

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

TESIS: SIMULACION DE DISTRIBUCIONES EN DISPERSIO-NES AGITADAS LIQUIDO-LIQUIDO

SUSTENTADO POR:

ANTONIO CERVANTES ODRIOZOLA

CARRERA: INGENIERO QUIMICO

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

E C

a i	•					
Ι.	INTR	ODUCCION				1
2.	GENE	PALIDADE	s sobre dispe	rsiones liquido	-LIQUIDO	5
	2.1 2.2 2.3 2.4	Introdu Introdu Introdu Resimen	cción al Fend Cción Bibliog Cción Bibliog De Modelos P	meno de Dispers Ráfica, al Fenó Ráfica, al Fenó Noplestos	ión Neno de Ruptura Neno de Coalesce	6 9 NCIA 14 17
		2.4.1. 2.4.2 2.4.3 2.4.4 2.4.5	Relel Shinna L. A. Spielm Kenneth J. V Akira Suzuki Kalanathi V	R Y JAMES M. CH WN Y O. LEVENSP LAENTAS Y NAL. 1, N.F.H. HD Y W S. SASTRY Y DOU	urch IEL R. Amineison . I. Higuchi Rias M. Fiedsten	17 19 19 21 441 22
•		2.4.6	M. A. ZEITLI	N Y L. L. TABLA	RIDES	1 2 3
3.	MODE	lo emp le	ADO			25
	3.1	MODELO	ZEITLIN -TABL	ARIDES		25
		3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	General Idade Movimiento d Ruptura de P Coalescencia Simulación	s e la Partícula wrticula de Particula		26 28 32 34 35
	3.2	MODIFIC	ACIONES AL MO	DELO		39
4.	DIAG	rama de	FLULO			- 40
5.	SIM	LACION				49
6.	CONC	LUSIONES				82
7.	BIBL	IOGRAFIA	an an Araba an Araba. Nga sangan an Araba an Araba			85
						93 95 104

INTRODUCCION

EN LA MAYORÍA DE LAS OPERACIONES DE TRANSFERENCIA DE MASA, LA VELOCIDAD DE TRANSFERENCIA ES EXPRESADA COMO EL PRODUCTO DEL ÁREA INTERFACIAL TOTAL NETA DE TRANSFERENCIA POR UNIDAD DE ÁREA, 2

Es necesario anadir a este modelo el comportamiento en sis temas agitados. Teóricamente, por supuesto, el área y la velocidad de transferencia, ambas dependen de las propiedades físicas, y estas propiedades pueden ser usadas para correlacionar las velocidades observadas. Sin embargo las variables son mas numerosas que las habitualmente utilizadas para la medición de la velocidad global de transferencia de masa. Como una complicación más, los efectos de – las variables físicas afectan la velocidad global como un paso de transferencia o como un factor limitante.

Por eso, esa medición directa del área interfacial o del tamaño promedio de partícula puede contribuir en la interpretación de la transferencia de masa en tanques agitados .

Por ejemplo, supongamos que tenemos un reactor (tanque agl tado), en donde se tienen dos fases, una dispersa en la cual ocurre la reacción de uno o dos componentes y, otra continua que actúa como acarreador de material, como suministrador del reactante a través de la transferencia de masa o como catalizador de la reacción en la fase dispersa. EN DICHO SISTEMA LA CONTINUA RUPTURA Y COALESCENCIA DE LAS GOTAS DE LA FASE DISPERSA, REDISTRIBUYEN EL MATERIAL REACTANTE DE ES TAS GOTAS LO CUAL PUEDE INFLUIR EN EL CURSO DE LA REACCIÓN YA QUE LA TRANSFERENCIA DE MASA Y DE CALOR SE VEN AFECTADOS POR QUE LOS REAC---TANTES SE ENCUENTRAN EN DIFERENTES FASES Y TIENEN QUE SER TRANSPORTA DOS A LA INTERFASE E INCLUSO A TRAVÉS DE ELLA ANTES DE QUE LA REA----CCIÓN OCURRA, CON ESTO, ENTRE MAYOR SEA EL ÁREA INTERFACIAL MAYOR SERÁ LA TRANSFERENCIA DE MASA Y DE ENERGÍA LO CUAL AFECTA LA REA-----CCIÓN.

Esta área interfacial está relacionada con el diámetro de Las gotas (esfericas) de la siguiente manera;

$$A = \frac{6}{D_{32}}$$

DONDE :

A = AREA INTERFACIAL,

• = FRACCIÓN VOLUMEN DEL LÍQUIDO.

 $D_{32} = \frac{\Sigma \text{ Ni Di}^2}{\Sigma \text{ Ni Di}^2}$

D = DIAMETRO DE PARTÍCULA.

VIENDOSE QUE EXISTE UNA DEPENDENCIA ENTRE LA REACCIÓN Y EL DIÁMETRO DE LAS PARTÍCULAS POR LO ANTERIOR, EL CONOCER EL AREA INTER-FACIAL ES DE GRAN IMPORTANCIA, POR LO CUAL EL OBJETI VO DE ESTA TESIS SERÁ DESARROLLAR UN MODELO PARA PRE DECIR LA DISTRIBUCIÓN DE DIÁMETROS DE GOTA EN UNA --DISPERSIÓN LÍQUIDO-LÍQUIDO) DESCRIBIENDO LAS INTER--ACCIONES DINÁMICAS E HIDRODINÁMICAS LÍQUIDO-LÍQUIDO PARA SISTEMAS DE DOS FASES LÍQUIDAS INMICIBLES AGITA DAS TURBULENTAMENTE. ÁSÍ, SE PODRÁ CONOCER ESTA --ÁREA INTERFACIAL Y, SE PODRÁ PREDECIR LA TRANSFEREN-CIA DE MASA Y DE CALOR EN LA INTERFASE CUANDO UNA --REACCIÓN OCURRE O PARA CUALQUIER OPERACIÓN EFECTUADA EN UN TANQUE AGITADO.

GENERALIDADES SOBRE DISPERSIONES LIQUIDO - LIQUIDO

2.1 INTRODUCCION AL FENOMENO DE DISPERSION

SI SE TIENE UNA FASE CUALQUIERA (MEDIO CONTINUO) QUE CO<u>N</u> TIENE A OTRA, DISTRIBUIDA EN SU SENO EN FORMA DE PARTÍCULAS PEQU<u>E</u> ÑAS, FORMA UN SISTEMA DISPERSO O SIMPLEMENTE, UNA DISPERSION.

PUEDEN PREPARARSE DISPERSIONES DE TODA CLASE DE SUBSTAN-CIAS EN VARIOS MEDIOS, TANTO SI TALES SUBSTANCIAS SON CRISTALINAS O NO CRISTALINAS, ELECTRÓLITOS O NO ELECTRÓLITOS.

LAS PROPIEDADES DE LOS SISTEMAS DISPERSOS, Y EN PRIMER -LUGAR SU ESTABILIDAD, DEPENDEN MUCHO DEL TAMAÑO DE LAS PARTÍCULAS DE LA SUBSTANCIA DISPERSA.

LAS DISPERSIONES SE PUEDEN CLASIFICAR EN DOS GRANDES CA-TEGORIAS:

- A) Suspensiones: Que son sistemas en los cuales el tana. No de partícula excede de 1μ y son sistemas inesta---------Bles, y
- B) Sistemas Coloidales: que son sistemas en los cuales el tamaño de partícula es menor de 1μ y se subdivi--den a su vez en tres que son:

B.1. DISPERSIONES

B.2. SOLUCIONES VERDADERAS

B.3. COLOIDES DE ASOCIACIÓN

SEGÚN EL ESTADO DE AGREGACIÓN DE LA SUBSTANCIA DISPERSA Y DEL MEDIO DISPERSANTE, PUEDEN DARSE CASOS DIFERENTES DE SISTEMAS DISPERSOS QUE SON: GAS-LÍQUIDO, GAS-SÓLIDO, LÍQUIDO-GAS, LÍQUIDO-LÍQUIDO, LÍQUIDO-SÓLIDO, SÓLIDO-GAS, SÓLIDO-LÍQUIDO Y SÓLIDO-SÓ-LIDO, DONDE EL PRIMER ESTADO DE AGREGACIÓN SE REFIERE A LA SUBS-TANCIA DISPERSA Y EL SEGUNDO AL MEDIO DISPERSANTE QUE EN LAS DIS PERSIONES COLOIDALES TENEMOS COMO EJEMPLOS LAS SIGUIENTES:

FASE DISPERSA	MEDIO DE DISPERSIÓN	NONBRE	EJEMPLOS
LIQUIDO	GAS	AEROSOL LICUIDO	VIEBLA, SPRAYS LICUIDOS
SÓLIDO	Cas	AEROSOL SÓLIDO	itumo-niebla (smog)
Gas	LICUIDO	Espuma	Espuna de Estingu <u>i</u> Dores
LIQUIDO	LICUIDO	Emulsiones	Leche, l'ayonesa
Sólido	Licuido	SOL	Pasta de Dientes
Cas	SÓLIDO	Espuma Sólida	POLIESTIRENO EXPAN
LIGUIDO	SÓLIDO	Enulsión Sólida	Opalo, Perla
SÓLIDO	SÓLIDO	Suspensión Sólida	PLÁSTICOS PIGIENTA DOS

Ahora Enfocuemos nuestra atencion a las dispersiones l<u>í</u> Quido-líquido, sobre todo a los sistemas inestables en los cua--Les, debido a su alto nivel de coalescencia rompen la dispersion En un tiempo relativamente corto.

Estas dispersiones generalmente son preparadas intensionalmente para producir una mejor transferencia de Masa y de ener gia entre dos fases lícuidas inmiscibles y que son inherentemente inestables, por lo cual es todo un problema el producir y mantener estas dispersiones.

ASI, LAS DISPERSIONES, PRODUCIDAS POR MEZCLADO MECÁNICO ESTÁN CARACTERIZADAS GENERALMENTE POR UNA GRAN DISTRIBUCIÓN DE -DIÁMETRO DE GOTAS.

Esto, es una consecuencia indirecta de su relativamente Alta coalescencia, así la distribución de diámetros producida en El mezclado es el resultado del equilibrio dinámico del proceso de Ruptura y coalescencia de partículas.

2,2- INTRODUCCION BIBLIOGRAFICA AL FENOMENO DE RUPTURA-

EN DISPERSIONES DE DOS LÍQUIDOS INMICIBLES CON AGITACIÓN TURBULENTA, LA RUPTURA Y LA COALESCENCIA DE GOTAS OCURREN CONTINU<u>A</u> MENTE.

LA RUPTURA DE GOTAS ES UN PROCESO COMPLICADO Y HAY MUY -POCA INFORMACIÓN DISPONIBLE.

Epstein (>•) en 1948, considera la ruptura como un proce. so compuesto de pasos discretos, asumiendo que la probabilidad de ruptura es constante e independiente al diámetro de la gota.

