} \right) \right] + P$$
(38)

Para r = c, se debe tener, por definición del radio de influencia de la excavación

$$\sigma_t - \sigma_n = 2 Co \tag{39}$$

Introduciendo en esta expresión las ecuaciones (37), (38) se obtiene

$$c = a \left[\frac{q - p - Co(1 - n)}{n Co} \right]^{n/2}$$
 (40)

Combinando las expresiones (33), (35) y (40) se obtiene

$$C(t) = \frac{2}{n} (q - p - Co(1 - n)) a^{2/n}$$
(41)

$$A(t) = \left(\frac{2}{n}\right)^{n} (q - p - Co(1-n))^{n} K \left[a f'(t) + 2a (1+f(t))\right] a \quad (42)$$

De acuerdo con las expresiones (25) y (42), y tomando en cuenta que

$$u_{r} = -a \quad \text{para} \quad r = a$$
sulta por integración
$$a = a_{o} \sqrt{\frac{1}{1 + (\frac{2}{n})^{n} (q - p - Co(1 - n))^{n} 2K(1 + f(t))}}$$
(43)

Siendo a_0 el radio inicial del cilindro, antes de redúcir la presión interna del fluído de q a p.

De acuerdo con las expresiones (37), (38), (40) y (43) se obtiene, en resumen, para las magnitudes físicas de interés:

$$c_{p} = p + [q - p - Co (1 - n)] [1 - (\frac{a}{p})^{2/n}]$$

$$c_{t} = p + [q - p - Co (1 - n)] [1 - (\frac{a}{p})^{2/n}(1 - \frac{2}{n})]$$

$$c = a [\frac{q - p - Co(1 - n)}{n Ca}]^{n/2}$$

$$(44)$$

$$a = a_{o} \sqrt{\frac{1}{1 + (\frac{2}{n})^{n} (q - p - Co(1 - n))^{n} 2K (1 + f(t))}}$$

ademas

$$\frac{r+b_t}{2}$$

$$U_{p} = \frac{a^{2} - a^{2}_{o}}{2r_{o}} = -\frac{a^{2}_{o}}{r_{o}} \frac{\left(\frac{2}{n}\right)^{n} (q - p - Co(1 - n))^{n} K(1 + f(t))}{1 + \left(\frac{2}{n}\right)^{n} (q - p - Co(1 - n))^{n} 2K(1 + f(t))}$$

La estructura de las expresiones (44) muestra que son válidas sea cual sea la función f(t)y que las magnitudes $\sigma_{0} \sigma_{p} \sigma_{t}$, σ_{p} **y** U_{p} dependen únicamente de la variable a. Si la reducción de radio de la cavidad es paqueña, la relajación de esfuerzos es también reducida.

3.3 CAVIDAD ESFERICA

Se utilizan las mismas hipótesis básicas del caso de cavidad cilíndrica, salvo en lo referente al estado de deformaciones que no se puede considerar plano, (figura 3.3).

La ecuación de equilibrio es, en este caso

$$\dot{r} \frac{\partial \dot{\sigma}_{r}}{\partial_{n}} + 2 \left(\dot{\sigma}_{r} - \dot{\sigma}_{t} \right) = 0$$
(45)

y sustituye a la ecuación (29) del caso anterior.

La ecuación de compatibilidad de deformaciones

$$r \frac{\partial \dot{\epsilon}_t}{\partial r} + \dot{\epsilon}_t - \dot{\epsilon}_r = 0 \tag{46}$$

permanece idéntica a la correspondiente del caso anterior.

Introduciendo en (46) la consideración

$$\dot{\epsilon}_v = 0 = \dot{\epsilon}_t + \dot{\epsilon}_r + \dot{\epsilon}_{\psi}$$
 (47)
tomando en cuenta que por simetría

$$\dot{\mathbf{c}}_t = \dot{\mathbf{c}}_{\psi} \quad y \quad \dot{\mathbf{o}}_t = \dot{\mathbf{o}}_{\psi}$$

30

(44)
se obtiene

$$t = \frac{A(t)}{r^3}$$

A partir de la ecuación (47) y siguiendo el mismo razonamiento del numeral anterior, se obtiene:

$$\sigma_{r} = p + [q - p - Co(1 - \frac{4n}{3})] [1 - (\frac{a}{r})^{3/n}]$$

$$\sigma_{t} = p + [q - p - Co(1 - \frac{4n}{3})] [1 - (\frac{a}{r})^{3/n}(1 - \frac{3}{2n})]$$

$$\sigma_{\psi} = \sigma_{t}$$

$$\sigma_{\psi} = \sigma_{t}$$

$$\sigma = a \left[\frac{q - p - Co(1 - \frac{4n}{3})}{\frac{4n}{3} Co} \right]^{n/3}$$

$$a = a_{0} \sqrt{\frac{1}{1 + (\frac{3}{2n})^{n} \frac{3K}{2} (q - p - Co(1 - \frac{4n}{3}))^{n}(1 + f(t))}}$$

$$U_{r} = \frac{a^{2} - a_{0}^{3}}{3r_{0}^{3}}$$

$$(48)$$

Como en el caso de la cavidad cilíndrica se nota que las expresiones (48) son válidas para cualquiera f(t) y que las magnitudes $c_s \sigma_p, \sigma_t, \sigma_\psi Y v_p$ dependen únicamente de la variable a_s

4. RECOMENDACIONES DE DISEÑO

Un conjunto de cavernas construídas en un domo salino y destinadas como almacenamiento de hidrocarburos, cumplirá con su finalidad siempre y cuando:

1. El radio de influencia de cada caverna sea inferior a la mitad de la distancia entre ejes longitudinales de las cavernas.

