

Universidad Nacional Autónoma de México

FACULTAD DE INGENIERIA

CALCULO DE HUNDIMIENTOS EN UN TRAMO DE PISTA AEREA POR CONSOLIDACION PRIMARIA Y POR CONSOLIDACION SECUNDARIA.

T		E	S		Ι		S
Que	par	а	ob lo ner	el	Tít	ulo	de
I	NG	EN	I E R	0	CIV	V I L	
P	T	0	S	8	n	t	a
BE	NJAI	MIN	SI	LVA	ZJ	A R A	TE

7 Eg.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CALCULO DE HUNDIMIENTOS EN UN TRAMO DE PISTA AEREA POR CONSOLIDACION PRIMARIA Y POR CONSOLIDACION SECUNDARIA.

ı.	INTRODUCCION	1
	I.1)Consideraciones preliminares	1
11.	TEORIA DE CONSOLIDACION PRIMARIA O DE TERZAGHI	19
	II.1) Ejemplo de cálculo de deformación en un	
	estrato	25
	II.2) Resumen de asentamientos totales calcu-	
	lados por Consolidación Primaria	35
III.	TEORIA DE CONSOLIDACION SECUNDARIA O DE ZEEVAERT	37
	III.1) Métodos apropiados para obtener los pa	
	rámetros	39
	III.2) Ejemplo de cálculo de deformación en 🕶	
	un estrato	56
	III.3) Resumen de asentamientos totales calcu	
	lados por Consolidación Secundaria	82
	III.4) Corrección de las deformaciones tota	
	les debido al Rebote Elástico	82
īv.	COMPARACION DE RESULTADOS DE AMBAS TEORIAS, EN-	
	THE ELLAS Y CON LAS OBSERVACIONES REALES MEDIDAS	
	en la pista	85
v.	CONCLUSIONES	86

Pag.

CALCULO DE HUNDIMIENTOS EN UN TRAMO DE PISTA AEREA POR CONSOLIDACION PRIMARIA Y POR CONSOLIDACION SECUNDARIA.

I.- INTRODUCCION

Ante el impresionante crecimiento de la ciudad de México, deben crecer en consecuencia el tráfico aéreo y la capacidad del actual aeropuerto de esta Ciudad a corto y a largo plazo. Por tal motivo deben realizarse obras de infraestructura para satisfacer ésta necesidad como son los aeropuertos. Los aero puertos deben ser diseñados de tal forma que funcionen en for ma óptima durante toda su vida útil. Para lograr este propósito, uno de los problemas fundamentales a resolver es el del cálculo de probables hundimientos que tendrán las pistas al transcurso del tiempo, sobre todo cuando son construídas en un suelo muy compresible, como es el caso del suelo del ex-la go de Texcoco, sitio donde se pretende la ampliación de Aeropuerto Actual.

El objetivo principal de este trabajo es analizar los hundi-mientos de un tramo de pista, en base con los datos que de -éste se cuenta; dicho análisis se pretende hacer por Consolidación Primaria y por Consolidación Secundaria, con el fin de comparar ámbos resultados con las observaciones reales que se tienen del tramo mencionado y, en base a esta comparación poder decir que teoria se acerca más a la realidad.

I.1. - Consideraciones Preliminares

Para la realización del presente trabajo se cuenta con los datos que se consideran necesarios; estos datos son los siguientes:

- 1.- Se tiene un tramo de pista de dimensiones 80x 200 metros. --(fig. No. 11)
- 2.- Estratigrafía de un sondeo realizado en la parte central del tra mo mencionado, en este sondeo se observan también las propie dades índice del suelo, (LL,LP,W%), así como el número de -golpes necesarios para penetrar 30 cm. en el suelo. (fig. --No. 1).
- 3.- En base a la Estratigrafía del sondeo mencionado, así como de la profundidad del nivel freático, se calculó la distribu ción de esfuerzos efectivos (fig. No. 2).
- 4.- Se tiene la sección de pista considerada adecuada, (fig. No. 3), en donde también se observan los materiales que la forman y sus respectivos pesos volumétricos correspondientes; en base a ésta sección de pista (similar a la usada actual-mente en las sucesivas ampliaciones del aeropuerto actual), se calculó el diagrama de incrementos de presiones que ejerce rá sobre el suelo a una profundidad de 1.50 metros.(fig No. 3).
- 5.- Se cuenta con 14 pruebas de compresibilidad, cuyas gráficas aparecen en las figs. Nos. 4 a 10.
- 6.- Se tienen también mediciones de nivelaciones realizadas en la pista desde su construcción hasta la fecha. Esta figura nos servirá para comparar los hundimientos de ésta con los calculados. (Fig. No. 11).

1.1.1.- Consideraciones Sobre la Sección de Pista Adecuada

La sección de pista considerada como adecuada (fig. No. 3) es similar pero no igual a la que se ha venido utilizando con --

- 1.- Se tiene un tramo de pista de dimensiones 80x 200 metros. --(fig. No. 11)
- 2.- Estratigrafía de un sondeo realizado en la parte central del tra mo mencionado, en este sondeo se observan también las propi<u>e</u> dades índice del suelo, (LL,LP,W%), así como el número de -golpes necesarios para penetrar 30 cm. en el suelo. (fig. --No. 1).
- 3.- En base a la Estratigrafía del sondeo mencionado, así como de la profundidad del nivel freático, se calculó la distribu ción de esfuerzos efectivos (fig. No. 2).
- 4.- Se tiene la sección de pista considerada adecuada, (fig. No. 3), en donde también se observan los materiales que la forman y sus respectivos pesos volumétricos correspondientes; en base a ésta sección de pista (similar a la usada actual-mente en las sucesivas ampliaciones del aeropuerto actual), se calculó el diagrama de incrementos de presiones que ejercerá sobre el suelo a una profundidad de 1.50 metros.(fig No. 3).
- 5.- Se cuenta con 14 pruebas de compresibilidad, cuyas gráficas aparecen en las figs. Nos. 4 a 10.
- 6.- Se tienen también mediciones de nivelaciones realizadas en la pista desde su construcción hasta la fecha. Esta figura nos servirá para comparar los hundimientos de ésta con los calculados. (Fig. No. 11).

I.1.1.- Consideraciones Sobre la Sección de Pista Adecuada

La sección de pista considerada como adecuada (fig. No. 3) es similar pero no igual a la que se ha venido utilizando con --

	F I A	E d	O LIMITE LIQUIDO. D NUMERO DE GOLPES PARA PENETRAR 30 cm.	-
CLASIFICACION	TICRA	TCION	+ LIMITE PLASTICO	
	ESTR/	PROFL	DE CONTENIDO NALURAL DE AGUA (%	
				-
COMPRESIBILIDAD, GRIS Y CAFE ROJIZO.		I,		1
ARCILLA DE ALTA PLASTICIDAD, CAFE		27		
ARENA FINA GRIS, (CH).		3		
PLASTICIDAD Y AL-		4		-
(CH).		5		-
ARENA FINA NEGRA LIMOSA.		6		
CAFE VERBOSO	V//	-		
		7		
CAFE ROJIZO		8		7
	$\langle\!\!//$	9		1
GRIS CAFF CLARO	¥//	10		1
ARENA BLANCA CAFE	¥//	n		-1 :
GRIS		12	╞┼┿┿┿┿╈╝╴╴╴╴	1
CAFE				1.
	\mathbb{V}	13		-
GRIS		14		-
ARENA FINA NEGRA	111	15		1
CAFE		16		1.
GRIS	¥//	17	·│┾╪╪╧╧╔╬┼╷┽┽┥┽┥┼┼┼┼┼┼┼┼┼┼┼┼┼	- 3
		18		1.
ARENA FINA NEGRA CAFE	V//	19		1.
ARENA FINA NEGRA GRIS		20		1 1
VIDRIO VOLCANICO GRIS	11	20	┟╾╾╾╴╴┺╍╌╴	-
GRIS VERDOSC	VII.	21		1.
· · · · · · · · · · · · · · · · · · ·		22		
		23	₃ <mark>╷╷╷╷╷╷<mark>╞</mark>╷╷╷╷╷╷╷╷╷╷╷╷</mark>	-
GRIS VERDOSO	V//	24		-
		25	s - +	1
	¥//	26		1
GRIS ROJIZO	¥//	.,	╸ <mark>╵╦╤╤╤╤╤╤</mark> ┪╷╷╷╷╽╷┼┥┼┼┼┼┤┥┽┽┿┿	1
	1		<u>│</u> [™] ↓ ↓ ↓	+
GRIS VERDOSO	VII	28		-
	VII	29	╯ <u>╘╶╫╴╒╴┲╴</u> ╤╤╤╤╤╤╤╤ └╴╷╴ <u>╷</u>	1.
LIMU ARENUSU GRIS	V//	30		1
000	\mathbb{V}/\mathbb{I}	31	╷┝ <u>╁┼╽┻╪╪╁</u> ┧╎┼┼┽┨╌┤┥╅┤┼┦┦╄╇┿┿	-
GHIS	V//	32		1.
	¥///	33	╕ <mark>┝╶[┿]╪╤╪╪╪╧╴</mark> ┦╲ ╡┼╎╴┨╴┨╴┥╴┥╴┥┥┥┥┥┥┥┥┥	1 :
LIMO ARENOSO GRIS	V//		┟┼┼┼┼┼┼╋┱┱╗┨┥┽┽┽┽┽┽┽┿┽	۱.
	1//	34		7,8
	¥///	35	╷┝╼┥╴╴┶ ┍┲╾╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	1.5
CENIZA VOLCANICA Y ARENA FINA GRIS	0///	36	3 1 1 1 1 1 1 1 1 1 1	1.5
GRIS	V//	37	╷┝┼┼┝┫╎╎╎┼╎┽┽┛╎╎╎┼┼┼┼┼┼┼	-
CENIZA VOLCANICA GRIS		38	」 <mark>┟╔╤╤╤</mark> ┅┥┤┼┼╎┤┽┼╿┼┼┼┼┼┼┼┼┼┼┼	1
GRIS VERDOSC		30		13
	1//	39		л.°

r**: -** -

DIAGRAMA DE INCREMENTO DE PRESIONES

CLA	E MATERIAL	∑m ton/m³	CLAV	'E/	MATERIAL	$\overline{\ }$	Υ π
Δ	CONCRETO ASPAITICO	2.2	F	GRA	/Δ	¥	1 9
Â	BASE HIDRAULICA	2.0	Ġ	TEP	ETATE		1.85
c	TEZONTLE	1.2	н	TIER	RA VEGETAL		1.2
ñ	CONCRETO HIDRAULICO	2.2	r	TEZ	ONTLE / TEPET	TATE	1.8
Ē	ARENA	1.7					

PRODUCIDAS POR EL PESO DEL PAVIMENTO

. . .

buenos resultados en las sucesivas y necesarias ampliaciones de las pistas del aeropuerto actual de la Ciudad de México, sino que tiene una mejora que se considera conveniente, ésta es, se le colocó en ambos extremos un material con mayor peso volumétrico (grava, $\forall m = 1.9 \text{ ton/m3}$), con el fin de evitar los constantes encharcamientos en la pista así como los constan-tes reencarpetamientos, ocasionados porque se hunde más rápidamente la parte central de la pista que sus extremos. Con éste sobrepeso se considera que la pista tendrá hundimientos diferenciales pequeños y por lo tanto se evitará el fenómeno conocido como acuaplaneo.

Debido a que la profundidad media del nivel freático (NAF), es de -1.60 m., se consideró adecuado realizar la excavación para colocar la pista a una profundidad no mayor de ésta, de tal forma que se trabajara siempre "en seco".

De análisis que a continuación se realizan se llegó a la conclusión que el menor incremento de presión se ejerce al excavar a -1.50 m. En base a los espesores de las capas que con<u>s</u> tituyen la sección estructural del tramo de pista, así como a sus pesos volúmetricos correspondientes, se calculó el incremento de presiones (ΔP) a la profundidad de -1.50 m de la m<u>a</u> nera como se indica en la tabla I.1.

El resumen de resultados de la tabla I.l se indica a continua ción:

PUNTO	ΔP , en ton/m2.
1	1.2
2	1.5
3	0.9
4	0.0

	PUNTO 1				PUNTO 2	2	PUNTO 3		
MATERIAL	e m	∦m ton/m3	ΔP ton/m2	e m	ym ton/m3	∆P ton/m2	e m	ym ton/m3	ΔP ton/m2
Plantilla de arena	0.10	1.7	0.17	0.1	1.7	0.17	0.1	1.7	0.17
Losa de concreto	0.15	2.2	0.33	-	-	-	-	-	-
Tezontle	0.25	1.2	1.50	-	-	-	-	-	-
Grava	-	-	-	1.4	1.9	2.66	0.25	1.9	0.475
Tepetate	-	-	-	-	-	-	0.85	1.85	1.5725
Base hidráulica	0.30	2.0	0.60	0.4	2.0	0.80	0.2	2.0	0.4
Concreto asfáltico	0.20	2.2	0.44	0.1	2.2	0.22	-	-	-
			3.04			3.85			2.6175
DESCARGA	1.50	1.2	1,80	1.9	1.2	2.28	1.5	1.2	1.80
INCREMENTO DE CARGA			1.24			1.57			0.82

TABLA I.1

En la tabla I.1.-

- e : espesor de cada capa en metros
- ¥m : peso volumétrico del material en ton/m3
- ΔP : incremento de presión en ton/m2

Con los resultados de incrementos de presión obtenidos anteriormen te se graficó el diagrama idealizado de incrementos de presión indicado en la misma figura No. 3. Con ésta gráfica idealizada de incremen-tos de presión y con las dimensiones de la pista indicadas en la misma se aplicó la Teoria de Boussinesq, que se refiere al cálculo de esfuer zos ocasionados por una sobrecarga rectangular uniforme de longitud -infinita.

α, β, S se deben tranformar a --

 $\pi - 180^{\circ}$ x - N°

De acuerdo con los esfuerzos calculados en los 4 puntos indica-dos en la pista de la fig. No.3, se observa la distribución de de incrementos de esfuerzos verticales ($\sqrt{2}$, en ton/m2) ó bulbos de presiones de acuerdo con la profundidad (fig No. 12), debidos al sobrepeso que ejerce el tramo de pista.

I.1.2.- Cálculo de la Distribución de los Esfuerzos Efectivos.

Con la estratigrafía del sondeo de la figura No. 1 y de acuerdo a la profundidad del NAF a -1.50 mts. fué posible calcular la -distribución de los esfuerzos efectivos existentes en el suelo antes que se aplicara el incremento de esfuerzos producido por la pista.

El cálculo teórico de los esfuerzos existentes se basa en la -aplicación de la ecuación fundamental de la Mecánica de Suelos:

 $P = \overline{P} + \overline{\mu}$ P = Presión total en ton/m2DONDE $\overline{P} = Presión efectiva en ton/m2$ $\overline{\mu} = Presión de poro en ton/m2$

Esto en forma gráfica se indica de la siguiente manera:

Del análisis de los esfuerzos efectivos se obtuvo la gráfica de la figura No. 2, en ésta figura se dibujaron también los incre-mentos de esfuerzos producidos por la sección de pista en los puntos l a 4; ésta figura nos será muy útil posteriormente en el cálculo de asentamientos, ya sea por Consolidación Primaria o Secundaria.

