

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

"METODO GENERALIZADO DE REFRACCION FUNDAMENTOS Y FRONTERAS"

Tesis Profesional Que para obtener el Título de

INGENIERO GEOFÍSICO

presenta

DAVID BRITO CASTREJON

Ciudad Universitaria, D. F. 1987

4

2ej

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

Capi	tulo		Página
r	INTRODUCCION		1
II	ANTECEDENTES		3
	Método tiempo de retraso		3
	Método de Hales		10
	Método mas-menos Hagedoorn		13
	Método de Hawkins		16
	Método de Macphail		23
	Método de Scott		27
III	METODO GENERALIZADO DE REFRACC	101	29
	Función Análisis de Velocidad		30
	Función tiempo-profundidad		31
	Factor de conversión de profu	ndidad	32
	Determinación del valor optim	o XY	34
IV	APLICACIONES		
	Inversión de velocidad		40
	Capa delgada		43
	Presa Mesa de Caballo		48

	Proyecto "Las Juntas",Sinaloa	54
	P.H. Zimapan HGO	56
	DISCUSION DE RESULTADOS	61
	Presa Mesa de Caballo	61
	Proyecto "Las Juntas", Sinaloa	62
I	CONCLUSIONES	64
тв	LIOGRAFIA	66

BIBLIOGRAFIA

ν

٠,

CAPITULO I INTRODUCCION

1

A raíz del año geofísico internacional (1957), la geofísica en México encontró un campo propicio para su aplicación y desarrollo, sobre todo en lo que se refiere a la exploración de grandes yacimientos como los de petroleo y geotórmia. En 1970 se implanta en la UNAM la carrera de ingeniero geofísico con la finalidad de producir profesionales mexicanos que exploren nuestro vasto territorio nacional. La demanda de este tipo de profesionales fue limitediata y normal debido al auge que en la década de los setentas tuvieron los energóticos. A partir de entonces, la aplicación de los mátodos indirectos ha ido incrementándose como respuesta lógica a los altos costos de perforación y a la consolidación profesional de los primeros egresados.

Actualmente, a un horizonte de 16 años de su creación, la ingeniería geofísica en México se aplica fundamentalmente en las siguientes ramas:

- exploración petrolera.
- yacimientos geotérmicos.
- exploración geohidrológica.
- exploración minera.
- estudios geotécnicos.
- estudios de ingeniería sísmica.

En cada una de estas 6 ramas, el método sísmico de refracción ha intervenido de una u otra forma en su desarrollo, hasta llegar a considerarse como esencial en algunas de ellas. Por esta razón, por la importancia que tiene para el desarrollo de la geofísica y por la evolución durante el último lustro se considera de sumo interés para su análisis particular en este trabajo de tesis.

En 1905-1906 Garret aplicó por primera vez la prospección sísmica de refracción para localizar domos salinos, pero el primer éxito comercial se produjo en 1923 y apartir de entonces las interpretaciones preliminares, se fueron desarrollando y evolucionando hasta en la actualidad manejar pequeños margenes de arrer que repercutor en la toma de dociciones de grandes proyectes de ingenieria.

2

CAPITULO II ANTECEDENTES

11.1) Método tiempo de retraso (1939).

Este método es apropiado para la interpretación de refractores irregu lares a partir de la separación del tiempo de intercepción en sus dos componentes de tiempos de retraso, (tiempo de retraso en el tiro y tiempo de retraso en el geófono).

El tiempo de retraso, es el tiempo adicional que tarda una onda en seguir una trayectoria hacla y a lo largo de una capa indicadora enterrada, al que le tomaría seguir la misma capa, si hipóteticamente se considera a nivel de la tierra o al nivel de referencia.

De la figura II.I.I se tiene una trayectoria AB en la que existe una velocidad máxima (V_M) en algún punto particular (M). El tiempo de retraso Td para la trayectoria AB es la diferencia entre el tiempo de viaje T_{AB} y el tiempo requerido al viajar sobre la proyección horizontal A'B' a la velocidad máxima V_M .

El tiempo de retraso no es una cantidad observable cuantitativamenta, pero es una función de la profundidad al horizonte refractante y de la velocidad de propagación a lo largo del refractor. Normalmente en refracción el tiempo de retraso existe por separado bajo una fuente y bajo un detector y el tiempo de intersección está compuesto por estos dos tiempos de retraso.

Gardner (1939) fue el primero en introducir el concepto de tiempo de retraso como un aprovechamiento al problema de obtener valeres de profundidad al refractor.

Para fines de simplificación de cálculo Gardner asume que las ondas siguen una trayectoria hipótetica como se muestra en la figura 11.1.2 en la que el tiempo de viale de la onda pasanco por la trayectoria ABEF es,

 $T = T_{ABEF} = t_{AB} + t_{BE} + t_{EF}$ (11.1.1)

3

donde $t_{AB}^{}$, $t_{BE}^{}$ y $t_{EF}^{}$ son los tiempos de viaje de la onda a lo largo de la trayectoria AB, BE y EF respectivamente.

Para un refractor de pendiente menor de 10°, GI≈X, por lo que:

$$t_{BE} = \frac{BE}{Vr} = \frac{X - a_{M} - a_{N}}{Vr}$$

Por lo tanto:

$$T = (t_{AB} - \frac{a_{H}}{Vr}) + (t_{EF} - \frac{a_{N}}{Vr}) + \frac{X}{Vr}$$
(11.1.2)

De donde:

$$t_{M'} = t_{AB} - \frac{\partial_M}{Vr} = tiempo de retraso del punto de tiro.$$

Por lo tanto:

$$T = t_{H'} + t_{N'} + \frac{X}{Xr}$$

Para una distancia igual a cero, la intersección en el eje del tiempo en la dromo-crónica será:

$$T/_{Y=0} = I = t_{MI} + t_{NI}$$
 (11.1.3)

Por lo que:

$$I = T - \frac{X}{Vr}$$
(11.1.4)

5

Para resultados más exactos el tiempo de viaje observado T debe ser corregido por correcciones de intemperismo y elevación.

$$I = T - \frac{X}{Vr} - \frac{Er}{Vc} - \frac{Es}{Vc} - Wc$$

Donde:

T= Tiempo de arribo observado. X= Distancia del tiro al detector. V= Velocidad del refractor. Er= Elevación del reseptor sobre el plano de referencia. Es= Elevación del punto de tiro. Vc= $V_E / \cos i$ donde i= $\sin^{-1} (V_E / Vm, n)$ $V_E^{=}$ Velocidad de la capa más cercana a la superfisie. Wc= Corrección por intemperismo.

De la ecuación (11.1.3), dividiendo correctamente el tiempo de inter sección en sus dos tiempos de retraso, es posible obtener profundidades relativamente exactas al refractor , ya que para una distribución de velocidades dada en la sección geológica, los tiempos de retraso $t_{\rm H}$, y $t_{\rm NI}$ dependen solamente de las profundidades $H_{\rm H}$ y $H_{\rm N}$ respectivamente.

la relación de profundidad y tiempo de retraso puede ser obtenida de la figura II.1.3 en la que la distribución de velocidades de la trayectoria AB es conocida.

De la figura 11.1.3

 $\Delta H = \Delta J + \cos \theta$ y $\Delta a = \Delta H + \tan \theta$

De la definición de tiempo de retraso:

$$\Delta t' = \frac{\Delta s}{V} - \frac{\Delta a}{Vr}$$

Por lo tanto:

Ŀ

$$\Delta t' = \Delta H - \frac{\cos \theta}{V}$$

$$t' = \mathcal{E} \Delta H \quad \frac{\cos \theta}{V} \tag{11.1.5}$$

(11, 1, 7)

Las ecuaciónes (11.1.5) y (11.1.6) son ecuaciónes paramétricas de las cuales el tiempo de retraso t' para alguna profundidad dada H de el refractor puede ser determinada.

La distancia offset total es:

ó

Donde las ecuaciónes (11.1.5) y (11.1.7) son ecuaciónes paramétricas, desde las cuales la distancia offset para algún tiempo de retraso puede ser determinada.

La figura 11.1.4 ilustra los dos tipos de gráficas que son frecuentemente obtenidas: profundidad contra tiempo de retraso y distancia offsei contra tiempo de retraso..

Pero surge sin embargo un problema ya que los tiempos de retraso nunca

son medidos directamente desde un simple arreglo. Desde un simple arreglo solamente la suma de los tiempos de retraso puede ser determinada. Pero para una aproximación brusca de la profundidad al refractor es frecuentemente hecha tomando la mitad del tiempo de intersección como el promedio de los tiempos de retraso o sea como un tiempo de retrasu y usignado en un punto medio entre el tiro, y el detector, las limitaciónes de esta técnica son múltiples y no es recomendable para echados mayores de 10°. Si la interface es horizontal es válido ya que la mitad de el tiempo de intersección será cada uno de los tiempos de retraso.

