ANALISIS EXPERIMENTAL DEL RUIDO PRODUCIDO POR LA CONDENSACION DIRECTA DE UN CHORRO SUESONICO DE VAPOR

VICENTE GUILLERMO LOPEZ FERNANDEZ

TESIS

Presentada a la División de Estudios de

Posgrado de la

FACULTAD DE INGENIERIA

de la

TESIS CON FALLA DE ORIGEN

01173

4 2ej

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

como requisito para obtener

el grado de

MAESTRO EN INGENIERIA

[MECANICA (TERMOFLUIDOS)]

CIUDAD UNIVERSITARIA, D.F., OCTUBRE DE 1992

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

NOMENCLATURA				
RESUMEN				iii
INTRODUCCION	••••	 •••••••••••	•••••	iv

Pag.

CAPITULO I.

CONDENSACION	
1.1. El Fenómeno de la condensac	ción2
1.2. Clasificación	
1.3. La Condensación directa	4
1.4. La Condensación directa en	la tecnologia actual4

CAPITULO II.

ANTECEDENTES	
2 1 Revisión bibliográfica	7
2.2. Principales resultados	
2.3. Cuadro sinóptico	

CAPITULO III.

DESCRIPCION Y DISENO DEL EXPERIMENTO	25
3.1. Descripción de las pruebas	26
3.2. Selección de la sustancia de trabajo	26
3.3. Parámetros preponderantes	27
3.4. El Arreglo experimental	27
3.5. Aparatos de medición y equipo auxiliar	30
3.6. Procedimiento experimental y mediciones	31

CAPITULO IV.

ANALISIS DE REGISTROS EXPERIMENTALES	. 35
4.1. Procesamiento de datos experimentales	. 36
4.2. Digitalización	. 36
4.3. Procesamiento digital de las señales	. 37
4.4. Anàlisis de resultados	. 39
4.5. Pruebas complementarias	. 56
4.6 Interpretación de resultados	64

CAPITULO V.

CONCLUSIONES Y RECOMENDACIONES	
5.1. Conclusiones	79
5.2. Recomendaciones para investigaciones posterio	res82

83

REFERENCIAS ...

APENDICES

Apéndice I : Fenómenos relacionados con la nucleación.

Apéndice II: Anàlisis Dimensional.

MOMENCLATURA

а	aceleración, m/s ²	
A	superficie, m ²	
в	potencial director de condensación (adim	ensional
Во	número de Bond	
с	velocidad del sonido, m/s	
с _Б	calor específico a p = cte., J/kg K	
D, d	diámetro, m	and and a second
F _i	fuerzas moleculares perpendiculares, N	
F	fuerzas moleculares tangenciales, N	
f	frecuencia, Hz	
G	gasto másico de vapor, kg/m²s	
g	aceleración de la gravedad, m/s ²	
h	coeficiente de transferencia de calor por convección, W/m² K	
h	coeficiente de tranferencia de calor de condensación directa	
h _{fg}	entalpia específica de vaporización, J/kg	:
hg	entalpía específica del vapor, J/kg	
Ja	número de Jacob	
k_	conductividad térmica del líquido, W∕m K	
k _v	conductividad térmica del vapor, W/m K	
Ma	numero de Mach	
n	número de moléculas en la superficie	
Pab	presión absoluta, kPa	
P ₁ , P ₂	presión, kPa	
ď	calor latente de superficie	
R, r	radio, m	

Re	número de Reynolds
Ri	número de Richardson
St	número de Stanton
St	número de Strouhal
s	coeficiente de dispersión
T _L	temperatura del liquido, K
T _v	temperatura del vapor, K
TLi	temperatura del líquido en la interfaz, K
Tvi	temperatura del vapor en la interfaz, K
T	temperatura del saturación, K
t	tiempo, s
u , V	velocidad, m/s
v*	velocidad característica, m/s
v _q	volumen especifico del vapor, m ³ /kg
พ้	trabajo de adhesión, J
We	número de Weber
∆T s , sub	subenfriamiento, K
δ	distancia, m
E g	energia total de superficie
ρ_{L}	densidad del líquido, kg/m ³
$\rho_{\rm v}$	densidad del vapor, kg/m ³
μ	viscosidad, Ns/m ²
o	tensión superficial, N/m
Subindices	
L	líquido
v,s	vapor
0	condiciones del chorro a la salida del inyector

RESUMEN

En el presente trabajo se muestran los resultados de un estudio experimental del fenómeno de condensación directa que tiene lugar al inyectar vapor saturado en régimen subsónico dentro de una masa de agua subenfriada.

El estudio se concentró en el análisis del sonido producido por la condensación directa, identificando los parametros relevantes que afectan el comportamiento de la frecuencia fundamental, la cual juega un papel importante en relación con el diseño confiable de equipos térmicos en los que esta presente la condensación directa.

Como resultado principal del estudio se determinó que para los rangos de operación de los experimentos realizados, la variación de la frecuencia del sonido esta relacionada con el grado de subenfriamiento de la masa líquida, con la velocidad de salida del vapor y con la tensión superficial en la interfaz, manifestándose una alternancia de los mencionados efectos.

Se propone en este trabajo una correlación general para la frecuencia, representada por el numero de Strouhal, que engloba los efectos del momentum, del subenfriamiento y de la tensión superficial, representados respectivamente por los números de Reynolds, Jacob y Weber.

INTRODUCCION

El fenómeno de la condensación es una de las formas más comunes de transferencia de calor y juega un papel preponderante en los equipos de rechazo de calor utilizados en los ciclos termodinámicos para generación de potencia eléctrica y de refrigeración por compresión de vapor, en los cuales generalmente se usan sustancias simples como fluidos de trabajo.

En esencia, la condensación se presenta cuando la temperatura de un vapor se reduce por abajo de la temperatura de saturación. En la mayoria de los equipos de proceso el fenómeno ocurre al entrar en contacto el vapor con una superficie fria. El condensado se forma al liberarse el calor latente, y este se transfiere a la superficie. Otras formas comunes de condensación son las que tienen lugar cuando se forman gotas suspendidas en una fase gaseosa (formación de neblina) y cuando existe contacto directo entre una fase líquida y una fase vapor.

En el este trabajo se presenta un estudio experimental del fenómeno de condensación directa que tiene lugar al inyectar verticalmente hacia arriba un flujo másico subsónico de vapor de agua saturado dentro del seno de una masa de agua subenfriada, examinando los efectos paramétricos del gasto másico de vapor y la temperatura de subenfriamiento sobre el ruido emitido por la condensación, particularmente sobre su frecuencia, la que se considera como una característica inherente al régimen de condensación que impera para diferentes condiciones de interacción entre ambos fluidos.

CAPITULO I.