En la mencionada figura No. 2 se indican también las presiones de preconsolidación (en ton/m2), obtenidas gráficamente de las curvas de compresibilidad; éstas presiones son muy importantes ya que nos indican la presión hasta la cual el suelo estuvo cargado anteriormente, por lo que si no rebasamos esta presión, estaremos seguros que los asentamientos que tendremos serán pequeños, pero en caso contrario las deformaciones serán inadmisibles

II.- TEORIA DE CONSOLIDACION PRIMARIA O DE TERZAGHI

La teoría de consolidación unidimensional o unidireccional fue desarrollada por K. Terzaghi, también se le conoce como Consolidación Primaria; para desarrollar su teoría Terzaghi se basó en las siguientes hipótesis:

- 1.- El flujo en el suelo es únicamente vertical
- 2.- El agua es incompresible.
- 3.- Las partículas son incompresibles
- 4.- El suelo está 100% saturado.
- 5.- La consolidación es únicamente vertical

La teoría de consolidación descubierta por Terzaghi en 1925, expli ca exclusivamente el fenómeno hidrodinámico que tiene lugar cuando el -agua gravitacional es expulsada de los poros de la estructura esquelética elastoplástica del suelo, en donde el efecto de la viscosidad inter-granular no ha sido considerado.

En base a las leyes de flujo de agua se obtiene la expresión de la ecuación diferencial que gobierna el cambio de presiones de acuerdo a la profundidad:

 $C_V \frac{\partial \mu^2}{\partial^2 x} = \frac{\partial \mu}{\partial t}$

Ecuación diferencial de la --Consolidación unidimensional. Para poder obtener la solución a ésta ecuación se hizo la hipótesis de que el valor de Cv es constante. En la realidad no lo es, y lo anterior implica una posibilidad de dispersión de los resultados estim<u>a</u> dos respecto de los reales, al calcular la influencia del tiempo.

La solución de la ecuación diferencial es:

$$\mathcal{M} = \Delta_{P} \sum_{n=0}^{n=\infty} \left\{ \frac{4}{(2n+1)\pi} \operatorname{sen} \left[\frac{(2n+1)\pi}{2} \cdot \frac{z}{H} \right] \mathcal{E}_{1}^{\frac{(2n+1)^{2}\pi^{2}k(1+\theta)t}{4H^{2}\sqrt{w} a_{v}}} \right\} - \cdots - \text{II.1}$$

$$\operatorname{donde} \quad Cv = \frac{k(1+\theta)}{\sqrt[3]{w} a_{v}}$$

que es de la forma:

 $\frac{\mu}{\Delta P} = f(z, t)$

De la ccuación II.l se le puede llamar Factor Tiempo a Tv = $\frac{Cvt}{H2}$; donde Tv es un número adimensional.

También se define como grado de consolidación, U (%) a la relación entre la consolidación que ya se ha tenido y la consolidación total que ha de producirse bajo un incremento de carga impuesto:

$$U(^{\circ}/_{\bullet}) = 100 \left[1 - \sum_{n=0}^{n \times \infty} \frac{8}{(2n+1)^2 \pi r^2} \xi_{n}^{2} - \frac{(2n+1)^2 \pi^2 T v}{4} \right] - \dots - II.2$$

de donde se ve que el grado de consolidación medio del estrato es sólo función del factor tiempo (Tv). La ecuación II.2 puede resolverse para diferentes valores de Tv., obteniéndose los valores de la tabla II.2.

U(%)	Tv	U(%)	Τv
		l	
- 0	0.000	55	0.238
10	0,008	60	0.287
15	0.018	65	0.342
20	0.031	70	0.405
25	0.049	75	0.477
30	0.071	80	0.565
35	0.096	85	0.684
40	0.126	90	0.848
45	0.159	95	1.127
50	0.197	100	00

RELACION TEORICA U (%)-Tv

TABLA II.2

En las figuras No. 13 a y b, aparecen las relaciones anteriores dibujadas en escala aritmética y semilogarítimca respectivamente, conocidas como Curvas Teóricas de Consolidación.

Asentamiento Total Primario de un Estrato Arcilloso

El asentamiento total primario de un estrato de arcilla de espesor H, inducido por una sobrecarga Δp actuante en la superficie del mismo, puede determinarse a partir de los datos de la prueba de consolidación y del esquema de la figura siguiente:

En donde Δe representa la disminución de espesor de la muestra de suelo, l+e es el espesor total del estrato, por lo tanto la deformación unitaria de ésta muestra será: $\Delta e/(1+e)$; por lo que la disminución del espesor total del estrato será:

$$\Delta H = \frac{\Delta e}{1 + e} H - - - II.3$$

ي ۾ ورجي

La fórmula II.3 también puede escribirse de la siguiente manera:

Sabiendo que:

 $\Delta v = \frac{\Delta e}{\Delta \overline{p}}$ y $\mathcal{M}_{v} = \frac{\mathcal{A}v}{1 + e_{o}}$

Por lo que:

 $\Delta H = \frac{a_v}{1 + e_o} \Delta \bar{p} H = \mathcal{M}_v \Delta \bar{p} H$

Donde: My = Coeficiente de Variación Volumétrica

 A_v = Coeficiente de Compresibilidad

My y av son funciones de $\Delta \overline{p}$ y de la ubicación de éste en la escala de presiones, es decir, de \overline{p} .

 Q_v se puede obtener de la curva e - \overline{p} en escala aritmética de la gráfica de la prueba, como la pendiente de la tangente en el intervalo $\Delta_{\overline{p}}$ - Δ_{e} .

Aqui se admite que las deformaciones en el estrato real son pro-porcionales al grado de consolidación de tal estrato. Así el St representa el asentamiento ocurrido en un tiempo t, por lo que puede escri-birse:

 $\frac{St}{\Delta H} 100 = U (\%)$

por lo que St = $\Delta H \left[\frac{U(\%)}{100} \right] = M \sqrt{\Delta \tilde{p}} H \left[\frac{U(\%)}{100} \right]$

したいないないないないないないないないないであるという

Es decir, el asentamiento en un tiempo dado es igual al total que ha de producirse, multiplicado por U(%); pero para hallar U(%) es necesario determinar primero a Cv (Coeficiente de Consolidación), ya que U(%) depende de Tv.

y Tv = Cv
$$\frac{t}{H^2}$$
 --- II.4

Tv puede obtenerse de la curva de Consolidación Teórica, empleando datos correspondientes al 50% de consolidación. De donde para U(%) =50%, Tv₅₀ \doteq 0.2; t₅₀ puede encontrarse una vez establecida la escala de U% en la curva de consolidación y H es el espesor efectivo del espécimen usado en el momento en que se alcanzó el 50% de consolidación bajo el incremento de carga

Se tiene que: $Cv = \frac{Tv_{50}}{t_{50}} H^2 = \frac{0.2 H^2}{t_{50}}$

obtenido el Cv se puede aplicar la ecuación II.4 en la forma:

$$t_{50} = \frac{H^2}{Cv} \quad Tv \quad --- \quad II.5$$

Ahora H es el espesor efectivo del estrato, calculado según las condiciones de drenaje que se tengan. Con la ecuación II.5 puede calcu larse en que tiempo se tendrá una deformación dada y no únicamente t50.

II.1.- Ejemplo de Cálculo de Deformación en un Estrato

Para realizar un cálculo de hundimiento en un estrato por medio de la Teoria de Terzaghi, es necesario contar con los siguientes datos:

- a) Curvas de compresibilidad representativas del estrato al cual se le quiere calcular su deformación
- b) Datos de esfuerzos efectivos iniciales (σ o, en kg/cm2) existentes en el estrato antes de incrementar cualquier peso.
- c) Datos de incrementos de esfuerzo (Δσ, en kg/cm2), producido por la sobrecarga que se coloca en el suelo, este incremento de esfuerzo -puede ser calculado por medio de cualquier teoría de distribución de esfuerzos, en este caso se utilizó la Teoría de Boussinesq.
- d) Espesor del estrato (en m., cm., etc)

La fórmula con que se calculan los hundimientos en un estrato es la siguiente:

$$\Delta H = \frac{\Delta e}{1 + e_0} H - \dots II.3$$

En donde: ΔH = Deformación total del estrato, (en m., cm) Δe = ef - eo eo = Relación de vacíos inicial ef = Relación de vacíos final H = Espesor del estrato (en m., cm.)

A continuación se indica el cálculo de la deformación del estrato 1 de la tabla del Resumen de Asentamientos por Consolidación Primaria indicada en el inciso II.2. De esta tabla se pueden obtener los siguie<u>n</u> tes datos del estrato 1:

DEFORMACION

ESTRATO No. 1

Profundidad de la muestra 2.5 - 3.5 m
Estrato representativo1.5 - 5.2 m
EspesorH = 3.7 m.
Profundidad media $Z = 3.0 \text{ m}$
Esfuerzo efectivo Go = 0.14 kg/cm2
Incremento de esfuerzo
Con este Go, tenemos que Co = 11.1eo = 11.1
Con σ + $\Delta \sigma/2$ se tiene que ef = 10.9
por lo que $\Delta e = 11.1 - 10.9 = 0.2$

Aplicando la fórmula II.3 tenemos que:

$$\Delta H = \frac{0.2}{1+11} (3.7) \doteq 0.06 \text{ m}.$$

 $\Delta H \doteq 0.06 \text{ m}.$

Esta deformación $\Delta H = 0.06$ m, es la disminución total del estrato l de espesor H = 3.7 m., por lo que teóricamente según Terzaghi, en un tiempo infinito no se disminuirá más el estrato que este ΔH .

Haciendo cálculos similares podemos formar la tabla de resumen de resultados del inciso II.2.

En la práctica en ocasiones no es suficiente conocer el asenta--miento total que tendrá un cierto suelo, sino que también debemos saber en que tiempo aproximadamente se logrará esta deformación. Este problema se puede resolver calculando el asentamiento ocurrido en un tiempo --(t) por medio de la siguiente fórmula, ya mencionada.

por lo que
$$S_t = \Delta H \left[\frac{U(\$)}{100} \right]$$

States and the second second

Según ésta teoría, el asentamiento en cada tiempo es igual al total que ha de producirse, por el grado de consolidación que el estrato ha alcanzado en ese tiempo.

Para calcular S_t se requiere previamente el cálculo del Coeficien te de Consolidación (Cv), pués el Grado de Consolidación (U(%)) depende del Factor Tiempo Tv y :

Tomando las curvas teóricas de Consolidación de la figura No. 13 se puede obtener la siguiente fórmula:

$$Cv = \frac{0.2 H^2}{t_{50}} [\frac{cm2}{seg}]$$

 $Tv = Cv - \frac{t}{H^2}$

de ésta fórmula para cada incremento de carga aplicada se tiene un Cv por lo tanto se puede dibujar una gráfica de Cv contra presión media -aplicada; de éstas gráficas el Cv. correcto será el que corresponda al σo +Δσ/2 existente en el estrato.

Asi por ejemplo para el estrato l, basándonos en las curvas de consolidación de éste estrato (figs. C_1, C_2, C_3), se puede escribir el siguiente procedimiento para hallar Cv el que se repetiría para obt<u>e</u> ner los Cv_b de los estratos restantes.

 $\frac{St}{AH}$ (100) = U(%)

`

De la gráfica anterior, Cv ≐ 0.004 para G+∆G/2 = 0.2 kg/cm2. Podemos calcular ahora el tiempo para el cual se logró el 95% de consolidación de esos 6 cm. Para esto hacemos U (%) = 95% y obtenemos de la tabla II.2 que Tv = 1.127, por lo que:

$$t = \frac{Tv H^2}{Cv} = \frac{1.127 (370/2)^2}{0.004} = 9 642 894 seg.$$

como 1 año \doteq 3.15 x 10⁷ seg. .'. t \doteq 0.306 años \doteq 3.67 meses y tambien t \doteq 110 días. Por 10 que se puede decir que por medio de 1a Teoria de Terzaghi el 95% de 1a deformación del estrato se logra aproximadamente a los 110 días.

En base a los resultados de la tabla de asentamientos totales del inciso II.2, pudimos calcular para cada estrato el tiempo necesario pa ra que se lograra el 95% de su deformación correspondiente y después -basado en este tiempo se puede calcular asentamientos para tiempos in-termedios, es decir, tiempos anteriores al que se tiene con U(%) = 95%, (30, 60, 90 y 120 días). Lo anterior se hizo con el fin de obtener datos para formar una gráfica Deformación - Tiempo y poder observar la forma teórica en que según Terzaghi se deberán producir los asentamientos con el tiempo; ésta gráfica Deformación - Tiempo obtenida por Terzaghi se podrá comparar con la que posteriormente se obtendrá por Consolidación Secundaria y después comparar ámbas con las mediciones reales de campo con que se cuenta. Esto es muy importante ya que en base a éstas compa raciones podremos dar conclusiones y recomendaciones respecto al uso y veracidad de las Teorías mencionadas, y poder decir cual de las dos con viene usar mas frecuentemente. Un ejemplo de como obtener éstas deformaciones con respecto al tiempo se muestra a continuación:

Vamos a obtener los asentamientos para 30, 60, 90 y 120 días en el estrato 1.

Datos conocidos: $\Delta H = 0.06 \text{ m.}$, $Cv = 0.004 \text{ cm}^2/\text{seg}$.

$$Tv = Cv \frac{1}{H^2}$$

En 30 días: $Tv = 0.004 \frac{(30)(86400)}{(370/2)^2} = 0.30$

Con este valor de Tv = 0.30 obtenemos U(%) = 62% ... St = (0.06) (0.62) = 0.037 m.

En 60 días: $Tv = 0.004 \frac{(60)(86400)}{(370/2)^2} = 0.60$

Con Tv = 0.60, U (%) = 81% ... St = (0.06)(0.81) = 0.049 m.

En 90 días:
$$Tv = 0.004 \frac{(90)(86400)}{(370/2)^2} = 0.91$$

Con $Tv = 0.91$, $U(\%) = 91\%$
.'. $St = (0.06) (0.91) = 0.055 \text{ m}.$

En 120 días: $Tv = 0.004 \frac{(120)(86400)}{(370/2)^2} = 1.21$

Con Tv = 1.21, U(%) = 97% ... St = (0.06) (0.97) = 0.058 m.

Cálculos semejantes se harían en los demás estratos para conocer la deformación en el tiempo que deseemos, pero no olvidemos que previa-mente debemos conocer los valores del Coeficiente de Consolidación Cv y del espesor efectivo en el estrato 2H ó H (según las condiciones de drenaje del estrato). El resumen del cálculo de los valores de Cv y del -espesor de los estratos se indican a continuación:

	₽U	ΝΤΟ 1	1					
ESTRATO	ESPESOR H & 2H m,	$\frac{\text{Cv}}{1 \times 10^{-3}}$ cm ² /seg	ESTRATO	$\begin{array}{c} \text{ESPESOR} \\ \text{H 6 2H} \\ \text{m.} \\ \end{array} \begin{array}{c} \text{Cv} \\ 1 \\ \text{x 10}^{-3} \\ \text{cm}^2/\text{seg} \end{array}$				
1	3.70	4.0	8	1.65 45.0				
2	2.60	11.5	9	1.65 3.5				
3	1.60	11.5	10	2.60 2.2				
4	2.75	5.3	11	2.90 10.1				
5	2.20	2.0	12	3.10 6.7				
6	3.25	1.0	13	8.00 2.8				
7	3.80	7.1						

TABLA II.3

Basándonos en los Cv de la tabla anterior se pudo obtener la tabla II.4.; donde se muestra un resumen de asentamientos (en cm) para los 30, 60, 90 y 120 días, calculados en el punto l indicado en la sección de pista (£) de la fig. No. 3.

Con los datos obtenidos de las sumatorias de ésta tabla, podemos obtener la gráfica Deformación-Tiempo antes mencionada, que se muestra en la fig. No. 11.

