

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE INGENIERIA Dirección 60-1-71

Мариядар Улдона. Деть ма

Señor FLORES AVILA FERNANDO SEBASTIAN. P r e s e n t e .

En atención a su solicitud, me es grato hacer de su conocimiento el tema que aprobado por esta Dirección, propuso el Profr. Ing.-Carlos A. Morales Gil, para que lo desarrolle como tesis para su Examen Profesional de la carrera de INGENIERO PETROLERO.

"CORRELACIONES PVT PARA LOS HIDROCARBUROS PRODUCIDOS EN LA SONDA DE CAMPECHE"

- I INTRODUCCION.
- II ANALISIS DE LA INFORMACION DE LABORATORIO.
- III EFECTO DE LA TEMPERATURA Y LA SEGREGACION COMPOSICIONAL SOBRE LAS PROPIEDADES PVT.
- IV APLICACION DE CORRELACIONES EXISTENTES.
- V DESARROLLO DE CORRELACIONES.
- VI RECOMENDACIONES Y CONCLUSIONES. REFERENCIAS BIBLIOGRAFICAS.

Ruego a usted se sirva tomar debida nota de que en cumplimientocon lo especificado por la Ley de Profesiones, deberá prestar --Servicio Social durante un tiempo mínimo de seis meses como - requisito indispensable para sustentar Examen Profesional; así como de la disposición de la Coordinación de la Administración -Escolar en el sentido de que se imprima en lugar visible de losejemplares de la tesis, el título del trabajo realizado.

Atentamente. "POR MI RAZA HABLARA EL ESPIRITU" Cd. Universitaria, D.F., Marzo 11 de 1986. EL DIRECTOB

Dr. Octavio A. Rascón Chávez

nn OARCH'MRV'ata

INDICE

CAPITULO	Ι	INTRODUCCION	• :•	I.1
CAPITULO	II	ANALISIS DE LA INFORMACION DE		
		LABORATORIO	• •	II.1
		Campo Abkatún	• •	II.2
		Campo Cantarell	••	II.3
		Сатро Ки	• •	IJ.3
		Campo Pod	•••	11.3
		Campo Chuc	•••	11.4
CAPITULO	111	EFECTO DE LA TEMPERATURA Y LA		
		BRE LAS PROPIEDADES P.V.T	• •	111.1
		Antecedentes	• •	111.1
		Variación de la Presión de Burbujeo	con	
		la profundidad considerando efectos	gr <u>a</u>	
		vitacionales y de temperatura	• •	111.4
		Aplicación Campo Abkatún	•••	III.6
		Aplicación Campo Cantarell	• •	111.19
CAPITULO	IV	APLICACION DE CORRELACIONES EXISTENTE	es.	IV.1
		Correlación de M.B. Standing		IV.1

PAG.

PAG.

Correlación de Oistein
Correlación de Vázquez
Correlación de Lasater
Densidad del aceite saturado
Propiedades del accite bajosaturado IV.8
1 Compresibilidad IV.8
2 Densidad
3 Factor de Volumen del aceite . IV.9
Programa de Cómputo para calcular las propiedades de los fluidos por las c <u>o</u> rrelaciones de Standing, Oistein y Vázquez
Presentación de resultados
1 Presión de Saturación IV.12
2 Relación Gas disuelto-Aceite . IV.12
3 Factor de Volumen del aceite . IV.13
4 Densidad del aceite IV.13
Diagrama de bloques del programa
Listado del programa
V DESARROLLO DE CORRELACIONES V.1

CAPITULO

٩

Correlación para la presión de sa-Unidades usadas para las correla--1.-2.-Campo Po1 V.6 3.- Complejo Cantarell V.7 V.10 4.- Campo Ku 5.- Correlación para aceites pesados (Cantarell-Ku) . . . V.13 6.- Correlación para aceites ligeros (Abkatún-Pol) . . . V.15 Correlación para la Relación Gas -1.- Campo Abkatún, V.16 V.17 2.- Campo Pol 3.- Complejo Cantarell V.18 V.19 4. - Campo Ku Correlación para el factor de vo-2,- Campo Pol · · · · · · · · · · · V.21

PAG.

								3 Comp1 4 Campo	ejc k	C Lu	ant	ar.	911 • • •	•	•		•	•	• V • 2	22
								Cálculo de la d	lens	id	ad	de	1 a	ce	ite	•	•	• '	.v.	23
Cł	(P	ITI)L(, i	۷I			RECOMENDACIONES Y	° CC	DNC	LUS	510	NES			٠	•	•	.V1	1
								Conclusiones		•	•	•				•	•	•	.vı	1
								Recomendaciones	•	•	•	•		•	•	•	•	•	.VI.	2
A	Р	E	N	D	I	C	E	I												
Α	Р	E	N	D	1	с	E	II												

PAG.

APENDICE III

REFERENCIAS BIBLIOGRAFICAS

CAPITULO I

INTRODUCCION

En México, la Sonda de Campeche y el Mesozoico Chiapas-Tabas co, son actualmente las dos provincias petroleras más importantes, tanto por la magnitud de sus reservas, como por los volúmenes de hi drocarburos que de ellas se extraen.

Estas dos provincias almacenan fluidos que probablemente tie nen un origen común, situación que se ha hecho evidente por el nota ble paralelismo que muestra la distribución geográfica de los yacimientos, de acuerdo a la densidad de los fluidos que producen.

El crudo que hasta ahora se ha encontrado en la Sonda de Cam poche, es de una tendencia areal bien definida en cuanto a densi -dad. En términos generales las estructuras han ido aportando cru dos más ligeros conforme se avanza al sur y al occidente, como se observa en la figura 1.1.

En la Sonda de Campeche, de 1979 a la fecha se han descubier to 16 estructuras productoras en el área: Chac, Akal, Nohoch, Chuc, Bacab, Maloob, Ku, Ek, Ixtoc, Abkatún, Batab, Uech, ^{Pol}, Kutz, -Caan y Kay. (Fig.1.2) Ocho de ellas están en explotación actual mente, produciendo através de 131 pozos.

Las estructuras se han caracterizado por potentes espesores_ impregnados, bajas saturaciones de agua y significativos sistemas secundarios de porosidad representados por cavernas y fracturas; 1a gran transmisibilidad de las formaciones es común denominador del á

1.1

rea y explicación de los impresionantes ritmos de producción de los pozos, que en algunos casos han excedido los 50,000 BPD.

Los yacimientos se encuentran a profundidades muy diversas;en el caso de Akal, caracterizado por un gran relieve estructural, varía de 1000 a 3000 m. Más al occidente, como en Abkatún y Pol, _ las profundidades son del orden de 3000 a 4000 m. Los campos explo tan brechas y calizas del Paleoceno y Cretácico, pero debe mencio_ narse que a pesar de tenerse pocos pozos terminados en el Jurásico, éste horizonte también es productor, tanto en Akal, donde se han terminado 4 pozos en dicho horizonte, resultando productores, así _ como también en Batab, Pol y Uech.

Cabe mencionar que el área donde se han descubierto las es-_ tructuras, es del orden de 1600 Km², lo que representa una fracción aún pequeña de los 18,000 Km² en donde se ha realizado prospección_ sismológica.

El aceite de Pol, el campo más austral descubierto hasta hace unos años, resultó con una densidad de 32° API, ya muy semejante a la de los yacimientos de aceite ligero del Mesozoico Chiapas-Tabasco; esto último y la bien definida tendencia de distribución _____ del crudo indican la posibilidad de llegar a encontrar en la Sonda de Campeche, yacimientos de aceite volátil y de gas y condensado, a semejanza de lo que ocurre en aquella región en donde se ha descubierto una serie de campos de éstos tipos al sur y al occidente de una faja de yacimientos de aceite ligero; ésto lo confirma el reciente descubrimiento del campo Kay, que hasta el momento de realizar este trabajo, las muestras obtenidas en el mismo, reportan una densidad de 42° AP1, con una relación gas-aceite de 1000 m³/m³, lo que lo coloca entre las clasificaciones de yacimientos de aceite vo látil y de gas y cendensado. Diversos análisis sobre muestras de gas de los crudos del área, le han señalado una gran riqueza en condensados, equivalente a_ valores del orden de 100 B/MMPC de C_z + y de 150 B/MMPC de C_2 +,

En el trayecto, desde el yacimiento hasta las instalaciones _ de almacenamiento en la superficie, los fluidos sufren modificacio-nes radicales en sus condiciones de presión y temperatura, pudiendo_ originarse nuevos cambios de fase, y con ello de composición, en las corrientes de fluidos manejados en la superficie, lo que puede hacer en ciertos casos, complicada la correcta interpretación del carácter de los fluidos del yacimiento. El diagrama de la figura 1.3 muestra en forma simplificada dichos cambios.

El estudio y análisis de las propiedades presión-volumen-temperatura (PVT) de los hidrocarburos producidos de un yacimiento re-viste gran importancia para el diseño de un esquema de explotación _____ óptimo desde el punto de vista de Ingeniería de Yacimientos, como _____ del de Ingeniería de Producción.

En este trabajo, primeramente se analizan los resultados al __aplicar las correlaciones de Standing, Oistein, Vázquez y Lasater a__ campos de la zona marina, las cuales no arrojan resultados satisfactorios, es por esto, que se desarrolla el presente estudio, dado que una buena comprensión del comportamiento que mostrarán los fluidos __ ante cambios de presión y temperatura, redundará en una mejor explotación de los mismos.

1.3

A: YACIMIENTO DE ACEITE NEGRO B: YACIMIENTO DE ACEITE VOLATIL C: YACIMIENTO DE GAS Y CONDENSADO D: YACIMIENTO DE GAS HUMEDO E: YACIMIENTO DE GAS SECO PC: PUNTO CRITICO TS: TEMPERATURA DE SEPARACION PS. PRESION DE SEPARACION

FIG.13_ DIAGRAMA DE FASES EXPLICATIVO MOSTRANDO EL CAMBIO QUE SUFRE UNA MEZCLA DE HIDROCARBUROS EN SU TRAYECTO DEL YACIMIENTO A SUPERFICIE.

CAPITULO II

ANALISIS DE LA INFORMACION DE LABORATORIO

Como primer paso para poder encontrar la relación que gua<u>r</u> dan los parámetros PVT de una mezcla de hidrocarburos, en partic<u>u</u> lar los de la Sonda de Campeche, fué necesario el análisis de la i<u>n</u> formación de laboratorio con la que se contaba hasta la fecha de -realizar el trabajo, ésto fué la revisión de 64 análisis PVT, cuya_ distribución puede observarse en la tabla 2.1.

TA	BLi	\ 2	.1

CAMPO	No. DE ANALISIS PVT
CANTARELL	35
ABKATUN	12
KU	7
POL	6
СНИС	2
IXTOC	1
CAAN	<u>1</u>
	TOTAL: 64

Estos análisis, fueron realizados en los laboratorios de yacimientos de Villahermosa, Tab.; de yacimientos de Poza Rica de - -Hgo., Ver.; de yacimientos en el Instituto Mexicano del Petróleo, -Core Laboratories, Inc. y Energy Laboratories.

Ante la diferencia de unidades empleadas y la diversidad de formatos de presentación de resultados de los diferentes laborato rios, se procedió primero a uniforminar las unidades y a definir la información necesaria que se concentraría en forma tabular, a fin ____ de facilitar su manejo.

Los parámetros que se reportan en las tablas, en donde se _____ presenta un resumen de la información más importante de los análi_____ sis PVT, pueden ser observados en las mismas, notándose que alguna____ de la información que se reporta, no se requiere para el desarrollo del estudio que se intenta realizar, pero es de importancia para el manejo interno de Petróleos Mexicanos, para el cual fueron elaboradas. Estas tablas pueden observarse en el apéndice I.

En éstos análisis se pueden hacer las siguientes observaciones generales:

ABKATUN

Las muestras analizadas en éste campo, mostraron presiones _ de saturación que van de los 158 a 275 Kg/cm², con relaciones gas _ disuelto aceite que van de 71.9 a 193.9 m³/m³, con factor de volumen del aceite de 1.355 a $1.726 \text{ m}^3/\text{m}^3$ y densidad de 0.6251 a 0.7161 gr/cm³, donde cabe señalar la importancia que tiene la temperatura de análisis, sin embargo a éste efecto se le dedica un capítulo especial.

Conviene indicar que las diferencias en presión de saturación, _____ relación gas disuelto aceite, factor de volumen del aceite y densidad, se deben a la procedencia de los fluidos, correspondiendo los_____ valores altos de las tres primeras y los valores bajos de la última a los del área de Kanaab, manteniéndose los del área de Abkatún den______ tro de un cierto rango (Los pozos 211,212,216 y 226 pertenecen al _______ área de Kanaab).

Otro efecto notable, es el procedimiento de análisis, pues

los resultados presentados difieren dependiendo del laboratorio que analizó la muestra, por ejemplo, la figura 2.1 muestra como los valores de factor de volumen del aceite a Pb graficados contra la pr<u>e</u> sión de saturación se agrupan de acuerdo al laboratorio que realizó el análisis.

CANTARELL

Para éste complejo, las muestras reportan presiones de saturación que van de 94.6 a 165 Kg/cm², con relaciones gas disuelto aceite de 30.2 a 95.6 m^3/m^3 , factores de volumen del aceite de 1.1602 a 1.3743 m^3/m^3 y densidades de 0.7613 a 0.8541 gr/cm³.

Puede notarse que el valor más bajo de Pb para este complejo, corresponde a una muestra del Jurásico, notándose además la tenden-cia de agrupación de los parámetros en consideración para las dife-rentes áreas que componen el complejo (Akal, Nohoch y Chac). A No hoch pertenecen los pozos 2011,2011D,2013,2035,2095,2075 y 2097.

KU

En las muestras para éste campo se observan presiones de sat<u>u</u> ración de 132.9 a 194 Kg/cm², con relaciones gas disuelto aceite de 40.7 a 112.8 m³/m³, factores de volumen del aceite de 1.1649 a 1.4721 m³/m³ v densidades de 0.7282 a 0.8747 gr/cm³.

Se observa que los valores bajos de presión de saturación, r<u>e</u> lación gas disuelto aceite y factor de volumen del aceite, así como_ el valor alto de densidad, corresponden a los del área de Maloob, _____ manteniéndose en cierto rango los del área de Ku. Los pozos del área de Maloob son el 405 y 407.

POL

En éste campo las muestras analizadas mostraron presiones de_

saturación de 170 a 239.8 Kg/cm², con relaciones gas disuelto aceite de 135.1 a 208.8 m³/m³, factores de volumen del aceite de 1.566 a -- 1.838 m³/m³ y densidades de 0.5649 a 0.6556 gr/cm³.

En éstos valores se pueden observar las diferencias encontradas en las muestras obtenidas en distintos horizontes, como el Cret<u>á</u> cico (muestra con baja Pb), brecha del Paleoceno (muestras con valores uniformes en sus parámetros) y Jurásico (muestras con Pb bajas).

CHUC

Para éste campo, las presiones de saturación encontradas a _____las muestras, están comprendidas entre 217.3 y 228 Kg/cm², con relaciones gas disuelto aceite de 142.2 a 193 m³/m³, factores de volumen del aceite de 1.593 a 1.817 m³/m³ y densidades de 0.5992 a 0.6322 _____ gr/cm³.

Los campos Ixtoc y Caan, cuentan sólo con un análisis PVT, ____ por lo que, los valores de los parámetros ya comentados, son únicos para éstos campos, los cuales pueden observarse en el apéndice l.

CAPITULO III

EFECTO DE LA TEMPERATURA Y LA SEGREGACION COMPOSICIONAL SOBRE LAS PROPIEDADES P.V.T.

ANTECEDENTES.

El efecto que la temperatura y la segregación composicional ejercen sobre las propiedades PVT de una mezcla de hidrocarburos, es de consideración para yacimientos con altas permeabilidades, es pesores considerables ó echados pronunciados con buena comunica -- ción en sentido vertical.

Al hablar de segregación composicional, nos referimos a la variación que presenta la mezcla de hidrocarburos conforme varía la profundidad del receptáculo donde se encuentran; a medida que aumenta la profundidad del yacimiento, encontramos que el por cien to mol de componentes pesados aumenta, mientras que el de componen tes ligeros disminuye, por lo que al variar dichos porcentajes y por tanto, la composición de la mezcla, también se ven afectadas las propiedades P.V.T. de la misma.

En lo que se refiere al estudio del efecto de la gravedad sobre la composición en una columna de hidrocarburos, tenemos como referencias el trabajo efectuado por Sage y Lacey^{1*} en 1939.

' Referencias al final

En investigaciones recientes se ha revelado que el efecto de la gravedad sobre una mezcla de hidrocarburos, viene a ser más_ significativo, conforme se tienen hidrocarburos más ligeros, con condiciones de presión y temperatura cercanas al punto crítico, es por ésta razón que los yacimientos que contienen hidrocarburos ricos en condensados y aceite volátil, son fuertemente afectados por este efecto en la distribución de sus fluidos respecto a la profun didad.

Si se cuenta con la información requerida, como análisis -composicionales de muestras tomadas a diferentes profundidades, es posible predecir la variación de la composición de los hidrocarburos con la profundidad, tomando en cuenta los efectos gravitacion<u>a</u> les, así como también es posible establecer correlaciones de las propiedades físicas que varían con la profundidad.

Sage y Lacey en su trabajo de 1939, muestran que en ciertas condiciones, el efecto gravitacional, puede ejercer una gran in -- fluencia en la distribución de los componentes de una mezcla de hi drocarburos, si éstos se encuentran en estado estático y la carga hidrostática generada por los mismos, es considerable.

El gradiente composicional, puede tomar variaciones extre mas dependiendo de la composición general del sistema, dado que el gradiente de densidad de la columna, permanece casi constante considerando efectos gravitacionales.

En 1980, A.M. Schulte² realizó una serie de cálculos usando ecuaciones de estado cúbicas para determinar la fugacidad de los componentes, en lugar del modelo ideal empleado por Sage y Lacey. Schulte investigó el efecto que las diferentes caracterizaciones dentro de la ecuación de estado, tendrían sobre el gradiente generado y finalmente trató de ajustar los resultados pred<u>i</u> - chos, con los medidos experimentalmente en el campo Brent del Mar del Norte. Los resultados de Schulte, son muy semejantes a los d<u>a</u> tos medidos.

Otro estudio realizado, en el cual se muestra un ejemplo de gradiente composicional, fué presentado por J.L. Creek y M.L. - -Schrader³ en 1985; en éste estudio se verifica la variación de las propiedades físicas de los fluidos del yacimiento con la profundidad, así como también se presenta información detallada de los datos del gradiente composicional para el yacimiento East Painter en Estados Unidos.

Usando la ecuación de estado de Peng-Robinson¹⁸, primerame<u>n</u> te enfocada a la prediccion de los parámetros PVT para un pozo, se predijo la variación de la composición, relación gas-aceite y presión de saturación para el yacimiento, incluyendo el factor gravitacional en las condiciones de equilibrio.

Fué difícil establecer la curva de presión de saturación -vs. profundidad para el yacimiento East Painter, dada la sensibil<u>i</u> dad de la presión de saturación a la variación en contenido de com ponentes pesados producidos.

A.M. Schulte y otros investigadores, han demostrado que para una columna multicomponente de fluido en un yacimiento con efectos gravitacionales y a temperatura constante, la condición de equi librio se puede expresar como:

 $d\mu_i$ + migdh = 0 i = 1,2,...n.

111.3

Donde:

- Hi : Potencial químico del componente i
- mi : Peso molecular del componente i
- g : Aceleración de la gravedad.
- h : Altura relativa considerada.

Schulte intentó explicar el fundamento del gradiente compo sicional en el campo Brent, y notó que los cálculos eran sensi -bles a la caracterización detallada de los fluidos del yacimien to, pero que la variación composicional observada y variaciones correspondientes en presión de burbujeo y rocío así como la ocu rrencia de miscibilidad natural entre la capa de gas y el aceite del yacimiento, podían ser explicadas, considerando los efectos gravitacionales y de temperatura.

Creek realizó cálculos similares para el yacimiento East -Painter usando 23 caracterizaciones de componentes de los fluidos, y en su trabajo, muestra sus resultados, en una tabla donde se -puede observar la variación del por ciento mol de cada componente con la profundidad, así como también la variación de la presión de saturación, la relación gas disuelto-aceite y la densidad del_ aceite a condiciones de tanque, conforme aumenta la profundidad._ Estos resultados pueden apreciarse en la tabla (3.1).

> VARIACION DE LA PRESION DE BURBUJEO CON LA PROFUNDIDAD CONSIDERANDO EFECTOS GRAVITA--CIONALES Y DE TEMPERATURA.

Para efectuar un análisis de la variación de la composi -ción de una mezela de hidrocarburos con la profundidad, se requie re contar con análisis composicionales de muestras de fluidos del

111.4

TABLA 5.1

.

.

	% MOL						PROFUNDIDAD (PIES)											
Fruit ve Deptis Sing Herrigg	-H-K 255	+3437 805	- 15 æ 151	-1955 836	- 31 OL 433	- 14 50 404	-17.0 537	-1750 505	-38.X 455	- 34" (405	.)#K 191	475 475	-4 **	+#210 205	-473C 133	-4111 101	142.7 11	•423 °
•	1.67	1.66	1.45	1.03	1.64	1.0	1.0	1.63	1.45	1.79	1.58	2.58	1.75	3.54	1.52	1.50	1.43	3-15
	C. 34	0.14	c.14	C.14	C.14	¢.14	C. 11	0.14	4.14	C.14	C.14	C.18	C.14	£.14	C.14	C.34	6.14	0.14
5	14.43	11.25	71.04	72.86	36161	10.44	27.21	49.47	e9.75	15.41	45.14	68,8;	18.41	11.04	4.2.64	47.34	14.14	61.84
£,	15.92	10.92	16.94	10.94	11.44	10.44	11.61	11.03	11.04	11.08	11.15	11.12	11.14	11.16	11.19	11.21	11.24	11.27
- 11 - E	5.57	\$.59	5 6 2	5.64	5.47	5.70	5. 3	5.74	5.79	5.82	5.81	5.89	5.93	5.97	4.52	4.CT	4.12	4.18
	1. 17	1.19	1.19	1.40	1.61	1.43	3.43	1.45	1.46	1.47	1.44	1.50	- 1.51	1.51	1.55	1.57	1. 5*	1.42
•	1.76	1.80	1.63	1.63	3.14	1. Pe	1.17	1.89	1.91	1.93	1.95	1. 9*	1. **	3.01	2.04	1.01	2.10	3.10
· · ·	6.72	e. 11	C. 73	C. 14	6. **	C. *5	C. 16	C. 7*	¢. *#	C. 74	C . RC	€.₽;	C 12	6.81	C.85	C.67	C 84	C.93
۰.	C 64	(()	C.84	C.66	6.02	4 68	C.13	¢.;¢	L.70	C.71	4.*2	6.14	C. 11	4. N		(. Y	C.84	C.#3
	C. N.	· #2	C.83	1.M	C. P.	< H	€. ₽ *	C.86	E 90	C. \$2	 (*) 	C 44	-	: 44		1.12	3.54	1.00
	1.1	: 11	4.44	1.14	1.11	1.7*	1.19	1 71	1.23	.		1.24	1.5	1.95	. 14	. C	1.46	1.57
	. 12	1.15	- L.S*	1.19	1.45	5.44	3.45	1.19	1.52	2.55		: 4:	\$.#t		21 M	1.12	1.F.	1.94
	6.75	£,74	£.75	6.17	G. 14	C.80	C.#1	G.41	C.85	C. #1	C. 89	6.55	0.94	C. 41	1.16	1.9	1.54	1.14
5 N.	C.83	E.11	6.65	0.46	6.67	D. 4#	C.49	C.50	C. 51	C.51	0.54	C. 56	C. 18	(.+C	C +2	C #5	C.68	6.11
	0.28	6.19	1.34	0.10	0,11	0.31	6. 32	0.11	C.16	6.35	C. M	C. 52	\$. 59	C.40	C 42	6.44	£.67	0.50
C.	C.23	6.23	0.74	0.34	¢.25	0.34	Ç. 27	C.20	L.28	1.29	C. 1C	C. 12	0.19	C. 14	f. 14	0.58	6.40	C.43
- C.	0.18	0.18	6.19	0, 20	6, 20	C.21	0.71	C.33	C.23	C.24	0.25	C. 24	0.27	C. 18	0.30	9.31	C. 13	C.34
	C.15	0.15	0,16	0.16	6.12	6.17	C. 18	C.18	C.14	C.30	0.31	C 22	C. 21	C. 24	£.35	6.21	6, 34	0.33
	0.11	0.17	0.32	¢.13	6.11	¢.13	E.14	C.14	0.11	 C.15 	0.16	0.17	C.10	0.14	C. 35	0.21	C.23	0.15
- C	0.04	t.0#	0,00	£.04	1.09	C.14	C, 15	0.10	c.11	¢ 11	e.14	5.13	6.13	C. 18	Q.15	C.14	C.17	0.19
C.	0.14	1.94	0.09	6.04	6.4	t.10	1.11	¢.11	1.11	C.32	C.12	C.13	C.14	C. 15	C. 14	6.17	C 16	C. 20
1.14	£.21	0.23	0.23	۵, 74	£.25	C. 24	C.21	C. 29	L. 30	0.32	e. 14	с, м	6,39	0.43	C.45	6.49	L.54	t.60
5	· •	<u>, c, o</u> r	. <u>• 12</u>	. 5 9	I:C	1.15	_ e.11	. <u>C</u> . H	<.)j	<. <u>1</u>	, † <u>1</u> 1	. 912	. 1.12	ea	. 9.39	t : 2	<u>. 5. 11</u>	
Ttal) NG., DE	100.00	100.00	106.00°	100,00	10or	, °e. œ	$(\alpha, \alpha$.n n	104 . TC	00.0	:n:,e¢	100,00	100.00	tar .nr	10°.30	100.00	:00.00
(a)culated																		
F 1:10	4:164	6064		6134		4244		4190		4236		4245		4334		4 343	4320	4 4 4 9
5.7 53	1275#	1247*		11770		1,09*		1.14.35		۰τ.		1.50		P143		* 264		6 256
6 N. 1	\$1.2	\$7.3		4.4		N. 3		94.4		**.*		5.1		54.6		51.92		53.0
	11702	1144*		1:e53		10235				**18				14"1		64 55		54 95
	4.1	22.2		11.6		11.1		72.5		*1.1		72.4		71.7		21.4		71.1

Last Faister Generator Field (emorated Composition Persus Tayth Durite Generaty Payso?? G. autor

		8	MOL				PRO	FUNI	DID	AD (PIES)
	-4755	-4 300	-4350	-4400	-4450	-1500	-1150	-44-00	-4636	-4 700	
Belative Depth	•	-13	-15	-145	-195	- 245	-295	-145	-195	-16	
۳.	3.45	1.43	5.38	1. 50	1. 10	1.11	1.25	1.23	1.22	1.80	
d,	0.10	0.14	0.14	0.14	0.14	6,14	0 14	£,13	0.13	6.11	
<.*	45.78	\$4.99	\$3.81	42.43	61.67	FC. 55	15.82	14,19	59.44	54.19	
- d	11.27	33.29	11.32	11.13	11.11	11.17	11.90	11.29	11.72	11.76	
e e	6.1*	4.2+	4 11	8.61	6.48	4.52	4.55	6.57	6.59	8.40	
18,	1.62	1.41	1.68	1.17	1.15	1,11	1. 19	1.80	1.01	3.82	
	3.35	3.1*	2.25	2.11	2.34	2.45	2.42	2.45	3.46	3.48	
K,	0,91	E.93	C. 96	1.00	1.02	1.64	1.06	1.01	1.00	1.09	
×.	0.81	0.45	C 88	6.92	0.95	¢.41	6 48	1.00	1.01	1.07	
' '	1.04	1.11	1.14	1.21	1.15	1.30		1.17	1.13	1.35	
c'	1.52	1.54	1.45	1.11	1.00	1.00	1.90	1.44	1.97	1.#*	
r	1.95	1.01	2,15	3.31	2,36	2.41	2.54	2.14	2.04	3.68	
C	1.14	1. 10	1.20	1.12	1.0	1.55	1.56	1.40	1.63	1.14	
<u>-</u>	6,72	6, 76	6.00	0.01	C ¥'	1.2	1.54	1.07	1.10	1.17	
- C.	0.50	C.51	C 58	6.65	0.68	6.17	C. 74	Q.18	18.3	6.87	
- C.	0.41	0. 4k	6.51	P. 54	0.60	0.84	6.87	C 75	0.72	Q. 14	
- C	0.16	0.39	0.43	D.60	0.52	0.54	6.39	0.61	0.63	0.65	
e e	0.11	0,14	6.38	0.43	0.44	6 47	U. 57	0.15	0.14	0.30	
<u> </u>	0,23	0. 27	\$0.11	D. 14	Q. 98	5.41	C.44	0.46	0.48	0.49	
C.	6,19	0.21	0,34	0.27	C. 30	0.92	0.35	D. M.	0.14	0.3*	
C	0.10	0,11	6.35	0.39	0.13	0.15	0.17	C.39	0.41	0.43	
4.14	0.61	0.19	0.00	0.15	3.06	4.37	1.24	3.16	1.41	3.47	
с <u>к</u> .	. s. 62	^{e.} t?	0.11	ç. I.	. 1- <u>0</u> 4		j 60	1.8	. T 🗜		
10161	100.06	1%.00	14,10	ne, e	1 W, 00	1.8.66	100.00	tu nc	106, 00	190.00	
Calculated											
F., 11901	4453	4474	4142	6100	44.94		4433	4411		616-6	
3 ^m	6 209		5014	41.74	1979	1570	1129	8137		3857	
6 PAPLE	52.9	51.3	51.4	50,4	17.6	11.5	48,4	47.9		0.3	
	54.13	5163	4142	11.10	1116	1. (4	2100	2472		27.96	
	F1.04	16.8	70. 6		11.5	69.3	44.4	44.3		48.4	

yacimiento, obtenidas a diferentes profundidades, para el caso del estudio que nos ocupa, no contamos con los suficientes anál<u>i</u> sis de este tipo para poder efectuar un estudio de la variación de la composición con la profundidad, pero sin embargo, si se in tentó establecer la variación de la presión de saturación con la profundidad, considerando efectos gravitacionales y de temperat<u>u</u> ra.

APLICACION CAMPO ABKATUN

Para poder observar el comportamiento que tiene la pre -sión de burbujeo con la profundidad, procedimos primeramente a elaborar una tabla con la información requerida, como número de pozo, profundidad media del intérvalo productor y temperatura de análisis.

Al graficar estos puntos, se observó, que no guardaban una cierta relación entre sí, ésto debido a que las presiones de_ saturación determinadas para las mezclas de hidrocarburos en los análisis PVT, se habían hecho para temperaturas diferentes a los correspondientes a la profundidad de la cual provienen los fluidos, y dado que la temperatura es un factor que afecta fuertemen te a éste parámetro, se encontraron estas discrepancias.

Ahora bien, también se observó que si se unian puntos con igual temperatura, en un buen número de casos, resultaron líneas paralelas con diferentes espaciamientos.

Tomando como base para este caso la línea que une a los puntos de temperatura de análisis del42°C, y trazando líneas paralelas a ésta que pasaban por puntos a otras temperaturas, se tuvo un espaciamiento homogén-zo entre las líneas, para incrementos constantes de temperatura, teniéndose una buena aproximación de la temperatura correspondiente a ésa línea y la observada por algún punto cercana a ella.

Haciendo un mejor ajuste de estas líneas, con los puntos medidos, finalmente se obtuvo que para temperaturas menores a -los 137°C se tiene un espaciamiento constante para cada ΔT , y pa ra temperaturas mayores a esta, tenemos otro espaciamiento más pequeño al anterior, para el mismo ΔT .

Como segundo paso se procedió a determinar la temperatura correspondiente a la profundidad del intérvalo medio disparado para cada pozo, esto con ayuda de una gráfica de gradiente de -temperatura, previamente elaborada (fig.3.1), en la cual se pudo determinar un gradiente de temperatura aproximado a 2.9°C/100 m., obteniendo por extrapolación una temperatura en la superficie de 43°C.

Se puede observar que el valor obtenido de temperatura de superficie por extrapolación es muy alto, ésto debido a que el <u>a</u> juste de la recta se hizo con puntos cuyas profundidades, son -las de los intérvalos medios disparados y por tanto una pequeña_ variación en la pendiente de la recta ajustada, resulta en vari<u>a</u> ciones significativas para valores de profundidad muy someros, más no así para profundidades para las cuales se ajustó dicha -recta, por lo que se considera que los valores obtenidos usando_ este gradiente y esta temperatura superficial, son confiables a_ las profundidades de interés.

La expresión entonces para obtener la temperatura a la -profundidad requerida es: $T_{fondo} = T_{superficie} + (Grad. Temp. x Prof.)$

Para el caso de Abkatún.

 T fondo = 43 + (0.029 x Prof.)

Donde: T : en °C

Prof. : en Metros

Finalmente toda la información puede observarse en la tabla 3.2.

El siguiente paso consistió en obtener una presión de bur bujeo para cada profundidad a la temperatura correspondiente a dicha profundidad, con la ayuda de las rectas trazadas con anterioridad, las cuales podría interpretarse que vienen siendo l<u>1</u> neas de presión de saturación a diferentes temperaturas.

Al hacer esto, podemos observar en la gráfica de la fig. (3.2) que el comportamiento de la presión de saturación con la profundidad no es muy semejante al que comúnmente se tiene en la mayoría de los yacimientos, es decir, que la presión de satura ción se mantendrá constante para la parte superior de la forma ción productora y después empezará a decrecer conforme se aumenta la profundidad, como puede observarse en la fig. 3.3; sino -que para este caso se mantiene constante a cualquier profundidad teniendo una presión de saturación promedio de 180 Kg/cm², para_ todo el espesor productor, desde la cima a 3074 m. hasta 3750 m. donde se estima el contacto agua aceite, según puede apreciarse en el perfil estructural mostrado en la fig. 3.4.

TABLA 3.2

CAMPO ABKATUN

GRADIENTE DE TEMPERATURA 2.9°C/100 m. TEMPERATURA DE SUPERFICIE 43°C

POZO	PROF.MEDIA (mvbmr)	Pb (Kg/cm ²)	TEMP.ANALISIS TI (°C)	EMP.A PROF.MEDIA (°C)
1 B	3299	178	140	138.7
1 B	3299	189.5	147	138.7
1 B	3299	180.5	140	138.7
4	3645	185.5	146	149
20	3585	174	147	147
51	3382	158	130	141.1
74	3385	179.5	141.7	141.2
74	5385	174	137	141.2
93A	3487	162.8	110	144.1
93A	3487	170	125.5	144.1
93A .	3487	175.4	140	144.1
93A	3487	138	372.6	144.1
93A	3487	178	150	144.1
211	3390	275	131	141.3
212A	3375	219	137	141
216	3405	134	140	141.7
245A	3482	178	142	144
39A	3402	181	142	142

Cabe hacer la aclaración que dicho perfil estructural mo<u>s</u> trado en esta figura, corresponde a solo una sección del campo -Abkatún, la cual se encuentra en un plano paralelo a la falla i<u>n</u> versa que se encuentra en dicho campo.

Podemos advertir también de la gráfica, variaciones en al gunos puntos, en la que su presión de saturación no es acorde -con la temperatura correspondiente a las líneas paralelas trazadas, por lo que se asume que dichas variaciones pueden deberse al método empleado en el análisis de las muestras.

Este comportamiento de presión de saturación con la profundidad, puede ser explicado de la siguiente forma:

Según se ha visto, para yacimientos con las características que presenta Abkatún, de altas permeabilidades, gran relieve estructural y buena comunicación en sentido vertical, tenemos -que se presenta la segregación composicional que aparte de la -temperatura, es uno de los factores preponderantes en la presión de saturación.

Conforme aumenta la profundidad en el yacimiento, la composición de la mezcla de hidrocarburos va cambiando, teniéndose_ componentes cada vez más pesados, por lo que la presión de saturación también se modifica, dado que ésta depende de la composición de la mezcla de que se trate.