CONDENSACION

1.1. El Fenómeno de la condensación

La condensación se define como el retiro de calor de un sistema, dentro del cual, un vapor se convierte en líquido. Se considera que tiene lugar ya sea en el seno de un fluido ó sobre una superficie enfriada y se lleva a cabo una transferencia simultánea de calor y masa. El fenómeno se inicia cuando el vapor se enfría a una temperatura menor que la de saturación y se induce un proceso de nucleación de gotas.

La nucleación es otro fenómeno, que a su vez, se realiza en un nucleo ó centro de formación de líquido y tiene lugar solamente hasta que la energía del vapor se retira o se reduce de tal manera que su temperatura es menor que la temperatura de saturación. Esto último se lleva a cabo en dos categorias, dependiendo de donde tenga lugar la eliminación de energía, a saber : nucleación másica y nucleación de superficie sólida.

Nucleación másica

La nucleación másica ocurre dentro del seno de la masa de vapor lejos de alguna superficie sólida y tiene lugar como :

(a) Homogénea,

en ausencia de otras fases así como de partículas externas y solo puede realizarse mediante una expansión adiabática;

(b) Heterogénea,

en presencia de partículas presentes en el vapor y se realiza por una combinación de de difusión de calor y masa.

Nucleación de superficie sólida

En la nucleación de superficie sólida, a diferencia de la anterior, el retiro de energía del vapor tiene lugar por transferencia de calor de la fase gaseosa además de la de superficie sólida.

Para terminar se debe señalar que en la nucleación intervienen diversos fenómenos, los cuales se tratan en el Apéndice I .

1.2. Clasificación

La condensación se clasifica cualitativamente en función de donde se lleve a cabo el cambio de fase de vapor a líquido de una sustancia, y este puede tener lugar en el seno de la masa de un fluido (condensación directa) ó sobre una superficie enfriada, (condensación por gotas ó por película), [1], Fig. 1.

1.3. La Condensación Directa

En la condensación directa, se logran alcanzar muy altas tasas de transferencia de calor, debido a que la condensación misma tiene lugar directamente en la interfaz que forman el vapor y el líquido; este tipo de condensación se puede realizar en diferentes formas: condensando un ambiente de vapor con un chorro líquido ó condensando un ambiente de vapor con un líquido atomizado, y condensando vapor en una masa de líquido [2].

Los cambios instantaneos en la configuración que adquiere la interfaz, son el resultado de la rapidez con que ocurren los procesos de transporte de masa y energía que tienen lugar en las regiones cercanas a la frontera del vapor y el líquido; el entendimiento del comportamiento de dicha interfaz es el objetivo principal de los trabajos relacionados con el tema; pero debido a que el fenómeno es extremadamente complejo la mayoría de las investigaciones se han realizado mediante estudios experimentales.

1.4. La Condensación Directa en la Tecnología Actual

La inyección de vapor dentro de un líquido subenfriado de la misma sustancia es un evento común en muchos sistemas industriales de flujo en dos fases, tales como: generadores de vapor, hervidores y sistemas de seguridad de reactores nucleares; en los cuales el comportamiento de la interfaz es determinante para la operación eficiente y segura de los citados equipos.

En la década de los 70's. las investigaciones relacionadas con la condensación directa se vieron incrementadas debido al desarrollo de tecnología para las plantas nucleoeléctricas. Actualmente se siguen realizando trabajos que tienen como principal objetivo el estudio del fenómeno para aplicación a los sistemas de seguridad, como ejemplo se puede citar que: ante una perdida accidental de refrigerante en un reactor nuclear de agua en ebullición (BWR), se descarga el vapor del sistema de refrigeración primario a través de tubos verticales de inyección en el agua fria de una piscina contenida en el recipiente eliminador de presión, dando lugar al fenómeno de condensación directa, el cual presenta como una de sus características principales un ruido producido por el intercambio de energia entre el vapor y el liquido subenfriado. El estudio del mencionado ruido es de suma importancia para fines de diseño estructural por la diversidad de frecuencias v amplitudes que presenta la acústica asociada a la condensación directa.

CAPITULO II. ANTECEDENTES

2.1. Revisión bibliográfica

El fenómeno producido al descargar un gas condensable dentro del seno de un líquido ha atraído la atención de los investigadores de diversas disciplinas e intereses. En el caso de procesos en donde tiene lugar la condensación de una sustancia simple (vapor de agua en agua), los estudios en el campo de la condensación directa se vieron activados como resultado de la aplicación a los sistemas de seguridad en la industria nuclear en el caso de una pérdida accidental de refrigerante.

En 1972, Kerney et al. [3] realizaron estudios sobre la inyección horizontal de vapor de agua con inyectores de sección constante y de sección convergente-divergente para diversas geometrías externas en condiciones de flujo ahogado, es decir, cuando el inyector alcanza la condición de flujo másico máximo permisible para su sección transversal, logrando establecer una correlación para la longitud de entrada del vapor en el seno del líquido en función del gasto másico, el diámetro del inyector y el potencial director de condensación B, definido como

En 1973 Weimer et al. [4] efectuaron experimentos similares de inyección horizontal, usando diferentes sustancias de trabajo,

para encontrar una correlación que predijera la longitud de penetración del vapor sobre un amplio rango de condiciones de operación tanto del vapor como del líquido.

En 1974 Kudo [5] llevó a cabo estudios básicos sobre los sistemas eliminadores de presión. Mediante ensayos de inyección vertical hacia abajo de vapor de agua a través de un tubo de sección circular constante y proponiendo el modelo de difusión turbulenta para el flujo de calor, identificó las características principales que presentan los chorros de vapor en condensación. Además con la ayuda de la fotografía determinó que la longitud (altura) del cono de vapor, formado de la fase continua gaseosa, se incrementa hasta 2.5 veces el diámetro del invector, en condiciones de subenfriamiento menores de 40°C y velocidades de salida de la boquilla menores a 640 m/s, estando la altura del cono controlada por la transferencia de calor de condensación en la frontera líquido vapor.

En el mismo año Young et al. [6] investigaron experimentalmente la inyección horizontal de un chorro de vapor de alta velocidad en contacto y condensándose dentro de un flujo coaxial de agua subenfriada en la misma dirección, utilizando una boquilla convergente-divergente. El propósito principal fué examinar el fenómeno en la interfaz y visualizarlo para diferentes condiciones de contrapresión. Las características dinámicas junto con los

registros de sonido se clasificaron cualitativamente, y como uno de los resultados de ese trabajo se propuso una correlación para el coeficiente de transferencia de calor h en términos del número de Stanton [St = h / ρ C $_{p}$ V^{*}] y el número de Reynolds [Re = ρ V^{*}D / μ], basada en el modelo de flujo de Reynolds (modelo de flujo hipotético en la vecindad de una interfaz en donde tienen lugar fenómenos de tranferencia de calor y masa [7]) con velocidad característica de interfaz V^{*} que toma en cuenta efectos viscosos.

$$St = 6.5 \text{ Re}^{-0.40}$$
 (2)

Aunado a lo anterior se reportaron seis distintos regimenes de comportamiento del chorro de vapor que generan un ruido característico que aparenta provenir de las variaciones súbitas de presión, del colapso de la burbuja y del flujo turbulento.