Existen diferentes métodos de arreglos intercalados geométricamente (tiro en arco, tiro en abanico, tiro en triángulo) y diversas técnicas (método de Barthelmes, Tarrat, Hales, etc.) para encontrar el valor independiente y absoluto del tiempo de retraso para el geófono y el punto de tiro.

La técnica tiro en triángulo, consiste en colocar de manera triangular tres arreglos tal que cada posición de offset de cada arreglo coincida apróximadamente con una posición offset de una línea adyacente. (figura 11.2.5)

Aplicando la ecuación (11.1.3) a estos tres arreglos:

 $I_{1} = I_{M1} + I_{N1}$ $I_{2} = I_{L1} + I_{N1}$ $I_{3} = I_{L1} + I_{M1}$

Resolviendo el sistema de ecuaciónes (11.1.8)

 $t_{L^{1}} = (t_{2} + t_{3} - t_{1}) / 2$ $t_{M^{1}} = (t_{1} + t_{3} - t_{2}) / 2$ $t_{N^{1}} = (t_{1} + t_{2} - t_{3}) / 2$ (11.1.9)

7

(11.1.8)

$$Td = TAB - \frac{A'B'}{V M}$$

DEFINICION DE TIEMPO DE RETRASO

TRAYECTORIA DE ONDA

FIGURA II.1.2

8

Por lo que de la gráfica tiempo de retraso - profundidad (figura 11.1.4) la profundidad en la posición correspondiente, L. M. y N. pueden ser obtenidas.

11.2) Método de Hales (1958).

Este método es una técnica gráfica para interpretar perfiles de refracción, particularmente útil en estructuras de alto relieve con pendientes significativas.

El método hace uso del principio , de que la suma de las distancias offset desde algún punto sobre un refractor para los rayos respectivos, desde tiros en direcciónes opuestas dependen sobre la distancia perpendicular de la superficie refractante a ese punto. Esta relación es la misma indiferentemente de la pendiente y curvatura del refractor.

Lo cual una construcción gráfica es ideada para determinar la distancia entre los dos puntos donde los rayos refractados en direcciones opuestas emergen desde un mismo punto sobre el refractor. Y la distancia entre estos dos puntos es usada para determinar el radio y el centro de un círculo al cual el refractor debe ser tangente. Y donde la envolvente de estos arcos nos dará la estructura del refractor.

De la figura 11.2.1 son derivadas las relaciones principales antes mencionadas para definir el refractor.

En la figura 11.2.16 se muestra el perfil del refrector, con los puntos de tiro en A y D, y con los dos receptores en B y C, los cuales tienen un punto de refracción común en F, donde la velocidad arriba del refractor es Vo, y la velocidad del refractor es V1, el ángulo ic es el ángulo crítico de incidencia, la distancia BC es igual a $X_{\rm R}$ y T $_{\rm R}$ es el tiempo T $_{\rm BFC}$ ó BFC/Vo. La porción central de este diagrama es diseñada por medio de un círculo pasando a través de B, C y F, (figura 11.2.1C) de dende un diámetro vertical pasa a través del punto D y es una bisectriz perpendicular a la línea BC, el ángulo entre la horizontal y el refractor es señalado por el simbolo \propto . Por lo que el semicírculo circunscribe el triángulo rectángulo OFH.

Por lo tanto si la distancia BC es designada como $X_{\rm R}^{-}$, la siguiente relación puede ser deducida a partir de la figura 11.2.10.

$$BC = X_{R} = \frac{(BF + FC) \sin ic}{\cos \alpha}$$
(11.2.1)

Similarmente:

$$DF = R = \frac{8F + FC}{2 \cos ic}$$

Pero:

$$BF + FC = Vo T_p$$

Por lo tanto:

$$X_R = \frac{Vo T_R sin ic}{\cos \alpha <}$$

$$\frac{X_{R}}{T_{R}} = \frac{Vo \ sin \ ic}{\cos \alpha}$$

(11.2.2)

(11.2.3)

(11.2.4)

$$R = \frac{V_0 - T_R}{2 - \cos ic}$$
 (11.2.5)
BE = $\frac{X_R}{2}$ (11.2.6)
DE = $\frac{X_R}{2}$ tan ic (11.2.7)

por una serie de arcos de radio R, con centro en el punto D el cual es localizado por una serie de arcos de radio R, con centro en el punto D el cual es localizado por las ecuaciónes (11.2.5) , (11.2.7).

El valor de X_R también puede ser obtenido a partir de la dromócronica, como se indica en la figura (11.2.1a). Si el tiempo de viaje para el geófono C es graficado verticalmente debajo del tiempo reciproco, y si una línea es trazada a través de N con una pendiente de Vo sin in, la cual cruzará la curva de tiempo inverso en el punto M tal que QN sea igual a X_R y QM = T_R.

11.3) Metodo mas-menos Hagedoorn(1959)

El método mas-menos es una técnica para la interpretación de contactos irregulares o planos, a partir de los tiempos directos e inversos de la dromocrónica.

Este método se basa en la construcción de frentes de onda artificiales y usa los principios de tiempo de intersección y tiempo de retraso para determinar la profundidad (Z) al refractor en cuestión. Que para el caso de 2 capas:

$$Z = (T_{A} + T_{B} - T_{AB}) K$$
 (11.3.1)

13

Donde $(T_A + T_B - T_{AB})$, es definido como el valor mas, el cual es el equivalente al tiempo de intersección correspondiente a diferentes partes de la dromocrónica (figura 11.3.1). Los términos T_A y T_B son los tiempos de arribo en el mismo geófono desde fuentes de energía A y B en extremos opuestos del arreglo, y T_{AB} es el tiempo de viaje total de A a B. Y donde K representa la relación de velocidades para el tiempo de retraso,

$$\kappa = 0.5 \frac{V1}{(1 - V1^2/V2^2)^{1/2}}$$
(11.3.2)

donde VI es la velocidad de la capa mas cercana a la superfície y V2 es la velocidad del refractor.

Combinando las ecuaciónes (11.3.1) y (11.3.2)

$$Z = 0.5 (T_A + T_B - T_{AB}) - \frac{V1}{(1 - V1^2/V2^2)^{1/2}}$$
 (11.3.3)

Y de una manera mas común,

$$Z = 0.5 \quad \text{ti} \quad \frac{(v_2) \quad (v_1)}{(v_2^2 - v_1^2)^{1/2}} \tag{11.3.4}$$

donde ti es el tiempo de intersección y $(V2)(V1)/(V2^2 - V1^2)^{1/2}$ es la relación de tiempo de retraso.

Para el caso de 3 capas la relación de tiempo de retraso está dada por. Hagedoorn (1959):

$$C = \frac{(1/V)^2 - 1/V3^2)^{1/2} - (1/V2^2 - 1/V3^2)^{1/2}}{(1/V1^2 - 1/V2^2)^{1/2}}$$
(11.3.5)

Donde V1, V2, V3 son las velocidades de la capa superior intermedia y mas profunda respectivamente.

El método más-menos también puede ser usado para determinar la velocidad verdadera de la capa refractante a partir de la función menos, (figura 11.3.1a)

$$T_{A} = T_{B} = T_{AB}$$
 (11.3.6)

definido por (Hagedoorn, 1959), una vez calculados los valores menos para cada una de las posiciones de los geófonos es graficado contra la distancia horizontal y el inverso de la pendiente de la recta que resulte será la mitad de la velocidad verdadera del refractor.

Los valores menos serán positivos \cdots negativos dependiendo de los valores relativos de T_A y T_B, pero el signo no es crítico en la determinación de la velocidad ya que la velocidad estará determinada por la pendiente de la recta.

11.4) Metodo de Hawkins (1961)

El método de Hawkins, utiliza tanto los tiempos de ida como de regreso de la dromocrónica para definir refractores irregulares o planos.

Este método consta fundamentalmente de tres partes:

11.4.1) La función tiempo profundidad:

El tiempo-profundidad, es definido por Hawkins(1961) como el tiempo de viaje del rayo crítico entre el refractor y la superficie, menos el tiempo de viaje que sería requerido de la proyección horizontal del segmento sobre el plano del refractor y a la velocidad del refractor.

De la definición anterior el tiempo-profundidad de la trayectoria XG (figura 11.4.1a) para el caso de dos capas es:

$$\tau_{G} = -\frac{GX}{VO} - \frac{PX}{V1}$$
(11.4.1)

Ahora bien para el caso en el cual se tenga un arreglo de geófonos y sus

correspondientes tiempos de viaje del mismo refractor para puntos de ida y regreso,

el tiempo-profundidad puede ser calculado siguiendo el procedimiento de Edge y Laby (1931). El tiempo-profundidad a un geófono es obtenido sumando ambos tiempos de viaje de ambos puntos de tiro al mismo geófono,menos el tiempo recīproco (tiempo de viaje de un punto de tiro al otro punto de tiro).