Esto puede observarse también con la ayuda de un diagrama de fases. Para comprender mejor, tenemos como ejemplo una me<u>z</u> cla binarla de etano y n-heptano. Si se construyera un diagrama de fases tridimensional de presión-temperatura- mol. de n-hepta no, obtendríamos una superficie como la representada en la fig. 3.5, en el cual se puede observar como un diagrama de fases común (Presión-Temperatura) el cual se obtiene con planos paralelos a lo largo de el eje de % mol, se modifica conforme se va variando la composición de la mezcla.

Algo similar sucede con sistemas multicomponentes, como_ los encontrados en los yacimientos, pero las modificaciones que sufre el diagrama dependerán del número de componentes, así como de la variación del % mol de cada uno de ellos.

Ahora bien para el caso que nos ocupa la mezcla de hi -drocarburos que se encuentra en la parte superior de la estructura productora, tiene componentes para los cuales se tiene un diagrama de fa^ses en particular, dependiendo del % mol de cada uno de ellos.

Por otro lado la mezcla de hidrocarburos que se encuentra en la parte inferior de la estructura productora, tendrá un diagrama de fases un poco diferente al primero, dado que el % mol de sus componentes pesados es mayor, por lo que tendríamos algo parecido a lo que se muestra en la figura 3.6; cabe aclarar que esta figura es solo para ejemplificar lo anteriormente dicho y darnos una idea del cambio que sufre el diagrama de fases.

Por este efecto, tenemos que la presión de saturación - tiende a disminuir con la profundidad, pero ahora bien, también tenemos por otro lado el efecto importantísimo de la temperat<u>u</u> ra.

Para yacimientos con las características que presenta Ab katún, como ya se dijo, de altas permeabilidades, gran espesor y con buena comunicación en sentido vertical, se presenta el fe nómeno de convección que a continuación se describe.

Tomemos como ejemplo un yacimiento con las características ya mencionadas en la etapa de saturación.

En la parte superior del yacimiento, donde se encuentra la zona de gas, este es liberado de el aceite contenido en fisu ras y matriz de la parte superior. El aceite de las fisuras -que queda en esta zona, contiene menos gas disuelto, además de encontrarse a una temperatura menor, aumentando su densidad, -por lo que es más pesado que el aceite que se encuentra en la parte inferior, en la zona de bajosaturación a una mayor temperatura.

Esta inversión de la densidad debida a la diferencia en_ presión y temperatura trae como consecuencia la creación de corrientes convectivas através de las fisuras con alta conductivi dad.

Como resultado de ésta convección, el aceite pesado que contiene menos gas en solución y se encuentra a menor temperatu ra, se mueve através de las fisuras, hacia la parte inferior, poniéndose en contacto con los bloques de matriz de roca que -contienen aceite más ligero con más gas en solución y a mayor temperatura.

111.18
La transferencia de gas en solución del aceite de la matriz al de las fisuras, tiene lugar debido a la difusión molecu lar através de los poros de la roca, y una mayor transferencia_ se tiene debido a la convección en la matriz de roca inducida por el contraste de densidad y de temperatura entre el aceite de las fisuras y la matriz.

Esta transferencia de gas en solución de la matriz de ro ca a las fisuras, da como resultado un aceite más ligero en estas últimas. La convección en las fisuras ocasiona que este aceite ligero se mueva a la parte superior, donde se encuentra <u>u</u> na menor presión y temperatura, liberándose gas que será segregado al casquete repitiéndose así éste ciclo.

Se ha observado también, que la convección provoca una reducción susbstancial en la presión de saturación del aceite.

Por todo lo antes mencionado, podemos concluir que en es te yacimiento se presentan corrientes convectivas, dándonos como resultado un comportamiento de la presión de saturación como el observado en la figura 3.2, es decir la Pb se mantiene cons_ tante.

APLICACION CAMPO CANTARELL

De una manera análoga, se graficaron las presiones de s<u>a</u> turación encontradas a las muestras, contra la profundidad, señalando la temperatura a la cual se analizaron (Fig.3.7).

En primera instancia, se intentó hacer un análisis, como el efectuado a Abkatún, pero se encontró que no se tenía ninguna relación como la encontrada en este campo.

Se observó que los puntos que mostraban una presión de saturación relativamente baja en relación a sus temperaturas de análisis, correspondían a los del área de Nohoch, por lo que, al -excluir estos puntos del análisis, se encontró que los restantes _ correspondientes a Akal mostraban una presión de saturación acorde a la temperatura de análisis, es decir, a mayor temperatura mayor _ presión de saturación.

Finalmente concluimos que para este campo, su presión de sa turación se mantiene constante, aproximada a 150 Kg/cm², existiendo en él, corrientes convectivas que se manifiestan al mantenerse_ una temperatura casi constante en todo el espesor del yacimiento.

Para los campos restantes se intentó hacer un análisis del_ mismo tipo, pero debido a la poca información con la que se contaba, no se pudieron efectuar éstos.

111.20

TABLA 3,3

CAMPO CANTARELL

GRADIENTE DE TEMPERATURA 2.5 °C/100 m. TEMPERATURA DE SUPERFICIE 54°C

pozo	PROF.MEDIA (mvbmr)	Pb (Kg/cm ²)	TEMP.ANALISIS (°C)	TEMP.A PROF.MEDIA (°C)
1 A	1297.5	149	100	86.4
7 A	1532.5	154 .	100	92.3
8	1792.5	147	86	98.8
8	1792.5	154.6	101	98.8
19	1949	144.2	84	102.7
19	1949	154	103	102.7
6A	1713	149	100	96.8
2032	2048	153	106	101.1
66A	2294.5	150	100	111.4
11	1306	135	71	86.6
57	2507	141.4	101	116.7
57	2507	151.5	101	116.7
57	2507	149.6	101	116.7
68	1951,5	146	91	102.8
71	1096	130	64	81.4
82	2602	157	101	119.1
82	2602	159.2	101	119.1
94	1276	145.6	101	85.9
94	1276	150	97	85.9
209	2546	136	96	117.6
209	2546	145	120	117.6

P020	PROF.MEDIA (mvbmr)	Pb (Kg/cm ²)	TEMP.ANALISIS (°C)	TEMP.A PROF.MEDIA (°C)
7:A .	1522.5	150	100	92.1
1081	2187.5	151	107	108.7
94	1276	150.8	97	85.9
77A	2256	165	110	110.4
1081	2187.5	151	107	108.7

CAPITULO IV

APLICACION DE CORRELACIONES EXISTENTES

Para justificar el desarrollo de nuevas correlaciones que _ se ajusten con mayor precisión al comportamiento de los hidrocarb<u>u</u> ros producidos en la Sonda de Campeche, se tenía como primer paso, que aplicar correlaciones ya existentes para observar el comportamiento de los parámetros PVT y así compararlos con los datos rea-les, para que de ésta forma pudiéramos determinar el margen de e-rror que se tiene al aplicar una u otra correlación.

CORRELACION DE M.B. STANDING⁶

Esta correlación establece las relaciones empíricas observ<u>a</u> das entre la presión de saturación y el factor de volumen del ace<u>i</u> te, en función de la razón gas disuelto aceite, las densidades del gas y del aceite producidos, la presión y la temperatura. La correlación se estableció para aceite y gases producidos en California y para otros sistemas de crudo de bajo encogimiento, simulando una separación instantánea en dos etapas a 100° F. La primera etapa se realizó a una presión de 250 a 450 lb/pg² abs., y la segunda etapa a la presión atmosférica.

Debe entenderse que la densidad del aceite producido en el tanque de almacenamiento dependerá de las condiciones de separa-ción (etapas, presiones y temperaturas). Mientras más etapas de separación sean, el aceite será más ligero y estable.

Standing llegó a correlacionar la presión del aceite satu rado de la siguiente forma:

$$P = 18 \left[\left(\frac{Rs}{\aleph g} \right)^{0.83} \frac{10^{0.00091(T)}}{10^{0.0125(\aleph 0)}} \right]$$

Por lo que despejando la relación gas disuelto-aceite - - de la ecuación anterior se tiene:

Rs =
$$\delta g \left[\frac{P}{18} - \frac{10^{0.0125(\delta_0)}}{10^{0.00091(T)}} \right]^{1/0.83}$$

Donde:

P ; en $1b/pg^2$ T ; en °FRs: en Pie³/b1 v_0 ; en °API v_g ; Aire = 1

La expresión que encontró para determinar el factor de vo lumen del aceite, está en función de la relación gas disuelto-aceite, la temperatura, la densidad relativa del gas y la dens<u>i</u>dad del aceite, es la siguiente:

 $Bo = 0.972 + 0.000147 (F)^{1.175}$

Donde

$$F = Rs (vg/vo)^{1/2} + 1.25 T$$

Donde las unidades son las mismas que en la ecuación anterior, estando Bo en Pie 3 /Pie 3 .

CORRELACION DE OISTEIN⁸

Para establecer esta correlación, Oistein usó muestras de_ aceite producido en el Mar del Norte, donde predominan los ace<u>i</u> tes de tipo volátil. Los valores de Rs y Bo se obtienen mediante los siguientes pasos:

1º Calcular P* con:

Log P* = $-2.57364 + 2.35772 \log p - 0.703988 (log p)^2$ + 0.098479 (log P)³

2º Calcule Rs con:

Rs =
$$\gamma_g \left[\frac{p * \gamma_0^{0.989}}{T^a} \right] \frac{1}{0.816}$$

Donde a = 0.130 para aceites volátiles. a = 0.172 para aceites negros. 3º Calcular Bo*

$$Bo^* = Rs (\gamma_g/\gamma_{ro})^{0.526} + 0.968$$

4º Determinar Bo con:

log (Bo-1)= -6.58511 + 2.91329 log Bo* - 0.27683(log Bo*)²
Donde:
P; en 1b/pg² %ro; Agua = 1 Rs; Pie³/bl.
%g; Aire = 1 T; °F

δo; °API Bo; Pie³/Pie³

(Todas las ecuaciones usadas en este capítulo, se manejan en estas unidades).

CORRELACION DE VAZQUEZ

Para establecer estas correlaciones se usaron más de 6,000 datos de Rs, Bo, \mathcal{A} o a varias presiones y temperaturas. Como el va lor de la densidad relativa del gas es un parámetro de correlación importante, se decidió usar un valor de dicha densidad relativa -normalizando a una presión de saparación de 100 lb/pg² manométrica. Por lo tanto el primer paso para usar estas correlaciones con siste en obtener el valor de la densidad relativa del gas a dicha presión. Para esto se propone la siguiente ecuación. $y_{gs} = y_{gp} (1 + 5.912 \times 10^{-5})$ Ts log (Ps/114.7))

Donde:

- Ygs Densidad relativa del gas resultante de una separa ción a 100 lb/pg² manométrica.
- Ps Presión de separación real, en $1b/pg^2$ abs.
- Ts Temperatura de separación real, en °F.

La correlación para determinar Rs se afinó dividiendo los datos en dos grupos, de acuerdo con la densidad del aceite. Se obtuvo la siguiente ecuación:

Rs =
$$C_1 = \delta_{gs} p^{C_2} \exp(C_3 (V_0/(T + 460)))$$

Los valores de los coeficientes son:

COEFICIENTES	% ≤ 30° AP1	80≥30°API
c ₁	0.0362	0.0178
c ₂	1.0937	1.1870
C3	25.724	23.931

La expresión que se obtuvo para determinar el factor de - volumen es:

Bo = 1 + C₁ Rs + C₂ (T-60) ($\delta o / \delta gs$) + C₃ Rs (T-60) ($\delta o / \delta gs$)

Los valores de los coeficientes son:

COEFICIENTES	Yo ≼ 30°API	80 > 30° API
Cl	4.677x10-4	4.67x10-4
C2	1.751×10^{-5}	1.1x10 ⁻⁵
C ₃	-1.811x10 ⁻⁸	1.337x10 ⁻⁹

CORRELACION DE LASATER²¹

Se estableció a partir de 158 mediciones experimentales de separación instantánea, a temperatura de 34 a 106°F, presio nes de separación de 15 a 605 $1b/pg^2$ abs y para 1, 2 y 3 etapas de separación. El error máximo obtenido con la correlación fué de 14.7%.

Procedimiento para obtener Rs:

1.- Calcule $\frac{P_b \delta g}{T}$

(Temperatura on °R)

- 2.- Obtenga Yg (fracción molar), mediante la fig._____
 4.1.
- 3.- Con la densidad del aceite (API) y mediante la fig. 4.2, obtenga el peso molecular efectivo del aceite a condiciones de almacenamiento. (Mo)

4.- Calcule Rs=
$$\begin{bmatrix} (379.3) & (350) & \delta_0 \\ M_0 & \end{bmatrix} = \begin{bmatrix} \gamma_g \\ 1-\gamma_g \end{bmatrix}$$

Rs debe ser menor que R.

Procedimiento para obtener Ph

1.- Determine Mo con la fig. 4.2.

2.- Calcule $y_g = \frac{R/379.3}{R/379.3 + \frac{350 \text{ bo}}{Mo}}$

3.- Con la fig. 4.1 obtenga el valor de $P_b \g/T$ y con éste el de P_h .

DENSIDAD DEL ACEITE SATURADO.

Una vez calculados los parámetros anteriores por las c<u>o</u>rrelaciones ya mencionadas, la densidad del aceite saturado en lbm/pie^3 , se calcula con:

$f_0 = \frac{62.4 \text{ bro} + 0.01362 \text{ Rs bgd}}{B0}$

PROPIEDADES DEL ACEITE BAJOSATURADO.

Como en las primeras etapas de un análisis PVT, son a una alta presión, el aceite a éstas condiciones se encuentra bajosaturado, por lo cual, debemos calcular sus propiedades para este esta do; para esto debemos obtener primero la compresibilidad del aceite bajosaturado mediante la expresión:

 $C_0 = (a_1 + a_2 Rs + a_3T + a_4 \sqrt[3]{gs} + a_5\sqrt[3]{o})/a_6P$

Don de :

aį	a	-1433		$a_4 = -1180$	j
a2.	*	S	in the second	as = 12.6	1
az	n	17.2		$a_6 = 10^5$) •

Donde C_0 ; $Pg^2/1b$

DENSIDAD DEL ACEITE BAJOSATURADO.

La densidad del aceite bajosaturado está dada por la siguien te expresión:

Donde

fob; densidad del aceite a Pb.

Cob; compresibilidad del aceite a Pb.

CORRELACION PARA OBTENER EL FACTOR DE VOLUMEN DEL ACEITE BAJOSATURADO.

Para obtener el factor de volumen en éstas condiciones, usamos la ecuación:

Bo = Bob/exp (Co (P - Pb))

PROGRAMA DE COMPUTO PARA CALCULAR LAS PROPIEDADES DE LOS FLUIDOS POR LAS CORRELACIONES DE STANDING, OISTEIN Y VAZQUEZ.

. Para facilitar el cálculo de los parámetros requeridos, que en este caso son Rs, Bo y fo, se hizo uso de una microcomputadora, y se elaboró un programa para realizar dicho cálculo de una forma_ más rápida y precisa.

El programa se realizó en lenguaje BASIC y es de tipo con versacional y requiere de la siguiente información:

- Datos de Entrada

° Temperatura de análisis (TM) en °C

° Densidad relativa del gas (GG) Aire = 1.

- ° Densidad del aceite residual (DA) en gr/cm³
- ° Relación Gas-Aceite producida (R) en m^3/m^3
- ° Presión de separación (P.Sep.) en Kg/cm²
- ° Temperatura de separación (T.Sep.) en °C
- ° Presión media (PM) en Kg/cm²

- Resultados:

Los resultados que arroja son:

- ° Relación de solubilidades (Rs) en m^3/m^3
- ° Factor de volumen del aceite (Bo) en m^3/m^3
- ° Densidad del aceite (DA) en gr/cm³

Por los métodos de Standing, Oistein y Vázquez, respectivamente.

El programa está estructurado de tal forma que nos propor ciona éstos resultados, variando únicamente la presión, manteniendo constantes todos los demás parámetros.

Para este caso en particular, la RGA usada en los cálculos, fué estimada para cada uno de los campos como valores medios y representativos de cada uno de ellos; los valores usados fueron:

САМРО	RGA (m ³ /m ³)	
Abkatún	137	
Pol	190	
Chuc	167	
Ixtoc	203	
Caan	318	
Ku	110	
Cantare11	85	

Otro de los datos que se tomaron en forma representativa, son la temperatura y presión de separación, dado que éstas varían_ de un complejo de producción a otro, y de un instante a otro, pero en promedio, se tienen los valores de:

Presión de separación = 6.5 Kg/cm^2

Temperatura de separación = 66°C

Al final del capitulo, se muestra el diagrama de bloques del programa y un listado del mismo.

PRESENTACION DE RESULTADOS.

Los resultados de la aplicación de estos métodos, pueden <u>a</u> preciarse en las tablas de el apéndice II.

ANALISIS DE LOS RESULTADOS

Para visualizar de mejor manera los resultados obtenidos, se presentan gráficas de los valores medidos contra los calcula-dos por los diferentes métodos para los parámetros en considera-ción. La línea a 45° en cada gráfica nos sirve de referencia para evaluar de forma rápida la precisión de cada método.

PRESION DE SATURACION (Pb)

La presión de saturación evaluada por el método de Stan--___ ding, como se muestra en las figuras 4.1 a, b, c y d para los di-ferentes campos, se puede apreciar que la calculada es mayor a la real para todos los casos, obteniéndose un error promedio de 43.5% entre los valores calculados y los reales,también se observa que___ dicha correlación arroja resultados más precisos al aplicarse a aceites pesados, como son el caso de Ku y Cantarell, lo cual resulta obvio, dado que ésta correlación fue desarrollada precisamente para aceites pesados.

RELACION GAS DISUELTO-ACEITE (Rs)

Como se aprecia en las figuras 4.2 a, b, c y d, la correl<u>a</u> ción que muestra un comportamiento más apegado al real, es la de Lasater, con un error promedio de 24%, mientras que la que le sigue es la de Standing, con ⁷⁹% de error promedio, después la de Oistein con 110% y finalmente la de Vázquez con 264% de error.

La desventaja que presenta el método de Lasater, es que hay que hacer uso de gráficas para determinar ciertos parámetros, lo que lo hace laborioso y poco práctico. Es posible y recomendable ajustar ecuaciones para estas gráficas, para facilitar el cálculo, con el uso de computadoras.

JV,12

Cabe mencionar que estos valores están calculados a la -presión de saturación, así como también que las gráficas mostradas son para el campo Abkatún, teniéndose un comportamiento sim<u>i</u> lar en los demás campos.

FACTOR DE VOLUMEN DEL ACEITE (Bo).

Para el factor de volumen del aceite, la correlación que mostró un mejor comportamiento, como puede apreciarse en las figuras 4.3 a, b y c, fué la de Oistein, teniéndose un error prome dio del 19%, mientras que la de Standing y Vázquez, mostraron un 29% y 35% respectivamente.

DENSIDAD DEL ACEITE (fo).

Como puede apreciarse en las figuras 4.4 a, b y c, para el caso de la densidad del aceite, al igual que para el factor de volumen del aceite, la densidad calculada a partir de valores obtenidos con la correlación de Oistein, fué la que mostró un me jor comportamiento, obteniéndose un error promedio del 10%, si guiendo la correlación de Standing con un 16% y finalmente la de Vázquez con un 17% de error.

Puede observarse en general, que la confiablidad de las correlaciones, se hace menor a presiones bajas, entendiendo como estas últimas a las menores a los 70 Kg/cm^2 .

CAMPO ABKATUN

COMPARACION DE LA CORRELACION DE LASATER PARA EL CALCULO DE Rs.

POZO	Rscalc. (m^3/m^3)	Rsreal (m ³ /m ³)	ERROR (%)
1 B	94.1	135.7	44.2
1 B	82.4	141.6	71.8
20	86.6	123.1	42.1
51	95.7	127.4	33.1
74	95.2	130.2	36.7
74	104.4	138,7	32.8
93A	96.8	126.7	30.8
93A	100.9	140.3	39
93A	102.7	137.2	33.6
211 "	157.6	193.9	23
212A*	127.3	149.1	17.1
216 *	73.3	71.9	1.9
245	86.5	125.8	45.4

Prom. = 34.7

.

* Zona de Kanaab.

DIAGRAMA DE BLOQUES

PROGRAMA: PROPIEDADES DE LOS FLUIDOS

LISTADO DEL PROGRAMA PROPIEDADES DE LOS FLUIDOS.

100; REM PROPIEDAD ES DE LOS FLUI 005 110:BA=0 510: INPUT "TM"; TM, "GG";GG, "DA";D A, "R";R, "P.SEP "; PS, "T, SEP"; T Β 512: TM=(TM*9/5)+32 (DA=(141.5/DA) -131.5; R=R*5.6 146; PS=PS*14.2 2; TB=(TB*9/5)+ 32 515: INPUT "PM"; PM 517; PM=PM*14.22 520:DP=.25+(.02*DA)+((.6874-3.58 64*DA)*R*10^(-6)) 544: IF DP>GGTHEN 5 46 545:6010 600 546: GG=DP 600:DR=141.5/(131. 5+DA) 610:PB=18*(((R/GG) ^.83*10^(.0009 1*TM))/10^(.01 25*DA>> 620: IF PM>=PBTHEN 640 630: GOTO 700 640; P1=PM; BA=1; PM= PR 200: REM CORR. STAN DING 210:RS=DP*(()0^(.0 125*DA)*PM)/(1 0^(.00091*TH)* $18)) \land (1/.83)$ 215; R1=RS 220:F=RS*(DP/DA)^. 5+(1.25*TM) 730; BO=F^(1, 125)*. 000142+.972 735:B1=B0 240:D1=.25+(.02*DA)+(18^(-6)*(.6 824-3.5864*DA> *RS)

250:D2=((62.4*DR)+ (.01362*RS*D1) >780 251; G1=D2 252; IF BA=1THEN 25 6 254:GOTO 800 256; RE=DP*((10^(.0 125*DA)*P1)/(1 0^(.00091*TM)* 18))^(17.83) 757: GOSUB 2000 260:R1=RS:B1=B0:G1 *=*D2 800:REM CORR.OIST EIN 810:LP=LOG (PM) 820:PP=10^((.09847 9*LP^3)-(.7039 88*LP^2)+(2.35 772*LP1-2.5736 4) 830:RS=DP*((PP*DAn (.989))/(TM^.1 72))^(1/.816) 835:R2=RS 840:8P=RS*(DP/DR)^ .526+(.968*TM) 850:BO=1+10^(-6.58 511+(2.91329* LOG (BP))-(,27 683*(LOG (BP)) ^2)) 855; B2=B0 860:D1=.25+(.02*DA >+(10^(-6)*(.6 874-3,5864*DA) *RS) 870:D2=((62.4*DR)+ (.01362*RS*D1) >280 825;G2=D2 880; 1F BA=1THEN 89 Ø 885: GOTO 900 890:LE=LOG (P1) 891:EP=10^((.09847 9*LE^3)~(. 2039 88*LE^2>+(2,35 272*LE>-2.5236 4)

892; RE=DP*((EP*DA^ (,989))/(TMo.1 72))^(1/.816) 893: GOSUB 2000 895;R2=RS;B2=B0;G2 =D2 900:REM CORR, VAZQ UEZ 940;DS=GG*(1+5,912 *10^(~5)*DR*TB *LOG (P5/114.7)) 945: IF DAX=30THEN 355 950:V1=.0128:V2=1. 187:03=23.931: GOTO 960 955:V1=,0362:V2=1. 0932:V3=25.724 960:RS=U1*D5*PM^U2 *EXP (U3*(DR/(TM+460))) 962:R3=RS 965: IF DAX=30THEN 975 970:N1=4.67E-4:N2= 1.1E-5:N3=1.33 2E-9:60T0 980 975; N1=4, 677E-4; N2 =1.751E-5:N3=-1.811E-B 980; BD=1+(N1*RS)+(N2*(TM-60)*(DR /D5))+(N3*RS*(TM-60)*(DR/DS) > 985; B3=B0 990:D1=.25+(.02*DA)+(10^(-6)*(.6 874-3.5864*DA) *RS) 1000:D2=((62.4*DR)+(.01362*RS *D1>>/BO 1100:03=02 1102:1F BA=1THEN 1106 1104:GOTO 1115 1106;RE=V1*DS*P1^ U2*EXP (U3*(DR/(TM*460))) 1107: GOSUB 2000

1108:R3=RS:B3=B0: G3=D2 1110: IF BA=1THEN 1114 1112:GOTO 1115 1114:PM=P1 1115: PRINT "M. STA ND, P="; PM/1 4.22 1120: PRINT "RS="; R1/5.6146 1130:PRINT "BO="; **B**1 1140: PRINT "DA="; G1/62,429 1150: PRINT "M.015 Τ." 1160:PRINT "RS="; R2/5.6146 1170: PRINT "BO="; B2 1180; PRINT "DA="; 62/62.429 1190: PRINT "M. UAZ QUE'Z" 1200: PRINT "RS="; R3/5.6146 1210:PRINT "BO="; **B**3 1220: PRINT "DA="; G3/62.429 1230: BA=0 1250:GOTO 515 2000: REM SUBR. AC. BAJOSAT. 2010:A1=-1433:A2= 5: A3=17.2: A4 =-1180;A5=12 .61;A6=1E5 2020:CB=(A)+A2*R5 +A3*TM+A4*GG +45*04)/(46* PB) 2030: CO=(A1+A2*RE +A3*TM+A4*GG +65*06)2(66* PD) 2040:D2=D2*EXP (C B*(P1-PB)) 2050:B0=80/EXP (C 0*(P1~PB)) 2060:R5=RE 2070: RE TURN

CAPITULO V

DESARROLLO DE CORRELACIONES

Para poder obtener una expresión con la cual pudiéramos cal cular el valor de alguna de las propiedades PVT, con cierto margen de confiabilidad, fue necesario identificar los parámetros con los que dichas propiedades están relacionados.

Estos parámetros debían ser valores que pudieran ser conoci dos con cierta facilidad y además fueran función también de la propiedades a calcular. Se encontró que dichos parámetros pueden -ser:

- 1) Densidad relativa del gas producido.
- 2) Densidad del aceite a condiciones de tanque.
- 3) Relación Gas-Aceite.
- 4) Temperatura.
- 5) Presión.

Los cuales pueden ser determinados a través de una prueba _____ de produción.

Ahora bien, para poder encontrar que relación guardan dichos parámetros entre sí, se empleó un análisis de regresión y correla-ción, obteniendo además de la relación, el grado de dependencia de dichas variables, es decir, que tanto influye una variable sobre la otra.

V.1

Primeramente se elaboró una tabla, en la que se compara el _____ valor de la presión de saturación real, con la calculada por la correlación de Standing, así como el error cometido al aplicar dicha_ correlación (Tabla 5.1). Podemos observar de esta tabla, que se co meten errores de consideración al aplicar dicho método, por lo cual se concluye que no es recomendable la aplicación para estos campos.

CORRELACION PARA LA PRESION DE SATURACION

Una de las funciones importantes de los parámetros PVT es el indicar si el aceite del yacimiento se encuentra saturado o no, para esto se requiere determinar el valor de la presión de saturación y de ésta manera poder compararlo con la presión del yacimiento y _ así determinar si se tiene fase gaseosa en éste último o no; para _ lo cual es necesario el conocimiento de la relación entre la Pb y _ los parámetros ya mencionados.

Considerando la manera en que todas estas variables afectan la presión de saturación de la mezcla de hidrocarburos, se considera razonable postular una correlación de la siguiente forma:

 $Pb = f (RGA, \delta g, T, \delta o)$

Donde:

Pb = Presión de saturación.
RGA = Relación Gas-Aceite.
\$g = Densidad relativa del gas producido.
T = Temperatura.
\$o = Densidad del aceite a condiciones de tanque.

V.2

UNIDADES USADAS PARA LAS CORRELACIONES.

Cabe hacer la aclaración, que las ecuaciones que a continu<u>a</u> ción se desarrollan, manejan las siguientes unidades:

Р	Presión en Kg/cm-
Pb	Presión de saturación en Kg/cm ²
Т	Temperatura en °C
Уg	Densidad relativa del gas producido Aire = 1
ኤ	Densidad del aceite residual en gr/cm^3
fo	Densidad del aceite a P y T deseadas en gr/cm ³
R	Relación Gas-Aceite producidos en m ³ /m ³
Rs	Relación de solubilidad en m ³ /m ³
Bo	Factor de volumen del aceite en m^3/m^3

Esto con el fin de facilitar su aplicación, dado que son -las unidades más usadas en campo.

CAMPO ABKATUN

Haciendo un análisis de regresión y correlación, con el método de ajuste lineal de mínimos cuadrados, entre la Pb y cada una de las variables ya mencionadas (δ o, δ g, Rs, T) obtuvimos los s<u>i</u> guientes resultados para el campo Abkatún:

CAMPO ABKATUN

Relación	entre Pb y:	Cocficiente de Correlación (r)
	۶o	0.1633
	δg	-0.7663
	Rs	0.8957
	Τ	-0.2903

Posteriormente se hizo lo mismo con la combinación de éstas variables obteniendo los siguientes resultados:

Relación entre Pb y:	Coeficiente de Correlación (r)
<u>វិច</u> វិជ្ជ	0.7758
Rs/∦g	0.9450
ðot/ðg	0.5785
δoRs∕δg	0.9471
∛oRsT/ðg	0.9123

Un número más de ensayos se realizó, mostrándose aquí, las_ mejores relaciones encontradas, cabe mencionar que dentro de estos ensayos, también se plantearon relaciones del tipo logarítmico y semilogarítmico, mostrando un coeficiente de correlación muy bajo.

En base a estos ensayos, en primera instancia, se encontró_ la siguiente expresión:
$$Pb = 73.2159 + 0.8380169 \frac{r_0}{r_0} Rs$$

Es notorio que esta expresión no toma en cuenta los efectos de temperatura, por lo que se debía incluir este factor dentro de la_ relación, por lo que finalmente haciendo una relación del tipo semilogarítmico de esta expresión, con la temperatura y la densidad_ del aceite (coef. corr. más bajos), de la forma:

Donde:

encontramos finalmente la siguiente expresión:

Pb =
$$\begin{bmatrix} 73.2159 + 0.8380169 & \frac{3}{3} & \frac{3}{5} \\ 10^{0.58917} & \frac{3}{5} \end{bmatrix}$$

La cual relaciona las mismas variables encontradas por _____ Standing.

Aplicando esta expresión para el cálculo de la presión de saturación y comparada con los datos reales, se obtuvieron errores de 14.7% como máximo y 0.6% como mínimo, con un promedio de 5.5% de error finalmente.

CAMPO POL

De igual manera se procedió a hacer el análisis de regr<u>e</u> -sión y correlación, con las mismas variables, para este campo, obteniendo los siguientes resultados para una relación lineal:

САМРО	POL
Relación entre Pb y:	Coeficiente de Correlación (r)
<u>४० Rs</u> ४ प्र	0.8144
<u>β</u> βg RsT	0.8124
$\frac{\partial o}{\partial gT}$	0.7823

De igual manera se hicieron relaciones de tipo logarítmico, obteniéndose, como mejores relaciones:

CAMPO POL

Relación entre Pb y:Coeficiente de
Correlación (r) $\frac{80}{85}$ Rs0.8654 $\frac{80}{85}$ RsT0.8711

Siendo esta última relación la que mejor coeficiente de c<u>o</u> rrelación presentó, se llegó a una expresión del tipo:

$$Pb = a (\emptyset)^{b}$$

Donde :

$$\beta = \frac{10}{\text{Vg}} \text{RsT}$$

Finalmente la expresión queda:

Pb =
$$3.6772 \left[\frac{\aleph_0}{\aleph_g} \text{ RsT} \right]^{0.405103}$$

Graficamente podemos observar este ajuste en la figura - (5.1).

Aplicando esta expresión para el cálculo de la presión de_ saturación, se obtuvo un valor de 4.9% de error, que comparado -con 37.7% que nos da la correlación de Standing, mejora a esta úl tima notablemente.

COMPLEJO CANTARELL

Para Cantarell incluyendo el campo Chac, aplicando el análisis de regresión y correlación, para un ajuste lineal, se obtuvieron los siguientes resultados:

CAMPOS CANTARELL Y CHAC

Relación entre Pb y:		Coeficiente d Correlación (
Rs Xg		0.7775	
do rg Rs		0.7582	
<u>לס</u> זנק RsT		0.6157	

Ahora bien, si consideramos el campo Cantarell sin consid<u>e</u> rar el campo Chac, obtenemos para estas mismas relaciones:

CAMPO CANTARELL

Relación entre Pb y:	Coeficiente de Correlación (r)
Rs dg	0.7973
- do Rs	0.7894
do RsT	0.6667

Se observa claramente que la relación se mejora, si no se incluye al campo Chac dentro de la relación, por lo que se decidió, considerar únicamente a Cantarell por separado; entendiendo_ como éste último al área que comprende Akal y Nohoch. Se observó además que los coeficientes de correlación obtenidos, no son muy buenos por lo que se optó establecer relaciones de tipo logarítmico obteniendo los siguientes resultados:

CAMPO CANTARELL

Relación entre Pb y :

Coeficiente de Correlación (r)-

 $\frac{v_0}{rg}$ Rs $\frac{v_0}{rg}$ RsT

0.8671

0.7430

Cabe mencionar que se efectuaron más ensayos, pero solo se muestran los que mejor relación mostraron.

La relación para este caso, sería del tipo:

$$Pb = a (\beta)^{b}$$

Donde

$$\beta = \frac{\delta_0}{\chi_g} Rs$$

Finalmente la expresión queda:

$$Pb = 26.775 \left[\frac{r_0}{r_g} Rs \right] 0.38685$$

Es evidente nuevamente que en la expresión anterior, no se tie ne en cuenta la temperatura, por lo que haciendo una relación de tipo semilogarítmico de esta expresión, con la temperatura y la densidad del aceite, de la forma:

$$Log(\emptyset) = AT - B\delta O$$

Donde:

$$\beta' = \frac{Pb}{a \left[\frac{\gamma_0}{\delta g} R\right]^b}$$

encontramos finalmente la expresión:

Pb = 24.94228 $\left[\frac{Rs}{3c}\right]^{0.39593} \frac{10^{0.030087430}}{10^{0.0003708T}}$

Tomando esta expresión para el cálculo de Pb y comparándola con la Pb real, obtuvimos un valor de 4.09% de error que compa rado con 33.6% que nos da el método de Standing, lo mejora en -buena medida.

CAMPO KU

De igual manera procedimos con el campo Ku, aplicando el_ análisis de regresión y correlación, para las variables ya mencionadas, encontrando los siguientes resultados, al aplicar una_ relación del tipo lineal:

CAMPO KU

.•

Relación entre Pb y:	Coeficiente de Correlación (r)
Rs Jg	0.9211
− v _g Rs	0.9039
ຮoRsT ຮg	0.8650

Ahora bien, aplicando el mismo análisis, a una relación de tipo logarítmico, se obtuvo:

самро ки

Relación entre Pb y:	Coeficiente de Correlación (r)
Rs ðg	0.9288
שים Rs זק Rs	0.9119
<u>לס</u> לק RsT	0.8927

Es obvio que la primer relación muestra el mejor coeficiente de correlación, por lo que la expresión del tipo

$$Pb = a (\mathscr{A})^{b}$$

Donde

$$\beta = \frac{Rs}{\gamma g}$$

Producirá el ajuste deseado, quedando la expresión:

Pb = 29.23452
$$\left[\frac{-Rs}{yg}\right]^{0.38243}$$

Notando que la expresión, no considera la temperatura ni la densidad del aceite medida a condiciones de tanque, se aplicó_ una relación de tipo semilogarítmico de esta misma expresión, con estos parámetros faltantes, de la forma:

$$Log(\emptyset) = AT - B\delta o$$

Donde

$$\mathscr{A} = \frac{Pb}{a\left[\frac{Rs}{\aleph_g}\right]^b}$$

encontrando finalmente la expresión:

Pb = 29.23452
$$\left[\frac{\text{Rs}}{\delta g}\right]^{0.38243} \frac{10^{0.08177\%0}}{10^{0.000654T}}$$

Aplicando esta expresión al cálculo de la Pb y comparándola con la real, se obtuvo un error de 4.1% que comparado con - -56.8% que nos da el método de Standing, la mejora en buen grado.

El análisis de regresión y correlación, no fué posible <u>a</u>plicarlo a los campos de Chuc, Ixtoc, Caan y Chac, dado que los datos con que se cuentan son muy pocos para establecer una rel<u>a</u>ción general para dichos campos.