Hinze (23) en 1955, considera que la ruptura puede ocu-rrir mediante tres posibles mecanismos: por fuerzas cortantes lami nares, turbulentas o por fluctuaciones turbulentas de presión. Hinze indica que en dispersiones donde las gotas son mas largas -que la escala del microdominio de turbulencia (eddy), las fuerzas dinámicas de presión controlan el proceso de ruptura.

Este proceso de ruptura puede ser caracterizado mediante el valor crítico del número de Weber : We= $kn^2 d^{4/3} d^{5/3} \rho / \sigma$ donde: k = constante.

N = VELOCIDAD DEL IMPULSOR.

D = DIAMETRO DEL AGITADOR.

d = DIAMETRO DE LA GOTA.

P = DENSIDAD.

 σ = TENSIÓN INTERFACIAL.

ASÍ LA PROBABILIDAD DE RUPTURA O LA INESTABILIDAD DE LA GOTA DEPENDE DE SU DIÁMETRO.

Shinnar y Church (7) en 1950, consideran que la ruptura puede ser causada por fuerzas cortantes debido a la viscosidad o por las fluctuáciones turbulentas de presión.

Considerando la ruptura por fuerzas cortantes debido a -La viscosidad, la gota es elongada en forma de cacahuate que des---pués se rompe en pequeñas gotas.

BASADOS EN LA TEORÍA DE LA ISOTROPÍA LOCAL, UNA PARTÍCU-LA SUSPENDIDA EN UN FLUIO TURBULENTO ESTÁ EXPLIESTA A FLUCTUACIONES LOCALES DE PRESIÓN.

CUANDO SE TIENEN DENSIDADES Y VISCOSIDADES CASI IGUALES EN LAS DOS FASES LÍQUIDAS SE PUEDE ASUMIR QUE LA GOTA O PARTÍCULA -OSCILA CON EL LÍQUIDO QUE LA CIRCUNDA. UNA PARTÍCULA OSCILANTE --SE TORNA INESTABLE SI LA ENERGÍA CINÉTICA (EK) ES SUFICIENTE PARA COMPENSAR LA DIFERENCIA EN LA ENERGÍA SUPERFICIAL ENTRE LA PARTÍCU-LA Y DOS PEQUEÑAS PARTÍCULAS FORMADAS POR ELLA MEDIANTE LA RUPTURA. ESTO NOS LLEVA (31) A QUE: $Ek / \sigma d^2$ = CTE, DONDE : Ek = ENERGÍA CINÉTICA.

J = TENSIÓN INTERFACIAL,

d = DIAMETRO DE LA PARTÍCULA O GOTA.

En dispersiones agitadas, donde las condiciones de isotro. Pía local prevalecen, la energía cinética es proporcional a: $u^2(d)d^3$. Substituyendo el valor de ek en la ecuación anterior resulta que

 $\rho u^2(d) d /\sigma = We = CTE = 0.26$

EN DONDE:

 $u^{2}(d) = kN^{2}D^{4/3}d^{2/3}$

SIENDO:

p = DENSIDAD.

u(d) = VELOCIDAD RELATIVA ENTRE DOS PUNTOS EN EL FLUIDO, SEPARA---DOS UNA DISTANCIA d .

EL PROMEDIO DEL DIÁMETRO DE GOTA EN DISPERSIONES AGITADAS HA SIDO CALCULADA POR VERMEUDEN (^{2 a}), usando dos tanques con bafles de geometría similar y un agitador de cuatro paletas, dando por resultado la ecuación:

> $pN^2D^{4/3}d^{5/3}/\sigma = 0.016$ (1) Vanderveen (3.) en 1960, obtuvo la siguiente ecuación:

 $\rho N^2 D^{4/3} d^{5/3} / \sigma = 0.079 \dots (2)$

--- Estas ecuaciones son aplicables solo en dispersiones diluidas donde el promedio del diámetro de las gotas es determinado por la ruptura de gotas y no en dispersiones concentradas (21).

--- Para sistemas geométricos similares se obtienen distribuciones promedio de gotas iguales, si la energía por unidad de masa se mantiene constante.

--- Las ecuaciones (1) y (2) son validas solo si $d > \eta$ (2*) --siendo η la escala del microdominio de turbulencia (eddy), --- En ambas ecuaciones se asume que las viscosidades y densidades de los dos líquidos son casi iguales,

Valentas, Amundson y Bilous (12) proponen en 1966 una fre cuencia de ruptura g(m) que depende del diámetro de la gota, siendo g(m) la fracción de gotas con masa entre m ym+dm, que desapare-cen por la ruptura por unidad de tiempo. El valor promedio de --g(m) es definido en terminos del tiempo caracteristico de ruptura g(m), dependiendo de los parámetros de operación, propiedades físicas y de la geometría del sistema, donde:

$$\frac{1}{L}\int_{c}^{L}g(m) dm = \frac{1}{\Theta g}$$

LLEGANDO A UNA ECUACIÓN INTEGRO-DIFERENCIAL PARA CONOCER EL NÚMERO DE PARTÍCULAS O GOTAS QUE SE PRODUCEN DE LA RUPTURA. ESTA ECUA--- CION AL SER RESUELTA PARA SISTEMAS DILUIDOS DA RESULTADOS SEMEJAN--TES A LOS DE LA ECUACION PROPUESTA POR SHINNAR (7) BASADA EN LA --TEORÍA DE LA ISOTROPÍA LOCAL DE KOLMOGOROFF.

2.3- INTRODUCCION BIBLIOGRAFICA AL FENOMENO DE COALESCENCIA-

LA COALESCENCIA DE PARTÍCULAS EN SISTEMAS TURBULENTOS ES UN FENÓMENO POCO ENTENDIDO Y ESTUDIADO.

RECIENTES INVESTIGACIONES DE LA COALESCENCIA DE PARTÍCU-LAS HAN SIDO ENFOCADAS PRIMERAMENTE EN PARTÍCULAS COALESCIENDO EN EL PLANO DE LA INTERFASE.

UNA DELGADA PELÍCULA DE LÍQUIDO DE LA FASE CONTINUA ES -RETENIDA ENTRE LAS PARTÍCULAS Y TIEMEN QUE HACERLA MÍNIMA ANTES DE QUE LA COALESCENCIA OCURRA. EL ESPESOR DE ÉSTA PELÍCULA PUEDE SER AFECTADO POR LA TEMPERATURA, LA PRESENCIA DE SURFACTANTES, VIBRA--CIONES TRANSMITIDAS POR EL MEDIO QUE LAS RODEA Y LAS PROPIEDADES -DEL LÍQUIDO COMO LA DENSIDAD, VISCOSIDAD Y LA TENSIÓN INTERFACIAL;

LA COALESCENCIA DE PARTÍCULAS PUEDE DECIRSE ENTONCES QUE OCURRE EN DOS PASOS. LAS PARTÍCULAS DEBEN EXPERIMENTAR UNA COLI-SIÓN CON LA PELÍCULA QUE LAS SEPARA. ESTE ES EL PRIMER PASO DEL PROCESO Y NO ES SUFICIENTE PARA CAUSAR LA COALESCENCIA.

EL TIEMPO REQUERIDO PARA COMPLETAR EL SIGUIENTE PASO DE LA COALESCENCIA, QUE ES LA RUPTURA DE ESA PELÍCULA, ES VARIABLE ---EN FORMA ALEATORIA.

Cuando esta ruptura se está produciendo, un remolino o -

una corriente pueden impartir la suficiente energía para causar la separación de las partículas.

Church y Shinnar (7) en 1960, basados en los resultados de Deryaguin (32) y Bradley (34), proponen que para dos gotas --iguales de diámetro d separadas una distancia h_0 la fuerza de --adhesión $F(h_0)$ es:

$$F(h_o) = -\frac{\pi d}{2} \int_{a}^{b} h_o f(h) dt$$

DONDE f(h) ES LA FUERZA POR UNIDAD DE ÁREA ENTRE DOS SUPERFI--CIES INFINITAS Y PARALELAS SEPARADAS POR UNA DISTANCIA h.

> LA ENERGÍA TOTAL DE ADHESIÓN Ea ES: Ea = $\int_{0}^{\infty} F(h) dh = \frac{\pi d}{2} \int_{h_{c}}^{\infty} \int_{h}^{\infty} f(h) dh dh'$

Valentas y Amundson (1°) en 1966, proponen una frecuencia de coalescencia h(m), que está en función del tiempo caracte ristico 9h de colisión, que engloba el efecto de la velocidad del impulsor y las propiedades del líquido:

$$\frac{1}{L}\int_{0}^{h}h(m) dm = \frac{1}{\theta h}$$

Lang y Wilke (24) en 1971, proponen un mecanismo hidrodinámico para la coalescencia estudiando principalmente la ruptura de la película intermedia. SIN EMBARGO EN NINGUNO DE LOS CASOS ANTERIORES SE LOGRA ESTABLECER UNA EFICIENCIA DE COALESCENCIA.

2.4- RESIMEN DE MODELOS PROPLESTOS.

2.4.1.- Relel Shinnar y James M. Church (7), proponen gle para disper signes, el proceso de mezclado sea tratado teóricamente a través del concepto de l'agtropia local en el caso de dispersiones altamente turbulentas (NRE > 10[°]).

EL PRINCIPIO EMPÍRICO DE IGUAL ENERGÍA RECIBIDA POR UNI-DAD DE VOLLMEN ES TEÓRICAMENTE JUSTIFICADO EN DISPERSIONES, Y A --TRAVÉS DE UNA DERIVACIÓN DE ESTE PRINCIPIO A PARTIR DEL CONCEPTO -DE ISOTROPÍA LOCAL, ALGUNOS CRITERIOS SON ESTABLECIDOS PARA SER A-PLICADOS A PROBLEMAS DE ESCALAMIENTO.

LA TEORÍA ESTADÍSTICA DE KOLMOGOROFF ES APLICADA A LA --PREDICCIÓN DE DIÁMETROS DE PARTÍCULAS EN DISPERSIONES LÍQUIDO-LÍ--QUIDO.

EN EL MODELO QUE PROPONEN ESTABLECEN QUE EL DIÁMETRO MÍ-NIMO DE PARTÍCULA ES:

dmin CN-0.750-0.50-3/8A(h.)3/8

EN DONDE:

duto = DIANETRO MÍNIMO.

C = CONSTANTE EMPÍRICA.

N = VELOCIDAD DEL AGITADOR EN R.P.M.

D = DIAMETRO DEL AGITADOR.

ρ = DENSIDAD.