En 1978, Cumo et al. [8] utilizaron un modelo de pequeña escala con el que realizaron pruebas inyectando verticalmente hacia abajo vapor de agua con características de flujo crítico, todo esto con el objeto de estudiar las leyes básicas de tranferencia de calor en condensación directa, reportando diferentes configuraciones del cono de interfaz, que pueden ser estables o inestables y que dependen de las variables independientes, temperatura de subenfriamiento ΔT_{sub} y la calidad del vapor x. También sugirieron la correlación para el coeficiente de transferencia de calor de

condensación directa h_{cd}.

$$h_{cd} = (360x^2 - 530x - 250) \Delta T_{cub}^{(x/10.50) + .28}$$
 (3)

En ese mismo año Chan [9] utilizando agua como fluido de trabajo. con toberas convergentes de diferentes diámetros y con inyección vertical hacia abajo, investigo el mecanismo fundamental del pulso dinámico de presión, provocado por la condensación de un chorro de vapor de alta velocidad para diferentes grados de subenfriamiento, siendo el principal objetivo, el entendimiento básico de los diferentes modos de pulsación, especialmente cuando la temperatura del agua de subenfriamiento esta cercana a la de saturación. I.a pulsación de la presión, según Chan, puede explicarse por una teoría basada en la expansión y compresión del chorro, la cual se correlaciona bien con las observaciones experimentales aue consideran la frecuencia y la magnitud del pulso con el diámetro del inyector. Adicionalmente en el mismo año, algunos autores se interesaron en desarrollar modelos a escala y analíticos para sistemas eliminadores de presión.

En 1980 Block [10] examinó diferentes procesos de condensación directa, describiendo el fenómeno y suministrando varios ejemplos donde la condensación influye y a la vez es influenciada por movimientos del fluido, sugiriendo finalmente un mapa universal tridimensional de regimenes para la condensación directa.

Bankoff [11] por su parte, también efectuó la revisión de algunos estudios de condensación relacionados con los sistemas de seguridad de reactores nucleares, donde señaló los avances realizados en el desarrollo de modelos analíticos como los de Kondas (1977), Kowalchuk-Sonin (1978) y Sursock-Duffley (1978), en los cuales se utiliza la teoría de transporte turbulento para la predicción del coeficiente de tranferencia de calor de condensación para diferentes procesos que incluyen chorros sumergidos; para este caso en particular, mediante la elección adecuada de escalas, evaluaciones directas de turbulencia y de flujo de calor, condujeron a una concordancia razonable con los datos de frecuencia de traqueteo registrados sobre un amplio rango de dimensiones características. Además, aunque para el caso de los grandes coeficientes de condensación no se haya logrado un entendimiento aceptable, esta cualidad de los coeficientes se puede asociar con las inestabilidades de la interfaz, así como también con los mecanismos de transporte que ocurren directamente en la interfaz.

En 1982 Chan y Lee [12] con el objeto de clasificar sistemáticamente el movimiento de la interfaz, experimentaron con la inyección vertical hacia abajo de vapor de agua, con flujos subsónicos pequeños, logrando construir un mapa de regimenes de condensación considerablemente más detallado que el presentado en 1978 [13], en este mapa se identifican ocho diferentes modos de

condensación, los cuales son denominados: de resoplido o traqueteo interno. de interfaz oscilatoria. resoplido-burbuja de desprendible. de resoplido-burbuja encapsulada, de burbuja oscilatoria. burbuja elipsoidal de oscilatoria. de chorro elipsoidal y de chorro cónico oscilatorio tal como se indica en la Fig.2..

Fig.2. Mapa de regimenes de condensación.(tomado de Chan y Lee[12])

El resoplido interno ocurre para bajos flujos másicos y bajas temperaturas de alberca; y la interfaz líquido-vapor permanece dentro del tubo inyector. Para temperaturas de alberca ligeramente

mayores, el modo de condensación cambia, dando como resultado que la interfaz logre extenderse hasta el exterior del inyector, formándose una burbuja que se desprende y colapsa. Inmediatamente después, el agua de la alberca fluye rápidamente hacia el interior del tubo, completándose así el ciclo que caracteriza el modo denominado resoplido-burbuja desprendible. A medida que la temperatura de la alberca se incrementa, la región de vapor se alarga alrededor del ducto inyector antes de colapsarse. particularizándose de esta manera el modo de resoplido-burbuja encapsulada. Para altas temperaturas de la alberca, la interfaz permanece completamente afuera del tubo, conservando una forma mas o menos esférica, denominándose a éste modo burbuja-oscilatoria, ésta forma de condensación ocurre también para flujos másicos moderados y amplios rangos de temperatura. Para muy altas temperaturas de alberca y flujos de vapor moderados, las regiones ocupadas por el vapor se incrementan, formando una burbuja oscilatoria elipsoidal. Para flujos másicos mayores aún, la interfaz adquiere una forma de cono semiestable o chorro. En la medida que el flujo másico, a la salida del inyector, se aproxima al limite sónico, la interfaz deviene relativamente estable disminuyéndose en consecuencia, las pulsaciones peculiares del fenómeno de condensación directa. La Fig.3. muestra concepciones artísticas de diferentes configuraciones de la interfaz en la condensación directa.

(b) m=1.1x10 kg/m -hr; d=0.635 cm; AT=64 C

(c) m=1,1x10 kg/m²-hr; d=0.635 cm; ΔT=37²C

(d) $\dot{m}=5.3 \times 10^6 \text{ kg/m}^2 - \text{hr}; d=0.635 \text{ cm}; \Delta T=37^6 \text{ C}$

Fig.3. Variación en el tiempo de la configuración de la interfaz, para diferentes flujos másicos en tobera de diámetro d, y subenfriamiento ΔT. Tomado de Simpson y Chan [14].