CORRELACION PARA ACEITES PESADOS (CANTARELL-KU).

- Aplicación de la correlación de Ku a Cantarell.

Se aplicó la correlación encontrada para Ku a Cantarell, obteniéndose un error promedio de 12.9%, observándose que en t<u>o</u>dos los casos, excepto uno (análisis con alta gg), la presión de_ burbujeo calculada, era mayor a la presión de burbujeo real, lo que sugirió, se le sustrajera una constante igual al promedio de_ las diferencias obtenidas de Pb_c - Pb_r, siendo esta constante de_ 21.

Se calculó la Pb nuevamente con la correlación corregida, obteniéndose un error promedio de 4.32%, que comparado con el - -4.09% de la correlación propia para Cantarell, se tiene muy poca_ diferencia, lo que sugiere, que la correlación de Ku modificada, puede ser aplicable a Cantarell, con un pequeño margen de error.

Entonces la expresión establecida es:

Pb =
$$\left[29.23452 \left(\frac{\text{Rs}}{\text{gg}}\right)^{0.38243} - \frac{10^{0.08177\text{so}}}{10^{0.000654\text{T}}}\right] - 21$$

- Aplicación de la correlación de Cantarell a Ku.

De la misma manera, se aplicó la correlación de Cantarell a Ku, obteniéndose un error promedio de 12.12%, observándose en_ todos los casos, que la presión de burbujeo real, era mayor a la calculada, lo que sugirió, se le sumara una constante a la corr<u>e</u> lación de Cantarell, igual al promedio de las diferencias obten<u>i</u> das, siendo esta constante igual a 24.

Aplicando la correlación corregida, se obtuvo un error -promedio de 4.07%, que resulta menor al error promedio de la correlación propia de Ku, que resultó ser de 4.16%. Dicha diferen cia (0.09%) es muy pequeña, por lo que se concluye que se puede_ aplicar la correlación corregida de Cantarell a Ku, con buenos resultados también.

La expresión establecida entonces queda:

Pb =
$$\left[24.94228\left(\frac{R_{s}}{\delta g}\right)^{0.39593} + \frac{10^{0.0300874}}{10^{0.0003708T}}\right] + 24$$

CORRELACION PARA ACEITES LIGEROS (ABKATUN- POL).

- Aplicación de la correlación de Abkatún a Pol.

Se aplicó la correlación encontrada para Abkatún a P_{01} , obteniéndose un error promedio de 11.4%, que es mayor al 4.9% que nos da la correlación propia de Pol, observándose además que las diferencias entre la presión de burbujeo real menos la calculada, e_{Ta} de signo positivo en algunos casos y negativo en otros, por lo que se concluye que no es aplicable esta correlación a P_{01} .

- Aplicación de la correlación de Pol a Abkatún.

De la misma forma, se aplicó la correlación obtenida para Pol al campo Abkatún, dándonos un error promedio de 9.7%, observándose en la mayoría de los casos, que la presión de burbujeo -calculada era mayor a la real, por lo que se pensó, se sustrajera una constante igual al promedio de las diferencias entre Pbc-Pbr, siendo esta constante igual a 18.5.

Se aplicó esta correlación corregida y se obtuvo un error_ promedio de 4.5%, que mejora en un 1% a la correlación propia de_ Abkatún, por lo que se concluye que la correlación corregida para Pool, puede ser usada para Abkatún, con muy buenos resultados.

La expresión finalmente queda:

Pb =
$$\left[\frac{3.6772}{3.6772} \left(\frac{\delta_0}{\delta_g} \text{ RsT} \right)^{0.405103} \right] - 18.5$$

V.15

CORRELACION PARA LA RELACION GAS DISUELTO-ACEITE (Rs)

CAMPO ABKATUN

.

Con respecto al cálculo de la Rs, para este campo, nos basamos en la expresión que define la Pb para Pol, corregida para _ aplicarla a Abkatún, dado que presentó un % de error menor, ade-más se modificó en lo que respecta a la constante, multiplicándola por P/Pb, de tal forma que cuando P es igual a Pb, este cocien te es igual a la unidad, dándonos la expresión original. Por lo que, despejando la Rs de esta expresión, tenemos.

Rs =
$$\frac{\gamma_g \left[\frac{p \left(\frac{18.5}{1 + \frac{18.5}{Pb}} \right)}{3.6772} \right]}{\gamma_{oT}}$$

Al hacer la gráfica de Rs contra P, notamos que se tiene ____ un colgamiento de la curva, por lo que fue necesario encontrar un factor de tal forma que levantase a ésta, pero que tampoco modifi cara el valor de Rs para Pb, dado que ese ajuste, era el mejor. ____ Después de un gran número de ensayos, y de tratar de correlacio--nar el colgamiento que sufría la curva, con algún parámetro, se _____ observó que éste tendría que estar ligado en alguna forma a las ______ diferencias entre P y Pb, obteniéndose finalmente la siguiente cx presión:

Rs =
$$\begin{bmatrix} y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{3.6772} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{3.6772} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb} \right)}{9b} \right]^{-1} \\ \hline y_g \left[\frac{p \left(\frac{18.5}{1 + pb}$$

Esta expresión, define el mejor ajuste a la Rs real, como_ puede verse en la figura 5.2.

Cabe hacer la aclaración, que se verificó dicho ajuste, p<u>a</u> ra todos los datos que se tenían, pero no se incluyen en este tr<u>a</u> bajo.

CAMPO POL

De la misma forma se procedió para el campo Pol, y despeja<u>n</u> do la Rs de la expresión que define su Pb se obtuvo:

Así mismo, se obtuvo al graficarla un colgamiento similar _____ a la gráfica para Abkatún, por lo que, la expresión también se afec tó con un factor similar al anterior, dándonos como resultado la _____ siguiente expresión:

$$Rs = \left[\frac{\forall g \left[\frac{P}{3.6772}\right]^{0.405103}}{\forall or}\right] + \left[\frac{P}{Pb} - \frac{P^2}{Pb^2}\right] 170$$

Esta última expresión, también se comparó con todos los d<u>a</u> tos disponibles, observándose en todos ellos, un buen ajuste, como se muestra en la figura (5.3) para el pozo Pool 158.

COMPLEJO CANTARELL

Para el Comp. Cantarell de igual forma se despejó la Rs, de la expresión que define su Pb, obteniéndose la expresión:

$$Rs = \delta g \left[\frac{P}{24.94228} - \frac{10^{0.0003708T}}{10^{0.0300874\delta_0}} \right]^{\frac{1}{0.39593}}$$

Haciendo el ajuste, para corregir el colgamiento que mos traba la curva al igual que en los casos anteriores, se obtuvo la siguiente expresión:

Rs =
$$\vartheta g \left[\frac{P}{24.94228} - \frac{10^{0.0003708T}}{10^{0.0300874\%}} \right]^{\frac{1}{0.39593}} + \left[\frac{P}{Pb} - \frac{P^2}{Pb^2} \right] 140$$

Esta expresión también se aplicó para todos los casos que se tenían, mostrando un ajuste satisfactorio, como puede observar se en la figura (5.4), que es la comparación de los datos calcula dos con los reales.

CAMPO KU

De la misma manera șe procedió para el campo Ku, despejando la Rs de la expresión que define su Pb, obteniéndose la siguiente expresión:

$$Rs = \Im g \left[\frac{P}{29,23452} \frac{10^{0.000654T}}{10^{0.08177} \text{ Yo}} \right]^{1}$$

Notamos al igual que en los casos anteriores, el colgamien to de la curva, por lo que también se afectó por un factor simi lar a los anteriores, obteniéndose finalmente la expresión:

$$Rs = \delta g \left[\frac{P}{29.23452} - \frac{10^{0.000654T}}{10^{0.08177} \delta_0} \right]^{\frac{1}{0.3824}} + \left[\frac{P}{Pb} - \frac{P^2}{Pb^2} \right] 190$$

Comparando los resultados obtenidos, con los calculados, se observa un buen ajuste, en la mayoría de los casos, como puede observarse en la figura (5.5) para el pozo KU-22, recordando una_ vez más, que no se incluyen en el trabajo, todas estas comparacio nes.

CORRELACION PARA EL FACTOR DE VOLUMEN DEL ACEITE (Bo).

CAMPO ABKATUN

Para encontrar una expresión, que nos definiera en forma <u>a</u> proximada, el valor del factor de volumen del aceite, en primera instancia, se observó, que la correlación de Oistein, mostraba un comportamiento análogo y simótrico al comportamiento real de la curva de Bo, por lo que se optó ajustar las ecuaciones usadas para el cálculo del factor de volumen del aceite de dicho método, para definir en forma más exacta este parámetro.

Para efectuar dicho cálculo, primeramente, calculamos un parámetro F, que sería la equivalencia al Bo* propuesta por el mé todo de Oistein, que se define como:

F = Log
$$\left[5.6146 \text{Rs} \left(\frac{\delta g}{\delta_0} \right)^{0.526} + 1.7424 \text{T} + 30.976 \right]$$

Una vez calculado este parámetro, se procede al cálculo -del factor de volumen de el aceite, que para este campo se define como:

Bo = 1.0519
$$\left[1 + 10(-6.58511 + 2.91329F + 0.27683F^2)\right]$$

Usando esta expresión para el cálculo de Bo para el campo_ Abkatín, se obtiene una excelente aproximación, con un error promedio a 0.66% para el factor de volumen de el aceite medido a la_ presión de saturación, por lo que se concluye, que esta expresión, es muy confiable para dicho cálculo, como puede observarse de for ma gráfica, en la figura (5.6).

CAMPO POL

De la misma forma que para el caso del campo Abkatún, se procedió a tomar como base la correlación de Oistein, para modif<u>i</u> carla, aplicando factores de corrección, para obtener un comport<u>a</u> miento del Bo, aproximado al real.

Para llegar a calcular el Bo, primeramente calculamos el parámetro F, que se define de la misma forma que para Abkatún, es decir:

F = Log
$$\left[5.6146 \text{Rs} \left(\frac{\gamma_g}{\delta_0} \right)^{0.526} + 1.7424 \text{T} + 30.976 \right]$$

Posteriormente, una vez ya calculado el parámetro F, se -puede calcular el factor de volumen mediante:

 $Bo = 1.0756 \left[1 + 10^{(-6.58511 + 2.91329F - 0.27683F^2)} \right]$

Usando esta expresión, para el campo Pol, y comparado con los datos reales, se obtiene un error promedio de 2.8% para el Bo medido a la presión de saturación. Como ejemplo puede observarse la figura (5.7) que muestra el ajuste en forma gráfica.

COMPLEJO CANTARELL

Para este Comp., procedimos de la misma forma que se des cribió con anterioridad, ajustando la expresión desarrollada por Distein, por lo que el factor F, se define como:

F = Log
$$\left[5.6146R \left(\frac{\aleph_g}{\aleph_o} \right)^{0.526} + 1.7424T + 30.976 \right]$$

Y una vez más calculado este parámetro, se procede a calcular el factor de volumen mediante la expresión:

$$Bo = 1.0252 \left[1 + 10^{(-6.58511 + 2.91329F - 0.27683F^2)} \right]$$

Usando esta expresión en el cálculo de Bo para el Complejo Cantarell y comparando con los datos reales, se obtuvo un error promedio de 1.7%, para valores de Bo medidos a presión de burb<u>u</u> jeo. Un ejemplo se muestra en la figura (5.8), en el cual se <u>a</u> precia dicho ajuste, de manera gráfica.

CAMPO KU

Como en los casos anteriores, ajustando la expresión de --Oistein, calculamos primero el factor F, definido de la misma for ma que en todos los casos:

F = Log
$$\left[5.6146 \text{Rs} \left(\frac{t_g}{t_0} \right)^{0.526} + 1.7424 \text{T} + 30.976 \right]$$

Ahora se procede al cálculo del factor de volumen del ace \underline{i} te mediante la expresión:

Bo =
$$1.0329 \left[1 + 10^{(-6.58511 + 2.91329F - 0.27683F^2)} \right]$$

Empleando esta expresión en el cálculo de Bo, para el campo Ku, se obtuvo un error promedio de 1.2%, para valores de factor de volumen del aceite, medidos a presión de saturación. La figura --(5.9) muestra un ejemplo de el ajuste realizado, comparando de manera gráfica, el valor del factor de volumen real, con el calculado por la correlación.

CALCULO DE LA DENSIDAD DEL ACEITE.

Para determinar la densidad del accite saturado, partiendo de la definición de densidad:

$$f = \frac{\text{Mas a}}{\text{Volumen}}$$

Calculando la masa del gas que se tiene disuelto en cada -cm³ de aceite y sabiendo además que:

 $faire = 0.0764 \ 1b/pie^3 = 1.224 \ 2.10^{-3} \ gr/cm^3$

$$Mg = Rs \left[\frac{m^{3}g}{m^{3}o} \right] \left[\frac{10^{6}cm^{3}g}{1m^{3}g} \right] \left[\frac{1m^{3}o}{10^{6}cm^{3}o} \right] 1.224 \times 10^{-3} \left[\frac{gr_{air6}}{cm^{3}aire} \right] y_{g} \left[\frac{\frac{gr_{g}}{cm^{3}g}}{\frac{gr_{air6}}{cm^{3}aire}} \right]$$

Mg = 1.224 X 10⁻³ Rs g
$$\begin{bmatrix} g_{rg} \\ cm^{3}o \end{bmatrix}$$

Ahora bien, calculando la masa del aceite por cm^3 de aceite:

Mo =
$$\sqrt[3]{o} \left[\frac{g_{ro}}{cm^{3}o} \right] = 1 \left[\frac{g_{rw}}{cm^{3}w} \right]$$

$$Mo = \sqrt[6]{o} \left[\frac{g_{ro}}{cm^{3}o} \right]$$

La masa total de la mezcla por cm^3 de accite medido a condiciones estándar, será:

 $M_{p} = Mg + Mo$

$$M_{\rm r} = 1.224 \times 10^{-3} \text{ Rs } \delta g + \delta c$$

Haciendo el análisis dimensional tenemos:

$$M_{T} = \frac{g_{rg}}{cm^{3}o} + \frac{g_{ro}}{cm^{3}o} = \frac{g_{rg} \neq g_{ro}}{cm^{3}o}$$

Como esta expresión está definida para 1 cm³ de aceite medido a condiciones estándar, para pasarlo a condiciones de yac<u>i</u>miento, se usa el factor de volumen del aceite, definido como:

$$Bo = \frac{cm^{3}o \ a \ c.y.}{cm^{3}o \ a \ c.s.}$$

Por lo que la densidad será:

$$\int o \ a \ c.y. = \frac{M_{T} \left[\frac{g_{rg} + g_{ro}}{cm^{3}o - r - c.s.} \right]}{Bo \left[\frac{cm^{3}o - a - c.y.}{cm^{3}o - r - c.s.} \right]} = \frac{M_{T}}{Bo \left[\frac{g_{rg} + g_{ro}}{cm^{3}o - a - c.y.} \right]}$$

Finalmente sustituyendo, tendremos la ecuación:

$$f_{0} = \frac{\delta_{0} + 1.224 \times 10^{-3} \text{ Rs}\delta_{g}}{B_{0}}$$

V.25

0 bien:

$$f_{0} = \frac{1}{B_{0}} \left[\delta_{0} + 1.224 \text{ X } 10^{-3} \text{ Rs } \delta_{g} \right]$$

Esta expresión es aplicable para todos los casos.

Como puede observarse en las figuras 5.10 a 5.13, las curvas encontradas muestran un ajuste satisfactorio para estos campos, aclarando que no se muestra el ajuste para todas las muestras de las que se cuenta con información,pero se tiene un muy buen ajuste en la mayoría de los casos.

La siguiente tabla, muestra en resumen el promedio del porcentaje de error cometido, comparado con los datos reales medidos para valores de densidad a presión de saturación:

CAMPO	\$ ERROR
Abkatún	2.8
Pol	3,9
Cantare11	1.8
Ku	2.6

Las figuras 5.14 a 5.17 muestran en forma gráfica el errorcometido al aplicar estas nuevas correlaciones. La tabla 5.2 mue<u>s</u>^{***} tra en resumen el % de error que se comete al aplicar las correla_ ciones existentes y las propuestas a campos de la zona marina.

TABLA 5.1

CORRELACION DE STANDING

CAMPO ABKATUN

1B 271.9 180.5 50.1 1B 319.1 189.5 68. 20 289.8 174 66. 51 229.0 158 44. 74 251.2 174 44.	
1B 319.1 189.5 68. 20 289.8 174 66. 51 229.0 158 44. 74 251.2 174 44.	5
20 289.8 174 66. 51 229.0 158 44. 74 251.2 174 44.	4
51 229.0 158 44. 74 251.2 174 44.	5
74 251.2 174 44.	9
	4
74 271.3 179.5 51.	1
93-A 252.2 170 48.	3
93-A 258.9 178 45.	4
93-A 275.7 175.4 57.	2
211 307.2 275 11.	7
212-A 302.1 219 37.	9
216 258.2 134 92.	6
245-A 300.3 178 68.	6

Prom. = 52.9

V,27

, ·

CONT. TABLA 5.1

.

CAMPO POL

POZO	Pbc	Pbr	% ERROR
7.1	298.0	239.8	24.3
71	333.6	234	42.5
79	356	226	57.5
79	314.8	230.66	36.4
77	287.5	205	40.2
99	312.5	230.66	35.5
158	312.5	206.05	51.6

Prom. = 37.7

	CAMPO	O CHUC	
PO 20	Pbc	Pbr	% ERROR
1	349.3	228	53.2
101	265.9	217.3	22.3

Prom. = 37.7

CONT. TABLA 5.1

CAMPO IXTOC

PO Z O	РЪ _с	Pbr		ş	ERROR
18	337.6	291.8	ana sabag Maria		15.7
	CAMPO CAAN				
POZO	Pbc	Pbr		¢,0	ERROR
1	460.3	298.5			54.2
	CAMPO KU				
POZO	Pbc	Pbr		8	ERROR
22	289.8	188	• • • • • •	•	54.1
47	258.4	181			42.7
47	256,9	187		•	37.4
47	252.2	186.6			35.2
67 - A	285.6	189			51.1
67-A	257.8	194			32.5
89	221.9	180	•		23.3
89	222.2	186			19.5
89 .	224.6	188			19.5
405	324.6	132.91		1	44.2
407	366.5	138		1	165.5

Prom. = 56.8

.

CAMPO CANTARELL

PO ZO	Pbc	Pbrea1	\$ ERROR
1 - A	213.5	149	43.3
6-A	202	149	35.6
7 - A	199.6	150	33.1
7 - A	113.1	154	26.5
8	180.9	147	23.1
11	159.1	135	17.8
19	195	144.2	35.2
19	182.9	154	18.8
57	229.8	149.6	53.6
57	178.1	141.4	25,9
57	219.5	151.5	44.9
66-A	174.9	150	16.6
68	165.8	146	13.6
71	155.9	130	19.9
77-A	193.9	165	17.5
82	217.7	159.2	36.7
82	194.4	157	23.8
94	177	145.6	21.6
94	181.2	150	20.8
209	208.4	136	53,2
209	214.4	145	47.8
219	199.6	94.6	110,9
1081	191.3	151	26.7

•

CONT. TABLA 5.1

...

2011	230.7	159.5	45.1
2011-D	193.6	137	41.3
2031	186.4	161	15.8
2031	209.4	151.9	37.8
2032	181.4	153	18.6
2073	197.2	155	27.2
2075	243.3	139	75
2075	190.5	129.0	47.7
2095	220.4	144	53.1

Prom. = 33.6

CAMPO CHAC

POZO	Pbc	Pbrea1	\$ ERROR
1	188.3	145.3	29.6
2	166.7 212.5	117 120.7	42.5 76.1
2			
2	193.8	117	65.6

Prom. = 53.4

.

TABLA 5.2

ERRORES PROMEDIO ARROJADOS POR LAS CORRELACIONES

		(ERRORES EN %)		
C7/4b0	PARAMETRO	STANDING	OISTEIN	VAZQUEZ	LASATER	PROPUESTA
	РЬ	52,9				5.5
^A B ₁ ,	Rs	93,6	100	312	34.7	8.7
^{KA} T ₁₁	Во	34	24	.41		0.66
^O N	Ĵо	17	10	19	• -	2.8
	РЬ	33,6		••-		4.09
$\Delta_{N_{12}}$	Rs	87	147	212	15	6.7
¹ A _R ,	Во	18	14	21		1.7
$^{\mathrm{n}}\mathrm{r}^{\mathrm{F}}$	9°	10	10	11		1.8
	Pb	37.7			• 	4.9
	Rs	45	44	320	30	5.8
Po,	Во	45	19	53		2.8
¥,	fo	27	12	25		3.9
	РЪ	56.8	· • • • • ·			4.1
	Rs	93	149	214	18	6.7
^K U	Во	22	19	26		1.2
	Po	11.4	8	13		2.6
TOTAL	Pb	43.5		* * -		4.6
PROMEDIO	Rs	79	110	264	24	6.9
DE LOS	Во	29	19	35		1.59
CASIPO5	f_{o}	16	10	17	* * *	2.7

- 1 1... 1

CAPITULO VI

RECOMENDACIONES Y CONCLUSIONES

CONCLUSIONES.

- Las correlaciones de Standing, Oistein, Vázquez y Lasater para el cálculo de las propiedades PVT de aceites, no _____ proporcionan valores confiables al aplicarlos a hidrocarbu-ros producidos en la Sonda de Campeche.
- 2. Estas correlaciones en general, muestran un mayor margen de error a presiones bajas (menores a los 70 Kg/cm^2).
- 5. Los campos Cantarell y Abkatún, presentan corrientes ______ convectivas por los efectos de temperatura y densidad, lo _____ que origina un comportamiento de Pb como el mostrado en este trabajo.
- 4. Se desarrollan correlaciones para el cálculo de la presión de saturación, relación gas disuelto aceite, factor de volumen del aceite y densidad del aceite para campos del Go<u>1</u> fo de Campeche, con excelentes resultados. Estas expresio-nes se muestran en el apéndice III.
- 5. Puede definirse una correlación para la Pb para aceites pesados (obtenida con datos de Cantarell y Ku), considerando las expresiones correspondientes a estos campos, añadiendo la respectiva constante de corrección a cada campo; de igual forma se definió una expresión para aceites ligeros, usando la expresión obtenida para Pol, considerando la constante de

corrección al aplicarla a Abkatún. Sobre este particular es necesario continuar trabajando, a fin de definir una corre-lación general que pueda ser usada en todos los campos del __ área y posiblemente hacerla extensiva al Mesozoico Chiapas--Tabasco.

 Se tiene una mayor aproximación a los valores reales de los parámetros calculados, para presiones cercanas a la de burbujeo.

RECOMENDACIONES

- 1. Se sugiere el uso de estas correlaciones para campos de la zona marina cuyos aceites muestren características similares para las cuales fueron desarrolladas las presentes expresiones, tanto para aceites ligeros, como para pesados. Si se cuenta con datos reales, se aconseja se afinen estas expresiones, para obtener valores más cercanos a los verdaderos.
- 2. Se recomienda que las muestras de gas usadas para determinar su densidad relativa, se obtengan a una presión de sepa ración lo más baja posible, para que el gas que queda aún disuelto en el aceite al salir del separador, sea el menor posible y se tenga así una muestra representativa del mismo.
- 3. Así mismo, se aconseja que las muestras de aceite usadas para determinar su densidad relativa, también sean lo más representativas posible de la mezcla de hidrocarburos en consideración.
- 4. Se sugiere la implementación de estas correlaciones en programas de flujo multifásico en tuberías y modelos de yacimientos como balance de materia, para el cálculo de las propie

dades PVT requeridas en los mismos, para su aplicación en _ el área marina de la Sonda de Campeche.

5. Aunque se definen correlaciones para la Pb para aceites pesados y ligeros, es necesario continuar trabajando en este sentido, con el fin de encontrar una correlación más <u>ge</u> neral sin necesidad de utilizar correcciones aditivas, tanto para la Pb, como para los demás parámetros.

 Se recomienda efectuar los análisis PVT a temperatu_ ras correspondientes a los intervalos productores de los _____
 cuales provienen las muestras analizadas.

VI.3

APENDICE

· . . .

$\rm TABLA > .2$

CAMPO APRATON

RESULTADOS DE AMALISIS PVT

POZO	1B	1B	1B	1B	4
FECHA DE MUESTREO	20-Jun-80	04-Sep-81	29-Jun-80	29-Jun-80	07-Sep-81
RETERVALO PRODUCTOR, mvbmr	3288-3300 3331-3343	3288-3300 3331-3343	3288-3300 3331-3343	3288-3300 3331-3343	3625-3684
TEGETHEIDAD DEL MUESTREO, mvbmr	3294	3337	3294	3294	3554
PRESION A LA PROF. DE MUESTREO,kg/cm2	360.3	349.5	360.3	360.3	366
ELEFERATURA DE ANALISIS,°C	140.0	147	135.0	140	146
HESION DE SATURACION, kg/cm ²	178	189,5	178.6	180,5	185.5
+A-G2F DE VOLUMEN a Pb, m^3/m^3	1.4708	1,552	-	1.573	1.532
LEGACION GAS DISUELTO ACEITE,m3/m3	109.69	141.57	-	135.7	129.6
ECESIDAD DEL ACEITE, a Pb y Ty,gr/cm ³	0.7058	0,6804		0.6916	0.668
SECTIONS LEE ACEITE, a Pary 20°C, gr/cm ³	0,8877	0.8961	-	0.891(1)	0.8922
THE CONDADEDEL ACEITE APPENDING TY, CP	1.98	0.497	-	0.46	0.5246
The estimate def ACEITE a Pa y $({\tt T^{o}C}), Cp$	42.0	37.10(20)	-	2,068(140)	34.9(10)
1819011040 RELATIVA DEL GAS (Aire =1)	0.990	0,79	-	0,947(2)	0.909
LECTABLES, BELZMMPC C3+	185,99	109.8	-	113	76.13
CO, YE MOL	1.66	2.83	-	3,86	3.43
Hyper Mole	0,49	1.61	•	1.20	0.88
LABORATORIO	VH	IMP	CL	CL	IMP

COMPOSICIONAL

No reader

(1) 60°C

(2) Gas del separador a 7 kg/cm2

CAMPO ABEATON

RESULTADOS DE ANALISIS FVT

POZO	4	20	51	74	74
ETTIA DE MUESTREO	19-Jul-81	14-Abr-82	22-Jun-81	27-May-81	27-May-81
HAPSKVALO PRODUCTOR, mvbmr	3625-3684	3554-3616	3353-3411	3365~3405	3365-3405
FROFUNDIDAD DE MUESTREO, mvbmr	3454	3612	3382	3385	3385
PPESION A LA PROF.DE MUESTREO,kg/cm ²	364.7	359.3	357.2	362.0	362
SAMEDERATURA DE ANALISIS,°C	-	147	130	141.7	149.4
A TERRED AND SATURACION, kg/cm ²	-	174	158	179,5	182.6
EVEN TO F DE VOLUMEN a Pb.m3/m3	-	1,535	1,5188	1.601	-
entile (04 GAS DISUELTO ACEITE,m3/m3	-	123.093	127.4	138,7	-
MERSIPAD LEL ACEITE, a Pb y Ty,gr/cm3	-	0,6657	0.6946	0,6876	-
NELS HEAD DEL ACEITE, a Pa y 20°C, gr/cm ³	-	0.8918	0.8717	0,894(1)	-
TILCELIMED DEL ACEITE & Pb y Ty,Cp	-	0.5741	-	0,472	-
WESSEDAD DEL ACEITE à Pa y (T°C),Cp	-	41.01(15.6)) -	1,978(141,7)	-
. CLATIVA DEL GAS (Aire =1)	-	0.91	0,9855	0,975(2)	-
I D DARLES, DI/MMPC C ₃ +	-	120.00	180.8	157	
C. C. MOL	~	3.23	1.53	3.23	-
Fj: , Mol	-	1.22	1.23	1.46	-
1.0 (1.5) GRIQ	CL	IMP	PR	CL	CL

COMPOSICIONAL

COMPOSICIONAL

DOPAS:

(1) 60°F

(2) Ous del separador a 5 kg/cm²

TABLA 1.13

CAMPO ARKATUN

PESULTADOS DE ANALISIS PVI

POZO	74	9.5 A	93A	93 A	93A
FECHA DE MUESTREO	27-May-81	Ago-81	Ago-81	Ago-81	10-Ene-81
INTERVALO PRODUCTOR, mybmr	3365-3405	3472-3502 3540-3570	3472-3502 3540-3570	3472-3502 3540-3570	3472-3502 3540-3570
FROFUNDIDAD DE MUESTREO, mybmr	3385	3488	3488	3488	3487
FINITION A LA PROF. DE MUESTREO, kg/cm 2	362	372	372	372	372.6
TEMPERATURA DE ABALISIS,"C	137	110	125	140	138
FIRSTON DE SATURACIÓN, kg/cm2	174	162.8	170	175.4	170
FACTOR DE VOLUMEN a $Pb,m^3/m^3$	1.5304	-	-	1,593	1.5298
GITACION GAS DISUELTO ACEITE,m3/m3	130.2	- ·	-	137.2	126,7
DECENTIONE DEL ACEITE, a Pb v Ty, gr/cm3	0.6896	-	· ••	0,6867	0,6787
FEESIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0,8729	. –	-	0.892(1)	0.8731
VIR OGIDAD DEL ACEITE a Pb y Ty,Cp	-	• -	-	0.586	-
VabbosiPAD DEL ACIETE a Pa y (T°C), Cp	-	-		1,839(140)	-
DECLEDAD RELATIVA DEL GAS (Aire =1)	0.917		n Systemset e transmissio	0.937	0.918
JECUABILS, 51∕MMPC C ₃ +	143	-	-	252 (2)	121
ese, MOL	3.38	🖬 1. 1877		3.64	2.27
il (s. e. MOL	1.29	- - 11 - 1	2	1.38	1.34
: Abcsatorio	PR	CL	CL	CL	PR

- (1) GO*F
- (2) C₂+

CAMPO ABRATUN

RESULTADOS DE ANALISIS PVT

POZO	93A	211	212A	216	245
ETCHA DE MUESTEO	10-Ene-81 3472-3502	3-Jun-82	7-Abr-82	3-Nov-83	22/23-Ago-81
INTERVALO PRODUCTOR, mvbmr	3540-3570	3356-3425	3350-3400	3383-3427	3443-3521
FROPUNDIDAD DE MUESTREO, mvbmr	3487	3224	3375	3157	3456
PRESICY & LA PROF.DE MUESTREO, kg/cm ²	372.6	335.6	316.8	230.6	361.8
TEMPERATURA DE ANALISIS, °C	150	131	137	140	142
PRESION DE SATURACION, kg/cm ²	178	275	219	134	178
PACTOR DE VOLUMEN a Pb, m3/m3	1.6223	1,726	1.558	1,355	1.519
FFIACION GAS DISUELTO ACEITE, m ³ /m ³	140.3	193.92	149.094	71,95	125,82
DEBSIDAD DEL ACEITE, a Pb y Ty, gr/cm ³	0.6469	0.6251	0.6649	0.7161	0.6804
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0.8731	0.8871	0.8849	0.8876	0.8896
VIECOSIDAD DEL ACEITE a P5 y Ty, Cp	-	0.4672	0.498		.6548
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	-	16.86(15.6)	36.92(15.6)	-	16.13(16.5)
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.939	0.766	0,7922	0,987	0.841
LICUABLES, b1/MMPC C ₃ +	133	58.6	60.9	172	83
CO ₂ x MOL	2.93	3.34	3.47	2,04	3.65
H ₂ S, % MOL	1.47	0,619	0.934	0.553	0.911
LABORATORIO	PR	IMP	IMP	PR	IMP

. .

TAPIA 2.3

CAMPO FU

RESULTADOS DE ANALISIS PVT

POZO	47	47	47	47	47
FECHA DE MUESTREO	22-Ene-81	22-Ene-81	22-Ene-81	22-Ene-81	22-Ene-81
INTERVALO PRODUCTOR, mvbmr	2784-2935	2784-2935	2784-2935	2784-2935	2784-2935
PROFUNDIDAD DE MUESTREO, mvbmr	2644	2644	2644	2644	2644
FRESION A LA PROF, DE MUESTREO, kg/cm2	289.9	289.9	289.9	289.9	289.9
TEMPERATURA DE ANALISIS,ºC	110	123	110	116	122
PRESION DE SATURACION, kg/cm ²	181	187	183.8	186.6	189,2
FACTOR DE VOLUMEN a Pb, m ³ /m ³	1.3854	1.4457	-	1.4	-
PERACION GAS DISUELTS ACEITE, $m3/m^3$	103,9	110.0	-	107	-
TEMSIDAD DEL ACEITE, a Pb y Ty, gr/cm ³	0.7493	0.7391	-	0,7595	-
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm ³	0.9214	0.9214	-	0.924(1)	-
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	-	-	-	1,78	-
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp $\space{-1.5mm}$	-	-	-	7.08(116)	-
DEUSIDAD RELATIVA DEL GAS (Aire =1)	0.846	0.904	-	0,909(2)	-
LICUABLES, bl/MMPC C3+	107	127	4	123.4	-
CO2 & MOL	2.85	4.31	-	4.59	-
H ₂ S, Y MOL	2.03	1.93	-	2.07	-
LABORATORIO	PR	PR	CL	CL	CL

COMPOSICIONAL

DUTAS:

(1) 60°F

(2) Gas del separador a 7 kg/cm2

CAMPO PU

RESULTADOS DE ANALISI PVT

POZO	67A	67 A	89	89	89
FECHA DE MUESTREO	8-Jun-81	8-Jun-81	14-Ene-81	14-Ene-81	14-Ene-81
INTERVALO PRODUCTOR, mvbmr	2434-2533	2434-2533	2884-3481	2884-3481	2884-3481
FROFUNDIDAD DE MUESTREO, mvbmr	2290	2290	1644	2644	2644
PRESION A LA PROF.DE MUESTREO,kg/cm ²	262.8	262.8	305.1	305.1	305.1
TEMPERARURA DE ANALISIS,°C	125	140	-	100	110
PRESION DE SATURACION, kg/cm ²	189	194	+	180	186
FACTOR DE VOLUMEN a Pb, m3/m3	1.4126	1.4721	-	1.3570	1.3871
RELACION GAS DISUELTO ACEITE, m ³ /m ³	106.5	112.8	-	101	103.3
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm ³	0,7365	0.7282	-	0.7611	0,7473
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm ³	0,9068	0,9068	-	0,9095	0,9095
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	-	-	-	-	-
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	-	-	-	-	-
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.7369	0.8927	-	0,9059	0,9466
LICUABLES, 517MMPC C ₃ +	59	124	-	138	152
CO, & MOL	2.74	3.15	-	4,62	4.19
Н ₅ 5, * МОГ.	1.37	1.93	-	0.53	0,25
LABORATORIO	PR	PR	CL	PR	PR

COMPOSICIONAL

самро қи

RESULTADOS DE ANALISIS PVT

POZO	89	22	405	407
FECHA DE MUESTREO	14-Ene-81	26-Ago-82	15-Sep-83	15-Jun-83
INTERVALO PRODUCTOR mvbmr	2884-3481	2999-3030	2871-2970	3000-3050
PROFUNDIDAD DE MUESTREO, mvbmr	2644	3015	2720	2850
PRESIGN A LA PROF. DE MUESTREO, kg/cm ²	305.1	297.44	260.3	279.5
TEMPERATURA DE ANALISIS, °C	120	117	111	113
FRESION DE SATURACION, kg/cm ²	188	188	132.91	138
FACTOR DE VOLUMEN a Pb, m^3/m^3	1.4085	1.381	1.1649	1.248
EFLACTON GAS DISUELTO ACEITE, m^3/m^3	107.1	110.56	40,745	59,812
DENSIDAD DEL ACEITE, a PL y Ty, gr/cm3	0.738	0.7531	0.8747	0,8393
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0.9095	0,9276	0,9720	0,9782
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	-	1,4788	-	2,5382
VISCORIDAD DEL ACEITE a Pa y (T°C), Cp	-	67.5(15.6)	-	110.8(50)
DENSIDAD RELATIVA DEL GAS (Aire = 1)	SE FUGO	0.7984	0.8519	0.767
LICUABLES, bl/MMPC C ₃ +	-	57.575	91,023	43,86
CO ₂ 6 MOL	-	3,8	4.57	4.817
H ₃ S, % MOL	-	1,15	1.53	1.654
ABORATORIO	PR	IMP	V.H.	IMP

CAMPO FOL

RESULTADOS DE ANALISIS PVT

POZO	71	75	71	79	79
LENA DE MUESTREO	13-Mar-82	20-Ju1-81	13-Mar-82	20-Jun-82	02-Oct-82
EFFERVALO PRODUCTOR, mybmr	3689-3790	3685-3790	3689-3790	3897-4020	4393-4422
FROFUNDIDAD DE MUESTREO, mvbmr	3737	3727	3552	3858 (K)	4207
PRESION A LA PROF.DE MUESTREO, kg/cm ²	383.8	389.8	368.3	426.7	405.9
TEMPERATURA DE ANALISIS, °C	133.3	-	134	143	152
PRESION DE SATURACION, kg/cm ²	239.8	-	234	170	226
FACTOR DE VOLUMEN, a Pb m^3/m^3	1.7407	-	1.808	1.591	1.838
FERACION GAS DISUELTO ACEITE, m3/m3	196.1	-	208.814	142.427	199.982
TENSIDAD DEL ACEITE, a Pb y Ty, gr/cm3	0.6165	-	0,5899	0.6556	0,5931
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0.8475	-	0,8560	0.8711	0.8704
VEROSIDAD DEL ACEITE a Pb y Ty, Cp	0.266	-	0.4885	0.6712	0.2699
MISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	-	-	10.92(15.6)	13.79(15.6)	7.6(21.5
14DBIDAD RELATIVA DEL GAS (Aire =1)	0.86(1)	-	0.737(1)	0.89(1)	0.88
LICUABLES, b1/MMPC C3+	221(1)	-	47.608(1)	66.734(1)	71
CO, S MOL	2.71	-	2.56	4.59	4.6
H ₅ S, N MOL	1.17	-	0.37	1.17	.71
LABORATORIO	EL	CL,	IMP	IMP	IMP

COMPOSICIONAL

-

20145:

(i) Del gas de prueba de separación en 2 etapas, mezclados.