 $A(h_o) =$ energía necesaria para separar dos gotas por unidad de RA Dio desde una distancia h_o hasta el infinito, y como diámetro máximo:

 $d^{5/3} = \frac{0.016 \sigma}{\sigma^{12} \sigma^{13}}$

DONDE:

TENSION SUPERFICIAL.

y para el diámetro de gota promedio toman la ecuación propuesta --por Rodger, Trice and Rushton (22) :

$$d = \left[\frac{D}{K} - \frac{D^3 N^2 \rho c}{\sigma}\right]^{-0.36} \left[\left(\frac{D^k}{T}\right) \left(\frac{V d}{V c}\right)^{1/5} \left(\frac{t}{t_o}\right)^{1/6} 0.71 \exp\left[3.6 \frac{\Delta \rho}{\rho c}\right] \exp\left[0.35 \frac{T}{T_o}\right]^{-1/6}$$

EN DONDE:

T = DIAMETRO DEL TANQUE.

t/t. = TIEMPO RELATIVO DE ASENTAMIENTO.

- VC = VELOCIDAD CINEMÁTICA DE LA FASE CONTINUA.
 - Vd = VELOCIDAD CINEMÁTICA DE LA FASE DISPERSA.
 - PC = DENSIDAD DE LA FASE CONTINUA.
 - k = CONSTANTE EMPÍRICA.
 - σ = TENSIÓN INTERFACIAL.

2.4.2.- L.A. Spielman y O, Levenspiel (*), proponen un modelo en el cual utilizan el método Monte Carlo.

EL MODELO DE SIMULACIÓN MONTE CARLO PARA COMPUTADORAS DI GITALES ES USADO EN EL ESTUDIO DE LA INFLUENCIA DE LA COALESCENCIA EN EL PROGRESO DE UNA REACCIÓN QUE OCURRE EN LA FASE DISPERSA EN -UN SISTEMA DE DOS FASES EN REACTORES DE AGITACIÓN MECÁNICA.

EL MÉTODO MONTE CARLO, DEBIDO A SU SIMPLICIDAD, HA SIDO ESPECIFICAMENTE UTILIZADO PARA EL ESTUDIO DE SISTEMAS DISCRETOS --EN LOS CUALES LA SOLUCIÓN ANALÍTICA NO ES POSIBLE. ADEMÁS HACEN UNA EXTENCIÓN, USANDO EL MODELO DE FASE DISPERSA PARA EL ESTUDIO -DE MEZCLADO.

2.4.3.- Kenneth J, Valentas y Neal R, Amundson (10), desarrollan un mo delo matemático para describir la ruptura y coalescencia de gotas en un sistema de dos fases hasta llegar al equilibrio en sistemas continuos y en sistemas intermitentes

EL RESULTADO DEL ANÁLISIS MATEMÁTICO ES UNA ECUACIÓN IN-TEGRO-DIFERENCIAL QUE SE RESUELVE NUMÉRICAMENTE.

LA ECUACIÓN QUE PROPONEN PARA EL SISTEMA INTERMITENTE ES

$$\frac{d}{dt} \{N(t)A(m,t)\} = \int_{0}^{t} v(\mu)g(\mu)B(m:\mu)N(t)A(\mu,t)d\mu + \int_{0}^{m/2} \lambda(m,\mu)h(m-\mu)N(t)A(m-\mu,t)h(\mu)N(t)A(\mu,t)d\mu - \{g(m)+h(m)\} \int_{0}^{t-\infty} \lambda(m,\mu)h(\mu)N(t)A(\mu,t)d\mu\} N(t)A(m,t)$$

CON LA CONDICIÓN INICIAL:

 $N(0)A(m,0) = NA_{o}(m)$

DONDE:

A(m,t)dm = DENSIDAD DE PROBABILIDAD DEL DIÁMETRO DE GOTA EN EL TANQUE

g(m) = FRECUENCIA DE RUPTURA.

h(m) = FRECUENCIA DE COALESCENCIA.

 λ = EFICIENCIA DE COALESCENCIA.

V * PROMEDIO DE GOTAS FORMADAS POR LA RUPTURA.

 $\beta(m,\mu) = KERNEL DE RUPTURA.$

N = NÚMERO DE GOTAS EN EL TANQUE.

PARA ∨ =2 Y DESPUÉS DE UN ANÁLISIS DE LA ECUACIÓN ANTERIOR SE LLEGA A LA ECUACIÓN: PARA RUPTURA Y

$$\frac{2gN_o}{N_o \lambda h^2 (1-e^{-gt}) + 2ge^{-gt}}$$

COALESCENCIA

DONDE:

No = NÚMERO DE GOTAS INICIALES EN EL TANQUE.

t = TIEMPO.

Esta ecuación es aplicable solo cuando la frecuencia de -Ruptura es independiente al diámetro de la gota, en caso contrario se debe utilizar la ecuación integro diferencial. 21

2.4.4.- AKIRA SUZUKI, N.F.H. HO Y W.I. HIGUCHI (26), EN SU ARTÍCULO --'PREDICCIÓN DEL CAMBIO DE DISTRIBUCIÓN DE DIÁMETROS DE PARTÍCULA EN EMULSIONES Y SUSPENSIONES A TRAVÉS DE COMPUTADORAS DIGITALES', PRO-PONEN UN MÉTODO BASADOS EN LA ECUACIÓN DE VELOCIDAD DE FLOCULACIÓN DE SMOLOCHOWSKI, INCLUYENDO LOS EFECTOS DE POLIDISPERSIDAD Y BARRE-RA POTENCIAL PARTÍCULA-PARTÍCULA, DICHA ECUACIÓN ES RESUELTA PARA -CUALQUIER DISTRIBUCIÓN DE PARTÍCULA INICIAL.

EL PROCEDIMIENTO PARA LA SOLUCIÓN NUMÉRICA DE LAS ECUACIO NES DIFERENCIALES NO LINEALES ENVUELVE EL USO COMBINADO DE LOS MÉTO DOS RUNGE-KUTTA Y HAMMING MEDIANTE EL USO DE UNA COMPUTADORA IBMOSO.

EN ESTA ECUACIÓN SE ASUME QUE LA ÚNICA FORMA DE VALUAR EL PROCESO ES MEDIANTE EL PASO DE LAS PARTÍCULAS SOBRE LA PRIMERA BARRE. RA ELÉCTRICA HASTA LA FLOCULACIÓN DE SUSPENSIONES (O COALESCENCIA DE EMULSIONES).

Los datos de entrada son: potencial de la superficie, cons tante dielectrica, temperatura, Debye-Huckel Kappa, viscosidad, cons tante de Hamaker y la distribución inicial de diámetros de partícula, EL RESULTADO INCLUYE: EL CAMBIO A TRAVÉS DEL TIEMPO EN LA DISTRIBUCIÓN DE DIÁMETROS, LA POLIDISPERSIDAD Y LOS EFECTOS DE LA -BARRERA DE INTERACCIÓN DEL SISTEMA DISPERSO. N

Los cambios en la distribución de diámetros de partícula Han sido solo estudiados por medio de cambios similares que nos lle Van a retener un espectro propio.

Cuando la barrera electrica es pequeña, cualquier distribución de diámetros inicial se hace más polidispersa con el tiempo y el número de partículas decrece más rápidamente que de segundo or den respecto al tiempo perteneciente a la floculación preferencial de Muller.

QUANDO LA BARRERA ELÉCTRICA ES APRECIABLE, LA DISTRIBUCIÓN SE REDUCE CON EL TIEMPO.

Estos resultados fueron consistentes con los efectos de -Los diámetros de partícula en la interacción potencial.

EL MÉTODO DEL ANÁLISIS NUMÉRICO PUEDE SER ADAPTADO A CASOS QUE ENVUELVAN OTRAS FUERZAS DE REPULSIÓN ENTRE SUSPENSIONES Y EMULSI<u>O</u> NES COMO LA REPULSIÓN POR EL EFECTO ESTÉRICO.

2.4.5.- Kalanadh V.S. Sastry y Douglas W. Fuerstenau (1°), formulan un modelo basado en los conceptos de aglomeración 'Libre en el espacio' y 'Restringida en el espacio'. LA AGLOMERACIÓN 'LIBRE EN EL ESPACIO' ES CARACTERISTICA DE AEROSOLES O DE COAGULACIONES COLOIDALES, A SU VEZ LA AGLOMERACIÓN ---'RESTRINGIDA EN EL ESPACIO' SE REFIERE A LA PELOTIZACIÓN O GRANULA---CIÓN DE UN NUCLEO.

La comparación de estos dos tipos de mecanismos de expansión o ampliación del diámetro muestra que la distribución de diámetro resultante de las especies aglomeradas es identica en los dos -casos. En ambos casos, son caracterizados mediante el 'Grado de -aglomeración' definido como la cantidad de aglomeraciónes por unidad de tiempo.

UN MODELO COMBINATORIO PARA EL PROCESO ALEATORIO DE COALE-SCENCIA CON UNA DISTRIBUCIÓN INICIAL DE UN SOLO DIÁMETRO COINCIDE ---CON EL MODELO DETERMINISTICO.

EL MODELO COMBINATORIO PUEDE SOLO PREDECIR LA VARIANCIA --DEL NÚMERO DE ESPECIES DE UN DIÁMETRO DADO, Y QUE NO PUEDE SER CALC<u>U</u> LADO MEDIANTE UN MODELO DETERMINISTICO, Y QUE DE OTRA MANERA SERIAN OBTENIDAS DE UN COMPLICADO ANÁLISIS ESTOCÁSTICO,

2.4.6.- M.A. Zeitlin y L.L. Tavlarides (27), desarrollan un modelo -que introduce y cuenta con elementos tan complejos como las interacciones fluido-fluido y los efectos hidrodinámicos para sistemas dispersos agitados turbulentamente para sistemas intermitentes, semi-in-

TERMITENTES Y CONTINUOS.

Los efectos del micromezclado y macromezclado sobre la di<u>s</u> Tribución de diámetros de partícula son tomados en cuenta.

Funciones de ruptura y coalescencia de partículas son des<u>a</u> rrolladas y ejemplificadas mediante distribuciones numéricas o volumétricas en las diferentes zonas del tanque.

LAS DISTRIBUCIONES CALCULADAS SON COMPARADAS CON DATOS EX-PERIMENTALES PARA ESTIMAR LOS PARÁMETROS DE LA COALESCENCIA Y DE LA RUPTURA.

LOS EFECTOS DE LA COALESCENCIA, RUPTURA Y PARÂMETROS DEL -SISTEMA EN EL ESTADO TRANSITORIO COMO EN EL SISTEMA EN ESTADO DE E-QUILIBRIO SON DETERMINADOS.

3.1.- MODELO ZETLIN-TAVLARIDES.

3.1.1.- GENERALIDADES.

EL MODELO PRETENDE EXPLICAR LAS INTERACCIONES FLUIDO-FLUI-DO Y LOS EFECTOS HIDRODINÁMICOS EN UN REACTOR DE FASE DISPERSA TOTAL MENTE BAFLEADO Y AGITADO TURBULENTAMENTE,

SISTEMAS INTERMITENTES, SEMI-INTERMITENTES Y CONTINUOS SON CONSIDERADOS.

