

Universidad Nacional Autónoma de México

FACULTAD DE **CIENCIAS**

DECAIMIENTO RADIATIVO

Zo DEL

ESIS obtener título de el Que para

JOSE LUIS OLIVARES VAZQUEZ

éxico, D. F.

1986

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INTRODUCCION

En esta tesis, calculamos la sección total para el decaimiento radiativo en electrones del bosón Zo. Como elemento nuevo, nuestro càlculo incluye polarizaciones tanto de la particula inicial como del fotòn saliente.

A partir de la detección experimental de este decaimiento, ha surgido una intensa polêmica alrededor de las estimaciones para la razón $\left[\frac{r}{2^{\circ}}e^{t}e^{-t}\right]/\left[\frac{r}{2^{\circ}}e^{t}e^{-t}\right]$, debido a que el número de eventos presumiblemente radiativos detectados es mucho mayor que el predicho por un calculo perturbativo tipo Passarino [1], o Albert. et. al.[2] . en otras palabras, la proporción de eventos radiati~ vos en el decaimiento del Zo, respecto de los no radiativos, es mucho mayor que el 1-2% esperado. Se han construido un gran nòmero de modelos alternativos para explicar este hecho, algunos los cuales se resumen y discuten en la referencia [3].Sin de embargo, dentro del esquema teòrico del Modelo de Weinberg-Salam, la interpretación de la radiación como Bremsstrahlung (base de los càlculos de los articulos citados y de esta tesis) ofrece los diagramas de Dalitz y las distribuciones de masa invariante más aproximadas al conjunto de resultados experimentales conocidos hasta ahora.

Lo anterior justifica el interês por un câlculo de la sección de decaimiento del bosón Zo, tema de este trabajo.

Para encontrar la expresión de la matriz de transición al cuadrado involucrada en el problema, utilizamos un metodo para evaluar amplitudes fermiònicas desarrollado recientemente[4]. la integración de esta expresión sobre el espacio fase definido por el decaimiento a tres cuerpos se llevó a cabo por método Monte

1

â

Carlo, utilizando una subrutina[5] que genera eventos aleatorios en el espacio fase correspondiente.

En los cálculos del problema que nos ocupa detectados en 1 a literatura. los resultados obtenidos difieren considerablemente del nuestro. Passarino [1], estima la razón $\Gamma(2 - c' C') / \Gamma(f - c' c) = un$ 2-3%. Su procedimiento, en pocas lineas, consiste en integrar analiticamente esta sección sobre un espacio fase particular determinado por condiciones iniciales relacionadas con los experimentos que actualmente se llevan a cabo en CERN. Su solución incluye tèrminos provenientes de correcciones de òrdenes superiores a los diagramas de Feynman del proceso. Nuestro càlculo solo incluye diagramas a primer orden. En Passarino, sín embargo, no se incluyen las polarizaciones de los bosones involucrados en el proceso. Causmaecker. et. al. [6]. por otro lado. calculan las amplitudes para el proceso $\mathcal{C} \subset \mathcal{C} \subset \mathcal{C} \subset \mathcal{C}$ con intercambio de Zo, resolviendo un total de ocho diagramas. Su càlculo incluve polarizaciones para el fotòn saliente. Obtienen de este modo una expresión para el elemento de matriz al cuadrado, sin abordar el problema de la integración sobre espacio fase.

Los diagramas de Feynman calculados en este trabajo pueden _ verse en el capitulo 2. Excluimos correcciones radiativas del tipo que se presentan en la figura 1.

(a)

2

En el Capitulo 1, presentamos, en breve, los conceptos relati-

No es objetivo de esta exposición discutir a profundidad el modelo en cuestión. Queda expuesto siguiendo el camino històrico, de modo que discutimos más sobre la forma general de las interacciones débiles que respecto de los detalles más sutiles relacionados con la unificación del electromagnetismo con aquélla.

En el Capitulo 2, construímos la expresión para el elemento de matriz al cuadrado del proceso $\mathcal{Z}^{\circ} \sim \mathcal{C}^{\dagger} \mathcal{C}^{\dagger} \mathcal{A}^{\dagger}$.Presentamos en un apòndice un resòmen de la tècnica utilizada, siguiendo la referencia [4].Por àltimo, describimos el programa de còmputo utilizado para calcular la integral Monte Carlo de la matriz al cuadrado. Obtenemos el valor de la sección total de decaimiento que nos ocupa. Discutimos los resultados obtenidos y comparamos con los encontrados en la litaratura. por àltimo, presentamos algunas conclusiones.

CAPITULO I

MODELO DE WEINBERG-SALAM

En 1982, fue reportada la primera detección experimental de un bosòn Zo. Este suceso diò al modelo de Weinberg-Salam una confirmación experimental decisiva. En este modelo, creado 14 años antes, se unifican las interacciones débiles y electromagnèticas.

Interacciones Electromagnèticas.-

La teoría fisica que estudia este tipo de interacciones a nivel microscòpico es la Electrodinàmica Cuàntica, creada por Dirac alrededor de 1928. En ella se incorpora a la Mecànica Cuàntica la Teoría de la Relatividad Especial, buscando una mayor precisión en la descripción de fenòmenos atòmicos que involucran velocidades cercanas a la de la luz (es decir grandes energías).

Para un electron libre de cuadrimomentum Φ^{μ} , puede demostrarse que la función de onda (de cuatro componentes) tiene la forma

[r a" ... 14 - 0

la cual satisface la ecuación de Dirac

La ecuación para un electron en un campo electromagnètico
cuadrivectorial
$$A^{\mu}=(A^{\alpha}, \widetilde{A}^{\alpha})$$
, se obtiene haciendo la sustitu-
ción minima

donde (-e) es la carga del electrón. Procediendo de este modo, obtenemos:

$$d^{\mu}[P_{\mu}+eA_{\mu}]^{2}-m^{2}=0$$

Definiendo $\mathcal{C} \overset{\mathcal{J}}{\overset{\mathcal{J}}{\overset{\mathcal{J}}}} \overset{\mathcal{J}}{\overset{\mathcal{J}}{\overset{\mathcal{J}}{\overset{\mathcal{J}}}}}, \text{ tenemos:}$

$$\left[\delta_{\mu}^{\mu}P^{\mu}-m\right]\Psi=\delta_{\mu}^{\mu}\Lambda_{\mu}$$

que tiene la forma $(E + ...) \psi = \nabla \psi$ como en la Ecuación de Schrödinger.

Puede demostrarse que la ecuación de Dirac satisface una ecuación de continuidad (como en el caso no relativista) la cual garantiza conservación de la probabilidad, en concordancia con los postulados de la Mecânica Cuântica en su versión no relativista. Para encontrarla, escribimos la ecuación de Dirac en la forma

$$i \partial^{n} \frac{\partial \psi}{\partial t} + i \partial^{k} \frac{\partial \psi}{\partial t} - m \psi = 0 \qquad (1)$$

de donde obtenemos su conjugada hermitiana:

$$-i\frac{\partial}{\partial t} \psi^{\dagger} \psi^{0} - i\frac{\partial}{\partial \chi^{h}} \psi^{\dagger} \psi^{0} = 0$$

$$= \psi^{\dagger} \psi^{0} \qquad \text{come el espinor adju}$$

Definiendo $\overline{\Phi}\equiv \Psi' \mathcal{Y}^{o}$ como el espinor adjunto, podemos escribirla

$$i \partial_{\mu} \overline{\Psi} \delta^{\mu} + m \overline{\Psi} = 0$$
 (2)

Multiplicando (1) a la izquierda por $\overline{\Psi}$, (2) a la derecha por Ψ , y sumando, obtenemos:

$$\overline{\psi}_{2\mu} + (\overline{\partial_{\mu}} \overline{\psi})_{2\mu} + \overline{\partial_{\mu}} \overline{\psi}_{2\mu} + (\overline{\partial_{\mu}} \overline{\psi})_{2\mu} + \overline{\partial_{\mu}} \overline{\psi}_{2\mu} + \overline{\partial_{\mu}} + \overline{\partial_{\mu}} \overline{\psi}_{2\mu} + \overline{\partial_{\mu}} + \overline{\partial_{\mu}$$

De modo que $\mathcal{J}^{\mu} = \overline{\Psi} \mathcal{J}^{\mu} \Psi$ satisface la ecuación de continuidad, lo cual sugiere que deberiamos identificarla con las densidades de probabilidad y de flujo ρ y $\overline{\mathcal{J}}$ de la teoria. En particular, la densidad de probabilidad

$$\beta = 4^\circ = \Phi 4^\circ \psi = \psi^* \psi = \sum_{i=1}^{r} |\psi_i|^2$$

es positiva definida. d^A puede identificarse también (via la teoria de agujeros) con la densidad de corriente de carga si multiplicamos por (-e):

vista entonces como una densidad de corriente electrônica cuadrivectorial.

Volvamos ahora a la expresión obtenida para partículas en interacción con potenciales electromagnéticos:

Si utilizamos teoria de perturbaciones a primer orden (la perturbación es el término de interacción \mathcal{V}), la amplitud para la dispersión de un electrón de un estado Ψ , a un estado Ψ

$$\begin{aligned} \mathsf{T}_{\mathfrak{f}\mathfrak{l}} &= -\int \mathfrak{P}_{\mathfrak{f}}^{+}(\mathbf{x}) \, \nabla(\mathbf{x}) \, \mathfrak{P}_{\mathfrak{i}}(\mathbf{x}) \, \mathrm{d}^{4} \mathbf{x} \\ &= i \, \mathcal{O} \int \overline{\mathfrak{P}}_{\mathfrak{f}} \, \mathcal{S}_{\mu}^{\mu} \, \mathcal{A}^{\mu} \, \mathfrak{P}_{\mathfrak{i}}(\mathbf{x}) \, \mathrm{d}^{4} \mathbf{x} \\ &= -i \, \int \, \mathcal{J}_{\mu}^{(\mathfrak{f}\mathfrak{i})} \, \mathcal{A}^{\mu} \, \mathrm{d}^{4} \mathbf{x} \end{aligned}$$

; donde:

$$\int_{\mu}^{(i)} = -\mathcal{C}\overline{\Psi}_{\mathbf{F}} \delta_{\mu} \Psi_{i} = -\mathcal{C}\overline{\Psi}_{\mathbf{F}} \delta_{\mu} \Psi_{i} \mathcal{C}^{i}(\mathcal{P}_{i} - \mathcal{P}_{i}) \cdot \mathbf{x}$$

El têrmino $J_{\mu}^{(\mathrm{ft})}$ puede interpretarse entonces como la corriente electromagnètica de transición entre los estados i y f del electron. Por otro lado, el potencial electromagnètico A^{μ} puede ser identificado con su fuente (carga) a través de las ecuaciones

de Maxwell

$$\Box^2 A_{\mu} = \mathfrak{I}_{\mu}$$

 $\left(\prod^{\tau} = \partial^{\mu} \partial_{\mu} \right)$: D'alembertiano) que determinan el campo electromagnético A^{μ} asociado a la corriente \int^{μ} (Las ecuaciones de Maxwell están escritas en su forma covariante).

Podemos resumir los resultados hasta aquí bosquejados en un diagrama como el de la figura 1.