Otro trabajo del mismo año fue realizado por Simpson y Chan [14], quienes realizaron experimentos para pequeñas escalas con invección vertical hacia abajo de vapor de agua como fluido de trabajo con diversos diámetros de tubo gastos másicos intermedios v (subsónicos). Dichos autores estudiaron los efectos paramétricos del subenfriamiento y el flujo másico de vapor en el proceso de condensación sobre las oscilaciones (pulsaciones) dinámicas de presión, afirmando que el comportamiento dinámico de chorros subsónicos y sónicos es diferente. También observaron mediante la que el movimiento de la interfaz de un fotografia. chorro subsónico es periódico. compuesto por tres configuraciones: crecimiento, translación y separación de la burbuia. De 108

parámetros intensivos considerados, la temperatura de subenfriamiento ΔT_{gub} exhibió la mayor influencia sobre el comportamiento dinámico. El resultado principal encontrado en este trabajo, fue que la frecuencia, caracterizada por el número de Strouhal (St = fd $\rho_{L}/u_{o}\rho_{v}$), se puede correlacionar con muy buen ajuste al considerar al número de Jacob (Ja = $\rho_{L}CP_{L}\Delta T / \rho_{v} h_{fg}$) y al número de Reynolds (Re = u d / ν).

La investigación teórica hecha en ese mismo año por Chen y Faeth [15], acerca de chorros de vapor turbulentos condensándose sumergidos en líquidos subenfriados, tuvo como objetivo, desarrollar un modelo del proceso empleando la aproximación de flujo localmente homogéneo para dos fases en conjunción con el modelo turbulento $k-\varepsilon-g$. El modelo del proceso fue evaluado utilizando mediciones existentes en la literatura, para diferentes fluidos de trabajo, restringido a flujos que tienen como fuerza directora dominate al momentum, obteniéndose como resultado una correlación entre longitud de penetración del chorro X_{c} y el potencial de condensación B.

$$x_{d} = 17.8 (\rho_{d} / \rho) / B$$
 (4)

En 1983, Del Tin, Lavagno y Malandrone [16], investigaron teórica y experimentalmente el fenómeno de condensación de vapor de agua inyectado vertical y horizontalmente con diferentes diámetros de

tobera, en condiciones sónicas, es decir, de chorro estable. Teniendo como objetivo identificar la forma del chorro y de las regiones líquidas contiguas, los autores reportaron la existencia de tres regiones muy bien definidas: la región común de la fase vapor (I), la región de interacción de la fase líquida (II) y una región líquida divergente amplia (III), Fig.4..

Fig. 4. Configuracion de un chorro estable [16]

Nariai [17], estudió experimental y analíticamente en 1984 la inyección vertical descendente con agua, para flujos másicos entre $30-120 \text{ kg/m}^2_{\text{B}}$ y temperaturas de alberca hasta 80° C, teniendo como objetivo investigar las frecuencias de oscilación en la región denominada de condensación oscilatoria Fig. 5., Obtuvo como resultado de dichos análisis, el planteamiento de un modelo matemático que describe el movimiento de la interfaz de la burbuja

a la salida del inyector, expresado por una ecuación diferencial de 3er orden, previa linealización de las ecuaciones básicas, mediante la cual se puede determinar la frecuencia de oscilación de la intefaz, considerando a esta última de geometría esférica ó cilíndrica.

Fig. 5. Clasificación de patrones de oscilación, según Nariai [17].

Lambier y Chow [18], en ese mismo año efectuaron la investigación experimental para inyección horizontal y vertical de vapor de agua para pequeños flujos másicos, proponiándose determinar el efecto de la orientación de la inyección, la temperatura de alberca y el flujo másico de vapor, sobre el pulso de presión. El análisis de

resultados reveló que en la inyección horizontal el vapor tiende a estratificarse, condensándose en el modo de burbuja desprendible; y que no existía diferencia en el pulso de presión entre la inyección horizontal y vertical.

Más recientemente en 1986, Nariai y Aya [19] mediante experimentos de simulación de sistemas supresores de presión en pequeña escala, examinaron los patrones típicos de oscilación en los modos de condensación de resoplido y condensación oscilatoria, desarrollando análisis lineales de frecuencia y de amplitud para modelos de burbuja esférica y cilíndrica.

También en este año Celata et al.[20] realizaron experimentos para estudiar la condensación directa de un vapor saturado y en reposo en contacto con un flujo lento de agua subenfriada. De los datos obtenidos en la fase experimental se determinó el coeficiente de tranferencia de calor en función del flujo másico, la temperatura de entrada del agua y la temperatura de saturación del vapor para números de Peclet mayores y menores de 400.

En 1989 Brown et al.[21] presentaron una correlación empírica para determinar la tasa de condensación del vapor seco sobre un líquido subenfriado en régimen turbulento considerando despreciable el esfuerzo cortante en la interfaz.

Aya y Nariai en 1990 [22], estimaron experimentalmente el coeficiente de transferencia de calor de condensación de contacto directo de agua fria y vapor, para diferentes formas de configuración de la interfaz.

2.2. Principales resultados.

De la revisión bibliográfica reseñada en las páginas anteriores puede apuntarse que los trabajos desarrollados sobre el fenómeno de la condensación directa tratan sobre diversos aspectos específicos, los cuales a manera de resumen se enlistan a continuación.

-Longitud de penetración del chorro de vapor x.- Para este aspecto se han realizado estudios experimentales que lograron determinar expresiones que se correlacionan con el potencial director de condensación B, con la velocidad másica del vapor G_o y el radio del inyector r_o, para diferentes condiciones de operación, varios fluidos de trabajo y diferentes tipos de inyector.

-Perfiles característicos de chorros de vapor.- En éste tema se han desarrollado estudios experimentales y teóricos los cuales reportan que la geometría de chorros de vapor condensándose en altos subenfriamientos es de configuración cónica, con longitud característica 1/d que depende de la velocidad del vapor u_o y de la temperatura circundante T. También se ha señalado que el

chorro de condensación adquiere diferentes configuraciones cónicas, estables o inestables, en función del flujo másico específico G, de la temperatura de subenfriamiento ΔT_{gub} , y de la calidad del vapor x. Para el caso de chorros estables, se ha logrado clasificar la configuración en tres regiones denominadas: de fase de vapor, de interacción con la fase líquida y la divergente amplia.

-Coeficiente de transferencia de calor h_{cd} .- Para este importante aspecto se han llevado a cabo estudios experimentales que han identificado los parámetros que gobiernan directamente el fenómeno de tranferencia de calor en la interfaz, lográndose correlacionar los datos experimentales por medio del número de Stanton y del número de Reynolds. Otros estudios similares han investigado las leyes básicas de la transferencia de calor en condensación directa, y mediante análisis numéricos de los datos experimentales han logrado reconocer a la temperatura de subenfriamiento ΔT_{sub} y a la calidad de vapor x como variables independientes para el cálculo del coeficiente de transferencia de calor h_{cd} .