SE ASUME QUE LA FASE DISPERSA CONSISTE DE PARTÍCULAS ESFÉ-RICAS SIN UNA DISTRIBUCIÓN DE DIÁMETROS UNIFORME Y SOLAMENTE LA COA-LESCENCIA DE DOS PARTÍCULAS OCURRE.

LA RUPTURA DE PARTÍCULAS RESULTA EN LA FORMACIÓN DE DOS --PARTÍCULAS DE DIÁMETROS DIFERENTES EN FORMA ALEATORIA, Y LA DIRECCIÓN DEL MOVIMIENTO DE LA PARTÍCULA ES ALEATORIA O EN DIRECCIÓN DE LA SO-BREIMPUESTA DE LA VELOCIDAD TERMINAL DE LA PARTÍCULA CON EL VECTOR -VELOCIDAD DE LA FASE CONTINUA.

EN LOS MODELOS DE CIRCULACIÓN DEL MACROMEZCLADO PARA UN --TANQUE TOTALMENTE BAFLEADO Y AGITADO TURBULENTAMENTE SE ASUME QUE ES ADECUADO DESCRIBIR MEDIANTE UN SISTEMA BIDIMENSIONAL CON DIRECCIONES AXIAL Y RADIAL,

Para este sistema la velocidad tangencial tiene importan-cia primordial en los efectos del micromezclado en la zona del agita dor donde la ruptura y coalescencia de partículas ocurre muy vigo-- ROSAMENTE: ESTE EFECTO ES EXPLICADO MEDIANTE UNA FUNCIÓN DE RUPT<u>U</u> RA (QUE ES FUNCIÓN DEL NHE) Y MEDIANTE UNA EFICIENCIA DE COALESCEN---CIA PARA LA REGIÓN CIRCUNDANTE AL AGITADOR. 27

LA FIGURA (I) ES LA REPRESENTACIÓN GRÁFICA DE COMO EL MO-DELO SIMULA EL TANQUE MEDIANTE UN CORTE VERTICAL A LO LARGO DEL IM---PULSOR.

UNA SIMETRIA RADIAL ES ASUMIDA A LO LARGO DEL IMPULSOR -DEL AGITADOR. EL CORTE ES DIVIDIDO EN UN SISTEMA DE REJILLA DE -45 x 45 y en cada locación se encuentra contenida una celda de fase continua, Todas las celdas de fase continua contienen mas de 2 partículas de la fase dispersa.

LA REJILLA ES DIVIDIDA EN TRES REGIONES: LA DE ARRIBA DEL AGITADOR, LA DEL AGITADOR Y LA DE ABAJO AL AGITADOR.

FIGURA I

LA FUNCIÓN DE RUPTURA Y LA PROBABILIDAD DE COALESCENCIA DE PARTÍCULAS VARIA CONFORME A LA REGIÓN DENTRO DEL TANQUE,

3.1.2. MOVIMIENTO DE LA PARTÍCULA.

EL MACROMEZCLADO O EL MOVIMENTO DE LA PARTÍCULA DE LA FASE DISPERSA ES SIMULADA MEDIANTE EL ASIGNAMIENTO DE UN VECTOR VELOCIDAD A LA PARTÍCULA. LA DIRECCIÓN DEL VECTOR VELOCIDAD ES DETERMINADA -POR LA VELOCIDAD SOBREIMPUESTA POR MEDIO DEL FLUIDO EN FORMA ALEATO-RIA DE TAL FORMA QUE:

	(Uf +	Ut si	EL	NÚMERO	ALEATO	RIO
Up	l		. '	6		
n an tr The sa	Ūr	SI	EL	NÚMERO	ALEATO	RIO

EN DONDE:

- Uf = VELOCIDAD DEL FLUIDO.
- UE * VELOCIDAD TERMINAL DE PARTÍCULA.
- UF = VELOCIDAD ALEATORIA.
- Up = VELOCIDAD DE PARTICULA.

El movimiento aleatorio es ilustrado en la figura (11).

LAS COMPONENTES VERTICALES Y RADIALES DE LA VELOCIDAD DEL FLUIDO SON TRATADAS INDEPENDIENTEMENTE SIENDO:

<u>.)]!</u> 11

U' 11

FIGURA

29

Las ecuaciones (4) y (5) representan las componentes RA DIAL Y VERTICAL DE LA VELOCIDAD DEL FLUIDO Y ESTÁN EN TERMINO O EN -FUNCIÓN DE $ND^2/T^{2/3}H^{1/3}$, z/H y r/R para las diferentes regiones -DEL TANQUE, DONDE:

D = DIÁMETRO DEL AGITADOR.

H . . ALTURA EN EL TANQUE DE LA FASE CONTINUA,

r = POSICIÓN RADIAL.

R = RADIO DEL TANQUE,

T = DIÁMETRO DEL TANQUE,

N = VELOCIDAD DEL AGITADOR.

z = POSICIÓN VERTICAL.

9 - ACELERACIÓN GRAVITACIONAL.

a = RADIO DE LA PARTÍCULA.

 $\mu = VISCOSIDAD,$

9 - FRACCIÓN OCUPADA POR LA FASE DISPERSA.

ρ = DENSIDAD.

Y = CORRECCIÓN POR SURFACTANTES.

e,e', b, b⁴, c, c' = FUNCIONES DEFINIDAS EN LAS ECUACIÓNES (4) γ (5),

Los términos $b(\frac{z}{H},\frac{r}{R})$, $c(\frac{z}{H},\frac{r}{R})$ y $e(\frac{z}{H},\frac{r}{R})$ tienen unidades -

QUE HACEN CONSISTENTES DIMENSIONALMENTE A LAS ECUACIONES (4) Y (5),

DEPENDIENDO DE LA REGIÓN DEL TANQUE, CUALQUIERA DE ESTOS TÉRMINOS PUEDEN SER CERO.

Es importante hacer notar que la velocidad del fluido de-terminada en las ecuaciones (4) y (5) que están en terminos de --- $ND^2/T^{2/3}H^{1/3}$ incorporan los efectos combinados de los cambios en las revoluciones por minuto, diámetro del agitador y geometría del tanque,

Alinque las componentes de la velocidad son solo función de la posición axial y radial dentro del tanque, los efectos de la posi ción y parámetros del sistema son considerados.

Los efectos de la velocidad tangencial en el micromezclado son tomados en cuenta indirectamente en las funciones de ruptura y coalescencia.

EL MOVIMIENTO DE LA PARTÍCULA ES SIMULADA MEDIANTE EL CON-TROL INDIVIDUAL DE CADA REJILLA EMPEZANDO CON LA PRIMERA LOCACIÓN EN LA PARTE SUPERIOR Y MOVIENDOLA DE IZQUIERDA A DERECHA, CADA REJI-LLA ES CHECADA SECUENCIALMENTE, LAS PARTÍCULAS SE PUEDEN MOVER ----SEIS O MÁS LOCACIONES POR ITERACIÓN, 3.1.3.- RUPTURA DE PARTÍCULA.

LA RUPTURA SE PUEDE REPRESENTAR, EN FLILIOS TURBULENTOS, DE TRES MANERAS O MECANISMOS POSIBLES: POR FUERZAS LAMINARES, FUERZAS -TURBULENTAS Y POR FLUCTUACIONES TURBULENTAS DE PRESIÓN.

HINZE (2) INDICA QUE EN DISPERSIONES DONDE LAS GOTAS SON MÁS LARGAS QUE LA MICRO ESCALA DE TURBULENCIA, LAS FUERZAS DINÁMICAS DE PRESIÓN CONTROLAN EL PROCESO DE RUPTURA.

Este proceso de ruptura puede entonces ser caracterizado mediante el valor crítico del número de Heber que en cada caso puede variar con la posición en el tanque.

LA PROBABILIDAD DE RUPTURA O LA INESTABILIDAD DE LA GOTA, AMBAS DEPENDEN DEL DIÁMETRO DE LA GOTA,

Aun más, uno puede postular un diámetro máximo de gota ---Arriba del cual la ruptura es asegurada y un diámetro mínimo abajo -Del cual la ruptura no sucede.

GENERALMENTE, LA FUNCIÓN DE EFICIENCIA DE RUPTURA PUEDE --SER DEFINIDA COMO:

DIÁMETRO INESTABLE	d > d _{max} (Nvc)	B(d) 1
DIÂMETRO DENTRO DE LOS MARGENES DE ESTABILIDAD.	d _{min} < d < d _{max}	n= 1,2,3 ≃ (d-d _{min}) ⁿ
. DIÂMETRO INESTABLE	d < d _{min} (Nwe)	O

EL DI4METRO MÁXIMO ES DETERMINADO MEDIANTE LA CORRELACIÓN. DE VANDERVEEN (**) :

$$d_{max}^{5/3} \frac{N^2 D^{4/3} \rho c}{\sigma} = 0.079$$
 (ver pag 11)

O LA DE VERMEULEN (20);

$$\frac{5/3}{max} \frac{N^2 D^{4/3} \rho c}{\sigma} = 0.016$$
 (ver pag 11)

Sin embargo no existe información para el cálculo del diámetro mínimo.

En este modelo la función de eficiencia $\beta(d)$ de ruptura varia con la región pel tanque. Un valor constante es asumido en todos lados a excepción de la región del agitador donde la eficien--cia de ruptura es mayor.
3.1.4.- COALESCENCIA DE PARTÍCULA.

LA COALESCENCIA DE DOS GOTAS EN UN FULUO TURBULENTO ES UN PROCESO MUY INEFICIENTE, UNO PUEDE ASUMIR QUE SOLAMENTE COLISIONES BINARIAS SUCEDEN. PRIMERO LAS GOTAS TIENEN QUE CHOCAR, DESPUÉS ---ELLAS TIENEN QUE PERMANECER EN CONTACTO PARA PODER ROMPER LA PELÍCU-LA DE LA FASE CONTINUA QUE LAS SEPARA PARA ASÍ PODER ESTE PAR DE GO-TAS FORMAR UNA SOLA.

ESTA SERIE DE EVENTOS SON PROFUNDAMENTE INFLUENCIADOS POR LA TEMPERATURA, LA PRESENCIA DE SURFACTANTES, TURBULENCIA INTERFA----CIAL DEBIDA A DIFERENCIAS DE CONCENTRACIÓN, VIBRACIONES DE LOS LÍQUI DOS CIRCUNDANTES, Y POR PROPIEDADES DEL FLUIDO COMO DENSIDAD, VISCO--SIDAD Y TENSIÓN INTERFACIAL.

Antes de que la coalescencia se complete, cualquier remoli no que se forme puede impartir la suficiente energía para que las <u>qu</u> tas se separen evitando la coalescencia.

Sin embargo, virtualmente no existen datos referentes a la eficiencia de coalescencia, pero diferentes valores son dados según la región del tangue y son checados con datos experimentales.

3.1.5. - SIMULACIÓN.