Si consideramos el estado inicial del proceso como el correspondiente a la particula libre, entonces la ecuación $\Box^2 A^{\mu} = \int_{a}^{b} para el vértice (2) tiene como solución <math>A^{\mu} = -\frac{1}{q_{e}} \int_{a}^{b} \int_{a}^{a} (2) \int_{a}^{a} e^{-\frac{1}{q_{e}}} e^{-\frac{1}{q_{e}}} \int_{a}^{a} e^{-\frac{1}{q_{e}$

Por tanto, la amplitud para la dispersión del proceso tiene la forma siguiente:

$$T_{\mathfrak{f}\mathfrak{i}} = -i \int d_{\mu}^{(1)}(x) \left(-\frac{1}{\mathfrak{q}^{2}}\right) d^{\mu(2)}(x) d^{4}x$$
$$-i \int \left[\left(-\varrho \,\overline{\mathfrak{q}}_{\mathfrak{f}\mathfrak{l}} d_{\mu}^{\mu} \mathfrak{q}_{i_{\mathcal{A}}}\right) \varrho^{-i(\mathfrak{f}_{\mathfrak{k}}-\mathfrak{P}_{i_{\mathcal{A}}}) \cdot x} \left(-\frac{1}{\mathfrak{q}^{2}}\right) \left(-\varrho \,\overline{\mathfrak{q}}_{\mathfrak{f}\mathfrak{b}} d^{\mu}\mathfrak{u}_{i_{\mathcal{B}}}\right) \varrho^{-i(\mathfrak{f}_{\mathfrak{p}}-\mathfrak{P}_{i_{\mathcal{B}}}) \cdot x} \right] d^{4}x$$

$$= -i \left[\left(-e \overline{u}_{tc} \delta^{\mu} u_{iA} \right) \left(-\frac{i}{q_{1}} \right) \left(-e \overline{u}_{tb} \delta^{\mu}_{\mu} u_{iB} \right) \right] \int \mathcal{C}^{-i} \left(P_{tc} - P_{iA} \right) \times \mathcal{C}^{-i} \left(P_{tb} - P_{iB} \right) \times d^{4}x$$

$$= -i \left[\left(-e \overline{u}_{tc} \delta^{\mu} u_{iA} \right) \left(-\frac{i}{q_{1}} \right) \left(-e \overline{u}_{tb} \delta^{\mu}_{\mu} u_{iB} \right) \right] \delta^{4} \left(P_{A} + P_{B} - P_{c} - P_{b} \right) (2\pi)^{4}$$

$$= -i \left(2\pi \right)^{4} \delta^{4} \left(P_{A} + P_{B} - P_{c} - P_{b} \right) M_{4} \left[e^{-i \left(P_{b} - P_{b} - P_{b} \right) - P_{b} - P_{b} \right)} \right]$$

Mii se llama amplitud invariante. La delta de Dirac en la indica conservación de la cantidad de movimiento: expresion

$$P_A + P_B = P_C + P_D$$
 $(P_B - P_A - P_C)$
si tomàsemos la fuente de la interacción A^{μ} en el vértice
(1) obtendriamos el mismo resultado (debido precisamente a la
ecuación de consevación del momentum). Si en la figura i tomà-
semos las particulas como electrones entonces el proceso analiza-
do seria $C^{-}C^{-}C^{-}C^{-}$ en el orden más bajo de aproximación (sin el

término de intercambio). Si, en cambio, sustituyêsemos ahora en una de las líneas fermiònicas un electrón por un protón (figura 2) el formalismo describiria anterior el proceso CP-CP , donde la matriz Mi tiene ahora la forma:

$$\mathfrak{M}_{\mathfrak{f}\mathfrak{i}} = (\mathfrak{C}\,\overline{\mathfrak{U}}_{\mathfrak{p}}\mathfrak{g}^{\mu\mu}\mathfrak{U}_{\mathfrak{p}})\left(-\frac{1}{\mathfrak{q}_{\mathfrak{i}}}\right)\left(-\mathfrak{C}\,\overline{\mathfrak{U}}_{\mathfrak{e}}\,\mathfrak{g}^{\mu}_{\mu}\,\mathfrak{U}_{\mathfrak{e}}\right) = \frac{\mathfrak{C}^{2}}{\mathfrak{q}^{2}}\left[\mathfrak{g}^{\mathfrak{em}}_{\mu}\right]_{\mathfrak{p}}\left[\mathfrak{g}^{\mathfrak{em}}_{\mu}\right]_{\mathfrak{p}}$$

(para protones de Dirac).

51

senos

Figura 2. Dispersión electromagnètica electron-protòn.

Con procesos electromagnèticos de este tipo en mente, Fermi intentò una explicación del decaimiento β (el ejemplo màs conocido de una interacción debil), el cual, en los àtomos de ciertos nàcleos, involucra la transformación de protones en neutrones y viceversa (por ejemplo: $O^{!!} \rightarrow "N^* + C^{!} + U_{2}$). Para el decaimiento de neutrones, el proceso es el siguiente:

n -> pe p

de donde podemos construir los siguientes eventos:

p---netuo

(energèticamente imposible para protones libres) y:

pe--nue

representado en la figura 3.

En analogía con la forma de $\mathfrak{M}_{\mathfrak{f}_{i}}$ para el diagrama de la figura 2, Fermi propuso

$$\mathfrak{M}_{\mathfrak{f}\mathfrak{i}} = \mathcal{G}(\overline{\mathfrak{U}}_n \mathcal{J}^{\mu} \mathfrak{U}_{\mathfrak{p}}) (\overline{\mathfrak{U}}_{\mathfrak{h}} \mathcal{J}_{\mu} \mathcal{U}_{\mathfrak{p}})$$

como la amplitud invariante para el decaimiento (\$. G, la constante de acoplamiento dèbil, es un paràmetro a determinar experimentalmente llamado constante de Fermi. Hasta 1956, fue èste el modelo privilegiado de las interacciones dèbiles. Ese año, con el descubrimiento de la no conservación de la paridad en este tipo de interacciones, pudo encontrarse la estructura correcta de las corrientes dèbiles cargadas:

$$\begin{aligned}
\mathcal{J}_{dc|j|}^{\mu} &= \overline{\mathcal{U}}_{x} \mathcal{J}_{\underline{\lambda}}^{\mu} \frac{1}{2} (|-l^{2}\rangle) \mathcal{U}_{y} & \text{(corriente debil de aumento de carga)} \\
\mathcal{J}_{dc|j|}^{\mu} &= \overline{\mathcal{U}}_{y} \mathcal{J}_{\underline{\lambda}}^{\mu} \frac{1}{2} (|-l^{2}\rangle) \mathcal{U}_{x} & \text{(corriente debil de decremento de carga)}
\end{aligned}$$

A continuación, en analogía con las interacciones electromagnéticas, se postula la existencia de bosones vectoriales cargados, llamados W^+ y W^- . Estos bosones débiles son los anàlogos del fotòn para la fuerza electromagnètica. Por ejemplo, el decaimiento de un muón (figura 4) es mediado por un bosòn W_3^- la amplitud es de la forma

$$\mathfrak{M}_{\mathfrak{f}_{i}} = \left[\frac{9}{V_{2}} \overline{\mathcal{U}}_{\nu_{\mu}} \mathcal{J}^{\sigma_{\frac{1}{2}}}(1-\mathcal{J}^{s}) \mathcal{U}_{\mu}\right]_{*} \frac{1}{\mathcal{H}_{w}^{2}-q^{2}} \times \left[\frac{9}{V_{2}} \overline{\mathcal{U}}_{e} \mathcal{J}^{\sigma_{\frac{1}{2}}}_{\sigma(1-\mathcal{J}^{s})} \mathcal{U}_{\nu_{e}}\right]$$

En contraste con el fotón, los bosones W^{\pm} deben ser masivos y además, portadores de carga (como puede verse de la figura 4. De aquí el nombre de las corrientes débiles escritas antes).

Las corrientes cargadas de la interacción dèbil se observan en eventos tales como

n-> PCD. H---CTELM

(dispersion elástica neutrino- electrón).

La detección en 1973 de eventos del tipo $\overline{D}_{\mu}C \rightarrow \overline{D}_{\mu}C$, revelo la existencia de corrientes débiles neutras, las cuales tienen la forma:

(de hecho, en este punto el desarrollo històrico es en sentido inverso: estas corrientes primero fueron postuladas teòricamente y después detectadas en laboratorio).

Su ampltud invariante es de la forma

$$\mathfrak{M}_{\mathrm{fi}} = \frac{4G}{\sqrt{2}} 2 \mathcal{P} \mathcal{J}_{\mu}^{\mathrm{cn}} \mathcal{J}_{\mu}^{\mathrm{cn}} \mathcal{J}_{\mu}^{\mathrm{cn}}$$

donde ⁹ es un paràmetro que determina la intensidad relativa de los procesos que involucran corrientes neutras respecto de los cargados.

Pueden las corrientes neutras $d_{\mu}^{(cN)}$, junto con las corrientes cargadas d_{μ} y d_{μ}^{\dagger} , formar un grupo de simetrias de las interacciones débiles ?

Construyamos el doblete

$$\chi_{L} = \begin{pmatrix} u_{\nu} \\ u_{e} \end{pmatrix}_{L}$$

y los operadores

$$\mathcal{T}_{\pm} = \frac{i}{2} \left(\mathcal{T}_{1} \pm i \mathcal{T}_{1} \right) \quad j \qquad \mathcal{T}_{+} = \begin{pmatrix} \circ & i \\ \circ & \circ \end{pmatrix} \quad j \qquad \mathcal{T}_{-} = \begin{pmatrix} \circ & \circ \\ i & o \end{pmatrix}$$

(1as T's son las (matrices de Pauli). Las corrientes cargadas pueden escribirse entonces del siguiente modo:

$$\begin{aligned} d_{\mu} &= \int_{\mu}^{\oplus} = \frac{1}{2} \overline{u}_{\nu} d_{\mu} (1 - d^{15}) u_{e} = \overline{u}_{\nu_{L}} d_{\mu}^{\mu} u_{eL} = \overline{X}_{L} d_{\mu}^{\mu} T_{+} X_{L}; \\ d_{\mu}^{\dagger} &= \int_{\mu}^{\oplus} = \frac{1}{2} \overline{u}_{e} d_{\mu}^{\mu} (1 - d^{15}) u_{\nu} = \overline{u}_{eL} d_{\mu}^{\mu} u_{\nu_{L}} = \overline{X}_{L} d_{\mu} T_{-} X_{L}; \end{aligned}$$

Introduzcamos ahora una corriente neutra de la forma

$$J^{(0)}_{\mu}(x) \equiv \overline{X}_{\mu} J^{\mu}_{\mu} T_{3} X_{\mu} = \frac{1}{2} \overline{u}_{\nu_{\mu}} J^{\mu}_{\mu} U_{\nu_{\mu}} - \frac{1}{2} \overline{u}_{e_{\mu}} J^{\mu}_{\mu} U_{e_{\mu}}$$

De este modo, hemos construído un triplete (de "isospin") de la forma

$$j_{\mu}(x) = \overline{\chi}_{L} \delta_{\mu} \frac{1}{2} T_{i} \chi_{L} \quad ; \quad i = 1, 2, 3 \quad [\bigoplus, \Theta, \Theta]$$

cuyas cargas correspondientes

$$T^{i} = \int \int \partial^{0}(x) d^{3}x$$

generan un ålgebra SU(2),:

$$[\mathsf{T}^i,\mathsf{T}^j] = i \in_{ijk} \mathsf{T}^k$$

La corriente $\int_{u}^{(3)} (x)$ no es la corriente débil neutra que escribimos antes (aquèlla tiene componentes derecha e izquierda). Sin embargo, la corriente electromagnètica es una corriente neutra de ambas componentes:

donde Q es el operador de carga, con eigenvalor -1 para el electron. Q, como operador, es el generador de un grupo de simetrías U(1)_{tm} para las interacciones electromagnèticas. Las corrientes neutras $\int_{\mu}^{N_{\rm C}} y \int_{\mu}^{\ell_{\rm m}}$ que hemos introducido al modelo hasta ahora, no respetan la simetría SU(2)_L. Sin embargo, podemos formar con ellas dos combinaciones ortogonales que tengan propiedades de transformación bien definidas bajo este grupo. Una de ellas, \int_{μ}^{∞} , completa el triplete de isospin débil \int_{μ}^{Q} , mientras que la segunda, \int_{μ}^{y} , es invariante ante transformaciones del grupo (es decir, es un singulete de isospin dèbil).

Esta última se llama corriente de hipercarga dèbil y està dada por:

donde el operador de hipercarga débil Y se define por la relación $Q = T^3 + Y_0$, es decir,

$$\int_{\mu}^{cm} = \int_{\mu}^{3} + \frac{1}{2} \int_{\mu}^{\nu}$$

Del mismo modo que Q genera el grupo U(1)_{det} , Y-genera un grupo de simetria U(1)_y. De este modo, hemos incorporado la interacción electromagnética en el esquema y, como resultado de ello, el grupo de simetría se ha incrementado a SU(2)_L × U(1)_y : En cierto sentido han sido unificadas las interacciones electromagnética y débil.

El desarrollo anterior fue hecho por vez primera por Glashow en 1961, y fue extendido para introducir bosones vectoriales masivos (W^t y Zo) por Weinberg y Salam. El modelo se llama modelo standard o de Weinberg-Salam de las interacciones electrodèbiles.