Por lo tanto de la figura 11.4.15 el tiempo-profundidad t_o en el geófono G estara dado por

$$t_{G} = (t_{S'G} + t_{S''G} - t_{S'S''})$$
(11.4.2)

donde $t_{S'G}$, $t_{S''G}$, $t_{S'S''}$ son los tiempos de viaje de los rayos críticos desde S' a G, S'' a G y S' a S'', respectivamente.

Escribiendo los tiempos de viaje en términos de distancia/velocidad, la ecuación (11.4.2) puede ser escrita como:

$$t_{r} = (GX/V_0 + GY/V_0 - XY/V_1)/2$$

Mas agn si el refractor es plano entre los puntos X y Y, por simetría,

 $t_c = (GX/Vo - PX/V1)$

lo cual es la expresión de tiempo-profundidad (ecuación 11.4.1) .

11.4.2) Factor de conversión de profundidad.

El factor de conversión de profundidad es aquel que multiplicado por el tiempo-profundidad nos dará la profundidad del refractor.

La ecuación (11.4.1) puede ser reducida a la expresión:

$$t_c = Z_c$$
 . cos io1 /Vo

Por lo tanto:

$$Z_{c} = t_{c}$$
. Vo/cos iol (11.4.3)

Donde Vo/cos ioi es llamado el factor de conversión de profundidad, que es el mismo encontrado por Gardner (1939), ecuación (11.1.5), Z_{G} es la distancia desde G a el refractor, normal al plano del refractor y ioi es el ángulo crítico entre las dos velocidades Vo y VI.

Por lo tanto la forma general de la expresión del factor de conversión de profundidad es,

Vm/cos imn

conde Vm es la velocidad de la capa suprayacente al refractor y imm es el ángulo crítico de refracción.

Como el factor de conversión de profundidad es un término de velocidad, a partir de la ley de Snell puede ser escrito en la siguiente forma:

$$Vm \cdot Vn / (Vn^2 - Vm^2)^{1/2}$$
 (11.4.5)

Por lo tanto:

$$Z_{G} = t_{G} - Vm \cdot Vn / (Vn^{2} - Vm^{2})^{-1/2}$$
 (11.4.6)

(11.5.4)

Que es la misma ecuación encontrada por Hagedoorn (1959), ecuación (11.3.4).

Cuando se tiene dos o más capas suprayacentes al refractor, el espesor de cada capa debe ser determinado separadamente ya que el factor de conversión de profundidad varía para cada capa. Debido a la diferente velocidad de cada capa y la diferente inclinación de la trayectoria del rayo críticamente refractado. Por lo que el espesor de cada capa debe ser determinado por separado de una manera similar a partir de los tiempos de intersección, o por un factor de conversión de profundidad compuesto calculado para el refractor. El método adoptado dependerá sobre el detalle requerido desde la superficie.

De la figura (11.4.2) el espesor de la primera capa (Zo), es calculado como en el caso simple de dos capas ,

Zo = To1 / 2, Vo / cos io1

para el segundo refractor con velocidad V2 el valor de la mitad del tiempo de intersección total será :

Por lo tanto:

$$Z1 = (T12/2 - Z0 . \cos i02/V0)$$
 (V1/cos i12)

En forma general, la ecuación para determinar el espesor de la capa mth, Zm, desde el tiempo-profundidad (ó a partir de la mitad del tiempo de intersección) tn, es ,

$$Zm = (tn - \frac{2}{a=0})$$
 Za . cos ian / Va) (Vm/cos imn) (11.4.7)

donde el término, $\sum_{a=0}^{m-1} Z_a$, cos ian/Va representa la suma de los tiempos de todas las capas, por lo que, el término entre paréntisis representa el tiempo de la capa mth y este es multiplicado por el simple factor de conversión de profundidad.

Por lo tanto donde las profundidades a cada uno de los refractores registrados son requeridas en cada uno de los geófonos, el tiempo-profundidad para cada refractor debe ser calculado en cada geófono.

Si solamente la profundidad es requerida a un particular refractor importante en cada uno de los geófonos, los espesores de las capas suprayacentes del refractor importante son determinadas para calcular el factor de conversión compuesto para el refractor de interes. Estos espesores son determinados a partir de los tiempos de intersección.

Si tales espesores son determinados, el factor de conversión de profundidad compuesto puede ser determinado sumando los espesores (Za) para obtener la profundidad del importante refractor y dividiendo esta profundidad por el tiempo-profundidad ó por la mitad del tiempo de intersección al importante refractor (tn). El factor de conversión de profundidad compuesto (\overline{V}), a un refractor de una capa nth estara dado por:

$$\overline{V} = \sum_{a=0}^{n-1} Z_a/tn \qquad (11.4.8)$$

Por lo tanto la profundidad al refractor importante ó de interes debajo del geófono G. $Z_{\rm G}$ estará dada por la ecuación:

$$Z_G \approx t_G \cdot \overline{V}_G$$
 (11.4.9)

Donde t_{G} es el tiempo profundidad al refractor de interes y V_{G} es el correspondiente factor de conversión de profundidad compuesto.

1.4.3) El uso de la función tiempo-profundidad.

Para contactos irregulares, las curvas en la dromocrónica mostrarán una dispersión de puntos sobre la mejor línea recta que a ellos se ajuste.

La dispersión de estos puntos será debido a tres causas: variaciones en la velocidad del refractor, variaciones en la profundidad del refractor y variaciones en la velocidad ó distribución de velocidades de las capas suprayacentes al refractor.

Sin embargo las dos últimas causas afectan al tiempo de viaje de la trayectoria inclinada del rayo criticamente refractado entre el refractor y la superficie y a su proyección horizontal, las cuales son comprendidas en el término tiempo-profundidad, por lo tanto únicamente quedará aislar la dispersión debido a variaciones en la velocidad del refractor.

Por lo tanto el efecto sobre el registro de tiempos de viaje a los geófonos por variaciónes en la profundidad del refractor y por variaciónes de de la velocidad de la capa suprayacente al refractor es eliminado, por el simple procedimiento de restar el tiempo-profundidad, del tiempo de viaje registrado en los geófonos.

Que para el caso de dos capas el tiempo de viaje corregido, desde el punto de tiro S' a el geófono G , $(t_{s'c}^{i})$, es:

 $t'_{S'G} = t_{S'G} - t_{G}$

(11.4.10)

Donde t_{sic} es el tiempo de viaje registrado y t_c es el tiempo-profundidad

Por lo tanto:

$$t'_{CIC} = S'L/VO + LP/V1$$

Por lo que el tiempo de viaje corregido , es el tiempo de viaje desde el punto de tiro S' ai punto P sobre el refractor, desde el cual la normal al refractor pasa a través del geófono (G) (figura (1.4.1b).

Por lo tanto los tiempos de viaje corregidos son graficados, y la velocidad verdadera del refractor puede ser determinada directamente del inverso de la pendiente de la recta obtenida.

Para refractores de menor importancia para el cual el tiempo-profundidad no ha sido calculado, la velocidad del refractor puede ser determinada de la manera clásica. A partir de la ecuación:

$$V_{m} = 2 \cdot \frac{V'm}{V'm}$$
(11.4.11)
$$V'm + V'm$$

Donde Vm es la velocidad verdadera del refractor y V'm y V'm son las velocidades aparentes en el refractor de tiros de ida y regreso respectivamente.

11.5) Método de Macphail (1967).

Este método es llamado también metodo del punto medio; y es un método analítico para la solución aproximada, a encontrar profundidades a un refractor plano, a partir de los tiempos de viaje directos e inversos de la dromócronica. Su principal ventaja de este método es la rapidez y facilidad con la que una solución puede ser obtenida. Su análisis o interpretación puede ser llevado a cabo en las siguientes etapas:

 Observar la velocidad VI de la primera capa y las velocidades aparentes de ida y regreso. Vu y Vd respectivamente, de la segunda capa (figura 11.5.1a).

2).- Asignar V2 como el promedio de las velocidades Vu y Vd .

$$V2 = (Vu + Vd) / 2$$
 (11.5.1)

 Observar un tiempo de viaje T sobre la segunda línea recta de la dromocrónica para un valor particular X.

4).- Calcular la profundidad hi de una capa plana de velocidad V2 para este particular par de valores de T y X, usando la velocidad observada Vi para la primera capa. Donde la ecuación para hi esta dada por:

$$2\sqrt{(v_2/v_1)^2 - 1}$$
, $h_1 = v_2 T - x$ (11.5.2)

5).- De la fórmula anterior se calcula apróximadamente la profundidad del refractor en el intervalo desde el punto de tiro al punto X; por lo que la profundidad premedio del refractor sera una profundidad verdadera en el punto medio entre el tiro y la distancia X, por lo que se graficará hl a una distancia X/2 desde el punto de tiro (por esta razón el método es llamado método del punto medio). (figura 11.5.1b).