-Pulsación de presión.- Para este tópico se han realizado experimentos para chorros estables e inestables. En lo que respecta a chorros inestables en contacto con agua de bajo subenfriamiento $T_L^{\geq 70^{\circ}C}$, la pulsación de presión ha sido explicada por medio de una teoría basada en la expansión y compresión del

AUTOR AñO TRABAJO RESULTADOS Modelo para chorros con momentum como fuerza direc-1982 Chen et al. Estudio teórico sobre la condensación de chorros de vapor sumergidos en líquidos subenfriados. tora principal $x_c/d = 17.8 (\rho_o/\rho_m)^{\frac{1}{2}}/B$ 1983 Del Tin et al. Estudio teórico-experimental sobre las caracte-Identificación de tres regiones principales. rísticas térmicas y fluidodinámicas de chorros Obtención de perfiles de: de vapor condensándose Temperatura, velocidad y longitud de penetración 1984 Nariai et al. Estudio analítico-experimental sobre la fre-Representación del movimiento de la interfaz de una cuencia de oscilación en la condensación osciburbuia de vapor mediante una ecuación diferencial latoria inducida por la condensación del vapor lineal de tercer orden. dentro una piscina de aqua. 1984 Lambier et at. Estudio experimental sobre el pulso de presión Se encontró que el pulso de presión no depende de la orientación vertical u horizontal del chorro para descargas vertical y horizontal de vapor en aqua subenfriada Z - longitud de la burbuja con geometría cilíndrica 1986 Nariai et al. Estudio teórico-experimental sobre la oscilación de presión que ocurre en la condensación $Z = C' \operatorname{sen} w_{c} t - \frac{D}{w^{2}} t$ de contacto directo de un flujo de vapor con aqua fria. 1986 Celata et al. Estudio experimental de condensación directa Determinación del coeficiente de transferencia de de vapor saturado en reposo en contacto con un calor en función de flujo másico de aqua y las temflujo lento de agua subenfriada peraturas del agua a la entrada, y del vapor. Nu = 0.021 Re^{1, 31}/₃₁ Pr^{1,8} para Pe < 400 Nu = 0.043 Re^{1,3} Pr^{1,6} para 400<Pe<1500 1990 Brown et al. Estudio teórico experimental para determinar la Correlación de tasa de condensación de la forma tasa de condensación del vapor seco sobre un liquido subenfriado en régimen turbulento. St = St (Ri, Pr_b)(1-Ja/2) para 350<Re<11000 St = Número de Stanton modificado = f (Pr, Pr, Ri, Re) 1991 Ava et al. Estudio experimental para determinar el coefi-Mapa de coeficientes de transferencia de calor en ciente de transferencia de calor de condensación condensación de contacto directo [21]. de contacto directo de agua fria y vapor para diferentes formas de configuración de la interfaz.

in a start and start and starts

chorro. Para chorros estables se ha logrado constatar que la orientación de la inyección de vapor no afecta al fenómeno de pulsación.

-Movimiento de la interfaz .- Para este caso, inicialmente se realizaron estudios experimentales que lograron clasificar sistemáticamente el movimiento de la interfaz en función del gasto másico G y la temperatura del agua de la alberca T_{i} , obteniéndose mapas de regimenes de condensación. También se han presentado clasificaciones cualitativas del sonido emitido por el fenómeno. Recientemente se han desarrolladoo trabajos que presentan modelos matemáticos simplificados que describen algunos tipos de movimiento de la interfaz.

2.3. Cuadro Sinóptico

A continuación se presenta un cuado sinóptico de los trabajos citados en éste capítulo.

AñO	AUTOR	TRABAJO	RESULTADOS
1972	Kerney et al.	Estudio experimental sobre las características de penetración de un chorro de vapor sumergidos	XB = 0.7166B ^{0·189} (G _o /Gm) ^{0·64}
1973	Weimer et al.	Estudio experimental de la penetración de cho- rros de vapor sumergidos en líquidos subenfri <u>a</u> dos.	x _c /r _o = 35.5 (G _o /Gs) ⁴ [(ρ _o -ρ _s) ⁴ B]
1974	Kudo	Estudio experimental básico sobre supresión de presión.	<pre></pre>
1974	Young et al.	Estudio experimental de la interacción vapor- líquido de un chorro de vapor de alta veloci- dad condensándose en un flujo coaxial de agua	St - número de Stanton Re - número de Reynolds St = 6.5 Re ^{-0.40} para 1.1x10 ⁻² kg/seg <m<sub>s< 2.4 x 10⁻² kg/seg</m<sub>
1978	Cumo et al.	Estudio experimental sobre transferencia de calor directa en sistemas de supresión de presión.	h_{DC} - coeficiente de transferencia de calor en cor densación directa h_{DC} = (360 x ² - 530 x + 25)) T (x/10.5)+0.26 sub
978	Chan	Estudio experimental sobre el pulso dinámico de presión en un chorro de vapor en condensa- ción	La pulsación de la presión se explica adecuadament con una teoría que considera una interfaz oscilato ria.
1980	Block	Estudio teórico bibliográfico de fenómenos que son gobernados por movimientos de fluidos ind <u>u</u> cidos por la condensación directa.	Mapa universal tridimensional de xegímenes de con- densación directa [10].
1980	Bankoff	Revisión de algunos estudios relacionados con sistemas de seguridad de reactores nucleares.	Estimación del coeficiente de transferencia de ca- los en condensación directa con la aplicación de la teoría de transporte turbulento.
1982	Chan et al.	Estudio experimental para la clasificación del movimiento de la interfaz en la inyección ver- tical descendente.	Mapa de regimenes de condensación Fig. 2
1982	Simpson et al.	Estudio experimental sobre la hidrodinámica de un chorro subsónico de vapor en líquido subenfri <u>a</u> do.	St - número de Strouhal Ja - número de Jacob Re - número de Reynolds
			St = 0.011 Ja ^{0.72} Re ^{0.25} $\frac{\Delta P}{P} = 0.024 \left(\frac{r_o}{R}\right)^{0.75} Ja^{1.4}$ Re $\Delta P = diferencia de presión$

De los aspectos específicos importantes de la condensación directa, resúmidos anteriormente, destacan los del cálculo del coeficiente de tranferencia de calor y el del movimiento de la interfaz, siendo éste último el aspecto de interes en el presente trabajo, en donde se considera como objetivo fundamental el estudio del ruido producido por el cambio de la configuración de la interfaz en función del subenfriamiento, la velocidad del vapor y la tensión superficial.

ስ

2-

No Hay Hejs 24

CAPITULO III.