Del mismo modo que la interacción electromagnética

describe la electrodinàmica cuàntica haciendo que las corrientes electromagnèticas se acoplen al fotòn, asumimos que las corrientes electrodèbiles arriba introducidas se acoplan a bosones vectoriales. El modelo standard consiste de un isotriplete de campos vectoriales W_{μ}^{i} acoplados con intensidad g a las corrientes $(\mathcal{Q}, \mathcal{Q}, \mathcal{Q})$, además de un campo vectorial B_{μ} , acoplado a la corriente de , hipercarga debil d_{μ}^{γ} , con intensidad $\vartheta'/2$. La interacción velectrodebil básica es:

$$-ig(j^{O})^{\mu}W_{\mu}^{i} - i\frac{g}{2}(j^{\gamma})^{\mu}B_{\mu}$$

Los campos $W_{\mu}^{\pm} = \sqrt{\frac{1}{2}} \left(W_{\mu}^{1} \pm i W_{\mu}^{1} \right)$ describen bosones cargados masivos W^{\pm} , mientras que $W_{\mu}^{5} \ge B_{\mu}$ son campos neutros. La interacción electromagnética està incluida en esta expresión. Cuando generamos las masas de los bosones por rompimiento de simetría, los dos campos neutros $W_{\mu}^{3} \ge B_{\mu}$ deben mezclarse de modo tal que los estados físicos (es decir, eigenestados de masa), sean:

 $A_{\mu} = B_{\mu} \cos \Theta_{W} + W_{\mu}^{s} \sin \Theta_{W}$ (sin masa)

 $Z_{\mu} = -B_{\mu} M \Theta_{\mu} + W_{\mu}^{3} \cos \Theta_{\nu}$ (mastro)

 Θ_W se llama angulo de Weinberg. La interacción electrodèbil neutra se escribe:

$$-i9 J_{\mu}^{(3)} [W^{3}]^{\mu} - i \frac{9}{2} J_{\mu}^{\nu} B^{\mu} = -i(9 \operatorname{sen} \Theta_{\nu} J_{\mu}^{(3)} + 9) \cos \Theta_{\nu} \frac{1}{2} U^{\nu}) A^{\mu}$$
$$-i(9 \cos \Theta_{\nu} J_{\mu}^{(3)} - 9) \operatorname{sen} \Theta_{\nu} \frac{1}{2} U^{\nu}) Z^{\mu}$$

Identificamos

el

primer termino con

interacción

1 a

electromagnètica, de modo que

$$\mathcal{C} \overset{j em}{J_{\mu}} = \mathcal{C} \left(\overset{()}{J_{\mu}} + \frac{1}{2} \overset{()}{J_{\mu}} \right)$$

y por tanto:

$$3 \operatorname{seu} \Theta_{W} = 9 \operatorname{cos} \Theta_{W} = \mathcal{C} ; \tan \Theta_{W} = \frac{9}{2}$$

La àltima expresión relaciona el àngulo de Weinberg con las dos constantes de acoplamiento de los grupos de simetrias. Podemos ahora reescribir la interacción de la corriente neutra débil en la forma siguiente:

$$-i\left(\Im\cos\Theta_{\mu}\int_{\mu}^{\mathfrak{G}}-\Im\sin\Theta_{\mu}\int_{2}^{\mu}\right)\mathcal{Z}^{\mu}=-i\left(\Im\cos\Theta_{\mu}\int_{\mu}^{\mathfrak{G}}-\Im\sin\Theta_{\nu}\left[\int_{\mu}^{e_{\mu}}-\int_{\mu}^{\mathfrak{G}}\right]\right)\mathcal{Z}^{\mu}=$$

$$= -i\left(\frac{9}{\cos\Theta_{W}}\int_{\mu}^{(3)} - \frac{9}{3}\frac{4m^{2}\Theta_{W}}{\cos\Theta_{W}}\left[\int_{\mu}^{(2)}\int_{\mu}^{(3)}\right]\right)Z^{A} = -i\left(\frac{9}{\cos\Theta_{W}}\int_{\mu}^{(3)} - \frac{9}{3}\frac{4m^{2}\Theta_{W}}{\cos\Theta_{W}}\int_{\mu}^{(2)}\right)Z^{A} =$$

 $= -i \frac{9}{\cos \Theta_{W}} \left[\frac{1}{2} \frac{3}{\mu} - \sin^{2} \Theta_{W} \frac{1}{\mu} \right] Z^{\mu} = -i \frac{9}{\cos \Theta_{W}} \frac{1}{\sqrt{2}} \delta^{\mu} \left[\frac{1}{2} (1 - \delta^{4}) T^{3} - \sin^{2} \Theta_{W} Q \right] \delta^{\mu}_{\mu} Z_{\mu}$

Definiendo $j_{\mu}^{(0)} - \lambda u^{(0)} \phi_{\mu} = j_{\mu}^{(0)}$, relacionamos la corriente neutra a la corriente de isospin débil . La ditima expresión es la sustitución de las corrientes para el proceso $Z^{0} \rightarrow I^{(0)}$ (f = fermión; \overline{I} = antifermión correspondiente). El diagrama de Feynman de este proceso se presenta en la figura 5.

Figura 5. Diagrama de Feynman para el proceso $Z^{\circ} - f \overline{f}$ $C_v^f = \overline{T_f^{\circ}} - 24u_i^2 \Theta_w Q_f$; $C_d^f = \overline{T_f^{\circ}}$

Podemos calcular ahora el decaimiento $\mathcal{L}^{\bullet} - \mathcal{C}^{\bullet} \mathcal{C}^{\bullet}$ utilizando la expresión:

$$\mathbb{M}_{H}\left[2^{\circ}-f\bar{f}\right] = -i\frac{g}{\cos \Theta_{v}} \mathcal{J}^{H}\frac{1}{2}\left(C_{v}^{+}-C_{A}^{+}\mathcal{J}^{+}\right)$$

Este diagrama està intimamente relacionado con los que calculamos en el capitulo siguiente (radiativos). Se calcula para estimar la razòn

La amplitud del proceso no radiativo està dada por:

$$\begin{split} \mathfrak{M}_{I_{1}} &= -i \mathfrak{g}_{x} \mathfrak{h}^{AA} \frac{1}{2} \left((\zeta_{v} - \zeta_{A} \mathfrak{h}^{b}) \right) \\ \mathfrak{M}_{I_{1}}^{A} &= - \mathfrak{e}_{i}^{A} \overline{\mathfrak{U}}_{e^{*}} \mathfrak{g}_{x} \mathfrak{h}^{B} \frac{1}{2} \left((\zeta_{v} - \zeta_{A} \mathfrak{h}^{b}) \mathfrak{U}_{e^{*}} \right) \\ \mathfrak{M}_{I_{1}}^{A} &= - \mathfrak{e}_{i}^{A} \overline{\mathfrak{U}}_{e^{*}} \mathfrak{g}_{x} \mathfrak{h}^{B} \frac{1}{2} \left((\zeta_{v} - \zeta_{A} \mathfrak{h}^{b}) \mathfrak{U}_{e^{*}} \right) \\ \mathfrak{M}_{I_{1}}^{A} &= - \mathfrak{e}_{i}^{A} \overline{\mathfrak{U}}_{e^{*}} \mathfrak{g}_{x} \mathfrak{h}^{B} \frac{1}{2} \left((\zeta_{v} - \zeta_{A} \mathfrak{h}^{b}) \mathfrak{U}_{e^{*}} \right) \\ \mathfrak{M}_{I_{1}}^{A} &= - \mathfrak{e}_{i}^{A} \overline{\mathfrak{U}}_{e^{*}} \mathfrak{g}_{x} \mathfrak{h}^{B} \frac{1}{2} \left((\zeta_{v} - \zeta_{A} \mathfrak{h}^{b}) \mathfrak{U}_{e^{*}} \right) \\ \mathfrak{M}_{I_{1}}^{A} &= - \mathfrak{e}_{i}^{A} \mathfrak{h}^{B} \mathfrak{g}_{x} \mathfrak{g}_$$

L-15

$$\begin{split} \sum_{p \in I} \left| M_{H_{I}} \right|^{2} &= \frac{g_{x}^{2}}{g_{W_{I}}^{2}} \quad \text{tr} \left[\tilde{\mathcal{R}}_{I} \left((\zeta_{v} + \zeta_{A} b^{i}) \left(2\tilde{\mathcal{R}}_{i}^{i} \right) ((\zeta_{v} - \zeta_{A} b^{i}) \right] \\ &= \frac{g_{x}^{2}}{4w_{I}^{2}} \quad \text{tr} \left[\tilde{\mathcal{R}}_{I} \left((\zeta_{v}^{i} + \zeta_{A}^{2} + 2\zeta_{v} \zeta_{A} b^{i}) \tilde{\mathcal{R}}_{i}^{i} \right] \\ &= \frac{g_{x}^{2}}{4w_{I}^{2}} \left[\zeta_{v}^{2} + \zeta_{A}^{2} \right] 4 \tilde{P}_{I} \cdot \tilde{P}_{i} \\ \text{En el sistema eu reposo del } 2^{\circ} : \quad \tilde{P}_{I} + \tilde{P}_{i} = K_{i} = (H_{2o}, \tilde{O}) \\ &= \frac{H_{x}^{2}}{2} = \tilde{P}_{I} \cdot \tilde{P}_{i} \quad (\text{deop recian bo la wasa delon electrones}) \\ \sum_{p \in I} \left| M_{Ii} \right|^{2} = \overline{|M_{Ii}|^{2}} = \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{1}{2H_{2}} \times \frac{1}{3} \int \overline{|M_{II}|^{2}} \frac{m_{e}}{(2\pi)^{3}} \frac{d^{3}\tilde{P}_{i}}{E_{f}} \frac{d^{3}\tilde{P}_{i}}{(2\pi)^{3}} \left((2\pi)^{4} \int (K - \tilde{P}_{I} - \tilde{P}_{i}) \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}^{2}} \left((\zeta_{v}^{2} + \zeta_{A}^{2}) H_{2o}^{2} \right) \\ &= \frac{g_{x}^{2}}{2w_{I}$$

El resultado final es:

 $\int (2^{\circ} - C^{\dagger} C^{-}) = \frac{1}{48\pi} \left[\frac{9}{\cos \Theta_{W}} \right]^{2} (C_{V}^{2} + C_{A}^{2}) H_{20} \quad ; \quad C_{A} = \frac{1}{2} \cdot C_{V} = 2su_{A}^{2} \Theta_{W} - \frac{1}{2}$ (presentado por Passarino en la referencia citada). El desarroll de éste càlculo se hizo siguiendo el procedimiento común. En el capitulo siguiente, utilizamos un camino diferente para evaluar la amplitud invariante y su cuadrado para dos diagramas radiativos del decaimiento del bosòn Z°. Ahi, el vèrtice del diagrama

se asocia a una interacción que escribimos:

(a+545) 24

Los paràmetros a y'b de 'esta expresión están relacionados con los que aquí hemos utilizado a través de las relaciones siguientes:

 $a = \frac{3u^{2}\Theta - \frac{1}{4}}{3u\Theta \cos \Theta} \qquad ; \qquad b = \frac{1}{4 \sin \Theta \cos \Theta}$ $\delta u^{2}\Theta = 0.2 \text{ }$

con

CAPITULO II CALCULO DE LA SECCION DE DECAIMIENTO $\Gamma(2 - e^{-\mu})$.

Fig. 1 Decaimiento radiativo del bosón Z°.

En esta sección, derivamos una expresión para la amplitud cuadrada del proceso $2^{\circ} \rightarrow C^{\dagger}C^{-1}$. (fig. i)

En la figura 2, presentamos los têrminos asociados a las interacciones (vêrtices) de los diagramas de Feynman (de orden menor) a resolver y las variables asociadas a las partículas involucradas en el proceso.

Fig. 2 Variables e interacciones

La ecuación de conservación del momentum para el proceso es $q_{\pm}\partial_{t}+\partial_{e}+K$

y $\mathcal{U}_{i}, \overline{\mathcal{U}_{i}}$ son los espinores asociados a las lineas fermiònicas. El termino $(\alpha_{i}, \beta_{j}) \delta^{\mu}$ corresponde a la interacción debil responsable del decaimiento (vértice 1) y a la linea del vértice 2 se le asocia el propagador propio de interacciones electromagnèticas. Las variables estàn definidas del siguiente modo: q = polarización del bosòn Z°; q = momentum de la misma particula ; $<math>\frac{h}{h} q = momenta de los fermiones ; <math>e = polarización del fotón y k$ momentum del mismo.