6).- Repitiendo el paso (4) a una segunda distancia conseguiremos un segundo valor de hi, el cual será graficado como en el paso (5) a una distancia

24

X/2 desde el punto de tiro. Y uniendo estas profundidades de estos puntos por una recta, se representará aproximadamente al refractor.

7).- Para el caso de la tercera capa se procede como antes se mencionó, tomando un tiempo T sobre la tercera recta de la dromocrónica a una distancia X, y asignando V3 como la media de las correspondientes velocidades aparentes desde los tiros de ida y regreso. Su profundidad a una distancia X/2 desde el puato de tiro sera h1+h2 donde h1 es la profundidad de la cima de la segunda capa en X/2 y h2 estará por la ecuación,

$$2\sqrt{(V_3/V_2)^2-1}$$
, $h_2 = V_3 T - X - 2\sqrt{(V_3/V_1)^2-1}$, h_1 (11.5.3)

el proceso puede ser extendido para n capas , donde la profundidad en la cima de la capa nth desde la superficie sera,

donde h1, h2, ... h n-2 han sido anteriormente determinadas y donde h n-1 está dada por la ecuación.

$$2\sqrt{(Vn/Vn-1)^2}$$
 -1 . hn-1 = VmT - X -2 $\sum_{i=1}^{n-2} \sqrt{(Vn/Vi)^2}$. hi

8).- El error en la profundidad puede ser obtenido comparando la solución exacta y aproximada. Que para el caso de 2 capas el error estará dado por la ecuación:

$$E = \left(\frac{x\sqrt{v2^{2} - v1^{2}}}{V1} - h - \frac{3 v2^{2} - 2 v1^{2}}{v2^{2} - v1^{2}}\right) \checkmark^{2}/2$$

25

Donde ← es la pendiente del refractor y está dado en radianes, VI y V2 son las velocidades de la capa superior y del refractor respectivamente y estarán dadas en ft/seg y E es el error que tendrá las mismas unidades que X y h.

El error varía con el cuadrado de el angulo de inclinación(≪), Por lo tanto el método sera exacto para capas horizontales.

11.6) Método de Scott. (1973)

Scott desarrolló un programa de computación con el apoyo de U.S.Bureau of Minas Para designar un modelo terrestre para capas en dos dimensiones como una ayuda a la interpretación de tendidos sísmicos de refracción.

Este programa generado por Scott da una primera aproximación generada por el cálculo del método de tiempo de retraso, seguido por una serie de aproximaciones mejoradas por el uso de un procedimiento llamado ray - tracing (determinación de los tiempos de arribo a los detectores siguiendo las trayectorias críticamente refractadas las cuales obedecen la ley de Snell a través de un modelo donde la distribución de velocidades es conocida).

Las velocidades de todas las capas por debajo de la capa superficial son estimadas por un método de mínimos cuadrados desarrollado por Geological Survey of Canadá (Hobson and Overton, personal comunicación, 1968). Donde

la estimación es realizada por el uso de la siguiente fórmula,

$$V = \frac{\mathbf{\Delta} X i^2 - (\mathbf{\Xi} \mathbf{\Delta} X i)^2 / n}{\mathbf{\Xi} \mathbf{\Delta} X i \mathbf{\Delta} t i - (\mathbf{\Xi} \mathbf{\Delta} X i) (\mathbf{\Xi} \mathbf{\Delta} t i) / n}$$
(11.6.1)

donde V es la velocidad de refracción deseada, \mathbf{A} Xi es la diferencia entre la distancia al geófono i desde dos puntos de tiro opuestos (uno en cada extremo de una extensión de geófonos), \mathbf{A} ti es la correspondiente diferencia entre el tiempo

de viaje al geofono i desde los dos mismos puntos de tiro opuestos entre sí, y n es el número de geofonos sobre los cuales la sumatoria es hecha.

CAPITULO III

METODO GENERALIZADO DE REFRACCION

El método generalizado de refracción (MGR) es una técnica para interpretar refractores irregulares o planos y cambios laterales en la velocidad del refractor; a partir de los tiempos directos e inversos de la dromocrónica.

El M&R propuesto por Dereck Palmer en 1980 reune en un solo criterio a varios de los métodos descritos anteriormente como son el de llaukius (1961) y el de Hales (1958), así como el algoritmo computacional de Scott (1973) con la finalidad de formar una técnica de interpretación de mejor resolución que los métodos tradicionales de tiempo de intersección (Ewing, 1939; Dooley 1952; Adachi, 1954; Mota, 1954); o los métodos de distancia crítica (Heiland, 1963, pp. 527).

El método consta fundamentalmente de cuatro partes; en la primera parte se realiza el cálculo de la función de análisis de velocidad (para determinar la velocidad del refractor) en la segunda parte se lleva a cabo el cálculo de la función tiempo-profundidad (la cual es una medida de la profundidad del refractor) expresada en unidades de tiempo, en la tercera parte se realiza la conversión a profundidad con la multiplicación de la función tiempo-profundidad por el factor de conversión de profundidad (velocidad de la capa suprayacente al refractor o unu velocidad promedio, si hay mas de una capa sobre el refractor), y por último se lleva a cabo la verificación de la interpretación previamente determinada, por posible presencia de capas ocultas ó por inversión de velocidades. III.1) La Función Análisis de Velocidad.

En el análisis de velocidad se utilizan los tiempos de arribo a las posiciones de los geófonos, separados por una distancia variable XY. Cuando la separación XY es óptima los rayos a cada geófono emergen casi del mismo punto del refractor.

De la figura III.1.1, la función de análisis de velocidad tv esta definida por la ecuación : (Palmer 1980)

$$tv = (t_{AY} - t_{BX} + t_{AB}) / 2$$
 (111.1.1)

El valor de esta función esta referido a el punto G que está a la mitad de la distancia entre XY.

Los valores de tv calculados con la ecuación anterior son graficados contra la distancia (en este caso la posición G) para diferentes valores de XY, comenzando con XY=0, que es el caso en el que la ecuación (III.1.1) se reduce a la ecuación (II.4.10) método convencional de Hawkins (1961) en el que se toma en cuenta el tiempo directo y el inverso para el mismo geófono, los demás valores a probar de XY serán múltiplos de la separación entre geófonos, hasta un execdente del optimo creible ó supuesto (donde los rayos tanto de ida como de regreso emergen cerca del mismo punto sobre el refractor).

El valor de XY óptimo para calcular la velocidad del refractor es aquel en que la función de análisis de velocidad se aproxime mas a una línea recta.

Al graficar las funciones de velocidad para varios valores de XY, puede suceder que ninguna se aproxime bastante a una recta ó que se parezcan mucho dichas funciones entre sí. Es por esto que se aconseja ajustar por ei método de mínimos cuadrados una recta a cada una de las funciones de velocidad para cada XY, así mismo se calcula el error cuadratico y la varianza.

De esta manera se elegirá como XY óptima aquella con error porcentual menor, y que mejor se apegue al calculo de la XY teorica (Apartado III.4). La velocidad aparente del refractor estará dada por la pendiente inversa de dicha recta ajustada a la función de velocidad con XY óptima.

 $\frac{d}{dx} tv = \frac{1}{V'n}$ (111.1.2)

γ

$$\sqrt{n} = V'n \cdot \cos \Theta \tag{111.1,3}$$

donde Vn es la velocidad verdadera del refractor y o es la pendiente del refractor.

Sin embargo Palmer (1980) demuestra que apartir de la ecuación (111.1.2) se puede obtener la velocidad del refractor con una aproximación aceptable. Por le que en la mayoría de los casos es usual tomar V'n como la velocidad verdadera del refractor.

111.2) La función tiempo-profundidad.

El paso siguiente en la definición del refractor; es el cálculo de la función generalizada tiempo-profundidad en cada uno de los geófonos.

La función generalizada tiempo-profundidad en refracción corresponde pero no es idéntica a la función de tiempo de viaje en un solo sentido (one way travel time), de los métodos de sísmica de reflexión. De la figura III.1.1 la función generalizada tiempo-profundidad (t_{G}) esta definida por la ecuación, (Palmer, 1980)

$$t_{0} = (t_{AY} + t_{BX} - (t_{AB} + XY/V'n))/2$$
 (111.2.1)

donde t_G es el tiempo de viaje a lo largo de la trayectoria EX ó FY menos el tiempo de viaje a lo largo de la proyección de GX o GY sobre la superficie del refractor, de la ley de Snell esto es igual al tiempo de viaje de una trayectoria viajando normalmente desde el refractor a el nunto G.

