

Varversiand National. Avena

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

E STUDIO SEDIMENTOLOGICO DE LA PORCION ORIENTAL DE LA FORMACION TEPOZITLAN, MORELOS.

				5				S
QUE	PA	RA	OBTEN	IER	EL	TIT	ULO	DE
IN G	ENI	ER	0		G	ΕΟ	LO	GΟ
Ρ	R	Ε	S	Ε	N	Т		д :
JAI	ME		HA	RO		ΕS	TR	OP

1985

2 gez,

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

٠

DE CUUCH

•

	RESUMEN			
	INDICE			
I.	INTRODUCCION			
I.1	Planteamiento del problema	• • • • • • • • • • • •		1
I.2	Objetivos		• • • • • • • • •	1
1.3	Método de estudio	• • • • • • • • • • • •	••••	2
I.4	Estudios previos	• • • • • • • • • • •		3
II	GEOGRAFIA			
11.1	Localización y extensión del área.	• • • • • • • • • • •	• • • • • • • • •	5
11.2	Vfas de acceso y comunicación	* * * * * * * * * * *		5
11.3	Clima y vegetación	• • • • • • • • • • •		6
III	FISIOGRAFIA			
III.1	Rasgos generales	• • • • • • • • • • •	• • • • • • • •	8
111.2	Orograffa	• • • • • • • • • • •	• • • • • • • •	9
III.3	Hidrografia	• • • • • • • • • • • • •	• • • • • • • • •	10
IV	GEOLOGIA REGIONAL			
IV.1	Formación Morelos	• • • • • • • • • • • •		12
IV.2	Formación Cuautla		• • • • • • • •	13
IV.3	Grupo Balsas	• • • • • • • • • • • •	• • • • • • • • •	14
IV.4	Grupo Chichinautzin	• • • • • • • • • • • •	• • • • • • • • •	14
IV.5	Aluvión	••••	• • • • • • • •	16
IV.G	Tectónica	• • • • • • • • • • • •	• • • • • • • •	16
14.7	Geología Histórica			20

V	GENERALIDADES SOBRE LAHARES Y MODELO DE FACIES	
V.1	Introducción	21
٧.2	Definición	21
۷.3	Lahares de baja concentración de grano (L.B.C.G.)	23
۷.4	Lahares de alta concentración de grano (L.A.C.G.)	25
V.5	La resistencia de los lahares	26
V. 6	Factores que determinan el origen de los lahares	28
V.7	Modelo de facies	35
A I	SEDIMENTOLOGIA DE LA FORMACION TEPOZTLAN	
VI.1	Métodos de campo	38
VI.2	Distribución y relaciones estratigráficas	38
VI.3	Unidad volcánico-lahárica	39
VI.4	Unidad fluvio-lahárica	43
VI.5	Unidad lahárico-volcánica	46
VI.6	Interpretación de las unidades y origen	48
VI.7	Dirección de la fuente de suministro	51
VI.8	È Edad	52
VII	CONCLUSIONES Y RECOMENDACIONES	
VII.1	Conclusiones	54
VII.2	Recomendaciones	56
	BIBLIOGRAFIA	
	APENDICE PETROGRAFICO	
	LAMINAS, 1, 2, 3, (Columnas estratigráficas de las uni	dades
	PLANO GEOLOGICO	

)

•

RESUMEN

En este trabajo se hace una revisión del término lahar, se ilustran dos ejemplos de lahares recientes enfocándo la discusión en los mecanismos que actúan en los lahares. Al mismo tiempo se revisan algunos criterios para diferenciar a los lahares de otros depó_ sitos con los que estan intimamente relacionados y que presentan características similares; además de discutir los factores que de_ terminan el origen de los lahares, ilustrando esto con ejemplos que han ocurrido dentro del tiempo histórico reciente. Se expone el modelo de facies de sedimentos volcánoclasticos recientes desa_ rrollado por Vessell y Davies (1981), en el Volcán del Fuego en Guatemala, siedo este modelo el que se tomó de referencia para guiar las observaciones de campo, pero de ninguna manera represen_ tó un patrón único.

El área que comprende este estudio se localiza en la porción Norte del Estado de Morelos, a 18 Km de la Ciudad de Cuernavaca, quedando comprendida entre los límites de las Provincias Fisiográ_ ficas de el Eje Neovolcanico y la Cuenca Morelos-Guerrero.

La Formación Tepoztlán fué depositada durante el Mioceno-Plio ceno Temprano, en una serie de ciclos repetitivos que variaron en intensidad y duración, para la Formación Tepoztlán estos ciclos se componen de tres etapas: Etapa de Actividad Volcánica, Etapa de Construcción del Abanico y Etapa de Ramificación.

La Formación Tepoztlán esta constituida por tobas, brechas de origen volcánico, lahares de baja y alta concentración de grano y sedimentos de origen fluvial. La distribución vertical de los sedi_ mentos permite el reconocimiento de tres Unidades Litoestratigrá_ ficas: Unidad Volcánico-Laharica: Es la mas antigua de la formación, siste de una gruesa secuencia de capas alternantes de lahares de baja concentración de grano, tobas y brechas de origen volcánico y sedimentos de origen fluvial, siendo los mas representativos los lahares de baja concentración de grano, se considera como límite superior de la unidad a los lahares de alta concentración de grano.

Unidad Fluvio-Lahárica:Sobreyace a la unidad volcánico-lahárica; y dicha unidad se caracteriza por la ausencia total de brechas de origen volcánico y por la presencia de depósitos de origen fluvial y de lahares de alta concentración de grano. Los lahares de baja concentración de grano, tobas con gradación y lahares calientes e<u>s</u> tan restringidos a la parte superior de la unidad. El límite infe_ rior de la unidad esta representado por lahares de baja concentra_ ción de grano, mientras que el límite superior de la unidad son t<u>o</u> bas rojizas con composición de andesita de hornblenda.

Unidad Lahárico-Volcánica: Es la mas joven de la formación y se encuentra constituida por lahares de baja y alta concentración de grano, tobas y depósitos de origen fluvial. El límite inferior de la unidad son tobas rojizas con composición de andesita de hornble<u>n</u> da.

El desarrollo de las unidades fue controlado completamente por los ciclos ya antes mencionados. La fuente de suministro de la Fo<u>r</u> mación Tepoztlán es el Centro Volcánico Zempoala.

ABSTRACT

In the present study, a revision of the term lahar is done with two illustrative modern examples; focussing the discussion in the mecanisms that form the lahar. At the same time, some the crite--rion that have been used to differentiate the lahars from other similar deposits are reviewed. Moreover, we discus the origin of the lahar deposits with some historical examples. The facies model propoused by Vesell and Davies (1981) reference for the study; but this model does not constitute the only basis of it.

The area studied is situated in the northern part of the State of Morelos, 18 Km from Cuernavaca City; and it is located in the limits of the Neovolcanic Belt and the Morelos-Guerrero Basin.

The Tepoztlan Formation was deposited during the Miocene-Early Pliocene, as a series of repetitive cycles which varied in inten_ sity and duration. For the Tepoztlan Formation these cycles were formed in three stages which are : Active Volcanic Stage, Fan Constructive Stage and Stage of Ramification.

The Tepoztlan Formation is formed by tuffs, volcanic breccias, low and high grain-concentration lahars, and fluvial sediments. The vertical distribution of the sediments, made possible to, iden_ tify three lithostratigraphic units:

Volcanic-Laharic Unit: It is the oldes unit in the formation, and consists of a thick sequence of interstratified low grain-con_ centration lahars, tuffs, volcanic breccias and fluvial sediments. The low grain-concentration lahars are representative of this se_ quence. The upper limit of the unit is marked by high grain-concen tration lahars. Fluvial-Laharic Unit: This unit overlies the volcanic-laharic sequence; and it is characterized by the total absence of volcanic breccias, and by the presence of fluvial and high grain-concentra_ tion lahar deposits. The low grain-concentration lahars, tuffs with gradation and hot lahars are restricted to the upper part of the unit. The lower limit is marked by low grain-concentration lahars, while, the upper limit is shown by reddish andesitic tuffs.

Laharic-Volcanic Unit: This is youngest unit of the formation and it is formed by low and high grain-concentration lahars, tuffs and fluvial deposits. The lower limit of this unit is marked by reddish andesitic tuffs.

The development of these units was completly controlled by the cycles and stages mentioned before. The Zempoala Volcanic Center is thought to be the discharge area for the Tepoztlan Formation.

CAPITULO I

INTRODUCCION

I.1 Planteamiento del problema

La sedimentología de los depósitos volcanoclásticos es poco com_ prendida, debido a que en las regiones volcánicas del mundo han si_ do estudiadas principalmente por los vulcanólogos quienes han con_ centrado principalmente su trabajo a los mecanismos de la erupción, la geoquímica de las eyecciones y a la petrología ígnea.

No ha sido sino hasta finales de la década de los setentas cuan do se comenzó a estudiar en regiones volcanicas modernas los proce_ sos sedimentarios que están involucrados en la depositación y retra bajo de las eyecciones, en consecuencia se ha propuesto un marco de referencia con las estructuras sedimentarias y texturas que se pr<u>e</u> sentan en las facies volcanoclásticas. Pero desafortunadamente no es mucho lo que se ha estudiado en secuencias volcánicas antiguas a pesar de que son altamente significativas en términos de su volúmen relativo en el registro geológico, y de gran importancia para la e<u>x</u> ploración minera.

En este trabajo se estudiáuna secuencia volcanoclástica antigua con el objeto de documentar detalladamente sus facies e interpretar la información dentro del marco de referencia establecido para los depósitos modernos y de alguna manera contribuir al mejoramiento del modelo de facies volcanoclásticas antiguas el cual es, hasta la fecha, muy incompleto, Lajoi (1979).

1.2 Objetivos

El estudio tiene por objetivo realizar obsevaciones de semi-det<u>a</u> lle en la porción oriental de la Formación Tepoztlán, desde los pu<u>n</u> tos de vista estratigráfico y sedimento lógico, para documentar las características sedimentológicas y lítologicas.

En base a dichas características poder establecer unidades lit<u>o</u> estratigráficas, así como dilucidar el origen, dirección de la fue<u>n</u> te de suministro y el establecer un modelo de facies para la por<u></u> ción oriental de la Formación Tepoztlán.

1.3 Método de Estudio

El trabajo se inició con la recopilación de la información exis_ tente de la zona, la cual consistió, de trabajos publicados, foto_ graffas aéreas (Esc. 1:50,000), planos geológicos y Topográficos. Al mismo tiempo se hizo una extensa revisión de artículos publica_ dos sobre depósitos volcanoclásticos poniendo especial atención a los lahares y a los depósitos con los que comúnmente están asocia_ dos . Se elaboró un mapa fotogeológico del área a escala 1:50,000 Posteriormente se realizó una etapa de campo que consistió en : a) Un reconocimiento general de la zona, para lo cual se efectua_ ron caminamientos con el objeto de buscar sitios propicios para medir secciones, los cuales deberían de tener las siguientes carac_ terísticas: cruzar al menos dos unidades litológicas, una topogra_ fía accesible, y buenos afloramientos.

b) Con las características ya antes señaladas se midieron siete secciones, lo cual se realizó con brujula, cinta , con la ayuda de altímetro y plano topográfico. En las secciones se observó la lito_ logía, y con especial atención las características texturales (la imbricación se midió en 37 guijas gruesas), las estructuras sedime<u>n</u> tarias, así como los contactos de las capas; el muestreo se efectuó

en todas las capas (tomando tanto esquirlas de los fragmentos como de la matriz).

Por último, se efectuó una etapa de gabinete en la cual se co_ rrigió el plano fotogeologico, se esquematizaron las secciones en forma de columnas estratigráficas, para poder visualizar el compor_ tamiento estratigráfico y poder apreciar su continuidad tanto en sentido vertical como horizontal.

Se hicieron estudios petrográficos a 18 muestras, las cuales fu<u>e</u> ron consideradas como las mas representativas. No se hicieron an<u>á</u> lisis granulométricos, ya que la porción de material fino (arcilla, limo y arena fina) de un lahar es la mas importante, ya que esta nos va a definir el mecanismo por el cual los clastos son soporta_ dos pero dicha porción nunca es preservada integramente en los lah<u>a</u> res, (Pierson, 1985, Rodine y Johnson, 1976, Schmincke, 1967). Las Formaciones Morelos, Cuautla, Balsas y Chichinautzin, fueron estudiadas en menor detalle.

Finalmente se llevó a cabo la integración e interpretación de t<u>o</u> da la información.

I.4 Estudios Previos

Los trabajos sobre esta zona son escasos y generalmente estan incluidos en trabajos de geológia regional. En 1918 Wittch describe a los cerros que rodean a Tepotlán, y este autor consideró que es_ tan constituidos por material volcánico, tobas y brechas. A la mis_ ma conclusión llega Ordoñez, (1937) y agrega que los Cerros de Te_ poztlán descansan sobre andesitas que probablemente proceden de las erupciones que dieron origen al Cerro de Xochitepec. Lozano (1953) describe los procesos erosivos en la zona, y tambien considera co_

mo brechas Igneas a las rocas que constituyen a los Cerros de Tepoz tlân y considera que los centros eruptivos son los volcanes que es_ tán en la zona. Fries (1960, p. 108), define a la Formación y dis ngue dos tipos de depósitos, "Algunas capas tienen sus componentes mal clasificados (inequigranulares) y pueden representar corrientes de lodo o lahares pero otros contienen lentes de arena y grava mu cho mejor clasificadas, con estratificación cruzada atestiguando un depósito por corrientes de agua", (op. cit. p. 109). Para este autor la Formación Tepoztlán representa la facie austral de la Se_ rie Volcánica Xochitepec, del extremo meridional de la Cuenca de México, y asigna una edad para la Formación de Oligoceno Tardio a Mioceno Temprano. Mooser (1975b) señala que el drenaje de la Cuen ca de México se efectuaba en esta zona antes del hundimiento de la cuenca. Ochoterena (1978) interpreta al Tepozteco como un relicto de erosión de la parte media de un cono de deyeccion formado duran te el Plioceno Temprano por aguas broncas provenientes de la ver tiente sur de la Cuenca de México. Lugo (1884) considera que la Sierra de Tepoztlán es esencialmente de origen volcánico-acumulati ¥0.

CAPITULO II

5

GEOGRAFIA

II.1 Localización y extensión del área

El área de estudio se encuentra localizada en la porción norte del Estado de Morelos, al noreste de la Ciudad de Cuernavaca y al sureste del Distrito Federal.

El área de estudio comprende dos zonas con una superficie total de 238.98 Km², de las cuales sus coordenadas geográficas y extensión son las siguientes:

Zona Norte

18°55°00"-19°02'00" Latitud Norte 99°07'30"=98°57'00" Longitud Oeste Superficie Aproximada 237.36 Km²

Zona Sur

18°50'30"-18°51'30" Latitud Norte 99°03'30"-99°04'00" Longitud Oeste Superficie Aproximada 1.62 Km²

II.2 Vias de acceso y comunicación

Del Distrito Federal el acceso es sumamente fácil y se puede re<u>a</u> lizar de dos maneras: Por la carretera ce cuota México-Cuautla (115) o por la carretera Xochimilco-Oaxtepec (142).

De la Ciudad de Cuernavaca el acceso se puede efectuar por la c<u>a</u> rretera Cuernavaca-Tepoztlán (198) y de este poblado a Yautepec comunicándoseeste a su vez con Cuernavaca y Cuautla (138).

El servicio de ferrocarril en ambas vías México-Balsas (estación

URA I.-Localización de las áreas de estudio, a)En la República Mexicana. b) En el Estado Marrelos y zonas adyacentes

Tlacotenco) y México-Oaxaca (estación San Sebastián) está suspendido.

La zona Sur solamente está comunicada por una terracería tran sitable todo el año, que parte de Yautepec con direccion a la Nopa_ lera.

II.3 Clima y Vegetación.

El relieve de la región que abarca la Zona Norte es el factor fundamental del clima y de la vegetación que ahí prevalecen.