DESCRIPCION Y DISENO DEL EXPERIMENTO

3.1. Descripción de las pruebas

Con el fin de reproducir el fenómeno de condensación directa en las diversas condiciones de operación, de interés propio para el estudio de la variación de la interfaz objeto del presente trabajo, se diseñó un experimento mediante el cual se obtuvieron registros de los parámetros que caracterízan dicho fenómeno. Para poder realizar el experimento en las instalaciones disponibles se construyó un modelo experimental de pequeña escala. Inicialmente, el modelo contó con un micrófono para registrar el ruido producido por las variaciones de la interfaz; pero la necesidad de corroborar la veracidad de los registros acústicos, hizo indispensable la realización de experimentos complementarios que requirieron la incorporación de técnicas ópticas para el registro de la variación de la interfaz, para que de esta manera se pudieran comparar ambos resultados.

3.2. Selección de la sustancia de trabajo

Debido a que el presente estudio experimental tiene como objeto colaborar al mejor entendimiento del fenómeno de la condensación directa para aplicaciones en seguridad de reactores nucleares, inestabilidad en calderas y golpe de ariete en sistemas con flujo a dos fases, en los cuales la sustancia de trabajo es el agua, se considero necesario trabajar con el mismo fluido.

La abundante disponibilidad así como su fácil manejo en gran

variedad de procesos, hacen al agua el fluido idóneo para la realización de experimentos a temperaturas entre 15 y 150°C que tengan costo moderado. Por otro lado, el agua es la sustancia simple más conocida en función de sus propiedades.

3.3. Parametros preponderantes

Con base en el capítulo anterior y considerando particularmente los experimentos de inyección de vapor en el seno de un líquido subenfriado, los parámetros que mayormente llaman la atención del investigador son: el gasto másico de vapor (G_o), el diámetro del inyector (d), la presión del vapor (P_{ab}), la temperatura del líquido suenfriado (T_L), y en algunos casos, la frecuencia (f). Lo anterior es comprensiblemente razonable debido a que con los mencionados parámetros es factible determinar el régimen de flujo, la capacidad del líquido subenfriado para absorber la energía liberada en la condensación y la frecuencia fundamental del fenómeno, los que para el presente trabajo son considerados de suma importancia para la consecusión de los objetivos establecidos.

3.4. El Arreglo experimental

El experimento se llevó a cabo en el Laboratorio de Maquinas Termicas de la Facultad de Ingeniería de la U.N.A.M., donde se encuentra instalado el aparato experimental, mostrado esquemáticamente en la Fig. 11., constituido básicamente por cuatro subsistemas: el de suministro y medición del gasto de
vapor, el de suministro de agua subenfriada, el de drenaje y el del recipiente de condensación.

El recipiente de condensación (A) consiste en un tanque cilindrico vertical de sección circular de 0.9 m de diámetro y 1.2 m de altura, construido con lámina de acero al carbón de 0.0016 m de espesor, abierto a la atmósfera en su parte superior. A 0.1 m del fondo del recipiente se localizan un par de ventanas paralelas rectangulares de $0.27 \text{ m} \times 0.37 \text{ m}$, con vidrio de 0.006 m. de espesor. En el centro de la tapa circular inferior del tanque se encuentra el tubo de inyección de 0.0063 m de diámetro y 0.12 mde longitud. En la parte superior externa y soportado por una estructura metálica, se localiza el mecanismo del tipo mesa de coordenadas, para soporte y movimiento del sensor de temperatura.

El sistema de suministro de vapor y medición de gasto (B) esta construido con tuberia de fierro galvanizado cédula 40, de 0.013 m de diámetro nominal,dotada en su longitud total con aislamiento térmico a base de medias cañas de asbesto de 0.025 m de espesor. La línea de vapor proviene directamente de un generador de vapor humotubular de 100 C.C. tipo paquete, instalado en el laboratorio y cuenta con: una válvula de compuerta para interrumpir el flujo de vapor proveniente de la caldera, una válvula de globo para controlar manualmente el gasto másico y con un sobrecalentador eléctrico de 1.5 kW que permite al vapor alcanzar las condiciones

Fig 6, Esquema del aparato experimental

de saturación; inmediatamente después de la salida de este último dispositivo y sobre la continuación de la línea de suministro, se encuentra la línea de derivación hacia el serpentín del medidor de gasto, como se muestra en el esquema del aparato experimental.

El sistema de suministro de agua subenfriada (C) esta constituido por una línea construida con tuberia de fierro galvanizado de 0.013 m de diámetro nominal, cédula 40, interconectada con la red que abastece de agua potable al laboratorio.

El sistema de drenaje (D) lo forma una línea construida con tuberia de fierro galvanizado de 0.013 m de diámetro nominal, cédula 40, que descarga al drenaje del laboratorio.

3.4. Aparatos de medición y equipo auxiliar

El equipo complementario del modelo experimental lo constituye: - Una grabadora marca Hewlett Packard mod. 3964A con 4 canales de grabación, para carrete de 0.1778 m de diámetro y cinta de 0.0063 m de ancho, que cuenta con 6 velocidades de grabación y con botones para alto, marcha adelante, marcha atrás, y grabación. En el modo de grabación directa reproduce desde 50 Hz hasta 64000 Hz, y en el modo de grabación FM reproduce desde DC hasta 5000 Hz, dependiendo de la velocidad de grabación. El equipo tiene la capacidad de registrar voz a través del microfono HP-0960-0316 en el canal número 4.

- Un termómetro digital marca Doric modelo 400A, provisto con botones selectores para diversos tipos de termopar, con una resolución de 1^oC.

- Un osciloscopio marca Tecktronix modelo 564, con amplificador diferencial tipo 3A3 y base de tiempo 3B3.

3.5. Procedimiento experimental y mediciones

Habiéndose instalado e instrumentado apropiadamente el modelo descrito en el capítulo anterior, se depositó una masa de agua a temperatura ambiente hasta alcanzar un nivel de 0.6 m por arriba de la descarga del tubo inyector.

El procedimiento experimental consistió en dejar fluir vapor de la caldera hacia la entrada del tanque,fijándose una posición de la válvula de globo localizada en la línea de suministro, logrando así mantener una presión constante que se registra en el manómetro del sobrecalentador, y en consecuencia proveer de ésta manera un gasto másico constante de vapor. La prueba se inició al entrar el vapor a la piscina de agua subenfriada a temperatura ambiente y finalizó cuando la temperatura de la alberca alcanzó un valor cercano al de la saturación; en ese momento, el flujo de vapor de derivó hacia la línea que lo conduce al serpentin del medidor de gasto para su cuantificación directa.