Los datos necesarios de entrada y los parámetros que el mo delo usa en la simulación están mostrados en la siguiente tabla:

PROPIEDADES FISICAS	Pc., Po, Hc, Ho, J. 8
DESCRIPCIÓN DEL TANQUE	DIÂMETROS Y ALTURA DEL LÍQUIDO
Condiciones de operación	QD, QC; Z, RPM

DATOS DE ENTRADA

PARAMETROS DEL MODELO

EFICIENCIA DE COALESCENCIA	
KIR	REGIÓN DEL AGITADOR
KCR	REGION CIRCUNDANTE
EFICIENCIA DE RUPTURA	
PIR	REGIÓN DEL AGITADOR
βt R	Región del Impulsor

Además de las condiciones de operación, dimensiones del --Tanque y propiedades físicas, las eficiencias de coalescencia y Rup-Tura pueden ser especificadas como función de la región del tanque.

EL DIAGRAMA DE FLUJO DE LA SIMULACIÓN ES EL SIGUIENTE:

Para el comienzo, la información de la tabla de datos es -Leida como datos de entrada, los cuales sirven para determinar las propiedades del sistema. Luego el tangle es ocupado con una distri bución de partícula inicial arbitraria. Además, el diámetro inicial y el número de partículas puede ser dado en forma aleatoria, la distribución final debe contener de 1000 a 1100 partículas para poder ser reproductible; y a lo más 1400 partículas son usadas para hacer las gráficas. 37

EL MOVIMIENTO DE LAS PARTÍCULAS ES SIMULADO DESPUÉS DE ---ACUERDO A LOS MÉTODOS DESCRITOS ANTERIORMENTE.

Antes de los procesos de movimiento y el flujo, algunas --Locaciones tienen dos partículas simulando una colisión entre ellas.

UN CIERTO NÚMERO DE LAS COLISIONES EN ESTAS LOCACIONES SE ASUME QUE COALESCEN DE ACUERDO CON EL VALOR ESPECÍFICO DE LA EFICIEN CIA DE COALESCENCIA K. DESPUÉS DE LA COALESCENCIA, ALGUNAS PARTÍ-CULAS SE ROMPEN.

En las regiones de circulación, una cierta función (denota da β cr) de las partículas conlescidas es asumido que se rompen. En la región del agitador, todas las partículas coalescidas se rompen. Las partículas sencillas en esta región, las cuales no han sufrido colisión se asume que pueden sufrir ruptura de acuerdo a la función β ir,

38

Finalmente, las partículas son redistribuidas y la simulación se repite hasta que se obtiene una distribución de diámetros de partícula reproductible. Lo cual se logra cuando se llega a un estado de equilibrio.

3.2.- MODIFICACIONES AL MODELO.

Las modificaciónes al modelo de Zeitlin y L.L. Tavlarides son las siguientes:

39

- SE ASUME QUE LA FASE DISPERSA CONSISTE DE PARTÍCULAS ESFERICAS -SIN UNA DISTRIBUCIÓN DE DIÁMETROS UNIFORME Y NO SOLAMENTE LA COA-LESCENCIA DE DOS PARTÍCULAS OCURRE SI NO QUE PUEDE EXISTIR LA COALES. CENCIA DE DOS O MÁS PARTÍCULAS,

- La ruptura de partícula resulta en la formación de dos partículas de diámetros uniformes y no en forma aleatoria. El movimiento y dirección de las partículas resultantes es exclusivamente aleatoria.
- El macromezclado o el movimiento de la partícula de la fase dispersa es simulado mediante el asignamiento de un vector velocidad a la partícula en forma aleatoria,

- Es importante hacer notar que la velocidad del fluido determinada de esta forma no incorpora los efectos combinados de los cambios en las revoluciones por minuto, diámetro del agitador y geometría del tanque.

- LAS PARTÍCULAS SE PUEDEN MOVER MÁXIMO OCHO POSICIONES POR ITERACIÓN.

T S

MOVIMIENTO

(4,1)

1.1.1

цў.

DIANETRO 32

47

SE EFECTUARON UN TOTAL DE 16 CORRIDAS VARIANDO TANTO LA EFICIENCIA DE COALESCENCIA COMO LA EFICIENCIA DE RUPTURA EN SUS DOS ZONAS, LA DE CIRCULACIÓN Y LA DEL AGITADOR. 50

Estas corridas o simulaciones no se hicieron para alguna dispersión líquido-líquido en especial sino que en forma ceneral -dándose arbitrariamente los datos de diámetro máximo y mínimo, que fueron respectivamente 1 Y0.09.

Además, se emplearon 150 partículas iniciales, todas con Diánetros diferentes, y enpezando siempre en la misma posición (ver Anexo: 2y 3).

LOS RESULTADOS OBTENIDOS FUERON LOS SIGUIENTES:

Corri	RUP	TURA	Coale	Part	. Inter	Part	f Part.	Diametro	Area
49	faci8n	Asjsr.	cencia	Inicia	accio-	# Iter	Pinal	32	4
	0.7	0.75	0.85	150	51	56.7	2894		425.8
2	0.6	0.75	0.85	150	45	47.8	2149	0.2802	384.8
3	0.5	0.75	0.85	150	70	33.6	2355	0.2701	398.7
4	٥.4	0.75	0.85	150	65	29.1	1892	0.2921	369.9
5	0.3	0.75	0.85	150	1	47.0	168	0.6560	163.7
9	0.1	67.0	0.85	150	8	14.5	166	0.7188	4.742
1	0.5	9.0	0.85	150	31	24.5	758	0.4009	273.0
8	0.5	0.6	0.75	150	63	35.7	2251	0.2786	386.5
6	4.0	0.5	0.85	150	23	17.7	406	0.5151	211.4
10	0.5	0.95	0.85	150	45	53.7	2417	0.2632	409.4
11	0.4	0.6	0.85	150	67	25.1	1684	0.3067	351.7
12	0.5	0.75	0.5	150	11	82.5	3629	1	457.5
13	0.4	0.75	0.5	150	45	81.8	3680		458.1
14	0.4	1.0	0.85	150	35	13.5	472	0.4789	224.3
15	4.0	0.3	0.85	150	28	14.9	h18	0.5032	215.7
16	0.2	0.75	0.85	150	19	7.8	148	0.6872	156.1

NOMENCLATURA

52

A = EFICIENCIA DE RUPTURA EN LA ZONA DE CIRCULACION.
B = EFICIENCIA DE RUPTURA EN LA ZONA DEL AGITADOR.
D₃₂ = DIAMETRO 32
(3 = EFICIENCIA DE COALESCENCIA.
D = DIAMETRO.

PARTICULAS

53

2000

CO **.** Ô. 85

1000

0.5

R

.0 1

3.4

400

200

0.5 B.

• ITERACIONES

COALESCENCIA =0.85 50

0.5

1.0 0.5

D/012

n

100

1.5

:(a)

신화화 소리는 것은 것을 잡았다.

Partfoulas

20

0.5

D/D₃₂

1.5

1.0

D22

0.65607

8

Partículas

50

0.5

1.0

1.5

).1).75 0.85 0.7188

۱. 2 in

D32

D/D32

0 / Particulas.

10099

1.5

1.0,

0

200

100

0.5

D/D₃₂

0

0.5

1.0 1.5

2.0 D/D₃₂

8= 0.6 \$= 0.75 D₃₂= 0.2786 (•)

A= 0.5

Particulas 2

100

1.0

0/0₃₂

1.5

= 0.85 = 0.5151

D32

0.5

KA

In the

おとう

Patricula

R 300

200

100 ģ,

0

0.5

1.0

0,5 0.95 0.85 0.2632

2.0 D/D32

2.9

J.5 4 0.9 · Pertfoulas

D₃₂ .85 .2632 ÷ 2000

Iteraciones

40 Unit 1. VI

Area/4

400

200

45

「「「「「「「」」」

R 4. Sec.

 γ

• Partículas

144

tit si Silit

200

R

100

. .

•

0.5

1.0

 $\begin{array}{c} A= 0.4 \\ B= 0.6 \\ (*= 0.85 \\ D_{32}= 0.30678 \end{array}$

1.5 0/0₃₂

Iteracione

200

0.6

300

Area

2 0.85 0.4789 # Particulas. 100 50 ंट

0.5

1:0

1.5 D/0₃₂

R

60

50

40

30

20

10 1.2

ri. di. ., 11

0.5

.5032

D.2

D/D32

1.5

1.0

Same

15 Ξ ... Area/4 Partfaulae 0.85 D.,= 300 200 200 28

Transidinas

Pertfoiles

200

10 Iteracion

B=0.75 (0=0.85 D₃₂= 0.6872

Dada la importancia que tienen las dispersiones líquido-líquido se desarrolló un nodelo mediante el cual se pudieran simular distribui ciones de diámetro de partícula, se pudiera calcular el área interfacial y el diámetro 32.

EL MODELO FUÉ DESARROLLADO A PARTIR DE CONCEPTOS FUNDAMENTALES SOBRE DISPERSIONES LÍQUIDO-LÍQUIDO EN TANQUES AGITADOS. OBTENIÉNDOSE -DISTRIBUCIONES NO HOMOGÉNEAS DEL DIÁMETRO NO UNIFORME DE LAS PARTÍCULAS DE LA FASE DISPERSA A TRAVÉS DEL TANQUE.

LOS EFECTOS DEL MICROMEZCIADO, ASÍ COND LA RUPTURA Y COALESCEN CIA DE PARTÍCULAS SON TOMADAS EN CUENTA PARA LAS DIFERENTES REGIONES — DEL TANQUE MEDIANTE UNA COMBINACIÓN DE TÉCNICAS ESTADÍSTICAS Y FUNCIONES DE RUPTURA Y COALESCENCIA, LAS CUALES PUEDEN DEPENDER TANTO DEL DIÁMETRO COMO DEL NÚMERO DE MEDER,

Es evidente que tanto el número de partículas, el área y el nú mero de iteraciones son directamente proporcionales a la eficiencia de ruptura, mientras que el diámetro 32 lo es en forma inversa ya que con-forme se aumenta la eficiencia de ruptura en cualquier zona del tanque, el área, el número de partículas y de iteraciones almentan mientras que el diámetro 32 disminuye.

Estas variaciones son, al principio y al final, en forma discreta pero existe una zona intermedia en la cual estas variaciones son muy notoriaŝ; por ejemplo en las gráficas 1 y 2 (pag 53 y 54), cuando la eficiencia de ruptura en la zona de circulación está entre 0.3 y 0.5, las variaciones son muy marcadas, casi en forma lineal. Pero cuando se tienen bajas eficiencias de ruptura (0,3) La fase dispersa tiende a coagular disminuyendo el área, el número de partículas y el número de iteraciones, aumentando el diámetro 32 como se puede apreciar en las corridas 5,6 y 16.

MIENTRAS QUE CUANDO SE TIENEN ALTAS EFICIENCIAS DE RUPTURA (0.6), el área, el número de partículas y de iteraciones aumentan y el diámetro 32 disminuye llegándose a una distribución de partículas mas homogénea dentro del tanque.