V'n es la velocidad aparente del refractor determinada a partir de la función de análisis de velocidad.

L a función tiempo-profundidad es graficada, igualmente que la función de velocidad para diferentes valores de XY, para la XY elegida como óptima, esta función dará una idea de la irregularidad del refractor.

Para el caso especial de XY=0, se obtendrá la función tiempo-profundidad convencional de Hawkins(1961), ecuación (11.4.2)

111.3) El factor de conversión de profundidad.

Cuando la capa es plana entre los dos tiempos de arribo de ida y regreso Palmer demuestra que la ecuaión (111.2.1) puede ser reducida a.

$$t_{G} = \underbrace{z_{jG}}^{n-1} z_{jG} / v_{jK}$$
(111.3.1)

$$Vjk = 2Vj / (\cos \sqrt{jk} + \cos \beta jk)$$
(111.3.2)

د
Vjk es el factor de conversión de profundidad. Para pendiente igual a cero es equivalente al factor de conversión convencional ecuación (11.4.4), Hawkins(1961). Vj es la velocidad de la capa suprayacente al refractor y ∝ jk, (3 jk son los ángulos críticos de ida y regreso respectivamente.

Ya que los valores de «jk y Øjk dependen de la pendiente del refractor, lo cual puede variar aleatoriamente, cólculos exactos de Vjk generalmente no es posible. Por lo que la ecuación (III.3.2) es aproximada a la ecuación.

$$V_{jk} = \frac{V_{j} \cdot V_{k}}{(V_{k}^{2} - V_{j}^{2})^{1/2}}$$
(111.3.3)

que es equivalente al factor de conversión convencional ecuación (11.4.5).

Las velocidades en la ecuación (111.3.3) son calculadas a partir de la ecuación (111.1.2).

Esta definición del factor de conversión de profundidad ecuación (111.3.3) es aproximada cuando cuando el refractor no es horizontal. Sin embargo, Palmer (1981) mantiene que es válida para una pendiente tan grande como 20°, y cálculos de la profundidad al refractor a partir de la ecuación (111.3.3) son bastante aproximados.

Cuando sobre el refractor de interés existe mas de una capa su profundidad puede ser calculada de la ecuación,

donde tk es el tiempo-profundidad a la cima del refractor K+lth o la base del refractor Kth y Vjk es el factor de conversión de profundidad calculado a partir de la ecuación (111.3.3) 111.4) Determinación del valor óptimo de XY.

La determinación del valor óptimo de XY es probablemente el mas difícil y el mas importante aspecto del método; con el espaciamiento óptimo XY los rayos emergen cerca del mismo punto sobre el refractor por lo que el refractor necesita ser plano solamente sobre un intervalo muy pequeño. Hay dos diferentes formas para la determinación del valor óptimo de XY, asociadas con el método.

- Un valor óptimo de XY puede ser obtenido directamente dosde la Inspección de los datos de la gráfica de análisis de velocidad y los cálculos de la función tiempo-profundidad, para varios valores de XY, el valor óptimo de XY será aquel en el que la curva de ánalisis de velocidad se aproxime mas a una recta y la curva de tiempo-profundidad muestre el mayor detalle.

La razón de lo anterior puede ser mostrado con la ayuda de la figura 111.4.1, donde suponemos que un valor no óptimo XY es escogido y el refractor tiene una pequeña curvatura positiva entre E y F. En este caso el promedio del tiempo-profundidad sobre las trayectorias EX y FY excederán el tiempo-profundidad (t_{g}), que sería calculado con el valor óptimo de XY a lo largo de la trayectoria GH. Si el refractor tiene una pequeña curvatura negativa entre E y F, el promedio del tiempo-profundidad a lo largo de las trayectorias EX y FY será menor que el tiempo-profundidad para la distancia óptima de XY sobre la trayectoria GH. Por lo tanto, distancias no óptimas de XY tiene el efecto de producir una irregularidad menor que en la realidad existiría.

De tal manera que la distancia óptima XY produce el mayor suavizado de la función de análisis de velocidad.

- Un calculo directo de la distancia optima XY puede ser obtenida usando la fórmula, Palmer (1980)

$$XY = \underbrace{\sum_{j=1}^{n-1} 2Z_{jG} \cdot \tan i_{jn}}_{j=1}$$
(111.4.1)

- Otra manera de poder determinar el valor óptimo XY es inferido de la separación de los rasgos distintivos sobre las curvas de tiempo de viaje de los tiros de ida y regreso. Por ejemplo en la dromocrónica de la figura 111.4.2 muestra un cambio en la pendiente a 235m sobre la curva de tiempos de viaje de ida, que corresponde con el cambio de la pendiente a 215m en la curva de tiempos de viaje de regreso, por lo que un valor de 20m para XY sería un valor aceptable

- Otro método seria igualar el valor óptimo XY, con la distancia en la cual la reflexión crítica ocurre.

Sin embargo estos dos últimos métodos no son considerados tan seguros como la inspección de las funciónes de análisis de velocidad y tiempo-profundidad calculadas para diferentes valores de XY.

Palmer(1980) establece que la determinación del valor óptimo de XY no es esencial para los cálculos de profundidades exactas al refractor. Que para un valor de XY dentro del 50% del valor óptimo, es posible obtener una definición adecuada del refractor. Pero un valor exacto es crítico para inferir la existencia de inversión de velocidades sobre el refractor, y para la determinación de capas ocultas.

Una vez encontrado este espaciamiento óptimo de XY es teóricamente posible mapear exactamente superficies refractantes y determinar una velocidad promedio para las capas suprayacentes al refractor.

El uso de esta velocidad promedio permite calcular profundidades al refractor de interes indiferentemente si inversión de velocidades o capas ocultas esten presentes sobre el refractor.

La velocidad promedio es calculada por la ecuación, Palmer(1980)

$$\overline{V} = (V'n^2 \cdot XY / (XY + 2t_G V'n))^{1/2}$$
 (111.4.2)

V'n es la velocidad del refractor calculada a partir de la cousción (111.2.2).

 t_c es el valor promedio de la función tiempo-profundidad.

Por lo tanto la profundidad al refractor podra ser calculada a partir de la ecuación,

hn
$$=$$
 t_a . \overline{V} / cos ic (111.4.3)

Palmer (1980), recomienda la verificación de la existencia o ausencia de capas indetectables, como una rutina practica en todos los metodos de interpretación por medio de la comparación del valor observado (obtenido de la examinación de las funciónes de análisis de velocidad y tiempo-profundidad) y el valor calculado de XY a partir de la ecuación (iII.4.1), si estos dos valores son diferentes entonces capas ocultas podran ser inferidas y una velocidad promedio deberá ser calculada, y de esta manera poder calcular con mayor exactitud la profundidad al refractor. Hatherly y Neville (1986), sugieren que en los casos en que se tenga una topografia muy irregular, una capa superficial muy hetereogénea, y profundidades menores de 20m al refractor principal, es muy conveniente utilizar un XY=0 como óptimo, lo cual equivale a emplear el método recíproco convencional de Hawkins(1961). Esto es debido a que a esas profundidades, generalmente los períodos de los pulsos generados por la velocidad de la primera capa produces, longituder de onda mayores de 20m .

FIGURA DI.4.2

CAPITULO IV

APLICACIONES

IV.1) Ejemplos teóricos.

IV.1.1) Inversión de velocidad.

En este ejemplo (Palmer, 1980) contempla el caso de un modelo de 4 capas (figura IV.1.1) en el que la segunda y tercera capa tienen una velocidad menor que la capa superior.

Tradicionalmente, este tipo de problemas no ha encontrado resolución al estudiárseles por métodos sismicos de refracción y constituyen una de las más fuertes limitantes para su uso. Esto es debido a que los primeros tiempos de arribo al refractarse no informan de la existencia de horizontes de menor velocidad. Sin embargo, el MGR ofrece una alternativa para inferir o presuponer la posible existencia de estos horizontes mediante el ánalisis cuidadoso de la función de velocidad.

En la figura IV.1.2Ase muestra la función de análisis de velocidad, para diferentes valores de XY desde cero a treita metros, donde se aprecia que los puntos para valores de XY de 15, 20 y 25 m son los que mejor se ajustan a una linea recta y es especialmente para XY = 20m, por lo que este será el espaciamiento óptimo de XY (donde los rayos en ambas direcciónes emergerán cerca del mismo punto sobre el refractor).

Al igual que en la función de análisis de velocidad, la función tiempoprofundidad es graficada y calculada para diferentes valores de XY desde cero a treita metros (figura IV.1.2B), en donde se aprecia que para un valor de XY = 20m se tiene el menor suavizado de la función tiempo-profundidad, el cual corresponderá al espaciamiento óptimo de XY.