El clima en la Zona Norte, según la carta de climas (CETENAL-In<u>s</u> tituto de Geograffa, 1970), se distinguen dos tipos de clima, si_ guiendo la clasificación climática de Koeppen, modificado por Gar_ cfa(1964). En la región Sur alo largo de una angosta franja que se extiende entre Dacalco y San Andrés de la Cal el clima es (A)C(w"l) (w)ig, que en términos generales corresponde al tipo semicálido su<u>b</u> húmedo con temperatura media anual mayor de 18°c, escasa oscilacion térmica y una precipitación anual entre 800 y 1000 mm. Bordeando a está región climática en toda la porción Norte de la zona el clima es de tipo (A)C(w₂)(W)ig que corresponde al mas subhúmedo de los climas semicálidos con temperatura media anual mayor de 16°c y la del mes más frío menor a 16°c, escasa oscilación térmica y una pre_ cipitación anual entre 1100 y 1300 mm.

A la Zona Sur corresponde un clima (A)C(w"1)(w)ig, ya descrito en párrafos anteriores.

Así como el relieve ejerce un control fundamental sobre el clima puede considerarse a este último, como factor principal en el desa_ rrollo de la vegetación.

De acuerdo con los principales tipos de vegetación de México (Rzedowski, 1978) se pueden reconocer tres tipo:

1)- Bosque Caducifolic: En las zonas que se encuentran debajo de la cota 1600 m.s.n.m., las formas mas comunes corresponden a las de la asociación de Cuajiotal y plantas herbáceas, entre las especies mas comunes se tienen Cuajiote, Pochote, Cazahuate, Auchempodium, Hintonella, Microperum, Omiltemia.

2) Bosques de Quercus: Entre los 1600 y los 2100 m.s.n.m., la v<u>e</u> getación esta caracterizada por Encinos, Madroños, y Pino.

3)- Bosque de Confferas: A altitudes superiores de los 2100 m.s. n.m. los bosques consisten de Pino y Oyamel.

CAPITULO III

FISIOGRAFIA

III.1 Rasgos generales

El área de estudio se encuentra localizada dentro de los límites de dos Provincias Fisiográficas: El Eje Neovolcánico y la Cuenca M<u>o</u> relos-Guerrero, (Fig. 2).

8

El Eje Neovolcánico es una franja Plio-Cuaternaria con orienta_ ción E-W que se extiende desde el Estado de Veracruz hasta la Ciu_ dad de Tepic Nayarit. Colinda al norte con la Mesa Central, al sur con la Sierra Madre del Sur, la Cuenca Morelos-Guerrero y la de Tl<u>a</u> xiaco.

El Eje Neovolcánico se encuentra constituido por dos tipos de e<u>s</u> tructuras (Demant, 1978; Mooser, 1975b).

1)- Grandes estratovolcánes aliniados en dirección N-S, que coi<u>n</u> ciden con la dirección de los pliegues que se observan en el sur de México.

2)- Un gran número de pequeños volcánes alineados en dirección E-N, los cuales se desarrollaron en zonas de debilidad cortical, destacando el Valle de México.

Los mayores volcanes son: el Citlaltepetl, Iztlacihuatl y el Ne_ vado de Toluca. Las rocas presentes son dacitas, andecitas, basaltos calcoalcalinos y ocasionalmente riolitas.

La Cuenca Morelos-Guerrero está rodeada al este, oeste y sur por la Sierra Madre del Sur y al norte por el Eje Neovolcánico.

La topografía esta controlada por una serie de sierras y valles, con una orientación Norte-Sur o Noroeste-Sureste en donde las sierras corresponden a pliegues anticlinales y los valles a sinclinales, los cuales generalmente se encuentran rellenos de rocas de tipo construccionales de origen sedimentario, los rasgos de tipo karstico son abundantes destacándose en éstos pequeñas dolinas hasta poljes completos.

III.2 Orografía.

El área que abarca la zona de estudio comprende cuatro pequeñas sierras:

Sierra de la Corona: Situada al oeste de Oacalco y al sureste de San Andrés de la Cal, presenta una orientación preferencial casi norte-sur, esta constituida por calizas de edad cretacica y corresponde a un anticlinal ligeramente recumbente hacia el oeste, se caracteriza por una topografía de aspecto redondeado, teniendo suaves pendientes hacia el este $(10^{\circ}-20^{\circ})$ mientras que hacia el oeste las pendientes son más abruptas $(20^{\circ}-27^{\circ})$.

Las sierras denominadas en este trabajo como Tepoztlán, Chalchi<u>l</u> tepetl y de Amatlán, están constituidas por rocas de la Formación Tepoztlán, todas ellas se encuentran intensamente fracturadas y af<u>a</u> lladas (ver plano geológico), por lo que todas presentan una topografía sumamente abrupta con pendientes de 10 a 90° predominando las de 25-55° lo que da a las sierras un aspecto de acantilados escalonados.

Sierra de Tepoztlán: Localizada al norte de Tepoztlán, al sur de Tlacotenco y al oeste de Santo Domingo Ocotitlán, presenta una ori<u>e</u> ntación preferencial este-oeste, y las expresiones orográficas de mayor altura son: El cerro del Tepozteco y el Cerro Cuatzin, cuyas

altitudes son 2400 y 2350 m.s.n.m., respectivamente.

Sierra de Chalchiltepetl: Ubicada al Sur de Tepoztlán, al Norte de San Andrés de la Cal y al Oeste de Santiago Tepetlapa, tiene una orientación preferencial Este-Oeste, el Cerro Chalchiltepetl de 2070 m.s.n.m., y el Cerro Cematzin de 1980 m.s.n.m. son las expre_ siones orográficas de mayor altura.

Sierra de Amatlán: Situada al Este de Amatlán y de Santo Domingo Ocotitlán, al Oeste de Tlayacapán y San Jose de los Laureles, al Norte de Oacalco, con una orientación preferencial Noroeste-Sureste esta sierra es la de mayores dimenciones (Fig. 3), las expresiones orográficas de mayor altura son Cerro el Sombrerito 1860 m.s.n.m., C. Popotlán 1865 m.s.n.m., C. La Ventana 2220 m.s.n.m. y C. Huitzi_ 1á 2440 m.s.n.m.

Otras expresiones orográficas que no están incluidas dentro de las anteriores son el C. Tepozoco 2140 m.s.n.m., localizado al Sur de Tlanepantla y al Este de San Jose de los Laureles y el C. Xicon_ quihuitl y el C. Coyacuitlayo de 2060 y 1935 m.s.n.m. respectivame<u>n</u> te, ambos situados al Este de Amatlipac.

III.3 Hidrograffa.

La red hidrográfica en la zona de estudio encuentra su mejor de_ sarrollo en zonas de debilidad cortical, y está constituida por los siguientes arroyos: A. Atongo, A. Epecapa, A. Amatlán, A. Tlayaca_ pán, presentan una posición semiparalela y con una dirección prefe_ rencial Norte-Sur, con exepción del A. Amatlan que en un principio tiene una dirección Este-Oeste y corriente abajo cambia a una dire_ cción Norte-Sur.

El rango de la profundidad de la disección es de 40-300m, (Lugo

y Martinez, 1980, p. 59), (Fig. 4;y 5).

Estas variaciones en cuanto a la profundidad de la disección se deben a la Geología Estructural de la zona (intensamente afallada y fracturada) y a la longitud y pendiente con que bajan los arroyos ya que todos son de caracter perenne.

 $-\frac{n^{(1)}}{2}$

11

Todos los arroyos ya antes mencionados son afluentes del Río Ya<u>u</u> tepec que a su vez forma parte de la cuenca hidrográfica del Río Balsas-Mezcala.

FIGURA 5....Carta de la profundidad de la disocción del relieve del área de estudio, (Lugo y Martínez,1980).

CAPITULO IV

GEOLOGIA REGIONAL

IV.1 Formación Morelos

La Formación Morelos (Fries, 1960, p.44); en la zona norte se encuentra restringida en la porción suroccidental, constituyendo en gran parte lo que aquí se denomino como Sierra de la Corona. Mientras que en la zona sur se encuentra localizada en la porción occidental.

El color de las calizas varía de gris cremoso a negro rojizo, estas ultimas con un fuerte olor a fetidez, el espesor de las ca_ pas varía de 0.1 a 1.0 m, predominando las capas de 20 a 60 cm. Texturalmente las calizas varían de mudstone a boundstone predo_ minando marcadamente los grainstone. Lutitas y capas clasticas estan ausentes. Interestratificadas con las calizas hay capas do_ lomitizadas fácilmente reconocibles por su color azuloso. Muchas capas contienen nódulos, lentes y masas irregulares de pedernal. Los nódulos y lentes suelen presentarse en los planos de estrati_ ficación, mientras que el resto del pedernal esta distribuido al<u>e</u> atoriamente. Son numerosos mas no abundantes los fragmentos de f<u>ó</u>

La relación estratigráfica es complicada en la zona norte en donde al oriente de San Andrés de la Cal se encuentra la Formación Tepoztlán sobreyaciendo discordantemente a la Formación Morelos. La misma relación existe al norte de la zona sur. En el contacto entre la Formación Morejos y la Formación Cuautla, no se observo discordancia erostonal.

De los trabajos realizados por Fries (1960, p. 57) en microfó_ siles y macrofósiles, la Formación Morelos queda ubicada dentro del Albiano-Cenomaniano.

Por su posición estratigráfica y litología, la Formación More_ los se correlaciona con depósitos de plataforma en la parte cen_ tro-oriental de México como son las Formaciones El Abra y El Doc_ tor, Fries (1960, p.58).

IV.2 Formación Cuautla

La Formación Cuautla (Fries, 1960, p. 60); en la zona norte se encuentra restringida a la porción suroccidental, constituyendo en gran parte el flanco oriental de la Sierra de la Corona. En la zona sur se localiza en la porción norte y sur.

Las calizas son generalmente de color gris claro a gris obscu_ ro con estratificación gruesa o masiva predominando esta última texturalmente varia desde mudstone a grainstone.Pedernal en forma de lentes y nódulos son abundantes en los planos de estratificación. Macrofósiles silicificados son notablemente abundantes.

La Formación Cuautla sobreyace a la Formación Morelos sin que se presente discordancia erosional; lo cual fue observado tanto en la sona norte como en la zona sur, el contacto con la Forma-ción Tepoztlán es por falla en ambas zonas.

Los macrofósiles de esta Formación la ubican dentro del Tudonia no.

Por su posición estratigráfica y litología, la Formación Cuautla se correlaciona con depósitos de plataforma en la parte sur-occide<u>n</u> tal de México como es la Formación Petlancingo, Fries(1960,P.71).

IV.3 Grupo Balsas

El grupo Balsas (Fries, 1960 P.91,Cserna, 1965,P.26); únicame<u>n</u> te aflora en la zona norte, al norte de Oacalco. En el poblado de Lázaro Cárdenas, el afloramiento es de forma semicircular y tiene unos 300m. de largo por 400m. de ancho; la población ya antes me<u>n</u> cionada practicamente esta asentada sobre el Grupo Balsas, por lo que las posibilidades de observar a dicha unidad son casi nulas.

14

El Grupo Balsas consiste de capas de 5 a 70cm. de limo poco consolidado color rojo, interestratificados con capas de yeso c<u>o</u> lor amarillo verdoso.

Sobre el Grupo Balsas descansa la Formación Tepoztlán sin discordancia aparente.

Durante años la edad del Grupo Balsas fué considerada como Eoceno Medio-Oligoceno Temprano en base a datos obtenidos por el m<u>é</u> todo plomo-alfa, Fries(1960 P.107) y Cserna et. al.,(1974 P.267-268). Esta edad fué modificada por Cserna y Fries(1981,P.22-23) y sugieren una edad Paleoceno-Oligoceno. Posteriormente Urrutia--(1983,P.88) propone una edad Paleoceno-Eoceno, basado en datos---K-Ar de la Riolita Tilzapotla, que descansa sobre el Grupo Balsas cerca de Taxco,Guerrero.

Por su litología, el Grupo Balsas se correlaciona con depósitos continentales en la parte central de México, como son el Grupo el Morro en el estado de Hidalgo y con el Conglomerado Guanajuato en el estado de Guanajuato, Fries(1960,P.99-101).

IV.4 GRUPO Chichinautzin.

El Grupo Chichinauttzin, Fries(1960,P.125-126), en la zona sur no se localiza, pero en la zona norte aflora en toda la porción norte, occidental y oriental; practicamente todas las formaciones subyacientes se encuentran inmersas en este grupo, sobresaliendo únicamente como islotes. En la porción norte forma fuertes pendie<u>n</u> tes, lo cual seguramente es resultado del relieve preexistente. La topografía que se desarrolla sobre su área de afloramientos se caracteriza por su juventud extrema que apenas muestra erosión y los conos cineriticos se presentean perfectamente conservados. Los derrames provienen de cinco volcanes, localizados al norte de la zona de estudio(Oclayuca, Ololica, Suchioc el Grande, Los Otates y Chichinautzin) y de cuatro conos (sin nombre) dentro de la zona de estudio.

15

Los productos piroplásticos estan casi ausentes a escepción de tres pequeños conos constituidos escencialmente por estos sedime<u>n</u> tos.

Generalmente los derrames tienen un espesor de 0.5-2m, con c<u>o</u> lores gris obscuro a negro, la textura varia de afanítica a ves<u>i</u> cular y de composición andesitica, Martín del Posso (1980) las v<u>e</u> sículas se presentan en formas de pequeños bandeamientos y el tam<u>a</u> ño de las vesículas se incrementa hacia la cima de los derrames. En algunos casos la superficie superior se presenta ondulada o <u>a</u> cordonada. Los derramés debieron de haber tenido baja viscosidad y alta fluidez.

El Grupo Chichinautzin descansa en discordandia erosional sobre cualquier formación mas antigua, incrementandose dicha discorda<u>n</u> cia hacia las rocas cretacicas.

La edad del Grupo Chichinautzin es Pleistoceno-Holoceno.

IV.5 Aluvión.

Ocurre en las partes topográficas mas bajas del área y en pequ<u>e</u> ñas cuencas aluviales. Generalmente estan constituidos por material poco o nada consolidado, donde el tamaño de las partículas varian desde gravas angulosas y gruesas hasta limo y arcilla fina.

IV.6 Tectónica.

En el área de estudio la tectónica juega un papel muy importa<u>n</u> te, para poder explicar los diferentes fenómenos geológicos que se presentan, ya que nos encontramos en los límites de dos Provincias Fisiográficas en las que la tectónica tuvo manifestaciones compl<u>e</u> tamente diferentes..

A finales del Cretácico y principios del Terciario fenómenos tectónicos afallaron y plegaron las rocas cretácicas. Estos fen<u>ó</u> menos tectónicos se debieron principalmente a la acción de esfue<u>r</u> zos compresionales que actuaron de SW-NE, durante la última fase de actividad laramigica.

Dentro de las hipótesis para explicar el origen del Eje Neovo<u>l</u> cánico destacan las propuestas por: Negendank (1973), Gastil y Jensky (1973), Mooser (1975b), Urrutia y del Castillo (1977), De____ mant (1978, 1981), Robin (1981,1982).

El origen del Eje Neovolcânico ha sido relacionado principal____ mente a la subduccion de la Placa de Cocos, debajo de la corteza continental de México, que al nivel de la astenósfera sufre fu____ sión parcial y origina los magmas intermedios del Eje Neovolcáni__ co (Mooser, 1975; Urrutia y del Castillo, 1977; Demant,1978,1981, Robin1982).

Negendank (1973), basado en las características químicas de las

rocas del Eje Neovolcánico, supone que esta provincia calcoalcali_ na se ha originado como resultado de la fusión parcial de los ma_ teriales de la corteza inferior, mas que por la fusión parcial de la Placa de Cocos al nivel de la astenósfera.

Gasti y Jensky (1973) propone el siguiente modelo: En el Cretá_ cico Tardio y en el Terciario Temprano ocurrieron en el Eje impor_ tantes desplazamientos de tipo lateral derecho concordantes con los movimientos observados en el oeste de los Estados Unidos sin embargo, Urrutia y del Castillo (1977), considera que el movimien_ to ha sido lateral izquierdo, en función de los datos paleomagné_ ticos disponibles. Este último autor opina que el corrimiento lat<u>e</u> ral antes señalado pudo haber actuado como control estructural de la salida de los magmas que fueron producto de la fusión parcial de la Placa de Cocos debajo de la Placa Norteamericana.