		D	1		SIGAL	
ESTRATO	30	60	90	120	0	
1	3.7	4.9	5.5	5.8	6.0	Α
2	5.7	7.3	7.7	7.9	8.0	S
3	2.1	2.7	2.9	2.9	3.0	E
4	2.5	2.9	2.9	2.9	3.0	N
5	2.1	2.7	2.9	2.9	3,0	Т
6	1.9	3.1	3.7	4.1	6.0	Α
7	1.5	1.8	1.9	1.9	2.0	М
8	2.9	2.9	2.9	2.9	3.0	1
9	2.9	2.9	2.9	2.9	3.0	E
10	1.7	2.3	2.8	3.3	5.0	N
11	0.9	0.9	0.9	Ö.9	1.0	Т
12	1.7	1.9	1.9	1.9	2.0	: O
13	1.4	2.0	2.5	3.0	6.0	S
SUMAS	31.0	38.3	41.5	43.4	51.0	cm

TABLA II.4

II.2 Resumen de Asentamientos totales por Consolidación Primaria.

Este resumen se encuentra en la tabla II.5; en ésta tabla también se observan las deformaciones en los demás puntos (2, 3 y 4), indicados en la fig. No.3

		PPOENDID	PROFUNDID.	ESPESOR	ESPESOR	ESFUERZO	0	₽U	NTO	> 1		PL	JNT	0 2	
ESTRATO M	MUESTIVA	m.	NEDIA M	H m	REPRESENT. M	EFECTIVO Jo Kg /cm ²	C.	Δσ Kg./cm²	et	٥e	ΔH m	∆J Kg/cm²	ef	Δe	ΔH
1	3	2.5-3.5	3.00	3.70	1.5-5.2	0.14	11.10	0.12	10.90	0.20	0.06	0.15	10.80	0.30	0.09
2	6	5.6-6.6	6.10	2.60	5.6-8.2	0.20	10.70	0.12	10.35	0.35	0.08	0.14	10.23	0.42	0.09
3	10	9.8-10.8	10.30	3.20	8.2-11.4	0.27	5.24	0.12	5.18	0.06	0.03	0.12	5.18	0.06	0.03
4	12	12.0-13.0	12.50	2.75	11.4-14.15	0.30	8.50	0.12	8.40	0.10	0.03	0.11	8.40	0.10	0.03
5	15	15.3-16.3	15.30	2.20	14.15-16.35	0.34	6.25	0.12	6.14	0.11	0.03	0.11	6.15	0.10	0.03
6	16	16.4-17.4	16.90	3.25	16.35-19.6	0.38	6.60	0.12	6.45	0.15	0.06	0.10	6.45	0.15	0.06
7	21	21.8-22.8	22.30	3.80	19.6-23.4	0.47	7.65	0.12	7.60	0.05	0.02	0.09	7.62	0.03	0.01
8	22	24.0-25.0	24.50	1.65	23.4-25.1	0.50	10.20	0.12	10.00	0.20	0.03	0.09	10.10	0.10	0.01
9	23	25.1-26.1	25.60	1.65	25.1-26.7	0.51	10.20	0.11	10.00	0.20	0.03	0.09	10.10	0.10	0.01
10	24	27.3-28.3	27.80	2.60	26.7-29.3	0.54	9.40	0.11	9.20	0.20	0.05	0.09	9.20	0.20	0.05
11	28	30.3-31.3	30.80	2.90	29.3-32.2	0.58	8.27	0.11	8.23	0.04	0.01	0.03	8.25	0.02	0.01
/2	30	33.1-34.1	33.60	3.10	32.2-35.3	0.61	11.60	0.11	11.50	0.10	0.02	0.01	11.50	0.10	0.02
/3	34	38.2-39.2	38.70	8.00	36.0-44.0	0.71	6.10	0.10	6.05	0.05	0.06	0.07	6.07	0.03	0.03
										Σ=	0.51			Σ=	0.47

	PI	JNT	03	3	PUNTO 4					
ESTRATO	Δσ Kg/cm ²	ef	Δe	ΔH m	ΔJ Kg/cm ²	et	۷e	ΔH m		
1	0.04	11.05	0.05	0.01	-	11.10	-	-		
2	0.04	11.55	0.15	0.03	-	10.70	-	-		
. 3	0.05	5.22	0.02	0.01	0.01	5.23	0.01	0.00		
4	0.05	1.45	0.05	0.01	0.01	8.50	-			
5	0.05	6.20	0.05	0.01	0.01	6.25	-			
6	0.05	6.55	0.05	0.02	0.02	6.60				
7	0.05	7.63	0.02	0.01	0.02	7.65	-	-		
. 8	0.05	10.15	0.05	0.01	0.02	/0.20	-	-		
9	0.05	10.15	0.05	0.01	0.03	10.20	-	-		
10	0.05	9.35	0.05	0.01	0.03	9.40		-		
11	0.05	8.25	0.02	0.01	0.03	8.27		-		
12	0.05	11.51	0.09	0.01	0.03	11.60	-	-		
/3	0.05	6.10	-	—	0.04	6.10	-	-		
	1.1		Σ=	0.15			Σ÷	0.00		

I.2.- RESUMEN DE ASENTAMIENTOS TOTALES POR CONSOLIDACION PRIMARIA.

DEFORMACION	0.5/	0.47	0.15	0.0
PUNTO	1	2	3	4

TABLA I.5

36

III.- TEORIA DE CONSOLIDACION SECUNDARIA

Cuando aplicamos un incremento de esfuerzo al espécimen de prueba en el consolidómetro, una curva de consolidación similar a la mostrada en la figura No. 14 es obtenida. Se puede observar que la compresión volumétrica no termina como la teoría de Terzaghi lo predice ya que -cuando la consolidación teórica llega a su fin (en la mayoría de los -casos en la vecindad de Tv \doteq 1), la compresión volumétrica continúa. La linea inclinada después del quiebre de la curva teórica, es conocida en Mecánica de Suelos como Consolidación Secundaria y en algunos casos juega un papel muy importante. Durante este proceso el exceso de pre-sión hidrostática ha sido casi totalmente disipada ya que el esfuerzo ha sido transmitido a la estructura del suelo, la cual continúa cambian do de volúmen debido al desplazamiento relativo de los granos, conocido como deformación viscosa intergranular

El fenómeno de Consolidación Secundaria se observa principalmente en suelos con materiales finos a muy finos con permeabilidad baja, como es el caso de arcillas, arcillas limosas y limos arcillosos.

Se observa que en la viscosidad intergranular el porcentaje de -deformación volumétrica decrece con el tiempo y al fin motiva la solif<u>i</u> cación del material bajo el incremento aplicado de esfuerzo

La Consolidación de un estrato de arcilla puede dividirse en dos partes:

 La compresión debida al retraso hidrodinámico, tomada por el agua gravitacional, conocida como teoría de consolidación de Terzaghi, que implica solo la tardanza de la deformación elasto-plástica. 2.- La Compresión que recibe el nombre de Consolidación Secundaria, representada por una ley fenomenológica de compresión debida a efectos vis cosos. En la mayoría de los casos y en un cierto rango de tiempo, se observa que la viscosidad intergranular es una función lineal del logaritmo del tiempo, es decir que la consolidación secundaria graficada en papel semilogarítmico semeja a una línea recta, con pendiente:

$$C_{1} = \frac{\delta_{2} - \delta_{1}}{\log t_{2/t_{1}}} = \delta_{2} - \delta_{1}$$

El efecto de la viscosidad intergranular puede ser claramente obser vado en curvas de consolidación de materiales saturados cuando se grafi-can en escala semilogarítmica.

En conclusión vemos que la teoría de Terzaghi no puede por si sóla explicar satisfactoriamente el cambio de volúmen con el tiempo de mantos impermeables.

TEORIA DE CONSOLIDACION CUANDO SE INCREMENTA LA CARGA LINEALMENTE CON EL TIEMPO.

En la práctica, durante la construcción de una obra, (un edificio, una pista, etc.) el incremento de carga es aplicado gradualmente en el estrato compresible de suelo. Por lo tanto desde el punto de vista -práctico se puede suponer que la apliación del incremento de esfuerzos es lineal con el tiempo, por lo que:

$$\Delta G_t = \frac{\Delta G_c}{t_c} t$$

Donde ΔGc es el incremento total de carga aplicada por unidad de superficie en el periodo de construcción tc.

En consecuencia habrá necesidad de usar fórmulas diferentes cuan-do se quiera calcular una deformación en un estrato cuando el tiempo en que se desee esa deformación sea menor o mayor que tc. Cuando la viscosidad intergranular se presenta será posible grafi car en escala semilogarítmica su cuerva de consolidación. De éstas cu<u>r</u> vas se pueden obtener los parámetros necesarios para efectuar los cálc<u>u</u> los, de deformación en un estrato.

Los parámetros pueden ser definidos como sigue:

- Mep= Coeficiente unitario de compresibilidad volumétrica.
- \mathfrak{M}_{v_B} = Coeficiente de compresibilidad volumétrica que incluye el com portamiento elasto-plástico y la viscosidad intergranular en el tiempo t_B , después del cuál el fenómeno de viscosidad intergranular llega a ser explícito y corresponde al quiebre B en la curva de consolidación. Figura No. 14
- M_{t} = Coeficiente unitario de viscosidad intergranular volumétrica $\beta = \frac{M_{t}}{M_{ep}}$
- Cvp= Coeficiente aparente de consolidación de la teoría de viscosi dad intergranular ó de consolidación secundaria.
- Cv = Coeficiente de consolidación de la teoría de consolidación de Terzaghi.
- t = Tiempo en días
- ${f T}_c$ = Tiempo de construcción de la obra en días
- $F\left(\frac{Cv}{H^2}t\right)$ = Función de Terzaghi en donde Tv = $\frac{Cv}{H^2}t$ = Factor Tiempo Primario
 - 2H = Espesor del estrato drenado por ámbas caras
 - ΔĘv= Incremento en la deformación unitaria para el incremento de esfuerzo unitario aplicado

III.1 Métodos Apropiados para Obtener los Parámetros

Dependiendo del tipo de material y como esté constituido se pueden distinguir tres casos típicos de curvas de consolidación secundaria, para los cuales es necesario determinar sus parámetros.

Estos casos típicos son los siguientes:

Caso I.-

Cuando la teoría de la consolidación de Terzaghi puede ser aplicada en conjunto con las leyes de los fenómenos de plasto-viscosidad intergranular. En este caso supone un material homogéneo como se supone en la -teoría de Terzaghi.

Caso II.-

Cuando la consolidación tiene lugar rápidamente debido a las características de permeabilidad. La deformación elastoplástica tiene lugar rápidamente en cuanto al incremento de esfuerzos es aplicado, sin embargo las condiciones saturadas del material retardan el fenómeno plasto-viscoso intergranular.

Caso III.-

Cuando para suelos no saturados la compresión elasto-plástica tiene lugar en la misma proporción en la cual la carga es aplicada después de la cual se observa un adicional desplazamiento vertical con el tiempo bajo carga sostenida.

De las curvas de consolidación obtenidas de pruebas de consolidómetro, estos casos pueden ser clasificados, y los parámetros determinados como a continuación se indica:

Caso 1.- Ver figura No. 15

Se necesita determinar los parámetros \mathcal{M}_t , β y Cv para poder calcular la deformación volumétrica en materiales elasto-plásticos homogéneos, que nuestran viscosidad intergranular.

Las fórmulas empleadas para calcular la deformación son las siguie<u>n</u> tes: (referencia 4)

Para
$$0 < t < t_{c}$$

$$\frac{\left[\Delta \in vp\right]_{1}}{Mep \Delta Gc} = \frac{Tv}{Tvc} \left[\varphi'(Tv) + \frac{\beta}{2.3} \cdot A_{1} \right]$$
para $t > t_{c}$

$$\frac{\left[\Delta \in vp\right]_{2}}{Mep \Delta Gc} = F(Tv - To_{1}) + \beta \log \left[1 + \frac{4.62}{\beta} (Tv - Tvc \cdot A_{2}) \right]$$
En las cuales:

$$\beta = \frac{Mt}{Mep} \quad \therefore \quad Mep = \frac{Mt}{\beta}$$

Los parámetros son determinados para cada incremento de esfuerzo, en el cual el material esté progresivamente consolidado y por lo tanto el valor obtenido representa incremento en el nivel de esfuerzos.

Una curva de consolidación graficada en escala semilogarítmica -muestra un quiebre cerca del valor de $F(Tv) \doteq 1$. Si se determinan las -coordenadas del quiebre con $\delta_B y t_B$; un poco tiempo después de t_B la ley de deformación es logarítimica. Por lo tanto de la curva de consolidación el valor de C_t puede ser determinado:

$$C_{t} = \frac{\delta z - \delta 1}{\log^{t} 2 \gamma_{t1}} \qquad y \qquad \mathcal{M}_{t} = \frac{C_{t}}{2 H \Delta \sigma}$$

ahora si llamamos a:

$$\alpha = \frac{Ct}{S_B} \quad \acute{o} \quad \alpha = \frac{Mt}{Mv_B} \quad y \quad Mv_B = \frac{(\Delta Ev)_B}{\Delta \sigma}$$

Como de pruebas de consolidación se puede hallar la deformación - volumétrica con la siguiente fórmula:

$$\Delta \varepsilon_{v} \supset \left[\mathcal{M}_{ep} F\left(\frac{Cv}{H^{2}}t\right) + \mathcal{M}_{t} \log \left[1 + \frac{4.62}{\beta} \left(\frac{Cv}{H^{2}}t\right) \right] \right]$$

y considerando que $F\left(\frac{Cv}{H^{2}}t\right) \doteq 1$ cuando Tv $\doteq 1.3$

entonces en el quiebre se puede escribir lo siguiente:

$$\frac{(\Delta \varepsilon_{v})_{a}}{\Delta \sigma} \operatorname{Mep} + \mathfrak{M}_{t} \log \left[1 + \frac{6}{\beta} \right]$$

y dividiendo por \mathcal{M}_{t} la expresión anterior: $\frac{1}{\alpha} = \frac{1}{\beta} + \log\left(1 + \frac{6}{\beta}\right)$ -----III.1

La expressión III.1 puede ser usada como ecuación auxiliar para determinar el valor de β desconocido, ya que el valor de $\alpha = \frac{C_{1}}{\beta_{B}}$ es fácil-mente determinado de la curva de consolidación. Lo ccuación III.1 pode-mos dibujarla con diversos valores de $\alpha - \beta$ y asi obtenemos una gráfica α v5 β (fig. No. 18). De ésta figura 18 podemos obtener a β al conocer a α por lo que también conoceremos a:

El coeficiente de consolidación puede ser determinado pra F(Tv)= 0.5, y Tv \doteq 0.2 de la curva de consolidación teorica, por lo que:

$$\delta_{50} = \frac{1}{2} \delta_{ep} + C_t \log \left(1 + \frac{0.924}{\beta} \right)$$

El tiempo t $_{50}$ es encontrado de la curva de consolidación correspondiente al \mathcal{S}_{50} y así tenemos que:

$$Cv = \frac{0.2 \text{ H}^2}{t_{50}}$$

en donde 2H es el espesor del espécimen de prueba bajo un nivel de es-fuerzos σ y aplicado un incremento de esfuerzos $\Delta\sigma$.