FIG. IV.1.4 SECCIONES DE PROFUNDIDAD

Una vez realizado el ánalisis de la función tiempo-profundidad se realiza el cálculo de la sección de profundidad (figura IV.1.3), usando primeramente una velocidad sísmica de 2000 m/s para la primera capa.

Los valores de XY calculados mediante la ecuación (111.4.1), son 37.5 y 45.4 m los cuales difieren significativamente de los valores esperados (15 a 25 m). A partir de esta comparación de valores calculados y esperados puede ser inferida la existencia de inversión de velocidades ó capas ocultas, por lo que Palmer (1980) recomienda el cálculo de una velocidad promedio mediante la ecuación (111.4.2), para una mejor aproximación al refractor en cuestión.

Las figuras IV.1.4.A.1V.1.4.B y IV.1.4C muestran secciónes de profundidad calculadas a partir de velocidades promedio obtenidas mediante la ecuación (III.4.2), para valores de XY de 15, 20, 25 m, a los que corresponden velocidades de 1343, 1457 y 1542 m/s respectivamente y con valores de tiempo-profundidad de 19.3, 21.55 y 21.5 milisegundos. En estas tres gráficas se aprecia una mejor aproximación al refractor de mayor velocidad, con respecto a la primera aproxi mación (figura IV.1.3). Y se aprecia que para el valor optimo de XY de 20 m se tiene una mejor aproximación al refractor.

IV.1.2) Capa delgada.

En este ejemplo (Palmer 1980) muestra un caso de tres capas (figura ---. IV.1. 5) en el que la segunda capa podría probablemente no ser reconocida en los datos de tiempos de viaje de primeros arribos

En la figura IV.1.6.A, se muestra la función de análisis de velocidad para diferentes valores de XY desde cero a treita metros, donde se aprecia que para, un valor de XY=15 m los puntos se ajustan mejor a una línea recta.

FIG. 1V.1.6

Al igual que en la función de análisis de velocidad, la función tiempoprofundidad es graficada y calculada para diferentes valores de XY desde cero a treinta metros (figura IV.1.6.8), como en el caso de la función de análisis de velocidad, podemos apreciar que para un valor de XY = 15m se tiene un menor suavizado de la función tiempo-profundidad, por lo que este sera el espaciamiento optimo de XY (donde los rayos en ambas direcciónes emergerán cerca del mismo punto sobre el refractor).

De la figura IV.1.7.A a la figura IV.1.7.D se presentan las secciónes de profundidad en las cuales se presupone que los tiempos de primeros arribos se han registrado para todas las capas, inclusive la de 2000 m/s . En estas figuras se puede apreciar que para XY=0 se tiene un mayor suavizado de la profundidad del refractor, mientras que la profundidad calculada para el valor optimo XY es significativamente mejor.

De la figura IV.1.8.A a IV.1.8.D son mostradas las secciónes de profundidad, en las cuales se asume que la capa de 2000 m/s no se detecta. La sección prefundidad en la figura IV.1.8.A se calculó usando una cte de velocidad suprayacente al refractor de 1000 m/s. Sin embargo, los valores de XY calculados para esta sección profundidad son 7 y 9 m; los cuales difieren significativamente de los valores observados de XY de 10 y 20m. Esta diferencia en los valores calculados y observados infiere la existencia de capas ocultas.

De la figura IV.1.8.8 a la figura IV.1.8.D se muestran las secciones de profundidad calculadas a partir de velocidades promedio de 1179, 1344 y 1459 m/s, para valores de XY de 10, 15 y 20 m y con valores de tiempo-profundidad de 17, 19.25 y 21.5 mseg. En estas tres gráficas se aprecia una mejor aproximación al refractor de mayor velocidad, comparado con la primera aproximación (figura IV.1. 8.A). Y se aprecia que para el valor òptimo de XY = 15 m se tiene la mejor aproximación al refractor.

A) XY=0

B) XY=10

c) XY=15

XY=20

SECCIONES DE PROFUNDIDAD FIG. IV.1.7

FIG. IV.1.8 SECCIONES DE PROFUNDIDAD

IV.2) Ejemplos practicos:

IV.2.1) Presa Mesa de Caballo.

La Presa Mesa de Caballo esta localizada en la montaña Mazatzal a 80.5 Km al este de Phoenix Arizona.

El objetivo de este estudio fue medir el espesor de sedimentos bajo el camino de acceso a la contina de la presu, este con la finalidad de construir una pared de retención enclabada en el basemento, para asegurar el acceso a la presa en cualquier época del año, ya que el camino de acceso a la cortina de la presa es destruido periódicamente por inundaciónes.

Este camino fue construido de relleno de gravas, peñascos hasta arcíllas, pero es predominantemente roca de río y arena. Los sedimentos naturales debajo del relleno del camino estan compuestos generalmente de riolitas angulares o semiredondeadas, arena dasita, rocas o peñascos de basalto y rocas de río unidas por arena, los peñascos encontrados durante la barrenación varía de 0.3 m hasta 1.25 m de diámetro pero el reconocimiento geológico indica que peñascos aún mas grandes pueden encontrarse en el relleno del camino. La composición de la roca del basamento se esperaba que variara, ya que 5 diferentes unidades volcánicas se habían cartografiado en la localidad (basalto, lahar, brecha basaltica, porfido dacítico y riodacítico).

Inicialmente un programa de exploración consistente de 10 barrenos espaciados a intervalos de alrededor de 43 m fue planeado. Posteriormente se propuso que se utilizara el método de sismología de refracción junto con 7 barrenos con una separación mayor, que proporcionara el mismo detalle a un menor costo.

Se realizaron dos grandes líneas a lo largo del camino ubicándose una en cada extremo, de 472 m de longitud y 7 tendidos sísmicos en cada una ; como se indica en la figura (IV.2.1).

Debido a que la presa con sus turbinas, generadores y el paso de alta velocidad del agua producían un ruído de alta amplitud con un período predominante de 60 milisegundos (16.7 hz), fue necesario para la generación de señales suficientemente fuertes utilizar explosiones de dinamita en agujeros de unos 30 cm de profundidad hechos con pico y pala en los puntos de tiro (P.T) de los tendidos. Y a causa de la atenuación de la capa de aluvión se utilizaron cargas de 0.45 Kg de dinamita Kinestik en los tiros mas alejados, y una carga de 0.15 Kg en los tiros contralos

Para obtener una resolución suficiente, para mapear la esperada complejidad de la superficie de el basamento se decidió utilizar intervalos cortos de geofonos de tres metros, con veinticuatro geofonos por tendido y cinco puntos de tiro por tendido con un offset de treita y dos metros.

Se escogio el MGR para la interpretación en esta exploración en particular por varias razones, entre las que destacan:

1^{ro}.- Por la configuración tan rugosa del basamento en el lugar del levantamiento y la necesidad de conocer lo mejor posible esta configuración .

2^{do}.- Por los cambios laterales en la velocidad del refractor y por la pendiente tan grande del mismo.

El valor óptimo calculado de XY para este lugar es típicamente menor que 1.5 m mucho mas pequeño que el intervalo de muestreo de los geofonos que fue de tres metros. Consecuentemente, los intervalos de XY = 0 y XY = 1 están probablemente comprendidos entre los valores óptimos para esas mediciones. Las pruebas preliminares indicaron que para XY = 0 se produciría un mayor suavizado en la gráfica de análisis de velocidad. De esta forma solamente el valor de XY=0 fue utilizado para la mayoria de los cálculos. La figura IV.2.2a muestra las curvas de tiempo de viaje de el tendido M3, donde se puede apreciar las variaciones laterales en la velocidad del refractor. La figura IV.2.2b muestra el análisis de velocidad obtenido para la dromocrónica anteriormente señalada; como se puede apreciar, existen tres distintas velocidades, que corresponden a materiales situados casi a la misma profundidad (figura IV.2.2c).

Los resultados arrojados por la técnica del M.G.R mostraron que las velocidades para el relleno del camino y el basamento son variables. El relleno varía de 381 a 549 m/s, y en algunas localidades se encontraron velocidades poco más altas debido posiblemente a la presencia de roca intemperisada o a grandes peñascos dentro de los primeros pies de profundidad. Las velocidades en el basamento varían en un rango que va desde 1829 m/s a 7620 m/s, oscilando la mayoria de los valores entre 3048 m/s y 4572 m/s.

La tabla # 1 resume los resultados de la interpretación, comparando el trabajo de refracción con la perforación de 7 barrenos, las profundidades de refracción sísmica caen dentro de 2 categorias :

La interpretación de refracción sismica esta de acuerdo con 4 de los barrenos, con diferencias desde -0.43 m a 0.34 m estas diferencias estan dentro del estimado 10%. las cuales son basadas por las características del lugar y la presición de los datos de tíempo de viaje.