Mooser (1975b), considera que el Eje Neovolcánico pudiera coin_ cidir con una cicatriz (Geosutura), que marca la unión entre dos masas cratónicas antiguas, que se reactivó en donde la placa que se hunde bajo la placa continental, lo hace con angulos diferentes lo que ocaciono una segmentación ortogonal con direcciones NW-NE y traslapes, los cuales favorecieron el emplazamiento de los volca_ nes en forma zigzagueante (Fig. 6).

Urrutia y del Castillo (1977) explican que la dirección del movimiento de las Placas de Cocos y Americana no es perpendicular a la Trinchera de Acapulco, y que en los extremos NW y SE de la Tri<u>n</u> chera, la Placa de Cocos se vuelve mas densa, menos caliente y menos jóven, así como de mayor espesor y rígidez, todo lo anterior hace que disminuya paulatinamente el ángulo de subducción (20°),

FIGURA 6.-La Faja Volcánica Transmexicana, el sur de México y las estructuras del Océano Pacifico, (Mooscr, 1975).

conforme se avanza hacia el sureste de la Trinchera, y se origine una divergencia entre la Trinchera de Acapulco y el Eje Neovolcánico.

Demant (1978) considera que la subducción de la Placa de Cocos y la formación de la Trinchera de Acapulco, comenzó a desarrolla<u>r</u> se progresivamente en el Oligoceno, en la traza de una zona de desplazamiento lateral izquierdo entre la Placa Americana y la Pl<u>a</u> ca del Caribe, misma que actúa a lo largo del sistema de fallas P<u>o</u> lichic-Motagua-Dorsal del Cayman. El movimiento lateral en este sistema refleja la rotación de Norteamerica hacia el oeste con re<u>s</u> pecto a la Placa del Caribe que incluye la porción continental de Centroamerica.

Demant (1981) agrega que la rotación de la Placa de Norteamerica hacia el oeste fue inducida por la apertura del Oceano Atlantico, acelerando el choque de la Placa de Farallón hasta su total d<u>e</u> saparición, mientras que la Placa de Cocos se va hundiendo hasta alcanzar la profundidad necesaria para generar magmas. En el Mioc<u>e</u> no Tardío la Cresta del Pacífico choca contra la masa continental lo que provoca un salto de la cresta, lo cual a su vez deja como testigos a las Crestas de Clipperton y Matématico, lo cual es una explicasión de la orientación oblicua del Eje, ademas se ve soportado por la orientación de la Fractura Orosco y de la Cresta de T<u>e</u> huantepec (N45°E), con respecto a la Fractura Siqueiros (N80°E).

Robin (1982a,b) sustenta un modelo parecido al de Demant pero con muy ligeras variaciones: considera que la zona de subducción es una estructura heredada de la zona de subducción anterior, con una edad mas reciente al salto de la dorsal del Pacífico Oriental

(4-5 m.a.) que causó una aceleración de la subducción después de este período.

Para Mooser (1975) y Negendank (1973), la actividad del Eje Neovolcánico se inicio en el Oligoceno-Mioceno y ha continuado hasta el reciente. Sin embargo Demant (1978,1981) y Robin (1982b) consideran que las rocas oligocénicas-miocénicas constituyen el basamento del Eje Neovolcánico, por lo que quedan excluidas del mismo y opinan que el Eje Neovolcánico es exclusivamente de edad Plio-Cuaternaria, ya que dichos autores consideran que el ciclo Oligoceno-Mioceno representa la prolongación meridional de la Si<u>e</u> rra Madre Occidental, cuya base esta representada por un vulcani<u>s</u> mo andesítico. En contraposición a lo anterior Mc Dowell y Clabl<u>a</u> ugh (1979), afirman que la actividad andesítica en la Sierra Madre Occidental termino a fines del Eoceno.

La composición petrográfica de las rocas que conforman el Eje Neovolcánico es muy variable, son muy abundantes los derrames y los productos piroclásticos de composición andesítica, aunque exi<u>s</u> ten numerosas unidades dacíticas.

Desde el punto de vista químico el Eje Neovolcanico es consid<u>e</u> rado por numerosos autores como una provincia calcoalcalina cara<u>c</u> terizada por su abundancia en andesitas y dasitas, en base a la relación que guardan sus contenidos de Silice, Sodio y Potasio.

En resumen, el Eje Neovolcánico se originó por un proceso de subducción en forma oblicua con respecto a la Trinchera de Acapul co, presenta variantes en sus características tales como: compos<u>i</u> ción, ángulo de subducción, distancia, edad y densidad. Además de que otras estructuras lo afectan tales como: El choque de la ant<u>i</u>

gua Cresta del Pacífico, el cámbio en la rotación en la Placa de Cocos, la rotación de la Placa Norteamericana y el sistema de fa llas Polochic-Motagua, causas que permiten el ascenso de magma atravez de zonad de debilidad cortical.

IV.7 Geología Histórica.

Durante el Albiano-Cenomaniano, en los límites de la Platafoma Morelos-Guerrero, se depósita la Formación Morelos en un mar de aguas somera. Durante el Turoniano las condiciones de Plataforma de aguas someras se continuan para dar lugar al depósito de la Fo<u>r</u> mación Cuautla.

Como consecuencia de la ultima fase de actividad Laramídica a finales del Cretácico e inicios del Terciario esfuerzos compresi<u>o</u> nales subcorticales dieron como resultado la formación de un sist<u>e</u> ma de pliegues anticlinales y sinclinales. Durante el Paleoceno-Eoceno se desarrolla sedimentación clástica continental (Grupo Ba<u>l</u> sas) que se ve interrumpida por la aparición del Eje Neovolcánico en el Oligoceno Tardio.

En la porción central del Eje Neovolcánico se han reconocido siete fases de vulcanismo, (Fig. 7), que ocurren desde el Oligoceno hasta el Cuaternario, las más importantes de ellas es la quinta que se presenta a finales del Mioceno y que da origen a las Sierras de las Cruces, de Río Frío y Nevada. Se atribuye a la sexta fase el desarrollo de los conos y domos del Iztocihuatl y el cono del P<u>o</u> pocatepetl, la septima fase culmino con la construcción de la Sierra del Chichinautzin.

FIGURA .7.- Secuencia de grupos volcánicos y eventos tectónicos en la cuenca de México, (Mooser, 1975).

CAPITULO V

21

GENERALIDADES SOBRE LAHARES Y MODELO DE FACIES

V.1 Introducción

En los últimos años el estudio de los lahares a adquirido gran importancia a nivel mundial, ya que presentan un alto riesgo para poblaciones adyacentes a volcánes activos e inactivos, donde los lahares suelen ocurrir periódicamente, otra finalidad que hace im portante el estudio de los lahares (modernos y antiguos) es la do cumentación de sus características sedimentológicas, las cuales son de interes fundamental para mejorar el modelo de facies, propuesto para estos depósitos.

Debido a que los lahares carecen de estructuras interpretativas como es el caso de otros depósitos, como los fluviales por ejemplo donde hay estratificación cruzada, rizaduras, dunas, etc. Las observaciones de un depósito de lahar se ven límitadas a su textura (clasificación, gradación, estratificación, orientación preferencial); estas características están estrechamente ligadas al mecanismo de transporte y dispersión de los clastos, pot lo que es necesario revisar las propiedades rheológicas de lahares activos para entender la fábrica resultante.

V.2 Definición

El término lahar es una designación general para los depósitos que son resultado de rápidos flujos de masa que se originaron en las pendientes de un volcán (principalmente estratovolcanes de composición intermedia) y deben su movilidad a una elevada saturación de agua y a la atracción de la gravedad. Esta definición es seguida y usada por (Bemmelen, 1949, p. 191; Crandell, 1971, p. 3; Janda et al., 1981, p.460; Schiminicke, 1967, p.438; Voigh et al., 1984, p.244).

El uso del término lahar excluye a otros término más generales como flujo detrítico o flujo de lodo, aunque las propiedades rheológicas de ambos son las mismas; la diferencia estriba en que la fuente de origen de un lahar es única y exclusivamente los flancos de un volcán, mientras que los flujos detríticos y de lodo se originan en diversos ambientes y con todo tipo de rocas. No todos los lahares son resultado directo e inmediato de actividad volcánica. Los lahares representan un estado intermedio entre una avalancha detrítica ("debris avalanche") y un flujo de corriente ("stream flow"), la transición entre uno y otro esta controlada por la pendiente y el contenido de agua. Hay dos tipos de lahares, los lahares normales, que son los que se depositan a temperaturas ambienta les, y los lahares calientes, los cuales son depósitados a altas temperaturas, debido a que los clasto y/o agua sufrieron calentamiento, comunmente este tipo de lahares se origina a partir de fl<u>u</u> jos piroclásticos o por la presencia de un lago en el cráter.

En términos rheológicos (deformación de flujo), un lahar es un flujo de masa no newtoniano, se origina en los flancos de un volcán, donde la pendiente es mayor de 15° aunque pueden moverse en pendientes menores de 5°. Pueden desplazarce a altas velocidades (mayores de 30 m/s.) cerca de donde se originan, aunque también pueden tener velocidades muy bajas (1,5 m/s.). Pueden viajar gra<u>n</u> des distancias (mas de 160 Km.). Comunmente están interestratifi-
cados con rocas volcánicas (tobas, tefra, flujos piroclásticos, av<u>a</u> lanchas incandescentes) y con depósitos de origen fluvial. Casi siempre se les encuentra rellenando valles.

Presentan espesores que van desde algunos decimetros hasta varios metros, el espesor es bastante uniforme por grandes distancias (cientos de metros), presentan frentes bien definidos (caracteristica que es sumamente dificil de reconocer en depósitos antiguos). Texturalmente están muy mal clasificados (Fig. 8), los fragmentos son subredondeados a subangulosos predominando marcadamente estos últimos, los fragmentos son de composición andesítico-dasítica. En una capa no se presentan cambios significativos, en la redondez, clasificación y tamaño de grano, ni horizontalmente ni verticalmente. Tienen alta competencia para transportar fragmentos mucho mayores de 1 m. de diametro, el flujo puede moverse sobre material no consolidado y la erosión resultante es mínima o casi nula. Genera<u>1</u> mente carecen de estructuras aunque pueden presentar gradación no<u>r</u> mal o invertida y estratificación burda.

V.3 Lahares de baja concentración de grano (L.B.C.G.).

El mejor ejemplo y el único que documenta con claridad las propiedades rheológicas de los lahares es el tabajo elaborado por Fink et al. (1981), en el cual se estudiaron las características textur<u>a</u> les de tres lahares, los cuales se originaron en el flanco surorie<u>n</u> tal del volcan St. Helena en E.U.; donde cenizas sin consolidar se deslizan rápidamente por un glaciar ocasionando que este se derriera, esto aunado al calor producto de la erupción. El debilitamiento por terremotos facilitó la mezcla de ceniza con agua para const<u>i</u> tuir un lahar, el cual fluyó rápidamente por el Arroyo del Pino, el cual tiene poco mas de 30 m de profundidad y de 10 a 40 m de ancho.

LAHAR	А	В	C
COHESION	3 900 dinas/cm²	10000 dinas/cm.²	11000 dinas/cm²
DENSIDAD DEL LODO	l•97gr/cm. ³	2.03 gr/cm ³	1·99gr/cm ³
DIAMETRO DE LOS BLOQUES TRANSPORTADOS	>30 cm.	> 1∙0 m.	> 50 cm.
ABUNDANCIA DE Los bloques	Escasos	Comunes	Mas comunes que en A, y mas escasos que en B.
TAMAÑO PROMEDIO DE LA MATRIZ	0·165mm.	0·71 mm.	0·81 mm.

TABLA L- Caracteristicas rheológicas de los lahares del volcán St. Helena, 1980, E.U. (Fink et.al, 1981).

I,-Lahar Paradice Park, Holoceno, E.U. (Crandell, 1971).

2,-Lahar Kautz Creek, Holoceno, E.U (Crandell, 1971)

3A,3B,- Base y Cima de el lahar Gilmore Corners, Holuceno,E.U. (Mullineaux y Crandell,1962) 4A,4B,4C,-Base,Centro y Cima de un lahar de la Fm. Ellensburg, Mioceno, E.U.(Schmincke, 1967).

5, - Lahar del volcan Tokachi-dake, 1926, Japon, (Mural, 1960).

6A,6B,6C,- Lahares del volcan St. Hølena,1980, E.U. (Fink, et.al., 1981)-

El contacto entre los lahares es claramente distinguible y no hay señales de que esten entremezclados.

La Tabla 1 resume las características más significativas de los tres lahares del Arroyo del Pino, y en la figura 8 se muestra la curva acumulativa de la distribución de granos.

En los tres lahares los clastos constituyen poco mas del 15% del volúmen. En los frentes de los lahares hay una mayor concentr<u>a</u> ción de clastos al igual que en sus márgenes, (Fig. 9). El ángulo de fricción interna fue considerablemente pequeño (menor o igual a 1.5°).

Es importante recordar la relación encontrada por Roberts (1969) para predecir la aceleración de un flujo granular:

- a)- Cuando el ángulo de la pendiente es mayor que el ángulo de fricción interna hay aceleración en el flujo.
- b)- Cuando el ángulo de la pendiente es menor que el ángulo de fricción interna, la velocidad disminuye.
- c)- Cuando el ángulo de la pendiente es igual al ángulo de fricción interna, el flujo permanece inmóvil.

Janda et al. (1981) reporta que los frentes de los lahares fueron seguidos después de depositarse por aguas altamente saturadas de partículas finas y algunos clastos. Los lahares desarrollaron altas velocidades de hasta 31,1 m/s. en una pendiente de aproximadamente 30°(cima del volcán); corriente abajo alcanzaron velocidades de 10 m/s. en una pendiente de aproximadamente 8°. A pesar de tan altas velocidades parecen haber fluido en forma laminar y no en forma turbulenta, y esto es debido a los altos valores de visc<u>o</u> sidad (20-230 pascales/ segundo) lo cual reduce la turbulencia ha<u>s</u> ta en un 40%. FIGURA 9. - Diagrama idealizado de un lahar de baja concentración de granos. Se puede observar de la figura que algunos de los clastos mas grandes se concentran en el frente y en menor grado alos lados, se aprecia que la matriz de grano fino de la mezcla es la que soporta a los clastos dispersos. (modificado de Moreno, 1984).

FIGURA 10. -Diagrama idealizado de un lahar de alta concentración de grano. Note que los bloques se concentran en el frente mientras que en las levees se concentran bloques mas pequeños, tambien note en la figura el contacto grano a grano lo cual genera una fuerza de presión dispersiva que es la que soporta a los granos gruesos. (modificado de Moreno, 1984).

Visto de

planta

Vista de planta

LEVEES

V.4 Lahares de alta concentración de grano (L.A.C.G.).

El mayor y el más reciente de este tipo de lahar lo describe Okuda et al. (1980), el cual se origina en un cañón del volcán Yake-dake en Japón, dicho cañón tiene pendientes que varian de los 13° a los 32°, y se extiende hasta el valle del Kamikamihori, au<u>n</u> que los lahares raramente se extendiero hasta el valle. Los lahares se oniginaron inmediatamente después de una rápida precipitación pluvial: 7 mm. en tan sólo 10 minutos. Lo cual fue suficiente para saturar de agua el sedimento disponible, la máxima velocidad de los lahares raramente excedío los 5 m/s.

El frente de un lahar fue muestreado para obtener la distribución de tamaños de los clastos cuyo diámetro fue mayor de 10 cm. El 50 % (del peso) de los clastos varía entre 0.1 y 1.0 m., el 30% entre 1.0 y 2.0 m., el 20% entre 2 y 3 m. La media estuvo compuesta por clastos de 0.10 a 0.20 m. La matriz consistió de 94% de grava arenosa y 6% de limo y arcilla.

Okuda et al. (1980), observó que el frente del lahar de una cua<u>n</u> tas decenas de metros de longitud, contenía aparte de bloques de r<u>o</u> ca algunos fragmentos de árboles, despues de depositarse el frente, continuó fluyendo una rápida corriente de agua lodosa que contenía algunos guijarros y bloques, seguida durante algunas horas por una corriente somera de agua con grava, arena y lodo en altas concentr<u>a</u> ciones.

Debido a que la fase fluida (agua más limo y arcilla) es mínima con respecto a la fase sólida (arena, guijas, guijarros y bloques) el mecanismo de suspensión esta dado por la fuerza dispersiva generada por la colisión entre los mismos clastos, (Fig. 10).