TABLA . . 4

CAMPO POL

.

RESULTADOS DE ANALISIS PVT

P02 0	79	99	158	77
FECHA DE MUESTREO	2-Dic-83	20-Nov-83	03-Sep-84	16-Jun-85
INTERVALO PRODUCTOR, mybmr	4393-4419.5	3734-3764	4185-4210	4323-4453
PROFUNDIDAD DE MUESTREO, mvbmr ·	4307	3659	3784	995
PRESIGN A LA PROF. DE MUESTREO, kg/cm2	381.3	338.1	342.5	469.6
TI MPERATURA DE ANALISIS, °C	151	t 34	142.0	157
FRESTON DE SATURACION, kg/cm ²	230.66	230.66	206.05	205
PACTOR DE VOLUMEN a Pb, m3/m3	1.719	1.665	1.566	1.6125
RELACION GAS DISUELTO ACEITE, m3/m3	138.675	165.164	135.102	150
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm3	0.5649	0.6057	0.616	0.6461
HENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0.8422	0.8486	0,8452	0.8521
"LacosHAD DEL ACEITE a Pb y Ty, Cp	- ·	-	-	-
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	-	-	-	29.78(23)
(1949) BAD RELATIVA DEL GAS (Aire =1)	.7285	0.8031	0.7422	1.032
LETTABLES, b1/MMPC C2+	47.201(1)	23,336	46,561	119.81
το, 5 MOL	1.93	3.80	2.16	11.54
ида, # Мо н .	0.88	1.86	2.96	3.25
LABCHATOR IO	V.H.	V.H.	V.K.	PR

COTAS:

()) Del gas de prueba de separación en 2 etapas mezclados.

.

PABLA 2.5

COMPLEJO CANTARELL

RESUMFADOS DE ANALISIS PVT

POZO	CHAC-1	CHAC-2	CHAC-2	CHAC-2
FILMA DE MUESTREO	15-Ago-75	6-Feb-78	06-Feb-78	05-Feb-78
EFFERVALO PRODUCTOR, mvbmr	3545-3567	3500-3525	3500-3525	3500-3525
PROFUNDIDAD DE MUESTREO, mvbmr	Sup.	3470	3470	3477
THEATON A LA PROF. DE MUESTREO, kg/cm^2	-	360.2	360.2	360.35
TEMPERATURA DE ANALISIS, "C	105	123	122.7	123
PRESIDE DE SAPURACION, kg/cm ²	145.3	117.0	120.7	117
FA TOP 141 VOLDMEN a Ph, m3/m3	1.2313	1.290	1.304	1.297
FILACION GAS DISUELTO ACEITE, m ³ /m ³	63.5	64.362	65.72	63.0
CONSIDAD DEL ACEITE, a Pb y Ty, gr/cm ³	0.8323	0.806	0.8066	0.7907
PUBLIDAD DEL ACEITE, a Pa y 20°C, gr/cm ³	0.9420	0.9479	0.9522(1)	0.9469
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	6,8163	2.45	2,82	4.3
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	460(25)	604 (37)	2750(15.5)	530(112)
LaUISIDAD RELATIVA DEL GAS (Aire =1)	0.7915	0.857	0.784(2)	1.022
LICUABLES, BLZMMPC C3+	19.1	114.19	65.1	185.9
CO, e MOL	19.38	1,921	3,37	2.38
R _J J, % MOL	-	1.95	1.07	.49
DBGRATOPIO	PR	IMP	CL	PR

COMPOSICIONAL

toras:

(1) a 60°F

(2) Gas de separación a 7 kg/cm²

COMPLEJO CANTARELL

RESULTADOS DE ANALISIS PVT

POZO	C -1A	C -7A	C -8	C-8	C -8
FICHA DE MUESTREO	28-Oct-79	07-Nov-79	27-Abr-80	27-Abr-80	27- Abr-80
ENTERVALO RPODUCTOR, mvbmr	1275-1320	1530-1535	1790-1795	1790-1795	1790-1795
FROFUNDIDAD DE MUESTREO, mvbmr	1100	1297	1763	1763	1763
FERSION A LA PROF. DE MUESTREO, kg/cm^2	169.6	185.0	210.2	210.2	210.2
TEMPERATURA DE ANALISIS, °C	100	100	25	86	101
PIESION DE SATURACION, kg/cm ²	149	154	111	147	154.6
FACTOR DE VOLUMEN à Pb, m^3/m^3	1.3152	1.2819	-	1.306	
RELACION GAS DISUELTO ACEITE, m ³ /m ³	86.3	81	-	86.9	-
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm3	0.7975	0.7913	-	0.7895	-
DENSIDAD DEL ACEITE, a Pa y 20°C gr/cm3	0.9420	0.9208	-	0.9254(1)	-
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	5.7	3.5	-	2.78	
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp $\$	143.9(30)	202.5(21)	_	-	-
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.8834	.9041	-	0.922	-
LICUABLES, b1/MMPC C3+	122,27	399.8	-	132.8	-
CO2 & MOL	2.20	3.81	- .	3.31	 .
H,S, & MOL	1.0	0.19	-	2.36	- '
LABORATOR10	PR	VH	CL	CL	CL

٠

COMPOSICIONAL

NOTAS:

(1) a 60°F

TARIA 2.5

COMPLETO CANTARELL

RESULTADOS DE ANALISIS PVF

C-19	C~19	C 6-A	C-2032	66-8
22-Abr-80	22-Abr-80	11-Dic-81	4-Sep-80	14-Ju1-80
1944-1954	1944-1954	1702-1724	2021-2075	2099-2 49 0
1946	1946	1706	2048	1905
220.8	220.8	169.3	214.8	210.6
84	103	100	106	100
144.2	154	149	153	150
1,1602	1,3098	1,321	1,2946	1.2963
67.3	81.8	90.436	79.9	81.8
0.8541	0.7750	0.7796	0.7723	0.787
0.9233	0.9173	0.9213	0.9144	0,9211
-	-	0.7597	-	-
230(25)	-	30.8(15.6)	-	-
.8244	0.9379	0.840	0.9438	.998
-	157	85.22	165	150.0
-	3.02	2.58	3.19	1.54
-	0.4	1.5	0.2	2.57
VH	PR	IMP	P.R.	PR
	C-19 22-Abr-80 1944-1954 1946 220.8 84 144.2 1.1602 67.3 0.8541 0.9233 - 230 (25) .8244 - - - VH	C-19 C-19 22-Abr-80 22-Abr-80 1944-1954 1944-1954 1946 1946 220.8 220.8 84 103 144.2 154 1.1602 1.3098 67.3 81.8 0.8541 0.7750 0.9233 0.9173 - - 230(25) - - 3.02 - 0.4 VH PR	С-19 С-19 С 6-А 22-Аbr-80 22-Abr-80 11-Dic-81 1944-1954 1944-1954 1702-1724 1946 1946 1706 220.8 220.8 169.3 84 103 100 144.2 154 149 1.1602 1.3098 1.321 67.3 81.8 90.436 0.8541 0.7750 0.7796 0.9233 0.9173 0.9213 - - 0.7597 230(25) - 30.8(15.6) .8244 0.9379 0.840 - 157 85.22 - 3.02 2.58 - 0.4 1.5 VH PR IMP	С-19 С-19 С 6-A С-2032 22-Abr-80 22-Abr-80 11-Dic-81 4-Sep-80 1944-1954 1944-1954 1702-1724 2021-2075 1946 1946 1706 2048 220.8 220.8 169.3 214.8 84 103 100 106 144.2 154 149 153 1.1602 1.3098 1.321 1.2946 67.3 81.8 90.436 79.9 0.8541 0.7750 0.7723 0.9144 - - 0.7597 - 230(25) - 30.8(15.6) - .8244 0.9379 0.840 0.9438 - 157 85.22 165 - 3.02 2.58 3.19 - 0.4 1.5 0.2 VH PR IMP P.R.

COMPLEJO CANPARELL

RESULTADOS DE ANALISIS PVT

POZO	C -11	C -57	C -57 2-Oct-78	C -57 30-Sep-78	C-68 6-Mar-80
FECHA DE MUESTREO INTERVALO FRODUCTOR, mvbmr PROFUNDIDAD DE MUESTREO, mvbmr PFESION A LA PROF.DE MUESTREO, kg/cm ² TEMPERATURA DE ANALISIS, °C PRESION DE SATURACION, kg/cm ² FACTOR DE VOLUMEN A Pb, m ³ /m ³ PELACION GAS DISUELTO ACEITE, m ³ /m ³ DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm ³ DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm ³ VLECOSIDAD DEL ACEITE A Pb y Ty, CP YLECOSIDAD DEL ACEITE A Pb y Ty, CP YLECOSIDAD DEL ACEITE A Pa y (T°C), CP LEUSIDAD PELATIVA DEL GAS (Aire =1) LEUSIDAD DELATIVA DEL GAS (AIRE =1) LEUSIDAD (AIRE	14-Mar-80 1272-1340 1140 168.6 71 135 1.2615 66.3 0.7889 0.9165 9.4 72.12(50) 0.9547 140 0.94 2.85 PR	2492-2552 2357 262 101 141.4 1.2891 81.7 0.816 0.9242 3.6983 328.13 (22.5 0.999 163 4.23 1.15 PR	2492-2552 2457 269.8 101 151.5 1.322 88.01 0.773 0.9292 4.80) 124.63(37.8 0.799 88.94 5.10 2.32 INF	2492-2552 2357 262.0 101 149.6 1.308 84.24 0.7981 0.9315(1) 2.54 195(15.5) 0.766(2) 49.4 5.57 1.29 CL	1896-2007 1770 210.4 91 146 1.2882 83.4 0.7914 0.9155 5.2 70.2(50) 0.9892 167 1.57 1.99 PR
LABORATORIO					

.

(1) 60°F

(2) Gas separación a 14 kg/cm²

COMPLEJO CANTARELL

RESULTADOS DE ANALISIS PVT

POZO	C -71	C -82	C -82	C -94	C -94
FECHA DE MUESTREO	12-Mar-80	21-Abr-79	21-Abr-79	19- Sep-78	16-Sep-78
INTERVALO PRODUCTOR, mybmr	1086-1106	2594-2610	2594-2610	1210-1342	1210-1342
PROFUNDIDAD DE MUESTREO, mvbmr	1074	2550	2550	1210	1189
PRESION A LA PROF. DE MUESTREO, kg/cm ²	156.3	285.95	285,95	181	179.2
TEMPERATURA DE ANALISIS, °C	64	101	101	101	97
PRESIGN DE SATURACION, kg/cm ²	130	157	159.2	145.6	150
FACTOR DE VOLUMEN a FD, $m3/m3$	1,24	1.310	1.322	1.296	1.324
RELACION GAS DISUELTO ACEITE,m3/m3	61.1	92.624	87.62	85.2	94,423
LENSIDAD DEL ACEITE, a Pb y Ty, gr/cm3	0.791	0.7799	0,7865	0.7869	0.772
LENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0.9108	0.9182	0,9279(1)	0.9193	0.9243
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	10.8	3.21	2.03	3.22	4.0
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	72.3(50)	-	-	148,37(29)	144.5(37.7)
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.9163	0.868	0,801(2)	0.978	0.961
LICUABLES, b1/MMPC C ₃ +	132	90.97	72.1	159	143,959
CO ₂ 3 MOL	2,13	3.18	3.47	3,59	2,935
H ₂ S, 3 MOL	1.10	1.54	1,68	0,98	2,435
LABORATORIO	PR	IMP	CL	PR	IMP

(1) 60°F

(2) Gas de separación a 7 kg/cm²

1ARIA 2.5

COMPLEXIC CARTARELL

RESULTADOS DE ANALISIC EVT

POZO	209	209	C-7A	бл*	1081	
FECHA DE MUESTREO	23-Jul-83	23-Jul-83	7-Nov-79	29-Sep-79	06-Nov-83	
PUTERVALO PRODUCTOR, mvbmr	2499-2593	2499+2593	1514-1531	1688-1724	2160-2215	
FROPUNDIDAD DE MUESTREO, mvbmr	2533	2533	1297	1520	2088	•
PRESION A LA PROF. DE MUESTREO, kg/cm 2	215.2	215.2	185	211.15	175.4	
TEMPERATURA DE ANALISIS, °C	96	120	100	96.5	107	
PRESIDE DE SATURACION, kg/cm2	1.36	145	150	103,5	151.0	
FACTOR DE VOLUMEN a Pb, m3/m3	1,2875	1.339	1.3032	1.2754	1.2699	
HUACION GAS DISUELTO ACEITE, m3/m3	64.23	79.43	85.2	69,10	69,69	
DEDCIDAD DEL ACETTE, A PD y Ty, gr/cm3	0,7613	0.7613	0.7979	0.8	0.7759	
DEDISIDAD DEL ACETTE, a Pa y 20°C, gr/cm3	0,924	0,924	0.9294	0.929	0.9105	
VISCOSIDAD DEL ACITE a Pb y Ty, Cp	-	-	3,3	5.50	-	
VICCOSIDAD DEL ACEITE A PA γ (T°C), Cp	-	-	53.8(50)	63.7(50)	-	
LENSIDAD RELATIVA DEL GAS (Aire =1)	0,807	,8694	0.8926	1.036	0.8716	
EDEVARIANT, DI/MMPC C3+	143.55	77.24	118.0	191.7	86.49	
COS & MOL	1,95	1.95	2.82	2.61	2.24	
H,S, & HOL	1.15	1.31	0.22	2.13	2.19	
LAPCRATOR IO	PR	PR	PR	PR	IMP	

* Anomalias en las muestras.

COMPLEJO CANTARELL

RESULTADOS DE ANALISIS PVT

POZO	с -94	C -2011	C -2011-D	. C -2011-D	C -2011-D
FECHA DE MUESTREO	15- Sep-84	09-Ago_79	06-May-80	06-May-80	06-May-80
INTERVALO PRODUCTOR, mvbmr	1210-1342	2830-3050	2249-2330	2249-2330	2249-2330
PROFUNDIDAD DE MUESTRFO, mvbmr	1189	2848	1950	1950	1950
PRESION A LA PROF. DE MUESTREO, kg/cm ²	179.2	309	-	-	· -
TEMPERATURA DE ANALISIS, °C	97	114	25	102.2	109
PRESION DE SATURACION, kg/cm2	150.8	150.5	96.5	137	139.6
FACTOR DE VOLUMEN a Pb, m ³ /m ³	1.321	1.3402	-	1,310	-
RELACION GAS DISUELTO ACEITE, m3/m3	87.62	88,539	-	82.3	-
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm3	0.7874	0.7657	-	0.7913	-
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0.9279(1)	0.9294	-	0,9303(1)	-
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	2.32	3.78	-	2.27	-
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp		104.4(37.8)		-	-
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.795(1)	0.799	-	0.94(2)	-
LICUABLES, b1/MMPC C3+	67	65.51	-	141	-
CO ₂ % MOL	4.11	3.54	.	3.4	-
H ₂ S, % MOL	1.43	1.36	-	2.35	-
LABORATORIO	CL	IMP	CL	. CL	CL

COMPOSICIONAL

.

NOTAS:

(1) 60°F

(2) Gas del separador a 7 kg/cm²

COMPLEJO CANTARELL

RESULTADOS DE ANALISIS PVT

POZO	C-77A	C-2073	C-2075	C-219	C-1081	
FECHA DE MUESTREO	15-Ju1-80	23-May-80	26-Nov-80	22-Ene-83	6-Nov-83	
INTERVALO PRODUCTOR, mvbmr	2231-3281	2449-2534	2119-2283	2825-2867	2160-2215	
PROFUNDIDAD DEL MUESTREO, mvbmr	2256	2492	1994	2500	2088	
PRESION A LA PROF. DE MUESTREO, kg/cm2	243.9	264.4	229.2	224.8	175.4	
TEMPERATURA DE ANALISIS, °C	110	115	109	110	107	
PRESION DE SATURACION, kg/cm ²	165	155	129.0	94.6	151	
FACTOR DE VOLUMEN a Pb, m3/m3	1.3675	1.3397	1.2656	1.187	1.2699	
RELACION GAS DISUELTO ACEITE, m3/m3	95.6	82.7	63.2	30.2	70	
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm3	0,7616	0.7617	0.7987	0.796	.7759	
DENSIDAD DEL ACEITE, a Pa y 20°C,gr/cm3	0.9219	0.9179	0.9222	0.911	0.9105	
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	-	-	-	• -	- .	
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	-	-	-	-	227.8(30)	
DENSIDAD PELATIVA DEL GAS (Aire =1)	0.927	0.9078	0.9441	0.8399	0.8693	
LICUABLES, b1/MMPC C3+	131.0	161.1	191	109.55	107.84	
CO ₂ % MOL	6,0	2.2753	2.51	2.0	2.25	
H ₂ S, % MOL	1.27	1.94	0.72	TRAZAS	2.16	
LABORATORIO	PR	PR	PR	VH	PR	

NOTAS:

Las características del gas son las definidas de las diferentes etapas de separación diferencial ponderadas al volumen extraido en c/ etapa.

COMPLEIO CANTARELL

RESULTADOS DE ANALISIS PVI

POZO FECHA DE MIESTREO	C-2011-D	C-2031	C-2031	C-2075	C-2095
	06-May-80	15May-79	15 Dic-79	25-Nov-80	22-May-79
INTERVALO PRODUCTOR, mvbmr	2249-2330	2055-2163	2055-2163	2110 2202	
PROFUNDIDAD DE MUESTREO, mvbmr	1950	1499	1/00	2119-2203	2604-2634
PRESION A LA PROF. DE MUESTREO, kg/cm2	_	200 3	1499	2095	2619
REMPERATURA DE ANALSIS, °C	116-1	200.5	200.3	228	284.9
PRESION DE SATURACION, kg/cm2	141 0	105	126	114	116
FACTOR DE VOLUMEN a Ph. m3/m3	141.8	151.9	161	139	144
RELACION GAS DISIDITO ACETTRE -3/ 2	-	1.2644	1.3743	1.304	1.2602
DENSIDAD DEL ACRITE DI T	-	74.7	93.7	73.9	72.233
EASTERN DEL ACETTE, a Pb y Ty, gr/cm3	-	0.8183	0.7635	0.7957	0 8083
DEASIDAD DEL ACEITE, a Pa y 20°C, gr/cm	3 _	0.9435	0,9282	0.964(1)	0.0003
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	-	2.8	3.5	2 /4	0.9434
VISCOSIDAD DEL ACELTE a Pa y (T°C), Cp	-	400(20)	96 67(50)	2.40	2.74
DENSIDAD RELATIVA DEL GAS (Aire =1)	_	0 031	50.07(50)	9.8(114)	190.8(37.8)
LICUABLES, D1/MMPC C ₂ +	· _	160.00	1,0838	0.906	.9214
CO., Z NOL	-	168,96	190.2	127	91.82
H ₂ S, % MOL	-	0.8	2.53	3.33	3,68
LABORATORIO	a ana an 🖷	0.4	TRAZAS	1.11	0.90
	CL	VН	PR	CL	IMP

COMPOSICIONAL

NUTAS:

11 50°#

CAMPO CHUC

RESULTADOS DE ANALISIS PVT

POZO	1	101	
FECHA DE MUSTREO	20-Ago-82	24-25-May-84	
EFFERVALO PRODUCTOR, mvbmr	3860-3925	3870-3895	
PROFENDIDAD DE MUESTREO, mvbmr	3892	3200	
PRESION A LA PROF. DE MUESTREO, kg/cm ²	391.8	311.6	
TEMPERATURA DE ANALISIS, °C	138.8	140	
PRESION DE SATURACION, kf/cm2	228	217.30	
FACTOR DE VOLUMEN a Pb, m3/m3	1.817	1,593	a a star a s A star a star
RELACION GAS DISUELTO ACEITE, m ³ /m ³	193	142.25	
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm ²	0.5992	0.6322	
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm ²	0.8793	0.8630	
Viscosidad del ACEITE a Pb y Ty, Cp	0.3671	-	
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	9,909(15.6)	-	
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.789(1)	0,9920	
LICUABLES, bl/MMPC C ₃ +	48,763(1)	166.192	
CO, & MOL	4.8	1,77	
н.5, % мог	1.46	2.47	en and a state of the state of
LABORATORIO	I MP	VH	

.

(1) Del gas se prueba de separación en 2 etapas, mezclados.

.

CAMPO INTOC

RESULTADOS DE ANALISIS PVT

POZO	18
FECHA DE MUESTREO	24-28-May-84
INTERVALO PRODUCTOR	3575-3590
PROFUNDIDAD DE MUESTREO, mvbmr	3000
PRESION A LA PROF.DE MUESTREO, mvbmr	286.4
TEMPERATURA DE ANALISIS, °C	137,5
PRESION DE SATURACION, kg/cm2	291.8
FACTOR DE VOLUMEN a Pb, m3/m3	1.761
RELACION GAS DISUELTO ACEITE, m3/m3	203.09
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm ³	0.6017
DENSIDAD DEL ACEITE, a Pa y 20°C, gr/cm3	0.8659
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	-
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	-
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.9113
LICUABLES, DI/MMPC C ₃ +	121.127
CO2 X MOL	5.08
H ₂ S, Z MOL	2.13
LABORATORIO	VH

CAMPO CAAN

RESULTADOS DE ANALISIS PVT

POZO	1	
FECHA DE MUESTREO	11-12-Dic-84	
INTERVALO PRODUCTOR, mvbmr	3663-3675	
PROFUNDIDAD DE MUESTREO, mvbmr	3660	and the second secon
PRESION A LA PROF. DE MUESTREO, kg/cm ²	347.9	
TEMPERATURA DE ANALISIS, °C	150	
PRESION DE SATURACION, kg/cm ²	298.5	
FACTOR DE VOLUMEN a Pb, m3/m3	2,328	
RELACION GAS DISUELTO ACEITE, m3/m ³	317.989	and the second
DENSIDAD DEL ACEITE, a Pb y Ty, gr/cm3	0.4897	
DENSIDAD DEL ACEITE, a Pa y 20°V, gr/cm ³	0.8375	
VISCOSIDAD DEL ACEITE a Pb y Ty, Cp	- '	
VISCOSIDAD DEL ACEITE a Pa y (T°C), Cp	-	
DENSIDAD RELATIVA DEL GAS (Aire =1)	0.8582	
LICUABLESm b1/MMPC C3+	105.518	
CO,% MOL	2,15	
1,5, % MOL	2.47	a second a second s
LABORATORIO	VH	

APENDICE

ΙI

C 6 M 1 (2) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		т ктёры. 11
Terr. Taler Murris (Cr.	N., (F)	14
the the African State CAT	11 26 11	.5471
Lot + LEA AND TH	12 11 1 1	• 1 T 4 T
55 - F	(111.00
PIES, C. SAT. CALC.	(*37:3)	271.70

PILS		RS (MA)	123)		0C (M7/M3)			£ (67/647)				
(Ku/cM,)	LAP	STAHE	0157.	VAZ	LAF	STANL	CIST.	VA Z	LAB	STAND	UIST	VA7.
4.2.01	135.70	63.70	60.AC	52.70	1.0.580	1.1374	1.7630	1.1207	.7263	• ^p 72 3	.7561	.9431
250.ŭt	135.70	63.70	60.8L	37.7C	1.5150	1.1472	1.7212	1.1.91	.7191	.8:98	.7454	. A 341
281.°L	1.25.71	63.76	нU.#C	33.76	1.5350	1.162+	1.2394	1.1396	7: 18	. 9473	.7346	.8251
264.06	135+70	67.75	60 .°C	57.76	1.5.70	1.1908	1.2510	1.1046	- <u>6</u> 665 C	·P:*2	.7638	.R 398
180.50	135.71	61.76	6C.+O	37.76	1.5730	1.1462	1.2249	1.0914	.6916	.8.88	•7734	.0454
134.16	162.96	44,50	42.96	24.30	1.4 170	1.1376	1.1776	1.06.71	.7173	. 9 198	.7508	.8565
91.Ei	10.000	27.90	28.5U	15.466	1.4400	1.1302	1.1400	1.0452	.7 :29	.8116	BL45	.9668
10.1	13.96	26.76	21.Ja	11.70	1.3050	1.1.68	1.1246	1.0 :44	.7416	. 2177	-P1C4	.2718
• 1 • ¹ •	7.40	6.7:	9.51	4 🔒 Ն	1.2780	1+1208	1.5959	1.0151	.7612	. 0.04	. 9, 11	. 9 815
• 34	•CT	a04	• <u>-</u> L	•"0	1.1020	1.1172	1.745	1.0037	• P C 91	.7 - 67	·R286	. 9 8 7 3

• • •				1	• • • • •	• / • • /	• ^ 2 7 0	•
	C # MP C		ANKATUL		•			
	F 62 0		12					
	TERP. DE ANALISIS ER	AD. CENT.1	147.61		·			· .
	DEN. REL. DEL GAS	(AIPE #1)	•795C					•
	OSI. DEL ACEITE	(587653)	•8°ut					· .
	4 - 2 Λ	(M3/P/)	17.00					
	THEL. HE SAT. CALC.	(10/2"2)	317.10					•
							•	

P 5		RS (#*/M3)				10 (F3/F3)				B 165/5471			
(FUZUM,)	ιAΰ	STAND	01.1.	VPT	LAN	STANE	0151.	VA.	LAP	S TARP	CTST.	VA7	
	141.00	67.70	66.60	20.00	1.4570	1.1756	1.4280	1 - 1 36 1	.7057	.4174	.7.49	.A 05 2	
	191.60	67.70	66 . 5u	29.60	1.5110	1.1737	1.4652	1.131/	. 5999	.8435	.7099	.9254	
251.656	141+60	€7.7	01.61	19.60	1.1200	1.16P1	1.7292	1+1-89	•6912	•B :45	.7341	. 7 7 6	
16.5 + 5.6	141.60	67.70	6 6.06	29.66	1.5470	1.1575	1.2615	1.0060	.6, "5	"A. SL	7564	. 2443	
1 a 🕠 🖒 🔬	141.66	67.70	65.61	19.00	1.5 526	1.1551	1.2487	1.0517	. 6 2 0 0	.8.29	.7078	. 9468	
17.101	1.0.16	61.50	69.444	27.10	1.5100	1.1530	1.2319	1.01%	.6270	. 1.01	. 7057	. 8497	
1.6	1.1.1	41.5%	41.01	10.10	1.4180	1.1437	1.1798	1.0535	• 7130	.9103	.7:54	01.06	
1 .	1	22.20	24.10	10,70	1. 1 220	1.1353	1.1360	t.0326	.7 161	.9.06	.9612	. 0695	
	5.30	5.00	2 .9L	• 20	1+2290	1.1.21	1.1002	1.0136	. 7664	.7517	. 0144	,1799	
•	•* L	• F.F.	•f1.	• U	1.0120	1.1.54	1.2 -01	1+0640	+91EC	.7 84	+ 92.1S	. 4071	

27 H C 2		APKATHE
		21
THE SEAMALISTS (ANALISTS (AN	AP. LEFT.L	147.00
4	(7 In(1)	.9169
SED. DEL ACEITE	(Sa/C23)	.5010
↓ 0.6	(.**/*3)	177.LF
P FS. DE SAT. CALC.	(867(+2)	229.80

£÷ S		65 (M3)	/*31		30 (M7/M3)				\$ (GP/CH3)			
(Ku/(//.)	LAF	5 T A 40	OIST.	V # 7	LAD	STAND	0151.	VA Z	L 48	STAND	CIST.	VAZ .
45.0 . 01	127.10	58.50	57.16	31.10	1.4630	1-1508	1.3394	1.1294	.6537	· ° c12	.7403	.9367
35. 31.	123.10	58.56	57.16	31.10	1.4760	1.1610	1.7524	1.1360	.5976	 8 5 2 3 	.7327	.8302
365.00	121.11	50.50	57.10	11.10	1.4520	1+1701	1.3659	1.1437	.6952	. 8436	.7251	. 9 2 7 9
251.01	123.10	53.56	57.10	a1.10	1.5160	1.1064	1.3122	1.1243	.6797	.8 24 9	.7425	.8715
174.01	123+11	59.40	57.10	31.16	1.5.350	1.1518	1.2211	1.0949	.6657	.9.13	.7736	. 9499
1:F.O.C	164.10	48.90	47.90	26.46	1.4:20	1.1474	1.1997	1.0705	.6777	.5169	. 7 : 25	. 95,43
121.06	17.60	29.031	3P .90	21.60	1.4 320	1.1471	1.1735	1.0604	.6005	• 123	.7910	. P 6 7 1
1.00.00	12.60	36.00	30.70	16.00	1.2000	1.1382	1,1523	1.0482	.7636	.8c78	•7489	• 9 4 5 9
. C. 9 L	41 . 9f	17.00	15.66	7.70	1.2536	1.1312	1+1155	1.0247	.7296	.7.91	. 9125	. + 77 3
. 5 4	•00	• C+	•0U	•f C	1.0320	1+1.54	1.0800	1.0640	.7972	.7526	, P 2 5 3	.9177

CAHPO		A" KATUL
P000		51
TEMP. DE ANALISIS COP	AD. CENT.F	130.00
DEN. REL. DEL CAS	(17 191A)	• 9255
D.N. DEL ACEITE	(62/647)	•8717
h L A	1.17/13)	177.60
PEES. DE SAT. CALC.	(KJ/("2)	229.60

PELS		RS (H1/43)			BD (13/43)				S. (GP/CH3)				
(K 67C47)	LAU	5 TA ND	0151.	4 A Q	L 46	STANI	0151.	VA Z	LAN	STAND	UIST.	VA7.	
356,64	127.40	60.51	66.00	30.60	1.4:12	1.1251	1.7171	1.1689	.7220	. 4 715	.7405	.8 377	
291.01	127.40	69.50	66.00	30 .40	1.0758	1 . 1 391	1.2342	1.1160	.7149	• 8 5 9 2	.7303	8 24 7	
150.01	1.1.46	69.50	66.00	10.10	1.5.68	1.1448	1.2872	1.1.10	•7061	·H 266	.7468	.8264	
170.00	1.7.40	59.50	66.000	30.60	1.5130	1+1404	1.2597	1.0907	+6972	.8.17	.7499	• 8 3 C 9	
154.00	127.40	69.51	66.10	30+60	1.5188	1.1372	1.2396	1.0022	.6946	·# 278	.7569	• A 34 4	
130.04	164.00	54.20	52.80	24.20	1.4486	1+1308	1.2621	1.0650	.7124	• B . C1	.7698	.8414	
160.0.	HE . 2L	42.11	39.80	17.90	1.1530	1.1293	1.16f3	1.0486	.7.54	• * 117	.7 322	. 8487	
50.04	54.30	17.40	20.26	7.80	1.0482	1.1145	1.1152	1.0224	.7496	.7481	.°L02	. 86D2	
10.L	36.80	1.10	11.00	7.40	1.2364	1.1103	1. 1925	1.0109	.7688	.7 519	, RG79	. 8654	
. 9.0	• D t	• fi	.00	.00	1.1.110	1.1670	1.5+75	1.6010	• 0 1 9 8	.7 : 71	P 162	• 8675	

•
CAMPO	ARKATUN
P 07 0	7.4
FLMP. DE ANALISIS (GRAD. CENT.)	147.00
DEN. REL. DEL GAS (AIPETE)	.9170
DEN. DEL ACEITE (GR/CM3)	8729
PGA (M3/83)	137.00
PEFS. DE SAT. CALC. (KG/CM2)	251.20

	RS (M3.	/H3)			80 183	743)		L (GR/CH3)				
LAB	STAND	0151.	V A Z	LAR	STAND	0151.	VA Z	LAB	STAND	OIST.	VAZ .	
1 30.20	74.70	72.30	31.90	1.4726	1-1413	1.3602	1.1166	.7167	. 8 6 9 9	.7203	. 8 285	
130.20	74.70	72.30	31.90	1.4885	1.1554	1.3779	1.1249	.7090	8529	.7143	8206	
130.20	74.70	72.30	31.90	1.5165	1.1613	1.3579	1.1205	.7005	.8406	.7176	.8197	
130.20	74.70	72.30	31.70	1.5304	1.1473	1.2637	1.0859	.6896	· A 256	.7477	.8337	
112.30	62.40	60.70	26.70	1.4703	1.1418	1.2303	1.0724	.7050	.8193	7590	.8394	
96.00	50.10	49.40	21.50	1.4236	1.1364	1.1985	1.0587	.7162	.8 12 7	.7699	8452	
80.50	38.30	38,80	16.50	1.3769	1.1312	1.1696	1.0456	.7297	. R L 6 D	.7801	8509	
50.90	16.60	19.70	7.20	1.2835	1-1217	1.1197	1.0<13	.7564	.7 432	7976	.0617	
36,30	9,90	12.60	1.90	1+2472	1.1194	1.1019	1.0127	.7680	.7 .85	.8037	8657	
.00	•ቦር	•06	•ru	1.0702	1.1145	1. 1770	1.0023	•P022	.7 :28	.8134	.8705	
	LAB 1 30.20 1 30.20 1 30.20 1 30.20 1 30.20 1 12.30 96.00 50.50 50.90 3°,30 .00	RS (H3) LAB STAND 130.20 74.70 130.20 74.70 130.20 74.70 130.20 74.70 130.20 74.70 12.30 62.40 96.00 50.10 60.50 38.3C 50.90 16.60 30.30 9.90 .00 .00	RS (M3/H3) LAB STAND OIST. 130.20 74.70 72.30 130.20 74.70 72.30 130.20 74.70 72.30 130.20 74.70 72.30 130.20 74.70 72.30 130.20 74.70 72.30 12.30 62.40 60.70 96.00 50.10 49.40 80.50 38.30 38.80 50.90 16.60 19.70 3 ⁶ .30 9.90 12.60 .00 .00 .00	RS (H3/H3) LAB STAND OI SY. VA7 130.20 74.70 72.30 31.90 130.20 74.70 72.30 31.90 130.20 74.70 72.30 31.90 130.20 74.70 72.30 31.90 130.20 74.70 72.30 31.90 12.30 62.40 60.70 26.70 96.00 50.10 49.40 21.50 80.50 38.30 38.80 16.50 50.90 16.60 19.70 7.20 3 ⁶ .30 9.90 17.60 3.90 .00 .00 .00 .00 .00	RS (H3/H3) LAB STAND OIST. VA7 LAR 130.20 74.70 72.30 31.90 1.4726 130.20 74.70 72.30 31.90 1.4885 130.20 74.70 72.30 31.90 1.5485 130.20 74.70 72.30 31.90 1.5485 130.20 74.70 72.30 31.90 1.5465 130.20 74.70 72.30 31.90 1.5465 12.30 62.40 60.70 26.70 1.4703 96.00 50.10 49.40 21.50 1.4236 60.50 38.3C 38.80 16.50 1.3769 50.90 16.60 19.70 7.20 1.2835 35.30 8.90 12.60 3.90 1.2472 .00 .00 .00 .00 .00 .00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RS (H3/H3)BO (H3/H3) f_{a} (GP/CH3)LABSTANDOIST.VA7LARSTANDOIST.VA2LABSTANDOIST.130.2074.7072.3031.901.47261.14131.36021.1166.7167.8649.7243130.2074.7072.3031.901.448951.15541.37791.1249.7090.8529.7143130.2074.7072.3031.901.56651.16131.35791.1205.7075.8406.7176130.2074.7072.3031.901.51651.16131.35791.1205.7075.8406.7176130.2074.7072.3031.901.51651.16131.35791.1205.7075.8406.7176130.2074.7072.3031.901.51651.16131.35791.1205.7075.8406.717612.3062.4060.7026.701.44361.44751.26371.0859.6876.8256.7477112.3062.4060.7021.501.44361.3641.19851.0587.7162.8127.759996.0538.3C38.8016.501.37691.13121.16961.0456.7297.8160.780150.9016.6019.707.201.24351.12171.11971.0213.7564.7532.797636.308.9017.603.901.24221.11491.10191.0127.7680					