Los resultados indican que para eficiencias de ruptura mayo res a 0.7 el mecanismo de ruptura domina en la determinación de la -distribución de diámetros de partícula en tanques agitados; y en la ruptura, la eficiencia que predomina es la de la zona de circulación.

Analizando las gráficas $1 \ y 2$ se observa que cuando la eficiencia de ruptura está entre $0.5 \ y 0.7$ hay una disminución en el núnero final de partículas, de área y de iteraciones, esto se interpreta como un error del programa, ya que se detuvo antes de llegar al -equilibrio por condicion del programa.

1.- DROP ST ZE DI STRIBUTIONS PRODUCED BY TURBULENT PIPE FLOW OF INMISCIBLE FLUIDS THROUGH A STATIC MIXER. STANLEY MIDDLEMAN IND. ENG. CHEM. PROCESS DES. DEVELOP. Vo. 13 No. 1 - 1974

- 2.- SCALE UP CRITERIA FOR STIRRED TANK REACTORS. J. J. EVANGELISTA, STANLEY KATZ, REUEL SHINNAR, AICHE J. Vo. 15 No. 6 - Nov. <u>1969</u>
- 3.- FLUID AND PARTICLE MOTION IN TURBULENT STIRRED TANKS (FLUID MOTION PARTICLE MOTION) <u>HENRY G. SCHWARTZBERG AND ROBERT E. TREYBAL</u> I. AND E. C. FUNDAMENTALS. VOL. 7 No. 1 - FEB. 1968
- 4.- RISTING VELOCITY OF A SWARM OF SPHERICAL BUBBLES. MARRUCI, GIUSEPPE I. AND E. C. FUNDAMENTALS, VOL. 4 No. 2 - MAY 1965
- 5.- FLOW PATTERNS OF LIQUIDS IN AGITATED VESSELS. Shuicht AIBA AICHE J. Vol. 4 No. 4 - Dec 1968

6.- A MONTE CARLO TREATMENT FOR REACTING AN COALESCING DIS PERSED PHASE SYSTEMS. L. A. Spielman and O. Levenspiel Chem. Eng. Sei. Vol. 20 <u>1965</u>

87

7.- PREDICTING PARTICLE SIZE IN AGITATED DISPERSIONS. <u>Reuel Shinnar and James Church</u> Ind. and Eng. Chem. Vol. 52 No. 3 - March 1960

8.- STABILIZING LIQUID-LIQUID DISPERSIONS BY AGITATION REVEL-SHINNAR AND JAMES CHURCH IND. AND ENG. CHEM. VOL. 53 No. 6 - JUNE 1961

9.- DI SPERSED PHASE MIXING, R. L. CURT AICHE J. Vol. 9 No. 2 - MARCH 1963

10.- INFLUENCE OF DROPLET, SIZE-AGE DISTRIBUTION ON RATE PROCESSES IN DISPERSED - PHASE SYSTEMS. K. J. VALENTAS AND N. R. AMUNDSON I. AND EC FUND. VOL. 7 No. 1 - FEB. 1968

- 11.- ANALYSIS DE BREAKAGE IN DISPERSED PHASE SYSTEMS. K. J. VALENTAS, N. R. AMUNDSON AND OLEGH BILOUS I. AND EC. FUND. VOL. 5 No. 2 - MAY 1966
- 12.- BREAKAGE AND COALESCENCE IN DISPERSED PHASE SYSTEMS K. J. VALENTAS AND N. R. AMUNDSON I. AND E. C. FUND, VOL. 5 No. 4 - Nov. 1966
- 13.- THE EFFECTS OF COALESCENCE ON THE AVERAGE FROP SIZE IN LIQUID-LIQUID DI SPERSIONS, <u>MICHAEL A. DELICHATSIOS AND RONALD F. PROBSTEIN</u> I. ECH. FUND, Vol. 15 No. 2 1976
- 14.- PARTICULATE METHODS IN PROBABILITY SYSTEMS STANLEY KATZ AND REVEL SHINNAR, I. ECH. Vol., 61 No., 4 Apr., 1969

15.- DETERMINATION OF DROPLET SIZE DISTRIBUTION IN LIQUID-LIQUID DISPERSIONS, <u>GERSHON GROSSMAN</u>. IND. ENG, CHEM, PROCESS DES. DEVELOP VOL. 11 No. 4 - <u>1972</u> 16. - AN EFFECT OF HOLD UP ON DROP SIZE IN LIQUID-LIQUID DI SPERSIONS MOHAMMED S. DOULAH IND. ENG. CHEM. FUND. VOL. 14 No. 2 1975

- 17.- DROP BREAKUP IN SIMPLE SHEAR FILDS OF VISCOELASTIC FLUIDS. <u>Raymond W. Flumerfelt</u> I. ECH. Fund. Vol. 11 No. 3 1972
- 18.- DROP FOMATION IN TWO LIQUID PHASE SYSTEMS. <u>CURTIS B. HAYWORTH AND ROBERT E. TREYBAL</u> IND. AND ENG. CHEM. VOL. 42 NO. 6 JUN. 1950
- 19.- SIZE DISTRIBUTION OF AGGLOMERATES IN COALESCING DISPERSED PHASE SYSTEMS. KALANADH V. S. SATRY AND DOUGLAS W FUERTENAU I. AND E. C. FUND, VOL. 9 No. 1- FEB 1970
- 20.- AN APPROACH TO CHARACTERIZING AGITATION BY DISPERSION PARTICLE SIZE
 - D. M. SULLIVAN AND E. LINDSEY
 - I. AND E. C. FUND. VOL. 1 No. 2 MAY 1962

21.- EFFECT OF FLUID MOTION ON INTERFACIAL AREA OF DI SPERSIONS. N: A: RODGER. V. G. TRICE JR. AND. J. H. RUSHTON CHEM. ENG. PROGRESS VOL. 52 No. 12 DEC. 1956

22.- INTERFACIAL AREA IN LIQUID-LIQUID MIXING. <u>FERDINAD RODRÍGUEZ L. C. GROTZ, AND D. L. ENGLE</u> AICHE, J. Vol. 6 No. 4 - Dec. <u>1961</u>

23.- DROP FORMATION IN NON NEWTONIAN FLUIDS <u>Rajinder Kumar and Yellamaradu P. Saradhy</u> Ing. Eng. Chem. Fundam. Vol. 11 No. 3 1972

24.- A HYDROYNAMIC MECHANISM FOR THE COALESCENCE OF LIQUID DROPS. <u>SIDNEY B. LANG. AND C. R. WILKE</u> (THEORY OF COALESCENCE AT A PLANAR INTERFACE) IND. ENG. CHEM. FUNDAM. VOL. 10 No. 3 - 1971

25.- A HIDRODYNAMIC MECHANISM FOR THE COALESCENCE OF LIQUID DROPS, EXPERIMENTAL STUDIES SIDNEY B. LANG AND C. R. WILKE IND. ENG, CHEM. FUND. VOL. 10 No. 3 - <u>1971</u> (341)

(329)

26.- PREDICTIONS OF THE PARTICLE SIZE DISTRIBUTION CHANGES IN EMULSIONS AND SUSPENSIONS BY DIGITAL COMPUTATION AKIRA SUZUKI, N.F. H. HO AND W.I. HIGUCHI JOURNAL OF COLLOID AND INTERFACE SCIENCE VOL. 29

MARCH 1969

- 27.- FLUID-FLUID INTERACTIONS AND HIDRODYNAMICS IN AGITATED DISPERSIONS, A SIMULATION MODEL M.A. ZEITLIN AND L.L. TAVLARIDES THE CANADIAN JOURNAL OF CHEM. ENG. VOL. 50 APRIL 1972
- 28.- INTERFACIAL AREA IN LIQUID-LIQUID AND GAS-LIQUID AGITATION. <u>THEODORE VERMEULEN, GAEL M. WILLIAMS, AND GORDON</u> E. LANGLOIS.

CHEM. ENG. PROGRESS VOL. 51, No. 2 FEBRUARY 1955

- 29.- HINZE J.O., AICHE JOURNAL, VOL. 1, 289 (1955)
- 30.- EPSTEIN, BENJAMIN, IND. ENG. CHEM 40, 2289, 1948

31.- BOHR N., WHEELER, S.A. PHY S. REV., 56, 426, (1939)

32.- DERYAGUIN, B., Z. DER PHYSIK 84, 657 (1933)

Q

- 33.- DERYAQUIN, B. OTHERS, DISCUSSIONS FARADAY Soc.NO. 18, 2ER, (1954)
- 34.- BRADLEY R.S. PHIL MAG. 13, 853, (1932)
- 35. BRADLEY R.S. TRANS. FARADAY Soc. 32, 1088 (1936)
- 36.- VANDERVEEN J.H., M.S. THESIS, UNIV. OF CALIFORNIA (1960)

ANEXO 1

33

8716 45 JOB REACTORES; CLASS=6; BEGIN; (#0002) QUEUED: 11/18/83 AT 18:24:00

10 FILE	5(KIND=DISK,FILETYPE=7,TITLE="	DATOS/REACTORES."		
20 FILE	6(KIND-PRINTER)			
100	READ(5,/) DO,DU,R,G,EC			
200	DIMENSION D(0:5000),N(5000)	,H(5000),K(5000),1	Γ(5000),WE(5000)
300	DO 1 (=1,R			
400 1	READ(5,/)H(1),K(1)			
500	DO 2 1-1.R		. •. ·	
650	D(I)=RANDOH(P)			
700 2	PRINT*//.D(1).H(1).K(1)			
800 17	0=R			
810	0=0			
900	E=2			
1000	Fet States and States a			
1100 9	IF(D(F).E0.0) GO TO 7			
1200	DO 3 I-E.R			
1300	IF(D(1),E0.0)G0 TO 3			
1400	IF(H(F),NE,H(1))GO TO 3			\mathcal{L}
1500	IF(K(F),NE,K(1))GO TO 3			
1700	Z=RANDOM(P)			
1800	IF(EC.LT.Z)GO TO3			
1900	FM=3,1415926*((D(F)**3)+(D(()##3))/6		
2000	$D(F) = (6 \times FN/3, 1415926) \times (1/3)$	5		
2100	D(1)=0			
2200	0=0+1		an a	
2300 3	CONTINUE		는 관련 관심을 가 ?	
2400 8	IF(D(F).GT.DO)GO TO 4			
2500	IF(D(F).LT.DU)GO TO 7			
2600	IF(N(F).GE.1)GO TO 5			
2700	A=0.4			
2900	X-RANDOM(P)			
3000	IF(A.GE.X)60 TO 4			
3100	GO TO 7			
3200 5	IF(N(F).GE.2)GO TO 6			
3300	B=0.75			
3500	X=RANCOM (P)			
3600	IF(B.GE.X)GO TO 4			
3700	GO TO 7			
3800 6	C=0 4			
4000	Y-BANDOM(P)			
4100	IF(C CE X)CO TO 4			
4200	CO TO 7			
4300 4	FM#3 1415926±(n(5)±±2)/6			
4400	D(E)=(3+EM/3 141E024)++/1/	2)		
4500	0-0+1		- A -	1 4 4
4600				
4700	K(0)-K(F)			
4800				
4000 7				
7700 /	이 있는 비 수학을 위 한 것 같은 것이 있는 것이 같은 것이 있는 것이 같이 있다. 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 없다. 가지 않는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 있는 것이 있는 것이 없는 것이 없 않이 않이 않이 않이 않이 않는 것이 없는 것이 없이 것이 않아, 것이 않아, 것이 않아, 것이 없는 것이 없다. 것이 없는 것이 않아, 것이 않아, 것이 없는 것이 없이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 않아, 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 것이 것이 않아, 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 않아, 않아, 않아, 않아, 않이 않아,	이 아이는 것 같은 것이 같은 것	요즘 영상 같은 것	