2. La reducción del volumen de cada caverna, por efecto de la fluencia de la sal, sea reducida a largo plazo.

3. No se presenten inestabilidades en las paredes de las cavernas.

Las tres condiciones enumeradas pueden ser analizadas con base en el modelo matemático elaborado y en los parámetros del comportamiento mecánico de la sal de Tuzandepetl. Para proceder a tal análisis se considera la simplificación geométrica planteada en el capítulo anterior: una cavidad cilíndrica, con eje de simetría vertical; rematada por dos caquetes esféricos en sus extremos superior e inferior y localizada entre 730 y 980 m de profundidad. El peso volumétrico de los mantos rocosos suprayacentes se considera igual a 2,2 ton/m3 y el de la salmuera de 1.2 ton/m3. El radio de la caverna se considera igual a 21.5 m.

4.1 ZONA DE INFLUENCIA DE LA CAVERNA

La variación, en función de la cohesión última Co de la sal, del cociente c/a se presenta en la figura 4.1, siendo c el radio de la zona de influencia de material plastificado alrededor de la caverna y a el radio de esta última. Tales curvas se obtuvieron con las expresiones (44) y (48).

Se observa que para Co tendiente a cero, el radio "c" tiende a infinito. Si se considera un valor de Co superior a 10 kg/cm2, la relación c/a resulta menor de 6 para el caso de la parte central y menor de 3 para ambas bóvedas. En tales condiciones resulta conveniente alojar los ejes de las cavernas a una distancia de por lo menos 260 m. Este dato coincide con el que resulta del uso de la fórmula empírica propuesta por Dreyer (1984):

c / a = 6.06

4.2 REDUCCION DEL DIAMETRO DE LA CAVERNA

2

Variando los parametros de comportamiento viscoso de la sal en los intervalos señalados en el inciso 2.2.4, se obtienen las curvas presentadas en las figuras 4.2 a 4.6, que representan la variación con el tiempo del cociente a / a, con "a", radio de la caverna para un tiempo t y "a," radio inicial de la cavidad.

[En las figuras 4.2 a 4.4 se nota que al aumentar la cohesión última Co. los valores de a / ao disminuyen para un tiempo dado. Este sentido de variación podría parecer contradictorio si no se toma en cuenta que al aumentar Co aumentan los esfuerzos desviadores en las paredes de la cavidad (fig 4.9 a4.11) y por lo tanto se incrementan las deformaciones hacia la cavidad.

A los 20 años de operación y sin tomar en cuenta los efectos de disolución paulatina de la sal ocasionados por los ciclos de llenado y vaciado de la salmuera resulta que el valor mas probable de a / a, será de 0.98. Este valor corresponde a un desplazamiento de las paredes de la caverna hacia el eje de la misma y en su parte central, de 40 cm.

Puede apreciarse sin embargo que en casos extremos la rela-.ción a/a, disminuye hasta 0.92. En tal caso la reducción del radio de la cavidad sería de 170 cm.

4.3 VARIACION DEL VOLUMEN DE ALMACENAMIENTO

Con el transcurso del tiempo, el volumen disponible para almacenar petróleo se reduce por efecto de la fluencia de la sal.

A causa de este fenómeno la reducción alcanzará, de acuerdo con los datos presentados en las figuras 4.7 y 4.8 un máximo de 15% y un valor probable de 4%.

4.4 VARIACION DE LOS ESFUERZOS CON EL TIEMPO

Los esfuerzos normales perpendicular y tangencial a la pared de la caverna varían en función del cociente r/a, siendo r la distancia al punto considerado y a el radio de la caverna en el instante t, como se muestra en las figuras 4.9 a 4.11. Implicitamente al ser constante la magnitud r y variable con el tiempo la magnitud a , de estas figuras se intuye que los esfuerzos varían con el tiempo. Tal variación se presenta explícitamente en la figura 4.12 para la parte central de la caverna.

4.5 ESTABILIDAD DE LAS PAREDES DE LA CAVERNA

4

La aplicación, sobre un material viscoso, de un esfuerzo desviador constante y suficientemente grande para que genere un proceso de fluencia estacionario, a velocidad de deformación constante, ocasiona inevitablemente la falla.

En las pruebas de fluencia en extensión triaxial efectuadas con la sal de Tuzandepetl no se definió un eventual flujo estacionario. La máxima duracion de estas pruebas de fluencia fue de 32 días, qua se mostro insuficiente para alcanzar ese eventual flujo estacionario. Sin embargo puede afirmarse que en caso de presentarse posteriormente a los 32 días, la velocidad de deformación sería evidentemente inferior a la que se presento al final de la prueba. Por tanto, designando por ε_m la velocidad de deformación de un eventual flujo estacionario puede escribirse

$$\dot{\varepsilon}_m \leq \alpha \ K \ B \ (\sigma_1 - \sigma_3)^n \ t^{\alpha - 1}$$

Para (o1 - o3) igual a 75 kg/cm2, situación que prevalece en las cercanias de las paredes, resulta

La aplicación de la relación empírica expuesta por Morlier (1966) que relaciona la magnitud de ϵ_m con la duración de vida del material <u>r</u>

con $\frac{\delta m}{2}$ en % /día y T en días, permite calcular la duración de vida del material en la cercanía de las paredes de la cavidad y T resulta superior a 500 años.