Durante cada una de las pruebas se tomaron aleatoriamente una serie de registros de la temperatura del agua de la alberca, próxima a la interfaz, y los correspondientes registros del sonido emitido por el proceso de condensación. La temperatura se midió utilizando alambre termopar del tipo T (cobre-constantán), calibre 30, teniendo la parte sensora una unión producida por impacto. evitándose así el uso de soldadura; el termopar en su otro extremo se conectó al termómetro digital Doric especificado anteriormente. El desempeño de éste instrumento fue comparado, a manera de calibración, con un termómetro de bulbo de mercurio. Los registros de la temperatura se efectuaron mediante la manipulación del mecanismo posicionador, ubicando el sensor justamente a la salida del tubo inyector y desplazándolo perpendicularmente al flujo hasta encontrar la interfaz, caracterizada ésta, por delimitar dos regiones de temperaturas notoriamente diferentes, tomando a la temperatura menor como la temperatura del agua de la alberca. El registro del sonido se llevó a cabo en forma paralela al de temperatura, lográndose de esta manera tener los registros correspondientes de sonido emitido por la condensación y la temperatura del agua circundante a la interfaz. Las grabaciones de sonido se realizaron con la grabadora HP-39644 por medio del microfono HP-0960-0316 conectado al canal número 4 en el modo de registro directo, con velocidad de 3 3/4 in/s equivalente a 0.0952 m/s con una reproducción de frecuencias desde 50 Hz hasta 16000 Hz: el tiempo de duración de cada registro fue aproximadamente de 15 segundos.

El valor constante de la presión del vapor a la entrada del tanque se registró visualmente mediante la lectura directa en un manómetro del tipo tubo de Bourdon, previamente calibrado, localizado en la parte inferior del tanque. La cuantificación del gasto másico de vapor se llevó a cabo, inmediatamente después de finalizar la prueba, al derivar el flujo de vapor hacia el serpentín del condensador y pesar en una báscula el condensado recolectado durante un intervalo de tiempo de aproximadamente 300 segundos.

Para el estudio experimental desarrollado en el presente trabajo se seleccionaron los registros de sonido considerados como los más representativos del proceso. En la Tabla 1 se enlistan las mediciones de temperatura del agua de la alberca T_L , de la presión del vapor a la entrada del tanque P_{ab} y del gasto másico de vapor (condensado) G_o para cinco diferentes pruebas que fueron realizadas de la manera antes descrita.

TABLA 1. PRUEBAS, MEDICIONES Y REGISTROS DE GRABACION

PRUEBA	Pab	G	TL	REGISTRO DI	GRABACION
	kPa	kg/m ² s	°c	CINTA	SEGMENTO
I	126.60	149.68	28	II	373-377
			61		477-481
			68		538-541
			89		575-581
II	175.50	313.16	34	II	75-81
a service and have been by the service of the servi			46		126-134
			88		311-315
III	273.60	498.93	22	I	849-852
			33		865-868
			49		890-893
			73		921-924
			88		945-948
IV	371.60	684.71	17	I	629-631
			46		637-639
			60		641-643
			88		655~657
v	420.70	790.86	17	III	326-330
			29		340-344
			56		380-385
			74		405-410
			83		420-425
			86		425-430

ANALISIS DE REGISTROS EXPERIMENTALES

CAPITULO IV.

4.1. Procesamiento de datos experimentales

De la informacion recopilada a lo largo de las cinco pruebas de que consta el estudio experimental, la señal de sonido registrada en cinta magnética se procesó digitalmente para su análisis.

Como primer paso para proceder al análisis del sonido, se identifico el ancho de banda de la señal mediante la ayuda del analizador de espectros del Laboratorio de Electrónica de la División de Estudios de Posgrado de la Facultad de Ingeniería de la UNAM, marca Hewlett-Packard modelo 8553B, con rango de frecuencia de 10 Hz a 300 KHz y resolución de 10 Hz. Después de analizar diferentes grabaciones de cada una de las cinco pruebas mediante la lectura directa en la pantalla del instrumento, se descubrió que las señales del sonido de la condensación mostraban diferentes rangos de frecuencia, pero todos ellos con valores inferiores a 3200 Hz.

4.2. Digitalización

Con el fin de realizar un análisis más detallado del sonido, la señal se proceso digitalmente utilizando una computadora PDP 11/40 con sistema operativo RSX-11M. Localizada en el Laboratorio de Procesamiento Digital de Señales (LAPRODIS) de la Dirección General de Computo Académico de la U.N.A.M..

La información registrada en cinta magnética fué primeramente filtrada mediante un filtro activo con pasa baja de 3200 Hz y pasa alta de 50 Hz, después fue convertida a una señal digital a través

de un convertidor analógico/digital, teniéndose la precaución de que la rapidez de muestreo fuera por lo menos dos veces la frecuencia más alta presente en la señal analógica, seleccionándose la frecuencia de corte o frecuencia de Nyquist de 6400 Hz.

4.3. Procesamiento digital de señales

El procesamiento digital de la señal se realizó mediante la utilización del programa llamado Sistema de Laboratorio Interactivo (I L S, Interactive Laboratory System). El programa ILS ha sido desarrollado como un conjunto de módulos programa autocontenidos, los cuales se utilizan seriadamente, cada módulo programa es un comando o instrucción del ILS que ejecuta una tarea específica. Los módulos programa estan almacenados en disco y se llevan hacia la memoria de uno en uno por instrucción del usuario. El ILS ha sido escrito para ser capaz de utilizar dispositivos periféricos: para almacenamiento y recuperación de datos, para listados y para comparar las representaciones analógicas con las representaciones digitales de la señal. El medio principal de interacción con el ILS es una terminal que posee la capacidad de graficación.

Para efectos del procesamiento de las señales, se seleccionaron los registros de grabación listados en el capítulo anterior considerándolos como los más representativos de cada uno de los cinco procesos en estudio. Los citados registros se almacenaron en archivos primarios para posteriormente recuperarse a través de la

instrucción FIL (FILE), que especifica, crea, o suprime archivos de datos. Con el fin de observar la representación de la señal en el dominio del tiempo se utilizó la instrucción DSP (DISPLAY), la cual exhibe o despliega la serie en el dominio del tiempo. Para determinar el tamaño mínimo de la muestra representativa, o sea el tiempo de grabación mínimo necesario a procesar sin perder las características estadísticas de la muestra, evitando de esta manera procesar demasiados datos que redundarían en un alto costo de tiempo de máquina, se utilizó la instrucción CST (COMPUTATION OF SAMPLED DATA STATISTICS), que realiza el cómputo estadístico de los datos de la muestra.Por último el análisis de contenido de frecuencias se llevó a cabo con la ayuda de las instrucciones FFT y SDI. La instrucción FFT (FAST FOURIER TRANSFORM) calcula 1a transformada de Fourier de una serie, listando el contenido de frecuencias con su correspondiente amplitud. La instrucción SDI (3-DIMENSIONAL DISPLAY OF SPECTRA), exhibe la gráfica del espectro de frecuencia en 3-Dimensiones; frecuencia, tiempo y amplitud.