Barreno No.	M (m)	R (m)	entre lineas(m)	Echado (grados)	Profundidad Real(m)	Profundidad Estimada(m)	Diferencia(m)
1	9.2	10.1	8.2	6	12.2	9.2	2.4
2	7.5	7.8	7.0	3	7.9	7.8	0.1
3	6.2	6.9	7.6	6	9.5	6.8	2.7
4	3.6	6.0	8.2	17	7.6	5.5	2.2
5	2.9	5.3	6.9	19	5.2	5.6	0.4
6	2.9	3.5	5.1	6	3.8	3.6	0.2
7	2.7	4.0	3.8	20	5.3	5.0	0.3
	· · ·	- <u></u>				49 <u></u>	

TABLA # 1

ž

a,

IV.2.2) Proyecto "Las Juntas", Sin.

Este proyecto pretende retener las aguas del rio Piaxtla en el estado de Sinaloa para suministrar de agua potable y de riego a comunidades vecinas. Para ello la S.A.R.H tiene pensado construir una cortina de materiales graduados de 25 m de altura que se desplante en roca sana.

Con el objeto de conocer el espesor de acarreos que existe en el sitio de la bequilla, se realizó un estudio de sismica de retracción somera a través de 6 tendidos de aproximadamente 165 m de longitud ^C/u. El tendido principal del estudio está localizado longitudinalmente al cause del rio y su dromocrónica se muestra en la figura IV.2.3A. La interpretación de esta dromocrónica se realizó a través de los métodos de tiempos de intersección y el M.G.R. Los resultados se muestra en la figura IV.2.3.8 y IV.2.3.0 respectivamente.

En general en ambos metodos se distinguen tres capas pero en la primera capa se aprecia un ligero engrosamiento, la velocidad de la segunda capa es semejante en ambos casos, pero nuizas el rasgo mas importante en la variación de la velocidad de la tercera capa, dando una velocidad mayor con el método simple de tiempo de interseccion.

Posteriormente se perforó un pozo de exploración en las cercanías del P.T.Z., como se indica en los perfiles B y C.. Esta perforación alcanzó los 50 m. de profundidad, encontrando a los 18.80 m. el contacto entre material de relleno y tobas ignimitaticas. Como se puede apreciar, mediante un análisis comparativo de los resultados, el método de tiempos de intersección resultó más preciso que el M.G.R.para ese punto en cuestión.

FIGURA IV. 2.3

IV.2.3) P.H. ZIMAPAN HGO.

El Proyecto Hidroeléctrico Zimapan se localiza en el Cañon del Infiernillo en el Edo. de Hidalgo aproximadamente 300 Km al norte de la Cd. de México. El proyecto pretende aprovechar las aguas negras que se desechan de la Cd. de México y que a través del Drenaje Profundo se vierten al rio Tula.

La calidad de roca y características geotécnicas de las Formaciones geológicas que el proyecto atraviesa han sido estudiadas, a nivel de macizo, mediante tendidos sísmicos de refracción. La interpretación de estos perfiles se ha realizado a través de varios métodos, entre los que destacan: tiempos de retraso, Hawkins y N.G.R.

Para la zona de túneles de Conducción se realizaron varios tendidos de los cuales solamente se presentan aquí los dos más representativos.

IV.2.3.1) TENDIDO ZIMAPAN 1.

Este tendido se alojó sobre material de relleno, cubriándose una longitud de aproximadamente 710 m y 2 puntos de tiro. Su dromocrónica se muestra en la figura (1V.2.4A). La interpretación de este perfil se realizó a través del M.G.R encontrandose que el menor error porcentual de la función de análisis de velocidad fue para una XY = 60 m, el perfil de este proceso se muestra en la figura (1V.2.4C). Cabe señalar que por tener una profundidad menor de 20 m, quizas sea mejor utilizar un valor de XY=0. (Hatherly y Neville, 1986) Para ambos casos el relieve del refractor es muy similar pero para XY=0 figura 1V.2. 4B) ofrece un mejor suavizamiento y probablemente una mayor precisión.

IV.2.3.2) TENDIDO ZIMAPAN 2

Este tendido de aproximadamente 710 m de largo se realizó sobre el

FIGURA IV.2.4

trazo del túnel de Conducción y atraviesa superficialmente el contacto entre dos Formaciones, la primera constituida por roca basáltica que sobreyace con un espesor aproximado de 120 m, a la formación Soyatal, constituida por una alternancia de calizas y lutitas.

En la figura IV.2. 5 se muestra la dromocrónica de este tendido y su interpretación por tiempos de intersección. Como se puede apreciar, la roca ígnea con un rango de velocidades que varían de 2500 a 3150 m/s; sobreyace a la tormación >oyatal que posee una mejor calidad representada por sus valores altos de velocidad (4300 a 5000 m/s). Cubriendo ambas formaciones existe una capa de suelos y roca decomprimida que alcanza sus máximos espesores (10 a 17m) en el extremo Norte del perfil, con velocidades que varían de 300 a 750 m/s. El contacto entre las formaciones ígnea y soyatal aflora en el camino a Xajha, aproximadamente entre los geofonos 24 y 25 ; punto a partir del cual engrosa la roca ígnea hacia el Sur hasta alcanzar espesores de 120m.

En la figura IV.2. 6 se muestra la dromocrónica y su interpretación por el G.R.M. Como se puede observar el modelo resultante es muy similar al obtenido mediante el método de tiempos de intersección, con una capa superficial de 500 m/s que alcanza sus mayores espesores en la parte Norte. La formación soyatal constituye el basamento local del área con una velocidad de 4700 m/s, a la cual sobreyace la roca Egnea con espesores de 110 m y que se acuña hacia la parte central del tendido hasta aflorar aproximadamente entre los geofonos 27 y 28.

CAPITULO V

DISCUSION DE RESULTADOS

V.2.1) Presa Mesa de Caballo.

Los resultados arrojados por el M.G.R comparado con los observados mediante la perforación se muestran en la siguiente tabla:

BARRENO	PROF. G.R.M (m)	PROF. DETECTADA (m)	DIFERENCIA(m)	ERROR(%)
1	9.9	12.2	2.3	24
2	7.9	0.5	0.1	1
3	6.8	9.5	2.7	40
4	5.5	7.6	2.1	40
5	5.6	5.2	0.4	7
6	3.6	3.8	0.2	5.5
7	5.0	5.3	0.3	6

Como se aprecia el error oscila desde 12 (bno, 2) hasta 40% (bnos 3 y 4), que es inadmisible para métodos sísmicos debido a que generalmente la precisión de éstos, para la detección somera del primer refractor, es muy exacta con errores menores al 10%.

Cuatro de los barrenos caen dentro de este margen, pero en los otros tres barrenos restantes se tienen errores notables, mayores al 20%, para los cuales los autores argumentan que el M.G.R no dió los resultados esperados debido a que las medidas estuvieron quizãs influenciadas por la heterogeneidad de la capa superficial, las curvaturas de las líneas sísmicas, la presencia del ruido producido por la corriente del río y las turbinas de la presa. Sin embargo analizando los valores de la tabla, se distingue que la estimación de la profundidad del refractor es, en 6 de los 7 casos, inferior a la perforada debido muy probablemente a que la función de velocidad determinada por el M.G.R y que es una variante del método más-menos de Hagedocorn (1959), no fue lo suficientemente precisa, determinando valores de velocidad poco inferiores a los reales y representativos del macizo, pero que afectan directamente a la determinación de los espesores; razón por la cual sería aconsejable reinterpretar el estudio determinando velocidades a partir de otro método, como el de tiempos de retraso, para analizar diferencias en cuanto a la exactitud del método, sobretodo si consideramos que la profundidad mayor a la cual se detectó el refractor es de 12.2 m, mucho menor a los 20 m, profundidad para la cual es muy difícil determinar el XY óptimo (Hatherly y Neville, 1986).

V.2.2) PROYECTO "LAS JUNTAS" SIN.

El M.G.R se quedó al igual que en el caso de la presa Masa de Caballo corto en la determinación de la profundidad, debido probablemente a la falta de exactitud de la función de velocidad, ya que mediante el análisis comparativo con el método de tiempos de retraso se encontro que la velocidad del G.R.M fue menor que la encontrada por el metodo de tiempos de retraso, y esto repercute en el calculo de la profundidad del refractor, por lo que seria aconsejable implementar en el algoritmo del "M.G.R la determinación de velocidades a partir de otros métodos.

V.2.3.2) TENDIDO ZIMAPAN 2.

Los resultados arrojados por ambos métodos, (tiempos de intersección y M.G.R) fueron muy similares, estableciendo el mismo modelo. Y en general las velocidades obtenidas por el M.G.R son poco inferiores a las encontradas por tiempos de intersección, no influyendo esto en la estimación de la calidad de la roca.