Para fines prácticos las paredes de la cavidad son, por tanto, estables.

5. CONCLUSIONES Y COMENTARIOS

Con base en las pruebas de laboratorio efectuadas en la sal de Tuzandepetl y mediante el modelo analítico elaborado pera valorar los estados de esfuerzos y deformaciones en el contorno de una caverna, puede concluirse que:

- La disminución del radio de una caverna cilíndrica de 43 m. de diámetro y localizada entre las profundidades 730 y 980 m , estará comprendida entre 0.4 y 1.7 m a los 20 años; esto ocasionará una reducción del volumen disponible de almacenamiento de entre 4 y 15 % que podrá ser compensado por el incremento generado por disolución al introducir cíclicamente salmuera no saturada en la caverna.

- La distancia conveniente entre ejes de cavernas , para evitar interferencias es de 260 m.

- No se presentarán problemas de inestabilidad de las paredes. - - largo plazo.

Ya con los objetivos cumplidos, habiendo establecido la factibilidad técnica, desde el punto de vista de Mecánica de Rocas, del desarrollo del proyecto de almacenamiento de hidrocarburos en el domo salino de Tuzandepetl, vale la pena hacer algunos comentarios a manera de conclusión sobre diversos aspectos.

Con respecto al estudio de las propiedades reológicas de la sai de fuzandepetl:

- Las pruebas de fluencia en extensión triaxial y las de relajeción revelan el comportamiento dúctil de la sal para una temperatura de 50°C y un rango de esfuerzos de medio a alto.

- Para esfuerzos desviadores pequeños las pruebas revelan jum

comportamiento lineal de tal manera que se pudieron establecer parámetros elásticos lineales a partir de las primeras etapas de los ensayos. Adicionalmente, las pruebas de fluencia en compresión simple se pudieron interpretar por medio de leyes reológicas debido al bajo nivel de esfuerzos con que se trabajaron (Rodríguez Cuevas 1986). Las anteriores razones justifican el hecho de haber adoptado condiciones de frontera elásticas, de acuerdo con la deducción de Lamé, dentro del modelo matemático.

- Para 50°C y esfuerzos desviadores mayores de 38 kg/cm2 la respuesta en deformación de la sal es no lineal con respecto al esfuerzo desviador aplicado, tanto para la deformación instantánea como para la diferida.

- La respuesta en deformación de la sal en función de los cambios de temperatura no se pretendió conocer y todas las pruebas se hicieron bajo la misma temperatura constante, por ser similar a la que presenta la sal 4 300 m de profundidad.

Es importante recalcar el hecho de haber utilizado un modelo analítico para el estudio del estado de esfuerzos y de deformaciones en el contorno de la cavidad, en lugar de haber desarrollado un modelo numérico. Como ya se expuso, la utilización del método analítico resultaba mas ventajosa que la del método numérico. Una herramienta tan-poderosa como el elemento finito no resultaba conveniente debido al grado de incertidumbre que se tenía en cuanto al valor de los parámetros a utilizar, los niveles de deformación y la definición de las fronteras del problema.

El verdadero ajuste de los parámetros se debe revelar durante las etapas de construcción y operación de las cavernas. En estas etapas se debe contar con un equipo de ingenieros con la suficiente experiencia en la construcción de almacenamientos y en el control y la correlación con el diseño.

El estudio de las propiedades reológicas de la sal 'y por ende el diseño de almacenamientos en domos salinos presenta todavía incertidumbres que constituyen motivos de futuras investigaciones. Algunos de estos aspectos son:

- Tratar de reproducir e interpretar matemáticamente procesos de carga y descarga de la sal, que son aplicables a casos como el de reemplazo de salmuera por hidrocarburo y viceversa.

- Determinar, con mayor claridad los límites de aplicabilidad, de la teoría elástica lineal. Euscar esa dependencia desde el punto de vista fenomenológico y llegar a cuantificarla en cada caso.

- Para la sal de Tuzandepetl, hacer pruebas adicionales buscando determinar claramente la etapa de fluencia con velocidad de deformación constante; desafortunadamente se tiene la incertidumbre de su existencia y además el inconveniente de requerir tiempos prolongados de prueba (meses), que hacen difícil alcanzar un estricto control para mantener la carga y la temperatura constantes. Otro aspecto que amerita mayor estudio es la determinación de la cohesión última Co; para ello se podrían implementar pruebas de relajación a largo plazo, con una duración mayor a la que se tuvo en las pruebas realizadas.

Debido a la importancia económica que tiene el potencial salino de México debe seguirse ahondando en el conocimiento de la sal desde diversos campos: geclógico, geofísico, físico, químico y de ingeniería. Para explotar óptimamente ese potencial es necesario conocer, además de la localización y el tamaño de las estructuras salinas, su compósición, el estado de esfuerzos junto con su historia, los mecanismos de deformación a nivel atómico y su comportamiento mecánico.