Para los diagramas de la figura 1, la matriz està dada por:

$$i \operatorname{M}_{\mathfrak{f}_{i}} = \mathcal{C}^{\mathfrak{r}} \eta^{\mu} \mathcal{E}^{\mu} \overline{\mathfrak{u}}_{\mathfrak{f}} \left[\mathcal{Y}_{\mathfrak{s}} S(\mathfrak{f}, i) \delta_{\mu}^{\mathfrak{s}} (\mathfrak{a} + \mathfrak{b}^{\mathfrak{s}}) + \delta_{\mu}^{\mathfrak{s}} (\mathfrak{a} + \mathfrak{b}^{\mathfrak{s}}) S^{\mathfrak{s}} (i, \mathfrak{f}) \delta_{\mu}^{\mathfrak{s}} \right] \mathfrak{v}_{i}$$

donde los propagadores:

$$S(f_i) = \frac{1}{R_i + k - m} = S_L$$
 ; $S'(i,f) = \frac{1}{R_i + k - m} = S_2$

son aproximados por

$$S_{i} = \frac{\hat{R}_{i} + \hat{K}}{(\hat{R}_{i} + \hat{K})^{2}}$$
 ; $S_{2} = \frac{\hat{R}_{i} + \hat{K}}{(\hat{P}_{i} + \hat{K})^{2}}$

Es decir, hemos despreciado las masas en reposo de los fermiones salientes, lo cual solo tiene sentido a altas velocidades (energias). Sustituyendo $\mathcal{A} = R_{\uparrow} + \mathcal{K}$ y $\mathcal{B} = \mathcal{R}_{\uparrow} + \mathcal{K}$, tenemos:

$$\overline{u}_{f} \left[\overline{v}_{i} = \overline{u}_{f} \gamma^{\mu} \epsilon^{\nu} \overline{\int_{\mu_{\nu}}^{T} v_{i}} = \eta^{\mu} \epsilon^{\nu} \overline{u}_{f} \left[\frac{\delta_{\nu} \mathcal{A} \mathcal{B}_{\mu}^{\mu} (a + b \mathcal{B}^{5})}{\mathcal{A}^{2}} + \frac{\mathcal{B}_{\mu}^{\mu} (a + b \mathcal{B}^{5})}{\mathcal{B}^{2}} \right] v_{i}$$

De donde:

$$\Gamma = \frac{1}{A^2} \pounds AX(a+b)^{45} + \frac{1}{B^2}(a-b)^{45})XB = \left[\frac{1}{A^2} \pounds AX + \frac{1}{B^2}XB \right](a+b)^{45}$$

tenemos un triple producto de matrices j^{\prime} . Utilizando Es decir, la relación: $\mathcal{Y}^{\mu}\mathcal{Y}^{\kappa}\mathcal{Y}^{\nu}=(\mathcal{Y}^{\mu\kappa}\mathcal{Y}^{\nu\beta}-\mathcal{Y}^{\mu\nu}\mathcal{Y}^{\alpha\beta}+\mathcal{Y}^{\alpha\beta}\mathcal{Y}^{\beta}\mathcal{Y}^{\beta}+\mathcal{Y}^{\alpha\beta}\mathcal{Y}^{\beta}\mathcal$

(ver ec. 1.9 en [4])

escribimos:

$$\begin{bmatrix} r = \sqrt{\rho} A_{\rho} + iA^{\rho} A^{\mu} S_{\rho}^{\mu} = \left[\times^{\rho} A_{\rho}^{\mu} + \sqrt{\rho} A^{\mu} S_{\rho}^{\mu} \right] (a+bA^{\mu})$$
Donde $X^{\rho} = \epsilon \cdot \left[\frac{A}{A^{4}} + \frac{B}{B^{4}} \right] \gamma^{\rho} - \epsilon \cdot \eta \left[\frac{A^{\rho}}{A^{2}} + \frac{B^{\rho}}{B^{2}} \right] + \eta \cdot \left[\frac{A}{A^{2}} + \frac{B}{B^{2}} \right] \epsilon^{\rho} = \left[\epsilon \left[\frac{A}{A^{1}} + \frac{B}{B^{2}} \right] \gamma^{\rho} \right]$

$$y^{\rho} = i \epsilon_{\mu} \left[\frac{A_{\mu}}{A^{2}} - \frac{B_{\mu}}{B^{2}} \right] \gamma_{\mu} \epsilon^{\mu \kappa \nu} \rho = i \left\{ \epsilon \left[\frac{A}{A^{2}} - \frac{B}{B^{2}} \right] \gamma^{\rho} \right\}$$
Y, por tanto:

$$\gamma P = a \left[\epsilon \left[\frac{A}{A^2} + \frac{B}{B^2} \right] \gamma \rho \right] - i b \left\{ \epsilon \left[\frac{A}{A^2} - \frac{B}{B^2} \right] \gamma \rho \right\}$$
$$iAP = ia \left\{ \epsilon \left[\frac{A}{A^2} - \frac{B}{B^2} \right] \gamma \rho \right\} - b \left[\epsilon \left[\frac{A}{A^2} + \frac{B}{B^2} \right] \gamma \rho \right]$$

Es conveniente ahora introducir la notación siguiente:

 $(1+\beta^{45})\delta_{\beta}^{\mu} = \delta_{\beta}^{\mu}R$ $(1-H^5)d_{\beta} = d_{\beta}^{L}$

con la cual podemos escribir:

$$\Gamma = \frac{1}{2} V_{\beta} \left(\partial_{\beta} R_{-} \partial_{\beta} L_{-} \right) + \frac{1}{2} \left(A_{\beta} \left(\partial_{\beta} R_{-} \partial_{\beta} L_{-} \right) \right) = \frac{1}{2} \left(V^{P_{+}} (A^{P}) \partial_{\beta} K_{+} \frac{1}{2} \left(V^{P_{-}} (A^{P}) \partial_{\beta} L_{-} \right) \right)$$

$$\Gamma = \mathcal{Z}^{P} \partial_{\beta} R_{+} + \mathcal{Z}^{P} \partial_{\beta} L_{-}$$

Con esta notación, construimos ahora $\prod_{i} = \prod \Lambda(\hat{P}_{i})$ (Ver ec. 4.8a referencia [4]), donde $\Lambda(\hat{P}_{i})$ es el proyector de energia de la particula i. En su aproximación ultrarelativista (todas las masas en reposo despreciables, según dijimos antes), $\Lambda_{\pm} = \frac{1}{2\mu_{i}} \mathcal{P}$; el cual en nuestra notación R-L pude escribirse:

$$\Lambda_{\pm} = \frac{p}{2u_1} \left[\frac{1}{2} (1 + \beta'^5) + \frac{1}{2} (1 - \beta'^5) \right] = \frac{1}{4u_1} (\beta^R + \beta^L)$$

Por tanto:

$$I = \Gamma \cdot \Lambda (P_i) = \frac{1}{4\omega} \left(\mathcal{Z}^R + \mathcal{Z}^{-L} \right) \left(\mathcal{P}_i^R + \mathcal{P}_i^{-L} \right)$$
$$= \frac{1}{2\omega} \left[(1+\mu^5) \left(\mathbb{Z} \cdot P_i - i \mathbb{Z}_n P_{i\beta} \sigma^{\alpha\beta} \right) + (1-\mu^5) \left(\mathbb{Z}^2 \cdot P_i - i \mathbb{Z}_n^2 P_{i\beta} \sigma^{\alpha\beta} \right) \right]$$

Analogamente, $\Gamma_2 \approx \overline{\Gamma} \cdot \Lambda(P_f)$ (Ecs. 4.3; 4.8b referencia [4]) se escribe :

$$\overline{z} = \frac{1}{2m} \left[(1+\lambda^{15}) \left(\overline{z} \cdot \overline{P}_{\overline{z}} - i \overline{z}_{+} \overline{P}_{\overline{\beta}} \overline{\sigma}^{\alpha\beta} \right) + (1-\lambda^{15}) \left(\overline{z} \cdot \overline{P}_{\overline{z}} - i \overline{z}_{+} \overline{P}_{\overline{\beta}} \overline{\sigma}^{\alpha\beta} \right) \right]$$

Reuniendo estos resultados, obtenemos:

$$| \mathfrak{M}_{fi}|^{2} = t_{r} [\mathfrak{I}_{i} \mathfrak{I}_{2}] = \frac{1}{4\omega^{2}} t_{r} [\mathfrak{L}(1+\lambda^{2})(\mathfrak{Z} \cdot \mathfrak{P}_{i} - i\mathfrak{Z}_{*}\mathfrak{P}_{\beta}\sigma^{*})(\mathfrak{Z} \cdot \mathfrak{P}_{i} - i\mathfrak{Z}_{*}\mathfrak{P}_{\beta}\sigma^{*}) + \frac{1}{4\omega^{2}} t_{r} [\mathfrak{L}(1+\lambda^{2})(\mathfrak{Z} \cdot \mathfrak{P}_{i} - i\mathfrak{Z}_{*}\mathfrak{P}_{\beta}\sigma^{*}) + \frac{1}{4\omega^{2}} t_{r} [\mathfrak{L}(1+\lambda^{2})(\mathfrak{Z} \cdot \mathfrak{P}_{i} - i\mathfrak{Z}_{*}\mathfrak{P}_{\beta}\sigma^{*})]$$

$$= 2(1-d^{*})(z^{*},P_{i} - i z^{*},P_{i} \sigma^{*})(z^{*},P_{i} - i z^{*},P_{i} \sigma^{*})$$

El resto de los términos en el producto $\int_1^r \int_2^r$ es cero. (Ver la tabla i de la referencia [43). El tipo de trazas que debemos calcular tiene la forma

$$+_{\Gamma} (1 \pm h^{3}) (F + G_{\mu\nu} \sigma^{\mu\nu}) (F + \overline{G}_{\mu\beta} \sigma^{\alpha\beta}) =$$

$$+_{\Gamma} (1 \pm h^{3}) (F \overline{F} + F \overline{G}_{\mu\rho} \sigma^{\alpha\beta} + \overline{F} \overline{G}_{\mu\nu} \sigma^{\mu\nu} + G_{\alpha\beta} \overline{G}_{\mu\nu} \sigma^{\alpha\beta} \sigma^{\mu\nu})$$

donde

$$\mathcal{T}^{a\beta}\mathcal{T}^{\mu\nu} = \int_{a}^{a\beta}\mathcal{T}^{\mu\nu} - i \in \mathcal{T}^{\beta\mu\nu}\mathcal{T}^{\beta\nu} - i \left[\partial_{a}\mathcal{T}^{\mu\nu} - \partial_{a}\mathcal{T}^{\mu\nu}$$

Ahora bien, en las dos últimas expresiones, los términos lineales en $T^{t\lambda}$ se hacen O al tomar las trazas, de modo que, en la expresión final, tenemos

$$\begin{aligned} \left\| \mathbb{M}_{\{i\}}^{2} &= \frac{1}{4\mu^{2}} + r \left[(1+b^{45}) \left(F \overline{F} + G_{\alpha\beta} \overline{G}_{\mu\nu} \left(\delta^{\alpha\beta} \mu^{\mu\nu} - i \in {}^{\alpha} \overline{P}^{\mu\nu} \right) \right) \right] \\ & \left(1 - b^{45} \right) \left(F \overline{F}^{*} + G_{\alpha\beta} \overline{G}_{\mu\nu} \left(\delta^{\alpha\beta} \mu^{\mu\nu} + i \in {}^{\alpha} \overline{P}^{\mu\nu} \right) \right) \right] \end{aligned}$$

$$=\frac{1}{m^{2}}\left[F\bar{F}+G_{\alpha\beta}\bar{G}_{\mu\nu}\left(\delta^{\alpha\beta,\mu\nu}-i\epsilon^{\alpha\beta,\mu\nu}\right)+F\bar{F}G_{\alpha\beta}\bar{G}_{\mu\nu}\left(\delta^{\alpha\beta,\mu\nu}+i\epsilon^{\alpha\beta,\mu\nu}\right)\right] (1)$$

La expresión obtenida de este modo tiene implicitos muchos términos complejos. Para demostrar que el resultado final es un número real positivo definido, escribimos Z, Ž, Ž y \overline{Z} en la forma siguiente:

えェ(+is); えートーis) j えーには ; えーには; donde

$$r = (a-b) \left[\left\{ \left[\frac{A}{A^2} + \frac{B}{B^2} \right] \left\{ \left[\rho \right] \right\} \right]$$

$$S = (a-b) \left\{ \left\{ \frac{A}{A^2} - \frac{B}{B^2} \right\} \left\{ \rho \right\} \right\}$$

$$r' = (a+b) \left[\left\{ \frac{A}{A^2} + \frac{B}{B^2} \right] \left\{ \rho \right\} \right]$$

$$S' = (a+b) \left\{ \left\{ \frac{A}{A^2} + \frac{B}{B^2} \right\} \left\{ \rho \right\} \right\}$$

$$S' = (a+b) \left\{ \left\{ \frac{A}{A^2} + \frac{B}{B^2} \right\} \left\{ \rho \right\} \right\}$$

Haciendo todas las sustituciones necesarias, obtenemos:

$$| \Pi_{ti} |^{2} = (2\Gamma_{a}\Gamma_{\beta} + 2\delta_{a}S_{\beta})P_{i}^{a}P_{f}^{b} + (\Gamma^{2}+S^{2})P_{i}\cdot P_{f} - 2\epsilon_{a\beta\mu\nu}\Gamma^{a}P_{i}^{b}S^{\mu}P_{f}^{\nu} + (2\Gamma_{a}\Gamma_{\beta} + 2S_{a}S_{\beta})P_{i}^{a}P_{f}^{b} + (\Gamma^{2}+S^{2})P_{i}\cdot P_{f} - 2\epsilon_{a\beta\mu\nu}\Gamma^{a}P_{i}^{b}S^{\mu}P_{f}^{\nu}$$
(2)

la cual es una expresión real. En la computadora comprobamos que las expresiones (1) y (-2) dan los mismos resultados construyendo para (1) un progrma con variables complejas y para (2) uno con las variables reales definidas por (3). Con el mismo procedimiento verificamos que los resultados fuesen siempre positivos.