САНРО		ARKATUN
P 02 0		74
TEMP. DE ANALISIS (GR	AD. CENT.)	191.70
DEN. REL. DEL GAS	(AIRE=1)	.9750
OLN. DEL ACEITE	(GR/CM3)	.8940
PGA	(83/83)	1 17.00
PRES. DE SAT. CALC.	{KG/CM2}	271.30

PRES	ES RS (M3/H3)					80 (83	/M31	S (GP/CH3)				
(KGZCH 2)	LAB	STAND	0I 5T.	VAZ	LAB	STAND	6121.	VA Z	LAÐ	S TAND	OIST .	VAZ .
422.00	1 38.70	60.80	58.10	34.50	1.5250	1.1339	1.2915	1.1237	.7218	.8 705	.7619	.8440
352.00	134.70	60.00	58.10	34.50	1.5430	1+1473	1.3084	1.1323	.7176	.8582	.7513	.A 349
201.01	138.70	60.80	58.10	34.50	1.5/30	1.1674	1.3261	1.1429	7644	.8459	.7406	.8257
190.00	138.70	60.80	58.10	34,50	1.5960	1.1489	1.2296	1.0992	.6897	.8299	.7731	.B442
119.56	138.70	60.BO	58.10	34.50	1.6110	1.1469	1.2179	1.0935	•6876	.8 4 BU	.7778	.846.8
1ՏԲ•ՕՆ	118.80	49.00	46.90	28.30	1.5400	1.1416	1.1886	1.0774	.709	.# 226	.7885	.8541
116.0 L	95.80	35.90	35.70	21.40	1.4720	1.1357	1.1586	1.0594	.7170	.8165	7998	.P626
65.0f	63.2C	17.20	18.90	10.90	1.3486	1.1273	1.1188	1+0322	.7403	+R C72	, 9149	.8758
2° • 6 C	4C+1C	6 • ° O	9.10	9.50	1.3020	1.1225	1.0962	1.0154	.7609	.BL16	P232	.8843
• 0.0	•00	•00	•00	.CC	1+1030	1.1197	1.0761	1.0037	.8105	.7581	·P304	.8903

CAMPO		ABRATHN
£020		93A
TEMP. DE ANALISIS C	(RAD. CENT.)	138.00
DEN. REL. DEL GAS	(A1RE=1)	.9180
DEN. DEL ACEITE	(SR/CP3)	.8731
PGA	(H3/H3)	137.00
PRES. DE SAT. CALC.	(KG/CMS)	252.20

PFLS		RS (M3,	/ M3]		BO (H3/M3)					Lo IGR/CH3)				
(KG/CM2)	LAB	STAND	OI ST.	VAZ	L AP	STAND	0151.	VA Z	LAB	S TAND	OIST.	VAZ.		
350.00	126.70	72 .15	70.10	31.00	1.4697	1.1426	1.3618	1.1174	.7065	.8639	.7236	.8282		
361.00	126.70	72.15	70.10	31.00	1.4891	1.1542	1.3765	1.1242	.6996	.8539	.7154	·8.217		
252.00	126.7ú	72.15	70.10	31.00	1.4587	1.1668	1.3915	1.1322	•692P	. R441	.7673	.8153		
263.00	126.70	72.15	70.10	51.CD	1.5159	1.1549	1.3077	1.1028	.6850	.A 321	.7332	·827D		
170.CL	126.70	72.15	76.10	31.00	1.5298	1.1472	1.2581	1.0837	.6787	·8236	.7495	. 8348		
156.00	110.70	62+10	60.50	26.70	1.4805	1.1427	1.2305	1.0725	.6900	.8184	.7580	.8345		
130.01	97.40	52.20	51.40	22.60	1.4353	1.1364	1.2649	1.0610	.7020	.8132	.7676	. 8 44 2		
96°CC	72.10	33.50	34.70	14.60	1.3628	1.1302	1.1573	1.0406	.7290	.8627	.7836	•P533		
56.06	49.80	16.50	19.70	7.20	1.7522	1.1228	1.1203	1.0213	•7404	.7926	.7972	.8619		
.01	.00	• 00	•0U	•00	1.0735	1.1157	1.0733	1.0023	.8152	.7 822	.8131	.R707		

CAMPO	ABKATUN
P020	93 A
TEMP. DE ANALISIS (GRAD. CE	NT.) 150.60
DEN. REL. DEL GAS (AIR	150.00L0
DEN. DEL ACETTE IGR/	CK3) .9390
PGA (M3	.87 .87
PPES. DE SAT. CALC. (KG/	'CM2) 137.00

FIS		RS CH3	/ H3)		BO (H3/M3)					Po (GP/CH3)				
1867CM ()	LAB	STAND	01 51.	VA7	LAR	STAND	0151.	VA Z	LAB	S TAND	0151.	V A 7 •		
356.01	140.30	72 •20	72.90	33.50	1.594	1.1563	1.3814	1.1245	.6710	.8517	.7149	.8 25 3		
310.00	140.30	72,20	72.90	33,50	1.5117	1+1659	1.3939	1.1306	•6658	.8435	.7079	.8196		
269.00	140.30	72.20	72.90	37.50	1.5856	1.1766	1,4073	1.1377	.6600	• R 353	•7609	.8138		
230.00	140-30	72.20	72 .90	33.50	1.5996	1.1725	1.3595	1.1216	.6542	.8266	.7144	.8194		
178.01	140.30	72.20	72.90	33.50	1.6223	1.1607	1.2777	1.0904	•6450	.8191	.7401	.0320		
160.00	126.40	63.50	64.20	29.50	1.5133	1.1568	1.2525	1.0799	•6560	• B € 97	.7484	. 9 36 3		
140.01	112.80	54.10	55.00	25.20	1.5276	1.1526	1.2262	1.0686	.6663	.A C47	.7572	.8411		
100.00	87.10	36 • 10	38.10	16,90	1.4500	1.1446	1.1792	1.0468	.6845	.7.948	.7733	.8505		
0.0.0E	(1.20	19.50	22.90	9.21	1.3102	1.1373	1.1388	1.0266	.7195	.7851	.7872	.8594		
.01	.00	•00	•00	.00	1.1.85.4	1.1289	1.0823	1.0025	.7986	.7.732	•8063	.8705		

CAMPO		ANK ATHN
Pr20		
TEME, DE ANALISIS (LO	40. CE1 T.1	146.00
DEP. REL. DEL CAS	(4.1710.11)	.9710
DIN. DEL ACETTE	(#676731	190LC
Dir, A	(317/33)	177.60
PHES. DI CAT. CALC.	{K5/LM2}	275.70

		• • • • •											
PPES	LS R5 (M3/M3)					50 (M3	/#31		& (6P/CH7)				
(KG/CM2)	LAB	STAND	0157.	V A 7	L AP	STAND	01ST.	VAZ	LAB	STAND	OT ST .	VAZ.	
422.00	137.20	60.00	58.00	32.36	1+5184	1.1348	1.3059	1.1219	.7204	.8721	.7556	.8427	
351.66	127.20	60.00	53 . CU	32.36	1.5352	1.1486	1.3235	1.1304	.7125	. 8 597	.744 8	• P 338	
281.30	137+20	60.90	50.00	32.36	1.5.549	1.1638	1.3415	1.1408	.7035	.8474	.7343	•P250	
196.96	137.20	66.00	58.¢C6	32.30	1.5.945	1.1492	1+2407	1.0992	.6903	P 322	.7685	.6426	
175.40	137.20	60.06	58.CL	37.30	1.5430	1.1450	1.2170	1.0579	.6 at 7	.8.81	.7771	.8477	
151.21	125.20	53.80	51.36	28.86	1.5270	1.1418	1.1992	1.0789	.6941	R 249	.7035	·8518	
165.46	59.40	32.90	32.60	18.50	1.4540	1.1324	1.1511	1.0519	.7175	.6149	9614	.8.64 4	
76.16	66.90	20.20	21.60	11.80	1.7570	1,1268	1.1241	1.0347	.7779	.81.84	. 9115	.9727	
35.10	44.56	8.71	11.50	r.6L	1,3200	1.1217	1.1002	1.0182	,7505	.8124	P204	•6503	
.C£	.LC	• C U	.00	• C C	1.1.20	1.1178	1.6748	1.0037	AC92	.7 576	.8295	.8882	

C AHPO	ABKATUN	
PG20	211	
TEMP. DE ANALISIS (ER	AD. CENT.) 131.CD	
DEN. REL. DEL GAS	(A191=1) .7660	
DEN. DEL ACEITE	(GR/CH3) .8871	
EGA	(83283) 137.0	С
PHES. FL SAT. CALC.	(Ku/CH2) 301.2	٢

P"LS		RS (M3	/M3)			60 CF3	/#31		La (GP/CYZ)				
(KGZČ42)	LAN	STAND	0151.	V A Z	LAD	\$7A40	0151.	VAZ	LAP	STAND	CIST.	VAZ.	
460.06	153.90	114.00	111.00	43.20	1.6680	1.1461	1.3867	1.1195	.6469	.87PD	.7240	.8352	
356.01	193,90	114.80	111.00	43.20	1+6 900	1.1568	1.4005	1 - 1 254	•6393	.8(91	.7167	•P298	
360.01	193,90	114.86	111.00	43.20	1.7150	1.1649	1.4602	1.1279	.6291	·8(01)	• 7] 4 3	.9266	
275 • 04	193.90	114.80	111.00	43.20	1.7260	1.1592	1.3592	1.1166	•6251	.8.554	.7.71	. A 213	
250.01	169.80	102.30	97.60	38.90	1.6.520	1.1535	1.7209	1.1055	•6410	·A105	.7396	• B 36 1	
260.00	1. 9.60	79.20	73.20	36.56	1.5330	1.1426	1.2524	1.0835	.6665	.8402	.7631	•845 u	
150.01	57.30	55.30	51.80	22.20	1+4400	1.1324	1.1942	1.0122	.6915	.8296	•7 n40	.9553	
160.01	67.20	33.90	33.10	14.70	1.3600	1.1229	1+1453	1 • (1414	•7112	•°188	.º619	•°649	
51 + 11 C	28.5L	14.76	16.80	6.70	1.2.630	1.1145	1.1659	1.0216	.7 136	R (85	.P156	. 1744	
.01	•C6	• P. C.	•Ub	.00	1.6376	1.1081	1.0682	1+0.042	■ £ 5 3	• A CDS	• n 301	• A 52 9	

(2 MPC		A" KATUK	
P 5 7 0		2124	
TEMP: DE AMAIINIS (D	PAE. CERT.1	137.00	
PITE PELE DEL GAS	(A1PE-1)	.122	
DEN. DUL ACETT	(Six/(27)	.6240	
11 A	(h3/M3)	137.00	
DLES. DI SAT. CALC.	[KG/(H2)	302.10	

1.212		RS (M3	ZM31			80 (M3	2433			P. 1691	(CX1)	
(#67(#1)	LAP	STAND	0157.	V A 2	LAF	STAND	0151.	VAZ	LAR	STANT	UIST.	VAZ.
300.01	149.10	86.80	83.6J	34.80	1.5280	1.1714	1.4151	1.1321	.6783	. 8 54 1	.71.73	1110
256.01	149.10	86 • 86	83.60	34.00	1.5460	1.1599	1.3336	1.1(89	.6703	. 8 44 7	.7377	• 1 2 J J 0 2 1 G
250.00	149.10	96.80	83.60	34.80	1.5540	1.1555	1.3041	1.0958	.6669	5 60 2	.7020	• D 3 / 9 0 7 / u
210,01	149.10	86 . A D	83.60	34.80	1.5580	1.1531	1.2886	1.0948	.6649	8 170	7676	• 7 3 6 0 • 7 9 6
112.01	119.50	66.30	63.3U	27.30	1.4680	1.1439	1.2313	1.0751	.6878	-0.377 -8./86	1410	• B 5 B 9 0 6 B 4
121.4C.C	66.7C	44.26	42.90	18.90	1.3:00	1.1340	1.1769	1.0533	.7103	-8178	7.70	• 1975 0C10
146.86	15.00	33.80	33.76	14.70	1.3370	1.1294	1.1530	1.0427	7 77	- 3 17h	7057	• 8 3 / 4
51.0t	43.20	14.60	17.20	6.90	1.2190	1.1209	1.111.	1.022.	7456	9119	+1237 DID0	• 467.5
25. O L	26.70	6.30	2.40	3.20	1.2110	1.1173	1.0935	1.0127	7521	7 (77	* 11.0	•8719
• " L	•na	•00	•00	.00	1.0210	1+1146	1.0726	1.0043	9679	. 7 536	• 9246	•9766 •9807

САНРО		ARKATUN	
1020		216	
TEMP. DI ANALISIS COR	AD. CENT.)	140.00	
DEN. REI. DEL GAS	(AIRE=1)	.9870	
DEN. DEL ACEITE	(GR/CH3)	.8876	
ፍ ሪል	(M3/H3)	137.00	
PRES. DI SAT. CALC.	[KG/CH2]	258.20	

665C	R5 (H3/H3)				80 (H3/M3)					E (GP/CH3)				
(KG/CH2)	LAR	STAND	01 57.	V A Z	L AP	STAND	0151.	VA Z	LAB	S TAND	OTST.	VA7.		
35°.OC	71.90	46.10	44.70	25.30	1.2550	1.1429	1.3122	1.1250	.7464	-8 596	.7472	8744		
530.06	71.90	46.10	44.70	25.30	1+3127	1.1558	1.3276	1.1335	.7400	.8487	7179	.9747		
200+0 C	71.90	46.10	44 .70	25.30	1.3343	1.1511	1.2569	1.1059	.7290	-8 116	.7596	. 836.0		
170.00	71+9fi	46.10	44.70	25.30	1.3437	1.1451	1.2214	1.0392	7229	-9.256	.7722	80304		
134.00	71,90	46,10	44.70	25.30	1.3550	1.1382	1.1834	1.0696	.7261	• 8 1A2	7859	. 9525		
120.01	65.90	40.10	39.60	22.50	1.3304	1.1357	1.1699	1.0621	.7237	.8 154	.7909	. 8559		
90.0L	56.16	28.50	29.20	16.40	1+5850	1.1304	1.1434	1.0462	.7383	.9 6 9 3	.8006	. 8673		
60.0C	40.60	17.50	19.60	10.40	1.2376	1.1255	1,1198	1.0309	.7500	8134	-8693			
31°#0 C	25.20	7.6P	10.50	4.90	1.1634	1.1211	1.0994	1.0164	7688	7 979	.8171	. 1776		
19-01	15.80	3.30	5,90	5 * 30	1.1:19	1+1193	1.0878	1.0695	.7341	7 956	9209	.9811		

C A 9 10 10		A 7 K A 1 7 +	
P 6 7 0		2.4 与 5	
TUPP. DE ANNUISS CO	974 (747)	142.00	
DIM. REL, SCL SAC	(* [0) ())	 N#11 	
PEN+ DEL ACCITE	11 76433	.384A	
PGA	C 7743)	177.10	
PRES. CL SAT, CALC.	(KAZCP2)	300.00	
85 (M3/H3)		60 (63/M3)	

PPES		RS (M3	/#3)			60 (1.3	/M31		La (GP/CH3)				
(K6/CM2)	LAB	STAND	OIST.	ν A γ	LAP	STAND	0151.	VA Z	LAB	STAND	OIST.	VAZ.	
400.00	125.20	62.90	60.60	27.46	1.4530	1.1514	1.3655	1.1262	.7110	.8663	.7307	.8352	
35r.Ol	125.80	62.90	60 •6ú	27.40	1-466	1.1619	1.3791	1.1325	.7047	. 9 . 74	.7232	.R 292	
250.00	125.80	62.90	60.60	22.46	1.4550	1,1626	1,3175	1 • 1 15 3	•6911	.8396	.7349	.8337	
17 P.OC	125.36	62.90	60.61	_?.4C	1.5190	1.1481	1.2270	1.0808	.6354	.9.59	.7712	.8488	
156.00	165.90	51.20	49.56	24.00	1.4 550	1.1428	1.1972	1.0678	.6081	.8.05	.7819	. 9 54 6	
125.00	09.60	41.10	40.30	20.00	1.460	1+1383	1.1730	1.0560	.7111	. ^A 156	.7568	.8601	
100.00	74.60	31.46	31.76	15+60	1.3000	1.1339	1,1510	1.0450	•7250	.8 108	.7589	.865.4	
75.01	:9.90	22.20	23.66	11.46	1.3200	1.1298	1.1311	1.0340	.7359	.8160	·8163	+9707	
36.6.6	29.46	7 + 40	10.30	4.00	1 • 2 270	1.1232	1,0992	1.0151	.7622	•7 58U	.R180	.8799	
• ¹ L	.66	•n0	•°6	.00	1.0270	1.1.01	1.0763	1.0142	.8C25	.7 939	. 8261	.8854	

CAMPO		POL	
P020		71	
TEMP. DI ANALISIS (GR	RAD. CENT.)	133.30	
PEN. PEL. DEL GAS	(A1PE=1)	.86ur	
DEN. DEL ACEITE	(1)/(*3)	.8475	
P G A	(M3/F3)	190.00	
PHES. DI SAT. CALC.	(KG/CH2)	298.00	
PS (M3/M3)		80 (H3/H3)	f 16°/

	PFES		PS IM3	/H3)		80 (#3/#3)				₽ (GP/CH3)			
	(KG/CM2)	LAB	STAND	0151.	V A C	LAP	STANE	0151.	VAZ	LAR	S TAND	0151.	VAZ.
	346.76	146.20	140.10	137.9C	43.70	1.6639	1.1592	1.5646	1.1369	.nc.co	.¤ 514	.6528	.AC26
	317.70	196.20	14(.70	137.90	43.70	1+6809	1.1715	1.6632	1.1425	•C6C0	.8114	.6454	•7977
	291.61	196,26	140.30	137.91	47.70	1.7070	1.1077	1.6261	1.1506	•eteb	• ¹² 6913	.6362	.7515
	255.01	1 4.20	140.20	137.90	41.70	1.7212	1+1751	1.5228	1.1275	•ncnn	.8567	.6607	.791
	2451	114.20	147.30	131.96	47.76	1.7407	1.1097	1.4750	1.1171	+6165	.8505	.6725	• P 1728
	211.00	162.90	120.10	116.80	37 . 16	1+6304	1.1610	1.4096	1.1008	.6161	• <u>9.404</u>	.6 94 4	
	1:5.6	111.70	8.2 . 841	80.20	26.11	1.4172	1.1451	1.2943	1.0706	• ft ft § 3	.8195	.7230	. 9 193
;	1.7.71	96.74.	65.10	64.10	25.11	1.4634	1.1371	1 . 2447	1+0562	.6.53	.3186	.7381	. P.745
	99.00	11.00	43.31	44.91	15.10	1.3443	1.1305	1.7602	1.0429	 70.02 	.1576	. 7519	*H56P
	4 6	21.01	26.45	24.56	6.16	1.2439	1.1190	1.1418	1.0125	.7 2€5	•1 IP2	.7175	. P. 1. P. 4

CAMPO		POL
P 07 0		71
TEMP. PE ANALISIS (ERAD. CENT.)	134.40
DER. REL. DEL GAS	(AIRES1)	.7370
DEM. DEL ACEITE	(GP/CP3)	.8560
P6A	(113783)	190.00
PRES. DE SAT. CALC.	(K6/CM2)	373.60

Pp. 5		RS IN3	/#3)			BO CH3	/*3)		€ (GP/CH3)				
(KG/CH_)	LAB	STAND	0157.	V A Z	L AP	STAND	0157.	VA Z	LAB	S TAND	0157.	VAZ.	
400.0L	208.80	123.96	121.70	39.40	1.7270	1.1744	1.6274	1.1507	•6178	.9870	.6437	.8007	
360.00	268.80	123,90	121.70	39.40	1.7710	1.1827	1.5677	1.1413	.6€25	. A 64 1	.6536	8 CD2	
251.00	268.80	127.90	121.70	39.40	1.8000	1.1683	1.4505	1.1143	.5926	.8498	.6336	.8 198	
234.00	208.80	123.90	121.70	39.40	1.8080	1.1638	1.4161	1.1059	.5899	.8449	.6930	• P 129	
200.000	168.10	102.50	99.60	32.70	1.6800	1.1546	1.3480	1.0883	+6138	.8:242	.7124	.8194	
156.06	122.60	72.50	70.56	23.10	1.5410	1.1418	1.2603	1.0635	.6436	. 8176	.7391	.8289	
160.01	34 • TU	44.56	45.10	14.30	1.4250	1.1299	1.1863	1.0402	.6710	.8104	.7626	8 38 0	
51.01	45.90	19.30	22.90	6.30	1.7260	1.1193	1 • 1266	1.0191	.6962	.7+36	.7822	.8466	
24.01	24.90	9.4C	12.50	2.80	1.2580	1.1148	1.1001	1.0698	.7154	.7759	.7905	.8504	
• D L	•00	• P 0	.00	0 0•	1.0680	1.1113	1.0704	1.0025	.7645	•7t99	• 7 993	.8534	

.

САНРО		POL
P070		79
TEMP, DE ANALISIS CO	AD. CENT.)	152.00
DEN. REL. DEL GAS	(AIRE=1)	_8PUC
DEN. DEL ACEITE	(GK/CM3)	.8764
rga	(#3/#3)	196.00
PRES. DE SAT. CALC.	(KG/CH2)	356.00

PRES		RS (M3)	/ M 3)			BO (#3	/#3)	S. IGP/CHT)				
IKG/CH 2)	LAB	STAND	0151.	V A 2	LAR	STAND	0151.	VA Z	LAR	STANP	0157.	VAZ.
450.01	200.00	94.10	96.90	41.60	1.7170	1.1795	1.5641	1.1758	.6351	.8686	.6679	.8027
356.06	200.00	94.11	96.90	41.60	1.7530	1.2010	1.5850	1.1865	.6220	•8499	.6528	.7931
250.01	200.00	24.1C	26.20	41.50	1.8150	1+1772	1.3866	1.1259	.6037	.8280	.7158	.8157
226.01	200.00	94.10	96.90	41.60	1.8380	1.1718	1.3462	1.1120	• 5 9 3 1	.8223	.7178	.8212
175.06	140.10	69.10	70.40	30.70	1.6050	1-1609	1 • 2693	1.0834	.6523	.8638	,7416	.A 327
150.00	117.60	57.46	51.70	25.60	1.5426	1.1557	1.2361	1.0699	,674B	.8136	•7524	.8392
100.00	78.86	35.20	37.60	15.80	1.4250	1.1461	1.1779	1.0442	.7002	.7 911	.7717	.8491
50.01	44.50	15.30	19.10	6.90	1.3100	1.1375	1.1298	t • C 2C 9	.7377	. 7 190	.7878	.8594
25.01	24.70	6.60	10.40	7.10	1.2380	1.1377	1.1084	1+0107	• 7750	.7735	.7949	.R64D
.00	.00	.00	.00	. 60	1.0126	1.1309	1.6638	1.0026	. 0 35 3	.7193	• N L 2 7	.8677

0 A ¥ 0 ()		P.GL
1.47.6		11
TEMP: F. AMALISIS (0-	40	1.51.00
ALS+ REL DEL CAS	(41-1)	. 72 55
FENS DEL ACLITE	(6) Z (23)	- 54
1 - P	(.: 7/23)	100.00
FEFS. EL SAT. CALC.	(16/6/21	314.80

11 25		R5 (83	/H3)			30 (M?	1431						
(KG/CM))	LAP	SIVND	OIST.	VA7	L AB	STANL	0151.	VA Z	LAB	STAND	OIST.	VAZ .	
752.0C	138.76	130.20	134.80	40.460	1.6500	1.1996	1.7039	1.1512	.5881	.P 651	.6170	.7903	
366.16	138.70	130+20	134.80	45.40	1.6770	1.7068	1.6783	1.1489	. 5791	·8.220	.6196	.73P5	
25K •C C	1 (8.7C	136.26	134 .80	4 🗋 🖬 L 🖯	1.7660	1.1913	1.5403	1.1204	.5692	.6 26 1	.6506	.7978	
270+94	138 •70	130+20	134 •c0	46.666	1.7190	1.1653	1.4897	1.1693	5649	1:93	.6628	.8015	
190.30	116,50	103.40	165.86	37 . 40	1.5786	1,1737	1.3963	1.0877	.6[72	.3148	.6667	.9088	
156.000	95.JD	77.8G	79.8C	24.40	1.4040	1.1627	1.3136	1.7669	.6375	7 997	71.95	.9161	
166.01	61.90	47.76	51.10	15+10	1.3516	1.1499	1.7250	1.0424	. A 6 011	7 801	7 35.3	P 248	
51.66	21.10	20.7C	25.90	6.00	1.2420	1.1305	1.1518	1.0201	.7037	71.09	.7 . 74	• 9 3 3 G	
* • V L	14+16	8 • 9 C	14.20	2.06	1.1790	1.1330	1.1195	1.0103	.7263	.7121	767	.8366	
• ີ ເ	•0L	•f [•00	• üt	1.1106	1.1298	1.031	1.0027	.7511	.7451	.772	.8395	

стиро		POL
P(-20		77
TEMP. DE ANALISIS (GR	AD. CENT.)	157.60
DEN, REL DEL GAS	(AIPE:1)	1+0320
DEN. DEL ACEITE	£58∕CM3)	.8521
11 f A	(H7783)	196+60
PEES. DE SAT. CALC.	(86/022)	287.50

	TEMP+ D DEN+ RE DEN+ DE MCA PHES+ D	E ANALIS L. DEL G L ACEITE	ALC.	D. CENT.) (AIPE:1) (5R/CH3) (H7/P3) (H6/CP2)	15	7.60 0320 8521 196.60 287.50							
PRES		KS IM?	/43}			50 (M3	/431			£ 1601	C M 7 3		
(K67647)	LAP	STATE	015T+	V A 7	LAP	STAND	0151.	VAZ	LAP	STAND	CIST.	VAZ.	
350.00	150.00	99.70	104.00	43.50	1.5501	1.1829	1.5461	1.1613	.6720	.8101	.6577	.7957	
296-01	106.04	99.20	104.00	43.50	1.5719	1.1003	1.5707	1.1722	.6627	.8171	. 6472	.7074	
231.06	150.00	99.20	104.00	43.50	1.5 595	1.1858	1.4414	1.1378	.6513	·8/02	.6792	R1 [3	
2L5•0L	1.1.1.6	93.20	104 .00	43.410	1.6125	1.1791	1.3877	1.1164	.6461	.8123	.6.935	+ E.F. 3	
175.01	172.04	81 . 00	85.64	36 + 16	1.5.20.8	1.1716	1.3306	1.0969	.6677	.8128	7195	. 173	
125.01	e2.•06	54.65	58.16	24 .20	1.7509	1.1597	1 . 2472	1.0657	.6918	.7165	7342	. 2048	
92.24	(*.¢CC	41.36	45.26	18 . 1	1.335 8	1.1546	1.2095	1.0504	7143	.7786	.7453	. 6 30 7	
5.000	.1.06	12.10	23.20	S • 10	1.7169	1.1441	1.1476	1.0.77	.7 171	7:24	.7651	P411	
1 ⁰ (12.00	7.86	12.70	* • * b	1.1517	1.1398	1.1195	1.0117	7705	7:51	. 7777	. 44 F 4	
- 1 L	• 69	• P.D	•CL	• ! L	1.1650	1.1364	1.0.676	1.0623	0510	7676	7.7	5407	

CAMPO		POL
Se. 0		49
THEF. DI AMALISIS (UP	AD. CTAI.I	174・66
THE LE LE DEL MAS	(A 197-1)	•8∩31
E 1. DE KACETTE	{0k/0+3}	.84.84
L L A	TH37H39	190.60
PIES. PESAT. CALC.	(K6/(M2)	312+50

£ 11 L S		85 (M3	/M3)			80 (M	/431	L (GP/CM3)				
(KaZCH,)	LAP	STAND	OIST.	VAZ	LAP	STAND	0151.	VAZ	LAR	S TAND	ίτς.	VAZ.
351.06	165.20	131.70	129.36	39,80	1.6170	1.1604	1.6412	1.1464	. 6 276	• ^A ≥06	.6358	.7459
365.0.	165.20	131.70	129.30	12.°0	1.6290	1.1883	1.6234	1.1452	.6190	• B (.AD	.6372	•754 C
250.01	1:5.20	131.70	129.36	37.80	1.6540	1.1727	1.4938	1.1174	.6197	.9526	.6684	.8034
236.56	165+26	131.70	129.30	39.80	1.6650	1.1669	1.4478	1.1.69	.6057	• B 461	.6803	.071
260.000	106.40	110.90	167.86	33.±C	1.5610	1,1579	1.7799	1.0907	·6 2°5	.8 354	.6.988	. 9179
15.61	75.90	78.40	76.30	23.00	1.4296	1.1441	1.20.1	1.0651	.6612	.8169	.7273	. 9221
366.01	0.150	44.10	48.90	14.70	1.3240	1.1313	1.2001	1.0412	.6997	.7 577	.7526	.8311
56 • C to	31.40	20.80	24.8C	6.40	1.2210	1.1199	1.1329	1.0194	• 7] 85	.7788	.7739	.8394
2541.0	19.10	9,10	13.50	2 . ⁿ '.	1.1630	1,1150	1.1034	1+0099	.7394	.7701	.7 029	.9432
• 16	• C C	•P0	•00	• 0	1.1130	1,1113	1.5704	1.0624	• 7 6 75	•7 £32	.7724	. 9462

CAMPO	PÔL	
P 07 0	158	
TEMP. DE ANALISIS (ER	AD. CFNT.) 142.00	
PEN. REL. DEL GAS	(AIRE=1) .7422	
DER DEL ACETTE	(GR/CH3) -8452	
Б ад	tH37H33 190+0	0
PILS. DL SAT. CALC.	(KG/CM2) 312.5	0

PRES		R5 (#3	/M31			BO (M3	ZH31		f (GR/CM3)				
1K0/CH()	LAH	STAND	0151.	VAZ	LAB	STAND	0121.	¥AZ	LAB	STAND	OTST.	VAZ.	
352.06	135.10	115.00	114.80	35.30	1.5090	1.1891	1.6699	1.1481	.6 393	.8735	.6269	.7933	
300.06	135.10	115+00	114.80	35.30	1.5250	1.1973	1.6526	1.1472	.6 326	.8607	+6280	.7911	
240.00	135+10	115.00	114.80	35.40	1.550	1.1786	1.4.229	1.1135	.6226	.R416	.6653	.PD23	
206.10	131.10	115.00	114 .00	35+30	1.5.60	1.1686	1.4131	1.0951	.6160	.8297	.6259	.ACA6	
180.01	113.96	97.70	97.10	30,10	1.4550	1.1612	1.3570	1.0814	.6 347	.8201	.7013	.9134	
150.01	90.00	78.40	78.20	24.70	1.4119	1.1529	1.2979	1.7661	.6555	.9187	.7182	. R 189	
10.00	58.50	48.16	50-10	14.90	1.3110	1.1401	1.2175	1.0419	.6879	.7843	.7439	.8277	
56.01	28.84	20.10	25.50	6.60	1.2170	1.1287	1.1420	1.0198	.7185	•7 101	.7657	. 8 360	
25.06	11.80	9.10	13.96	2.90	1.1520	1.1237	1.1111	1+0101	.7429	·7 c13	.7751	.A 397	
. n r	.00	. 00	.00	. 00	1.1100	1.1200	1.076	1.0.20	.7589	.7543	.7.49	. 8427	

1. Attp://		C197
(c) (1)		1
TEMP, NU ANALISTS OF	(AT, G(AT,))	1.15+21
12. Mar. 196 A. 196 A. 1986	(110 mill)	. 78.90
THE OF LACE IF	€ 3.25.11°N	• ··· * • *
a. h	(A*7*()	157.00
THEOR DE GAT, CALC.	(K / (* 1)	345426

PPES		PS (M2	1451			90 (M3	1/43)	for (GP/CH3)				
(KG/CH 2)	LAP	STAND	0151.	V A T	C 49	STAND	0151.	VA Z	LAR	STAND	QIST.	VAZ.
460.01	154.50	93.70	91.70	36.20	1.7300	1.1739	1.5125	1.1477	.6295	.8710	.6801	.8158
350.0€	194.50	93.70	91.70	36.20	1.7.500	1,1857	1.5296	1.1545	.6221	.8620	.6729	.8105
300.00	154.50	93.70	91.70	36.20	1.7730	1.1739	1.4335	1.1310	.6140	.9.53	.6993	. 8 196
220.01	194.50	93.70	91.70	36.20	1.8170	1.157.	1.3142	1.0986	.5992	. 9 36 9	.7358	.9330
175.01	140.30	68.10	65.490	27 . 10	1.6320	1.1462	1.2412	1.0749	.6 261	.8.49	.7671	.8431
125.01	168.10	45.40	44.76	18.20	1,5680	1.1362	1.1835	1.0532	.6640	.8133	.7802	.8526
160.04	62.00	34.70	35.10	14.70	1.4470	1.1315	1.1585	1.0426	.6798	.8(75	,7 .00	. 0 573
50.00	45,80	15+10	17.30	6 . 5	1.3440	1.1230	1.1151	1.0223	.71.72	.7962	.8(44	. 8666
27.01	25.90	7.10	10.40	3.56	1+2810	1.1196	1.0974	1.0175	.7241	.7515	.8105	· 9708
•0 C	.06	•00	• f. G	• č t.	t.C.70	1.1165	1.0732	1.0643	.7961	.7 .72	.8184	. 2751

САНРО		CHUC
1° u20		101
TEMP. DI ANALISIS CLRA	M. CENT.)	146.60
DEN. REL. DEL GAS	EA1P1 =11	.9920
PLA, DE & ACFITE	(GK/CM3)	.8630
4.53	(03/22)	167.00
PHES. DE SAT. CALC.	(KU/CH2)	265.90

	F1.5		PS (#5243)				BO (M3/M3)				_}1 6₽/	(CH3)	
	(KGZCH,)	LAL	STAND	0151.	VA.	L AB	STANE	0157.	VA Z	ΓVe	S 1AND	CIST.	VAZ.
	350.01	142.20	164.40	162.56	44.76	1.5400	1.1530	1.4305	1.1379	.6541	.9 e4 3	.6973	.8125
	366.0	142+20	104.40	163.50	44 . FU	1.5570	1.1063	1.4481	1.1458	.6466	.3135	.6825	.9; = 7
	260.01	192.20	164.46	163.50	44.36	1.5720	1.1746	1.4475	1.1478	•6485	• 3449	.6 of 2	. 61.27
	211+11	142.26	104.40	103.50	44.10	1.5930	1,1629	1.3634	1.1198	.6372	.8 132	•7101	.R130
	155.00	56.10	61 9.	66.10	19 1 9 1	1.9.10	1.146	1.2510	1.3779	.6749	. 8135	.7448	.0.201
	tur 🖓	. 2.16	40.00	42.20	17.10	1.5190	1.1353	1.187.	1.0420	.7255	. 7 . 94	.76.7.2	. 4408
	15.13	4, 6 , 9 (1	28.00	31.56	12.76	1.2240	1.1301	1.153/	1.0354	.7192	.7509	. 7169	. 9464
	51.11		17.70	21.56	•	1.2.60	1.1.54	1.1273	1.0227	7 344	.7137	.7 <i>0</i> ⊑å	.8518
•	1.1.1.1	14.146	7.71	11.16	1. ac.	1.1650	1.1.11	1.1627	1.0112	.7560	.7769	.7539	• • · · · a
	. 13	• (. I)	• * E	• · · ·	.1.1	1.6.66	1-1171	1+6745	1.0021	, 7 . 44	. 7717	. D. 74	.460 7