4. REFERENCIAS Y BIBLIOGRAFIA

ALERECHT H, LANGER M, 1974. The rheological senavior of rock salt and related stability problems of storage caverns, Froz. Third Congress ISRM, Lenver, Vol II, Part 5.

BENAVIBES G.L.1984 .Bomos salinos del sureste de Nexico. Origen, exploración e importancia economica, Almacenamienio: Subterraneos, Sociedas Nexicana de Mecanica de Suelos.

SELLO M, 1984. Economia de los almacenes subternaneos para petroleo y productos derivados, Almacenamientos Subternaneas, Sociedad Nexicana de Necanica de Suelde.

BLAND D, 1960. The theory of linear viscoplasticity, Hergamon (ress, Belfast.

DAMACHO R.C. 1934 Deserrollo de cavernas en tormaciones salinas pera el almacenamiento de nidrocarburos, Almacenamientos Subterrangos, acciedad mexicana de Macanica de Suclos. 🙀

CARTER N, HANSEN F, SENSENY F, 1962, Stress magnitude: in natural rock salt, Journal of Geophisical Research, vil 87, N: 811, Pag 9289-9300.

DREYER W, 1984, Grude oil storage in a system of salt caverns, Proc. First Conference on the Mechanical Behavior of Salt, Trans Tach Publications, Claustnal, Germany.

FLUGGE U. 1967, Viscoelesticity, Blaisdell Publishing Co. Mass.

FOSSUM A, 1977, Visco-plastic behavior during the excavation phase of a salt cavity, International Journal for Numerical and Analitical Methods in Geomechanics, Vol 1, 45-55.

FRIEDMAN N, DULA N, GANGI A, GA20NAE G, 1984, Structural petrology of experimentally deformed synthetic rock salt, Frot. First Conference on the Machanical Benavior of Balt, Trans Tech Fublications, Clausthal, German,.

GEOSTOR, 1988, Description of nucleos del poco Tuzandepetl 300.

39.

HANSEN F, 1977, Evaluation of an inelastic law for salt creep, Froc. 18th U.S. Symposium on Rock Mechanics, Sciorado School of Mines, Vol 1, 485-1 - 485-5.

HANSEN F, CARTER N, 1980, Greep of rocksalt at elevated temperature, 21st U.S Symposium on Rock Mechanics, Univ. of Mo, Rolla.

HANSEN F, MELLERGARD K, 1980, Greep of 50mm diameter specimens of dome salt from Avery Island, Lousiana, Tachnical Report, ONWI-104

HANSEN F. MELLERGARD N. BENSENG F. 1984, Elasticity and strengthof ten natural rock salts, Proc. First Conference on the Mechanical Behavior of Salt, Tras Tech Publications, Clausthal, Germany.

HARBY R. LANGER M. (Editorss), 1984. The mochanical behavior of salt. Friz. First Conference. Trans Tech Publications, Clausthal, Germany.

MAYDELL 1., MOFFATE 2, WULFF 2, 1948, Propiedades mecanicas, Introducción a li ciencia de materiales, Vol. 14, Limuse-Wiley, Mexici.

HOPER N., THOMA N., 1968, Trianial test on solt rocks, dournal Rock Machanics and Mining Science, Val 5, 195-208.

HORSEMAN S, FASSARIS I, 1984, Greep test for storage pavity closure prediction, Proc. First Conference on the Mechanical Dehavior of selt, Trans Tech Fublications, Clousthal, Germany.

IMF, 1985, Almacchamiento de crudo en cavidedos minadas en domos, salinos, analisis de registros geoficidos del podi Tuzandepeil 800, Informe del departamento de Petrofísica.

II,UNAM,1976, RABABC A, Camara triaxial de alta presion, Informe elaborado para CFE.

ilE, 1988, Caracterización de roca sal-gema, para el diseno de aimscenamientos en domos salinos, Proyecto 2015.

DACKBON M. TALLET I. 1980, Enternal snapes, strain rates and dynamics of selt structures, Geological Society of America Bulletin, VT7, 305-326.

UAEGER 3, COOK N,1977, Fundamentals of rick mechanics, Ed Chapman and Hall, Sa edición, Rey York.

40

KRENK S. 1978. Internally pressurized spherical and cylindrical cavities in rock salt, Gour.' Rock Mech. Min. Sci. and Geometh., Vol 15, 219-224.

LANGER M, 1982, Escternnical investigation methods for rock salt, Bull. of the Int. Association of Engineering Usplogy, 45 23, 155-164, Paris.

LANGER M,1984, The rheologycal behavior of rock salt, Froc. First Conference on the Machanical Behavior of Salt, Trans Tech Publications, Clausthal, Germany.

LE COMPTE F, 1965, Creep in rock selt, dournal of Geology, V73, No 3, 469-484.

LINDNER E, BRADY 5,1954, Memory aspects of Salt Greep, Proc. First Conference on the Mernanical Benevior of Salt, Trans Tech Fublications, Clauthal, Dermany.

LOFEZ R.1934 , Analisis del comportamiento mecanici de invernas en roca y sal, Almacenamientos Sunterensos, Ettiedas Mexitana de Necanica de Abcas.

MOFFATT W/ FEARSALL 3, WULFF J, 1968, Estructura, Introduccion a la ciencia de los materiales, Vol 1, Limuse-Wiley, Mexico.