Para obtener la sección total de decaimiento $\Gamma(\mathcal{L}^{*}\mathcal{C}^{\dagger}\mathcal{C}^{\dagger})$, debemos calcular la integral de nuestra función $|\mathcal{M}_{\mathfrak{f}}|^2$ sobre el espacio fase correspondiente al decaimiento en tres estados finales. Esto último se hizo por método Monte Carlo. A continuación, presentamos un bosquejo del procedimiento [7,8,9] La integral a resolver es de la forma

$$R_{3}(s) = \int \frac{1}{\prod_{i=1}^{3}} \frac{d^{3} \hat{P}_{i}}{\lambda E_{i}} \delta(\hat{P}_{-}, \hat{P}_{i}, -\hat{P}_{i}, -\hat{P}_{i}, -\hat{P}_{i}, \delta(fS - E_{i} - E_{2} - E_{3}) |\mathcal{M}_{fi}|^{2}$$

Para obtener un valor numèrico, en primer lugar es necesario eliminar las funciones δ que aparecen en el integrando. En el caso particular que nos ocupa, decaimiento en tres estados finales, êsto último puede hacerse tomando en consideración la integral sin el elemento de matriz al cuadrado. Resolver este problema significa encontrar el comportamiento puramente cinemàtico del proceso. En el elemento de matriz se incorporan todas las características dinàmicas (interacciones) y, en la interpretación probabilística de nuestros cálculos, la integral correspondiente equivale a calcular un promedio pesado sobre los estados finales del sistema, donde la función de peso es precisamente el elemento $\left|\left(\prod_{l} \right)^2 \right|_{l}$.

Las variables cinemàticas de nuestro problema son, de la figura

 $S_{1} = (P_{1} + P_{2})^{2} = (P_{-}P_{3})^{2}$ $S_{2} = (P_{2} + P_{3})^{2} = (P_{-}P_{1})^{2}$ $S_{3} = (P_{3} + P_{1})^{2} = (P_{-}P_{2})^{2}$

las cuales estàn relacionadas por la ecuación

$$S_1 + S_2 + S_3 = S + M_1^2 + M_2^2 + M_3^2$$

donde $\sqrt{5}^{\circ}$ es la masa de la particula que decae, en nuestro caso, el bosón Z^o .No incluimos aquí dependencia de spin del proceso.

Fig. 2. Decaimiento en tres particulas. $\rho \sim \rho_1 + \rho_2 + \rho_3$

Tenemos, pues, un total de dos variables cinemàticas independientes. Esto àltimo es consecuencia de que, en el sistema en reposo de la particula inicial, el estado es isotrôpico (no depende de la orientación inicial del vector p), de tal modo que , en el estado final no puede haber dependencia de los tres àngulos que describen la orientacióntotal del sistema (fig. 3)

Fig.3.Angulos del decaimiento

(En la figura, los àngulos Θ_l y ϕ_i estàn relacionados con las variables S_l y S_z .)

Así pues, de las cinco variables cinemàticas que definen el espacio fase de nuestro problema, solamente sobreviven dos variables esenciales. En función de ellas, es posible estimar

$$\frac{d^2 R_3}{dS_1 dS_2} = \frac{\pi^2}{4S}$$

câlculo que no reproducimos aquí.

Es decir, la distribución de espacio fase es constante, en el decaimiento que nos ocupa, para s fija. Es precisamente de este hecho del que Passarino [1] se vale para hacer su càlculo. Las variables que define para hacer analiticamente la integral sobre espacio fase, son parientes cercanos de S_1 y S_2 .

Introduciendo ahora los factores dinàmicos $|\mathfrak{M}_{f_\ell}|^2$, tenemos la expresión siguiente:

$$\frac{d^2 \prod_{k=0}^{2}}{dS_1 dS_k} = \frac{\Pi^2}{4S} \left| \mathcal{M}_{H} \right|^2$$

o bien

$$I[t_{a}-t^{*}t^{*}] = \frac{\pi^{2}}{4s} \int |M_{\mathrm{fi}}|^{2} \mathrm{d}s_{1} \mathrm{d}s_{2} \qquad (4)$$

con $|\mathcal{M}_{fi}|^2$ sustituído por la expresión (2). La evaluación de esta integral puede hacerse ahora por métodos Monte Carlo. Tiene la forma

$$t_{n} = \int d\phi f_{n}(\phi) \left| \mathcal{M}_{H}(\phi) \right|^{2}$$

 $f_{\Lambda}(\emptyset) =$ densidad del espacio fase. Incluye factores que provienen de las integraciones sobre la función δ . \emptyset son las coordenadas del punto en el espacio fase.

El primer aspecto del problema es la generación de los puntos

Nosotros los obtenemos utilizando la subrutina PHSP, que genera puntos aleatoriamente (y uniformemente) en el espacio fase definido por $\hat{P} = \hat{P}_1 + \hat{P}_2 + \hat{P}_3$. Garantizada la aleatoriedad de los eventos generados, la integral puede entonces aproximarse por la expresión

$$\frac{(Hax-min)}{N} \sum_{k=1}^{N} |\mathfrak{M}_{ki}(\mathfrak{G}_{k})|^{2}$$

donde ($Wax - p_N M$) es el intervalo de integración y N = número de eventos.

Ahora bien, nuestro cálculo del elemento de matriz incluye polarizaciones de los bosones involucrados en el proceso. La integral definida arriba, debería entonces incluir dependencias sobre los posibles valores de estas variables en caso de existir diferencias explicitas respecto de los valores posibles de la ampltud. Utilizando la computadora, demostramos que los valores de la integral, así como las distribuciones sobre las distintas componentes de los momenta (nueve en total) de las partículas secundarias no varian al variar las polarizaciones lineales de los bosones del proceso. Para el Z^o en particular, mostramos que existe una simetria en las distribuciones de los momenta al variar N inicialmente, de modo que la suma sobre los tres valores posibles de esta variable:

> 13 = (0,0,0,1) 13 = (0,0,1,0) 1, = (0,1,0,0)

puede sustituirse por un factor 1/3 al frente de la integral ${
m I}_{
m N}$.

Algo similar ocurre en el caso de la polarización del fotón. Este es el primer resultado de nuestro trabajo: El elemento de matriz obtenido en la primera parte de este capítulo se distribuye simètricamente en espacio fase respecto de cambios en los valores de las polarizaciones de los bosones del proceso y, por tanto, al orden de aproximación que hemos calculado, no hay dependencia dinàmica esencial en las polarizaciones lineales de estas variables.

-> Resultados <-

En la figura 4, presentamos un diagrama de flujo del programa utilizado para calcular la integral (4). La parte central del mismo la constituye la generación aleatoria de eventos utilizando la subrutina PHSP. Esta subrutina recibe como entradas las masas de la partícula padre y secundarias, así como el número de partículas del decaimiento, generando como resultado un arreglo en que se encuentran las siguientes variables de las particulas secundarias: Energia total, energia cinètica, componentes ×, y, v z del momentum y (\overline{P}). Todas las variables estàn calculadas en el sistema de referencia para el cual la particula padre (en nuestro caso el bosòn Z°) se encuentra en reposo. Aquí, este sistema coincide con el sistema de laboratorio, es decir, suponemos que en los experimentos el Zº se produce con energia apenas suficiente para detectarlo con coordenadas (H_{2*}, \widetilde{O}) el en. laboratorio.

Una vez obtenido un punto en espacio fase, separamos los eventos en dos conjuntos: cuando la energía del fotòn saliente, es mayor que 5 GeV y el àngulo que forma con cualquiera de los

II-11

leptones es mayor que cuatro grados, por un lado, y por otro lado el evento complementario:

 $E_{K} \leq 5 \text{ GeV of ang}(R, H) < 4^{\circ}$.

Los cortes en Angulos y energia del fotòn corresponden a limites experimentales en los procesos de detección que se llevan a cabo en CERN : No se detectan fotones con energias menores que 5 GeV y tampoco es posible distinguirlos si salen a Angulos menores de cuatro grados (en este caso, tan sólo se detecta un haz), por lo que la contribución de estos eventos a la razón de decaimientos debe sumarse a la correspondiente al proceso no radiativo.

El paso siguiente consiste en evaluar $\left| H_{ii}(\phi_{ik}) \right|^2$ en el punto generado por PHSP, utilizando la subrutina RMATRIZ. Este valor es guardado en un arreglo de dimensión 50, construido de tal modo que cada una de las entradas sea de tamaño 1/50 del intervalo sobre el que la variable que nos interese graficar (p. ej.:la energía de fotôn), esté definida. Generamos entonces dos tipos de histogramas para cada bloque de eventos. El primero solamente cuenta el número de eventos generados por PHSP que caen dentro de cada uno de los intervalos del arreglo. El segundo suma los valores de $\left| M_{i} \right|^2$ dentro de cada componente del arreglo que representa el intervalo de valores de la variable.

Por àltimo, los histogramas de los arreglos son graficados haciendo uso de la subrutina HISESCA. En ellos, por construcción, tenemos una representación gràfica de la distribución en espacio fase de la variable graficada. Los histogramas de arreglos en que existe información de $|\mathcal{M}_{ii}|^2$ nos ofrecen una idea cualitativa de la forma funcional del elemento de matriz respecto de la

II-12

distribución en espacio fase.

Las singularidades de nuestro câlculo provienen del propagador S en la ecuación para ($M_{1,1}$)

$$S(f,i) = \frac{\cancel{P_{f}} + \cancel{K}}{(\cancel{P_{f}} + \cancel{K})^2}$$

cuando el denominador de la expresión se hace cero.En este caso, tenemos:

$$(P_{f+K})^2 = P_f^2 + 2 P_{f\mu} K^{\mu} + K^2$$

donde v

$$P_{f}^{2} = H_{\mu} P_{f}^{\mu} = \mathcal{E}_{f}^{2} - H_{h} P_{f} = m_{f}^{2} \simeq 0$$

$$K^{2} = K_{\mu} K^{\mu} = K_{0} - \tilde{K} \cdot \tilde{K} = 0 \quad ; \quad K_{\mu} = (\omega, \tilde{K})$$

con w la energia del fotòn resultante (c=1). El termino $2R_{\mu}K^{\mu}$ se escribe:

$$\begin{aligned} \mathcal{L}\mathbf{f}_{\mu}\mathbf{K}^{\mu} &= \mathcal{L}(\mathcal{E}_{\mathbf{f}}\omega - \widetilde{\mathbf{P}}_{\mathbf{f}}\cdot \widetilde{\mathbf{K}}) \\ &= \mathcal{L}(\mathcal{E}_{\mathbf{f}}\omega - |\widetilde{\mathbf{P}}_{\mathbf{f}}||\widetilde{\mathbf{K}}|\cos\Theta_{\mathbf{f}}\mathbf{K}) \\ &= \mathcal{L}(\mathcal{E}_{\mathbf{f}}\omega - \mathcal{E}_{\mathbf{f}}\mathbf{V}\omega \cos\Theta_{\mathbf{f}}\mathbf{K}) \\ &= \mathcal{L}\mathcal{E}_{\mathbf{f}}\omega(\mathbf{1} - \mathbf{V}\cos\Theta_{\mathbf{f}}\mathbf{K}) \end{aligned}$$

donde v es la magnitud de la velocidad del fermión. En nuestro problema v -> c y por tanto:

$$(P_{f+K})^2 = 2 E_{fw} (1 - \cos \Theta_{fK})$$

El limite w -> O es una de las singularidades de esta expresión. Los dos polos restantes,

$$E_{f} \rightarrow 0$$

nunca se alcanzan realmente en el proceso. Las singularidades

pueden exhibirse de otro modo. Utilizando la ecuación de conservación del momentum $P_{z_o} = P_i + f_i^2 + K$, escribimos: $(P_{z_o} - P_i)^2 = (P_{f+K})^2$ donde $(P_{z_o} - P_i)^2 = H_{z_o}^2 - 2 H_{z_o}E_i = H_{z_o}(H_{z_o} - 2E_i)$

donde $(P_{2\sigma}-P_i)^2 = H_{2\sigma}^2 - 2 H_{2\sigma}E_i = H_{2\sigma}(H_{2\sigma}-2E_i)$ (puesto que trabajamos en el sistema de referencia en que $P_{2\sigma}=(H_{2\sigma},\overline{0})$ La singularidad en esta expresión se alcanza cuando la energia del fermión es 1/2 de la masa del bosón Z^o, lo cual sucede tan solo en el caso no radiativo, es decir w -> 0 y el diagrama de Feynman es el de la figura 5.