V.5 La resistencia de los lahares

La resistencia ("strength") de un lahar se le puede definir co mo a la oposición que presenta éste a ser deformado (es decir a Fluir),, debido a la acción de la gravedad sobre un plano inclina do; el límite en el cual el lahar comienza a ser deformado se le conoce como resistencia maxima ("yield strength"), por ejemplo el agua pura por si misma no se opone a fluir en un plano aunque sea imperceptiblemente inclinado. Sin embargo la adición de pequeñas cantidades de arcilla son lo suficiente para proveer a la mezcla de arcilla-agua con propiedades rheológicas tales como la resisten cda y la cohesión, y como consecuencia esta mezcla adquiera un comportamiento no newtoniano, (Fig. 11). Una importante distinción entre un fluido newtoniano y uno no newtoniano es el tipo de movimiento y comportamiento que presentan. En un fluido newtoniano el flujo ejerce una fuerza sobre las partículas y las acelera en proporción a su masa, mientras que en los fluidos no newtonianos, la fuerza que genera el choque de las partículas es la que acelera al flujo, es decir son las particulas las que conducen al flujo y no viceversa.

La resistencia y la cohesión son importantes propiedades aunque no las únicas que contribuyen a retardar el asentamiento de las partículas suspendidas en la mezcla y reducen el ángulo de fricción interna del material a ^bajos valores, Moreno,(1984, p. 40).

Rodine y Johnson (1976,p. 216) realizaron experimentos con la resistencia de la fase fluida (agua lodosa) y encontraron que ésta virtualmente carece de fuerza de fricción en la superficie de deslizamiento aunque la cohesión era de miles de dinas (Fig. 12).Esto quiere decir que un fluido no newtoniano tiene la suficiente cohe-

FIGURA II: - Diagrama que muestra el comportamiento de algunos fluidos

FIGURA 12. - Diagrama basado en datos de laboratorio, que muestra como se incrementa la cohesión aparente y el soporte de partículas en función del volumen y del peso del agua (mezclada con caolin), (Rodine y Johnson, 1976).

sión como para soportar grandes bloques en suspensión y a la vez su fuerza de fricción es tan baja que le permite desplazarse suav<u>e</u> mente sobre pendientes relativamente bajas.

Rodine y Johnson (1976, p. 219) observan los siguientes tres r<u>e</u> gimenes:

a) Regimen Cohesivo: La adición de arena a la fase fluida, incrementa la unidad de peso, proporcionalmente al volumen de la ar<u>e</u> na; es decir que el fluido puede incrementar considerablemente su concentración de particulas sin que se oponga a fluir, siempre y cuando el peso no exceda al volumen.

b) Regimen Granular: Si la adición de arena se incrementa sin que el volumen de la fase fluida aumente, se produce la interacción de las particulas chocando entre si, pero sin ocurrir un empaquet<u>a</u> miento. Es decir que una concentración de granos, trae consigo un incremento en la presión de poro y de la flotación, pero cuando mas y mas partículas llegan a estar en contacto una con otra la fl<u>o</u> tación decrece mas no así la presión de poro, Hampton (1975, p.835 1979, p. 754), Pierson (1981, p. 56).

c) Regimen de Fricción: Si la proporción volumétrica de la fase fluida empieza a ser insignificantemente pequeña comparada con la proporción de arena los granos pueden empaquetarse y el ángulo de fricción interna y la cohesión del volumen del material pueden incrementarse, (Fig. 12).

De lo anterior concluimos que la resistencia de un lahar depende del balance entre la fase fluida con el de la fase sólida.

Cuando domina la fase fluida, el flujo se deforma conforme al modelo de Bingham donde los clastos se mantienen en dispersión por

27

efecto de la cohesión de la fase fluida. Mientras que si la fase s<u>ó</u> lida predomina sobre la fase fluida, el flujo se deforma conforme al modelo de Coulomb donde los clastos están soportados por el efecto de la fuerza de presión dispersiva que generan los clastos durante su colisión.

V.5 Factores que determinan el origen de los lahares

Existen diversos factores que pueden originar lahares. La clasicacion que se propone en este trabajo es una modificación de las propuestas por Anderson (1933, p. 246, 252-258) y Crandell (1971 p. 8-10).

 Aquellos que son el resultado directo e inmediato de erupcio nes.

2)- Aquellos que están relacionados indirectamente a una erupci<u>o</u> nes o al poco tiempo de la erupción.

3)- Aquellos que no están relacionados de alguna manera a activi dad volcánica durante su depósito.

Los tres tipos son discutidos e ilustrados con lahares que han ocurrido dentro del tiempo histórico.

.1.)- Aquellos que son resultado directo e inmediato de enupcio nes.

1.a.)- Erupción atravésde un volcán que posee un lago em el

crater.

Este tipo de lahar se origina donde el agua contenida en un cráter es expelida violentamente durante una erupción, está peculiar manera de originar lahares es bastante comun en Indonesia, Filipinas y Nueva Zelanda. En la isla de Java el volcán Keloet es n<u>o</u> table por este tipo de lahares. Scrivenor, (1929, p. 433-434), est<u>i</u> mó que durante la erupción del 19-20 de mayo de 1919, fueron lanzados del lago del cráter aproximadamente 30 millones de m³ de agua que en un principio fue fría y paulatinamente incrementó su temp<u>e</u> ratura, el agua arrrastró cenizas y fragmentos de todo tamaño de tal manera que se originó un lahar que rrecorrio 16 Km en 15 min<u>u</u> tos, en una diferencia de alturas de 270 m., el espesor del lahar es de 1.5 a 2.5 y cubrió una zona de 131.2 Km²., la maxima dista<u>n</u> cia alcanzada por el lahar fue de 38 km y se deposito en tan solo 45 minutos. Kemerling, (en Mullineaux y Crandell, 1962, p. 868), calculó que la temperatura del lahar era de 100°c y la de los ga ses atrapados en 360°c, al año siguiente la temperatura de los <u>ga</u>

Hovey, (1902, p.342) reportó la ocurrencia de un lahar, durante la erupción del volcán Peleé, en la Isla de Martinica, el agua de lluvia se percoló por fisuras que rellenaron el Stang Sec (pequeño cráter en la cima del volcán), lo que provoco que tremendas explosiones expidieran todo el material, originando un lahar, el cual destruyóa la poblacion de Guerín Mills.

Lacroix (1904, p. 176-179) observó que grandes explosiones de<u>n</u> tro del lago del cráter de la Soufriere en la Isla de San Vicente, originaron lahares durante marzo 22-30 de 1903, los lahares bajaron por los valles y se extendieron hasta el mar.

En Nueva Zelanda el 24 de abril de 1975, el agua contenida en el lago del volcán Ruapehu fue expelida violentamente, Nairn et al. (1979). El volumen del agua desplazada se calculó en 2 X 10^8 m³, el lahar se extendió sobre un área de 300 Km², se desplazó con velocidaes de hasta 12 m/s y recorrio una distancia mayor de 100 Km., Dibble et al (1984).

1.b)- Destrucción de un flanco

El 24 de mayo de 1926 mas de la mitad del cono central del volcán Tokachi-dake es destruido por una gran explosión, el volumen de la masa colapsada se estimó de 2 a 4 millones de m³, los fragme<u>n</u> tos de roca originaron una avalancha volcánica caliente la cual derritió nieve y paso gradualmente a un lahar, cuya velocidad promedio fué de 50 m/s, el espesor promedio es de cerca de 3 m., el vol<u>u</u> men del depósito se estimó en 20 millones de m³, Murai (1960,p. 55-77). La distancia recorrida por el lahar fué de 24 Km., Tada y Tsuya (1927,p.49-50).

1.c.)- Derretimiento de nieve y hielo

Los lahares frecuentemente se origina por el derretimiento de nieve y hielo causado por erupciones volcánicas. El derretimiento puede ser originado por extrusiones de lava, flujos piroclasticos y avalanchas volcánicas calientes.

Durante la erupción de 1877 del volcán Cotopaxi en el Ecuador, corrientes de lava que salfan del cráter derritieron gruesas capas de hielo y nieve que originaron lahares, Wolf, (1878, p. 123,en Anderson 1933, p.256). Los lahares se extendieron hasta la población de Esmeraldas a 240 Km del cráter, la velocidad promedio fue de 28 Km/h, Whymper, (1892, p. 123, en Anderson, 1933, p. 256).

Dall y Allen, (1925, p. 20-24) atribuyen el origen de los lahares del 19 de mayo de 1915 de Lassen Peak, Calif., al rápido derretimiento de nieve por lluvia caliente y ceniza. Sin embargo Finch, (1930,p. 1), piensa qué el derretimiento de nieve seorigina por fl<u>u</u> jos de lava cercanos a la cima del volcán.

En la erupción del volcán Bezymianny en Kamchatka, avalanchas de roca y ceníza caliente, derritieron enormes volúmenes de nieve ori-

ginando lahares calientes, los cuales recorrieron distancias de 80 a 90 km., Gorshkov (1959,p.89-91).

Una explosión del volcán Tokachi-dake en 1962, originó un deslizamiento de roca caliente, que derritió pequeñas cantidades de nieve originándose lahares de pequeñas dimensiones, Murai, (1963, p. 197-199).

De los lahares más recientes y quizá de los mejor estudiados, son los que se desarrollaron el 18 de mayo de 1980, durante la erupción del Volcan St. Helena en E.U. Algunos lahares se originaron en el flanco oriental del volcán, depositaron mas de 13 millones de m³ de agua y sedimento en sólo tres horas, cerca del volcán tivieron esp<u>e</u> sores de 10 a 20 m., la velocidad promedio fué de 13 m/s y la velocidad máxima de 40 m/s, en las zonas alejadas del volcán el espesor promedio es de 0.3 a 2.5 m., los lahares se originaron por una explosión que lanzó una mezcla de roca ceniza y agua, otros lahares fueron generados por flujos piroclásticos que derritieron nieve y hielo, Janda et al. (1981, p. 464-466).

En el Japón durante la erupción del Volcán Asama el 26 de abril de 1982, flujos piroclásticos y cenizas derritieron gran cantidad de nieve y hielo, originando un lahar, donde la velocidad promedio es de 8 m/s., el lahar se desarrolló, dos minutos despues de la primera explosión, Shimosuro et al. (1982, p. 559).

1.d.)- Obstrucción del drenaje local.

Avalanchas de roca pueden causar lahares por represas temporales en los ríos. El agua puede verterse sobre la represa esta es desga<u>s</u> tada y el material acumulado puede pasar rápidamente a constituir un lahar.

Hovey, (1902, p. 327), observó que en el valle de Wallibou en la

Isla de San Vicente, el 30 de mayo de 1902, el material arrojado por una gran explosión obstruyó el río formando temporalmente un lago, el cual logró romper su represa natural dando origen a un lahar que acarreó grandes bloques hasta el mar.

En Guatemala, en la erupción de 1929, del Volcán St. Maria avalanchas incandescentes formaron represas en los valles del Rão Tamblor y del Río Concepción, originando lahares calientes, los cuales rellenaron una cañada de mas de 110 m de profundidad y 85 m de ancho, en el Río Tamblor, Sapper y Termer, (1930).

En Méxicp en la erupción del Volcan Chichonal de 1982, nubes ardientes en el flanco suroccidental del volcán formaron represas en el valle del Río Magdalena, de donde se originaron pequeños lahares Cervantes et al. (1983, p. 114).

1.e.)- Lodo expulsado directamente del Volcán.

Durante la erupción del Volcán Usu de 1910 en Japón, agua calien te, bonbas y lodo fueron expulsados directamente de cinco cráteres y originaron lahares que tuvieron una extensión de 200 m., y una longitud de 500 m con un espesor promedio de 1.5 m., Oinouye, (1917 p. 276-279).

Durell, (1944, p. 260-261,272) hace un estudio de brechas andes<u>i</u> ticas del Terciario en Cascade Range en el norte de California y concluye que los flujos de lodo pudieron haber sido expulsados directamente de fisuras volcánicas y que el agua es derivada direct<u>a</u> mente de la asociación con el magma.

1.f.)- Avalanchas que pasan gradualmente a lahares El lahar más grande y destructivo de la erupción del 18 de mayo

de 1980 del Volcán St. Helena, tienen características muy peculiar res, Janda et al. (1981, p. 461-470) observó que una avalancha detrítica ("debris avalanche") en el flanco norte del volcán se originó por el derretimiento de nieve, temblores fallas y fracturas asociadas con la primera explosión, al incorporar grandes volúmenes de hielo y agua pasó gradualmente a constituirse en lahares, los cuales modificaron mas de 120 Km de los cauces de los Ríos North Fork, Cowlitz y Columbia. Cummans, (1981, p. 481-486), enco<u>n</u> tró que los lahares originados por avalanchas en éA Volcán St. Helena, tienen características que contrastan con lahares del mismo volcán pero originados por otros factores, tales características son su baja velocidad que en promedio es de 2 m/s y las grandes distancias recorridas mas de 150 km.

 Aquellos que estan relacionados indirectamente a una erupción, o al poco tiempo de la erupción.

2,a.)- Fuertes lluvias posteriores a erupciones volcánicas.

Para Perret, (1924, p.102), una de las características más destructivas de la actividad post-eruptiva del Vesuvio en 1906, es la que ocacionaron los lahares que fueron resultado de cenizas altamente saturadas de agua.

Segerstrom, (1950, p. 62-68, 84-85), observó que pequeños flujos de lodo fueron frecuentes después de la primera erupción del Volcán Paricútin, de 1943, y se originaron por fuertes lluvias en donde el agua no pudo infiltrarce debido a la alta permeabilidad de las cenizas.

Un ejemplo muy bien estudiado es el del Volcán Irazú, en Costa Rica, Waldrom, (1967), en donde de marzo de 1963 a febrero de 1965 el volcán arrojó gran cantidad de cenizas y éstas formaron delgadas capas que fueron lo bastante compactas para impedir la infiltración del agua y como consecuencia se desarrollaron mas de 90 l<u>a</u> hares, que fueron capaces de transportar bloques de hasta 200 ton<u>e</u> ladas.

3)- Lahares que no están relacionados con actividad volcánica

Los lahares no difieren mucho de otro tipo de depósitos que ocurren en otros ambientes y que son independientes de toda activi vidad volcánica, los volcanes tienen características que los hacen particularmente favorables para originar lahares, tienen elevadas pendientes, gran cantidad de material suelto cubre su superficie, por lo general hay ausencia de vegetación, las condiciones atmosfé ricas son mas favorables que en otros ambientes. Por lo tanto este tipo de lahares puede originarse, por innumerables factores, en es te trabajo sólo se presentan aquellos que se mencionan en la literatura.

3.a.)- Fuertes lluvias

Material depósitado durante alguna erupción es especialmente s<u>u</u> sceptible a la saturación de agua, durante fuertes lluvias, estas masas se deslizan y comunmente forman lahares. Este tipo de lahares es bastante comun en las Islas de Java, durante las épocas de monz<u>o</u> nes, Bemmelen, (1949, p. 191). Ver ejemplo de lahares de alta concentración de grano en este trabajo.

3.b.)- Derrumbe o colapso debido a la inestabilidad del material que forma el cráter.

.

En 1953 el lago del Volcán Ruahehu en Nueva Zelanda fue puesto en libertad por el derrumbamiento de las paredes del cono, un gran

volumen de agua se precipitó por los flancos del volcán arrastrando gran cantidad de cenizas y bloques, dando origen a un lahar, O'shea (1954,p.174).

3.c.)- Derretimiento de nieve y hielo por factores climaticos.

V.6 Modelo de facies.

En estudios hechos en el Volcán del Fuego en Guatemala por Veseell y Davies, (1981), encuentran que los sedimentos volcanoclásticos cambian progresivamente de carácter cuando se incrementa la distancia de la fuente de origen. Basados en la litología, tamaño de grano, estructuras sedimentarias, textura y génesis; reconocieron cuatro facies. Los límites entre las facies no son contrastantes sino que gradúan lateralmente dentro de las siguientes facies, (Fig. 13 y 14). El desarrollo de las facies está controlado por c<u>i</u> clos repetitivos, cada ciclo consiste de cuatro etapas.