Se puede apreciar dos diferencias muy notorias en la interpretación del M.G.R con respecto a la de tiempos de intersección:

- El M.G.R determina una mayor potencia para la formación ignea que puede ser excesiva debido a que esto no checa con las distancias criticas de los P.T.1 y P.T.2; pero puede atribuirse a que además de la roca ignea se esta detectando la zona decomprimida de la formación Sovatal.

- La ubicación del contacto Igea y Kss se desplaza 3 geofonos hacia el Norte, que equivale a aproximadamente 90 m de error del afloramiento geológico; pero esto puede atribuirse al igual que en la anterior que ademas de la roca Ignea se esta detectando la zona decomprimida de la formación Soyatal.

CAPITULO VI CONCLUSIONES

 El método de tiempo de retraso (Gardner, 1939) es preciso para echados menores a 10°, pero en la realidad es sensible a ángulos de echado: tan pequeños como 5°, en cambio el N.G.R es relativamente exacto para ángulos de echado menores a 30° porque tanto el tiempo directo como el inverso son utilizados.

2) El M.G.R pfrece una mejor, resolución que el método de Hawkins, el cual es propenso a suavizar las irregularidades de los contactos, debido a que asume un refractor plano entre los puntos de emergencia de las trayectorias directa e inversa.

3) El M.G.R es ideal para implementarse en una computadora digital debido aue no es un método interactivo y aunque involucra muchas operaciones para el cálculo de las funciónes de velocidad y tiempo profundidad, no es tan elaborado como los algoritmos propuestos por Scott(1973) y Singh(1978). Por lo tanto la rutina de procesamienta utilizado por el M.G.R ofrece ventajas significativas con respecto a tiempo y costo de computo.

4) Aunque el método de Hales es muy similar al M.G.R. no es tan preciso como este debido a que emplea procedimientos gráficos y se necesita de mayor tiempo y experiencia para configurar el refractor.

5) Una de las ventajas mas importantes que ofrece el M.G.R es que proporciona un medio para inferir la existencia de capas ocultas o inversion de velocidades, a partir de la comparación de el valor óptimo XY observado y el valor XY calculado. 6) El M.G.R permite calcular la profundidad de un determinado refractor de interés independientemente del cálculo de las capas superiores, mediante el uso de la velocidad promedio que es función de las velocidades de las capas, el XY óptimo y el tiempo-profundidad promedio t_c .

7) La función de velocidad que usa el M.G.R es una variante de la función menos de Hagedoor (1959), y poco precisa para el cálculo de profundidades del refractor, por lo que es conveniente considerar en el proceso la introducción de velocidades calculadas a partir de otros métodos.

8) El M.G.R permite calcular cambios laterales de velocidad mediante el análisis cuidadoso de la función de velocidad, análogamente a como lo realiza la función menos del método de Hagedoor (1959).

BIBLIOGRAFIA

Adachi, R., 1954, On a proof of fundamental formula concerning refraction method of geophysical prospecting and some remarks: Kumamoto J. Sci., V.2, pp. 18-23.

Barry, K.M., 1967. Delay time and its application to refraction profile Interpretation in Seismic refraction prospecting: A.W. Musgrave, Ed., SEG, tulsa. pp. 348-361.

Barthelmes, A.J., 1946, Aplication of continuous profiling to refraction shooting: Geophysics, V.11, pp. 24-42.

Cummings, D., 1979, Determination of depths to an irregular interface in shallow seismic refraction surveys using a pocket calculator, Géophysics, Vol. 44, pp. 1987-1998.

Dobrin, M.B., 1976, Introduction to geophysical prospecting, 3rd ed. : New York, Mc Graw Hill Book Co., Inc.

Dooley, J.C., 1952, Calculation of depth and dip of several layers by seismic refraction methods: Austral. Bur. Min. Res. Geol. and Geophys., Bull. 19, Appendix, 9 p.

Gardner, L.W., 1939, An areal plan of mappring subsurface structure by refraction shooting: Geophysies, V.4, pp. 247-259.

Grant, F. S., and West, G.F., 1965, Interpretation Theory in applied geophysics: New York, Mc Graw Hill Book Co., Inc.

Hagedoorn, J. G., 1955, Templates for Fitting smooth velocity functions to seismic refraction and reflection data: Geophys. Prosp., V.3, p. 325-338.

Hagedoorn, J.G., 1959, the plus-minus method of interpreting seismic refractions sections : Geophys. Prosp., V.7, p. 158-182.

Hagiwara, T., and Omote, S., 1939, Land creep at Ht. Tyausu-Yamar (Determination of slip plane by seismic prospecting): Tokyo Univ. Earthquake Res. Inst. Bull ., V.17. pp. 118-137.

Hales, F.W., 1958. An occurate graphical method for interpreting seismic refraction lines: Geophys. Prosp. V.G. $\sim -2^{9}5-29^{1}$.

Hatherly, P.J., and Neville M.J., 1986, Experience with the generalized reciprocal method of seismic refraction for shallow engineering site investigation: Geophysics, V-51, pp. 255-265.

Hawkins, L.V., 1961, the reciprocal method of routine shallow seismic refraction investigations Geophysics, V.26, pp. 806-819.

Hawkins, L.V., 1962. Discussion on the problem of the hidden layer within the blind zone: Geophys. Prosp., V.10, pp.548.

KIlty, K.T; Nowis, R.A.; Mac Lamore, W.R., Hennon, K. and Euge, K; 1986 Seismic refraction at Horse Mesa Dam: An application of the generalized reciprocal method, Geophysics, V.51, pp. 266-275.

Layat, C., 1967. Modified Gardner delay time and constant distance correlation interpretations, in Seismic refraction prospecting: A.W. usgrave, Ed., SEG, Tulsa, pp. 171-193.

Mc Phail, M.R., 1967, The midpoint method of interpreting a refraction survey: Seismic refraction prospectig, A.W. Musgrave, Ed., SEG, Tulsa, pp.260-266. Mota, L., 1954, Determination of dip and depths of geological layers by the seismic refraction method: Geophysics, V.19, pp.242-254. Hagedoorn, J.G., 1959, the plus-minus method of interpreting seismic refractions sections : Geophys. Prosp., V.7, p. 158-182.

Hagiwara, T., and Omote, S., 1939, Land creep at Mt. Tyausu-Yama*(Determination of slip plane by seismic prospecting): Tokyo Univ. Earthquake Res. Inst. Bull ., V.17, pp. 118-137.

Hales, F.W., 1958. An occurate graphical method for interpreting seismic refraction lines: Geophys. Prosp., V.G. p. 285-294.

Hatherly, P.J., and Neville M.J., 1986, Experience with the generalized reciprocal method of seismic refraction for shallow engineering site investigation: Geophysics, V-51, pp. 255-265.

Hawkins, L.V., 1961, the reciprocal method of routine shallow seismic refraction investigations Geophysics, V.26, pp. 806-819.

Hawkins, L.V., 1962, Discussion on the problem of the hidden layer within the blind zone: Geophys. Prosp., V.10, pp.548.

Kilty, K.T; Nowis, R.A.; Hac Lamore, W.R., Hennon, K. and Euge, K; 1986 Seismic refraction at Horse Mesa Dam: An application of the generalized reciprocal method, Geophysics, V.51, pp. 266-275.

Layat, C., 1967, Modified Gardner delay time and constant distance correlation interpretations, in Seismic refraction prospecting: A.W. Husgrave, Ed., SEG, Tulsa, pp. 171-193.

Mc Phail, M.R., 1967, The midpoint method of interpreting a refraction survey: Seismic refraction prospectig, A.W. Musgrave, Ed., SEG, Tulsa, pp.260-266. Mota, L., 1954, Determination of dip and depths of geological layers by the seismic refraction method: Geophysics, V.19, pp.242-254.
Musgrave, A.W; Ed ; 1967, Seismic refraction prospecting: SEG, Tulsa.

Palmer, D., 1974, An application of the time section in shallow seismic refraction studies: M. Sc. Thesis, Univ. of Sydney.

Palmer, D., 1981, An introduction to the generalized reciprocal method of seismic refraction interpretation, Geophysics, V. 46, pp. 108-1518.

Palmer, D., 1980, The generalized reciprocal method of seismic refraction, Soc. Explor. Geophys.

Redpath, B.B; Technical Report E-73-4 seismic refraction exploration for engineering site investigations.

Scott.J.H; 1973, Seismic refraction modeling by computer: Geophysics, V.38, pp. 271-284.

Scott, J.H., Tibbetts, B.L. y Burdick, R.G. 1972, Computer analysis of seismic refraction data, USBM-RI 7595, pp 1-95.

Slotnick, M.H., 1950, A graphycal method for the interpretation of refraction profile data: Geophysics. V.15, pp. 163-180.

Telford, W.M; Geldard, L.P; Sheriff, R. E., and Keys, D.A; 1976, Applied geophysics, New York.