C 7 A 15 U		IXIOL	
J.T.C		18	
T PP. DE ANALISIS (GRA	(). CEN1.)	117.50	
MIN. REL DEL DAD	(A10[=1)	.9117	
PEN. DE L'ACEITE	(58/643)	·8659	
P G A	(M3/43)	203.60	
HEES. DE SAT. CALC.	[KG/C'2]	337.60	

PL 5		DS CM3	ZM31		BO (M3/M3)				L (6"/CH7)				
186/04/1	LAP	STAND	• T2I0	V A P	94 J	STANE	0151.	VA Z	LAB	STAND	CIST.	¥ A Z •	
350.00	717.10	141.70	144.5C	52.10	1.7280	1.1841	1.5719	1.1625	.6134	. 6 57 4	. + 579	.7928	
320.00	213.10	141.70	144.50	58.50	1.7410	1.1:31	1.5371	1.1735	.6689	.3606	•6ℓ ^E 7	.7952	
361.01	203.10	141.70	144.50	58.50	1.7530	1.1779	1.4930	1.1019	.6046	• A 55 B	<u>.677</u> 0	. 7 90 7	
291.80	263.10	141.70	144.50	58.50	1.7010	1.1758	1.4766	1.1556	.6017	.8539	.6416	•PC16	
266.00	167.90	123.70	123.50	51.00	1.6426	1.1678	1.4131	1.1361	.6251	.R459	•6401	.9128	
266.06	110.40	89.91	87.90	37.40	1.4810	1.1573	1.3075	1.1405	.6638	.A.98	.7305	.9225	
140.00	79.90	58.56	57.51	24.50	1.3600	1.1395	1.2202	1.0065	.6996	. 3128	.75P4	.P361	
N U.L	46.56	22.80	31.70	12.60	1.2600	1.1.76	1.1502	1.0353	.7315	.7557	.7-1-	• 9 4 5 1	
1.1	15.60	7.30	11.16	7.20	1.1570	1.116.	1.0989	1.0106	.7675	.7811	.7985	* 6 2 0 8	
	.00	•D()	.00	.10	1.0450	1.1151	1.0729	1.0623	.7984	. 1 161	.PLF6	8675	

CAMPO		CAAN	
PO. 0		1	
TEMP. DE ANALISIS (GP	AD. CENT.I	150.00	
DEN. REL. DEL FAS	(A1PE=1)	.8582	
DEN. DEL ACCITE	(GK/LH3)	.8375	
FGA	(H7/M3)	310.00	
PRES. DE SAT. CALC.	(KU/CM2)	466.30	

DELS		DS FM7	2433		H0 (M3/M3)					L (GP/CH3)				
(KG/CH2)	LAP	STAND	01 51.	VA7	LAR	STAND	0151.	VA Z	LAB	STAND	OIST.	VA7.		
162 04	718.00	167.20	178 -60	56.50	2.2620	1.2111	1.7497	1.1829	.5039	.8657	.6.697	.7751		
332.00	318.00	167.26	178.60	56.50	2.2676	1.2647	1.6874	1.1696	.4984	.8594	.6224	.7791		
310 06	719 66	167.20	178 .60	56.10	2.3120	1.1991	1.6331	1.1570	.4931	.8133	.6378	.7828		
200 61	10.00	167.20	178.60	56.50	2.1280	1.1958	1.6630	1.1508	4697	. 9 496	+6403	.7849		
290.01	513100	107+20	140 - 30	45.70	1.8620	1.1827	1.4845	1.1227	5508	.8 334	. 6674	.7938		
	167,00	103 100	165 30	(5.10	1.6500	1.1697	1.77/1	1.0947	59.19	.8 152	.6941	9429		
201-10.0	147.10	103.20	101 100	2.7 * 10	1 0.40	1 1676	1 7686	1.0401	1 7 20	1 44 1	.7186	. 9 118		
150.0L	57.40	12.490	14 + 51	24.40	1.1.00	1.1.1.10	1.2040	1.0001	• • • • 2.0	7 16	7452	. 9 21.4		
160.06	5A.5C	44,70	47.70	ાં ના	1	1.1464	1.00/0	1 + 0 9 - 1			• • • • • • •	• • • • • •		
50.01	28.00	10.40	24 •30	6.70	1.2480	1+1363	1.142в	1.0264	• 6.9 BU	• 1 ° 4 3	• 1519	*8562		
.01	.00	.00	.∩C	.00	1.1170	1.1.87	1.1823	1.0026	 14:00 	. / 916	.7174	. 9 349		

C741C	2.11
10.010	 2
TEMP, OF ANALISIS & EACL UPST.)	117.1
DEN. FEL, DEL GAS (*100-1)	.7020
DEN. DEL ACETTE (CAR/CHS)	.5216
P (M (M 1 / M 2)	116.02
PEFS. DE SAT. CALC. (KUZCHO)	285.4

PP1.5		R5 (M3)	1431		60 (M3/M3)				fo (57/647)				
(KG/CM 2)	LAP	STAND	0157.	V 4 7	Γ γr	STAND	OIST.	VA 2	LAN	STAND	0157.	VAZ .	
350.01	110.20	51.70	41.76	20.46	1.3470	1.1237	1.2696	1 • 1 1 9 6	.7720	.e.659	.8148	• P624	
250.CL	116.20	51.70	41.70	29.46	1.3726	1.1265	1.1869	1 + 108.4	.7613	. E 735	· º 211	.8655	
260.CE	110.20	51.70	41.70	22.41	1.7160	1.1189	1.1520	1.0657	.7556	.8 6 8 2	.8360	.9773	
168.01	110.20	51.70	41.76	20,40	1.3 010	1.1170	1.1445	1.0804	•7571	.A 69	.A 393	.8801	
150.01	5P+1C	39.4L	31.8L	62.96	1.7340	1.1112	1.1226	1.0636	• 7664	·8+29	.8426	.8892	
160.86	5.2C	24.20	20.40	10.75	1.2750	1.1642	1.0981	1.0472	.7842	. 9 574	4504	.9012	
75.04	54.16	17.10	15.20	10.411	1.2440	1.100 %	1.1075	1.0310	.7919	. 3 147	. 9679	.9071	
50.00	41+1.6	10.050	10.46	€ .°⊂	1.2.50	1.0979	1+0779	1.0218	B U 48	.8:22	nc.80	0129	
24.0L	27.00	۲.40	6.40	7.•≌€	1.1610	1.0956	1+5753	1.0137	.9153	.e n 3	.9712	.9177	
• (* L	•00	•CD	•GL	• ť i.	1.0.176	1.0932	1.0583	1.0637	. 9609	.6401	.9761	.9277	

САмРо		KU
F 67 0		47
TLMP. DE ANALISIS (GRAD. CENT.)	110.00
DEN. PEL. DEL CAS	(AIRE=1)	.8460
DEN. DEL ACEITE	(GR/CM3)	.9214
FUA	(H3/H3)	110.00
PHES. DI SAT. CALC.	(KG/CF2)	258.40

	PF, 5		R5 (M3	/M33		BO (M3/M3)				fa (GP/CH3)			
	(Ku/cM.)	LAP	S T A 14D	0151.	VAZ	LAR	STAND	0151.	VA Z	LAB	S TAND	0157.	VAZ •
	351.464	113.90	54.40	43.90	36.70	1.7492	1.168	1.1906	1.1095	.7694	.R 421	.9212	.9646
	31. • • ° 1.	107.90	54.46	43.96	30.00	1.3570	1.1159	1+1978	1.1142	.7649	. 3 . 56	.P 158	R 599
	264.01	113.96	54,46	43.90	30.36	1.3052	1.1229	1.2646	1+1192	•7603	. 2798	·9110	. 8558
	217.00	163.90	54.40	43.96	5 5 ∎"0	1.3169	1.1157	1.1076	1.0972	.7519	.8733	+ R 262	. 9666
	161.01	167,90	54.44()	43.90	JD • 30	1.3054	1.1104	1.1453	1.0822	.7495	• • • • • •	• <u>**</u> 157	•P742
	140.00	-1.76	39.90	32 •5L	55.96	1.3112	1.1636	1 + 1 1 9 4	1.0629	.7701	. 0 642	. 946 8	.8244
	160.01	12.76	26.60	22.50	15.86	1.2128	1.0975	1.5478	1.0445	•7909	. 6 . 91	• 15AU	.8244
	55.EC	39.16	11.56	11.40	7.40	1.2011	1.0910	1.0752	1.0226	•°176	. 4 4 71	. 9655	.91.61
- 4		26.50	5.00	6.26	3.10	1.1.56	1.081	1.1051	1.0123	្គាំ ។ ភូព	.0.03	, 26.96	.9127
	• • • •	.00	• ! C	•GL	.€ £	1.1516	1.1258	1.0535	1.0632	.8749	• " 1.9.2	. 7 14.	.9100

6.14F.0		КU
F020		4 >
TEMPS OF AMALISIS (CF	PAD. CENT.F .	123.40
DER, REL. DEL GAS	(A1R1 "1)	•9040
DEN. DEL ACEITE	(GK/CM3)	.9214
1 L A	(113/13)	110.00
PRES. DI SAT. CAEC.	(Ku/CM2)	256.90

PPLS		RS (M),	(43)		BO (M3/M3)				S. (GP/CH3)				
(KG/CH1)	LAB	STAND	01210	V A 7	L ልቦ	STANFI	0151.	VA Z	LAB	S TAND	GIST.	VA7 •	
35P.0(110.00	53.70	44.70	33.'0	1.4683	1.1197	1.1966	1.1151	•759A	• 8 80 I	.8161	.8675	
310+0E	110.00	57.30	44.70	33 50	1.4159	1.1262	1.2033	1.1198	.7547	.8742	• ⁸ 110	.8579	
204.01	110.00	53.30	44.70	33.50	1.4240	1.1344	1.2115	1.1260	•7564	.8674	A (5 2	.8525	
187.00	110.00	53.30	44.70	J3.50	1.4457	1.1241	1.1586	1.0900	•7391	.8582	. 9 267	.9698	
141.06	63.80	37.60	31.80	24.46	1.3622	1.1167	1.1298	1.0071	, 7735	· P 525	, R. 39 Z	.8871	
10.01	63.90	25.10	22.00	16.90	1.2552	1.1110	1.1072	1.0475	.7955	.8478	. 9 4 8 4	. R 927	
e1.01	13.50	19.20	17.50	13.20	1.2535	1.1087	1.0976	1.0379	PC71	.8454	•°_41	.8 980	
60.0L	44.70	13.50	13.30	9.60	1.2286	1.1057	1.0897	1.0286	.R157	.8472	.r561	9632	
30.01	20.60	5.80	7.10	4.50	1.1016	1.1622	1.0763	1.0153	.9277	.8401	.8613	.9109	
• 11 L	•00	•00	.00	• C L	1.0523	1.0995	1.0625	1.0134	.8385	•E 376	.B 168	.9178	

САМРО	κu
P0Z0	47
TEMP. DE ANALISIS (GRA	D. CENT.1 116.00
DEN. RTI. DEL GAS	(AIRE=1) .9090
DEN. DEL ACEITE	(GR/CH3) .9240
0 G A	(H3/H3) 110.00
PRES. DI SAT. CALC.	(KG/CM2) 252+20

PPLS		RS CHT.	/H3]		BO (H3/M3)					P. (6P/CH3)				
(K67CH2)	LAB	STAND	0157.	V A Z	LAP	STAND	0151.	VA Z	LAB	S TAND	0151.	VAZ		
351.60	167.20	53.50	43.56	33.60	1.3:40	1.1114	1.1812	1.1132	.7790	.8 874	.8263	.9654		
281.30	107.20	53.50	43.50	33.60	1.3856	1.1224	1.1922	1.1212	.7754	.8775	.R179	.8577		
190.0L	107.20	53.50	43.50	33+60	1.3590	1+1171	1+1511	1.0927	.7600	.8.662	.A338	.8709		
166.61	107.20	53.56	43.50	33.60	1.4600	1.1166	1.1498	1.0909	.7595	.8658	.9347	.8718		
151.01	89.70	41.40	37.80	26.71	1.3150	1.1110	1.1269	1.0728	.7726	.8 616	.8441	.8813		
116.01	73.20	30.16	25.20	20.CQ	1.3130	1.1058	1+1079	1.0554	. 9670	.8 175	+9523	.8907		
8C.8L	56.80	19.50	17.30	13.40	1.2720	1.1009	1.0913	1.0383	• 8 3 CD	.8:35	8594	.9002		
45.71	39.10	9.80	10.10	7.20	1.7.60	1.0965	1.0768	1.0221	.9200	.8496	.8655	•9095		
11.00	19-20	2.20	3.44	1.80	1.167	1.0931	1.0646	1.0679	.9740	.9465	.9707	.9178		
-04	.00	.00	.00	.00	1.0770	120921	1.0576	1.0632	• ^q ~ 76	. 8456	. 8 73 3	9 2 0 6		

1 h 2 h 2		E_{1}
1 3 4		67A
TEPP. DE ANALISIS CUR	ALL CENTER	115.0
PUNA PELA PEL MAN	(A1P) 11	.77.00
CEN. OF L ACENTE	(Gr / C1 1)	.7 67
1 t 1	(83787)	116.50
PLS. DE SAL. CALC.	(KG/C*.)	9 a +2^1

PLES		RS (M3	/831		KO (M3/M3)					3° (GD/CM?)				
(KGYCMI)	LAB	STAND	OF ST.	V A P	L 40	STAND	D151.	VAZ	LAR	STAND	0157.	VA7 •		
350.0L	16.50	62.30	54.90	27.60	1.3125	1.1356	1.2791	1.1090	.7591	.8 751	.7716	.8525		
277.06	1.6.50	62.30	54.90	27.66	1.3072	1.1467	1.2827	1.1134	.7509	se 635 .	.7066	.8473		
264.71	106-50	62.10	54.00	27.6u	1.4155	1.1334	1.2683	1.0840	.7402	.8531	.7547	.8613		
185.01	106.50	62.30	54.90	27.60	1.4126	1.1294	1.1905	1.0761	.7365	• ⁸ ⊃02	.8117	+8651		
100.00	75.70	32.70	35.45	10.50	1.7238	1.1195	1.1423	1.0.519	.7624	.8 409	.8209	• P 772		
166.01	ί ι. ΗΟ	28,90	26.70	17.96	1.2862	1.1146	1.1217	1.0400	.7738	• 9 :: 62	.8293	.B833		
60.00	52.50	22.10	21.30	10.90	1.2 296	1.1116	1+1092	1.0323	.7026	• P 332	•9343	.9874		
60.01	43.30	15.65	16.16	7.96	1.2:61	1.1087	1.0975	1.0247	.7895	•B 302	•8389	.8914		
	27.80	6 . 71	3.66	3.70	1.2126	1.1047	1.0316	1.0138	. 9095	.8.60	. 8 4 5 2	.9973		
.01	•00	•ru	•C.C	•F 6	1.6.77	1.1617	1.0079	1.0042	.A564	.8 427	. 9519	•9025		

САМРО		K11	
P070		67A	
TEMP. DE ANALISIS U	GPAD. CENT.1	140.00	
DEN. REL. DEL GAS	(A1PE=1)	-8027	
DEN. DEL ACEITE	(GR/LM3)	• 906P	
¢6A	(H3783)	116+68	
PHES. DE SAT. CALC.	(KGZCH2)	257.60	

	PHES. [L SAT. C	ALC.	(KGZCM2)		257.80						
1411 F.C.		R5 (M7	/43)			80 123	7431			fo 1601	CH31	
(K6/C4.)	LAB	STAND	GI 51.	VAZ	L AR	STANL	0151.	VA Z	L MA	STAND	UIST.	VA7 .
357.01	112.80	60.10	55.60	34.46	1.4304	1.1383	1.2497	1.1127	.7490	. 9616	•7415	.8577
265.01	112.86	60.1C	55.60	34 .40	1+4439	1.1501	1.2628	1.1216	.7425	. 8 51 3	.7724	·P456
230.01	112.80	60.1C	55.60	34.40	1.4595	1.1518	1,2405	1.1118	.7345	 8422 	•77R7	<u>9401</u>
194.03	112.80	60.10	55.60	34.01	1.4721	1.1454	1.1058	1.0935	.7282	.8370	.7919	• • 568
1.0.01		41.60	44.00	2 ° U	1.4122	1.1396	1.1766	1.0765	.7454	•8:2C	.PL33	• ⁸ 650
130.01	25.00	37.16	34 .71	2.20	1.7708	1.1348	1.1536	1.0017	,7567	.8.76	.9174	.8723
1.1.11	.1.80	27.00	26.10	16.66	1.3302	1.1302	1.1330	1.0475	.76.84	8233	8 20 S	. 0706
11.0	10.50	11.60	19.20	11.30	1.2893	1.1251	1.1140	1.0233	. 7790	. / 191	P278	. 9869
5 C - 5 C	6.61	2 21	10.96	6.30	1.2497	1.1/19	1.6991	1.0125	.7915	· P 151	.8343	.9941
	101 101	00	•f3	.00	1.0462	1.1176	1.0748	1.0139	. B 5 P 1	• 10 H	. 9433	.2128

CAMPO		KH
P(20		ъn
TEMP. DE ANALYSIS COM	AD. LENT.)	100.00
SEN. REL DEL DAS	{AID: ±11	.90.29
PER- DE L ACETTO	(GR/CM3)-	<u>.</u> 9895
5-1. A	{H?/43}	116.01
PERS, DE SAT. CALC.	(KG/CM2)	221.90

Pris		RS (H3	/мз)		60 (M3/M3)					Pa (GP/CH3)				
(KEYCM 1)	LAB	STAND	OIST.	VA7	LAB	STAND	0151.	VA Z	LAB	STAND	GIST .	VAZ .		
350.91	161.00	64.00	5::+10	32.30	1 . 3 74 4	1.0879	1.1755	1.0952	.7797	.8 597	.8225	.8648		
299.00	101.00	64.00	52.10	32.30	1.3335	1.0983	1.1854	1.0999	.7745	.8 51 9	·P162	• A 246		
250.00	111.00	64.00	52.10	32.'L	1.3420	1.1667	1.1936	1.1052	.7696	۹246.	• P 1 P 2	.8547		
186.GL	101.00	64.00	52.10	32.30	1.3570	1.1636	1.1599	1.0869	.7611	.8735	.8226	.8624		
155.01	79.20	45.30	37.20	23.50	1.2 021	1.0952	1.1245	1.0641	.7891	.8 659	. A 373	∎ P 7 78		
	56.60	25.90	22.70	14 - 24	1.2210	1.0667	1.0921	1.0397	.8156	.9575	• 9 50 7	• P 964		
64.01	47.16	20.20	18.50	11.30	1.0635	1.0842	1.0831	1+0372	•B147	.8549	• P : 44	.8904		
56.01	19.10	13.60	13.66	7.90	1.1 021	1.0813	1.0731	1.0234	.8227	.8519	.8584	·8952		
26.0L	25.10	6.20	7.70	3.90	1.1449	1.0791	1.0013	1.0128	• A 353	.8484	. 9676	.9010		
- 0 L	•0G	00.	.00	.00	1.0.426	1.0754	1.0469	1.0026	.8703	.8453	• 6684	.9056		

CAMPO	KU	
P020	87	
TEMP. DE ANALISIS (G	AD. CENT.) 110.00	
DEN. PEL. DEL GAS	(AIRE:1) .9466	
DEN. DEL ACETTE	(GR/CM3) .9095	
RGA	183/*33 110.00	J.
PRES. DE SAT. CALC.	(KG/CP2) 222.20	5

DDI 5						30 FM3	/#31	R (GP/CH3)				
(KG/CH 2)	LAB	STAND	OIST.	VAT	LAP	STAND	0151.	VA Z	LAB	STAND	DIST.	VAZ •
350.01	103.30	63.60	53.30	34.90	1.3:24	1.0987	1,1824	1.0487	.7664	.8505	.8184	.8639
310.01	103.30	67,60	53.30	34.90	1.7592	1.1053	1.1893	1.1628	.7626	.8 :42	.8132	+8594
231.00	103.30	63.60	53.30	° 4 . 90	1.3757	1.1194	1.2635	1-1123	•75 14	8 72 D	8U29	.8505
186.05	103.30	63.60	53.30	34.90	1.3071	1.1142	1.1717	1.0939	.7473	.8149	.8152	.8589
146-00	82.50	47.50	39.90	26.10	1.7163	1.1069	1.1395	1.0727	.7680	.8585	.8283	.8694
10.401	62.90	32.30	28.00	19.20	1.7173	1.1001	1.1119	1.0521	.7927	.8121	.8397	• A 79 9
66.00	46.30	18.20	17.40	11.20	1.2651	1.0939	1.0885	1.0322	.0673	. 8458	• 9493	.8904
46.01	38.70	11.00	12.40	7.10	1.1080	1.0916	1.0781	1.0226	.P177	.8429	. ° 535	.8955
27.86	26.10	6.20	7.50	4,20	1.1533	1.0485	1.0686	1+0139	• 87.92	. 9402	.P572	•90P3
.08	•00	.00	.00	. 612	1.0517	1.0658	t.es.*s	1.0078	ո ե54	• <u>9 17 2</u>	• ⁸ 629	•9065

C 4 M P ()		3.00
1.0.10		
TENEL HE ANDERN. COLUMN	4. 11 (1998)	
FER, PER, DEL EA	(*) · · · ·	
TRANSFORMER AND A TRANSFORMER	10 11 1	
- 5 作き	1 171 1	11 .00
P 25+ 54 541. 1440.	(Moters)	274 e d

PELS		R5 (M3)	/ 43)		En (+3/42)					fo (GP/CHT)				
(K6/CH1)	LAP	STAND	0151.	V 4 7	L 65	3 * ልኳብ	0121.	VA 2	LVB	STANC	CTST.	VAZ.		
710.CL	167.10	61.60	53.10	36.50	1.3744	1.1083	1+1965	1.1626	• 7 5 6 3	.9814	. 9] 7]	• P625		
270.06	167.10	61.60	53 •10	36+FS	1.3902	1.1221	1.2650	1.1120	.7477	.9685	.9625	. H = 27		
217.00	167.10	61.60	53.10	36 . 1 6	1.1492	1.1504	1.2134	1.1182	• 74.79	. 0 . 17	.7961	2474		
168.00	167.10	61.60	57.10	36.10	1.4685	1.1242	1.1803	1.0982	.7380	9.58	.0.91	• 9 568		
157.000	81, • 9 [j	46.90	40.66	22.10	1.3414	1.1175	1.1476	1.0773	.7596	.9.90	. 0. 15	. 9670		
111.54	67.60	32.30	28.70	20.36	1.2904	1+1108	1.1217	1.0960	.7761	. 6438	1329	. 8778		
94.01	55.05	25.30	23.20	16.40	1.070.0	1.1677	1.1693	1+0455	.7714	. 9 40 8	. 1386	. 8833		
11.1	48.16	18.70	18.10	12.40	1.2472	1.1.47	1.0970	1.0353	.7390	.3:79	. 9426	. P. AR6		
	ふと もし	12.50	13.76	1. F.E.	1.2427	1.1614	1.0-175	1.0254	. 7993	.9:51	+ P.46.2	8 6 19		
• '	• f. l	.0.3	ុាច	• S 11	1.1.02	1+156	1.004	1.0031	.9617	.8192	. 8575	9 06 3		

С <u>АМР</u> С		KU	
P-470		405	
TEMP. DE ANALISIS CUR	AD. CENT.J	111+01	
DUN. FEL. DEL CAS	(ALPETI)	■ 8°10	
TEN, OF L ACCITE	(5)(7(*3)	.9"∠n	
199A	(113/23)	116.60	
PIES. DE SAT. CALC.	(KG/CM2)	324.60	

H S		RS (M7	/431		HO (#3/#3)							
(K) / (C)	1 A B	911 AT 2	0151.	V A T	f an	STAN	0151.	VAZ	LAO	S IA Nº		VAZ.
4.2.06	46.7L	22.50	13.40	21.10	1.1422	1.1160	1.1264	1.151.	,8917	.514.9	.0 - 6 7	. 758
ā	40.7[22.455	13.86	21.00	1.1400	1.1140	1.114:	1.1218	. 9 165	.9128	.2971	\$1.60
16.000	4 . 71	22.00	13.90	ε 1 • τι	1.1000	1.1025	1.0571	1.0036	.8795	A ,96	. 91.55	. 148
1. 4.90	4C .71	22.11	13.80	2.1. 190	1.1649	1.1971	1.0766	1.0603	. R 7 11 7	.6579	.91(7	. 0 205
11	27.000	15.60	10.10	15.90	1.1.02	1.0946	1.0704	1.0451	. 9705	. 8 .60	.9137	. 0 : 15
	27.AL	11.90	8.10	12.10	1.1457	1.0928	1.675	1.0001	.9843	.8.61	.0154	.0455
19 a 1 a	11.70	8.4C	6.16	n.10	1.1:47	1.0910	1.0634	1.027.	. 9967	. 9 , r 5	.0169	. 2515
1. · ·	11.36	5,26	4.26	e	1.1194	1.0624	1.150 \	1.0187	. 9 9 3 4		.0104	.9574
	3.11	2.20	2.36	2.25	1.1644	1.5879	1.0570	1.0100	. 1 ! 1	. 8 . 4 3	, n , i , i	- 9671
. `t	• C. C	• n.c	.r.u	• • • •	1+0.75	1.0869	1.54.	1.01,34	.915.7	P 939	12.16	01.02

		КП	
1 + 1 Q		407	
TEPPE DE ANALITIS (UR)	4D. CENT.J	113.CC	
DEN. REL. DEL CAS	(A1FL-1)	.7670	
DEN. DE L'ACEITE	(5x/CM3)	.9702	
L., A	(23/23)	116.60	
PRES. D. SAT. CALC.	(KGZC+2)	366.50	

PRES		RS (MT.	/#3)		60 (N3/H3)				B (GP/CH7)			
(K67(*2)	LAP	STAND	OI ST.	VAC	1 70	STAND	olst.	VA 2	L ≜B	S TAND	OTST.	VAZ.
360.06	59 . 80	21+40	12.70	20+40	1.7260	1.1168	1.1128	1.1284	• 5 23	.9(53	.8974	.8975
2325 + 0 L	្ទុទ្ធប្	21.40	12.70	20.40	1+2330	1.1113	1.0994	1.1659	.8479	.9140	•°642	.9659
264.06	59+80	21.40	12.70	20.40	1.2390	1.1659	1.0878	1.0838	. 94 74	•9L27	1010	. 9196
139.01	59.8L	21.40	12.70	20.40	1.2480	1.0978	1.0759	1.0571	.9373	.211	.9162	.936.9
125.000	្នុង ដូប្រ	19,00	11.46	18.30	1.2400	1,0986	1.0737	1.0517	• P 2 37	.9108	.9173	.0405
16.000	45.40	14.50	9.00	14.40	1.7240	1.6463	1.6697	1.0414	. 9 4 46	.9.601	.5193	.9475
75.31	36.30	10.36	6.76	10.50	1.2150	1.0941	1.0668	1.0312	.9507	. H 595	10-11	. 9545
56.PL	27+50	6 - 30	4.50	6.76	1.1570	1.0921	1.0626	1.0215	.8561	.8.586	28	.9613
27.C.C	15.60	2.70	2.50	7 - 10	1.1650	1.0903	1.0594	1.0121	P 663	.R 4P3	0,44	.9679
.01	•00	.00	.00	• L.C.	1.0270	1.0889	1.0555	1.0039	.7172	•8 •7 8	.9263	.9779

CAMPO	CANTAPELL
P 02 0	1 /
TEMP. DI ANALISIS (GRAD. CCHT.)	1°C.uC
DEN. REL. DEL GAS (AIRERI)	. 3834
DEN. DEL ACETTE (GH/C*3)	.9420
RGA (M3/M3)	S5+60
PRES. DE SAT. CALC. (KGZCM2)	213.50

0115		05 FM	/₩33		* 				Po IGRICHTI				
(KG/CM.)	LAP	STAND	0111	VAZ	L AF	STAND	0151.	VA Z	LAB	STAND	0157.	VA7 .	
362.51	26.36	36.90	26.70	25.60	1.2864	1.0.696	1.1153	1.0923	.8 153	.9139	.8729	.P.993	
254.01	86.30	36.90	26.70	25.60	1.2543	1.0961	1.1209	1.0972	.8107	.9.977	.9678	.8843	
21.2.51	16.30	36.96	26.76	25.50	1.7636	1.1003	1+1204	1.0963	. 8 () 46	.R 417	. P 662	. 8833	
149.01	86.30	36.90	26.70	25.60	1.3152	1.0526	1.0959	1.0697	.7475	. ⁰ 371	•R 775	.R982	
110.00	67.20	25.60	19.10	18.40	1.2071	1.0873	1.0809	1.0508	.3156	.9 - 37	• P =44	.9693	
40.01	56.46	20.10	15.50	14.71	1.2419	1.0847	1.0741	1.0414	. A 2 2 8	. B 821	.P.675	. 9149	
70.01	49.36	14-80	12.10	11.70	1.2189	1.082:	1.0674	1.0321	• 9 310	8 204	. 4903	.9205	
SE ADI	40.00	2.90	8.80	7.70	1.1550	1.0795	1.0619	1.0.31	. B 395	.P 788	. 3 924	.9261	
31-01	0.0.02	5.40	5.60	4 4()	1.1639	1.0779	1.0563	1.0144	. # 492	.8773	.8954	.9315	
.01	.00	.00	.00	.10	1.1 . 16	1.0754	1.046.5	1.1124	, R Q F B	. 8 755	. 9.954	.9389	

CAMPO		CANTATOLI
F 02 0		£ •
TEMP. DI ANALISIS EU	RAD. CENT.1	160.00
TEN. FFL. DEL GAS	(1= 1914)	.041 "
DEN. DEL ACEITE	(6k/U23)	· 221 *
Γ: is A	(+3/23)	85.Ur
PRES. DE SAT. CALC.	(KG/CM2)	201.00

PPES		RS (M3,	/ 133		80 (M3/M3)					S (GP/CH3)				
(KGZCH2)	LAP	STAND	01 ST.	VA Z	L AB	STANE	OIST.	VA Z	LAB	STAND	CIST.	VAZ.		
260.01	90.40	45.80	36 .10	24.70	1.3100	1.1049	1.1552	1.0905	.7858	. P t14	•P336	.8699		
170.Ot	90.40	45.80	36.10	24 . 30	1.3160	1.1976	1.1336	1.0763	.7821	A 774	. 8429	.8773		
160.0E	90.40	45.80	36.10	24.30	1.3180	1.0979	1.1270	1.0715	7359	.8761	P458	P 798		
149.01	90.40	45.80	36.10	24.30	1.3210	1.0960	1.1199	1.0664	.7796	.8746	.8489	.8825		
140.00	85.30	42.50	33.60	22.70	1.3190	1.0945	1.1144	1.0622	.7927	.8734	.8513	.9848		
110.00	69.50	31.80	25.70	17.40	1.2750	1.1896	1.0973	1.0485	.7927	.8 693	.8587	. A 922		
166.00	64.70	23.40	23.36	15.70	1.2670	1.0081	1.0921	1.0439	.7970	.8.60	_P (11)	.8 547		
50.50	40.4C	12.30	11.80	7.96	1.2650	1.0009	1.0688	1.0221	8 167	.8615	6769	.9070		
. C.L	27.00	5.10	6.46	2.40	1.1700	1.0778	1.0526	1.0117	. 9279	.6585	.875 :	.9129		
.00	J9.		.C.L	•re	1.0490	1.0754	1, 7463	1.0029	P649	.H 163	. 9796	.9182		

CAMPO		CANTAFELL	
P 62 0		7 A	
TEMP. DE ANALISIS LER	AD. CENT.)	100.00	
DEN. REL. DEL GAS	(AIRE=1)	.8926	
DEN. DEL ACEITE	(GH/CM3)	.9294	
PGA	(M3/M3)	85.CD	
PLES. DE SAT. CALC.	(KG/C+2)	199.60	

PPES		RS (M3)	/#3]			80 113	(/M3)			6 (60/CH3)			
(KG/CH_)	LAP	STAND	0157.	V A Z	LAP	STAND	0151.	VA Z	LAR	STAND	GIST .	VAZ .	
360.00	85 .2 0	42.50	32.50	26.10	1.2757	1.0875	1.1257	1.0851	.8151	.8 989	.0597	. 8 84 4	
252.00	a5.20	42.50	32 +50	26.10	1.2:35	1.0944	1.1319	1.0897	•B102	.8 522	• 9 97 1	.9792	
262.01	05.20	42.50	32.50	26.10	1.2924	1.1624	1.1391	1.0954	₽046	.8 653	.8474	.8739	
156.01	85.20	42.50	32 •5ú	26+10	1.3132	1.0947	1.1101	1.0708	.7979	.8793	· ° + 0 2	.8871	
1.0.04	70+70	32.50	25.30	20.40	1.7644	1.0901	1.6949	1.0561	.8110	.8759	. 9669	.9952	
90.0L	57.10	22.90	18.60	14.90	1.7215	1.0858	1.0815	1.0417	_R223	.8725	•°728	.9623	
61.01	47 . 40	14.10	12.50	ց լեր	1.1980	1.0817	1.0096	1.0277	• 9.340	.8693	.87°O	.9114	
4 30 .0 1	28.50	6.11	6.74	4.50	1.1594	1.0781	1+0598	1.0144	. 9479	.3.62	• ° 42.5	.9193	
.01	.00	• 60	•GU	• "0	1.0499	1.0754	1.0469	1.0027	.8352	.8638	· F 374	.9264	
.00	.00	.00	+0£	.10	 broo 	.OLO(nune 	.0.00	. Pt.CO	•0.00	, n; nn	. 0100	

CAMPO	CANTAPLLL	
P 0 2 0	7 4	
TEMP+ D. ANALISIS FOR	AD. CENT.) 180.60	
UEN. REL. DEL GAS	(AIRE1) 1.5260	
OEN. DEL ACCITE	(GR/CH3) .9041	
r. (. A	(#37#3) 95.00	
PRES. DE SAT. CALC.	(KG/CH2) 113.10	

PPIS		RS 1M3	/H31		60 (M3/M3)					£ (GP/CH3)				
(KG/CM 2)	LAB	STAND	OIST.	V A2	L AB	STAND	0151.	VA Z	LAB	STAND	OIST.	VAZ .		
352.00	81.00	57.10	47.20	44.38	1.2531	1.0557	1.0832	1.0595	+8096	.8432	.8652	.8896		
250.00	o1.00	57.10	47.26	44.70	1.2678	1.0713	1.0987	1.0704	. P 002	. 9 795	.8523	.9755		
187.01	J1.00	57.10	47.20	44.30	1.2177	1.0016	1.1679	1.0781	.7939	.8689	.8438	.8669		
154.00	81.00	57.10	47.20	44.30	1.2 019	1.0859	1 + 1 1 1 7	1.0815	.7913	.8650	.8403	.8634		
150.11	76.20	46.60	38.90	36 .80	1.2572	1.0898	1.1152	1.0846	7988	.2616	.R 374	.9504		
166.20	59.90	36.50	31.20	30.50	1.2322	1.0914	1.1127	1.0814	.PC72	.9 579	.8374	.8610		
8C.21	48.40	26.00	23.40	22.40	1.2189	1.0068	1.0945	1.0603	.9161	•8531	.8447	.8714		
57.0L	37.00	17.20	16.80	15.40	1.1760	1.0229	1.0305	1.0420	. 8275	. 9 489	.8505	. n pr 7		
27.41	22.8C	7.10	8.80	6.00	1+1384	1.0795	1.0678	1.0197	. 9413	8439	.8569	8924		
• 11	.00	•05	•00		1.0.365	1.0754	1.0469	1.0010	.8333	.9403	.R632	.9022		