Ya que los valores de los parámetros \mathcal{M}_t , β y Cv son funciones del -nivel de esfuerzos, estos valores son graficados contra $\overline{\tau} + \frac{\Delta}{2}$ obteniéndose para cada nivel de esfuerzos diferentes puntos, los que al unirse nos darán gráficas medias de los parámetros. Por lo tanto los valores correctos de \mathcal{M}_t , β y Cv serán los que se obtengan con el nivel medio de esfuerzos que exista en el estrato a la profundidad deseada. Los parámetros para éstas condiciones son \mathfrak{Mt}, β y Cvp. Las curvas de consolidación obtenidas son como se muestra en la figura No. 16. Para determinar el valor \mathfrak{Ts} se observa que la parte pasada de la curva de consolidación semeja una línea recta, la cual se debe prolongar hacia arriba y atrás hasta interceptarla con una línea recta horizontal que pase através del quiebre mostrado en la curva de consolidación, por lo tanto la intersección de estas líneas nos dará el valor de \mathfrak{Ts} .

Nuevamente la línea recta tiene la pendiente:

$$C_{t} = \frac{\delta_{2} - \delta_{1}}{\log t_{2}/t_{1}} \quad y \quad \mathcal{M}_{t} = \frac{C_{t}}{2H\Delta \sigma}$$

El espesor del espécimen en el principio del incremento de esfuer zo $\Delta \overline{v}$ es 2H. Además, la deformación producida por los fenómenos elasto plásticos, δep se mide hasta el quiebre mostrado en la curva de consolidación, por lo que:

$$Mep = \frac{Sep}{2H\Delta G} \quad y \quad \beta = \frac{Mt}{Mep}$$

El valor del aparente coeficiente de consolidación para el fenó-meno de viscosidad intergranular es

$$C_{vp} = \frac{\beta}{4.62} \frac{H^2}{35}$$

Nuevamente los valores de $\mathfrak{M}_{t,\beta}$ y Cypson graficados contra los niv<u>e</u> les de esfuerzos, lo cual nos dará una gráfica la que tomaremos para -buscar los parámetros medios del estrato en cuestión, según el nivel -de esfuerzos que tenga.

Las fórmulas empleadas para calcular la deformación en un estra-to para materiales del caso II son las siguientes:

para
$$0 < t < t_c$$

$$\frac{\left[\Delta E v\right]_1}{Mep \Delta G} = \left[1 + \frac{\beta \cdot A_1}{2 \cdot 3}\right] \frac{Tvp}{Tvc}$$
,
y para $t > t_c$
$$\frac{\left[\Delta E v\right]_2}{Mep \Delta G} = 1 + \beta \log \left[1 + \frac{4.62}{\beta} (Tvp - Tvc \cdot A_2)\right]$$

Tanto en estas fórmulas como en el caso I las funciones auxiliares A_1 y A_2 valen respectivamente:

$$A_{1}=1-\frac{1}{4.62 \text{ Tv}} \log (1+4.62 \frac{\text{Tv}}{\beta}) \quad y \quad A_{2}=1-\frac{2.72 \left[(1+4.62 \text{ Tvc}/\beta)^{-1} \frac{1}{4.62 (\text{Tvc}/\beta)}\right]-1}{4.62 \text{ Tvc}/\beta}$$

Como A_1 depende exclusivamente de Tv/ β y A_2 de Tvc/ β , pueden dib<u>u</u> jarse unasgráficas por medio de las cuales sea posible hallar A_1 cono--ciendo Tv/ β y a A_2 por medio de Tvc/ β . Estas gráficas se indican en la figura No. 19.

Caso III.-

Los parámetros de esta condición son un poco simples de obtener ya que sólo es necesario determinar $\mathcal{M}_t \neq \beta$ de curvas representativas -de consolidación (figura No. 17). El valor de \mathcal{M}_t es determinado como en el caso I y II. El valor de \mathcal{M}_{ep} corresponde a la inmediata compre-sión Sep en la prueba. Los valores $\mathcal{M}_t \neq \beta$ son graficados nuevamente -contra el promedio del nivel de esfuerzos para los cuales se determinaron los parámetros.

OBSERVACIONES CON RESPECTO A LA DETERMINACION DE PARAMETROS

a.- Es importante establecer que un parámetro obtenido con un esfuerzo después del quiebre de la curva de compresibilidad (esfuerzo más - grande a la carga de preconsolidación), no tiene aplicación práctica en el diseño de cimentaciones, ya que para incrementos de es-fuerzo mayores que Pc, el material muestra gran compresibilidad - por lo tanto la aplicación de los parámetros es valiosa sólo para

Fig. No. 20.- RETARDAMIENTO DEL TIEMPO FACTOR EN LA TEORIA DE CONSOLIDACION PRIMARIA

. .

diseñar en recompresión, correspondiente a la rama plana de la curva de compresibilidad.

La ejecución de las pruebas de consolidación en el laboratorio de-ben hacerse con mucho cuidado, para que el método anteriormente -descrito pueda aplicarse plenamente. Una forma de saber si las -pruebas de laboratorio fueron bien ejecutadas es la siguiente:

En cada espécimen representativo de suelo deben obtenerse curvas le consolidación de un sólo caso en cada estrato, es decir que para cada ncremento de esfuerzo nos debe dar un sólo tipo de curva de consolida-ión a la vez.

ROCEDIMIENTO PARA LA DETERMINACION DE LAS CURVAS NIVEL DE ESFUERZO - P<u>A</u> AMETROS

- De los datos de la prueba de consolidación se grafícan en escala semilogarítmica los valores de tiempo - deformación obtenidos para cada incremento de esfuerzo, no olvidando corregir esta deformación -por la que es ocasionada por la compresión existente en el aparato.

Observar que en todos los incrementos de esfuerzos en una sola prueba de compresibilidad no existan curvas más que de un mismo caso, ya sean caso I, caso II ó caso III.

Clasificar a la curva según el caso que le corresponde y determinar sus parámetros, de la siguiente manera:

Si la curva es caso I es conveniente formar la siguiente tabla: III. 1'-

and the second second second second second

1.1

A DESCRIPTION OF THE PARTY OF T

2.

Las fórmulas que se emplearán serán las del caso I

De la tabla: III, 1

(, (kg/cm²) .- esfuerzo inicial antes de incrementar la carga.

 $\Delta G (kg/cm^2)$. - incremento de esfuerzo

 δ (cm).- deformación que sufre la probeta de suelo al incremento ΔG 2H.(cm).- espesor efectivo de la probeta al disminuirle

 $S_{\rm B}({\rm cm})$.- deformación elastoplástica obtenida de la curva de consolidación cuando ésta tiene su quiebre.

A continuación se grafican los valores de $\nabla + \frac{\Delta \sigma}{2}$ contra los valores correspondientes de los parámetros obtenidos, esto es:

Ahora si las curvas de consolidación fueran del caso II, es conveniente formar la siguiente tabla: III. 2¹

Para ejemplificar lo antes mencionado se llenó la tabla III.2'de acuerdo con las curvas de las figuras C₁, C₂ y C₃. Estas curvas de consolidación son representativas de los estratos A y B indicados en la tabla III.1 -

Nuevamente se deben graficar el nivel medio de esfuerzos en contra de los parámetros correspondientes.

En caso que el suelo fuera del caso III se haría algo similar al caso II.

CUAVA	J Kg/cm²	∆Ū Kg./cm²	S cm	2H cm	Sв cm	S1 cm	S2 cm	Ct cm	X	β	Sep cm	550 ст	t50 Seg	Cv ^{cm2} /5eg	Mt ^{cm²} /Kg	Mep ^{cm²} /kg
1																
2																
" <i>n</i> "																

TABLA III.1.-

CURVA	J kg/cm²	∆J Kg/cm²	S cm	2 H .cm	Sep cm	S1 cm	S2 cm	C t cm	Zs seg	Mep cm²/kg	Mt cm²/kg	β	Cvp cm²/seg
Ci	0.133	0.133	0.0201	1.4799	0.0094	0.0114	0.0160	0.0046	375	0.0477	0.0234	0.490	4000155
C2	0.264	0.131	0.0434	1.4365	0.0135	0.0213	0.0445	0.0232	4 500	0.0717	0.1233	1.719	0. 000043
C-3	0.395	0.131	0.0196	1.4169	0.0037	0.0012	0.0086	0.0074	2300	0.0202	0.0396	1.960	°50093
;													
" <i>n</i> "													

TABLA III. 2'.-

ច

III.2.- Ejemplos de cálculo de deformación en un estrato.-

Para el cálculo de hundimientos en un estrato es necesario tomar en cuenta los datos con que se cuenta, es decir, se tomaran en consid<u>e</u> ración los datos del perfil estratigráfico del sondeo de la figura No. ly los parámetros de compresibilidad y consolidación Mep, Mt, Cv ψ Cvp, (figuras 22 a 32), que representan respectivmante: al Coeficiente de Compresibilidad Volumétrica unitario, al Coeficiente de Compresibilidad Volumétrica unitario de Viscosidad Intergranular, al Coeficiente de Consolidación definido por Terzaghi y finalmente al Coeficiente -aparente de Consolidación para la teoria de Viscosidad Intergranular. Asimismo se estimó que el periodo de aplicación de la carga linealmente fué de 90 días, tiempo después del cual se considera que la carga se mantiene constante.

Los hundimientos serán calculados de acuerdo con las fórmulas -correspondientes según pertenezcan las gráficas de consolidación (CASO I, CASO II ó CASO III), según sea la muestra de que se trate.

Se presenta como ejemplo el cálculo de deformación del punto 1, indicado en la fig. No. 3 (Sección de Pista). En la tabla III.1.- se muestran los parámetros de compresibilidad y consolidación necesarios obtenidos de las figuras 22 a 32, correspondientes. Para calcular los esfuerzos efectivos (G_0) y los incrementos de esfuerzos (ΔG) se hizo uso de la figura No. 2. En las Tablas III.1 a III.22.- se reporta detalladamente el cálculo de deformación para el punto 1 mencionado, de acuerdo con los diversos estratos considerados. Estas Tablas son por si mismas explicativas.

E

ñ

ESTRATO	TIPO	PROFUNDIDAD DE - A	PROF. MEDIA	di cm	Jei ka/am²	σ. κα/στ ²	Δ σ	Gei +Δ G /2	m.p	Mt.	Þ	Cv ó Cvp	D	Tv/dia	S•p	Tvc tc=90 dias	Pruebn de Compresibilided useda: Muestra	
	11	1.95 - 2.75	2,35	80	0.123	0.248	0.120	0,188	0.0700	0.0273	0.39	0.000133	80	0.00718	0.672	0.6462	3	PORTULAS A EPPLEAR
в	11	2.95 - 5.25	4.10	230	0.155	0.275	0,120	0.215	0.0660	0.0403	0.61	0.000117	230	0.00076	1.822	9.0684	3	$Tv/dis = (Cv/H^2)86400$
a ·	II	5.70 - 6.70	6.20	100	0.182	0.302	0.120	0.242	0.0990	0.0763	0.77	0.000053	100	0.00046	1.188	0.0414	6	S
D	I	6.70 - 10.70	8.70	400	0.242	0.362	0.120	0.302	0.0990	0.1090	1.10	0.000050	400	0.000108	4.752	0.0097	6	O eb = illeb D HA
E	II	10.70 - 13.80	12.30	300	0.296	0.415	0.119	0.356	0.0520	0.0250	0.43	0.000163	300	0.00063	1.856	0.0567	12	MINTER TIL ATON T
`a	II	13.80 - 14.75	14.28	95	0.330	0.449	0.119	0.390	0.0500	0.0287	0.57	0.000195	95	0.00187	0.565	0.1683	12	MATSATAD THEO I
14	II	15.00 - 18.15	16.58	315	0.355	0.473	0.118	0.414	0.0465	0.0240	0.52	0.000091	315	0.00032	1.728	0.0288	15	Si t < to;
I	11	18.30 - 19.20	18.75	90	0.392	0.510	0.118	0.451	0.0450	0.0260	0.55	0.000098	90	0.0041.8	0.478	0.3762	15	$\partial c = (M ep 2H \Delta U) f_1$
J	II	19.40 - 20.10	19.75	70	0.419	0.535	0.117	0.477	0.0327	0.0318	0.97	0.000085	70	0.00599	0.268	0.5391	21	donde: $f_1 = \left[\mathscr{J}(\mathbf{T}\mathbf{v}) + \frac{\mathbf{J}_{\mathbf{A}_1}}{2\cdot 3} \right] \frac{\mathbf{T}\mathbf{v}}{\mathbf{T}\mathbf{v}_0}$
ĸ	II	20.45 - 21.55	21.00	110	0.442	0.559	0.117	0.501	0.0307	0.0320	1.04	0.000088	110	0.00251	0.395	0.2259	21	
L	II	21.65 - 23.65	22.65	200	0.466	0.582	0.116	0.524	0.0300	0.0325	1.07	0.000092	200	0.00079	0.696	0.0711	21	51 t > to:
×	II	23.65 - 27.10	25.38	345	0.503	0.617	0.114	0.560	0.0300	0.0245	0.82	0.000178	345	0.00013	1.180	0.0117	22	Do -mep 2HAV)12
. 1	II	27.25 - 29.70	28.48	245	0.536	0.643	0.112	0.592	0.1180	0.1220	1.03	0.000028	245	0.00016	3.238	0.0144	24	y: f ₂ = F(Tv-To ₁)+βlog 1+4.62(Tv-TvoA)
0	II	29.90 - 32.00	30.95	210	0.559	0.668	0.109	0.614	0.0212	0.0055	0,26	0.000570	210	0,00112	0.485	0.1090	28	- , _ 2
P	II	32.00 - 33.90	32.95	190	0.580	0.687	0,107	0.634	0.0255	0.0150	0.59	0.000128	190	0.00123	0.518	0.1107	30	MATERIAL TIPO II
R	11	34.10 - 35.30	34.70	120	0.595	0.700	0.105	0.648	0.0255	0.0153	0.60	0.000145	120	0.00348	0.321	0.3132	30	51 t < to:
5	II	36.00 - 37.90	36.95	190	0.660	0.763	0.103	0.712	0.0200	0.0179	0.89	0.000102	190	0.00098	0.391	0.0882	34	δς -(Mep 2HΔG) 2
T	II	38.10 - 40.20	39.15	210	0.716	0.816	0.100	0.766	0,0192	0.0183	0.95	0.000118	210	0.00092	0.403	0.0828	34	aquís a la PAL Typ
U	11	40.40 - 41.50	40.95	110	0.732	0.830	0.098	0.781	0.0190	0,0198	0.99	0.000130	110	0.00371	0,225	0.3339	34	1 = (1+ 2.3) Tvo
v	11	42.20 - 43.60	42.90	140	0.779	0.875	0.096	0.827	0.0230	0,1000	4.347	0.000270	140	0.00476	0.309	0.4284	37	Si t > to:
																		δς =(Mep 2HΔG)f2

TABLA III.1 .- PARAMETROS DE COMPRESIBILIDAD Y CONSOLIDACION . (Punto 1)

 $y_1 t_2 = 1 + \beta \log \left[1 + \frac{4 \cdot \delta^2}{\beta} (Tvp - Tvo \cdot A_2)\right]$

TABLA III.2 .- HUNDIMENTO ESTRATO A MATERIAL TIPO II Sep= 0.672 cm; Tvp/dia= 0.00713; Tvc= 0.6462; β = 0.39; Tvc/ β = 1.66; A₂= 0.86; β /2.3 = 0.17; Tvc·A₂= 0.556; 4.62/ β = 11.85; Tc = 90 dias.

dias	τ v p	Tvp/s	A	Tvp/Tvc	f	Tvp-Tvc·A2	f ₂	ర్ర	Mor:
10	0.0718	0.184	0.27	0.111	0.116	5		0.078	0.003
20	0.1436	0.368	0.42	0.222	0.238	3		0.159	0.016
30	0.2154	0.552	0.51	0.333	0.362	2		0.243	0.025
60	0.4308	1.105	0.64	0.666	0.739	3		0.497	0.052
90	0.6462	1.657	0.71	1.000	1.120)		0.753	0.073
120	0.8616					0.306	1.259	0.346	0.037
240	1.7232					1.167	1.457	0.979	0,101
480	3.4464					2.891	1.603	1.077	0.112
1000	7.1800					6.624	1.741	1,170	0.122
2000	14.360					13.804	1.365	1.253	0.131
4000	28.720					28,164	1.985	1.333	0.139
8000	57.440					56.384	2.1.03	1.413	0.147
10000	71.180					70.624	2.140	1.438	0.149
1.8250	131.04					130.479	2.244	1.509	0.157
36500	262.07					261.514	2.361	1.587	0.165

TABLA III.3 .- HUNDIMIENTO ESTRATO B

MATERIAL TIPO II

 $\delta ep = 1.822 \text{ cm};$ Tvp/dia = 0.00076; Tvc = 0.0684; $\beta = 0.61;$ Tvc/ $\beta = 0.112;$ A₂= 0.58; $\beta/2.3 = 0.265;$ Tvc·A₂ = 0.0397; 4.62/ $\beta = 7.574;$ Tc = 90 dias.