Figura 5.Decaimiento no radiativo: $\mathcal{E} \sim \mathcal{E}^{\dagger} \mathcal{C}$.

E1 (Ex > 5 GeV y Ofi, y >4°)

E2(En & 5GeV & OR, N & 4°)

En el primer grupo de eventos, la integral es finita mientras uqe

en el segundo tenemos un polo infin:"...

La figura 6 es el histograma del espacio fase generado por la subrutina PHSP de la energia del fotòn saliente, tan sòlo para eventos E1. El intervalo graficado es (-1000, 5000) MeV. El corte brusco que se observa para valores cercanos a cero se debe a la restricción en \mathcal{E}_{μ} . La energia toma valores entre 4 y 45 GeV (para el càlculo, la masa del 2° es 90 GeV y las masas de los leptones 0.511 MeV). La figura 7 es el equivalente para los eventos E2. El polo es evidente.

La figura 8 es el histograma de la energia del fotòn (en una de sus polarizaciones) con el elemento de matriz incluido, para eventos E1. El histograma generado con la segunda polarización es muy similar (figura 9). Una vez màs, encontramos simetria en las distribuciones, ahora respecto de las polarizaciones del fotòn. La figura 10 representa (aproximadamente) la forma funcional de la amplitud cuadrada respecto de la energía del fotòn. En cada intervalo graficamos el valor promedio del elemento de matriz, de modo que la gràfica resultante es la aproximación por medio de rectángulos deX la dependencia del elemento respecto de la energía del fotòn. Las figuras 11, 12 y 13 son las equivalentes para los eventos E2.

Para calcular la sección total, sumamos las frecuencias de la de la columna a la izquierda de la figura 8. La suma total

Z mil²

està relacionada con la integral a travès de la relación (5), donde (max-min) es ahora la integral de la densidad de espacio fase de nuestro problema. Esta àltima es aproximada en nuestro câlculo por la integral sobre espacio fase de tres cuerpos en el

II -15

FIGURA 4:

HASA DE LOS	DE:	1E+00 MASA DEL ZO;	0.900E+05 (NeV)		
Enersia del ENERGIA	L FOTON senerada 0.00E+00	Por FHSP. Eventos E 0,22E+04	0.456+04	0.67E+04	0.87E+04	frequencia
-0.100E+04		• • • • • • • • • • • • • • • • • • • •				
	•	•	•	•	•	0.000E100
	•	•	•	•	•	. 0.000E+00
	•	•	•	•	•	. 0.000E+00
	•	•	•	•	•	 0.000E+00
	:	•	•	•	•	 0.00000000000000000000000000000000000
	**********	•	•	•	•	· 0.5426103
	***********	•	•	•	•	. 0.573E104
	*************	*	•	•	•	• 0.667E+04
	************			•	•	• 0.766E104
	*************	*****	:			0.0761104
0.112E+05	***********	*******		:		0.1025105
	*************	*******		:		0.1171405
	************	*******				0.1298405
	************	************				0.1396105
	******	************	•		•	. 0.149E105
	************	*******			•	. 0.1572+05
	***********	****************	*** .		•	. 0.1716405
	*************	*****************	******	•	•	· 0.181E+05
	*************	******************	****	•	•	. 0.187E105
	************	*********************	*****		•	. 0.201E105
	*********	********	**********	•	•	. 0.210E+05
	***********	*******************	***********	•	•	. 0.2216105
	*************	*****************	*****	•	•	· 0.232E+05
0.2451405	*************	**************	**************	*** •	•	· 0.243E105
	*************	****************	****************	*****	•	• 0.250E105
	***************	*******************		******	•	0.2725105
		*****************		*****	•	0.2936405
	**************	*******************	***************	************	•	0.2971105
	***********	***************	*****	******	:	0.3026105
	************	***************	**************	*************		0.3156405
	**************	**************	*****	************		0.324F105
	**************	****************	***************	******************	*** .	. 0.336F105
	*************	**************	**************	* * * * * * * * * * * * * * * * * * * *	**** •	· 0.343F+05
	**************	******	*************	********************	*******	· 0.355E+05
	***********	**************	**************	*******************	******	. 0.343[105
0.378E+05	*************	*********************	*************	*****************	*****	 0.3754 +05
	************	*****************	***************	*********************	*******	• 0.305E105
	******	*********************	****************	*************	***********	. 0.3976405
	**********	******************	**************	****************	********	. 0.406E105
	*********	*******	*************	*******	*****************	* • • • • • • • • • • • • • • • • • • •
	************	*****************	***********	********************	*************	····
	*************	********	****************	*******************	*****************	****** . 0.455E105
	********	******************	***************	*********************	**************	********** U+446E105
	*******	•	•	•	•	. 0.450ET04
	•	•	•	•	•	. 0.0000100
	•	•	•	•	•	0.00000000
	•	•	•	•	•	. 0.000E+00
	.•	•	•	•		. 0.000000000
0.2005402	*************	••••••				

.

FIGURA 61

	FIGURA 7: MASA DE LOS HISTOGRAMA	LEPTONES: 0.511E+0	0 HASA DEL 201 0	900E+05 (H	aV)				
	Enerdia de ENERGIA -0.100E+04	1 FOTON senerada por 0.00E+00 (PHSP. Eventos E2 .20E+03	0.40E+03 '	0.6	0E+03	0.80E+03	fr	ecunicia
			•	•		•	•		0.0002100
		******	******************	• :			:	:	0.508E+03
		******	******	********	*********	****			0.256E104
		******************	***************************************	***********	*********	*********	*******************	*	0.3656+04
		•	•	•		•	•		0.120L402
		•	•	•		•	•	•	0.2005402
		•	:	:		:	:	:	0.1802402
		•	•	•		•	•	•	0.2302102
	0.1122405	:	:	:		:	:	:	0.1500402
		•	•	•		•	•	:	0.2102102
		•	•	•		•	•	•	0.320E+02
				:		•	:	:	0.2406402
		•	•	•		•	•		0.1800102
		•	•	•		•	•	•	0.3300102
	•	:	:	:		:		:	0.2201102
		•	•	•		•	•	•	0.2001.102
		•	•	•		•	•	•	0.2000102
	0.245E+05		•	:		:		:	0.3201+02
		•	•	•		•	•	•	0.2200102
		• • • • •	• • • • • • • • •				· · · · ·		0.7500 +02
(K) s N		•		:					0.3106.102
		•	•	•		•	•	•	0.1705102
			:	:		:			0.210E+02
24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		•	•	•			•		0.220E+02
		•	• 1	•		•	•	•	0.2100402
			:					:	0.1700107
	· · · · · · · · · · · · · · · · · · ·	•	•	•		•	•	•	0.230E 102
	0.378E+05	•	•	•	•	•	•		0.1108402
		:	:	:		:	:		0.9000101
		•	•	•		•	•	•	0.1201 +02
		:	:	:		:	:	:	0.1700102
			:	:		•			0.3000.101
		•	•	•		•	•	•	0.0000100
		:	:	:		:	•	:	0.0000100
친구가 많이 가지 않는 것이 같아.		•	•	•		•	•	•	0.000E 100
		• A 22.5	•	•		•	• •	•	0.000E+00
	0.500E+05		• • • • • • • • • • • • • • • • • • • •						0.0002400
						•			
and a second									
5 State 1 - 1									

0.1122+05 0.1122+05 0.2452+05 0.3782+05 0.3782+05 0.3782+05 0.3782+05 0.3782+05 0.3782+05 0.3782+05 0.3782+05 0.5502+05	FIGURA B: HASA DE LOS HISTOGRAMA Energia del Energia -0.100E+04	LEPTONES: 0.511E+0 DE: FOTON. Polarization 0.00E+00	00 HASA DEL ZO: 0.90 n N. Eventon El 0.39E+07 0.	DE+05 (HeV) 79E+07 0	12E+08	D.16E+0B	frecisericia
0.11224-05 0.1124-05 0.1124-0		•	•	•	•	•	 0.000E100
0.112E+05 0.112E		•	•	•	•	•	 0.000E100
0.1122+05 0.1122+05 0.1122+05 0.1225+05 0.2452+05 0.3762		:	•	•	•	•	 0.000E+00
0.1122+05 0.112+					•	•	· 0.000E100
0.1122+05 0.1122+05 0.1122+05 0.122+05 0.122+05 0.2755+05 0.2755+05 0.2755+05 0.2452+0		*****			•	•	· 0.000E+00
0.1122+05 0.1122+05 0.1122+05 0.1122+05 0.1122+05 0.1225+05 0.2452+05 0.201100 0.2010		************	****************	*********************	*************	*****	· 0.1351100
0.1122+05 0.1122+05 0.1122+05 0.22452+05 0.245		******	************	***************	********	*******	* 0.790F+08
0.112E+05 0.112E+05 0.112E+05 0.3376E+05 0.3		***********	*********	*******	•		. 0.472E+08
0.1122+05 ************************************		******	*****************	*****************	****	•	. 0.50NE+08
0.1122-03 		**********	*****************	*****	•	•	 0.394E+08
0.245E+05 0.376E+05 0.376E	0+1126+05	***************************************	*********	********	•	•	 0.454E108
0.245E+05 0.378E+05 0.378E+05 0.378E+05 0.378E+05 0.500E+05 0.500E		*****	**************	•	•	•	 0.307E408
0.2452+05 0 - 2251 00 0 - 2251		*****	*******	•	•	•	 0.270E108
0.245E+05 0.245E+05 0.378E+05 0.378E		****************	******	*****	•	•	 0.245E108
0.245E+05 ************************************		**************	**********			•	• 0.3571100
0.245E+05		***************	********			•	• 0.2001.108
0.2452+05 ************************************		*********	******	•			0.216E40B
0.245E+05 0.245E+05 0.245E+05 0.378E+05		*****	****	•	•		. 0.1835108
0.245E+05		******	******	•	•		0.223F10B
0.245E+05 0.245E		**************	******	•	•	•	· 0.71/1108
0.245E+05		***************	*****	•	•	•	• 0.714E100
0.378E+05	0.0485405	*******************	****	•	•	•	 0.1956'108
0.378E+05	0.2436403	*****	******	•	•	•	• 0.210E +08
0.378E+05 0.378E+05 0.500E+05 0.500E		*******************		•	•	•	· 0.170L+08
************************************		*****					· 0.1841108
0.378E+05		*****************	*		•	•	0.1.00.100
************************************		***************	*****		:		. 0.1010100
******* - </th <th></th> <th>********</th> <th>•</th> <th></th> <th>:</th> <th></th> <th>. 0.1106408</th>		********	•		:		. 0.1106408
************************************		*****	•	•			. 0.107F +08
0.378E+05 ************************************		***********	•	•	•	•	. 0.1211.100
0.378E+05 ************************************		******	•	•	•	•	· 0.106E 108
0.378E+05		*****		•	•	•	 0.134E #08
0.378E+05 ********** *************************		******************	12	•	•	•	 0.167E+0B
0.500E103	0.7795+05	*********	•	•	•	•	· 0.922L107
0.500E+03 0.500E	010/02/03	*************			• •	•	. 0.940E+07
**************************************		******	:		•	•	• 0.1321108
**************************************		******					• 0.10/E10B
**************************************		******					- 0.117E108
***		******	•	•			. 0.117E108
*****		***	•	•	•	•	. 0.30FE 107
0.500E+03 0.500E+03		****	•	•	•	•	. 0.430E107
0.500E+03		•	•	•	•	•	· 0.206E105
0.500E+03 0.500E+03		•	•	•	•	•	. 0.000E100
0.500E+05		:	:	•	•	•	· 0.000E100
0.500E+05			1		•	•	· 0.000L100
	0.500E+05						