CAMPO	GANTARELL
P 02 0	8
TEMP. DI ANALISIS (GRAD. CEN	T.) 86.00
DEN. REI. DEL GAS (AIRE	=1) .9220
DEN. DEL ACETTE IGR/C	23) .9254
PGA TH32	M3) 85.00
PRES. DI SAT. CALC. (KG/L	M21 190.90

PPIS		RS (M3)	/43)		BO (M3/M3)					fo (GR/CH3)				
(KGZCH 2)	LAB	STAND	0151.	VAZ	LAR	STAND	0151.	VA Z	LAS	S TAND	OIST .	VAZ .		
351.61	86.90	46.10	34.50	26.40	1.2749	1.0631	1.1035	1.0739	-A087	•9165	.8718	.8901		
246.1L	86.90	46.10	34.50	26.40	1.2894	1.0777	1.1166	1.0823	.7996	.9126	.8607	.8803		
175.80	86.90	46.10	34.50	26.40	1.3605	1.0865	1,1216	1.0860	.7928	.9534	.8553	.8757		
147.1(09.48	46.10	34.50	26,40	1.3660	1.0816	1.1641	1.0711	.7895	• 8 E 9 6	.8632	.9836		
126.50	78,40	38,40	29.10	22.30	1.2850	1.0781	1.0926	1.0607	.7969	• P + 68	.8683	.8893		
98.4L	65.00	28.40	22.20	17.00	1.2550	1.0736	1.0786	1.0456	_ R 656	.8631	.8744	.8 971		
70.36	51.60	18.90	15.80	11.70	1.2250	1.0694	1.0661	1.0329	. 8155	.8794	.8798	.9048		
42.26	37.70	10.20	9.80	6.70	1.1940	1.0656	1.0550	1.0198	8251	.8759	. # 84 4	.9124		
14.01	21.00	2.70	3.80	2.00	1.1540	1.0623	1.0444	1.0074	.9371	.8728	.8886	.9197		
•DE	.00	.00	.00	. 10	1.0530	1.0611	1.0341	1.0022	. 8792	.8716	•841D	.9229		

CAMPO		CAN7 ADULI
P C/1G		11
TEMP, DE ANALISIS ESS	4.9. CEAT.F	71.07
DEN. REL. BEL GAS	1416 11	.9547
GEN. DEL ACCITE	(Carler's)	•9165
6 G A	ta7/53	9 S . C P
PPES. DE SAT. CALC.	{KG/C52}	159.10

PPES		RS CH3.	(H3)			60 (P3	/~3)			So (GP/	CF33	
(KG/CM2)	LAB	STAND	0157.	V & 2	L AD	STANE	nIST.	VA Z	LAR	STAND	OIST.	٧٨٧.
350.00	66.30	48.80	36.60	24.96	1.2:32	1.446	1+0915	1.0657	70	. 9.46	.8725	.8858
274.01	66.30	48.80	36.60	24.90	1.2430	1.0552	1.1017	1.0709	. A C 07	.9152	8653	.9803
195.0L	66.36	48.70	36 •6Ú	24.00	1.2534	1.0665	1.1112	1.0767	.7940	.9154	.8580	. 1745
135.01	6€ . 30	43.20	36.60	.4.90	1.2:15	1.0676	1.0985	1.0668	.7089	.8569	.R621	.8796
100.01	53+10	34.00	26.46	17.90	1.2248	1.0006	1.0771	1.0486	.eu16	.8509	. 3714	.9883
o .Ω(45.30	26 • 00	21.00	14.00	1.2125	1.0572	1.0663	1.0584	.8103	.8 .75	.8759	.8738
69.0L	22.50	21.40	17.90	11.70	1.1:05	1+0552	1.0603	1.0324	.9122	. 6 . 54	.8794	. 8971
46.01	28.90	11.20	10.90	6.50	1+1:77	1.0509	1.0475	1.0189	. 1278	. 4 + 0.9	6 4 7 5	.9046
40.0t	19.80	4 • 8C	6.86	3.00	1.1311	1.0482	1.0389	1.0096	A 196	.8779	.8 .6 7	.9(99
• C L	.00	• E G	•ՐՆ	•00-	1.0420	1.0461	1.0292	1.0017	. 9795	.8756	.8900	.9145

САМРО Рого	CANTAPE <u>t</u> 19
TEMP. DI ANALISIS LER	40. CENT.) 84.00
DEN. REL. DEL GAS	(AIRE=1) .8740
DEN. DEL ACENTE	(GR/CP3) .9233
0 G A	(H3/H3) 85.00
PRES. DI SAT. CALC.	(KG/CP2) 195.00

POLS RS (HT/M3				(M3)			60 CM3	/43)	L (GP/CHT)				
	(K6/CM_)	LAP	STAND	0151.	VA7	LAN	STANL	0151.	VA Z	LAG	STAND	ofst.	VAZ •
	357.00	67.26	46 • 4C	34 .90	23.10	1.1308	1.0655	1,1165	1.0734	.#764	.9 181	. P 639	. 8 874
	251.CL	67.20	46.40	34.96	27.10	1.1439	1.0801	1.1298	1:0811	.R663	.9144	• 0.531	.B797
	170.01	67.20	46 . 40	34 .96	23.10	1.1559	1.0641	1.1199	1.0746	.8 973	.8 9 7 5	. 9543	.8799
	144.21	67.20	46.40	34 .90	23.10	1.1.02	1.0795	1.1077	1.0627	.8541	1/94	.R£21	• 863
	124.81	50.30	39 • 00	29.60	19.70	1.1414	1.0762	1.0926	1.0539	.8603	.A c71	. 9670	.8911
	87.7L	41.60	25 • 30	20.36	17.30	1.1652	1.0701	1.0775	1.0172	.9747	.R. 18	.8.75.3	,9004
	71.00	35+16	19 - 86	16.450	10.0	1.0903	1.0677	1.0662	1.0302	.0312	.B 796	. 9 784	•9144
	57.40	27.50	14 . CC	12.61	7.00	1.0.725	1.005;	1.0588	1.0227	• <u>0</u> → 91	. P 773	. 2 6 1 9	. 46.67
÷	31.26	19.00	9.50	8 • 7 L	4.90	1.0504	1.0621	1.0516	1.0153	.0498	.P 750	.9 .44	.9130
	1-1-36	15.50	1.80	5.0	2.46	1.0.71	1.6608	1.0451	1.0187	.0111	.8 /30	• ¹⁰ 36.4	.9165

CAMPO	CANTAPELL
F020	19
TEMP. DE ANALISIS (CPAD. CENT.)	103.00
DEN. REL. DEL DAS (AIPED)	.9779
DIN. DEL ACETTE (GR/CH3)	.9173
P6A (H3783)	P5+00
PHES. DE SAT. CALC. (KG/LM2)	182.90

PPES		RS (M3)	/ M 3 1			80 (M3	(/M3)			S. 1681	C M 7)	
(KC1CH 3)	LAR	STAND	OI ST.	VA7	L AB	STAND	0151.	VA 2	LAB	STAND	0151.	VAZ.
350.00	51.80	49.10	39.40	28.10	1.2752	1.0786	1.1264	1.0740	.7960	•9LC3	.P529	"R 859
201.01	e1.80	49.10	39.40	28.10	1.2856	1.0892	1.1360	1.0803	.7896	.8694	. 34 77	.R776
207.00	61.80	49.10	39.40	28.10	1.2983	1.1620	1.1486	1.0887	.7819	.8 176	. 9336	. 9687
161.00	81.80	49.10	39.40	28.10	1.3430	1.1654	1.1506	1.0904	.7790	.8742	·P J16	.8669
154.06	81.86	49.10	39.40	28.10	1.3698	1.1006	1.1310	1.0762	.7750	.8704	. 9400	.9741
115,00	61.90	34.50	28.40	20.00	1+2 (00	1.0939	1.166	1.0561	.7869		.8507	,8846
95.0 C	51.40	27.40	23.26	16.60	1.2434	1.0907	1.0948	1.0460	.7933	.8619	ន 5 គ ម	. 8900
66.00	37.30	15.70	14.70	10.00	1.2650	1.0855	1.(771	1.0289	• ª 068	·8570	• ⁹ 0 2 9	. 2995
46.01	. 8 + 70	9.60	10.26	6.40	1.1:12	1.6628	1.0680	1.0195	• R 1 5 4	. 2 . 4 4	.8066	.9(47
• D E	•00	.00	.00	. 0	1.0.138	1.0785	1.0488	1.0627	.8873	.8501	.0741	.9144

CAMPO	C A	NTARELL
P070	57	,
TEMP. DE ANALISIS (GR	ND. CENT.) 10	1+60
DEN. REI. DEL GAS	(AIRED)	7660
DEN. DEL ACEITE	(GR/CM3) .	9315
RGA	(H3/H3)	85. LP
PRES. DI SAT. CALC.	(KG/CH2)	229.80

PPES		RS (M3.	/M31			80 (43	(/M3)			P. 16P/	CH33	
(KG7CM 5)	LAP	STAND	0157.	VA7	L AB	ST ANE	0157.	V A Z	LAB	STAND	OIST.	VAZ .
351.60	64.20	41.20	31,30	22.30	1.2755	1.0698	1.1390	1.0844	.R184	.9151	+8551	.#871
246.10	84.2C	41+20	31.30	22 • 10	1+2509	1.1055	1.1535	1.0943	.8086	.8505	.8430	.8766
125.86	84.20	41.20	31.30	22.30	1.3130	1.0994	1+1553	1.0726	.8011	.8625	.8562	.9876
149.60	84.20	41.20	31.30	22.30	1.3680	1.0953	1.1081	1.0614	.7981	.8796	.8626	.8939
140.66	80.10	18.30	29.20	20.80	1.2970	1.0935	1.1636	1.0576	.8014	.8787	.A646	.896U
126.61	74.00	33 • 76	25.96	18./0	1.2220	1.0918	1.0968	1+0517	8061	.6771	.8676	.8494
98.4L	61+80	24 + 90	19.80	14.10	1.2530	1.0677	1.0843	1.0400	• ⁰ 160	. 3 74 1	.8732	. 2 06 0
10.30	49.30	16.60	14,10	9.70	1.2230	1.0839	1.0732	1.0287	■258	.8711	.8781	.9126
28.11	29.20	5.50	6.10	3.50	1.1730	1.0789	1.0584	1.0126	·P425	.8670	.0344	.9223
•0 L	.00	• (1C	.00	. £.0	1.0.40	1.0764	1.0475	1.0632	. 1740	.4 64 9	. 9 888	.9280

CAMEO		CARTER ()
P 67 0		5.7
TERP, DL ANALISIS CUP	AD. (F., 7.)	151+65
DEN. REL DEL CAS	(A175-11)	,9002
SCN. DEL ACEITE	しらいだいとうと	.9242
ΨLA	1/13/431	95.00
PISS. DE SAT. CALC.	[K67(M])	173.10

PPLS		RS (M3)	(M3)	•		50 (F3	1/1131			6 16P/	CH3)	
(KG/CH_)	LAB	STAND	OIST.	VA7	LAP	STAND	0151.	VA Z	LAB	S TAND	OIST.	VAZ -
293.21	61 .7 0	41.60	32.60	27.30	1.2610	1.0835	1.1189	1.0816	. A 342	.8555	.8585	.8835
250.10	31.70	41.60	32.66	27.30	1.2663	1.0886	1.1235	1.0854	.8307	.8504	.8542	.9795
191.66	81.70	41.60	32.60	27.30	1.2773	1.1.989	1.1328	1.0925	.R236	.8 209	. 1462	.8719
164.21	±1.70	41.60	32 .60	27.36	1.2828	1.0984	1.1261	1.0865	.8201	.8772	. 8484	.8744
141.40	c1.70	41.60	32.60	27.430	1.2 291	1.0952	1.1123	1.0739	.9160	.8743	.8544	.9811
117.20	69+00	31.80	25.50	21.40	1.2405	1.0907	1.0970	1.0584	.9221	. 9 70 7	.9611	. 894
01.02	56.26	21.90	13.40	15,10	1.2321	1.0862	1.0824	1.0473	.8234	.8170	.9674	.8983
54.N.C	43.70	13.00	12.20	9.56	1.2.57	1.0022	1.0706	1.0274	.9317	.Bt35	.P727	.9068
28.10	28,60	5.90	6.8U	4.60	1.1710	1.0791	1.0598	1.0147	.8407	. B tD6	.9769	.9142
• 1° v.	•00	•00	.00	• 1. C	1.0561	1.0764	1.0475	1.0025	.9751	.8 581	.9318	.9215

САМРО		CANTARELL
P 02 0		57
TEMP. DE ANALISIS (G	RAD. CENT.1	101.00
DEN. REL. DEL GAS	(AIRE=1)	.7990
DEN. DEL ACEITE	(GR/CM3)	.9292
RGA	(HJ/M3)	85.00
PRES. DE SAT. CALC.	14676421	219.50
:		

			•												
P.9:5 RS (M3/H3)				/#3]		80 (M3/M3)					6 (GP/CM3)				
	сколенат	LAF	STAND	OIST.	V 14 Z	LAC	STAND	0151.	¥≜Z	LAR	S TAND	otst.	VAZ.		
	su:.n€	ж8 . 00	42,90	32.90	23.50	1+2960	1.0944	1.1421	1.0864	.7880	. 9 574	. 9497	.9819		
	250.01	۲₽.00	42.90	32.90	23.50	1+3640	1.1021	1.1491	1.0918	.7840	8.504	P438	.9767		
	260.01	68.00	42.26	32.90	23.50	1.3130	1.163#	1.1407	1.0864	.7790	A (40)	.9461	.9793		
	151.50	89.00	42.90	32.90	27.50	1.3.20	1.0459	1.1119	1.0646	.7730	A 185	. 9589	.8901		
	120,01	74.90	34.00	26.40	19,10	1.2910	1.0919	1.0992	1.0529	•7E20	. 8 755	.P.49	. 9 966		
	100.01	67.60	26.00	20.80	14.90	1.2120	1.0882	1.0866	1.0421	.79.20	. 126	· A /01	.9027		
	15.00	12.20	18.40	15.50	10.90	1.2170	1.0.347	1.0761	1.0316	• P L C D	. 3 (9 6	. 0747	• a 🖓 a 🥄		
	50,00	39.50	11.30	10.60	7.10	1.2.60	1.0815	1.066	1.0214	.8160	. P e 7 2	. 0 /87	.9148		
4		00	5.60	6.30	3.76	1.1/70	1.0799	1.0583	1.012d	• • 200	. 1150	. 1:20	. 9 199		
	• 12 •	.00	• 6 6	-00	.បែ	1.0100	1.0764	1.0475	1.0131	•8330	. \$ 1,28	. 9 . 4 6	•915 c		

САЧРО		CANTARELL	
P 020		66A	
TUMP. DE ANALISIS CUR	AD. CENT.J	100.00	
DEN. REL. DEL GAS	(AIRE=1)	.9780	
DEN. DEL ACEITE	(GH/CM3)	•9211	
PGA	(H7/H3)	35.00	
PRES. DI SAT. CALC.	(KGZCM2)	174.90	

PPL 5		RS (H3,	(M3)		BO (M3/M3)					J. (GP/CH3)				
(K 6 Y C M 2 1	LAB	STAND	0151.	VAZ	LAB	STANE	0151.	VA2	LAB	S TA NO	OTST.	VAZ .		
356.Dt	61.80	46.30	36.50	29.10	1.2598	1.0737	1.1126	1.0745	.9(:98	.9637	.8629	.8889		
256.01	61.80	46.30	36.50	27.10	1.2754	1.0683	1.1263	1.0836	.7999	.8889	•85A4	.9774		
175.00	81.8C	46.30	36.50	29.10	1.2507	1.1005	1.1373	1.0924	,7904	.8780	·8412	.8689		
150.70	01.80	46.30	36.50	27.10	1.2563	1.0962	1+1208	1.0785	787C	.8746	. \$493	.8761		
151.00	7°.C	37.20	29.70	23.80	1.2623	1.0921	1.1058	1.0647	.7992	- 8712	• ^P 549	.8834		
167.20 C	59.50	28.40	23.30	18.70	1.2426	1.0681	1.0922	1.0513	, R () 3 P	.8678	• P 6C 7	.9.906		
75.01	48.00	20.10	17.40	13.40	1.2101	1.0643	1.00000	1.0381	.9166	.8145	.8660	.8979		
50.0L	36.50	12.30	11.80	8.70	1.1748	1.0005	1.0689	1.0253	.8284	-8 £ I 3	. 8706	.9051		
25.00	24.40	5.30	6.50	4.10	1.1458	1.0776	1.0586	1.0132	.6404	.8584	.8748	.9121		
• 21	.00	•00	.00	•ru	1.0130	1.0754	1.0469	1.0024	.8747	.8561	. P. 794	91R4		

САНРО		CANTAPELL	
P020		68	
TEMP. DE ANALISIS COR	AD. CENT.)	91.00	
DEN. REL. DEL GAS	(AIRL=1)	• 9 P. 9 "	
DEN. DEL ACEITE	(GR/CM3)	•915°	
R6A	[M3/M3]	85.L°	
PRES. DE SAT. CALC.	(Ku/CM2)	165.8/	

PRES	RS (H3/H3)					80 (M3	/M31	La (GP/CH3)				
(кбиси д	LAB	STAND	0151.	V A Z	LAB	STAND	015T.	VA 2	LAB	S IAND	OTST.	VAZ .
236.06	83.40	49.50	38.80	28.00	1 . 2 12 4	1.0812	1.1251	1.0794	.8012	.8917	.8478	.8742
200.00	83.40	49.50	38 •8L	28.00	1.2780	1+0859	1.1293	1.0025	.7977	.9875	.8443	.8711
172.00	43.40	49.50	38.80	28.00	1.2832	1.0906	1.1334	1.0856	.7945	+8.834	.8409	.8682
146.00	83.40	49.50	38.80	28.00	1.2602	1.0880	1.1201	1.0755	.7914	.8794	• 8 4 6 4	.8731
106.00	62.00	31.40	25.60	18.50	1.2340	1.0799	1.0909	1.0506	.A100	.8721	. P 5 A 9	.8861
8C.O.L	52.80	24.00	20.40	14.50	1.2115	1.0767	1.0799	1.0402	.8179	.8690	•Bu35	.8917
00.01	45.60	16.90	15.40	10.00	1.1692	1.0736	1.0699	1.0299	.8258	.8659	.8677	.8974
40.00	33+70	10.40	10.60	6.40	1.1637	1.0707	1.0605	1.0199	.A353	.8630	.8715	.9029
20.01	22.80	4.50	5.96	3.20	1.1345	1.0681	1.0516	1.0105	.8456	·8 60 3	·8750	.9082
•nč	•00	• "0	•0ú	.+.5	1.0414	1.0662	1.0411	1.0022	. 9791	•35 8 2	.9789	.9131

САНРО		CANTITIA
P 61 6		7.1
TEMP, by ADALISIS (C	30. CC5	7.4.45
DEN. REI. DEL SAS	(110-11)	. 1101
DEM. DEL ACETTE	(S#7 C* 5)	. 71 UP
P1,A	(12/23)	ን ሚቀር ቦ
PUES. DE SAT. CALC.	(Ku/CM2)	155.99

PRES	ES RS (H3/43)					80 (M	'/M31		\$ 16P/CH31				
(KG/CH 2)	LAB	STAND	0151.	VAZ	LAP	STAND	0157.	VAZ	LAB	STAND	UIST.	VAZ .	
350.0L	61.10	51.10	38.50	22.9u	1.2100	1.0367	1.0932	1.0621	.8106	.9289	.8690	.5818	
270.DL	61.10	51.10	38.50	22.90	1.2199	1.0492	1+1047	1.0671	.P041	.0189	. 9607	.8768	
192.06	61.16	51.10	38.56	22.90	1.2301	1.0009	1 - 1144	1.0 72	.7974	.91.93	. 2536	.9720	
130.00	61.10	51.10	38.56	22.496	1.2406	1.0608	1.0986	1.0615	.7910	8 597	P 59 1	.8765	
160.ac	51.20	57 . JL	28,90	17.405	1+2051	1.0549	1.0782	1.0460	SL61	.8537	3078	8843	
0 C . C L	43.66	20.50	23.10	13.46	1,1:44	1.0512	1.0061	1.0368	.8143	. 8 . 97	P 129	.8895	
60.01	35.40	20.10	17.40	9.80	1.1617	1.0477	1.0952	1.0273	.8236	P.59	.8773	.8946	
40.01	27.20	12.40	12.00	6 . 30	1.1465	1.0444	1.8453	1.0186	.R315	. 8 62 1	.8811	.8997	
at .0 C	17.50	5.70	6.66	2.00	1.1152	1.0416	1.1359	1.0693	P417	. 8786	. 8 84 4	9046	
• G &	•U.0	•C0	•FL	• C L	1.0325	1.0393	1.0254	1.0015	• 9 3 2 1	.8759	.8070	.9089	

CAMPO		CANTAPELL	
P020		77A	
TEMP. DE ANALISIS (ER	AD. CENT.)	110.00	
DEN. ACL. DEL GAS	(AIRE=1)	•927n	
DEN. DEL ACETTE	(GR/CP3)	.9219	
11 C A	(H3/H3)	P5.UC	
PRES. DE SAT. CALC.	(KG/CP2)	193.90	

PPES	RS [M3/H3]					80 CM3	7M30	P. 169/043)				
(KUX(M.)	LAB	STAND	0151.	V A Z	LAR	STAND	0151.	VA Z	LAB	STAND	CIST.	VAZ
156.64	85.66	49.20	39.70	30.CO	1.3310	1.0880	1.1322	1.0790	.7824	. 8455	.8519	.8866
201.021	95.60	49.20	39.70	30.10	1.3464	1.1616	1.1454	1.0879	.7735	.8216	. 9 3 9 8	P755
265.01	95.60	49.70	39.70	sn ru	1,3589	1+1176	1+1551	1.0954	.7664	. 4724	.8319	.8682
165.01	55.60	45.20	39,70	30.00	1.3675	1.1UA2	1.1363	1.0812	.7616	·8178	.9397	.8752
150.04	65+20	43,00	35 .5ü	27.10	1.3454	1.1655	1.1267	1.0735	.7684	. 1 1 5 9	.9438	• A 79 3
10 .01	64.76	26.00	22.76	17.30	1.2653	1.0981	1.0986	1.0482	. 7) 44	.8595	.9559	.9929
11.010	54.10	19.00	16.90	12.66	1.2380	1.1944	1+0865	1.0360	■1276	.8564	.A611	.9497
5 • D •	39.46	11.70	11.56	2.10	1.2088	1.0411	1.0755	1.0241	.3270	.8535	. 9657	.9064
. 1 . A (26.80	5 • 1 C	6 + 3 U	3.80	1.1739	1.0821	1.0693	1.0129	.P411	.0507	. 4699	.9129
•	.00	ft	•00	•CO	1.0474	1.0858	1.0535	1.0129	.9515	. 1 486	. 2746	.9197

CAMPO		CANTARELL	
F U2 0		82	
TEMP. DE ANALISIS (GR)	AD. CENT.1	101.un	
DEN. REL. DEL GAS	(A1PL=1)	• 3010	
DEN. DEL ACEITE	(GR/CM3)	.9779	
f. ta A	(M3/M3)	P5.00	
PRES. PL SAT. CALC.	(KG/CM2)	217.70	

የምርና	R5 (M3/H3)				60 (M3/H3)					₽ (GP/CH3)				
(Ku/(Mz)	LAB	STAND	0151.	VAZ	L AB	STAND	0IS T .	VA Z	LAB	STAND	0157.	VAZ.		
351.00	87.60	46.26	35.50	24.90	1.2890	1.0067	1.1361	1.0010	.9065	.9643	.8543	• 9 867		
201.0L	87.6D	46.20	35.56	24,90	1 • 2996	1-0969	1.1458	1.0875	.A 000	.8543	.8460	. 0 794		
211.00	87.60	46+20	35.50	24.20	1.3116	1.1061	1.1505	1.0917	.7926	· 8 E4 6	.0407	.9745		
159.26	d7.60	46.26	35.50	24.90	1.3220	1.0974	1.1178	1.0682	.7865	.9786	.8552	. 9 371		
126.50	73+70	34.90	27.30	19.40	1.2880	1.0923	1.1003	1.0537	.7972	. 8 74 3	.5029	.8951		
91.00	58.60	23.50	19,20	13.10	1.2510	1.0871	1.0836	1.0384	.8691	. 9706	.8703	. 9037		
56.21	43.30	13.10	12.00	7.90	1.2140	1.0824	1.0694	1.0239	.9214	.8667	.8764	•9121		
.1.00	25.30	4.00	5.00	2.70	1.1/00	1.0792	1.0565	1.0102	.8352	.8(32	. 8817	.9203		
9.71	17.00	1.50	2.60	1.10	1.1420	1.0772	1.0522	1.0061	.8451	.8622	.8835	. 9227		
.0 L	.00	.00	.00	.10	1.0:40	1 . 764	1.0475	1.0031	.8710	.8016	.8854	.9246		

CAMPO	CANTARELL
P020	87
TEMP. DE ANALISIS (GR	AD. CENT.) 101.00
DEN. REL. DEL GAS	(AIRL=1) .6680
DEN. DEL ACEITE	(GR/CM3) .9182
FGA	(M3/P3) 85.00
PRES. DE SAT. CALC.	(KG/CH2) 194.40

PRES		RS (M3)	/ M31			BO (#3	BO (M3/M3)			f. (GR/	CH3)	
(KG/CM2)	LAB	STAND	0151.	VAZ	LAR	STAND	0151.	VA Z	LAB	STAND	OIST.	VAZ.
300.00	92.60	50+20	40.00	26.60	1.2875	1.0890	1.1414	1.0793	.7933	.8545	.8432	• B 791
250.01	92.60	50.20	40.00	26.60	1.2548	1.0960	1,1489	1.0641	.7882	8.66.8	•8368	• 8735
200.00	92.60	50.20	40.00	26.00	1.3125	1.1047	1.1569	1.0899	.7841	.8793	·8305	.8680
157.00	92.60	50.20	40.00	26.60	1.3697	1.0989	1.1303	1.0723	.7798	.8731	.P415	.8768
125.06	77.30	38.10	30.80	20.70	1.2748	1.0.235	1.1097	1.0570	•7903	.8185	8 504	.9849
160.01	64.80	29.10	24.20	16.20	1.2474	1.0894	1.0954	1.0452	.7986	.8650	• P 5 6 5	.8912
15.0(53+50	20+60	18.10	11.90	1.2.01	1.0516	1.6825	1.0338	. A D 7 7	.8615	•P620	8975
50.00	41.20	12.60	12.30	7+60	1-1503	1.0.020	1.0700	1.0227	.8180	85P1	. 2569	.9.037
35.01	27.30	5.50	6 •7 0	3.50	1+1-557	1.0786	1.: 549	1.0101	.9292	.8550	.6713	. 7 697
	•0.0	• C ()	•00	•CE	1.0351	1.0114	1.04 %	1,0625	 4 4 3 (1) 	. P. 1.24	.9751	+9.151

CABPO P070		, 11, 11, 11, 144
TIMP. DE AMALISIS (U	RAN. (7.11.)	1/1.4.0
DEN. REL. CEL GAT	(*1***))	, 9 ° et
DEN. DEL ACETTE	(587683)	. 9192
PGA	(13/1 2)	ិន៖ មេបិ
PRES. Dr. SAT. CALC.	(Ku/Chu)	177.60

PDES		RS CH2,	/ 43)		00 (K3/H3)				B (GP/CH3)				
(KG/CH2)	LAB	STAND	OI ST.	VA2	LAP	STAND	0151.	. VA Z	L A B	S TAND	OIST.	VAZ.	
283.11	82.50	45.30	36 .10	27.66	1.2707	1.5850	1.1269	1.0749	.8076	, 9 92 3	.8506	.8799	
217.30	02.50	45.30	36.10	27.60	1.2817	1.0952	1.1363	1.0067	.7957	.8 824	.8422	.8723	
167.8[82.50	45.30	36.10	27.60	1.2271	1.1003	1.1400	1.0904	.7924	.8 781	.83R5	.3690	
161.01	a2•50	45.430	36.10	_7. 60	1.2925	1.0994	1.1314	1.0831	.7891	.8742	.9420	. A 722	
145.6(82 • 50	45.30	36.10	27.40	1.2960	1.0968	1.1212	1.0747	.7869	. 9 721	. 2464	.8766	
116.71	67.70	34.70	28.20	21.70	1.2667	1.0919	1.1037	1.0592	.7953	.8 6 8 1	.8540	.9848	
85.1(55+80	23.70	26.20	15.4 (1	1.2385	1.0570	1.0067	1.0426	.8627	.Pt77	.0 612	.8937	
56.31	43.20	14 + 40	13.50	2.71	1.2174	1.1678	1.0731	1.0280	.9131	.8 598	.8669	.9019	
29.5L	29.6D	6.6ü	7.60	4 • 80	1.1755	1.0794	1.0015	1.0151	.9277	.8 565	P717	.9092	
.0 L	• C. U	• 60	•CU	• 110	1.0575	1.0764	1.0475	1.0625	.9693	.8 536	.8771	.9165	

CAMPO		CANTAPELL
F:070		94
TEMP. DE ANALTSIS (GPAC	. CENT.1	97.ur
DEN. REL. DEL GAS	(A10171)	.9610
DEN. DE & ACETTE	(68/043)	.9243
πυΛ	(H3/N3)	95 .0 0
PHES. D. SAT. CALC.	(KG/CM2)	191.20

	PPLS		RS (H3)	/ 431			80 (P37H3)				La (GP/C+3)			
	(KGZCML)	LAU	STAND	OI ST.	VA7	LAP	STANE	0151.	VA Z	LAB	S TAND	CIST.	VAZ.	
	225,6t	94.40	45.40	35.10	28.10	1.3110	1.0909	1.1279	1.0874	.7780	.8893	.8511	.8761	
	200.00	94.40	45.46	35.10	28.10	1 + 7150	1.0949	1.1314	1.0902	•7760	.9 .58	. 0482	.9734	
	175.01	54 . 40	45.40	35 .1ú	28.10	1+3200	1.0969	1.1301	1.0892	.7740	· ° c24	.A478	· 9731	
	150.00	94.40	45+40	35.10	28.10	1.3240	1.0927	1.1145	1.0757	•77°C	• 9 791	.P546	.9802	
	121.01	c1.40	36.40	28.50	22.90	1.2530	1.0887	1.1003	1.0625	.7820	.8 759	.9609	.9973	
	160.01	68.86	27.80	22.40	18.00	1.2650	1.0848	1.0876	1.0475	.7910	.P. 127	. ª 664	. 9 94 4	
	15.01	55.90	19.70	16.76	17.10	1.2360	1.0811	1.0761	1.0360	.7990	. 3 6 9 5	.9714	.9015	
	51.0L	42.70	12.10	11.40	8. 40	1.2110	1.0777	1.0056	1.0245	• 4 (, QE)	. 2 (65	. P 758	.9119.0	
•	15.12	27.70	5.20	5.2C	3.90	1.1620	1.0746	1.0557	1.0126	• N 2 0 D	8637	. 9 / 9 7	.9154	
	• 11	• C D	• Ē Ē	•00	• ' fi	1.0200	1.0123	1.0449	1.0624	_ r a 70	. 9 : 15	.P.541	9.15	

CAMPO	CANTAPELL
0000	20.9
TEMP. DE ANALISIS (GRAD	0. CERT.) 96.40
DEN. REL. FEL GAS	(AIPE=1) .8070
DEN. DEL ACCITE	(GR/CM3) .9240
26A	(H3/H3) 85.00
PRES. DE SAT. CALC.	(KG/CM2) 208.40

PRES	ES RS (M3/H3)					80 (H3	7M31		£ (GP/CH3)				
(KG/CH2)	LAB	STAND	OIST.	VAZ	LAB	STAND	0151.	VA Z	LAP	STAND	GIST.	VAZ.	
350.00	64.20	40.60	31.60	21.10	1.2504	1.0800	1.1330	1.0777	.7844	.9677	.9542	. 8859	
292.00	64.26	40.60	31.60	21.10	1.2596	1 • □ 886	1+1411	1.0825	.7787	.8593	.8474	.8801	
230.01	64.20	40.60	31.60	21.10	1.2696	1.0983	1.1500	1.0885	.7726	.8905	.8401	.8779	
136.00	64.20	40.60	31.60	21.10	1.2279	1.0895	1.1061	1.0581	.7616	.8781	.1583	.9893	
120.01	56.90	34.90	27.40	18.40	1.2:08	1.0869	1.0973	1.0511	.7724	.8760	sr 62.2	.8932	
100.01	49.70	28+10	22.60	15.10	1.2327	1.0838	1.0871	1.0423	.7845	.9734	.8666	.898D	
80.0L	40.66	21.40	17.90	11.86	1.2176	1.0509	1.0778	1.0330	.7936	8 70 8	•₽707	.9028	
60.0L	32.00	15.10	13.60	03.3	1.1:71	1.0780	1.0692	1.0254	.5002	•8t83	.9743	.9076	
41.0L	22.46	9.20	9.40	5.50	1.1583	1.0754	1.0611	1-0174	. R114	. 8659	.8777	.9123	
• O C	•00	• ୮ ୦	.00	• CD	1.0530	1.0713	1.0443	1.0029	.8623	•8 t21	.8844	.9209	

CAMP0 P020		CANTARELL 209	
TEMP. DE ANALISIS COR DEN. REL. DEL GAS	AD. CENT.) (AIRE=11	12C.UO .8699	
DEN. DEA ACEITE RGA	(GR/CH3)	•924D 85-00	
PRES. DI SAT. CALC.	(KG/CM2)	214.40	

PRES	S RS (H3ZH3)					60 (M3	7431		f. (GR/CH3)				
EKG/CH 21	LAB	STAND	OIST.	VAZ	LAP	STAND	0151.	VA Z	LAB	STAND	OIST.	VAZ.	
350.01	79.40	39.40	32.60	24.40	1.3617	1.1029	1.1517	1.0849	.7855	.8868	.8414	.8838	
28F.0L	79.40	37.40	32.60	24.40	1.3101	1.1125	1.1613	1.0913	.7804	.8769	 8 32 8 	. 8759	
200.00	79.40	39.40	32.60	24.40	1.2268	1.1233	1.1635	1.0939	.7706	.8638	.9271	.8702	
145.00	79.40	39.40	32.60	24.40	1.2390	1.1145	1.1282	1.0671	.76 16	.8574	.8423	.8843	
130.01	72.10	34.50	28.80	.1.60	1.3149	1.1123	1.1197	1.0579	.7658	.8 557	A459	.8881	
105.00	10.90	26.70	22.80	17.10	1.2681	1.1086	1.1066	1.0482	.7714	.8 52 8	.P 516	. 8946	
80.0C	49.30	19.20	17.30	12.70	1.2631	1+1052	1+6947	1.0367	.7768	P 500	.8566	.9010	
55 00	38.00	12.20	12.10	8.40	1.2318	1.1019	1.0839	1.0255	.7847	.8473	. 0612	.9074	
40 n r	25.00	5.20	7.00	4.30	1.1951	1.0991	1.0739	1.0148	.7981	.A 448	.0654	.9136	
100	•00	•PD	.00	• 00	1.0265	1.0963	1.0604	1.0635	A 256	•8.424	.8709	.9203	

C A # P O		CANTALLIN
10:0		214
TEMP, DE ANALISIS COM	45. ((1.1.1.)	116.01
DEN. PEL. DEE GAS	(A10: 71)	766
EEN, DEL ACLITE	1CK7(22)	• 911
₽ĠA	(M*7+3)	10.00
PHES. DE SAT. CALC.	(Ku/(. Mr)	104.10