5000		F=F+1
5100		IF(F-R)9.8.10
5200	10	CALL APO(D D H K D)
6 200		
2477		
5,500		AL=ABS(((D-Q)-((R+MA+M1)/3))/((R+MA+M1)/3)
5400		AB=0.005
5410		PRINT*//.AL.AB
5415		MisKA
5420		MAnP
5500		10-0 15(A) 17 AB)00 70 10
7700		
5000	1	K=0-Q
5700		DO 11 1=1,R
5900		A=INT(4+RANDOM(P))
6100	1	B=INT(4+RANDOM(P))
6200		H(1)_ARS(H(1)+((-1)++A)+A)
6200		$K(1) \rightarrow BC(K(1) \rightarrow (/ 1) \rightarrow D) \rightarrow D$
0300	•	K(1) = ADJ(K(1) + ((-1) + AD) + D)
0400		IP(M(1).GT.49)GO TO 13
6500	- 14	IF(K(1).GT.49)GO TO 15
6600	16	N(1)=K(1)*3/50.
6700		GO TO 11
6800	13	H(1) = bq = (H(1) = bq)
6000		CO TO 16
7000		10 10 14 M(1) to (4/1) (a)
/000	12	K(1/049-(K(1/049)
7100		GO TO 16
7200	- 11	CONTINUE
7300		GO TO 17
7400	12	8-0-0
7450		no so t-t p
7474		90 00 1-1,K
/400	00	ME(1)=D(1)
7500		
7600		* E=2
7700	20	IF(D(F).EQ.0) GO TO 19
7800		T(F)=1
7900		00 18 t=F 8
Rono		1 E(n(1) = 0, n) = 0, T = 18
\$100 ···		P(D(r), EQ, O) = Q = 10 + 10
0100		IP(U(P).NE.D(I)GU IU IO
0200		1(F)=T(F)+1
8250		WE(1)=D(1),
8300		D(1)=0
8400	18	CONTINUE
8500	19	E=E+1
8600		S-S+1
0000		(-(+))
0/00		1P(P.LE.K) GU 10 20
0066		E=0
8900		F=O
9000		00 21 i=1,R
9100		E=E+(T(1)*(D(1)**3))
9200	21	F=F+(T/1)+(D/1)++2))
0700	- - -	E_E/E
7300	1.14	
- 7210	1. A.	/RINI#//,E
9400		DU 22 Ini,R
9500	22	D(1)=D(1)/E
9510	1.11	00 90 1-1.R
9520		IF(K(1).GT.17)60 TO 90
9530		DELUTA// 1 TIN WEIN/E W/IN W/IN
7777		**************************************
7240	90	

2220		00·91 1=1,K
9560		IF(K(I).LT.18)GO TO 91
9570		IF(K(1), GT. 33) 60 TO 91
OFRO		$\mathbf{DD}[\mathbf{MT} + 1/1 + \mathbf{T}(1) + \mathbf{U}(1) + \mathbf{U}(1) + \mathbf{U}(1)$
3300		FRIMI~//;[]I(I/;WE(I//E;R(I/;N(I))
3230	31	CONTINUE
9600		DO 92 =1,R
9610		IF(K(1).LT.34)60 TO 92
9620		DRINT+// 1 T/1) WE(1)/E W/1) V/1)
0630	6.2	<pre>rnin;"//;i/i/i/sws(i//sjn(i/;n(i)) courtemer</pre>
7030	yz.	LUNITAUE
9800		END
9900		SUBROUTINE APO (D.O.H.K.Q)
9950		DIMENSION D(0:5000) H(5000) K(5000) AD(5000
10000		M-A
10100		
10100		
10200	52 -	VMIN=D(I)
10300		
10400		
10500		LE (WHIN IT D/ I) CO TO CI
10500	20	IF(VAIM.LI.D(J)/GU IV 51
10000	н <u>с</u>	VMIN=D(J)
10700		in in-j i in the state of the
10800	51	[1] Julef Charles and Charles and States and Alexandra an
10900		15(115 A) CO TO EO
11000		
11000		VD(1)=AMIN
11100		D(IN)=D(0)
11200		0=0-1
11300		1=1+1
11400		IFILLE N) ON TO ES
11700		
11210		DO 60 1=1,M
11530	. 60 -	D(1)=AD(1)
11540		n (=1) en la general de la seconda de la
11550		IF(D(1).NE.0)60 TO 57
11600	.52	IF(D(I) NE D)CO TO EL
11700	22	1-1.4
11/00		
11900		GO TO 53
12000	-54	j=j - J
12100	55	D(J)=D(1)
12200		
10100		
12300		H(J)=H(I)
12400		. (s i=i+i
12500		J≖J+1
PAGE		
12600		15(1 CT W) CO TO 56
12000		IT (1.41.17) 40 10 30
12/00		GU 10 55
12800		GO TO 55
12900	- 56	J =.85 − .
13000	57	Cont.
12100		DETIIDN
13100		
13200		
		그는 그는 방법에 주는 것이 가지도 못한 바람주요? 승규는 것 것이 없는 것을 통

ANEXO 2

?WORKFILE: DATOS/REACTORES (10/05/83)

100	1,09,150,5000,.85
300	1.0
400	2.0
500	3,0
600	4,0
700	5,0
800	6,0
900	7,0
1000	8,0
1100	9,0
1200	10,0
1400	11,0
1500	12.0
1600	14.0
1700	15.0
1800	16.0
1900	17,0
2000	18,0
2100	19,0
2200	20,0
2300	21,0
2400	22,0
2500	23,0
2700	24,0
2800	25,U 26 0
2000	20,0
3000	28.0
3100	29.0
3200	30.0
3300	31,0
3400	32,0
3500	33,0
3600	34,0
3700	35.0
3800	36,0
3900	37,0
4000	30,U
4100	39,0
4200	40,0
4400	42 0
4500	43.0
4600	44.0
4700	45.0
4800	46.0
4900	47.0
5000	48,0
5100	49,0

96

19					
					97
			14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -		
				1	. · · ·
5200	0.1				1
5300	1.1				
5400	2,1		1. A.		
5500	3,1		ette Stationer Stationer		
5600	4,1				
5700	5,1				te de la composition
5000	0,1 7.1				
6000	8.1				
6100	9,1				
6200	10,1	te di Berri I.			
6300	11,1				
6500	12,1				
6600	12,1				
6700	15.1				
6800	16,1				
6900	17,1				
7000	18,1				
7200	19,1				
7300	21.1				
7400	22.1				
7500	23,1				
7600	24,1				
7700	25,1				
7000	20,1				
8000	28.1	• Contra de la contr Contra de la contra d			
8100	29.1				
8200	30,1				
8300	31,1		as et de la		
8400	32,1				
8600	35,1				
8700	35.1				
8800	36.1				
8900	37,1				
9000	38,1				
9100	39,1				
9200	40,J 41 1	1			
9400	42.1				
9500	43,1				
9600	44,1				-yt
9700	45,1				
9800	46,1				
9900	47,1				
10000	40,1 40,1				
10200	0.2				
10300	1,2				
10400	2,2				
10500	3,2				
10600	4,2				
E25					

	10800		6	2
	10900		7	2
	11000		Ŕ	5
	11100		ă,	5
	1100		121	
	11200		10,	1
	11300		11,	, 7
	11400		12,	2
	11500	E.,	13,	2
	11600		14,	2
	11700		15,	2
	11800	- ¹ -	16.	2
	11900		17.	2
	12000		18.	2
	12100		10	2
	12200	19. 19. st	121 20	5
	12200		2U,	4
	12300		41,	4
	12400		22,	2
11	12500		23,	2
1.1	12600		24,	2
1.1	12700	5.2	25,	2
	12800	신신	26,	2
1. j.	12900		27.	2
	13000		28.	2
1.1	13100		29	2
11	13200		20	9
	1 2 2 0 0		21	9
	12200		21,	4
	13400		34,	-
1.14	13500		33,	2
1.11 1.1	13600		34,	2
	13700	h a sh	35,	2
	13800	111	36,	2
	13900	j - t	37.	2
	14000	1.1	38.	2
2.	14100		39.	2
	14200		40.	2
	14300		41	5
	12200		42	-
÷ .	17700	ь.	74,	
	14500	•	43,	2
	14000	na di	44,	2
	14700	t se	45,	, 2
	14800		46,	2
	14900	(47,	,2
· • • •	15000		48,	2
1	15100	() () (49	2

ANEXO 3

PARTIDA	DIAMETRO	POSICION
	(EXP)=0.211324865404	(EXP)=0.0 (EXP)=0
2	(EXP=0.96662222272	(EXP)=1.0 (EXP=0
3	(EXP)=0.171554627655	(EXP)-2.0 (EXP)=0
i 4 €.	(EXP)=0.276212359378	(EXP)=3.0 (EXP)=0
5	(EXP)-0.93787406528	(EXP)-4.0 (EXP)-0
6	(EXP)=0.119126032394	(EXP)-5.0 (EXP)-0
7	(EXP)=0.64655320053	(EXP)=6.0 (EXP)=0
	(EXP)=0.064529014765	(EXP)-7.0 (EXP)-0
9	(EXP)=0.89735502099	(EXP)=8.0 (EXP)=0
10	(EXP)=0.60772041225	(EXP)-9.0 (EXP)-0
111	(EXP)=0.395789608609	(EXP)=10.0 (EXP)=0
12	(EXP)=0.66150174693	(EXP)-11.0 (EXP)-0
13	(EXP)=0.318523648069	(EXP)-12.0 (EXP)-0
14	(EXP)=0.162205230863	(EXP)=13.0 (EXP)=0
15	(EXP)=0.16385575296	(EXP)-14.0 (EXP)-0
16	(EXP)=0.60216120587	(EXP)=15.0 (EXP)=0
17	(EXP)=0.103585467759	(EXP)=16.0 (EXP)=0
18	(EXP)=0.370079244331	(EXP)=17.0 (EXP)=0
19	(EXP)=0.71255100818	(EXP)=18.0 (EXP)=0
20	(EXP)=0.00511397570517	(EXP)=19.0 (EXP)=0
21	(EXP)=0.282333885965	(EXP)-20.0 (EXP)-0
22	(EXP)=0.84489079293	(EXP)=21.0 (EXP)=0
23	(EXP)=0.56352987024	(EXP)=22.0 (EXP)=0
24	(EXP)=0.0563649205	(EXP)=23.0 (EXP)=0
25	(EXP)=0.130373860402	(EXP)-24.0 (EXP)-0
26	(EXP)=0.62199786046	(EXP)-25.0 (EXP)-0
27	(EXP)=0.436346027696	(EXP)=26.0 (EXP)=0
28	(EXP)=0.62905719352	(EXP)=27.0 (EXP)=0
29	(EXP)=0.347549119984	(EXP)=28.0 (EXP)=0
30	(EXP)=0.93810956667	(EXP)=29.0 (EXP)=0
31	(EXP)=0.66765945773	(EXP)=30.0 (EXP)=0
32	(EXP)=0.11249416793	(EXP)=31.0 (EXP)=0
33	(EXP)=0.511050475527	(EXP)=32.0 (EXP)=0
34	(EXP)=0.83027803815	(EXP)=33.0 (EXP)=0