	,								
dias	Tvp	Tvp//3	A ₁	Tvp/Tvc	f	Tvp-Tvc.A2	f ₂	Se	Moz
10	0.0076	0.012	0.020	0.111	0.112	:		0.203	
20	0.0152	0.025	0.050	0.222	0.225	i		0.410	
30	0.0228	0.037	0.075	0.333	0.340			0.619	
60	0.0456	0.075	0.133	0.666	0.689	1		1.256	
90	0.0684	0.112	0.200	1.000	1.053	h		1.918	
120	0.0912					0.052	1.088 '	1.982	
240	0.1824					0.143	1.232	2.244	
480	0.3648					0.325	1.329	2.421	
1000	0.7600					0.720	1.494	2.722	
2000	1.5200					1.430	1.663	3.023	•
4000	3.0400					3.000	1.839	3.350	
8000	6.080					6.040	2.019	3.677	
10000	7.600					7.560	2.077	3.784	
18250	13.87					13.830	2.235	4.072	
36500	27.74			. "		27.70	2.418	4.405	0.159

TABLA III.4 .- HUNDIMIENTO ESTRATO C

MATERIAL TIPO II

Sep = 1.188 cm; Tvp/dia = 0.00046; Tvc = 0.0414; β = 0.77; Tvc/ β = 0.054; A₂ = 0.54; $\beta/2.3$ = 0.335; Tvc·A₂ = 0.0224; 4.62/ β = 6.0; Tc² = 90 dias.

dias	Tvp	Tvp/s	Al	Tvp/tvc	fl	Tvp-Tvc·	^A 2 ^f 2	Sc	$m_{V_{i}}$
10	0.0046	0.006	0.010	0.111	0.112	2		0.132	
20	0.0092	0.012	0.020	0.222	0.224			0.264	
30	0.0138	0.018	0.040	0.333	0.338	5		0.401	
60	0.0276	0.036	0.075	0.666	0.683			0.812	
90	0.0414	0.054	0.105	1.000	1.035	i		1.230	
120	0.0552					0.033	1.060	1.259	
240	0.1104					0.088	1.142	1.356	
480	0.2208					0.198	1.262	1.499	
1000	0.4600					0.438	1.431	1.699	
2000	0.9200					0.898	1.620	1.925	
4000	1.8400					1.818	1.828	2,172	
8000	3.6800					3.658	2.048	2.433	
10000	4.6000					4.578	2.120	2.518	
18250	8.3950					8.373	2.316	2.752	
36500	16.790					16.768	2,545	3.024	0.252

TABLA III.5 .- HUNDIMIENTO ESTRATO D

MATERIAL TIPO II

$$\begin{split} &\delta ep = 4.752; \quad \text{Tvp/dia} = 0.000108; \quad \text{Tvc} = 0.00972; \ \beta = 1.1; \\ &\text{Tvc/} \ 0.088; \quad A_2 = 0.495; \quad \text{Tvc} \cdot A_2 = 0.0048; \quad \beta/2.3 = 0.478; \\ &4.62/\beta = 4.2; \quad \text{Tc} = 90 \text{ dias.} \end{split}$$

dias	Tvp	Tvp/ß	Aj	Tvp/Tvc	fl	Tvp-Tvc·A	2 ^f 2	Se	Moi
10	0,0011	0.001	0.000	0.111	0.111			0.528	
20	0.0022	0.002	0.005	0.222	0.222	2		1.058	
30	0.0032	0.003	0.008	0.333	0.334	ł		1.590	
60	0.0065	0.006	0.010	0.666	0.670)		3.183	
90	0.0097	0.009	0.015	1.000	1.007	7		4.786	
1,20	0.0130					0.008	1,016	4.828	
240	0.0259					0.021	1.040	4.945	
480	0.0519					0.047	1.086	5.161	
1000	0.1080					0.103	1.172	5.161	
2000	0.2160					0.211	1.303	6.193	
4000	0.4320					0.427	1.491	7.085	
8000	0.8640					0.859	1.730	8,221	
10000	1.0800					1.075	1.816	1.629	
18250	1.9710				•	1.966	2.063	9.804	
36500	3.9420					3.937	2.368	11.25	0.234

TABLA	III.6	. ~	HUNDIMIENTO	ESTRATO	,
-------	-------	----------------	-------------	---------	---

MATERIAL TIPO I

	FC =F(tam β =	= 90 di Tvc-To bién di 0.54;	as; ∂ep)= 0.096 rectamen β/2.3 =	= 11.6 ; Tvc-1 te de 1 0.2347	516 cm; ¹⁰ 1= 0.0 a figur ; 4.62/	Tvp/d: 96; Tc a No.20 3 = 8.9	a = 0.002 $a^{-0.2061}$ $a^{-0.2061}$ $a^{-0.2061}$ $a^{-0.2061}$	29; Tvo -0.096= = 0.2061 A ₂ = 0.1	c = 0.2061 $0.11 = To_1$; $To_1 = 0.4$ 443; Tvc	; ø(Tvc)	= 0.34	3 (Fig. No. 2	2)
dias 10 20	Tv 0.023	ø(Tv) 0.165	Tv/3 0.0424	A ₁ 0.085	Tv/Tvc	f ₁	Tv-Tol	F(Tv-To	l) Tv-Tvc	-A ₂ Blog	f ₂	= 0.7 S	
30	0.069	0.240 0.290	0.0848	0.155	0.222	0.061					2	0.238	
60 90	0.137	0.410 0.515	0.2544 0.3817	0.350	0.666	0.114 0.328						0.713	7
240	0.549					0.014	0.1648	0.45	0.1305	0.176	0 606	7.140	њ.
1000 2000	1.099 2.290 4.580						0.4396 0.9892 2.1800	0.73 0.94 0.99	0.4053	0.351	1.081 1.460	7.269 12.557 16.955	
4000 8000	9.160 18.320						4.4700 9.0500	1.00	4.4357 9.0157	0.695	1.685	19.571 21.590	
TD000	22,900						18.2100 22.7900	18 19	18.1757 22.7559	1.185	2.022 2.185 2.237	23.489 25.381 25.990	

Nota: Estos resultados no se tomaron en cuenta debido a que se observó que la curva de compresibilidad que sirvió para obtener las curvas de consolidación correspondien tes, está muy tendida (fig. No.33), y por lo tanto se supone que el material de la muestra de suelo estaba alterado; de ahi que se hayen obtenido esas grandes de

TABLA III. 7 .- HUNDIMIENTOS ESTRATO E

MATERIAL TIPO II

$$\begin{split} & \delta \mathbf{ep} = 1.856 \text{ cm}; \quad \text{Tvp/dia} = 0.00063; \quad \text{Tvc} = 0.0567; \ /^3 = 0.48; \\ & \text{Tvc/}^3 = 0.118; \ A_2 = 0.59; \ /^3/2.3 = 0.2087; \quad \text{Tvc} \cdot A_2 = 0.0335; \\ & 4.62/s = 9.625; \quad \text{Tc} = 90 \text{ dias}. \end{split}$$

dias	Tvp	Tvp/3	Al	Tvp/Tvc	fl	Tvp-Tvc·A	2 ^f 2	Se	mor
10	0.0063	0.013	0.025	0.111	0.112	1		0,207	
20	0.0126	0.026	0.060	0.222	0.225			0.417	
30	0.0189	0.039	0.080	0.333	0.339	l i i i i i i i i i i i i i i i i i i i		0,629	
60	0.0378	0.079	0.145	0.666	0.687	•		1,275	•
90	0.0567	0.118	0.200	1.000	1.042	!		1.933	
120	0.0756					0.042	1.071	1.987	
240	0.1512					0.118	1.158	2,149	
480	0.3024					0.269	1.266	2.350	
1000	0.6300					0.597	1.398	2.594	•
2000	3.7400					3.631	1.845	2.842	
4000	7.4800					7.371	2.017	3.100	
8000	5.0400					5.006	1.812	3.363	
10000	6.3000					6. 266	1.858	3.448	
18250	11.498					11.464	1.982	3.679	
36500	22.995					22.962	2.126	3.946	0.110

TABLA III.8 .- HUNDIMIENTOS ESTRATO G

MATERIAL TIPO II

 $\begin{aligned} \delta ep &= 0.5653 \text{ cm}; \text{ Tvp/dia} = 0.00187; \text{ Tvc} = 0.1683; \ \beta = 0.57; \\ \text{Tvc/}\beta &= 0.295; \ A_2 = 0.65; \text{ Tvc} \cdot A_2 = 0.1094; \ \beta/2.3 = 0.248; \\ 4.62/\beta &= 8.105; \text{ Tc} = 90 \text{ dias.} \end{aligned}$

dias	Tvp	Tvp/p	. A ₁	Tvp/Tvc	fl	Tvp-Tvc•A	2 ^f 2	Se	moi
10	0.0187	0.033	0.065	0.111	0.113	i		0.064	
20	0.0374	0.066	0.120	0.222	0.229	1		0.129	
30	0.0561	0.098	0.180	0.333	0.348			0.197	
60	0.1122	0.197	0.290	0.666	0.715			0.404	
90	0.1683	0.295	0.375	1.000	1.093	i		0.618	
120	0.2244					0.115	1.163	0.657	
240	0.4488					0.339	1.327	0.750	
480	0.8976					0.788	1.495	0.845	
1000	1.8700					1.761	1.675	0.947	
2000	3.7400					3.631	1.845	1.043	
4000	7.4800					7.371	2.017	1,140	
8000	14.960					14.851	2.188	1.237	
10000	1 8. 700					18.591	2.243	1.268	
18250	34.128					34.018	2.392	1.352	
36500	68.255					68.1 46	2.564	1.449	0.128

TABLA III.9 .- HUNDIMIENTOS ESTRATO H

MATERIAL TIPO II

 $\begin{aligned} & \delta ep = 1.728 \text{ cm}; \quad \text{Tvp/dia} = 0.00032; \quad \text{Tvc} = 0.0283; \ \beta^3 = 0.52; \\ & \text{Tvc/}\beta = 0.055; \quad A_2 = 0.33; \quad \text{Tvc} \cdot A_2 = 0.0095; \ \beta^3/2.3 = 0.2261; \\ & 4.62/\beta = 8.885; \quad \text{Tc} = 90 \text{ digs.} \end{aligned}$

dias	Tvp	Tvp//3	Al	Tvp/Tvc	f_1	Tvp-Tvc·A	2 ^f 2	5-	Mri
10	0.0032	0.006	0.015	0.111	0.111			0.193	
20	0.0064	0.012	0.020	0.222	0.223	6		0.385	
30	0.0096	0.019	0.040	0.333	0.336	i i		0.581	
60	0.0192	0.037	0.075	0.666	0.678	\$		1.171	
90	0.0288	0.055	0.105	1.000	1.024	ł		1.769	
120	0.0384					0.0290	1.052	1.817	
240	0.0768					0.0673	1.106	1.911	
480	0.1536					0.1441	1.186	2.049	
1000	0.3200					0.3105	1.299	2.245	
2000	0.6400					0.6305	1.426	2.464	
4000	1.2888					1.2705	1.616	2.792	
8000	2.5600					2.5505	1.714	2.962	
10000	3.2000					3.1905	1.763	3.046	
18250	5.8400					5.8305	1.896	3.276	
36500	11.680					11.6705	2.050	3.543	0.095

TABLA III.10 .- HUNDIMIENTO ESTRATO I

MATERIAL TIPO II

 $\delta ep = 0.473 \text{ cm.; } Tvp/dia = 0.00418; Tvc = 0.3762; \beta = 0.55; Tvc/\beta = 0.684; A_2 = 0.77; Tvc·A_2 = 0.2897; \beta/2.3 = 0.239; 4.62/\beta = 8.4; Tc=90 dias.$

dias	Tvp	Tvp/ß	Α _l	Tvp/Tvc	f _l	Tvp-Tvc.A2	f ₂	Se	mri
10	0.0418	0.076	0.133	0.111	0.115	5		0.055	
20	0.0836	0.152	0,240	0.222	0.235	5		0.112	
30	0.1254	0.228	0.320	0.333	0.359	9		0.172	
60	0.2508	0.456	0.470	0.666	0.742	2		0.354	
90	0.3762	0.684	0.550	1.000	1.132	2		0.541	
120	0.5016					0.212	1.2442	0.594	
240	1.0032					0.714	1.4645	0.700	
480	2.0064					1.717	1.6534	0.790	
1000	4.1800					3.890	1.8400	0.879	
2000	8.3600					8.070	2.0106	0.961	
4000	16.720					16.430	2.1786	1.041	
8000	33.440					33.150	2.3455	1.121	
10000	41.800					41.510	2.3990	1.147	
18250	76.285					75.995	2.5430	1.216	
36500	152.57					152.280	2.7089	1.295	0.12

. . .