Las facies son:

1)- Facies Volcánica Central: Se caracteriza por capas de toba, lavas y coluvión, generalmente interestratificados, las capas tienen espesores y extensión que va desde unos cuantos centímetros a algunos metros.

2)- Facies Volcanoclática Proximal: Consiste de avalanchas incan descentes muy mal clasificadas, que varian de espesor desde 0.5 a 15 m, son relativamente homogeneas desde el punto de vista litológi co, las tobas son bastante comunes y varian de espesor desde algunos centimetros hasta algunos metros, el material coluvial es menos abundante y rara vez cóntinúa a la siguiente facies. Las avalanchas incandescentes son las más representativas de esta facies.

3)- Facies Volcanoclástica Media: Esta facies consiste de laha-

FIGURA,13.-Diagrama esquemático del área entre un volcán activo y el océano. El cono activo es rodeado por numerosos abanicos aluviales que se extienden hasta el plano de costa.(Vessell y Davies.1981).

res y depósitos fluviales de grano grueso que varían de espesor de<u>s</u> de 0.5 a 3.0 m. Las avalanchas incandescentes son poco comunes, las tobas generalmente tienen espesores menores a los 5 cm. Los lahares son el depósito dominante de esta facies.

1

4)- Facies Volcanoclática Distal: Las tobas tienen espesores que varían desde unos cuantos milímetros a algunos centimetros. Los depósitos fluviales de grano fino y grueso son los más abundantes de esta facies.

Las características sedimentarias mas representativas de los depósitos volcanoclásticos son resumidas en la Tabla 2.

Las etapas son las siguientes:

 Etapa 1 (etapa pre-erupción): Se caracteriza por baja sedimentación, se profundizan las corrientes meandriformes, la duración de esta etapa es estimada en algunas décadas y depende del clima.

2) Etapa 2 (etapa de actividad volcánica): En está etapa la atividad volcánica tiene su máximo desarrollo, con la eyección de tobas y avalanchas incandescentes. Aunque Vessell y Davies no lo mencionan en esta etapa también se pueden originar lahares, general mente esta etapa tiene una duración menor de un año.

3) Etapa 3 (construcción del abanico):Se caracteriza por la dep<u>o</u> sitación de lahares y conglomerados, depende ampliamente de las condiciones climáticas y tiene una duración aproximada de un par de años.

4) Etapa 4 (etapa de ramificación): Se caracteriza por la incor poración de grandes volúmenes de sedimento al sistema meandriforme, el cual se azolva y pierde su capacidad de transporte originando así una transformación de las corrientes meandriformes a ramificadas esta etapa tiene una duración del orden de un par de décadas despues

CARACTERISTICA	това	AVALANCHAS	LAHARES	DE POSITO	S FLUVIALES
BASE -	No erosiva	No erosivo	No'erosiva	Erosiva	Erosiya
FABRICA	Grano soportando	Matriz soportando	Matriz soportando	Grano Soportando	Grano Soportando
TAMAÑO DE GRANO	Grava, arena, limo, arcilla.	Todo el rango de tamaños.	Todo el rango de tamaños.	Todo - el rango de tamaños	Grava , Arena, limo , arcilla.
CAMBIOS VERTICA- LES EN EL TAMA - ÑO DE GRANO	Frecuentemente de grueso o fino hocia la cima.	Sin cambios	Sin cambios	Muy variable, puedo ser de grueso a fino hacío la cima	Algunas veces variable, generalmente fino hacia la cima
CL A SIFI CACION	Bien clasificado	Muy pobremente clasificado	Muy pobremente clasificado	Muy pobremente clasificado	De pobre a bien clasificado
E S T RUCTUR A S SE DI MENTARIAS	Laminación pa- raleia, aigunas veces gradación	Ningunà	Algunas veces burda estratificación y gradación	Generalmente sin es- tructuras, algunas ve- ces estratificación cru- zada	Estratificación porale- la y cruzada, dunas algunas veces lentes
CAMBIOS EN UNA CAPA CORRIENTE A B A J O	Tamaño de grano y espesor decrecen rápidamente, la cla- sificación mejora	No hay cambios en el tamaño de grano redondez o clasifi- cación, el espesor puede ser constan- te o decrecer	No hay cambios en el tamaño de grano redondez o clasifi- caclón, el espesor puede ser constan- te o decrecer	El espesor y el tama- ño de grono decrecen, clasificación y redon- dez se incrementon	Elespesor y el tama- ño de grano decrecen, clasificación y redon- dez se incrementan
DEPOSITOS A SOCIADOS	Al tamente variable	Tobas y lahares	Delgadas capas de toba, avalanchas in- candescentes, depó- sitos fluviales de grano grueso.	Son raras las capas de toba. Ocasionalmente lahares y avalanchas Incandescentes.	Son raras las capas de toba, lahares.

de la erupción.

Las etapas 3 y 4 solamente se originan si el material producto de la erupción tiene un volumen mayor de 6 \times 10⁷ m³.

Este modelo de facies puede tomarse como marco de referencia para guiar las observaciones de campo de tal manera que puedan establecerse comparaciones consistentes, pero de ninguna manera representa un patrón único.

CAPITULO VI

SEDIMENTOLOGIA DE LA FORMACION TEPOZTLAN

VI.1 Métodos de campo.

Debido a que no se hicieron análisis granulometricos ya que la porción de material fino (arcilla, limo, arena fina) de un lahar nunca es preservada integramente, por tal motivo para poder hacer las observaciones de campo consistentes se usaron tablas y diagr<u>a</u> mas comparativos y en algunos casos medidas directas.

Para la estimación del grado de clasificación se utilizaron las tablas propuestas por Comton (1970, p. 283), (Fig. 15).

Las estimaciones del tamaño de grano en arenas se estimaron de acuerdo a la tabla de campo de la American/Canadian Stratigraphic, lo mismo se hizo para la redondez, (Fig. 16), tamaños mayores a los de la arena fueron medidos directamente en el campo, y para la nomenclatura se utilizó la escala de tamaños de Friedman y Sanders (1978) y Fisher (1961), (Fig. 17).

El tipo de imbricación que se midio fue en gúijas elongadas gruesas y muy gruesas y es del tipo (a(t) b (i)) en donde a(perpendicular) b(imbricación), (Fig. 18), este tipo de imbricación es típica de clastos que se han movido por tracción, Walker (1975, p. 137).

Para la estimación de porcentajes se utilizaron las tablas propuestas por Flugel (1978, p. 252-253), (Fig. 19).

VI.2 Distribución y relaciones estratigráficas.

La Formación Tepoztlán, Fries, (1960, p.108); aflora en en toda

FIGURA 15.- Términos para los diferentes grados de clasificación. Los números indican el número de clasificación por tamaño considerando en la mayor parte (80%) del material, (Compton, 1970).

FIGURA 16. - Tabla de campo para la estimación comparativa de tamaño de arena y grado de redondes.

FIGURA 17.- Terminología según tamaño de partículas Piroclásticas y Epiclásticas, ((1)Fisher, 1961; (2)modificado de Friedman y Sanders, 1978).

FIGURA 18. – Dos tipos de imbricación, a(transversal) b(imbricación) y a(paralelo) a(imbricación) · La fábrica a(t) b(i) es característica de clastos rodados mayores de 2 cm · La fábrica a(p) a(i) ha sido observada en conglomerados asociados a turbiditas, (Walker, 1975).

74

10%

20%

40%

25%

50%

30%

60 %

la zona norte con excepción de la porción sur y suroeste, en la zona sur solo aflora en la porción central. En la zona norte la Formación Topoztlán descansa sin discordancia angular aparente sobre el Grupo Balsas en el poblado de Lázaro Cardenas, al oriente de San Andrés de la Cal la Formación Tepoztlán descansa sobre la Formación Cuautla en contacto por falla, al sureste de la cual la Formación Tepoztlán descansa con discordancia sobre la Formación Morelos.

En la zona sur, en la porción suroccidental la Formación Tepoztlán descansa sobre la Formación Cuautla, dicho contacto es por falla, mientras que al norte descansa con discordancia sobre la Formación Morelos.

En el presente estudio se reconocieron tres unidades litoestrati gráficas: Unidad Volcánico-Lahárica, Unidad Fluvio-Lahárica, Unidad Lahárico-Volcanica.

VI.3 Unidad Volcánico-Lahárica.

Ì

Esta unidad es la mas antigua de la Formación Tepoztlán, solo aflora en cuatro zonas: En la Sierra de Amatlán, al nor-noreste de Lázaro Cárdenas (Lámina 2, Columna Santa Catarina, espesor medido 240 m.), al sur de Tlayacapán (Lámina 1, Columna Barranca Tepexi, espesor medido 105 m.), al oeste de San Sebastián (Lámina 1, Columna San Sebastián, espesor medido 30 m.), y al Nor-noroeste de San Andrés de la Cal (Lámina 3, Columna San Andrés de la Cal, espesor medido 51 m.).

La unidad consiste de una gruesa secuencia de capas interestrat<u>i</u> ficadas de lahares de baja concentración de grano (L.B.C.G.), tobas, brechas de origen volcánico y gravas de origen fluvial (en este tr<u>a</u> bajo se utilizo el término fluvial para designar a depósitos de origen propiamente aluvial, pero se evito el uso de este último término

ya que en algunos casos tales depósitos se transportaron como flujos de masa, por tal motivo el término fluvial como se usa en este trabajo unica y exclusivamente involucra transporte por agua), siendo estos últimos los mas escasos, mientras que los (L.B.C.G.) son los mas representativos (Fig. 20).

El limite superior de la unidad son los lahares de alta concentración de grano (L.A.C.G.).

La diferencia entre ambos tipos de lahares está dada por el tamaño de las partículas que constituyen a la matriz, en el caso de los lahares de alta concentración de grano está constituida por partículas del tamaño de guijas finas a arcilla, mientras que en los lahares de baja concentración de grano el tamaño de las partículas es de arena fina a arcilla.

En los lahares de baja concentración de grano el espesor de las capas varía de 0.5 a 10 m siendo las más comunes de 1 a 4 m, el e<u>s</u> pesor se mantiene constante a lo largo de decenas de metro. El tamaño de grano varía desde grandes bloques ($\frac{1}{2}$ 2 m. de diámetro) a partículas del tamaño del limo y arcilla. El material mas grueso que la arena fina representa de un 30-60% del volumen. Los clastos son de subangulosos a subredondeados predominando notablemente los primeros. La composición de los clastos es de andesita (ver apénd<u>i</u> ce petrográfico) con texturas que varían de porfiritica a afanítica y con colores que van desde el gris claro a gris obscuro, verde y rojo. La matriz que soporta a los clastos varía de blanco a gris claro y está constituida por partículas del tamaño de arena fina a arcilla (fig. 21). La textura resultante se asemeja mucho al concr<u>e</u> to fresco. Este tipo de lahar no es fácilmente dezleneable sino por el contrario está bastante bien consolidado, lo cual se atribuye a

FIGURA 20.- Detalle de la UNIDAD VOLCANICO-LAHARICA, (Columna Santa Catarina, Lámina 2).

FIGURA 21.-Detalle de un lahar de baja concentración de grano, observe el tamaño de grano de la matriz y a los clastos inmersos en ella, (Lámina 1,Columna San Sebastian, 1822 m.s.n.m.). que la matriz está completamente desvitrificada (ver apendice petr<u>o</u> gráfico). La única estructura sedimentaria que se observó es la gr<u>a</u> dación normal e invertida siendo ambas muy comunes en todo su espe<u>c</u> tro, tanto bien definida como demasiado vaga, (Fig. 22).

Algunos de los lahares de baja concentración de grano son relat<u>i</u> vamente homogéneos desde el punto de vista litológico (50-90% de los clastos consisten de andesita de hornblenda color verde, con cristales bien desarrollados), pero son marcadamente mas abundantes los de tipo heterolítologico. Los de tipo homogéneo generalmente sobreyacen a tobas o a brechas volcánicas, (Fig. 23).

No se encontro conta to erosivo en la cima de capas a las cuales sobreyacen. El contacto entre dos capas de (L.B.C.G.) es dificil de reconocer, debido al poco contraste textural de las capas, pero la gradación, el carácter litológico de los clastos y en algunos casos una pequeña capa de material fino en la cima, son los mejores crit<u>e</u> rios para reconocer los contactos.

Las tobas tienen espesores menores de 1 m., no presentan gradación, los clastos mayores de 0.3 cm representan menos del 10% siendo estos esencialmente subangulares, tienen texturas predominantemente fanerit_ica , con una composición de andesita de hornblenda (ver apéndice petrográfico), de color verde y rojo, se encuentran distribuidas a lo largo de toda la unidad, pero ocupan un volumen mucho mayor en la parte superior de la misma.

Las brechas volcánicas posiblemente originadas como flujos de c<u>e</u> niza y líticos, se presentan en capas que varían de espesor de 0.5 a 14 m , el tamaño de los clastos varía desde grandes bloques ($\frac{1}{2}$ 2 m de diámetro) a partículas del tamaño de la ceniza fina, (Fig.24)

FIGURA 22.-Lahar de baja concentración de grano con gradación inversa, (Lámina 2, Columna Santa Catarina 1404 m.s.n.m.).

FIGURA 23.-Lahares de baja concentración de grano interestratificados con tobas, (Lámina 2, Columna Santa Catarina, 1356 m.s.n.m.).

FIGURA 24.-Brechas de origen volcánico en donde se observa el tamaño de los bloques y su angulosidad, (lámina 1, Columna San Sebastian, 1808 m.s.n.m.). Los clastos son de subangulares a subredondeados. El material mas grueso que la ceniza gruesa representa de un 15-40% del volumen. Litolĝicamente son bastante homogéneos ya que mas del 95 % de los clastos son andesitas de hornblenda , con un color verde grisaceo, y una textura porfirítica, con cristales bien desarrollados de hornblenda, la matriz que esta soportando a los clastos tiene una textura afanítica, color verde pálido y una composición de andesita de lamprobolita (ver apéndice petrográfico). En algunos casos presentan estructuras de flujo y vesiculas tubulares, el contacto erosivo en la cima de capas a las cuales sobreyacen no es común, el espesor es bastante constante por algunas decenas de metros. Las brechas volcánicas estan ausentes en la base de la unidad, en la parte media están interestratificados con (L.B.C.G.), en la parte superior son bastante abundantes y están interestratificados con tobas, (Fig 25).

Los depósitos de origen fluvial estan restringidos a la parte superior de la unidad y consisten de una secuencia de conglomerados de guijarros y grava arenosa con espesores de 1.5 y 8.0 m. respectivamente, el conglomerado consiste de clastos andesíticos menores de 15 cm de diámetro . El material mas grueso de 0.5 cm representa de un 60-80 % del volumen, los clastos son de subangulares a subr<u>e</u> dondeados siendo estos últimos notablemente más abundantes y de c<u>o</u> lor verde, el conglomerado presenta una burda estratificación y l<u>i</u> gera erosión en la cima de la capa a la cual sobreyace, el conglomerado pasa gradualmente a arena gruesa con abundante estratificación paralela (Fig. 26), los clastos son suredondeados, menores de 0.3 cm de diametro y de color rojo, la estratificación es menor de 15 cm, algunos estratos son de arena fina a gruesa y bien clasificada, mientras que otros son de grava fina, el espesor total es de

FIGURA 25.-Afloramiento en la Barranca Tepexi, en donde se observan tobas y brechas de origen volcánico intere<u>s</u> tratificadas, (Lámina 1, Columna Barranca Tepexi).

FIGURA 26.-Guijas y arenas gruesas con estratificación paralela, en la cima de la unidad volcánico-lahárica, -{Lámina 3, Columna San Andrés de la Cal,1475 m.s.sn.m.}. 9.5 m.

VI.4 Unidad Fluvio-Lahárica.

Esta unidad descansa sobre la unidad volcánico-lahárica y está ampliamente distribuída en la zona de estudio (ver plano geológico) Se considera como límite inferior de la unidad a los (L.B.C.G.) mientras que el límite superior son tobas rojizas de composición andesítica. Esta unidad se caracteriza por la ausencia total de brechas de origen volcánico y por la presencia de depósitos de or<u>i</u> gen fluvial y de lahares de alta concentración de grano (L.A.C.G), (Fig. 27), los (L.B.C.G.) tobas con gradación y lahares calientes, están restringidos a la parte superior de la unidad.