MORLIER F, 1966, Le fluage des monnes, Annales de L'institut Technique de Batiment of des Travaux Fublics, No 21717

. . . .

MUEHLBERGER W, CLABAUGH P, 1968, Internal structure and petrografice of gulf coast salt domes, Am. Assoc. Fetroleum Geologist Bull., Vol 8, 90-98.

NAIR N. BEERE D. 1970. Creep behavior of salt in triaxial extension test. Proc. Third Symposium on Salt. 71, 103-215.

ODE H, 1968, Review of mechanical properties of salt relating to salt-dome genesis, Geological Society of America. Leocial Paper 38, 848-845, 688-701.

FREEDE D. FOLEY C. 1984, Finite element analysis of salt isverns employed in the strategic petroleum reserve with comparation to field data, In Bity, 8(3), 283-200.

REYNOLDS, SLOYNA, 1981, Greep measurements in solt mines, Fril. Ath U.S.Symposium on Rock Mechanics, Fenns, Lyanis, State -University, 11-17.

ROBRIGUEZ CUEVAS N, 1969a, Viscoelastic constants for a model representing the mechanical behavior of materials, Proc. of the Southampton 1969 Civil Engineering Materials Conference, Part 1, Ed Wiley-Interscience, 533-543, London.

RODRIGUEZ CUEVAS N, 1969b, Use of creep data to obtain properties of materials, Materriaux et Constructions, V2, No 12, 431-436.

RODRIGUEZ CUEVAS N, 1970, Efecto de las presiones de confinamiento sobre el comportamiento mecánico de los materiales, 2a Conferencia Interamericana sobre Tecnología de Materiales, 461-467, México.

RODRIGUEZ CUEVAS N, 1986, Interpretación de pruebas de fluencia en compresión simple en sal, Instituto de Ingeniería UNAM, en proceso de publicación.

ROSS J. AVELALLEMENT H. CARTER N. 1980. Stress dependence of recrystalized-grain and subgrain size in olivine. Tectonophysics 70, 39-61.

SALENCON J. 1966, Expansion quasi-statique d'une cavite a symetrie spherique ou cylindrique dans un milieu elastoplastique, Annales des Pons et Chaussees, III.

SALENCON J, 1969, Contraction quasi-statique d'une cavite a symetrie spherique ou cylindrique dan un milieu elasto-plastique, Annales des Pons et Chaussees,IV.

SERATA S, 1978, Geomechanical basis for design of underground salt cavities, ASME Energy Technology Conference and Exhibition, Houston, Texas, 43pp.

SERATA S, GLOYNA E, 1960, Design principles for underground salt cavities, Journal of the Sanitary Engineering Division, ASCE, V86, N.SAS.

SERATA S. GLOYNA E. 1960, Principles of structural stability of underground salt cavities, Journal of Geophysical Research. V65, No 9, 2979-2987.

STAGG H, ZIENKIEWICZ D, 1968, Rock mechanics in engineering practice, John Wiley and Sons, London.

THOMS R, CHAR CH, BERGERON W, 1973, Finite element analysis of

rock salt pillar models, Proc. 14th Symposium on Rock Mechanics, ASCE, New York, 393-409.

VOUILLE G, TIJANI S, GRENIER F, 1984, Experimental determination of the Tersane rock salt, Proc. First Conference on the Mechanical Behavior of Salt, Trans Tech Pub. ,Clausthal, Germany.

WALSH J, 1965, The effect of cracks on the compressibility of rock, Journal of Geophysical Research, V70, No 2.

WAWERSIK W, PREECE D, 1984, Creep testing of salt procedures, Proc. First Conference of the Mechanical Behavior of Salt, Tras Tech Publications, Clausthal, Germany.

7. FIGURAS

.

FIG 1.2 Etapas de desarrollo de una caverna por disolución

Fig 2.1 Cámara triaxial de alta presión

ŧ.

FIG 2.3 Curvas esfuerzo-deformación axial en compresión hidrostática

Fig 2:4 Esfuerzos confinante y axial vs-tiempo

Fig2.5 Esfuerzos confinante y axial vs tiempo

Fig2,6 Esfuerzos confinante y axial *vs* tiempo

•

Fig_{2,7} Esfuerzo confinante y axial *vs* tiempo

Fig2,12 Fluencia en prueba triaxial de extensión

Fig 2.13 Fluencia en prueba triaxial de extensión

Fig 2,14 Fluencia en prueba triaxial de extensión

ទ្ឋ

Fig 2.17 σ vs € Fluencia en extensión triaxial muestra 14

ŝ

Fig2,19 σvs €, Fluencia en extensión triaxial, muestra 20

**5

Γ

Γ

Π

1

Ľ

L

32.22 Curvas esfuerzo-deformación volumétrica, en compresión hidrostática

..

.

ł

Į.

1

FIG 2.25 Ejemplos de modelos reológicos en sal [Lindner et al., 1984]

FIG 2.26 Tipos de dislocaciones: (a) de borde (b) de tornillo [Hayden et al, 1968]

FIG 2.27 Deslizamiento resultante del movimiento de una dislocación. (a) de borde pura (b) de tornillo pura. [Moffatt et al 1968]

FIG 2.28 c, vs $\sigma_1 - \sigma_3$, pruebas de fluencia en extensión triaxial

5.5

U

Ц

Fig 4.2 a/a, vs T, para diferentes valores de la cohesión última C_O Parte central de la caverna

Fig 4.3 a/a. vs T, para diferentes valores de la cohesión última C_o Bóveda inferior

Fig 4.5 Variación de a/a. vs T, para diferentes valores de los parámetros mecánicos. Cohesión última igual a 20 kg/cm. Parte central de la caverna

1**.**

.79

Fig 4.8 $\frac{\Delta v}{v}$ vs T, parte central de la cavidad al variar a

80.