PRES	RS (H7/H3)				60 (F3/M3)				La (65/CH3)				
(KG/CH 2)	LAB	STAND	0151.	VAZ	LAP	STANE	0151.	VA Z	LAB	STANP	OIST.	VAZ.	
255.06	30.20	28.70	24.86	14.70	1.1660	1.164	1.1737	1.0633	.1095	.3770	•8187	. 7684	
260.NC	30.20	23.20	24.80	14.70	1.1736	1+1171	1.1840	1.0904	.9051	.8679	.8109	.8617	
150.00	30.20	28.20	24.8Ú	14.70	1.1790	1.1079	1.1427	1.0671	• P C 1C	.8601	.9279	.8734	
110.00	30.20	28.70	24 .AD	14.76	1.1c40	1,1009	1.1146	1.0467	.7972	.9538	. 9397	.8829	
54.01	20+20	28.20	24.80	14.70	1.1270	1.0984	1.1050	1.0410	.7960	. 8514	.8437	P 865	
60.C	26.70	23.00	20.90	12.70	1.1736	1.6961	1.0963	1.0353	• RC 35	,9492	. 2473	.8899	
սՐ.Ու	23.90	16.30	15,60	8.96	1.1550	1.0936	1.0353	1.0266	• 9154	.8461	.8519	. 946	
46.0L	15.70	10.00	10.96	5.76	1.1349	1.0902	1.0751	1+0182	.9284	.A433	.8559	R 992	
€1.0L	10.50	4.30	6.10	2.70	1.1090	1.0377	1.0654	1.0102	.8417	.8406	• P 3 9 H	.9037	
• C •	•00	• ິ ມ	•00	• (1)	1.0150	1.0358	1.0535	1.0032	.A743	. P 386	. A L4 3	.9076	

r Ampo	CANTAPELL
P070	1081
TEMP. DE AHALISIS CORAD. CENT.)	107.00
DEN. REL. DEL GAS (AIPE=1)	.8693
DEN. DEL ACTITE (OR/CM3)	•9105
FGA (H3/H3)	85 • 00
PHES. DI SAT. CALC. (KU/CH2)	171.30

PHIS	RS (H3/H3)					60 113	/M3)		S (GP/CH3)				
(KGZCM2)	LAC	STAND	01 ST.	VA 2	LAP	STAND	0157.	VA Z	LAB	STANP	CIST.	VAZ -	
357.00	69.76	50.50	41.96	25.50	1.2317	1.0849	1+1482	1.0724		.8555	.8371	.8810	
261.01	69.70	50.50	41.90	25.50	1.2455	1.0597	1.1632	1.0807	.7912	.9307	. 9:44	+9702	
200.01	69.70	50.FD	41.90	25.50	1.2564	1.1111	1+1741	1.0380	•7843	. 9 706	, 915.9	.3679	
151.0 L	69.70	50.50	41.90	25.50	1.2524	1.1653	1.1422	1.0690	.775.0	. 3128	.9286	• ⁰ 717	
136.06	61.40	44.50	37.20	22.70	1.2423	1.1026	1.1310	1.0024	.7867	• 9 104	.8332	1754	
106.07	47.00	30.70	26.60	16.20	1.2100	1.0963	1.1066	1.0454	∎ 74 AD	.8:46	•A434	• 8 8 4 Z	
01.0L	57.64	23.50	21.+20	12.70	1+1865	1.0971	1.1945	1.0362	.8(49	.9514	.9494	· 2891	
6.101	27.80	16.60	16.00	9 , "i)	1.1997	1.0906	1.0:035	1.0.73	•3150	.8483	.8529	.9339	
45.011	20 • 4C	11.70	17.10	6.30	1.1905	1.0079	1.0757	1.0207	. 9	.9461	• 9561	+ H 975	
•	•00	•20	• 00	• ⁶ G	1.1.18	1.0021	1.0515	1.6.30	• *6*7	.3405	. A655	.91.73	

Г <u>а</u> мро		CENTAPELI
P 070		2011
TEMP. DI ADALISIS	(GPAD. CENT.)	114.LC
DUN. REL. DEL GAS	(A10E71)	.7991
EEN. DEL ACETTE	(GR/CM3)	.9294
PGA	(#37#3)	95,00
PRES. D. SAI. CALC	. (KG/CM2)	236.70

PPLS R5 (H3/H3)						ы0 (М3	743)	L (GP/CN3)				
(KG/CH2)	LAB	STAND	0151.	VAC	LAP	STAND	0151.	VA 2	LAB	S TAND	OIST.	VA2.
350.01	88.50	42.90	34.10	24.90	1.3098	1.1020	1.1516	1.0875	.7845	.8 927	.9452	.8845
275.00	68.50	42.90	34.10	24.90	1.3204	1.1135	1.1627	1.0952	.7772	4 c16	.9357	.8759
200.00	88.50	42.90	34.16	24.90	1.3329	1.1162	1.1493	1.0367	.7699	.9719	.3391	.8782
159.56	38.50	42.90	34.10	24.90	1.3402	1.1098	1.1252	1.0685	.7657	.8L76	.9497	.8281
125.00	71.90	32.00	25.80	19.10	1.3600	1.1047	1.1073	1.0533	.7779	.8139	.9576	.8965
160.00	6F.4G	24,40	20.30	14.00	1.2720	1.1012	1.0957	1.0425	.7872	.8 013	.3627	•9n26
75.21	48.80	17.30	15.10	10.20	1.2410	1.0979	1.0852	1.0320	.7984	.8587	.1673	.01 96
50.0C	36.36	10+60	10.30	7.0	1.7100	1.094/	1.0756	1.0216	. 8 (90	.8563	· ° /14	• G 140
25.01	22.60	9.60	5.60	7.70	1.1710	1.0921	1.0666	1.0121	.8230	•8 b40	.8752	.9204
. 1 (.00	•DU	•0G	■€0	1.0380	1.0900	1.0562	1.0630	.8738	• 8 5.7 2	.3795	9256

санро	CANTARLLL
P020	20110
TEMP. DE ANALISIS (GRAD. CENT.)	102.20
DEN. REL. DEL GAS (AIPE=1)	.94un
DEN+ DEL ACEITE (GR/LM3)	•93U3
RGA (N37M3)	85.00
PRES. DE SAT. CALC. (KG/CM2)	193.60

PELS RS (MY/M3)						80 (M3	ZM3)		6 (GR/CHT)				
(KGZCH2)	LAB	STAND	0157.	V A Z	LAR	STAND	0151.	VAZ	LAB	S IAND	0151.	VAZ.	
352.16	62.30	37.40	28.80	24.80	1.2758	1.0803	1.1143	1.0811	.8112	.9649	.9677	.8 912	
281.71	82.36	37.40	28.80	24 + 80	1.2 :58	1.0899	1.1233	1.0874	.9062	.8951	.A594	.8333	
176.10	82.30	37.40	28.80	24.20	1.3627	1.1006	1.1248	1.0380	.7957	.8 :09	.8538	.8784	
137.01	52.30	37.60	28.80	24.30	1.3100	1.0945	1.1037	1.0675	.7913	. 8 766	.8632	.8895	
123.20	16.20	32.90	25.60	22.10	1.7550	1.0924	1.0970	1.0604	.7961	.9751	.8662	. R P 35	
109.20	19.60	28.40	22.40	19.70	1.2 000	1.0904	1.0905	1.0533	.8679	.9735	.Ro91	.8975	
81.01	56.30	19.00	16.40	13.90	1.2.00	1.0064	1.0786	1.0392	.0102	.8 70 4	.8743	.9056	
52.86	42.90	11.80	10.90	8.70	1.2190	1.0828	1.0679	1.0255	.8196	.9675	- B789	•9135	
24.61	27.60	9.70	5.60	1.80	1.1110	1.0796	1.0540	1.0120	.8315	.A 648	.8831	.9213	
.00	.00	.00	.00	.00	1.0.30	1.0174	1.6481	1.0027	. 8739	.9.29	.8571	.9273	

CAMPO		CANTADAL	
+ 07 N		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TEMP. DE ANALISIS (LD.	40 . CONT. 1	1 24 1	
DEN. REL. DEL SAS	16.00.000	1 0 • 0 ·	
GEN. DEL ACLITE	16620	1-1-2	
P 6 A	EMT / 4 / 1	9 b - 0	
PLESS DI SAT. CALC.		10.00	
COLINE OF THE CALCE	(10/(11))	170.46	

PRES RS (43/43)						80 fr	/ 14 ()		B ICD (CHT)				
(KG/CH 2)	LAP	STANC	0I 17.	VA."	LAP	STANI	0151.	VAZ	LAR	SIAND	OIST.	VAZ .	
460.00	93.70	41.60	34.40	34.10	1.3281	1.0934	1.1174	1.0810	.7900	- ទទុងហ	. 8 64 9	.8582	
344.06	93.70	41.60	34.40	34.10	1.3.171	1.1005	1.1273	1.086	7849	9.50	.8567	. 8 89 8	
294.56	93.70	41.60	34.40	34.10	1.3456	1.1679	1.1342	1.0921	7794	9.740	0494	9975	
203.01	53.70	41.60	34.40	34.15	1.3.41	1.1227	1.1493	1.1045	7607	9.115	0765	1023	
161.01	93.70	41.70	34 41	34 . 10	1.7.743	1.1222	1.1363	1.6919	.76.15	• 11 1- 1 D 	10202	9784	
140.01	82.60	35.11	.9.26		1.3415	1.1192	1.1295	1.0797	7735	+0.50.5	0407	10170	
1.0.01	73.30	29.00	24.60	. 4 . 74	1.3177	1.1163	1.1147	1.0675	.7806		0.01		
5F • O C	54.50	17.90	16.16	15.11	1.2703	1.1111	1.0966	1.0444	.7947		10.501	.000	
40.DC	36.40	7.74	8 .40	7.40	1.2186	1.1063	1.0809	1.0224	.8123	.8443	• · · · · · ·	.0173	
• " (•00	• C-D	•CU	. ℃6	1.0629	1.1027	1.0646	1.0629	8733	.8413	.8714	9250	

.

CAMPO	CANTAPETL
P020	2031
TEMP. DE ANALISIS (GRAD. CENT.)	105.UN
DEN+ REL+ DEL GAS (AIPE=1)	.9730
PEN. DEL ACEITE (GR/CH3)	.9435
DUA (#37+31	85.60
PIES. DE SAT. CALC. (KGZGM2)	200.40

	P 1:15		RS (M3)	/43)		80 (M3/H3)							
	(KG/CM2)	EAB.	STAND	015T.	A 7 5	LAB	STAND	0151.	VA Z	LAP	STAND	erst.	VAZ.
	350.01	74.70	36.40	26.56	27.60	1.2354	1.066	1.1091	1.0902	.4375	.2167	. 8794	.9953
	201.26	74.70	36.40	26.50	27.66	1.2449	1.0954	1.1160	1.0960	.2 111	A .77	• 71 8	.9875
	265.16	74.70	36+40	26.50	27.60	1.2553	1.1656	1+1244	1.1645	A 47	. 8 // 8 3	P643	. 8 799
	151.9L	74.70	36.40	26.56	27.60	1.2044	1.0976	1.0991	1.0749	.8143	. P . 36	. 8760	. 9965
	135.00	08.70	31.00	23.10	24.20	1.2461	1.0953	1.0975	1.066.	R256	8124	9791	.9615
	114.90	61.30	25.70	19.20	20.10	1.2279	1.0921	1.0348	1.0554	.8321	.8.07	8:26	91.79
	15.0	45+70	15.70	17.60	12.90	1.1542	1.0879	1.0774	1.0366	8429	0 777	8092	.9191
	41 - 11	.(.60	8.40	7.70	7.30	1.1582	1.0 645	1.0035	1.0219	. #56 t	4754	. 8 9 7 2	9282
،		22.24	4.70	4.61	4.10	1.1337	1.0021	1.0583	1.0133	87.20	. 8 74 1	4.54 5	9336
	• 01	.00	• ^ 0	•0u	• 1.)	1.0370	1.0806	1.0501	1.0620	• C.R.9	. 1177	19R	9403

C & PE 0		CANTARE 1.1	
PU20		203.0	
TEMP. DI ANALISIS (GRAD) • C[1 1 •)	106.00	
DEP. PEL. DEL GAS	CAIPETII	• 6 4 3 P	
DEN. DEL ACETTE	(GR/CF3)	.9144	
μ. τ	(HJ/43)	85.LA	
PRES. DI SAT. CALC.	(KG/CM2)	141.40	

FRES		R5 (M3)	/M3)			BO (M3	ZM31					
(KG/CM:)	LAB	STAND	0151.	V A Z	LAP	STAND	0151.	VA Z	LAR	STAND	ctst.	VAZ.
350.01	79.70	49.50	40.50	28.10	1.2578	1.0808	1.1314	1.0731	.7948	.8 972	.8483	.8.947
296.00	79.90	49.50	40.50	28.10	1.2674	1.0991	1.1407	1.0785	.7888		• B 399	•F 773
230+0L	79.90	49.50	40,50	28.10	1.2783	1.1001	1.1501	1.0848	.7822	.n779	.8317	.8700
153.01	79.90	49.50	40.50	28.10	1.2946	1.1038	1.1363	1.0762	.7723	.8659	. A 343	.9717
130.01	67.50	40.70	33.60	23.50	1-2584	1.0998	1,1209	1.0642	.7849	•8t25	.P41C	·°779
9°.0L	59.10	26.10	22.75	15.70	1.2154	1.0933	1.0965	1.0438	.7989	.8165	.9513	.8886
76.00	41.10	19,30	17.60	11.90	1.1919	1.0902	1.0453	1.0339	.8175	.1536	.4.55.6	.8939
5 ° • 0 C	32.56	12.80	12.80	8.20	1.1685	1.0873	1.0758	1.0243	.8161	8508	.8549	.A 992
30.06	23.10	6.90	8.26	4.70	1.1478	1.0847	1.0664	1.0151	• P 2 39	.8481	.8637	.9[44
.01	.00	.00	.00	• 60	1.0571	1.0616	1.0508	1.0027	.8589	. 8 44 9	. 0697	.9114

CAMPO		CANTARELL	
P020		2073	
TEMP. DE ANALISIS (GRAD	. CENT.1	115.00	
DEN. REL. DEL GAS	(AIRE51)	.9078	
DEN. DEL ACEITE	(GR/CP3)	.9179	
кыA	(H3/P3)	85.LQ	
PFES. DI SAT. CALC.	(Ku/CM2)	197.20	

PDIS		RS (M3)	/M3)			80 (M3	/M3}			B (GP/CH3)				
(KGZCH 2)	LAB	S TA ND	01 51.	V A 7	t ae	STAND	0151.	VA Z	LAR	S TAND	UIST.	VAZ .		
350.0C	A2.70	46.50	38.60	27.40	1.3106	1.0935	1.1447	1.0786	.7846	.8 902	.R423	.8839		
230.00	62.70	46.50	38.60	27.40	1.3216	1.1132	1.1641	1.0915	.7722	.8 107	.8253	.8685		
170.00	82.76	46.50	38.60	27.40	1.3357	1.1146	1.1427	1.0822	.7640	• 8 6 1 8	.8294	.B714		
155.00	62.70	46.50	38.60	27.40	1.3397	1.1123	1.1392	1.0746	.7617	.8598	.8338	.R753		
125.01	67.50	35.90	30 - 20	21.60	1.3102	1.1074	1.1200	1.0596	.7731	.8157	.8419	. A 831		
100.00	55.00	27.40	23.80	16.20	1 - 2 65 2	1 • 10 35	1.1056	1,0474	.7855	.8524	.84A1	. 897		
75.00	45.10	19.40	17.70	12.40	1.2360	1.0998	1.0925	1.0355	.7953	.8492	.8535	. 8 96 2		
50.00	33.50	11.20	12.10	7.90	1.2151	1.0564	1.0807	1.0239	.8056	.8460	•95A5	.9027		
25.06	22.00	5.10	6.60	1.70	1 . 1 / 1 4	1.0934	1.0696	1+0129	.P173	. 8431	• ^R 630	.9089		
.01	.00	.00	• CU	• 0	1.01*2	1.0910	1.0569	1.0131	• 97.5 B	.8409	.2690	.9145		

	C 1 NOO		CAN [®] A LEE	
	P 020		21.75	
	TEMP. DE ANALISIS (6)	1601 (CENTIF	1144.0	
	DER. REA. DEL GAS	151FE 143	.90.00	
	SEN. DEL ACETTE	(1876).1	. 9641	
	(2-), Δ	(67713)	°5•ut	
•	PATS, DE SAT, CALC,	(Ku/CF2)	243.30	

PELS RS (H3/H3)						00 (H)	/43)			L 16P/	C #3 1	
(KG/CH ()	LAB	STAND	01 51.	V A Z	L 49	STAND	0151.	VA Z	LAB	S IAND	OTST.	VAZ.
351.06	73.90	25.40	16.90	24.36	1.2:88	1.1612	1.1049	1.1080	.8178	.9165	.8519	.8986
281+116	73.90	25.40	16,90	24.70	1.2792	1.1695	1.1119	1.1155	. # 111	P 493	.8869	.8908
211.00	73.90	25,40	16.90	24.30	1+2587	1.1107	1.1054	1.1634	.8039	a 525	.8 5 8 5	.8964
139.30	73.90	25.40	16.96	24.30	1.3640	1.1625	1.0852	1.0169	.7957	. R 2 94	.8984	.9184
126.51	58 .6 0	22.60	15.16	21.90	1.2510	1.1011	1.08?1	1.0605	.7997	• R : 88	.R. 509	.9274
98.41	56.80	16.70	11.50	16.60	1.2.620	1.0982	1.0757	1.0468	ALAJ	.6c76	· °L29	.9312
75.31	44.80	11.10	A.2∪	11.50	1+2330	1.0954	1.0699	1.0334	. #1 ⁸ 5	8-64	.9657	. 9 39 9
42.1L	32 •4 L	6.000	5.10	6.60	1.2120	1.0929	1.1546	1.0204	.9289	.8 = 5 3	.9282	. 9486
14.01	17.00	1.40	7 ↓ 00	1.90	1.1560	1.0907	1.0595	L-DUR 4	. 8440	. 9 84 3	.9107	.9568
• 1 i	• fi G	•ru	∎Đŭ	.00	1.0130	1.0906	1.0562	1.0133	.9743	.8+39	.9122	.9603

CAMPO	CANTARELL	
P 02 0	2975	
TEMP. DE ANALISIS LEHAD	• CENT+1 109+CD	
DEN. REL. DEL GAS	(AIPE=1) .9441	
GEN. DEL ACEITE	(GR/CP3) .9722	
14 G A	(H3/P3) 85.00	
PHES. DI SAT. CALC.	(KG/CP2) 190,50	

	Pois		RS CHT	/ M 3)		BO (H3/H3)					S. 167/	C H 3)	
	CK 675H 21	LAP	STAND	0151.	VA7	LAF	STANE	6121.	VA Z	LAB	STAND	ċtst.	V A 7 +
	350.01	63.20	36.60	29.80	23,30	1+2281	1.0861	1+1293	1.0786	.9231	• A 965	• 1542	.8873
	291.06	61.20	36+60	20.80	23.70	t • 7 ±62	1,0949	1.1370	1.0342	.9177	·8 =72	· ° 462	• P799
	170.01	67.20	36.60	27.90	23.70	1.7562	1.1071	1.1394	1.0352	_RD47	.8€95	.R 393	• A734
	1.4+01	03.20	36.60	18.95	23.30	1.2656	1.1614	1.1132	1.0638	.7987	.8643	• 9502	• 8 84 7
	165.06	52.40	26.00	22.60	17.60	1 • 2 30 9	1.0969	1.1977	1.0489	.8125	. B t.D 6	. 9569	. R 927
	of.91	44.00	20.60	18.00	13.86	1.2643	1.0941	1.0875	1.000	.A20A	.81B1	.P.10	. A CA 3
	t01	36.90	14.50	13.66	10.10	1.1:77	1.0913	1.0790	1.0292	.9289	.8:57	. 9 (4 9	.0038
1	41.01	58.50	1.90	9.46	6.50	1.1193	1.0088	1.0706	1.0198	.8375	. 4 5 7 5	. A L A 3	.9"92
-	. 5.01	20.70	5.00	6.30	3.10	1 - 1 44 7	1.0076	1.0645	1.0130	.9446	8118	• P 10 8	.9171
	• '' (•CD	.r⊂ti	•Cb	•°0	1.1.579	1.1.647	1.0528	1.0170	.8309	. " 597	. 0755	.9191

438 Cz		CANTAPELL	
ne: o		20.95	
TEMP. DI JNALIDIS (G	PAD. CENT.1	115.00	
DEN. RUL. DEL GAS	(/ IRE513	.9214	
DEN. DEL ACLITE	(GR/CH3)	.9434	
r6A	(113/143)	95.GM	
PRES. DE SAT. CALC.	(KG/CM2)	226.40	

₽ቦቲና		RS CH3	/431			80 (H3	ZH3)			La IGRI	CM3)	
(KG7CM 2)	LAD	STAND	0151.	V A Z	LAB	STAND	0151.	VA Z	LAB	STAND	UIST.	۷۸7.
360.01	72.20	32.50	24.50	25.70	1.2346	1.1060	1.1277	1.1000	.8251	•8 89 8	.8642	.9864
250.00	72.20	32.50	24.50	25.70	1.2420	1.1132	1.1342	1.1659	.8201	.8831	.8584	.8803
201.00	72.20	32.50	24.50	25.70	1.2487	1.1151	1.1284	1.0992	.9157	.8775	.4595	· 8877
144.01	72.20	32.50	24.50	25.10	1.2.02	1.1075	1.1039	1.0702	. 9 0 8 3	. B 732	• 2 70 8	.8990
100.06	54.40	20.90	16.46	17.20	1.2160	1.1626	1.0879	1.0482	. R 248	.8 £99	. 191	• 9 1 1 9
75.DL	43.90	14.80	12.20	12.60	1.1880	1.0991	1.0799	1.0360	.8357	•8 t81	• ° 517	.9193
55,00	33.26	9.10	8.30	8.10	1.1610	1.0964	1.0726	1.0243	.8457	.8663	.Fa≞0	. 9265
32.01	24.90	5.30	5.60	4,90	1.1380	1.0946	1.0676	1.0161	• E 5 5 9	.8 651	. 9872	.9316
24.100	19.10	3.00	3.70	2.90	1.1210	1.0935	1.0/42	1.0109	. 9 6 35	.8 64 3	.8387	. 9749
.01	.00	•00	•00	• "0	1.0300	1.0921	1.0576	1.0032	.9115	·8634	.8515	.9399

САМРО		CHAC	
P 07 0		1	
TEMP. DE ANALISIS COR	AD. CENT.)	105.00	
DEN. REL. DEL GAS	(AIRE=1)	.7915	
PEN. DEL ACETTE	(GR/CM3)	,9420	
₽ G A	(H3/P3)	64+60	
PRES. DE SAT. CALC.	(KG/CH2)	188.30	

CrES		RS (H3	H7/N3) B0 (H3/H3)						20 (GR/CH3)					
EKG/CH 23	LAN	STAND	UI ST.	V A Z	LAT	STAND	0151.	VA Z	LAB	S TAND	UIST.	VAZ .		
350.00	63.50	35 +60	26.10	22.30	1.2(22	1.0805	1.0981	1.0645	.P 525	.9 (93	.8857	.9112		
280.00	63.50	35.60	26.10	27.30	1+2112	1.0896	1.1062	1.0703	.9461	.8 591	.9769	•9028		
210.00	63.50	35.60	26.10	22.30	1.2206	1.0990	1.1151	1.0777	.8 3 96	.8890	.A683	.8944		
145.66	63.50	35.60	26.10	22.30	1.2313	1.0973	1.0990	1.0016	• P 323	.8 823	.8746	•0027		
126.20	56+20	29.90	22.20	19.10	1.7166	1.0946	1.0912	1.0532	.8360	• 8 8 0 7	.8782	.9077		
98.16	47.10	22.10	16.90	14.50	1.1579	1.0909	1.0809	1.0412	.9408	.8783	• 6 8 5 8 4 •	•0148		
73.80	39.00	15.70	12.70	10.60	1.1208	1.0879	1.0720	1.0311	.8454	.8764	.8466	.9210		
50.6L	30.40	9.90	8.90	7.00	1+1632	1.0852	1.0658	1.0217	. A 499	.8746	. 9 8 9 8	.9268		
24.61	19.50	4.20	4.70	3.10	1.1.153	1.0825	1.0583	1+0117	.8539	.8727	.8530	•9331		
	.00	.00	.00	•16	1.0192	1.0806	1.0501	1.0633	• n 89 4	.8713	.4966	• 9384		

C f H s A		C114C			
1,25		2			
I. WO. D. ANALIS (CD	40. CENT.1	173.00			
1. FEL DEL SAS	(A1R) = 11	1.6220			
FEST DEL ACETTE	(SRZC23)	.9462			
1.5	(M=1+3)	64.ur			
DEFS. DE SAT. CALC.	(KG/642)	166.70			
				•	
					•

Р S	S FS (H77H3)					60 (13	/M31			3 (GP/	(243)					
18 57 St. 1	1.42	STAND	orsr.	VAT	LAD	STAND	0157.	VA 🖌	LAR	STAND	6TST.	VA7.				
D)(63.00	23.90	18.46	22.70	1.2450	1.0858	1.1:871	1.0633	.8279	.9180	. 71.00	. 9271				
357.31	63.00	23.90	18.41	22.70	1.2537	1.0513	1.0923	1.0676	.0101	• e (C 3	•997U	• 2 le 4				
264.0.	67.00	23.90	18.40	22.70	1.2611	1.0960	1.0975	1.0723	. 1 74	. 4 526	. 9 LFE	.0116				
251.51	03.20	23.90	18.40	22.70	1.7688	1.1032	1.1031	1.0776	. 61.85	• ^a - 4 9	. 7 7 9 1	↓ 9 E4 Z				
1 / 1 / 1	67.06	23.90	18.01	22.76	1.2781	1.1114	1.1104	1.0649	, A., 75	. 3 761	.0711	.9955				
117.01	62.00	23.90	18.40	22 . Tu	1.2572	1.1111	1.0972	1.0623	,79r7	P 6.76	ុខ / ប	.910Fb				
97.91	51.10	17.40	13.90	17.10	1.7190	1.1074	1.1394	1.0475	. 2646	, ¶ €ჩα	• ° 79 u	.0124				
6.1 . 54	12.80	10.70	9.40	10.70	1.2.25.2	1.1047	1.0797	1.0116	• 9167	• = {₹4	• • 2 ° G	-n252				
29,01	25.20	4.40	4.90	4,90	1.1:72	1.1010	1.8712	1.0160	7	•8t21	. 9 56 3	•P251				
	.00	.00	•0C	.10	1.004	1.0991	1.0625	1.9631	. * 692	10a P -	• ⁰ • ⁰ 7	.9475				

r 1460	CHAC
0207	2
TEMP, DE AVALISIS COP.	D. CENT.1 122.70
DEN. REL. DEL CAS	CAIPETIF .734P
DEN. DEL AGETTE	(GR/CH3) .9522
G (.A	(43/23) 64.60
PRES. DE SAT. CALC.	(KG/CH2) 212.50

60. C		05 147				60 (MT	/433			£ 1681	CH33	
ING/CH21	LAB	STAND	0151.	VAZ	LAP	STAND	0151.	VA 🖌	1 40	STAND	UIST.	VAZ.
8.1-61	65.70	27.50	17.50	10.50	1.2680	1.1018	1.1098	1.0750	. # 295	.8 979	• 9 2 3 4	.9126
241-31	65.70	23.50	17.50	18.10	1.2772	1.1110	1.1192	1.0620	R275	. P 67 5	, B 742	.91:71
211.01	65.70	23.50	17.50	18 .14	1.2 .78	1.1.14	1.1274	1.0905	· R167	+ F 77 3	.A 656	. 9944
100 61	15.70	23.50	17.56	18.10	1.7999	1.1130	1.1009	1.0505	101.01	.9732	, P 7PO	.9126
140.00	65 70	23 50	17 50	18.00	1.31.90	1.1107	1.1940	1.0516	.8166	.8720 .	·8510	. \$178
129.10	03.10 Er 80	2.3 + 71.	10 11	14.00	1.2720	1.1682	1.(890	1.0910	. # 140	P 707	. 9 64 1	.9236
23.001	20.00	10.40	74.110	2 9 91	1.2.20	1.1051	1.0004	1.0300	. 9241	.0691	• # 876	.9309
10.1	45.80	10.000	10,10	F 10	1 2.00	1.1074	3 . 5 7 3 4	1.0189	.8 147	.8676	. P 90 B	.9381
40.00	34.70	6.60	0.10	1 00	1 1 1 1 1 1	1.1.01	1.1.663	1.0089	R 494	·8 : 6 3	.8536	.9446
17.11	19+80 •PU	1.90 .00	-00 -00	•£0	3.0790	1.0492	1.0022	1.0141	9815	.9158	. 9 4 . 9	7478
SATA TONO	RED - 1	I CONTLOL	HOLL									

A P E N D I C E I I I I

EXPRESIONES PARA EL CALCULO DE LA PRUSION DE SATURACION

- CAMPO CANTARELL

Pb = 24.94228
$$\left[\frac{Rs}{\delta g}\right]^{0.39593}$$
 $\frac{10^{0.0300874\delta_0}}{10^{0.0003708T}}$

- CAMPO KU

Pb = 29.23452
$$\left[\frac{\text{Rs}}{\text{Vg}}\right]^{0.38243}$$
 $\frac{10^{0.08177 \text{V}_0}}{10^{0.000654\text{T}}}$

- CAMPO ABKATUN

$$Pb = \left[73.2159 + 0.8380169 \frac{\aleph_0}{\aleph_g} \text{ Rs}\right] \frac{10^{0.003724T}}{10^{0.58917\%}}$$

O bien:

.

$$Pb = \left[3.6772 \left(\frac{\delta_0}{\delta_g} \text{ RsT}\right)^{0.405103}\right] - 18.5$$

- CAMPO POL

Pb = 3.6772
$$\left[\frac{\vartheta_{0}}{\vartheta_{g}} - RsT\right]^{0.405103}$$

EXPRESIONES PARA EL CALCULO DE LA RELACION GAS DISUELTO-ACEITE

- CAMPO CANTARELL

Rs =
$$\delta g \left[\frac{P}{24,94228} + \frac{10^{0.0003708T}}{10^{0.030087480}} + \left[\frac{P}{Pb} - \frac{P^2}{Pb^2} \right] 140 \right]$$

- CAMPO KU

Rs =
$$\Im_g \left[\frac{P}{29.23425} + \frac{10^{0.000654T}}{10^{0.0817750}} \right] + \left[\frac{P}{Pb} - \frac{P^2}{Pb^2} \right] 190$$

-

.

- CAMPO ABKATUN

$$Rs = \left[\frac{\chi_{g}\left[\frac{p\left(1 + \frac{18.5}{Pb}\right)}{\frac{3.6772}{3.6772}}\right]^{\frac{1}{0.405103}}}{\chi_{oT}}\right] + \left[\frac{p}{Pb} - \frac{p^{2}}{Pb^{2}}\right]^{\frac{2}{200}}$$

- CAMPO POL

.

$$Rs = \left[\frac{\aleph_{g}\left(\frac{P}{3.6772}\right)^{\frac{1}{0.405103}}}{\aleph_{oT}}\right] + \left[\frac{P}{Pb} - \frac{P^{2}}{Pb^{2}}\right] 170$$
EXPRESION PARA EL CALCULO DEL FACTOR DE VOLUMEN DEL ACEITE

Se define en primera instancia el parámetro F para todos __ los campos.

F = Log
$$\left[5.6146 \text{ Rs} \left(\frac{\delta g}{\delta o} \right)^{0.526} + 1.7424 \text{ T} + 30.976 \right]$$

Finalmente el factor de volumen se calcula con la expre-sión:

$$Bo = c \left[1 + 10 \right]^{(-6.58511 + 2.91329F - 0.27683F^2)}$$

Donde:

C = 1.0252 para Cantarell. C = 1.0329 para Ku. C = 1.0519 para Abkatún. C = 1.0756 para Pol.

. EXPRESION PARA EL CALCULO DE LA DENSIDAD DEL ACEITE

Es factible usar la siguiente expresión para el cálculo de la densidad del aceite, para todos los campos:

$$f_{0} = \frac{1}{B_{0}} \left[\delta_{0} + 1.224 \times 10^{-3} \text{ Rs} \delta_{g} \right]$$

REFERENCIAS BIBLIOGRAFICAS

- Sage, B.N. and Lacey, W.N., "GRAVITATIONAL CONCENTRATION --GRADIENTS IN STATIC COLUMNS OF HYDROCARBON FLUIDS". Trans. AIME (1939) 132, 121-131.
- Schulte, A.M., "COMPOSITIONAL VARIATIONS WITHIN A HYDROCAR-BON COLUMN DUE TO GRAVITY". SPE 9235, Dallas, Tx., Sept. -21-24, 1980.
- 3.- Creek, J.L. and Schrader, M.L., "EAST PAINTER RESERVOIR: AN EXAMPLE OF A COMPOSITIONAL GRADIENT FROM A GRAVITATIONAL --FIELD". SPE 14411, Las Vegas, N.V., Sept. 22-25, 1985.
- 4.- "LA EXPLOTACION PETROLERA EN MEXICO", Gerencia de Explota ción de Yacimientos. PEMEX, México 1981.
- 5.- "COMPORTAMIENTO DE LOS FLUIDOS ANTE EL AGOTAMIENTO DE LA --PRESION. AREA MESOZOICA CHIAPAS-TABASCO-CAMPECHE". Subdirección de Tecnología de Explotación. IMP, México 1983.
- 6.- Standing, M.B. : "A PRESSURE-VOLUME-TEMPERATURE CORRELATION_ FOR MIXURES OF CALIFORNIA OILS AND GASES", Drill. and Prod. Prac., API (1947) 275-286.
- 7.- Vázquez, M. y Beggs, M.D. "CORRELATIONS FOR FLUID PHYSICAL_ PROPERTY PREDICTION", J.P.T. Junio, 1980.

- 8.- Oistein, Glaso. "GENERALIZED PRESSURE-VOLUME-TEMPERATURE -CORRELATIONS", J.P.T. Mayo 1980.
- 9.- Montel, F. and Gouel P.L., "PREDICTION OF COMPOSITIONAL --GRADING IN A RESERVOIR FLUID COLUMN". SPE14410, Las Vegas, N.V., Sept. 22-25, 1985.
- Miller, Robert E., "CORRELATION AND REGRESSION". Chemical Engineering. Sept. 30, 1985. (71-75 pp).
- Garaicochea P. Fco., "APUNTES DE TRANSPORTE DE HIDROCARBU-ROS". Facultad de Ingeniería, UNAM. Noviembre de 1983.
- González H. Servando, "FISICOQUINICA Y TERNODINAMICA". Fa cultad de Ingeniería, UNAM.
- Standing, M.B., "BEHAVIOR OF OIL FIELD HYDROCARBON SISTEMS" Millet the Printer, Inc., 1952.
- 14.- Rodríguez, N. Rafael, "PRINCIPIOS DE MECANICA DE YACIMIEN_ TOS". Facultad de Ingeniería, UNAM.
- 15.- Craft. B.C. and Hawkins, M.F., "APPLIED PETROLEUM RESER --VOIR ENGINEERING" Prentice Hall, 1959.
- 16.- Mc. Cain, Jr. William D., "THE PROPERTIES OF PETROLEUM -FLUIDS", The Petroleum Publishing Company, 1973.

- Amyx, Bass and Whitting, "PETROLEUM RESERVOIR ENGINEERING", Mc. Graw Hill Book, Co., 1960.
- 18.- Peng D.Y. and Robinson D.B. : "A NEW TWO CONSTANT EQUATION_ OF STATE". Ind. Eng. Chem., Fundam., vol. 15 No. 1 (1976)_ 59-64.
- 19.- Sutton, R.P. and Farshad, F.F., "EVALUATION OF EMPIRICALLY_ DERIVED PVT PROPERTIES FOR GULF OF MEXICO CRUDE OILS". SPE 13172, Houston Texas, Sept. 16-19, 1984.
- 20.- Peaceman, Donald W., "CONVECTION IN FRACTURED RESERVOIRS --NUMERICAL CALCULATION OF CONVECTION IN A VERTICAL FISSURE, INCLUDING THE EFECT OF MATRIX-FISSURE TRANSFER". SPE 5959, New Orleans, Oct. 3-6 1976.
- 21.- Lasater, J.A., "BUBBLE POINT PRESSURE CORRELATION". J.P.T. Mayo, 1980. 379-381p.p.