43

La unidad solo fue medida completamente en una sola localidad (L&mina 2, Columna Santa Catarina, con un espesor de 335 m), mientras que en las otras columnas solo fue medida parcialmente (Láminas, 1, 2 y 3).

En los (L.A.C.G.) las capas varían de espesor desde 0.5 a 5.0 m El tamaño de goano varía desde grandes bloques (*1.5 m de diámetro) a partículas de tamaño de arcilla. El material más grueso de 0.8 cm representa de un 20-70% del volumen. Los clastos subangulares son los más abundantes (Fig. 28) aunque también los hay subredondeados Los clastos son de composición andesítica con textura de porfirítica a afanítica y colores gris claro a gris obscuro, negro, verde, rojo. La matriz que soporta a los clastos varía de color, verde, gris, rojo y amarillo y está constituida por partículas del tamaño de grava fina a arcilla (Fig. 29), tiene cierta semejanza con el concreto pero no tanta como los (L.B.C.G.), estánbien consolidados lo cual tambiénes atribuíble a la desvitrificación de la matriz, la

FIGURA 27.-Detalle de la UNIDAD FLUVIO - LAHARICA, (Columna Santa Catarina, Lámina 2).

FIGURA 23.-Lahar de alta concentración de grano donde se observa, la mala clasificación, la angulosidad de los clastos y su angulo de reposo, (Lámina 2, Columna Amatlán, 1677 m.sn.m.).

FIGURA 29.-Detalle de un lahar de alta concentración de grano, observe el tamaño de grano en la matriz y a los clastos inmersos en ella, (Lámina 2, Columna Amatlán 1677 m.s.n.m.). gradación normal e invertida son muy comunes en todo su espectro, tanto bien definida como demasiado vaga. No se observaron cambios significativos en el espesor de las capas. Una característica bastante comun es que están interestratificados con capas de 2 a 15 cm de grava arenosa mal clasificada. El contacto entre dos capas de (L.A.C.G.) es difícil de reconocer, debido al poco contraste te<u>x</u> tural de las capas, pero la gradación (Fig. 30), la colorasión de la matriz, el caracter litológico de los clastos y en algunos casos una pequeña capa de material fino en la cima, son los mejores crit<u>e</u> rios para reconocer los contactos.

En los (L.A.C.G.) no se encontró contacto erosivo en la cima de capas a las cuales sobreyacen, y en las cuales el material probabl<u>e</u> mente no estaba bien consolidado, (Fig. 31).En la parte superior de la unidad los (L.A.C.G.) en algunos casos se encuentran interestrat<u>i</u> ficados con capas de toba, en las cuales la gradación normal e inve<u>r</u> tida son bastante comúnes, el tamaño de las partículas varía desde ceniza fina a lapilli, estas capas nunca pasan de los 15 cm de esp<u>e</u> sor y tienen bastante continuidad lateral. Los lahares interestrat<u>i</u> ficadas con dichas capas en su cima presentan un color ocre al : igual que los clastos pumiticos, tales características corresponden a lahares calientes (Silva Mora 1985, Comunicación Personal) y (Crandell, 1971).

Los (L.B.C.G.) presentan la peculiar característica de estar interestratificados con capas de grava arenosa o arena gruesa con espesores menores de 15 cm., (Fig.32), la erosión producida por está capa al lahar es mínima pero puede llegara distinguirse, mientras que la erosión es nula cuando el lahar sobreyace a esta capa. Estos lahares tienen las mismas características texturales y litológicas

FIGURA.30.-Lahares calientes (L.A.C.G.) interestratificados con una toba, observe la gradación inversa en el lahar, (Lámina 1, Columna San Sebastian, 1926 m.s. n.m.).

FIGURA 31.-Lahares de alta concentración de grano interestratificados con grvas masivas. El lahar superior presenta gradación normal y su base no presenta señales de haber erosionado a la capa subyacente. El lahar de la parte inferior presenta gradación invertida, (Lámina 3, Columna San Andrés de ~ la Cal 1635 m.s.n.m.).

FIGURA 32.-Lahares de baja concentración de grano interestratificados con capas de arena gruesa, $(1\frac{a}{2})$ mina 2, Columna Amatlán 1761 m.s.n.m.). que los de la unidad volcánico- lahárica, con la excepción de que ya no tienen la tendencia a ser homogéneos sino que son completamente heterolitológicos.

Los conglomerados están mal clasificados, el tamaño de los cla<u>s</u> tos varía de 30 cm de diámetro a partículas de tamaño arcilla, clastos mayores de 30 cm son comunes mas no abundantes. Los clastos son de suangulares a subredondeados, predominando estos últimos y de composición andesítica y color gris claro a gris obscuro verde y rojo. Los conglomerados se presentan esencialmente de tres maneras:

- a) Rellenando lentes
- b) Como burdos horizontes interestratificados con grava arenosa
- c) Como capas masivas menores de 1 m y con burda estratificano ción

Generalmente los conglomerados presentan contactos erosivos en la cima de las capas a las cuales sobreyacen, (Fig. 33). Son fáci<u>1</u> mente distinguibles de los lahares por las siguientes característ<u>i</u> cas: El ángulo de reposo de los clastos es más o menos el ideal (tiende a ser horizontal, mientras que en los lahares el ángulo de reposo está en cualquier posición), el contacto entre los clastos es notable, los clastos generalmente son subredondeados, descansan sobre contactos erosivos y tienen muy poca continuidad tanto lateral como vertical.

Las gravas arenosas y arenas gruesas son notablemente más abundantes que los conglomerados. La estratificación paralela y lenticular, son las estructuras más comunes, la estratificación cruzada es demasiado vaga y comparativamente insignificante. La estratificación paralela generalmente se presenta en capas menores de 3 cm (Fig. 34); el material que las constituye puede ser arena gruesa o

FIGURA 33.-Lente concavo sobreyaciendo a un conglomerado que tiene una base altamente erosiva; sobreyaciendo al lente se aprecian capas de grava y grava arenosa interestratificadas con capas de material fino y de poca continuidad lateral, (Lámina 2, Columna Santa Catarina, 1696 m.s.n.m.).

FIGURA 34.- Estratificación paralela en gravas finas subyaciendo a gravas conglomeraticas con estratificación burda, (Lámina 2, Columna Amatlán 1795 m.s.n.m.) guijas finas, el espesor de las capas es bastante contínuo (decenas de metros), frecuentemente se encuentran interestratificadas con conglomerados.

Los lentes (concavos y convexos) están constituidos por clastos menores de 15 cm de diámetro a partículas del tamaño de arcilla, (Fig. 33), varían de altura de 15 a 40 cm y de 1 a 8 m de ancho, es común tanto una migración lateral como vertical de los lentes. No se encontraron horizontes de materia orgánica o paleosuelos sobreyaciendo a los lentes.

La estratificación cruzada es muy vaga (Fig.35) e insignificante y se presenta en arenas gruesas bien clasificadas.

Interestratificados con gravas arenosas o con arenas se presentan cuerpos lenticulares de arena fina a arcilla de color blancusco, estos cuerpos varían en altura de 0.20 a 3.00 m y de 1 a 15 m de ancho, este tipo de lentes es bastante común en el Cerro de Xiconquihitl al oeste de Amatlipac, en donde algunos de estos cuerpos ya han sido erosionados y en la actualidad sólo se observa la cavidad en donde estuvieron. Pequeñas capas (menores de 3 cm) de material fino (arena fina, limo , arcilla), y de poca continuidad lateral, se encuentran interestratificadas con arenas o gravas ar<u>e</u> nosas.

VI.5 Unidad Lahárico--Volacánica.

En ninguna columna se midió el espesor total de está unidad y esto es debido a dos causas: 1) La unidad se encuentra erosionada y ninguna formación más jóven la sobreyace, (Lámina 3, Columna Sierra de Tepoztlán en la cual se midio un espesor de 710 m.). 2) Se encuentra muy erosionada y el Grupo Chichinautzin la sobreyace discordantemente.

FIGURA 35.- Estratificación cruzada en gravas arenosas, (Lámina 2, Columna Santa Catarina 1795 m.s.n.m.). Esta unidad es la que tiene mayor espesor y se encuentra aflorando en la zona norte y es la única que aflora en la zona sur. La unidad está constituída por (L.A.C.G.), (L.B.C.G.), tobas y depósi tos de origen fluvial y brechas de origen volcánico, se caracterisa por gruesas secuencias de (L.B.C.G.) y (L.A.C.G.), (Fig. 36);el límite inferior de la unidad son tobas de composición andesítica de color rojo y textura fanerítica.

Los lahares de baja concentración de grano presentan las mismas características que los de las dos unidades infrayacientes ya descritos; aquí los lahares son completamente heterolitológicos, siem pre se presentan asociados a tobas, las capas de grava arenosa con las cuales están típicamente interestratificados el la Unidad Fluvio-Lahárica, en esta unidad ya no es una característica dominante comunmente sobreyacen o infrayacen a (L.A.C.G.) sin que se presenten contactos erosivos (Fig. 37). Comunmente este tipo de lahar constituye gruesas secuencias (menores de 40 m) las que en algunos casos se encuentran interestratificados con tobas o con (L.A.C.G.) o con brechas de origen volcánico.

Los (L.A.C.G.) presentan las mismas características que los de la Unidad Fluvio-Lahárica, en esta unidad la matriz que soporta a los clastos presenta con mayor persistencia el color rojo, nunca se presentan interestratificados con tobas, generalmente se presen tan como gruesas secuencias interestratificados con capas masivas de grava arenosa, menores de 15 cm de espesor, sin que se presente contacto erosivo en la cima de estas capas.

Otro tipo de grava arenosa que si presenta estructuras y espes<u>o</u> res mayores a los ya mencionados (de 0.2 a 2.5 m.), con estratif<u>i</u> cación paralela (Fig.38), lentes conglomeráticos y horizontes con-

FIGURA 36.-Detalle de la UNIDAD LAHARICO-VOLCANICA, (Columna Sierra de .Tepoztlán, Lámina 3).

FIGURA 37.-Lahar de baja concentración de grano interestratificado con lahares de alta concentr<u>a</u> ción de grano. Note la falta de erosión en ambas capas, (Lámina 2, Columna Amatlán 1985 m.s.n.m.).

FIGURA 38.-Guijas con estratificación paralela, (lámina 3, columna Tepozteco 2318 m.s.n.m.). meráticos paralelos a la capa. Los cuerpos lenticulares de material fino (arcilla, limo y arena fina) en está unidad ya no están presentes.

ъ.°.

Las tobas son de color rojo y con textura fanerítica, de compos<u>i</u> ción andesítica, no presentan gradación, con espesores menores de 1.0 m y con bastante continuidad tanto lateral como vertical.

Las brechas volcánicas posiblemente originadas como flujos de c<u>e</u> niza y líticos, se presentan en capas que varían de espesor de 1.5 a 4 m, el tamaño de los clastos varía desde grandes bloques(± 1 m de diámetro) a partículas del tamaño de la ceniza fina. Los clastos son de subangulares a subredondeados, material más fino que la cen<u>i</u> za gruesa representa de un 30 a60% del volumen. Litológicamente son completamente homogéneos los clastos y la matriz tienen textura fanerítica y composición de andesita de hornblenda y color rojo.

VI.6 Interpretación de las unidades y origen.

Debido a que los lahares son capaces de desplazarse por grandes distancias, sin que presenten cambios significativos en el tamaño de los clastos, redondez, litológia y textura, además de que hay una gran cantidad de factores que determinan el origen de los lah<u>a</u> res, es poco o nada lo que se puede saber de la distancia de su fuente de origen y de la manera en que se originarón. Sin embargo al analizar las relaciones estratigráficas de los lahares en la Formación Tepoztlán observamos que estan estrechamente ligados con depósitos de diferentes orígenes. Los (L.B.C.G.) están intimamente relacionados a brechas de origen volcánico y a tobas; mientras que los (L.A.C.G.) están asociados a depósitos de origen fluvial. Lo a<u>n</u> terior nos sugiere que los (L.B.C.G.) probablemente sean resultado

directo e inmediato de actividad volcánica, (Etapa 2, Volcánica), mientras que los (L.A.C.G.), muy probablemente se originaron poco tiempo después de la actividad volcánica, (Etapa 3, Construcción del abanico); con la excepción de aquellos que estan asociados a tobas y que por sus características representan a lahares calientes y en consecuencia probablemente sean resultado directo e inm<u>e</u> diato de actividad volcánica (etapa 2).

Los depósitos de origen fluvial, por el tipo de estructuras que presentan son de mayor ayuda para poder establecer las característ<u>i</u> cas del medio en el cual fueron depositados. Aunque presentan el problema de que no hay una secuencia vertical típica que nos ayude a identificar el patrón de drenaje, ya que ésta se ve interrumpida al de pósitarse los (L.A.C.G.), lo cual puede ser una explicación de por que la etapa 1 (pre-erupción) no estó presente en la Formación Tepoztlán.

Las capas de grava masiva (menores de 15 cm.) que están tipicamente interestratificadas con los lahares podrían ser resultado del desague del frente de los lahares que se depositaron corriente arr<u>i</u> ba (ver capítulo V.3 y V.4).

La estratificación paralela que se presenta en gravas, gravas, arenosas y arenas gruesas, comunmente ha sido interpretada como de un regimen de flujo alto-transicional, (Reineck y Singh, 1980, p. 13; Visher, 1972, p.85), lo cual queda completamente confirmado al no encontrarse otro tipo de estructuras que puedan éstar asociadas a otros regimenes de flujo. La estratificación paralela es resultado de la depositación de los granos que se mueven tanto en suspensión como en tracción en un flujo lodoso: muy somero pero muy rápido, por lo que la estratificación paralela es el resultado de una

acreción vertical conforme la velocidad del flujo va menguando hasta lledar al reposo. En otros casos la estratificación paralela es resultado de la depositación de "lenguas" de clastos moderadamente clasificados que se mueven rodando sobre un lecho plano es decir que el grosor de la capa es directamente proporcional al tamaño promedio de los clastos por lo que nunca hay energía suficiente como para amontonarlos uno sobre otros.

Los lentes concavos representan la erosión y el relleno de can<u>a</u> les mientras que los lentes convexos representan a barras longitud<u>i</u> nales.

Los horizontes conglomeráticos fueron depositados seguramente durante epocas de avenidas fluviales e indican depósitos de revestimiento en amplios canales ("channel lag deposits"). Los conglom<u>e</u> rados que se presentan como capas masivas menores de 1 m y en los cuales el contacto entre los clastos es notable probablemente fueron depositados por corrientes de alta energía y turbulencia, en donde los clastos se movieron esencialmente por tracción, lo cual explicaría el tipo de contacto erosivo.

Los cuerpos lenticulares de material fino, al parecer fueron depositados en canales abandonados durante fuertes inundaciones al igual que las pequeñas capas de material fino y poca continuidad lateral

La acreción lateral es notablemente más significativa que la acreción vertical en donde se presentan lentes, (Fig. 39), lo cual está en función de la continuidad y cantidad de aporte de sedimento de la fuente de origen.

Las características señaladas en los renglones anteriores son

FIGURA 39.-Acreción lateral en lentes convexos, Cerro del Tepozteco 1805 m.s.n.m. típicas de sistemas de drenaje ramificados, los cuales se desarrollan en suaves pendientes (menores de 10°).

1.14 1.12

El tamaño de los clastos en los conglomerados es menor de 40 cm de diámetro (85% del volumen), con un elevado porcentaje, de más del 60% de los fragmentos menores de 15 cm de diámetro, lo cual nos ubica dentro de una facies volcánica media ya próxima a la facies volcánica distal, Vessell y Davies, (1981, p. 38).

La Unidad Volcánico-Lahárica se desarrolla apartir de gran actividad volcánica (etapa 2), la influencia de la etapa de construcción del abanico no es notoria. En la Unidad Fluvio-Lahárica, la actividad volcánica declino pero no desaparecio por completo, evidencias de esto son los lahares calientes y las tobas que se encuentran en la cima de la unidad, además no se presentan cambios significativos verticalmente y en esta unidad tienen su maximo desarrollo la etapa de construcción del abanico y la etapa de ramif<u>i</u> cación. En la Unidad Lahárico- Volcánica, la actividad volcánica vuelve a incrementarse pero ya no con la misma magnitud que en la Unidad Volcánico-Lahárica, en esta unidad las etapas de actividad volcánica, de construcción del abanico y la etapa de actividad etapa de construcción del abanico y la etapa de actividad volcánica, de construcción del abanico y la etapa se actividad volcánica, de construcción del abanico y la etapa se actividad presentes, predominando la etapa de construcción del abanico y la etapa de actividad volcánica.