Fig 4.9 Distribución de esfuerzos en un plano horizontal que es normal al eje de simetría de la cavidad en su parte central

Fig 4,12 Relajación del esfuerzo desviador (σ_t - σ_r) νs r, en función del tiempo a=0.40. Parte central de la cavidad

ANEXO 1: PROCEDIMIENTOS Y ANOTACIONES PARA EL MANEJO DE LA CAMARA TRIAXIAL DE ALTA PRESION.

- Al. Generalidades
- A2. Calibraciones
- A3. Cálculos A3.1 Esfuerzo axial A3.2 Reducción del área de la muestra
- A4. Manejo del gato que proporciona la presión vertical
- A5. Montar la muestra
- A6. Desmontar la muestra
- A7. Carga hidrostática
- A8. Carga con esfuenzo desviador

AS.1 Ensayo DRBI

A8.2 Ensayo de fluencia en extensión triaxial

A1. GENERALIDADES

La cámara triaxial de alta presión se construyó en el IJ en 1976. En el presente anexo se hacen algunas anotaciones para complementar, en cuanto a procedimientos de manejo y cálculos, el informe original realizado por el ingeniero Rábago (IJ 1976).

Con respecto al diseño original se utilizó una cabeza diferente para poder realizar las pruebas en extensión. Así mismo se independizó el sistema de carga axial del de la camara utilizando en el primero el mecanismo Amsler. Adicionalmente el único manómetro que se utilizó durante las pruebas fue el que registra la présión de la camara (M6, de la figura 2.2), pues la presión del aceite que baja el gato se registró mediante transductor de presión. En efecto, se instalaron dos transductores de presión (T90 y T400 de la figura 2.2), con el fin de mejorar el sistema de imedida involucrando, menos volumen de aceite y longitud de tubería en la operacion. El primero (T90) tiene capacidad para medir presiones entre 0 y 90 kg/cm2; el segundo (T400) trabaja en el rango de 50 a 400 kg/cm2.

La cámara triaxial permite ensayar especímenes de suelos de 3.6 cm de diámetro por 9.0 cm de altura; para roca, de 5.38 cm de diámetro y de 10 a 14 cm de altura.

A.2 CALIBRACIONES

En la figura A1-1 se presenta la calibración del transductor de baja presión (T90) con respecto al puente utilizado. No se calibró el transductor de mayor capacidad (T400) porque no se requería trabajar dentro de su rango de carga. Se encontró para el transductor T90 una constante de 17.18 Divisiones / kg/cm2.

En al figura A1-2 se muestra la calibracion del manómetro que registra la presión de cámara. En las figuras A1-3 Y A1-4 se presentan las curvas de presión de las bombas de baja y de alta presión, con respecto al manómetro de aire.

A3. CALCULOS

A3.1 CALCULO DEL ESFUERZO AXIAL

De acuerdo con la figura A1-5 se tiene:

DIAMETRO, cm	AREA, CM2	DIFERENCIA, cm2				
$D_1 = 18.85$ $D_2 = 3.806$	297.07 11.38	267.67				
$D_3 = D_p$ $D_\mu = 6.43$	37.72 A	37.72 - A				

Haciendo equilibrio de fuerzas

	σ _a A +	$\sigma_{c}(37.72-A) = \frac{Lp-Lo}{17.18} \times 267.69$
siendo	σa	: esfuerzo axial en kg/cm2
	· 00	: esfuerzo de cámara o radial en kg/cm2
	A	: área de la muestra en cm2
	Lp	: lectura del puente
	Lo	: lectura de l puente para la muestra totalmente descargada
	17.18	: constante de calibración del transductor 90
si Ln≖Lc		resulta

 $\sigma_a = \frac{15.58 \ \Delta - (37.72 - A) \ \sigma_c}{4}$

A3.2 REDUCCION DEL AREA DE LA MUESTRA

Sea *Do* el diámetro de la cabeza de la celda y *D* el diámetro de la probeta en cualquier instante t; suponiendo que en el ensayo realizado en extensión la forma cilíndrica de la muestra se mantiene, disminuyendo su diámetro (figura A1-6a)

el área inicial es: $A_0 = \pi Do^2$

el área final es : $A = \pi D^2$

la deformación unitaria radial: $c_{p} = -\frac{Do-D}{Do}$

suponiendo incompresibilidad volumetrica $\epsilon_r^{=-\epsilon_a/2}$

de lo que resulta

 $D = . Do + \varepsilon_{r} Do$ $D = Do - 0.5 \varepsilon_{a} Do$ $D = Do (1-0.5 \varepsilon_{a})$ $A = \pi Do^{2} (1-0.5 \varepsilon_{a})^{2}$ $A = Ao(1-0.5 \varepsilon_{a})^{2}$

Por otra parte, si se utiliza relleno (figura A1-6b):

 $A = \frac{\pi}{4} (Do - 0.5 \epsilon_{0} D_{po})^{2}$

siendo

Do el diámetro de la cabeza de la celda $D_{\mathbf{p}_{O}}$ el diámetro inicial de la probeta

A4. MANEJO DEL GATO QUE PROPORCIONA LA PRESION AXIAL

Se recomienda subir y bajar, en lo posible, solo con el sistema de bombas para no perder aceite del sistema Amsler que tiene diferente viscosidad.