TABLA III.11 .- HUNDIMIENTO ESTRATO J

MATERIAL TIPO II

$$\begin{split} &\delta ep = 0.268 \text{ cm}; \quad \text{Tvp/dia} = 0.00599; \quad \text{Tvc} = 0.5391; \ /^3 = 0.97; \\ &\text{Tvc/} = 0.55; \quad A_2 = 0.51; \quad \text{Tvc} \cdot A_2 = 0.2749; \ /^3/2.3 = 0.4217; \\ &4.62/s = 4.763; \quad \text{Tc} = 90 \text{ dias}. \end{split}$$

dias	Tvp	Tvp/s	Al	Tvp/Tvc	f_1	Tvp-Tvc·A2	f ₂	de.	mri
10	0.0599	0.062	0.120	0.111	0.116			0.031	
20	0.1198	0.124	0,210	0.222	0.242			0.065	
30	0.1797	0.185	0.285	0.333	0.373			0.100	
60	0.3594	0.371	0.425	0.666	0.786			0.210	
90	0.5391	0.556	0.510	1.000	1.215			0.325	
120	0.7188					0.444	1.478	0.396	
240	1.4376					1.163	1.791	0.479	
480	2.8752					2.600	2.093	0.560	
1000	5.9900					5.715	2.407	0.645	
2000	11.980					11.705	2.701	0.723	
4000	23.960					23. 685	2.994	0.802	
8000	47.920					47.645	3.280	0,880	
10000	59.900					59.625	3.380	0.906	
18250	109.32					109.043	3.635	0.974	
36500	218.64					218.360	3.927	1.052	0.128

TABLA III.12 .- HUNDIMIENTO ESTRATO K

MATERIAL TIPO II

 $\begin{aligned} & \mathbf{S} \cdot \mathbf{p} = 0.395 \text{ cm}; \quad \text{Tvp/dia} = 0.00251; \quad \text{Tvc} = 0.2259; \ \beta = 1.04; \\ & \text{Tvc/} \beta = 0.217; \quad A_2 = 0.633; \quad \text{Tvc} \cdot A_2 = 0.143; \ \beta / 2.3 = 0.452; \\ & \mathbf{4} \cdot 62 / \beta = 4.44; \quad \text{Tc} = 90 \text{ diag.} \end{aligned}$

dias	Tvp	Tvp/ß	Al	Tvp/Tvc	fl	Tvp-Tvc·A	2 ^f 2	£	mri
10	0.0251	0.024	0.050	0.111	0.113	3		0.044	
20	0.0502	0.048	0.090	0.222	0.231			0.091	
30	0.0753	0.072	0.140	0.333	0.354	ļ		0.140	
60	0.1506	0.145	0.240	0.666	0.739	1		0.292	
90	0.2259	0.217	0.305	1,000	1.139	i i i i i i i i i i i i i i i i i i i		0.449	
120	0.3012					0.158	1.240	0.490	
240	0.6024					0.459	1.502	0.593	
480	1.2048					1.062	1.787	0.706	
1000	2.5100					2.367	2.104	0.831	
2000	5.0200					4.877	2.409	0.952	
4000	10.040					9.897	2.719	1.074	
8000	20.080					19.937	3.017	1,192	
10000	25.100					24.957	3.131	1.237	
18250	45.807					45.665	3.401	1.344	
36500	91.615					91.472	3.714	1.467	0.114

TABLA III.13.- HUNDIMIENTO ESTRATO L

MATERIAL TIPO II

$$\begin{split} &\mathcal{S}ep = 0.696 \text{ cm}; \ \text{Tvp/dia} =).00079; \ \text{Tvc} = 0.0711; \ \beta = 1.07; \\ &\text{Tvc/}\beta = 0.066; \ A_2 = 0.525; \ \text{Tvc} \cdot A_2 = 0.0373; \ \beta / 2.3 = 0.465; \\ &4.62/\rho = 4.32; \ \text{Tc}^2 = 90 \text{ dias}. \end{split}$$

dias	Tvp	Tvp/s	A	Tvp/Tvc	fl	Tvp-Tvc·A2	f2	Sc	\mathcal{M}_{σ} :
10	0.0079	0.007	0.020	0.111	0.112	2		0.078	
20	0.0158	0.015	0.030	0.222	0.225	5		0.157	
30	0.0237	0.022	0.045	0.333	0.340	}		0.237	
60	0.0474	0.044	0.090	0.666	0.695	5		0.433	
90	0.0711	0.066	0.120	1.000	1.056	5		0.735	
120	0.0948					· 0.0575	1.103	0.768	
240	0.1896					0.1523	1.235	0.859	
480	0.3792					0.3419	1.421	0.989	
1000	0.7900					0.7527	1.672	1.164	
2000	1.5800					1.5427	1.946	1.355	
4000	3.1600					3.1227	2.242	1.561	
8000	6.3200					6.2827	2.551	1.775	
10000	7.9000					7.8627	2.651	1.845	
18250	14.418					14.0442	2.915	2.029	
36500	28.835					28.4617	3.240	2.255	0.097

TABLA.14 -- HUNDIMIENTO ESTRATO M MATERIAL TIPO II

dias	$\mathbf{Tv}\mathbf{p}$	Tvp/3	Al	Tvp/Tvc	fl	Tvp-Tvc·A2	f2	fe	mvi
10	0.0013	0.002	0.005	0.111	0.113			0.133	
20	0.0026	0.003	0.010	0.222	0.223			0.263	
30	0.0039	0.005	0.012	0.333	0.335			0.395	
60	0.0078	0.010	0.020	0.666	0.671			0.792	
90	0.0117	0.014	0.025	1.000	1.009	l		1.190	
120	0.0156					0.0097	1.007	1.190	
240	0.0312					0.0254	1.018	1.201	
480	0.0624					0.0566	1.038	1.225	
1000	0.1300					0.1242	1.079	1.274	
2000	0.2600					0.2540	1.147	1.353	
4000	0.5200					0.5140	1.252	1.473	
8000	1.0400					1.0340	1.400	1.652	
10000	1.3000					1.2940	1.456	1.718	
18250	2.3725					2.3670	1.623	1.915	
36500	4.7450					4.7390	1.838	2.169	0.055

				MATE	RIAL	TIPO II			
б Т 4	ep = 3.2 vc/β = .62/β =	238 cm; 0.0139; 4.485;	Tvp/di $A_2 0$ $Tc^2 = 9$.a = 0.00 025; T 0 dias.	0016; ^{vc·A} 2	Tvc = 0.0 = 0.00036	144; ß; β/2.	= 1.03; 3 = 0.4	478;
dias	Tvp	Tvp/3	A ₁	Tvp/Tvc	fl	Tvp-Tvc•A	2 ^f 2	Je	mor
10 20 30 60 90 120 240 480 2000 8000 10000 18250 36500	0.0016 0.0032 0.0048 0.0096 0.0144 0.0192 0.0384 0.0768 0.1600 0.3200 0.6400 1.2800 1.6000 2.9200 5.8400	0.002 0.003 0.005 0.009 0.014	0.005 0.008 0.010 0.015 0.025	0.111 0.222 0.333 0.666 1.000	0.111 0.223 0.335 0.671 1.011	0.019 0.038 0.076 0.160 0.319 0.640 1.280 1.599 2.920 5.840	1.036 1.070 1.132 1.242 1.398 1.605 1.854 1.940 2.184 2.477	0.361 0.722 1.084 2.173 3.274 3.355 3.466 3.665 4.020 4.526 5.198 6.002 6.280 7.070 8.022	0.129
-		TABLA	111. 16	5 HUI MA	NDIMIE TERIAL	NTO ESTRA TIPO I	TO O I		
5 T 4	ep = 0.4 vc/3 = .62/3 =	TABLA 485 cm; 0.42; 17.769;	III. 16 Tvp/di A ₂ = 0. Tc =	5 HU MA 1a = 0.00 71; Tv 90 dia	NDIMIE TERIAL 0112; c•A ₂ = s.	NTO ESTRA TIPO I Tvc = 0. 0.0774;	TO O I 109; / ³ / ³ /2.3	= 0.26; = 0.11	3;
5 T 4 dias	ep = 0.4 vo/β = .62/β = Tvp	TABLA 485 cm; 0.42; 17.769; TVp/s	III. 16 Tvp/di $A_2 = 0$ Tc = A_1	5 HU MA 1a = 0.00 71; Tv 90 dia Tvp/Tvc	NDIMIEN TERIAL Oll2; $c \cdot A_2 = s$. $f_1 = s$	NTO ESTRA TIPO I Tvc = 0. 0.0774; Tvp-Tvc·A	TO 0 I 109; / ³ / ³ /2.3	= 0.26; = 0.11 ರ್	.3; Mri
dias 10 20 30 60 90 120 240 480 1000 4000 10000 10000 18250 36500	ep = 0.4 vo/p = .62/s = Tvp 0.0112 0.0224 0.0336 0.0672 0.1008 0.1344 0.2688 0.5376 1.1200 2.2400 4.4800 8.9600 11.200 20.440 40.880	TABLA 485 cm; 0.42; 17.769; Tvp//2 0.043 0.086 0.129 0.258 0.387	III. 16 Tvp/dJ A ₂ = 0. Tc = A ₁ 0.090 0.160 0.200 0.350 0.440	5 HU MA 1a = 0.00 71; Tv 90 dia Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	NDIMIE TERIAL D112; C·A ₂ = s. f ₁ : 0.112 0.226 0.341 0.693 1.050	NTO ESTRA TIPO I Tvc = 0. 0.0774; Tvp-Tvc·A 0.191 0.460 1.043 2.163 4.403 8.883 11.123 20.363 40.803	TO O I 109; / ³ / ³ /2.3 2 f 2 f 2 1.079 1.167 1.250 1.336 1.415 1.494 1.572 1.598 1.665 1.744	= 0.26; = 0.11 Jc 0.055 0.110 0.165 0.336 0.509 0.524 0.566 0.607 0.648 0.687 0.725 0.763 0.775 0.808 0.846	3; Mri

		TABLA	III. :	L7 н м	UNDIMI ATERIA	ENTO EST L TIPO	RATO P II		
	$\delta e p = 0.5$ $Tvc/\rho = 0$ $4.62/\rho = 0$	18 cm; .1876; 7.83;	Tvp/d: A ₂ 0.0 Tc =	ia = 0.0 52; Tvc = 90 dia	0123; •A ₂ = s.	Tvc = 0 0.0686;	.1107; f / ³ /2.3	= 0.59 = 0.256	; ;
dias	Tvp	Tvp/3	Al	Tvp/Tvc	fl	Tvp-Tvc•	$A_2 f_2$	Se	mori
10 20 30 60 90 120	0.0123 0.0246 0.0369 0.0738 0.1107 0.1476	0.021 0.042 0.063 0.125 0.188	0.040 0.080 0.120 0.200 0.280	0.111 0.222 0.333 0.666 1.000	0.112 0.227 0.344 0.700 1.072	0.079	1.123	0.058 0.117 0.178 0.363 0.555 0.582	
240	0.2952					0.227	1.261	0.653	
480	0.5904					0.522	1.417	0.734	
2000	2 4600					1.101	1.592	0.025	
4000	4.9200					4.851	1.939	1.004	
8000	9.8400					9.771	2.115	1.095	
10000	12,300					12.231	2.172	1.125	
36500	44.895					22.379	2.503	1.204	0.064
	Sep = 0.33 Tvc/ $\beta = 0$ $4.62/\beta = 0$	TABLA 21 cm; 0.522; 7.7;	III.18 Tvp/di $A_2 = 0$ $Tc^2 = 90$	HUN MAT 1a = 0.0 0.74; T) dias.	DIMIEN ERIAL 0348; vc·A ₂	TO ESTRA TIPO II Tvc = 0 = 0.2318	TO R .3132; ; / ³ /2.	$\beta = 0.6$ 3 = 0.2	; 61;
dias	Sep = 0.3 Tvc/\$ = 0 4.62/\$ = Tvp	TABLA 21 cm; 0.522; 7.7; Tvp/ <i>3</i>	III.18 Tvp/di $A_2 = 0$ $Tc^2 = 90$ A_3	HUN MAT ia = 0.00).74; T) dias. Tvp/Tvc	DIMIEN ERIAL 0348; vc·A ₂ f ₁	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc.	TO R • 3132; ; / ³ /2•	B = 0.6 3 = 0.2 Sc	; 61; Moi
dias 10	S ep = 0.33 $Tvc/\beta = 0$ $4.62/\beta = 0$ Tvp 0.0348	TABLA 21 cm; 0.522; 7.7; Tvp/3 0.058	III.18 Tvp/di $A_2 = 0$ $Tc^2 = 90$ A_1 0.110	HUN MAT (a = 0.00 ().74; T () dias. Tvp/Tvc ().111	DIMIEN ERIAL 0348; vc·A ₂ f ₁ 0.114	TO ESTRA TIPO II TVC = 0 = 0.2318 TVP-TVC	TO R .3132; ; / ³ /2. A ₂ f ₂	$\beta = 0.6$ 3 = 0.2 \int_{c} 0.037	; 61; Moi
dias 10 20	$\begin{cases} ep = 0.3; \\ Tvc/\beta = 0 \\ 4.62/\beta = 0 \\ Tvp \\ 0.0348 \\ 0.0696 \end{cases}$	TABLA 21 cm; 0.522; 7.7; Tvp//3 0.058 0.116	III.18 Tvp/di $A_2 = 0$ Tc = 90 A_1 0.110 0.200	HUN MAT ia = 0.0 0.74; T dias. Tvp/Tvc 0.111 0.222	DIMIEN ERIAL 0348; vc·A2 f ₁ 0.114 0.234	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc	TO R .3132; ; / ³ /2. A ₂ f ₂	$\beta = 0.6$ 3 = 0.2 5c 0.037 0.075	; 61; Могі
dias 10 20 30	$\begin{cases} ep = 0.3; \\ Tvc/\beta = 0, \\ 4.62/\beta = 0, \\ Tvp \\ 0.0348 \\ 0.0696 \\ 0.1044 \\ 0.2088 \end{cases}$	TABLA 21 cm; 0.522; 7.7; Tvp/3 0.058 0.116 0.174	III.18 Tvp/di $A_2 = 0$ Tc = 90 A_1 0.110 0.200 0.260 0.260	HUN: MAT ia = 0.0 0.74; T dias. Tvp/Tvc 0.111 0.222 0.333 0.666	DIMIEN ERIAL 0348; vc·A2 f ₁ 0.114 0.234 0.356	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc•	TO R .3132; ; / ³ /2. A ₂ f ₂	$\beta = 0.6$ 3 = 0.2 5c 0.037 0.075 0.114 0.277	; 61; Moi
dias 10 20 30 60	S ep = 0.3 $Tvc/\beta = 0$ $4.62/\beta =$ Tvp 0.0348 0.0696 0.1044 0.2088 0.3132	TABLA 21 cm; 0.522; 7.7; Tvp//3 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di $A_2 = 0$ Tc = 90 A_1 0.110 0.200 0.260 0.420 0.500	HUN: MAT ia = 0.0).74; T) dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f 0.114 0.234 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc·	TO R • 3132; ; / ³ /2•	$\beta = 0.63 = 0.2Sc0.0370.0750.1140.2370.363$; 61; Moi
dias 10 20 30 60 90 120	$\begin{aligned} S ep &= 0.3 \\ Tvc/\beta &= 0 \\ 4.62/\beta &= 0 \\ Tvp \\ 0.0348 \\ 0.0696 \\ 0.1044 \\ 0.2088 \\ 0.3132 \\ 0.4176 \end{aligned}$	TABLA 21 cm; 0.522; 7.7; TVP/3 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di $A_2 = 0$ Tc = 90 A_1 0.110 0.200 0.200 0.200 0.500	HUN: MAT MAT (a = 0.0 (a = 0.0 (a = 0.0 (a = 0.0 (a = 0.0 (a = 0.0) (a =	DIMIEN ERIAL 0348; vc·A2 f ₁ 0.114 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc• 0.186	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231	$\beta = 0.63 = 0.250.0370.0750.1140.2370.3630.395$; 61; Moi
dias 10 20 30 60 90 120 240	$\begin{aligned} S = p &= 0.3 \\ Tvc/s &= 0 \\ 4.62/s &= 0 \\ Tvp \\ 0.0348 \\ 0.0696 \\ 0.1044 \\ 0.2088 \\ 0.3132 \\ 0.4176 \\ 0.8352 \end{aligned}$	TABLA 21 cm; 0.522; 7.7; TVP/3 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di $A_2 = 0$ $Tc^2 = 90$ A_1 0.110 0.200 0.260 0.260 0.420 0.500	HUN MAT ia = 0.00 0.74; T 0 dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f ₁ 0.114 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0. = 0.2318 Tvp-Tvc• 0.186 0.603	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231 1.451	$\beta = 0.6$ $3 = 0.2$ 5_{c} 0.037 0.075 0.114 0.237 0.363 0.395 0.466	; 61; Moi
dias 10 20 30 60 90 120 240 480	$\begin{aligned} \mathbf{\hat{s}} &= \mathbf{p} = 0.3\\ \mathbf{Tvc/s} &= 0\\ \mathbf{4.62/s} &= \\ \mathbf{Tvp}\\ 0.0348\\ 0.0696\\ 0.1044\\ 0.2088\\ 0.3132\\ 0.4176\\ 0.8352\\ 1.6704\\ 1.6704 \end{aligned}$	TABLA 21 cm; 0.522; 7.7; Tvp/3 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di $A_2 = 0$ $Tc^2 = 90$ 0.110 0.200 0.260 0.420 0.500	HUN: MAT MAT D.74; T D. dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f ₁ 0.114 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc· 0.186 0.603 1.439	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231 1.451 1.649	$\beta = 0.6 3 = 0.2 S_{c} 0.037 0.075 0.114 0.237 0.363 0.395 0.466 0.529$; 61; Moi
dias 10 20 30 60 90 120 240 1000 2000	$\begin{aligned} \mathbf{\hat{s}} &= \mathbf{p} = 0.3; \\ \mathbf{Tvc}/\mathbf{\hat{s}} &= 0.3; \\ 4.62/\mathbf{\hat{s}} &= 0.3; \\ \mathbf{Tvp} &= 0.0348; \\ 0.0696 &= 0.044; \\ 0.2088 &= 0.3132; \\ 0.3132 &= 0.4176; \\ 0.3132 &= 0.$	TABLA 21 cm; 0.522; 7.7; Tvp/ <i>β</i> 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di $A_2 = 0$ Tc = 90 A_1 0.110 0.200 0.260 0.420 0.500	HUN MAT MAT D.74; T D dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f 0.114 0.234 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc· 0.186 0.603 1.439 3.248 6.728	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231 1.451 1.649 1.849 2.034	$\beta = 0.6$ 3 = 0.2 5c 0.037 0.075 0.114 0.237 0.363 0.395 0.466 0.529 0.594 0.653	; 61; Moi
dias 10 20 30 60 90 120 240 480 1000 2000 4000	$\begin{aligned} \mathbf{\hat{s}} &= \mathbf{p} = 0.3\\ \mathbf{Tvc}/\mathbf{\hat{s}} &= 0\\ 4.62/\mathbf{\hat{s}} &= 0\\ \mathbf{Tvp}\\ 0.0348\\ 0.0696\\ 0.1044\\ 0.2088\\ 0.3132\\ 0.4176\\ 0.8352\\ 0.4176\\ 0.8352\\ 1.6704\\ 3.4800\\ 6.9600\\ 13.920 \end{aligned}$	TABLA 21 cm; 0.522; 7.7; Tvp/3 0.116 0.174 0.348 0.522	III.18 Tvp/di $A_2 = 0$ Tc = 90 0.110 0.200 0.260 0.420 0.500	HUN MAT ia = 0.0 0.74; T) dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f 0.114 0.234 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc· 0.186 0.603 1.439 3.243 6.728 13.688	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231 1.451 1.649 1.849 2.034 2.216	$\beta = 0.6$ $3 = 0.2$ S_{c} 0.037 0.075 0.114 0.363 0.395 0.466 0.529 0.594 0.653 0.711	; 61; Moi
dias 10 20 30 60 90 120 240 480 1000 2000 4000 8000	$\begin{aligned} \mathbf{\hat{s}} & ep = 0.3\\ \mathbf{Tvc/s} & = 0\\ \mathbf{4.62/s} & = 0\\ \mathbf{Tvp}\\ 0.0348\\ 0.0696\\ 0.1044\\ 0.2088\\ 0.3132\\ 0.4176\\ 0.8352\\ 1.6704\\ 3.4800\\ 6.9600\\ 13.920\\ 27.840 \end{aligned}$	TABLA 21 cm; 0.522; 7.7; Tvp/3 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di $A_2 = 0$ Tc = 90 A_1 0.110 0.200 0.260 0.420 0.500	HUN MAT MAT ia = 0.0 0.74; T dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f 1 0.114 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc· 0.186 0.603 1.439 3.243 6.728 13.688 27.608	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231 1.451 1.649 1.849 2.034 2.216 2.398	$\beta = 0.6$ $3 = 0.2$ S_{c} 0.037 0.075 0.114 0.237 0.363 0.395 0.466 0.529 0.594 0.653 0.711 0.770	; 61; -Moi
dias 10 20 30 60 90 120 240 480 1000 2000 4000 8000 10000	$\begin{aligned} \mathbf{\hat{s}} &= \mathbf{p} = 0.3 \\ \mathbf{Tvc}/\mathbf{\hat{s}} &= 0 \\ 4.62/\mathbf{\hat{s}} &= 0 \\ \mathbf{Tvp} \\ 0.0348 \\ 0.0696 \\ 0.1044 \\ 0.2088 \\ 0.3132 \\ 0.4176 \\ 0.8352 \\ 1.6704 \\ 3.4800 \\ 6.9600 \\ 13.920 \\ 27.840 \\ 34.800 \\ 6.9600 \\ 13.920 \\ 27.840 \\ 34.800 \\ 6.9600 \\ 13.920 \\ 27.840 \\ 34.800 \\ 6.9600 \\ 34.800 \\ 6.9600 \\ 34.800 \\ 6.9600 \\ 34.800 \\ 6.9600 \\ 34.800 \\ 6.9600 \\ 34.800 \\ 6.9600 \\ 5.960$	TABLA 21 cm; 0.522; 7.7; Tvp/3 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di A2 = 0 Tc = 90 0.110 0.200 0.260 0.260 0.420 0.500	HUN MAT La = 0.0).74; T) dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f ₁ 0.114 0.234 0.234 0.356 0.740 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc· 0.186 0.603 1.439 3.248 6.728 13.688 27.603 34.568 34.568	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231 1.451 1.649 1.849 2.034 2.216 2.398 2.456	$\beta = 0.6$ $3 = 0.2$ S_{c} 0.037 0.075 0.114 0.237 0.363 0.395 0.466 0.529 0.594 0.653 0.711 0.770 0.788	; 61; -Мог.
dias 10 20 30 60 90 120 240 480 1000 2000 4000 8000 10000 18250 36500	S = p = 0.3 Tvc/ $A = 0$ 4.62/ $A = 0$ Tvp 0.0348 0.0696 0.1044 0.2088 0.3132 0.4176 0.8352 1.6704 3.4800 6.9600 13.920 27.840 34.800 63.510 127.02	TABLA 21 cm; 0.522; 7.7; TVP/3 0.058 0.116 0.174 0.348 0.522	III.18 Tvp/di A2 = 0 Tc = 90 0.110 0.200 0.260 0.260 0.420 0.500	HUN MAT La = 0.0 0.74; T) dias. Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	DIMIEN ERIAL 0348; vc·A2 f1 0.114 0.234 0.234 0.3760 1.130	TO ESTRA TIPO II Tvc = 0 = 0.2318 Tvp-Tvc· 0.186 0.603 1.439 3.248 6.728 13.688 27.603 34.568 34.568 27.878 126.788	TO R .3132; ; / ³ /2. A ₂ f ₂ 1.231 1.451 1.649 1.849 2.034 2.216 2.398 2.456 2.456 2.613 2.794	$\beta = 0.6$ $3 = 0.2$ 5_{-} 0.037 0.075 0.114 0.237 0.363 0.395 0.466 0.529 0.594 0.653 0.711 0.770 0.788 0.839 0.397	; 61; mri