-

FIGURA 9: MASA DE LOS HISTOGRAMA Engraia del Energia -0.100E+04	LEPTONES: 0.511E+0 DE: L FOTON. Polarizacion 0.00E+00	00 MASA DEL ZO: 0.90 5. Eventos E1 0.39E+07 0.	0E+05 (HeV) 78E+07	0.122+09	0+14E+08	fre	cuencs a
	•	•	•	•		•••••	0.0005400
	•	•	•				0.0005100
	•	•	•	•			0.0005100
	· · · · · · · · · · · · · · · · · · ·	•	•	•			0.000E100
	**********	•	•	•	•		0.00000100
	******			*********		•	0.133E108
	**************	*****	***************	***********	***************	•	0.6936400
	*******	****	**********	*********	*************************	******	0.7706108
	***************	****************	*******	******	•	•	0.413E+08
	**************	******	******		•	•	0+2005+08
0.112E+05	***************	******	***************		:	•	0+3665108
	*****	*******	•		:	:	0.3020108
	****************	*******	•				0.2746+08
	***************************************	*****	!	•	•		0.2426100
	*****	***********	*****	•	•	•	0.354108
	*****	*******	•	•	•	. •	0+2536408
	*************	******	•	•	•	•	0.22226408
	*********************	***		•	•	•	0.2140108
	******	*******		•	•	•	0.1010408
	***************	******		:	•	•	0.2020108
	******	******			•	•	0+2156408
	**************	****			•	•	0+1151 +08
0.245E+05	******	*****	•			:	0.7095400
	***************	**	•	•			0.1771 +09
	***************	***	• .	· · ·	•		0.105-000
	*****	:	•	•	•		0.138E108
	*****************	*	•	· •	•	•	0.1676108
	*****		•	•	•	•	0.2001 100
	******			•	•	•	0.11BE105
	*******				•	•	0.107F108
	********	•			:	•	0.1045108
	*****	•	•			:	0.1366100
	******	* -	•	•		:	0.1670100
	*****	•	•	•	•		0.9216107
0.378E+05	*****	•	•	•			0.937E107
	*****	•	•	•	•	•	0.1326108
	****	•	•	•	•	•	0.107E108
	*****	•	•	•	•	•	0.9856107
	*****	:	•	•	•	•	0.1176100
	***				•	•	0.1146408
	****	•		:	•		0.3002107
	•	•	•			:	0.2062405
	•	•	•				0.0001 +00
	•	•	•	•		:	0.000E+00
	•	•	•	•	•		0.000E+00
	•	•	• .	•	•	•	0.000E+00
0.200E+03	••••••	•••••	• • • • • • • • • • • • • • • • • • •		•••••••		

HASA DE LO HISTOGRAMA Forma func.	S LEPTONES: 0.511E4 DE: ional de la Matriz.	Eventes E1	00E+05 (HeV)			
-0.100E+04		0.122+04 0.	.246+04 0.3	6E+04 0.4E	E+04	frechencia .
	•	•	•	•		0.00000100
	•	•	•	•	•	. 0.000E+00
	:	•	•	•	•	• 0.000E100
			•	•	•	 0.000E100
	*******	*******				. 0.000E100
	**************	***********************	*****		******************	* 0.240E105
	***************	***************	******			0.1105105
	************	***	•			0.5105404
	**************	*****	•	•	•	. 0.56/E+04
	**********	•	•	•	•	· 0.400E104
0,112E+05	*****	•	•	•	•	0.4231104
	******	•	•	•	•	· 0.2636404
	*******	•	•	•	•	. 0.21/E+04
	******	:		•	•	. 0.174E104
	*****			•	•	. 0.24PE104
	*****				•	• 0.121E+04
	****			:		0 1161 104
	****					. 0.9/40107
	****	•	•			. 0.1115104
	****	•	•	•		. 0.103E104
	****	•	•	•	•	. 0.9716103
	***	•	•	•	•	. 0.0405103
0.245E+05	***	•	•	•	•	 0.845E103
	**	•	•	•	•	. 0.711[103
	**	•	•	•	•	. 0.70 L103
	**	•	•	•	•	. 0.5604103
	**			•	•	. 0.5741103
	*	:		:	:	. 0.3271103
	*			2		0.3400103
	*	•	•	•	•	. 0.374E+03
	*	•	•	•	•	. 0.31/E103
	*	•	•	•	•	. 0.3971103
	±	•	•	•	•	. 0.4711103
	1	•	•	•	•	. 0.2546403
0.3/8E+05	2	•	•	••	•	. 0.2512+03
	1	1	1	•	• ·	0.3436103
	ž		2		-	· 0.2476103
	÷					0.20401003
	*	•	•	•	•	0.2700.103
	•	•	•		•	. 0.7091102
	•	•	•	•	•	. 0.7631.102
	•	•	•	•	•	. 0.457E+01
	•	•	•	•	•	. 0.0000100
			:		•	. 0.000E+00
			-		-	0.000E400
0.5002+05			. .			

FIGURA 10: MASA DE LOS LEPTONES: 0.511E+00 MASA DEL ZO: 0.900E+05 (MeV

	FIGURA 11:						
	HISTOGRAMA	LEPTONES: 0.511E+C	0 MASA DEL ZO: 0.90	OE+05 (HeV)			
	Enersia del Enfegia	FOTON, Polarizacion	N. Eventos E2				
	-0.100E+04	******	•51E+11 0.	10E+12 0.1	5E+12 0.20	E+12 f	rec
			•	•	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	,
		***		•	•	• :	ò
		• • •	:	•		:	2
			•		•		ç
		•	•	:	•	:	č
			:	•		:	0
	0.1126+05	*****	******	**********	*********		č
		**********************************	**************************************			*	6
			•	•			0
		•		:	:		ğ
			•	•	•		0
		4 4 x	•			:	0
		•	•	:	•		č
			:	•		:	8
argen - Cr	0.2455+05	•	•	•		•	ġ
	0.1402100		•	•	•		ŏ
			:	•		: :	0
		**************	*	•			č
	1.1	:	:	•	•		0
	÷.,		•	•		:	0
			•	•			ō
		***************************************	**************	•	•		č
	0.378E+05		•				0
		•.	•	•			ġ
		•	•	•	•		8
			:	•		: :	0
		•	•	•			ŏ
			:	•		:	00
		•	•	•		· ·	0
			• · · · · · · · · · · · · · · · · · · ·	:		•	ŏ
5. S.	0.500E+05	• • • • • • • • • • • • • • • • • • • •	•	•	•	:	0
				•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
Sector Contractor							
				•			
				· · ·			

	FIGURA 12: MASA DE LOS Histograma Enersia del Enersia del	LEPTONES: 0.511E+0 DE: FOTON. Polarizacion 0.00E+00 0	0 MASA DEL ZO: 0.90 S. Eventos E2 .51E+11 0.3	DE+05 (MeV)	iE+12 0,20	2+12 f	Festions 1.4
	-0.1002104	•		• • • • • • • • • • • • • • • • • • • •	****************		
		•				•	0.000E100
		***	•				0.3495111
		***	•	• •	•		0.353E+11
		•	•	•	•	• •	0.5756110
		******				••••	0.3216+10
		•					0.762111
		•	•				0.1456+10
		*******************	*			•	0.4216+10
	0.112E+05	************	****	**********************	****************	************	0.1016+13
		•	•				0.4156+12
		•	•				0.7346 109
12 C			•	• •			0.2456+10
			•	•		• •	0.514E+09
		•				••••	0.2560109
		*	•				0.1215411
		**	•	• •			0.250E+11
		•	•	• •			0.470E+10
		•	•	• •		••••	0.830E+10
in the second				•		• •	0.910E+09
	0.245E+05					•	0.4100+10
그는 말을 하는 것이 있는 것이 없는 것이 없다.		•	•				0.9805110
		•	•				0.307E107
		********	:	• •	•	•	0.600F108
b a c						• •	0.221E+12
		•					0.1000+09
	1997 - A. 1997 -	•	•				0.5256109
		*	•	• •			0.1165111
		*	•	•	• •	• •	0.841F109
			***********	• •	•	•	0.361E+12
a dia 12 milia mandri dia 2000 milia dia 2000 milia Menerata dia 2000 milia dia 2000 mili		•	:			•	0.206E109
Registration of the second	0.378E+05	•	•				0.2665+09
~ 같은 것 같은		•	•		·		0.314E+07
af will be in the	•	•	•	• •		•	0.130E+10
				•		• •	0.494E+09
						•	0.443E+08
		•	•				0.00000000
		•	•	•			0.000E+00
		•	•	• •		• •	0.000E+00
	,		•		•	• •	0.000E+00
		• .	•				0.000E+00
		•	•				0.000E+00
	0.5002+05	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
and the second sec							

ч

100E+04		·22E+10 0.	44E+10 0.6	6E+10 0.88	E+10	frecuenci
	•	•		•	•	. 0.000E
	•			•	•	 0.186E
	•	•		•	•	 0.229E
	•	•	•		•	• 0.138E
	• • • • • • • • • • • • • • •	•	•			 0.158E
	*********	•	•		•	• 0.006F
	•	•	•			· 0.851E
	•	•	•			• 0.745E
		•	•	•	:	• 0.805E
	***************	*******	***************	*******	**************	
1122405	****************	*****************	*****************	**		- 0.4372
	•	•	•	•		0.4145
	•	•	•	•		. 0. 3500
	•	•	•	•		0.747
	•	•	•	•		0.161
	•	•	•	•		0.107
	•	•	•			. 0.147
		•	•	•		0.366
	•	•	•	•		. 0.0331
	•	•	•	•		0.214
	•	•	•	•		0. 296
	•	•	•	•		. 0.320
7455405	•	•	•	•	•	. 0.102
		•	•	•	•	0.4060
	•	•	• * * *	•	•	. 0.4441
	•	•	•	•	•	. 0.123
		•	•	•	•	. 0.231
		•	•	• •	•	. 0.71
		• •	•	•	•	. 0.507
		•	•	•	•	· 0.87B
		•	•	•	•	. 0.250
		•	•	•	•	. 0.529
,	*********	*	•	•	•	. 0.401
			•	•	•	. 0.134
			•	•	•	. 0.107
378E+05			• .	•	•	. 0.162
			•	•	•	. 0.242
	•	:	•	•	•	. 0.373
	•			•	•	. 0.145
	•			•	•	. 0.412
	•	•	:	•	•	. 0.369
	•	• .			•	. 0.333
	•	•			•	. 0.330
	•	•			•	. 0.000
	•	•			•	. 0.000
	•	•			•	. 0.000
	•	•			•	. 0.000
				-		· · · · · · · · · · · · · · · · · · ·

FIGURA 18:

caso en que todas las masas de los fermúnes son cero (ec.V.2.18 referencia [7]

$$R(s) = \frac{\pi^2}{8} s \qquad ; \qquad s = H_{20}^2$$

de modo que

$$\Gamma(2^{\circ}-e^{t}C^{\prime}) = \frac{R(s)}{N} \sum_{k=1}^{N} |M_{fi}(\theta_{k})|^{2} ; \theta_{k} \in EL.$$

Para obtener el valor relativo de esta sección de decaimiento respecto del caso no radiativo, debemos calcular

$$\Gamma'(2^{\circ} - e^{+}C^{*}) / \Gamma'(2^{\circ} - e^{+}C^{-}) = \Gamma'_{EL} / \Gamma'_{O}$$

La estimación de la integral en el denominador quedó expuesta al final del capítulo anterior y aparece en el artículo de Passarino. Sustituyendo, obtenemos

$$\frac{\Gamma_{E1}}{\Gamma_0} = .675$$

es decir, 67% contra 2-3% estimado por el autor arriba citado. El càlculo de Passarino, sin embargo, estima la proporción exclusiva utilizando el siguiente corte:

 $E_{f_1} \geqslant \ell_{w_1} H_{2\sigma} \qquad ; \qquad E_{f_2} \leqslant \ell_{M} H_{2\sigma}$ donde $\ell_{w_1} \qquad y \qquad \ell_{M}$ son tales que $\ell_{\infty} + \ell_{M} \geqslant 1/2$. De este modo, al resolver analiticamente la integral sobre espacio fase obtiene el cociente \lceil / \rceil_{σ} como función de sus parametros de corte. Su estimación para eventos radiativos se calcula para valores como los siguientes: $\ell_{w_1} = .45$ y $\ell_{M} = .1$ es decir, para eventos tales que $E_{f_1} \geqslant 40.5 \ GeV$ y $E_{f_2} \leqslant 9 \ GeV$. Por tanto, esperamos 2-3% de eventos en los cuales uno de los fermiones salga con energía muy pequeña mientras que el otro lleve energías cercanas al màximo: $M_{2\sigma}/2$, de modo que el fotòn radiado por bremsstrahlung es altamente energètico. Los cortes de Passarino no son equivalentes à los que se hacen experimentalmente.