A4.1 SUBIR EL GATO

Válvulas abiertas: 2, B, 12, 13 y 14 (figura 2.2) Utilizar bomba de baja presión. En este caso las manecillas del micrómetro giran en sentido horario al subir el pistón.

A4.2 BAJAR EL GATO

Válvulas abiertas 1, 3, 21 y A (figura 2.2) Utilizar bomba de baja presión.

A.5 MONTAR LA MUESTRA

- Se coloca la base de la cámara, la base de extensión (si es necesario debido a la altura de la muestra) y la muestra. Si se requiere se coloca relleno. Sobre ellos se pone la membrana

ajustada con arosellos No 226. Se coloca la cabeza y queda el conjunto de la figura A1-7.

- Se sube la camisa mediante el sistema de pesas; se aceita el interior de la camisa y el arosello de la cabeza.

Se baja la camisa para meter el conjunto. Se verifica que coincida con la marca (101) de la base y la camisa.

Camisa y conjunto se suben para poner los tornillos que aseguran la base.

- Se instala la camisa en el marco, conectándola al sitema de aceite. Se centra mediante los tornillos y las placas especiales. Se baja el gato de tal manera que llegue a tope, sobre la platina y la base del micrómetro que van sobre la cabeza (figuras 2.1 y 2.2).

- Se llena la camara de aceite abriendo unicamente la valvula 6, utilizando la bomba de baja presión, dejando el tornillo de purga de la cabeza abierto.

Se verifica la verticalidad del micrómetro y su carrera de acuerdo con las deformaciones esperadas.

- Si se va a realizar un ensavo con temperatura controlada, se cierra el horno, se prende el control de la temperatura y se dejan las válvulas 5 y B abiertas durante el tiempo conveniente (por ejemplo hasta que se mantenga la deformación inducida por el cambio de temperatura).

A6. DESMONTAR LA MUESTRA

- Verificar que todas las válvulas estén cerradas, una vez se ha descargado completamente el sistema.
- Subir el gato
- Desconectar el sistema de aceite.
- Sacar la cámara del marco.
- Quitar el tornillo de purga de la cabeza.
- Con aire a presión, introducido a través del orificio de purgade la cabeza, sacar el aceite de la cámara (se desecha).
- Levantar la cámara con el sistema de pesas y quitar los tornillos de la base.
- Separar base y camisa, fijando la primera a la base auxiltar.
- Quitar cabeza, arosellos y finalmente el recubrimiento de la muestra.
- Tomar dimensiones y, si es el caso, velocidad de onda de la muestra.

And a second second second

A7. CARGA HIDROSTATICA

Se utilizó el sistema Amsler para dar la presión axial y el sistema de bombas para dar la presión de camara o radial. Se abren únicamente la válvula ó, para dar la presión de la camara, y la válvula A, para transmitir la presión del Amsler.

El peso a colocar en el Amsler, para generar una presión hidrostática $\sigma_{c} = \sigma_{\alpha}$ dada, se puede establecer de la expresión ya deducida:

$$\sigma_a = \frac{15.58 \ \Delta - (37.72 - A) \ \sigma_c}{A}$$

El área corresponde a un diámetro de 5.38cm y el peso a colocar (W) es igual a

$$W = \frac{\Delta}{2 \times 17.18}$$

de lo que resulta

$$W = 7.04 \times 10^{-2} \, \text{o}_{c}$$

Se fijan los incrementos de carga a una determinada tasa. Para presiones menores de 70 kg/cm2 es recomendable utilizar la bomba de baja presión que demora un rato para comenzar a funcionar.

A8. CARGA CON ESFUERZO DESVIADOR

A8.1 ENSAYO DRBI (Dispositivo de Relajación Biaxial Isotérmica)

Los pasos seguidos en esta prueba fueron:

- Montaje (Ver A5)
- Etapa I: hidrostática de O a 50 kg/cm2 (Ver A7)
- Etapa II: sin deformación axial (50 a 300 kg/cm2)

- Etapa III: de relajación de esfuerzos.

Etapa II: sin deformación axial

- Se fija una velocidad de carga para la cual se elige el número de incrementos y la magnitud del esfuerzo por incremento. - Unicamente con la valvula 6 abierta se da el primer incremento de presión de cámara. Se coloca en el Amsler la carga necesaria para regresar el micrómetro a su posición original del final de la etapa hodrostática. Se toman las lecturas indicadas en el formato (figura A1-8). Se realiza el siguiente incremento.

Etapa III: relajación de esfuerzos

- Al llegar σ_o a 300 kg/cm2, se realizó el último incremento, subiendo únicamente la presión radial a 325 kg/cm2 de tal manera que se induce un esfuerzo desviador y una pequeña deformación a la muestra.

- Se deja el conjunto el tiempo (días) que se estime conveniente, manteniendo constante la deformación, haciendo lecturas periódicas.