VI.7 Dirección de la fuente de suministro.

La orientación de 37 imbricaciones en clastos elongados del tamaño de guijas gruesas (muestreados en depósitos de origen fluvial) tuvieron direcciones que variaron entre NW46°SE-SW75°NE con una media de NW 71°SE. Esto coincide con la dirección aproximada de lo que Cserna y Fries, (1981, p.25), denominaron como centro volcánico

51

\$ 2

Zempoal, que fue un centro eruptivo andesítico durante el Mioceno-Plioceno Temprano.

TRACE C

El Centro Volcánico Zempoala Es la zona de mayor altitud, cercana a la zona de estudio († 26 Km.), sus cumbres tienen altitudes superiores a los 3500 m.s.n.m., la estructura original delcentro volcánico es casi imposible de distinguir ya que los mecanismos mor foclimáticos que se llevaron a cabo después del vulcanismo del Plio ceno Tardio y los procesos erosivos han borrado toda expresión de la topografía original, Ortiz, (1978,p.29).

VI.8 Edad.

La edad de la Formación Tepoztlán, tiene que ser establecida por sus relaciones estratigráficas y por su litológia, debido a que carece de fósiles y no ha sido fechada por métodos radiométricos. Ca Formación Tepoztlán en cuatro localidades sobreyace a calizas Cretácicas: dos por falla y dos por discordancia angular. Al Grupo Calsas de edad Paleoceno-Eoceno lo sobreyace sin discordancia angular aparente.

La Riolita Tilzapotla que sobreyace en el suroeste del Estado de Morelos al Grupo Balsas, en la zona de estudio no se presenta en ninguna localidad.

Al poniente de la zona de estudio, la Andesita Zempoala de edad Mioceno Tardio-Plioceno Temprano, sobreyace a la Formación Tepoztlán en forma aparentemente concordante, Cserna y Fries (1981, p. 26). Esta a su vez subýace a la Formación Cuernavaca de esdad Plioceno Tardio-Pleistoceno, Ortiz, (1978, p.36), en forma discordante.

En la Cuenca de México, durante el Mioceno Tárdío los estratovol-

The second

canes de composición andesítica y dacítica dieron a las Sierras Mayores (Sierra de las Cruces, Sierra de Río Frío, Sierra Nevada) y durante esta actividad volcánica se desarrollaron extensos abanicos volcánicos, (Mooser, 1975b, p.24).

Al sur de Amacuzac, al parecer durante el Mioceno-Plioceno Temprano, se desarrolló el Centro Volcanico Buenavista, de composición esencialmente andesítica, Cserna y Fries, (1981, p.25).

Por su posición estratigráfica y esencialmente por su litologfa completamente andesítica la Formación Tepoztlán debió de haberse originado durante el Mioceno-Plioceno Temprano, Tabla 3.

- (1) Fries (1965)
- (2) Martin del Pozzo (1980)

(3) Presente estudio

TABLA 3. - Correlación estratigráfica

CAPITULO VII

54

CONCLUSIONES Y RECOMENDACIONES

VII.1 Conclusiones

La Formación Tepoztlán:

-Se encuentra constituída por tres unidades litoestratigráficas: Unidad Volcánico-Lahárica, Unidad Fluvio-Lahárica, Unidad Lahárico-Volcánica, el desarrollo de las unidades se debe al predominio de ciclos repetitivos que variavan en intensidad y duración, tales ciclos se componen de tres etapas: etapa de actividad volcánica, etapa de construcción del abanico y etapa de ramificación, de tal mane ra que la Unidad Volcánico-Lahárica se desarrolla a partir de una etapa de actividad volcánica muy intensa y las otras dos etapas son comparativamente de menor importancia; en el desarrollo de la Unidad Fluvio-Lahárica intervienen predominantemente las etapas de construcción del abanico y de ramificación, la etapa de actividad volcánica no tiene la misma intensidad que en la Unidad Volcánicolahárica, sin embargo se manifiesta, evidencias de esto, son pequeñas capas de toba y lahares calientes en la cima de la unidad y nin gun cambio granulometrico vertical significativo en la unidad. En la Unidad Lahárico-Volcánica intervienen las tres etapas, predominando la de construcción del abanico y volcánica, y en menor grado la de ramificación.

-Se reconocierón dos tipos de lahares: Lahares de alta concentración de grano y lahares de baja concentración de grano. La diferencia entre ambos tipos está dada por el tamaño de las partículas que constituyen a la matriz, en el caso de los lahares de alta concentración de grano la matriz está constituida por partículas del tamaño de guijas finas a arcilla, por lo que tales lahares probablemente fueron deformados de acuerdo al modelo de Coulomb, y se originaron durante la etapa de construcción del abanico con la excepción de los lahares calientes los cuales evidentemente son resultado de la etapa de actividad volcánica.La matriz de los lahares de baja concentración de grano esta constituida por partículas del tamaño de arena fina a arcilla; probablemente fueron deformados de acuerdo al modelo de Bingham, y son resultado directo e inmediato de actividad volcánica.

-Características tales como geneticas, estructuras sedimentarias lítologia, textura y el tamaño de los clastos en los depósitos de origen fluvial indican que el depósito ocurrió en una topografía de suave pendiente y ubica a la Formación Tepoztlán dentro de una facies volcánica media ya proxima a la facis volcánica distal de acuerdo al modelo de Vessell y Davies (1981).

- De el valor de 37 imbricaciones medidas, se puede concluir que la fuente de suministro es el denominado Centro Volcánico Zempoala, lo que a su vez se ve confirmado, ya que:

a) las unidades presentan ligeros acuñamientos hacia el oriente.

- b) Los depósitos de grano fino se incrementan ligeramente hacia el oriente.
- c) La disposición de la Formación Tepoztlán (parte oriental y occidental) forman una media luna alrrededor de dicho centro.

VII.2 Recomendaciónes.

-Efectuar un estudio sedimentologico de porción occidental de la porción occidental de la Formación Tepoztlán con el objeto de poder establecer correlaciones entre ambas zonas.

BIBLIOGRAFIA

- Anderson, C. A., 1933, The Tuscan Formation of the northrn California: Univ. Calif. Dept. Geol. Sci. Bull., v. 23, p. 215-276.
 Bagnold, R. A., 1968, Deposition in the process of Hydraulic transport: Sedimentology, v. 10, p. 45-56.
- Bemmelen, R. W. van, 1949, The Geology of Indonesia; v.1A, General geology of Indonesia and adjacent archipelagoes: The Hague, Govt. Priting Office, 732 p.
- Blatt, H., Middleton, G., Murray, R., 1980, Origin of Sedimentary Rocks: Ed. Prentice-Hall,782 p.
- Bloomfield, K., y Valastro, J. R., 1974, Late Pleistocene Eruptive History of Nevado de Toluca, Volcano Central México: Geol. Soc. America Bull., v. 85, p. 901-906.
- Bull, W. B., 1964, Alluvial fans and near-surface subsidence in western Fresno Country, California: U.S. Geol. Survey Prof. Paper 437-A, 71 p.
- Bull, W. B., 1972, Recognition of alluvial-fans deposits in the records, en: Recognition of ancient sedimentary environments: SEPM, Spec. Publ. #16, p. 63-83.
- Cervantes, B. J., Orozco, Ch. F., Meza, S. M., Tricart, J., 1983, Determinación preliminar de los daños causados al medio natu_ ral por las erupciones del Volcán Chichonal, en: El Volcán Chichonal: Instituto de Geología, U.N.A.M., p. 100-120.

CETENAL-Instituto de Geografía, 1970, Carta de Climas de México 14Q-V: México, D.F., Comisión de Estudios del Territorio Na_ cional y Planeación, escala 1:500,000, con texto al reverso. Compton, R. R., 1970, Geología de Campo: Ed. Pax-México, 478p. Crandell, D. R., 1969, Surficial geology of Mount Rainer National

Park, Washington. : US. Geol. Survey Bull. 1288, 41 p. Crandell, D.R., 1971, Postglacial lahars from Mount Rainer Volca_

57

Crandell, D. R., y Fahnestock, R. K., 1965, Rockfall and avalanbes from Little Tahoma Peak on Mount Rainer, Washington.: U.S. Geol

no, Washington.: U.S. Geol. Survey Prof. Paper, 677, 75p.

Crandell, D.R., y Mullineaux, D. R., 1967, Volcanic hazard at Mount Rainer, Washington.: U.S. Geol. Survey Bull. 1238, 26 p.

Survey Bull. 1221-A, 30p.

Crandell, D. R., y Waldron, H. H., 1956, A recent volcanic mudflow of exeptional dimensions from Mount Rainer, Washington.: Am. Jour. Sci., v. 254, p. 349-362.

Cserna, Zoltan de, 1965, Reconocimiento Geologico en la Sierra Ma_ dre del Sur de México, entre Chilpancingo y Acapulco, Estado de Guerrero: Instituto de Geologia, U.N.A.M., Bol. 62, 72p.

Cserna, Z., Fries, C., Rincón, O., Silver, L. T., Westley, H., So_ lorio, M. J., Shmitter, V. E., 1974, Datos Geocronométricos de los Estados de México y Guerrero: Bol. Asoc. Mex. Geol. Petrol. v. 26, p. 263-273.

- Cserna, Z., y Fries, C., 1981, Hoja Taxco 14Q-h(7), con resúmen de la Geología de la Hoja Taxco, Edos. de Guerrero , México y Mo_ relos: Carta Geologica de México Serie 1;100,000 : Instituto de Geología, U.N.A.M., 47p.
- Cummans, J., 1981, Chronology of Mudflows in the South Fork Toutle River following the may 18 Eruption: Prof. Pap. U.S. Geol. Surv. 1250, p. 479-486.
- Davies, D. K., y Quearry, M. W., Bonis, M. B., 1978, Glowing Avalan_ ches from the 1974 eruption of the volcano Fuego, Guatemala: Geol. Soc. of America Bull., v. 89, p. 369-384.

Dall, A.,L., y Allen, E. T., 1925, The volcanic activity and hot

spring of Lassen Peak: Carnegie Inst. Washington Pub. 360, 190 p.

- Demant, A., 1978, Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación: U.N.A.M., Revista del Instituto de Geología #2
- Demant, A., 1981, L'axe Neovolcanique Transmexican: Tesis, Fac. de Scien. et Techniques du St. Jeromé, Marseille, 259p.
- Demant, A., y Robin, C., 1975, Las fases del vulcanismo en México, una síntesis en relación con la evolución geodinámica desde el Cretácico: U.N.A.M., Revista del Instituto de Geología # 1 p. 70-83.
- Dibble,R. R., Nairn, I..A., Neall, V. E., 1984, Volcanic hazard of north island, New Zealand- an Overview : Earthquakes and Hazard Prediction en: 27th International Geological Congress, Colloquium 6, v. 6, p. 144-159.
- Durell, C., 1944, Andesite breccia dikes near Blairsden, Califor_ nia: Geol. Soc. America Bull., v. 55, p. 255-272.
- Finch, R. H., 1930, Mudflow of Lassen Volcano: Volcano Letter 266 p. 1-3.
- Fink, J. H., Malin, H. C., D'Alli, R. E., Greley, R., 1981, Rheolo gical properties of mudflows asociated with the spring 1980 eruptions of Mount St. Helena Volcano: Geophysical Research Letters, v. 8, p. 43-46.
- Fisher, R. V., 1960, Criteria for recognition of laharic breccias, Southern Cascade Mountains, Washington: Geol. Soc. America Bull., v. 71, p. 127-132.
- Fisher, R. V., 1961, Proposed classification of volcanoclastic se_ diments and rocks: Geol. Soc. America Bull. v. 72, p. 1409-1414.

Fisher, R. V., 1966a, Mechanism for deposition from pyroclastic Flows: Am. Jour. Sci., v. 264, p.350-363.

- Fisher, R. V., 1966b, Rocks composed of volcanic fragments and their classification: Earth Sci. Rev., v. 1 , p. 287-298.
- Fisher, R. V., 1971, Feature of coarse-grained, high- concentra_ tion fluids and their deposits; Jour. Sed. Petrology, v. 41 p. 916-927.
- Flugel, E., 1982, Microfacies analysis of limestone: Spring-Verlag Berlin Heidelberg New York, 633p.
- Friedman, G. M., y Sanders, J. E.? 1978, Principles of Sedimento_ logy: Jhon Wiley & Sons, 792 p.
- Fries, C., 1960, Geología del Estado de Morelos y de partes adya_ centes de México y Guerrero, Región Central Meridional de Mé_ xico: U.N.A.M., Instituto de Geología, Bol. 60, 236p.
- Fries, C., 1962, Bosquejp geologico de la parte central y occiden_ tal del Estado de Morelos y áreas contiguas de los Edos. de Guerrero y México: XX Congr. Internacional Excursión C-9 p. 17-53.
- Fries, C., 1965, Hoja Cuernavaca 14Q-h(8): Carta Geologica México, Serie 1:100,000, Instituto de Geología, U.N.A.M.
- García, E., 1964, Modificaciones al sistema de clasificación clim<u>a</u> tica de Koppen: México, D.F., Offset Larios, S.A., 71p.
- Garzanti, E., 1985, The sandstone memory of the evolution of the Triassic volcanic arc in the southern Italy: Sedimentology v. 32, p. 423-434.
- Gastil, G., y Jensky, W. 1973, Evidence for strikeslip displace_ ment beneath the Trans-Mex. Volcanic Belt: Stanford Univ.. Publ. Geol. Sci. v. 13, p. 171-180.

Gloppen, T. J., y Steel, R.J., 1981, The deposits, internal struc_ ture and geometry in six alluvial fan-fan delta bodies (devo_ nian-norway), A study in the significance of bedding secuence in conglomerates: SEPM, Spec. Publ. #31, p.49-69.

- Gorshkov, G. S., 1959, Gigantic eruption of the volcano Bezymiany: Bull. Volcanol., v. 20, p. 77-109.
- Hampton, M. A., 1975, Competence of fine-grained debris flow: Jour. Sed. Petrology, v.45, p.834-844.
- Hampton, M. A., 1979, Bouyancy in debris flow: Jour. Sed. Petrology v. 49, p.753-758.
- Harrison, S., y Fritz, w.J., 1982, Depositional features of March 1982 Mount St. Helena sediments flow: Nature, v. 299, p. 720-722.
- Novey, E. O., 1902, Observations on the eruptions of 1902 of La Sourfriere, St. Vicent, and Mt. Peleé, Martinique: Am. Jour. Sci., v. 14, p. 319-358.
- Hyde, J. H., 1975, Upper Pleistocene pyroclastic-flow deposits and lahars south of Mount St, Helens Volcano, Washington: U.S. Geol. Survey. Bull. 1383-B, 20p.
- Innes, J. L., 1983, Debris Flow: Progress in Phsical Geography, v.
 7, p. 469-501.
- Iida, K., 1938, The mudflow that ocurred near the explosion crater of Mt. Bandai on May 9-15, 1938, and some physical properties of volcanic mud: Tokyo Imp. Univ., Earthquake Research Inst. Bull., v. 16, p.658-681. (Resúmen en Inglés).
- Janda, R. J., Scott, K. M., Nolan, K.M., Martinson, H.A., 1981, Lahar movement, effects, and deposits: Prof. Pap. U.S. Geol. Surv. 1250, p.460-478.

Johnson, A. M., 1970, Physical processes in geology: San Francisco

Freeman, Cooper and Co., 577p.