Por otro lado, Albert et.al. [2], incluyen una estimación para decaimientos radiativos exclusivos de dos tipos:

1. La suma de las energías de los leptones debe estar en el . intervalo

$$H_{20} - \Delta E \leq E_{g} + E_{F} \leq H_{20}$$

2. La energia de cada leptón satisface por separado la constricción

Para cada una de las condiciones, obtiene analiticamente expresiones para Γ en función del paramentro ΔE . La restricción i es la más parecida a la estimada en este trabajo, puesto que implica la condición $E_{\mu} > \Delta E$ para la parte complementaria del espacio fase, en la cual se han eliminado todas las singularidades. Tiene la forma:

$$\prod_{i} \left(2^{\circ} - e^{\dagger} e^{-\delta} \right) = \prod_{i} \left(2^{\circ} - e^{+} e^{-\delta} \right) \left[1 - \frac{\alpha}{\pi} \left[\frac{4^{\circ} \ln \frac{4^{\circ}}{2d\epsilon}}{2d\epsilon} - 3 \right] \ln \frac{4^{\circ}}{m_{g}} - \frac{1}{3} \pi^{2} \right]$$

donde $M_{i} \neq 0$ es la masa del leptòn. para $\Delta E = 5$ GeV tenemos

$$\frac{\Pi}{\Pi} = .15 ~ \sim 15\%$$
.

En nunguno de los artículos citados se restringe la integración sobrelos àngulos,càlculo que nosotros hemos incluído en nuestra estimación para los eventos E1. El valor 67% es, pues, la estimación para decaimientos exclusivos con cortes en energías y àngulos.

Tomemos ahora la integral $f(2^{\circ} - \mathcal{C}\mathcal{J})$ dividida en los dos

cortes mencionados antes:

 $\begin{bmatrix} T(2^{\circ}-e^{t}C_{i}^{*}) & = F_{i} \\ F_{i} & = 5 \text{ GeV y} \left(aug(e^{t},b^{*}) > 4^{\circ} \\ y & aug(e^{t},b^{*}) > 4^{\circ} \\ y & aug(e^{t},b^{*}) > 4^{\circ} \\ \end{bmatrix} = \begin{bmatrix} T_{i} \\ F_{i} \\ F_{i}$

$$\frac{\Gamma_{E1}}{\Gamma_{E2} + \Gamma_{0}} = 3.962 \times 10^{-4},$$

aproximadamente 0.03%, ahora un valor pequeñisimo respecto de lo esperado.

-> Conclusiones <-

La estimación de la razón \lceil / \rceil , presentada en este trabajo difiere de los resultados previamente publicados. La demostración explicita de la simetria del proceso ante diferentes polarizaciones iniciales de los bosones, es un resultado que no hemos encontrado tampoco en trabajos previos. Sin embargo, no hemos hecho un cálculo completo de las correcciones radiativas, pues hemos dejado de lado diagramas como los presentados en la introducción. Para un cálculo completo de los decaimientos inclusivos (todas las configuraciones del espacio fase posibles, es decir, sin cortes de ningôn estilo) y sus correcciones radiativas a orden \mathcal{K} , requerimos teoría de renormalización, lo cual queda fuera de los límites de este trabajo. Así mismo, es necesario un càlculo más refinado para mejor comparar con los resultados obtenidos analíticamente en las referencias citadas, sobre todo las estimaciones de razones exclusivas en Albert [2] que hemos mencionado de pasada. No nos es posible por el momento establecer el grado en que estas estimaciones y la nuestra deberían coincidir.

APENDICE I

Evaluación de Amplitudes de Transición y Tiempos de Vida

Presentamos aquí un breve resumen del método utilizado en el cálculo de $|\mathcal{M}_{i}|^{2}$ (Capítulo II) [4].

En la derivación de la ecuación de Dirac para la partícula libre

$$(h (f^{\prime}) = \psi - h^{\prime}) + (f^{\prime}) = (h^{\prime}) + (h^{\prime}) = (h^{\prime}) = (h^{\prime}) + (h^{\prime}) = (h^{\prime}) = (h^{\prime}) + (h^{\prime}) = (h^{\prime})$$

se demuestra que los coeficientes $\mathcal{H}\mathcal{H}$ deben ser matrices complejas de 4x4 componentes tales que cumplan con la relación:

de modo que, al elevar al cuadrado la expresión [Ai], recuperemos la ecuación de Klein-Gordon. Una base conveniente para las matrices 4×4 que satisfacen la relación [A2] (Algebra de Clifford) que es muy àtil en los càlculos que se llevan a cabo en fisica de altas energias, es la base covariante. Puesto que trabajamos con matrices 4×4, requerimos de 16 elementos. Ellos son la matriz unidad, las $d^{1/4}$ mismas, los seis conmutadores de los elementos bàsicos:

$$\nabla^{\mu\nu} = \frac{i}{2} \left[\mathcal{Y}^{\mu}, \mathcal{Y}^{\nu} \right]$$

la matriz 35 :

(donde $\mathcal{G}_{\alpha\beta\mu\nu}$ es el tensor de Levi-Civita) y los cuatro elementos de la forma $\mathcal{H}^{5}\mathcal{H}^{4}$.

A-1

De modo que una matriz cualquiera de 4x4 puede escribirse, en esta base

$$\Gamma = S + iP H^{S} + V_{\mu} H^{\mu} + i A_{\nu} H^{3} H^{\nu} - \frac{i}{2} T_{\mu\nu} T^{\mu\nu}$$

Los coeficientes del desarrollo son números complejos (las fases y los signos se escriben de este modo por conveniencia).

Trabajar en la base covariante se hace importante cuando nos encontramos ante el problema de evaluar matrices de transición y sus cuadrados. En el método tradicional se encuentra que, para una amplitud de la forma

$$\mathfrak{M}_{\mathsf{H}} = \overline{\omega}_{\mathsf{f}} \Gamma \omega_{\mathsf{i}}$$

con Γ una matriz 4x4 que depende de momenta, polarizaciones, etc. y \overline{w}_i , w_i son los espinores de las particulas entrante y saliente, al elevar al cuadrado obtenemos:

 $|\mathfrak{M}_{\mathfrak{f}i}|^{2} = \operatorname{tr}\left[\Gamma\cdot\Lambda(P_{i})\cdot\overline{\Gamma}\Lambda(P_{\mathfrak{f}})\right]$ $= \operatorname{tr}\left[\Gamma\cdot\Lambda(P_{i})\cdot\overline{\Gamma}\Lambda(P_{\mathfrak{f}})\right]$

y $\Lambda(\rho) = \frac{\lambda^2 + \mu \Lambda}{\lambda m}$ es el proyector de energia en el estado P. (Excluimos los proyectores de spin, pues en nuestro càlculo no trabajamos con ellos, ver referencia [4] ec. 4.2)

En otras palabras, obtenemos una expresión de la forma

 $T_{\Gamma}[\Gamma_{1}\Gamma_{2}]$. Si la matriz $[\Gamma$ està escrita en la base covariante, entonces la traza en la ecuación [A4] puede evaluarse directamente, puesto que en esta base el ònico elemento con traza

A-2

distinta de cero es la matriz unidad. Para dos matrices

 $\prod_{i=1}^{n} \prod_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

(los indices 1 y 2 etiquetan los coeficientes de la expansión covariante de $\prod_{\gamma} \prod_{2}^{\gamma}$ respectivamente) pues es êste el término que multiplica a la matriz unidad en la expansión covariante del producto $\prod_{\gamma} \prod_{2}^{\gamma}$. (ver ec. 1.12 referencia [4])

Para una expresión de la forma [A4], el problema se reduce entonces a construir los coeficientes de la expansión para

 $\Gamma(P,m) = \Gamma(\Lambda(P))$, evitando càlculos extensos de trazas de productos de matrices de Dirac. Los coeficientes S, P, V, A y T de esta àltima expresión estàn calculados en el artículo citado, ec. 4.10.

En nuestra evaluación de $|\mathfrak{M}_{\mathfrak{f}_i}|^{\mathfrak{L}}$, capítulo II, donde encontramos un triple producto de matrices gama, utilizamos la identidad

con la cual expandimos el elemento $\mathcal{J}^{\mu}\mu^{\mu}\mathcal{J}^{\mu}$ en la base covariante, obteniendo una expresión del tipo $\mathcal{V}^{\beta}_{\beta,\mu}$, $\mathcal{A}^{\beta}\mathcal{J}^{5}_{\beta,\mu}$. Cuando al final del desarrollo encontramos una expresión como EA4] la evaluación de la traza es trivial.

Por àltimo, para calcular la sección diferencial del

decaimiento de una particula de masa M en el sistema de referencia en que êsta se encuentra en reposo, debemos evaluar la integral

$$d\omega = d\left(\frac{1}{T}\right) = \frac{1}{2H} \left| \mathcal{M}_{fi} \right|^{2} \frac{d^{3}H}{2\omega_{1}(2\pi)^{3}} \frac{d^{3}P_{2}}{2\omega_{2}(2\pi)^{3}} \frac{d^{3}H}{2\omega_{2}(2\pi)^{3}} (2\pi)^{4} \delta(P-P_{2}-P_{3})$$

donde los factores $1/2\omega_j$, para fermiones, se reemplazan por M/E_j y para fotones $\omega_j = \sqrt{10^{2}(4M)^2}$. Es la integral de esta expresión, con el elemento de matriz calculado en el capítulo II, lo que hemos evaluado haciendo uso del mètodo Monte Carlo.

REFERENCIAS

[1] G. Passarino "Distributions for $\mathcal{P} \rightarrow \mathcal{CC}$ ", Phys. Lett. 130B (1983), p.115-117.

[2] D. Albert, et.al. "Decays of intermediate vector bosons, radiative corrections and QCD jets", Nucl. Phys. B166 (1980), p.460-492.

[3] V. Barger, et.al. "testing models for anomalous radiative decays of the Z boson", Phys. Rev. D30 (1984), p.1513-1519.

[43 M. Moreno "Closed formula for the product of n Dirac Matrices" Pretiro CINVESTAV 1984 (J. Math. Phys. 26(4), 1985 p.576-584.

[5] Escrito por Bruce Knapp, sin documentación. Su nombre es PHSP. Todos los programas creados para este trabajo fueron realizados en el sistema VAX-11.

[6] P. de Causmaecker, et.al. "Multiple Bremsstrahlung in Gauge theories at high energies"I: Nucl. Phys. B206 (1982), p.53-60; II:Nucl. Phys. B206 (1982), p.61-89.

[7] Byckling, E. y Kajantie, K. (1973) Particle Kinematics.
Wiley, Nueva York.

[8] Hammersley, J.M. y Handscomb, D.C. (1965) Monte Carlo Methods. Methuen and Co.Ltd., Londres.

[9] Sobol, I.M. Mètodo de Monte Carlo. Mir, Moscà.

[10] Bjorken, J.D. y Drell, S.D. (1964) Relativistic Quantum Mechanics. Mc-Graw-Hill. Nueva York.

[11] Halzen, F. y Martin, A.D. (1984) Quarks and Leptons: An introductory course in modern Particle Physics. Wiley, Nueva York.

8-1

[12] Okun, L.B. (1984) Leptons and Quarks. North Holland, Amsterdam.

[13] Kenyon, I. "The discovery of the intermediate vector bosons", Eur. J. Phys. 6 (1985), p.41-55.