		TABLA	111.19) HU MA	NDIMI TERIA	ENTO ESTRAT L TIFO II	0 S		
5 T 4	ep = 0.2 $vc/\beta = -62/\beta = -$	391 cm; 0.099; • 5.191;	Tvp/d: A ₂ = Tc =	ia = 0.00 0.57; 90 dias	0098; Tvc•A	Tvc = 0.0 2 = 0.0503;	882; <i>[</i> 3 /2.	= 0.89; 3 = 0.3	869;
dias	Tvp	Tvp//3	A	Tvp/Tvc	fl	Tvp-Tvc'A2	f2	Sa	mri
10 20 30 60 90 120 240 480 1000 2000	0.0098 0.0196 0.0294 0.0588 0.0882 0.1176 0.2352 0.4704 0.9800 1.9600	0.011 0.022 0.033 0.066 0.099	0.020 0.045 0.070 0.125 0.180	0.111 0.222 0.333 0.666 1.000	0.11 0.22 0.34 0.69 1.07	2 6 3 9 0 0.067 0.185 0.420 0.929 1.910 3.870	1.116 1.260 1.447 1.681 1.924 2.178	0.044 0.088 0.134 0.273 0.418 0.436 0.493 0.566 0.657 0.752 0.852	
8000	7.8400					7.790	2.439	0.954	
10000 18250 36500	9.8000 17.885 35.770					9.750 17.835 35.720	2.524 2.754 3.021	0.987 1.077 1.181	0.06
ส ร 4	ep = 0.4 vc/	TABLA : 03 cm; 0.087; 4.86;	III. 20 Tvp/di A ₂ =0.5 Ic = 90) HUN MA a = 0.00 66; Tvc dias.	NDIMII TERIA DO92; A ₂ =0.	ENTO ESTRAT L TIPO II Tvc = 0.08 .0464; $\beta/2$	0 T 828; /3 •3 = 0.	= 0.95; 413;	
dias	Tvp	TVP/p	Aı	Tvp/Tvc	f1	Tvp-Tvc*A2	f2	5	$m_{r_{\star}}$
10 20 30 60 90 120 240 480 1000 2000 4000 8000 10000 18250	0.0092 0.0184 0.0276 0.0552 0.0828 0.1104 0.2208 0.4416 0.9200 1.8400 3.6800 7.3600 9.2000 16.790	0.010 0.019 0.029 0.058 0.037	0.015 0.045 0.060 0.110 0.160	0.111 0.222 0.333 0.666 1.000	0.11: 0.220 0.34: 0.69' 1.060	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.112 1.253 1.442 1.684 1.938 2.208 2.485 2.575 2.820	0.045 0.091 0.138 0.281 0.430 0.448 0.505 0.581 0.679 0.781 0.890 1.001 1.038 1.137	
36500	33.580					33.534	3.100	1.251	0.059

		TABLA	III.21	- HUNI MAT	DIMIEN ERIAL	TO ESTRA TIPO II	ATO U		
	$\delta ep = 0.2$ Tvc/ $\beta = 4.62/\beta =$	205 cm; 0.337; = 4.66;	$Tvp/diA_2 = 0Tc^2 = 90$.a = 0.00).68; T) dias.	0371; vc·A ₂	Tvc = (= 0.227;	0.3339; / ; / ³ /2.3	/3 = 0.99 3 = 0.43	;
dias	u Tvp	TVP/3	A ₁	Tvp/Tvc	fl	Tvp-Tvc	$A_2 f_2$	Sa	Moi
10 20 30 60 90	0.0371 0.0742 0.1113 0.2226 0.3339 0.4452	0.037 0.075 0.112 0.225 0.337	0.075 0.133 0.200 0.305 0.410	0.111 0.222 0.333 0.666 1.000	0.115 0.235 0.362 0.754 1.177	0.218	3 1.302	0.024 0.048 0.074 0.155 0.241 0.267	
240	0.8904					0.66	1.606	0.329	
1000	3.7100					1.554 3.48	3 2.225	0.391	
2000	7.4200					7.19	2 2.523	0.517	
8000	29.680					29.45	3 2.822	0.578	
10000	37.100					36.87	3 3.216	0.659	
36500	135.42					135.188	3.475	0.712	0.071
	δep = 0.; Tvc/β = 4.62/β =	TABLA 309 cm; 0.0987; 1.0645;	III.22 Tvp/dis $A_2 O$ Tc =	- HUND MATE a = 0.00 57; Tv 90 dias	IMIENT RIAL 476; C ^{•A} 2 =	OS ESTR/ TIPO II TVC = 0. 0.2442;	10 V 1 4284; / ³ ; /2.3	= 4.34; 3 = 1.88	7;
dias	Sep = 0.3 Tvc/3 = 4.62//3 = Tvp	TABLA 309 cm; 0.0987; 1.0645; Tvp//3	III.22 Tvp/dia A_2 O. TC = A_3	- HUND MATE A = 0.000 57; TV 90 dias TVP/TVC	IMIENT RIAL 476; 2°A ₂ = f ₁	OS ESTRA TIPO II TVC = 0. 0.2442; TVP-TVC	ATO V 4284; / ³ ; / ³ /2•3	= 4.34; 3 = 1.88	7; Mri
dias 10 20 30 60 90 120 240	Sop = 0.: Tvc/3 = 4.62/3 = TVP 0.0476 0.0952 0.1428 0.2856 0.4284 0.5712 1.1424	TABLA 309 cm; 0.0987; 1.0645; Tvp//3 0.011 0.022 0.033 0.066 0.099	III.22 Tvp/dia A ₂ 0. Ts = A ₁ 0.015 0.045 0.075 0.130 0.180	HUND: MATE: A = 0.004 57; Tv 90 dias Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	IMIENT RIAL 476; 5.A2 = f1 0.114 0.241 0.380 0.830 1.340	0S ESTR/ TIPO II Tvc = 0. 0.2442; Tvp-Tvc 0.32 0.89	ATO V 4284; / ³ ; / ³ /2.3 ; / ³ /2.3	$= 4.34;$ $= 1.88$ \int_{C} 0.035 0.075 0.118 0.257 0.414 0.483 0.670	7; mo-i
dias 10 20 30 60 240 1000 2000 4000 8000 10000	<pre>\$ ep = 0.; Tvc/3 = 4.62/3 = 5 Tvp 0.0476 0.0952 0.1428 0.2856 0.4284 0.5712 1.1424 2.2848 2.2848 0.5712 1.1424 0.5712 0.1428 0.5712 1.1424 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5712 0.1428 0.5720 0.1428 0.5720 0.1428 0.5720 0.1428 0.5720 0.1428 0.5720 0.1428 0.5720 0.1428 0.5720 0.1428 0.5720 0.1428 0.5720 0.1428 0.57200 0.1428 0.57200 0.1428 0.57200 0.1428 0.57200 0.1428 0.57200 0.1428 0.57200 0.1428 0.57200 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.15700 0.157000 0.157000 0.157000 0.157000 0.15700000000000000000000000000000000000</pre>	TABLA 309 cm; 0.0987; 1.0645; Tvp//3 0.011 0.022 0.033 0.066 0.099	III.22 Tvp/dia A_0. TC = A_1 0.015 0.045 0.075 0.130 0.180	HUND MATE a = 0.000 57; Tvo 90 dias Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	IMIENT RIAL 476; 	0S ESTR/ TIPO II Tvc = 0. 0.2442; Tvp-Tvc 0.898 2.043 4.510 9.270 18.799 37.830 47.350	ATO V 4284; / ³ 4284; / ³ A ₂ f ₂ A ₂ f ₂ 7 1.563 3 2.264 1 3.176 5 4.316 5 5.498 5 6.739 6 8.012 5 8.426	$= 4.34;$ $3 = 1.88$ \int_{2}^{2} 0.035 0.075 0.118 0.257 0.414 0.483 0.670 0.981 1.333 1.699 2.082 2.476 2.604	7; -Mu-i
dias 10 20 30 60 240 480 1000 2000 48000 10000 18250 36500	$\begin{cases} ep = 0.3 \\ Tvc/\beta = 4.62/\beta = 4.62/\beta = 0.0476 \\ 0.0952 \\ 0.1428 \\ 0.2856 \\ 0.4284 \\ 0.5712 \\ 1.1424 \\ 2.2848 \\ 4.7600 \\ 9.5200 \\ 19.040 \\ 38.080 \\ 47.600 \\ 38.080 \\ 0.47.600 \\ 0.86.870 \\ 0.173.74 \\ \end{cases}$	TABLA 309 cm; 0.0987; 1.0645; Tvp/ /3 0.011 0.022 0.033 0.066 0.099	III.22 Tvp/dia A ₂ 0. Ts = A ₁ 0.015 0.045 0.075 0.130 0.180	HUND: MATE: A = 0.00/ 57; Tv/ 90 dias Tvp/Tvc 0.111 0.222 0.333 0.666 1.000	IMIENT RIAL 476; 5.A2 = f1 0.114 0.241 0.380 0.830 1.340	0S ESTR/ TIPO II TVC = 0. 0.2442; TVP-TVC 0.898 2.043 4.510 9.270 18.790 37.830 47.350 286.620 173.490	ATO V $A_{2}B4; /^{3}$ $A_{2}f_{2}$ $A_{2}f_{2}$ $A_{2}f_{2}$ $A_{2}f_{2}$ $A_{2}f_{2}$ $A_{3}I76$ $A_{3}I6$ A	= 4.34; = 1.88 0.035 0.075 0.118 0.257 0.414 0.483 0.670 0.981 1.333 1.699 2.082 2.476 2.604 2.950 3.351	7; moi