35	(EXP)=0.231357523824	(EXP)=34.0 (EXP)=0
36	(EXP)=0.88122942171	(EXP)=35.0 (EXP)=0
37	(EXP)=0.242292135814	(EXP)=36.0 (EXP)=0
38	(EXP)=0.300556477971	(EXP)=37.0 (EXP)=0
39	(EXP)=0.46957542623	(EXP)=38.0 (EXP)=0
40	(EXP)=0.97368278455	(EXP)=39.0 (EXP)=0
41	(EXP)=0.6575023181	(EXP)=40.0 (EXP)=0
42	(EXP)=0.6343361293	(EXP)=41.0 (EXP)=0
43	(EXP)=0.79108573224	(EXP)=42.0 (EXP)=0
. 44	(EXP)=0.96966232955	(EXP)=43.0 (EXP)=0
45	(EXP)-0.209083817133	(EXP)=44.0 (EXP)=0
46	(EXP)=0.333421703439	(EXP)=45.0 (EXP)=0
47	(EXP)=0.89626108749	(EXP)=46.0 (EXP)=0
48	(EXP)=0.25734406765	(EXP)=47.0 (EXP)=0
. 49	(EXP)=0.468159571667	(EXP)=48.0 (EXP)=0
50	(EXP)=0.529201717483	(EXP)=49.0 (EXP)=0
51	(EXP)=0.0467985850137	(EXP)=0.0 (EXP)=1
52	(EXP)=0.362682977378	(EXP)=1.0 (EXP)=1
53	(EXP)=0.248327642685	(EXP)2.0 (EXP)=1
54	(EXP)=0.176817061987	(EXP)=3.0 (EXP)=1
55	(EXP)=0.0136286435391	(EXP)=4.0 (EXP)=1
56	(EXP)=0.277900877976	(EXP)=5.0 (EXP)=1
57	(EXP)0.226509392245	(EXP)=6.0 (EXP)=1
58	(EXP)=0.298027993911	(EXP)=7.0 (EXP)=1
59	(EXP)=0.107915621704	(EXP)=8.0 (EXP)=1
60	(EXP)=0.270618528528	(EXP)=9.0 (EXP)=1
61	(EXP)=0.378884027092	(EXP)=10.0 (EXP)=1
62	(EXP)=0.53852662518	(EXP)=]1.0 (EXP)=1
63	(EXP)=0.62779176959	(EXP)=12.0 (EXP)=1
64	(EXP)=0.981371211	(EXP)=13.0 (EXP)=1
65	(EXP)=0.61826204607	(EXP)=14.0 (EXP)=1
66	(EXP)=0.83473885215	(EXP)=15.0 (EXP)=1
67	(EXP)=0.63745049428	(EXP)=16.0 (EXP)=1
68	(EXP)=0.224668930001	(EXP)=17.0 (EXP)=1
69	(EXP)=0.493859505432	(EXP)=18.0 (EXP)=1
70	(EXP)=0.545706546338	(EXP)=19.0 (EXP)=1
71	(EXP)=0.73545929088	(EXP)=20.0 (EXP)=1
72	(EXP)=0.297434236985	(EXP)=21.0 (EXP)=1

73	(EXP)=0.195294391027	(EXP)=22.0	(EXP)=1
74	(EXP)-0.497437701622	(EXP)=23.0	(EXP)=1
75	(EXP)-0.86563706574	(EXP)=24.0	(EXP)=1
76	(EXP)=0.268572561872	(EXP)=25.0	(EXP)=1
77	(EXP)=0.88973576159	(EXP)-26.0	(EXP)=1
78	(EXP)=0.510159108391	(EXP)=27.0	(EXP)=1
79	(EXP)=0.77657495316	(EXP)=28.0	(EXP)=1
80	(EXP)=0.174601809733	(EXP)=29.0	(EXP)=1
81	(EXP)=0.114495701824	(EXP)=30.0	(EXP)=1
82	(EXP)-0.63320299979	(EXP)=31.0	(EXP)=1
83	(EXP)-0.94486410249	(EXP)=32.0	(EXP)=1
84	(EXP)-0.77868985545	(EXP)=33.0	(EXP)=1
85	(EXP)-0.0469635001555	(EXP)-34.0	(EXP)=1
86	(EXP)=0.99780599048	(EXP)=35.0	(EXP)=1
87	(EXP)=0, 142328286902	(EXP)=36.0	(EXP)=1
88	(EXP)=0.064120444163	(EXP)=37.0	(EXP)=1
89	(EXP)=0.479640838965	(EXP)=38.0	(EXP)=1
90	(EXP)=0.414895503174	(EXP)=39.0	(EXP)=1
91	(EXP)-0.84904356049	(EXP)=40.0	(EXP)=1
92	(EXP)=0.428129880216	(EXP)=41.0	(EXP)=1
93	(EXP)=0.74014616259	(EXP)=42.0	(EXP)=1
94	(EXP)=0.929857533	(EXP)=43.0	(EXP)=1
95	(EXP)=0.89166156536	(EXP)=44.0	(EXP)=1
96	(EXP)=0.118228762585	(EXP)=45.0	(EXP)=1
97	(EXP)=0.114415761431	(EXP)=46.0	(EXP)=1
98	(EXP)=0.63060223705	(EXP)=47.0	(EXP)=1
99	(EXP)=0.520537465114	(EXP)=48.0	(EXP)=1
100	(EXP)=0.310544899439	(EXP)=49.0	(EXP)=1
101	(EXP)=0.055938486452	(EXP)=0.0	(EXP)=2
102	(EXP)=0.248200543221	(EXP)=1.0	(EXP)=2
103	(EXP)=0.129397856343	(EXP)=2.0	(EXP)=2
104	(EXP)-0.86839540973	(EXP)=3.0	(EXP)=2
105	(EXP)=0.094720383129	(EXP)=4.0	(EXP)=2
106	(EXP)=0.56634218397	(EXP)=5.0	(EXP)=2
107	(EXP)=0.4677683848	(EXP)=6.0	(EXP)=2
108	(EXP)=0.73921789464	(FYP)=7:0	(FYP)=2

109	(EXP) -0.396784908886	(EXP)=8.0 (EXP)=2
110	(EXP)-0.60993701512	(EXP)=9.0 (EXP)=2
111	(EXP)-0.39911516764	(EXP)=10.0 (EXP)=2
112	(EXP)-0.64916243657	(EXP)=11.0 (EXP)=2
113	(EXP)-0.86837377308	(EXP)=12.0 (EXP)=2
114	(EXP)-0.62265869092	(EXP)=13.0 (EXP)=2
115	(EXP)-0.516638498435	(EXP)=14.0 (EXP)=2
116	(EXP)=0.73706805872	(EXP)=15.0 (EXP)=2
117	(EXP)=0.0486228136633	(EXP)=16.0 (EXP)=2
118	(EXP)=0.211186473982	(EXP)=17.0 (EXP)=2
119	(EXP)=0.74389168638	(EXP)-18.0 (EXP)-2
120	(EXP)=0.533219152814	(EXP)=19.0 (EXP)=2
121	(EXP)=0.290346699401	(EXP)=20.0 (EXP)=2
122	(EXP)=0.80572359535	(EXP)=21.0 (EXP)=2
123	(EXP)=0.91888225648	(EXP)=22.0 (EXP)=2
124	(EXP)=0.73319925792	(EXP)=23.0 (EXP)=2
125	(EXP)=0.390675622	(EXP)=24.0 (EXP)=2
126	(EXP)=0.92128923528	(EXP)=25.0 (EXP)=2
127	(EXP)-0.78804711196	(EXP)=26.0 (EXP)=2
128	(EXP)-0.0433314482216	(EXP)=27.0 (EXP)=2
129	(EXP)-0.401646516924	(EXP)=28.0 (EXP)=2
130	(EXP)=0.73357806988	(EXP)=29.0 (EXP)=2
131	(EXP)=0.520477635846	(EXP)=30.0 (EXP)=2
132	(EXP]=0.481616462414	(EXP)=31.0 (EXP)=2
133	(EXP)=0.325460727128	(EXP)=32.0 (EXP)=2
134	(EXP)=0.543728204033	(EXP)=33.0 (EXP)=2
135	(EXP)=0.293005082853	(EXP)=34.0 (EXP)=2
136	(EXP)=0.406751582646	(EXP)=35.0 (EXP)=2
137	(EXP)=0.27997939872	(EXP)=36.0 (EXP)=2
138	(EXP)=0.298135185792	(EXP)=37.0 (EXP)=2
139	(EXP)=0.19324098855	(EXP)=38.0 (EXP)=2
140	(EXP)=0.71773514578	(EXP)=39.0 (EXP)=2
141	(EXP)=0.0071372726142	(EXP)=40.0 (EXP)=2
142	(EXP)=0.9524966727	(EXP)=41.0 (EXP)=2
143	(EXP)=0.140401697072	(EXP)=42.0 (EXP)=2
144	(EXP)=0.61773344481	(EXP)=43.0 (EXP)=2
145	(EXP)=0.79031491124	(EXP)=44.0 (FYP)=2

146	(EXP)=0.62356919523
147	(EXP)=0.232730484075
148	(EXP)=0.56830865316
149	(EXP)=0.446318774431
150	(EXP)=0.65766533775

(EXP)=45.0 (EXP)=2 (EXP)=46.0 (EXP)=2 (EXP)=47.0 (EXP)=2 (EXP)=48.0 (EXP)=2 (EXP)=49.0 (EXP)=2

ANEXO 4

D12

Para partículas no esfericas se corrige la ecuación multiplicandola por un factor ($\phi \ge 1$).

104

and the second second