A8.2 ENSAYO DE FLUENCIA EN EXTENSION TRIAXIAL.

Los pasos seguidos en esta prueba fueron:

- Montaje (Ver A.5)

- Etapa I: hidrostática de O a 200 kg/cm2 (Ver A.7)

- Etapa II: fluencia bajo confinamiento y en extensión.

Etapa II: Fluencia en extensión triaxial

- Una vez alcanzada la máxima presión hidrostática y transcurrido el tiempo necesario para su estabilización, se indujo el esfuerzo desviador cerrando la válvula A, reduciendo la carga en el Amsler al valor deseado y reabriendo la valvula A para transmitir la nueva presión. La carga del Amsler se calcula a partir de las expresiones ya vistas y resulta

 $W = 4.24 \times 10^{-2} \sigma_{d} + 2.8 \times 10^{-2} \sigma_{c}$

Con el transcurso del tiempo se tiene en cuenta el efecto de reducción de área mediante la expresión

 $W = 1.868 \times 10^{-3} A (\sigma_a - \sigma_c) + 7.045 \times 10^{-2} \sigma_c$

que resulta de las expresionés del numeral A3.

FIG A1.2

ł

1

Calibración del manómetro M-6

de o_v

(a) Reducción del diámetro

(b) Muestra con relleno

sin escala

	ENEAYO MUESTRA								HOJA N° FECHA				
	Fecha	Hora	Tiempo (min)	Tiempo (dîas)	7 •C	Micrométro	E a	0 ₀ kg/cm²	ANSLER V (kg)	Puente LP	o kg/cm²	° e d kg/cm²	Observaciones
										•			
·						i I							
								-					
						1							
								•				•	

•

FIC Al.8 Formato para ensayos

: •

ANEXO 2 CORRELACIÓN DE ESFUERZOS TECTÓNICOS Y TAMAÑO DE SUBGRANOS EN LOS CRISTALES DE SAL

En años recientes, desarrollos de estudios en petrografía estructural han llevado a valorar indirectamente el máximo esfuerzo desviador que ha actuado sobre la masa bajo estudio. En efecto, se ha establecido que los granos recristalizados (neoblastos) y los subgranos en los cristales poligonizad<u>os</u> alcanzan un estado de equilibrio en el que su tamaño promedio, d resulta inversamente proporcional al esfuerzo desviador máximo actuante $(\sigma_1 - \sigma_3)$ (Friedman et al. 1984).

Ross et al. (1980) mostraron que esta relación es para el olivino independiente de la deformación, de la velocidad de deformación y poco dependiente de la temperatura. Esta relación ha sido generalizada para otros minerales mediante la expresión

$$\vec{d} = A (o_1 - o_3)^{-n}$$

en la que \vec{a} se expresa en micrones, A y n son constantes y $(\sigma_1 - \sigma_3)$ se expresa en MPa.

Al conocer A y n, la medición experimental de \overline{d} permite pues inferir la magnitud del esfuerzo ($\sigma_1 - \sigma_3$) . Como se muestra en la figura A2-1, Carter et al. (1982) obtuvieron para muestras de sal provenientes de 7 sitios diferentes

$$\vec{d} = 190 (\sigma_1 - \sigma_2)^{-1}$$

con un coeficiente de correlación r = 0.9775.

La relación entre el tamaño de los subgranos y el esfuerzo desviador máximo aplicado parece ser, por tanto, independiente del origen de la sal, del contenido de impurezas y de su historia de deformaciones.

Se utilizó un fotomicroscopio polarizador con iluminación vertical. Los cristales individuales se partieron según un ángulo de clivaje, se trataron con una solución de 200 ml de stanol y 0.5 gr de cloruro de cadmio, durante 6 a 7 minutos; luego se lavaron con acetona y se secaron con aire frío.

En las figuras A2-2 y A2-3 se presentan fotografías de la estructura cristalina observada. Las dislocaciones presentes en los cristales son poco numerosas y alcanzan a limitar subgranos de tamaño $\frac{1}{2}$ superior a 200 micras, por lo que, de acuerdo con la relación propuesta

$$\sigma_1 - \sigma_3 = 10 \ kg/cm^2$$

La sal localizada a 800 m de profundidad está sometida a un esfuerzo normal vertical σ_1 igual a 175 kg/cm2, por lo que el correspondiente esfuerzo normal horizontal σ_3 es igual a 145 kg/cm2, resultando

$$\frac{\sigma_3}{\sigma_1} = 0.94$$

En conclusión, se puede considerar que la masa de sel en la que se excavará la caverna está sometida a un estado de esfuerco: prácticamente hidrostático, con

$q = \gamma h$

siendo 9 el esfuerzo normal actuante en la dirección horizontal sobre un plano vertical en un punto localizado a la profundidad h. Se ha considerado un valor de 2.2 ton/m3 para el peso volumétrico del material suprayaciente.

FIG A2.1

Tamaño medio de subranos vs. esfuerzo desviador para 7 sales provenientes de diferentes sitios. Las barras verticales indican desviación estándar (SD) con respecto al valor medio del diámetro del subgrano [Carter, et al., 1982]

FigA2.2 Fotografias cristal de sal a 750m de profundidad

30/4m

FigA2. 3 Cristal de sal a 1300 m de profundidad