TABLA III.23 .- RESUMEN DE ASENTAMIENTOS TOTALES EN EL PUNTO 1

die	as 10	20	30.	60	. 90	120	240	460	2000	2000	4000	8000	10000	18250	36500	Espesor	•
A	0.078	0.159	0.243	0.497	0.753	0.846	0.979	1.077	1.170	1.253	1.333	1.413	1.438	1.508	1.587	80	
В	0.203	0.410	0.619	1,256	1.918	1.982	2.244	2.421	2.722	3.029	3.350	3.677	3.784	4.072	4.405	230	
C	0.132	0.264	0.401	0.802	1.230	1.260	1.356	1.500	1.700	1.925	2.172	2.433	2.518	2.752	3.024	100	
D	0.528	1.058	1.589	3.183	4.786	4.828	4.945	5.161	5.569	6.193	7.085	8.221	8,629	9.804	11.25	400	
E	0.207	0.417	0.629	1.275	1.933	1.987	2.149	2.350	2.594	2.842	3.100	3.363	3.448	3.679	3.946	300	
G	0.064	0.129	0.197	0.404	0.618	0.657	0.750	0.845	0.947	1.043	1.140	1.237	1.263	1.352	1.449	95	
Н	0.193	0.385	0.581	1.171	1.769	1.817	1.911	2.049	2.245	2.464	2.792	2.962	3.046	3.276	3.543	31.5	
I	0.055	0.112	0.172	0.355	0.541	0.594	0.700	0.790	0.879	0.961	1.042	1.121	1.147	1.216	1.295	90	
J	0.031	0.065	0.100	0.210	0.325	0.396	0.479	0.560	0.645	0.723	0.802	0.830	0.906	0.974	1.052	70	
K	0.044	0.091	0.140	0.292	0.450	0.490	0.593	0.706	0.831	0.916	1.074	1.192	1.237	1.334	1.467	110	
\mathbf{r}	0.073	0.157	0.237	0.483	0.735	0.768	0.859	0.989	1.164	1.355	1.561	1.776	1.845	2.029	2.255	200	
М	0.132	0,263	0.395	0.792	1.190	1.190	1.201	1.225	1.274	1.353	1.478	1.652	1.718	1.915	2.169	345	~
N	0.361	0.722	1.084	2.173	3.274	3.356	3.466	3.665	4.020	4.526	5.198	6.001	6.280	7.070	8.022	245	2
0	0.055	0.110	0.165	0.336	0.509	0.524	0.566	0.607	0.648	0.687	0.725	0.763	0.775	0.808	0.846	210	
P	0.058	0.117	0.178	0.363	0.555	0.582	0.653	0.734	0.825	0.939	1.004	1.095	1.125	1.204	1.296	190	
R	0.037	0.075	0.114	0.237	0.363	0.395	0.466	0.529	0.594	0.653	0.711	0.770	0.788	0.839	0.897	120	
S	0.044	0.088	0.134	0.273	0.418	0.436	0.493	0.568	0.657	0.752	0.052	0.954	0.987	1.077	1.181	190	
T	0.045	0.091	0.138	0.281	0.430	0.448	0.505	0.581	0.679	0.781	0.390	1.001	1.038	1.137	1.251	210	
U	0.024	0.048	0.074	0.155	0.241	0.267	0.329	0.391	0.456	0.517	0.578	0.640	0.659	0.712	0.773	110	
v	0.035	0.075	0.118	0.256	0.414	0.483	0.699	0.981	1.334	1. 699	2,032	2.476	2.604	2.950	3.351	140	
Α. Τ.	2.404	4.842	6.446	14.79	22.45	23.31	25.34	27.73	30.95	34.62	38.97	43.63	45.24	49.71	55.04	3750	

En donde A. T. = Asentamientos Totales para un tiempo dado. Espesor en cm. III.-3.- Resumen de asentamientos totales en el punto 1.-

El resumen de asentamientos totales se indica en la tabla III.23, que también es por si misma explicativa. De ésta tabla vemos por ejemplo que a los 1000 días (* 3 años), se va a tener un hundimiento en el punto 1 de 30.95 cm, mientras que a los 10000 días (* 27 años), el hundimiento será del orden de 45.24 cm.

La tabla III.23, se puede resumir aun más como se indica en la -siguiente tabla:

r i Empo	ASENTAMENIENTOS	TIEMPO	ASENTAMI ENTO	TIEMPO	ASENTAMIEN- TO.
dias	cm	dias	CM	dias	cm
10	2.404	120	23.31	4000	38.97
20	4.842	240	25.34	8000	43.63
30	6.446	480	27.73	10000	45.24
60	14.79	1000	30.95	18250	49.71

RESUMEN DE ASENTAMIENTOS TOTALES (cm) PUNTO No. 1

III.4.- Corrección de las deformaciones totales debido al Rebote Elásti co.

34.62

36500

55.04

2000

90

22.45

El cálculo de asentamientos obtenido del incremento neto de esfuer zo a los cuales queda sometido el subsuelo por el peso del tramo de pista de prueba fue corregido por el efecto del Rebote Elástico parcial que se provoca durante las excavaciones, (Ver figura No. 11). En el punto -central 1 (Centro de línea **£**), la expansión máxima alcanzó aproximadamente 6 cm. La corrección se efectuó a base de aplicar la recompresión debida a este Rebote Elástico en un periodo aproximado de 70 días, que se dedujo tomando en cuenta las observaciones reales que se reportan en la fig. No. 11. Es decir, se considera que aproximadamente en 70 días a partir de que la carga se incrementa, se verifica la recompresión del Rebote Elástico.

La fórmula empleada para dicha corrección es:

$$\Delta S_r = \frac{S e \times p}{(S'ep)n d} \times Sc$$

En donde:

- $\Delta S_r \rightarrow$ Deformación corregida = $(1 + \Delta S_r)S_c = S_r$ Sexp = Expansión máxima observada en el punto al cual se le
- estó calculando la corrección. (S'ep)n d = Hundimiento calculado para los "n" días en que haya logrado la recompresión.
 - S_c = Hundimiento para el tiempo t.

La corrección anterior implica la recompresión de un determinado alivio de esfuerzos efectivos por excavación. Por ejemploenelpunto 1 la aplicación del esfuerzo neto de 1.2 Ton/m2 ocasiona a los 70 días un hundimiento de 17.7 cm, obtenido de la gráfica de hundimientos teóricos de la fig. No. 11 (Curva Deformación-Tiempo Obtenida por el método de Zeevaert).

Este hundimiento de 17.7 cm a los 70 dias se podría haber obten<u>i</u> do analíticamente en la misma forma como se obtuvieron los hundimientos de las tablas III.2 a III.22 para los tiempos que ahí se indican.

Por lo tanto, la corrección para el punto l es:

$$\Delta Sr = \frac{6.0}{17.7} = 0.34$$

Por lo tanto para corregir cada hundimiento en un tiempo t, tendremos que multiplicar éstos por 1.34.

La corrección se realiza a continuación:

PUNTO 1 Corrección por Rebote Elástico

Sexp = 6 cm (S'ep)70días = 17.7 cm

Luego entonces:

 $\delta_r = (1 + \frac{6.0}{17.7}) \delta_c = 1.34 \,\delta_c$

Tiempo t dias	Sc cm	Sr cm
10	2.404	3.22
20	4.842	6.49
30	6.446	8.64
60	14.79	19.82
70	17.70	23.72
90	22.45	30.08
120	23.31	31.23
240	25.34	33.96
480	27.73	37.16
1000	30.95	41.47
2000	34.62	46.39
4000	38.97	52.22
8000	43.63	58.46
10000	45.24	60.62
36500	55.04	73.75

Esta corrección de hundimientos al punto 1 tambien se graficó en la figura No. 11.

IV.- COMPARACION DE RESULTADOS DE AMBAS TEORIAS, ENTRE ELLAS Y CON LAS OBSERVACIONES REALES MEDIDAS EN LA PISTA.

Para comparar los resultados de hundimientos obtenidos, por la teoría de Terzaghi, tabla II.4 ylos obtenidos por la teoría de Zeevaert, Tabla II.23 se podrian tomar éstas tablas; pero no hay nada mas explicativo que usar las gráficas de la figura No. 11, donde podemos visualizar más fácilmente los resultados obtenidos, resumidos en dicha figura.

En la mencionada figura No. 11 podemos observar la siguiente:

- a) La gráfica obtenida por la teoría de Terzaghi presenta una forma muy especial, es decir se presenta una deformación mucho muy rápida del -punto de tal forma que en muy poco tiempo (aproximadamente 8 meses) -ya casi se alcanzó el asentamiento téorico total de 51 cm. en cambio en la gráfica de la deformación real, apenas en ese tiempo se tiene -una deformación del estrato del orden de.14 cm.
- b) La curva corregida, obtenida por medio de la teoria de Consolidación -Secundaria de Zeevaert presenta en cambio una deformación que se acerca un poco más a la curva real, aunque tambien en deformaciones en tiempos cortos esta teoria obtiene deformaciones más grandes que las reales, aunque éstas son mucho menores que las obtenidas por Terzaghi.
- c) De la comparación de las curvas de resultados de ámbas teorías se puece decir que son muy diferentes entre si, ya que como se observa en la fig. No. 11, por Terzaghi la curva se hace casi asintótica desde tiem-

STATE AND ADDRESS OF AND

pos aproximados a 400 días y as1 se mantiene hasta tiempos muy
grandes.

En cambio, por Zeevaert aunque también se presenta una deforma ción muy rápida al principio, ésta deformación disminuye con el tiempo, hasta lograr que el hundimiento sea gradual y vaya disminuyendo poco a poco, manteniéndose en forma casí paralela con la real en tiempos mayores de 1,000 días.

V.- CONCLUSIONES Y RECOMENDACIONES

Las conclusiones inmediatas que se pueden deducir en base a la teoría presentada y los resultados obtenidos son las siguientes:

- 1.- La gráfica de deformación tiempo obtenida por medio de la -teoría de Terzaghi (fig. No. 11), puede observarse que se aleja mucho de la real; ésto es lógico, ya que en éste trabajo se analizó un tipo de suelo cuyas características son muy diferen tes a las del suelo considerado por Terzaghi cuando supuso sus hipótesis, es decir el suelo analizado en este trabajo es una arcilla que presenta alta viscosidad intergranular y por lo -tanto su deformación es principalmente por cambio de forma y no por cambio de volúmen como supone Terzaghi.
- 2.- La Teoría de Terzaghi, sin embargo, es muy exacta en suelos cu ya estratigrafía está formada por limos arenosos 6 arenas limo sas, y suelos permeables cuya deformación sea principalmente por cambio de volúmen, en donde se recomienda aplicarla, no así cuando el suelo sea muy impermeable como es el caso de arcillas limosas 6 limos arcillosos. De lo anterior podemos con-cluir que la teoría de Terzaghi es muy limitada.
- 3.- El Ingeniero debe dar con una aproximación razonable que asenmientos tendrá una estructura con el tiempo, por lo tanto debe tratar de aplicar sus conocimientos en el sentido de saber que teoría es la adecuada según el tipo de suelo que se le presente; porque por ejemplo no es igual que un estrato tenga 20 cm.

de deformación en un año que en 20 años, ya que el diseño de la superestructura sería diferente en cada caso.

- 4.- El cálculo de la gráfica deformación tiempo fué ilógico -haberlo hecho, pero esto se hizo para enfatizar que la teoría de Terzaghi debido a sus hipótesis no podía ser aplicada y por lo tanto ya se esperaba obtener esos absurdos resultados (ver tabla II.4). Además el procedimiento para obtener Cv fué deducido por A. Casagrande suponiendo que la viscosidad inter-granular es muy pequeña.
- 5.- Los resultados obtenidos por medio de la teoría de Consolida-ción Secundaria o de Zeevaert (fig. no. 11), se acercan un poco más a la realidad; aunque existen algunas variaciones en -las curvas, principalmente entre los dos primeros años; ésta variación se puede deber a las siguientes causas:
 - Errores ocasionados por considerar que la carga es incre mentada linealmente durante la etapa de construcción.
 - Errores tal vez en la obtención de la curva real, es decir, las nivelaciones realizadas durante la etapa de - construcción no puede asegurarse que sean muy exactas.

Por lo tanto puede decirse que los resultados obtenidos por me dio de la Teoría de Consolidación Secundaria al ser mayores -que los reales hace que estemos siempre del lado de la seguridad.

6.- La Teoría de Consolidación Secundaria puede decirse que es a-plicable a cualquier tipo de suelo ya que como se mencionó - también incluye a la Teoría de Terzaghi cuando la curva de con solidación obtenida es del Tipo I.

7.- En general se puede recomendar lo siguiente:

 La Teoría de Consolidación de Terzaghi será aplicada so lo en suelos que presenten deformación por cambio de vo lúmen, es decir suelos en los cuales sus curvas de con solidación presenten la misma forma que la gráfica teó rica de Consolidación U - TV (figs. 13 a y b), calculada por Terzaghi.

- La Teoría de Consolidación Secundaría de Zeevaert será aplicada en suelos cuya deformación sea principalmente por cambio de forma, o sea en suelos que no siguen la Teoría de Consolidación de Terzaghi.
- Cuando se aplica la Teoría de Consolidación de Zeevaert es recomendable que al realizar las pruebas de Labora-torio (Pruebas de Consolidación), éstas se efectúen en una forma por demás cuidadosa y realizadas en una -forma especial en lo que a incremento de carga se re-fiere, ya que estos incrementos de carga deben ser muy pequeños.

REFERENCIAS .-

- MECANICA DE SUELOS, Tomo I, Juárez Badillo y Rico Rodríguez, Editorial Limusa, México, D.F., 1979.
- MECANICA DE SUELOS, Tomo II, Juárez Badillo y Rico Rodríguez, Editorial Limusa, México, D.F., 1982.
- 3.- EL SUBSUELO DE LA CIUDAD DE MEXICO, Capítulo XIII, Marsal y -Masari, Facultad de Ingeniería, 1969.
- 4.- FOUNDATION ENGINEERING FOR DIFFICULT SUBSOIL CONDITION, Leo--nardo Zeevaert W., Editorial Van Nostrand Reinhold Company ---Inc. U. S. A., 1983.
- 5.- ESTUDIO DEL COMPORTAMIENTO DE UN TERRAPLEN DE PRUEBA EN EL --LAGO DE TEXCOCO. Leonardo Zeevaert W., S.A.H.O.P., 1973,