- Kunts, H. A., Rowley, P. D., Macleod, N. S., Reynolds, R. L., Mc Broome, L. A., Kaplan, A. M., Lidke, D. G., 1981, Petrography and particle- size distribution of pyroclastic-flow, ash-clo_ ud and surge deposits: Prof. Pap. U.S. Geol. Surv. 1250, p. 525-539.
- Lacroix, A., 1904, La Montagne Peleé et ses éruptions: Mason et Cie Paris, 650p.
- Lajoie, J., 1979, Facies Models-Volcanoclastic Rocks, en: Facies Models (R. G. Walker Ed.), Geoscience Canada, Reprint Series 1, Cap. 17, p.191-200.
- Lambert, M. B., 1980, Volcanoes: University of Washington Press, Seatle, 64 p.
- Lindsay, J. F., 1968, The development of clastic fabric in mudflow Jour. Sed. Petrology. v. 38, p. 1242-1253.
- Lowe, D. R., 1982, Sediment Gravity Flows; II Depositional Models with special reference to the deposits of high-density turbi_ dity currents: Jour. Sed. Petrology, v. 52, p. 279-290.
- Lozano, G. R., 1953, Fenómenos de erosión en la región de Tepoz_ tlán Edo. de Morelos y en el valle del Mezquital , Edo. de H<u>i</u> dalgo: Memoria del Congreso Científico Mexicano, pte. 3, p. 206-207.
- Lugo Hubp J., 1984, Geomorfología del sur de la Cuenca de México: Serie Varia T. 1 #8, 95 p., U.N.A.M., Instituto de Geografía.
- Lugo Hubp J., y Martinez Luna V., 1980, La disección del relieve en el sur de la Cuenca de México y porciones adyacentes: Bol. #10, p. 55-64, U.N.A.M., Instituto de Geografía.
- Martin del Pozzo, A. L., 1980, Vulcanología de la Sierra del Chi____ chinautzin: Tesis de Maestría, Facultad de Ciencias, U.N.A.M.,

- Mason, A. C., y Foster, H. L., 1956, Extruded mudflow hill of Nira_ zaki, Japan: Jour Geology, v. 64, p. 74-83.
- Mc Dowell, F. W. y Clabaugh, S. E., 1979, Ignimbrites of the Sierra Madre Occidental and their relation of the tectonic history of western México, en : Ash Flow Tuffs: Geol. Soc. America Spècial Paper 180.
- Mooser, F. 1957, Los ciclos del vulcanismo que formaron la Cuenca de México: XX Congr. Geol. Int. en: Vulcanologia del Cenozoico T. II, p. 337-348.
- Mooser, F., 1962, Bosquejo Geológico del extremo sur de la Cuenca de México: XX Congr. Geol. Int. Excursión C-9.
- Mooser, F., 1963, Historia Tectónica de la Cuenca de México: Bol. Asoc. Mex. Geol. Petrol., v. 15, p.239-246.
- Mooser, F., 1972, The Mexican Volcanic Belt. Structure and Tectonic: Geof. Int. v. 12, p. 55-70.
- Mooser, F., 1975a, The Mexican Volcanic Belt, interpretation deri_ ved from fractures and form: EOS, v. 56, p.1066.

Mooser, F., 1975b, Historia Geológica dellaCuenca de México: Memo_ ria de la Obra del Sistema de Drenaje Profundo,DDF, p. 9-30.

- Mooser, F., Nairn, A., Negendank, J., 1974, Paleomagnetic investiga_ tion of the Tertiary and Quaternary igneous rocks: VII A Paleo_ magnetic and petrologic study of volcanic of the vally of Méxi_ co: Geol. Rundschau, 63, p.451-483.
- Moreno, H. P., 1984, Sedimentology of modern alluvial fans in Baja California, M-exico: M.Sc. Thesis, MC. Master University, Hamil_ ton, Ont. Canada.

Mullineaux, D. R., y Crandell, D. R., 1962, Recent Lahars from Mount St. Helens, Washington: Geol. Soc. America Bull., v.73, p.855869.

- Murai, I., 1960, On the mud-flows of the 1926, eruption of volcano Tokachi-daké, central Hokkaido, Japan: Tokyo Univ. Earthquaque research Inst. Bull., v. 38, p.55-70.
- Murai, I., 1963, A brief note on eruption of the Tokachi-daké, vol_ cano of June 29–30, 1962: Tokyo Univ. Earthquaque Research Inst. Bull., v. 41, p. 185–208.
- Nairn, I. A., Wood, C. P., Hewson, C. A., 1979, Phreatic eruptions of Ruapehu: Abril 1975: N. Z. Jour. of Geology and Geophysics v. 22, p.155-173.
- Naylor, M. A., 1980, The origin of inverse grading in muddy debris flow deposits a review: Jour. Sed. Petrology, v. 50, p. 1111-1116.
- Negendank, J., 1973, Some aspects of volcanic rocks of the vally of México: Bull Volcanol v. 37 p.3
- Negendank, J., 1976, The crustal origin of the valley of México volcanoes.:Congr. Geol. Latin. (Resúmen), p. 98.
- Ochoterena, F. H., 1978, Origen y edad del Tepozteco: Bol. #8, p. 41-54, Instituto de Geografía, U.N.A.M.
- Oinouye, Y., 1917, A few interesting phenomena on the eruption of Usu: Jour. Geology, v. 25, p. 258-288.
- Okuda, S., Suwa, H., Okunishi, K., Yokoyama, K., y Nakamo, M., 1980, Observations on the motion of a debris flow and its geo<u>u</u> morphological effects: Zeitschrift fur Geomorphologie Supple_ mentband., v. 35, p. 142-163.

Ordoñez, E., 1895, Las rocas eruptivas del Suroeste de la Cuenca de México: Bol. #2, p. 5-46, Intituto de Geologia, México. Ordoñez, E., 1937, Tepoztlán Estado de Morelos: Bol. Soc. Geol.

Mex., v. 10, p.91-112.

Ortiz, P. M., 1978, Estudio geomorfológico del glasis de Buenavis_ ta, Edo. de Morelos: Bol. #8, p. 25-40, Instituto de Geogra_ fía, U.N.A.M.

- O'shea, B. E., 1954, Ruaphu and the Tamgiwai disaster: N. Z. Jour. Sci. and Technology, v. 36, p.174-189.
- Ontiveros, T. C., 1973, Estudio Estratigráfico de la porción Nor_ occidental de la Cuenca Morelos-Guerrero: Bol. Asoc. Mex. Geol. Petrol. v. 25, p. 190-234.
- Pierson,T. C., 1981, Dominant particle support mechanism in debris flow at Mt, Thomas, New Zealand, and implications for flow m<u>o</u> bility: Sedimentology, v. 28, p. 49-60.
- Pierson, T. C., 1985, Initation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mt. St. Helens, Washington: Geol. Soc. America Bull, v. 96, p. 1056-1069.
- Perret, F. A., 1924, The Vesuvius eruption of 1906: Carnegie Inst. Washington Pub. 399, 151 p.
- Pescatore, T., y Rolandi, G., 1981, Osservazioni preliminari sulla stratigrafia dei depositi vulcanoclastici nel settore SW dei Campi Flegrei: Bolletino della Societa Geologica Italiana, 100(2), p.233-254.
- Pettijobn, F. J. 1975, Sedimentary Rocks: Harper & Roww, Publishers 628 p.
- Reineck, H. E., y Singh, I. B., 1980, Depositional Sedimentary Envi_ ronments: Ed. Springer-Verlag, 439 p.
- Roberts, A. H., 1969, An investigation of the gravity flow of non_ wohesive granular through discharge chutes: Jour. of Eng. for industry, v, 91, p. 373-381.
Robin, C. 1982a, Relations Volcanologie-Magmatologie-Geodynamique: Aplication au Passage entre Volcanis mes Alcalin et Andesiti_ que que Dans le Sud Mexicain (Axe Trans-Mexicain et province alcaline Orientale): Annales Scientifiques de L' Universite de Clermont-Ferrand II, #70, 503 p.

- 19 -

- Robin, C., 1982b, México : The Mexican Volcanic Belt: en Andesites: John Wiley & Sons ed. p. 137-147.
- Rodine, J. D., y Johnson, A. M., 1976, The ability of debris flow, heavily freighted with coarse clastic materials, to flow on gentle slopes: Sedimentology, v. 23, p. 213-234.

Rzedowski, J., 1978, Vegetación de México: Ed. Limusa, 432 p.

- Sanders, J. E., 1965, Primarysedimentary structures formed by tur_ bidty currents and related resedimentation mechanisms: SEPM, Spec. Publ. 12, p. 192-220.
- Sapper, K., y Termer, F., 1930, Der Ausbruch des Vulkans St. Maria in Guatemala vom 2-4 November 1929: Zeitschr Vulkanologie, v. 13, p. 73-101.
- Schmincke, H. U., 1967, Graded Lahars in the type sections of the Ellensburg Formation, south-central Washington: Jour. Sed. Pe_ trology, v. 37, p. 438-448.
- Schumm, S. A., 1972, Fluvial paleochannels: SEPM, Spec. Publ. 16 p. 98-107.

Schumm, S. A., 1981, Evolution and response of the fluvial system sedimentologic implications: SEPM, Spec. Publ. 31, p. 19-29.

- Scrivenor, J. B., 1929, The mudstreams ("lahars") of Gunong Keloet in Java: Geol. Mag. v.66, p. 433-434.
- Secretaria de Programación y Presupuesto, 1982, Geología de la Re_____ pública Mexicana: Inst. Nal. Est. e Inf. 82 p.

65

Segerstrom, K., 1950, Erosion studies at Paricutin, State of Michoa_ can, México: U.S. Geol. Surv. Bull, 965-A, p. 1-164.

- Sharp. R. P., y Nobles, L. H., 1953, Mudflow of 1941 at Wrightwood, Southern California: Geol. Soc. America Bull, v. 64, p. 547-560.
- Shimozuro, D., Goyda, N., Kagiyama, T., Koyama, E., Hagiwara, M., Tsuji, H., 1982, The 1982 eruption of Asama Volcano: Bull of Eartquaque Research Institute, v. 57, p. 559.
- Smith, A. L., y Roobol, M. J., 1982, Andesitic pyroclastic flow: en Andesites: John Wily & Sons ed. p. 415-433.
- Tada, F., y Tsuya, H., 1927, The eruption of the Tokachi-daké Vol_ cano, Hokkaido, on May 24, 1926 Eartquaque Research Inst. Research Bull, v. 2, p.49-84. (Resúmen en Inglés).
- Takahashi, T., 1981, Debris Flow: Ann. Rev. Fluid Mech., v. 13 p. 57-77.
- Urrutia-Fucugauchi, J., 1983, Preliminary paleomagnetic study of lower tertiary volcanic rocks from Morelos and Guerrero Sta_ tes: Geof. Int.., v. 22, p. 87-110.
- Urrutia-Fucugauchi, j., y L. del Castillo., 1977, Un Modelo del Eje Volcánico Mexicano: Soc. Geol. Mex. V.38. p. 18-28.
- Vessell, R. K., y Davies, D. K., 1981, Nonmarine Sedimentation in

an active fore arc basin: SEPM, Spec. Publ. # 31, p. 31-55. Visher, G. S., 1972, Physical characteristics of fluvial deposits: SEPM, Spec. Publ. #16, p. 84-97.

Volght, B., Janda, R. U., Glicken, H.. Douglass, P. M., 1984, Na______ ture and mechanism of the Mount St. Lelens rockslide-avalanch of 18 may 1980: Geotechnique, v. 23, p. 243-260.

Waldron, H. H., 1967, Debris flow and erosion control problems cau_

sed by the ash eruption of Irazu Volcanic, Costa Rica: U.S. Geol. Surv. Bull, 1241-I, 37 p.

- Walker, G. P. L. 1982, Eruptions of andesitic volcanoes: en Andesi_ tes: John Wiley & Sons ed. p.403-414.
- Walker, R. G., 1975, Conglomerates: Sedimentary structures and fa_ cies modes1: SEPM, Short Course #2, p. 133-161
- Whymper, E., 1892, Travels amongst the Great Andes of the Equator: (London), 456 p.
- Wilson, L., y Head, J. W., 1981, Morphology and Rheology of Pyro_ clastic flows and their deposits, and guidelines for future observations: Prof. Pap. U.S. Geol. Surv. 1250, p.513-524 Wittch, E., 1918, La Sierra de Tepoztlán, en: Salinas E.: Mem.

Soc. Cient. Antonio Alzate, T. 38, p. 355-385

Wolf, T., 1878, Der Cotopaxi un seine letzete Eruption an 26 Juni, 1877: Neves Jahrb. Fur Min. Geol. und Pal., p. 113-167.

ESQUEMAS DE LAS COLUMNAS ESTRATIGRAFICAS DE LA FORMACIÓN TEPOZTLAN

Leyenda

INTERVALO CUBIERTO NO AFLORA

LAHARES DE BAJA CONCENTRACION DE GRANO

El tamaño de grano varia desde grandes bloques (+ 2m. de diametro) a particulas del tamaño de limo y arcilla. Los clastos son de subangulosos a subredondeados y de composicion andesitica. La matriz que soporta a los clastos esta constituida por particulas de tamaño de arena fina a orcilla. No hay contacto erosivo en la cima de capas a las cuales sobreyacen. La gradación normal e inverfida son muy comunes.

BRECHAS VOLCANICAS

El tamaño de grano varia desde grandes bloques (± 2m. de diametro) a particulas del tamano de limo y arcilla. Los clastos son de subredondeados a subangulosos y de composicion de andesita de hornblenda. La matriz que soporta a los clastos tiene una textura afanitica y una composicion de andesita de lamprobolita. No hay contacto erosivo en la cima de capas a las cuales sobre-

De composicion andesitica y con texturas que varian de porfiritica-afanitica.

LAHARES DE ALTA CONCENTRACION DE GRANO

El tamaño de grano varia desde grandes bloques (± 1·5m. de diametro) a particulas del tamaño de limo y arcilla. Los clastos son de subangulosos a subredondeados y de composicion andesitica. La matriz que soporta a los clasitos esta constituida por particulas del tamaño de grava tina a arcilla.No hay contacto erosivo en la cima de ca-

tida son muy comunes.

DEPOSITOS FLUVIALES

Los conglomerados se presentan de 3maneras = a)rellenando lentes, b) como burdos horizontes interestratificados con grava arenosa; c) como capas masivas menores de l·O m. y con vaga estratificación. EL tamaño de los clastos es menor de 30cm. de diametro. EL contacto es erosi vo en las capas a las cuales sobreyacen. Las gravas arenosas y las arenas gruesas presentan estratificación paralela y lentes, la estratificación cruzada es demasiado vaga e insignificante al igual que pequeñas capas de material fino (arena fina-arcilla).

ESCALA VEN 1505

LA ALTITUD ES EN METROS SOBRE EL NIVEL DEL MAN

1.62

1.20.0 . B.4:8% -2375 -2375 -2375 -2375 2525 8'4:0:0 22200 ····· 740 540 1:00:4 2350 -2500 DA 4"/: P. 1:0:0:0); *<u>A'6-9</u>65 16:34 30.92D 000000 O -2325 ī ₫. O ο > 0 C a œ and y Kall is ۹ **MAXY** A the be should 2300 442.0; SA60. 42000 200:X04 12120 Cold S

. ۳. **ن**ه ن ۱۹۰۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰

ം എം പോ ം എം പോ ന്ന് പ്രാം പോലം പ്രാം ന്ന് പ്രാം പോലം വാ ന്ന് പ്രാം പോലാവ് ന്നാം

T. States The Park

Tmotf

ZONA NORTE

DOMANCO DE MALEBIADAUNI OTEPEC

98°57'00" 99°00'00" 19°02'00" lainepant - 190 00'00" 12000-Nepo

Qal ALUVION Pac GRUPO CHICHINAUTZIN = Principalmente derrames de lava andesítica, poco material volcanoclastico asociado. Tmptiv UNIDAD LAHARICO-VOLCANICA = Gruesas secuencias de capas de lahares de alta concentración de grano y lahares de baja concentración de grano, e interestratificados en menor proporción tobas, depósitos de origen fluvial y brechas de origen volcánico. Tmptit UNIDAD FLUVIO-LAHARICA=Lahares de alta concentración de grano in

LEYENDA

UNIDAD FLUVIO-LAHARICA=Lahares de alta concentración de grano interestratificados con depósitos de origen fluvial. Tobas lahares calientes y lahares de baja concentración de grano no son muy abundantes aunque estan presentes.

UNIDAD VOLCANICO—LAHARICA=Abundantes lahares de baja concentración de grano interestratificados con tobas y brechas de origen volcánico.

GRUPO BALSAS=Limo poco consolidado color rojo, interestratificados con yeso color verde.

C I A R

0

-

CUATERNARIO

TLAN

EPOZ

-

ciòN

FORMA

[Tmptvl]

Tpeb

E R C

-