Para obtener el tamaño mínimo de la muestra se procedió de la siguiente forma: la muestra digitalizada seleccionada. con duración de 5 segundos de grabación: tiempo elegido arbitrariamente, en base al monitoreo de la periodicidad de la señal, como el intervalo que contiene suficiente información para considerarlo como representativo del proceso, se archivo en 130 blocks en memoria, correspondiéndole 512 marcos cada uno con 64 puntos de la muestra. Mediante la instrucción CST se estimó la media aritmética de la amplitud de la señal en los 5 segundos de

duración de la muestra, una vez conocido el valor de la media se procedió a efectuar sucesivas estimaciones del valor que tomaba la media al disminuir sucesivamente a la mitad el tamaño de la muestra, notándose que la media conservaba un valor semejante hasta que el tamaño de la muestra disminuía a menos de 10 marcos ó 640 puntos que equivalen a 97 milisegundos de tiempo de grabación, tomándose este intervalo de tiempo como el tamaño mínimo requerido para el analísis.

4.4. Análisis e interpretación de resultados

El análisis de los resultados obtenidos a través del procesamiento digital de señales tiene como objetivo principal, determinar los valores de las frecuencias del sonido que caracterizan a la condensación directa en función de la temperatura del líquido y el régimen de flujo del vapor para las diversas pruebas realizadas.La estimación de los mencionados valores de frecuencia se efectuó mediante la observación de las gráficas de los espectros de frecuencia y la lectura de listados del correspondiente cálculo de la transformada rápida de Fourier (FFT). Las frecuencias obtenidas son valores promedio de cuatro diferentes puntos seleccionados arbitrariamente a lo largo de cada intervalo de tiempo. Después de una evaluación de los primeros valores promedio de frecuencia obtenidos, se consideró razonable aceptar el criterio que asumen Crow y Champagne. [19], en relación a la estructura de ordenamiento que se presenta en chorros turbulentos, dando como resultado, una segunda estimación de valores promedio de frecuencia que le asigna a la frecuencia fundamental el valor de la armonica de menor

frecuencia; utilizándose los resultados de esta segunda estimación para el análisis y la interpretación conducentes.

A continuación se muestran resultados gráficos del procesamiento digital de algunos segmentos representativos que caracterizan al fenómeno, encontrándose primeramente las gráficas de amplitud-tiempo y posteriormente el conjunto de las gráficas individuales tridimensionales de frecuencia-tiempo-amplitud, teniendo cada uno de los segmentos un tamaño de muestra correspondiente a 30 marcos, que equivalen aproximadamente a 0.29 segundos, siendo este intervalo de tiempo, tres veces mayor al mínimo requerido.

Los f_1 , f_2 y f_3 son los valores de frecuencia de las tres primeras armónicas de la gráfica de 3-D, que presentan la mayor amplitud; tomadas en riguroso orden descendente según el listado de FFT para los marcos 1, 10, 20 y 30. Las \overline{f} son los promedios aritméticos de cada una de las tres armónicas, considerando los valores de frecuencia de los marcos citados.

Los f_1^* , f_2^* y f_3^* son los valores de frecuencia f_1 , f_2^* y f_3^* reagrupados considerando que aparentemente siguen un patron de ordenamiento. También se estimaron los promedios \overline{f}^* tomando los valores correspondientes a los marcos 1, 10, 20 y 30.

En cada gráfica de 3-D se indican: la temperatura del agua de enfriamiento T_L medida cerca de la interfaz y la temperatura de subenfriamiento ΔT_{aub} .

PRUEBA 1

1/1

١٩

- al-

т_/= 89°С

 $\Delta T_{sub} = 5 °C$

C 11

PRUEBA II

• Presión 175.5 KPa m

 P_{μ}

14

rt 🗌

9/1

XH.

. .

1/1

ę,

TC. h f, f_1 Marco f₂ 500 1 10 726 1051 325 275 763 676 1114 1114 851 20 426 30 766 ₹=523 **∓**= 901 Ŧ= 722 f* f* f; A CONTRACTOR OF THE OWNER OF THE 500 726 1051 325 763 1114 676 851 275 1114 726 426 ₹*****=381 Ŧ*=732 Ŧ*=1032

∆T_{sub}= 6°C

τ_ι= 88°C

d'

,

 $\gamma_{i}^{C_{j}}$

Marco	f1	f2	fg	
1 7 20 30	325 375 363 250	1014 1089 1076 1126	1414 1414 1414 1427	
∓ =328		∓ =1075	₹-1417	
f *=328		f *=1075	T *=1417	

T_L= 86°C

∆T_{sub}= 8:°C

4.5. Pruebas complementarias

Con el fin de comprobar los valores de frecuencia f elexidos baio la suposición de que el fenómeno sigue el patrón de ordenamiento que se presenta en chorros turbulentos, se consideró necesario implementar otra forma diferente de medir la rapidez de variación de la interfaz. Para tal fin se seleccionó la propiedad que presenta la luz de cambiar de dirección al cambiar de un medio de propagación a otro, y se pensó que si se dirigia un rayo de luz en forma tangencial sobre la interfaz , éste se refractaría con la misma rapidez con que cambia la configuración de la interfaz, y que si esto sucedía, solo era necesario colocar colinealmente al haz un sensor de luz apropiado para lograr registrar la rapidez de refracción del rayo de luz y en consecuencia conocer la velocidad de cambio de la configuración de la interfaz. El circuito utilizado para las pruebas usa una celda del tipo CdS que varía su resistencia al variar la intensidad de luz que incide sobre la misma. El circuito se comporta de la siguiente forma: cuando se aplica un voltaje a la celda CdS , la corriente que pasa a través de la celda varía con la resistencia, la cual a su vez varía de acuerdo a la intensidad de la luz incidente. Esta corriente se envia a un circuito impreso donde se amplifica, posteriormente pasa por un transformador, un diodo rectificador y un medidor de donde se obtiene la señal a procesar.

Una vez implementados y realizados los experimentos que permitieron comprobar las hipótesis relativas a la refracción del rayo de luz dirigido sobre la interfaz, se desarrollaron una serie

de pruebas complementarias similares a las descritas en el capítulo anteriror.Para tales pruebas se incorporó al arreglo experimental una fuente de rayo laser de 101mW He-Ne y una fotoresistencia como dispositivo sensor, Fig. 7., mediante la cual se determinó la rapidez con que cambia la configuración de la interfaz, ya que esta rapidez de cambio está directamente relacionada con la variación de la intensidad de luz que incide sobre el sensor.

Fig. 7. Arreglo experimental con fuente de rayo laser y sensor.

Para determinar la rapidez de cambio de la configuración, el rayo laser se hizo incidir tangencialmente sobre la interfaz, quedando el haz sujeto a las súbitas refracciones producidas por las rápidas variaciones de la interfaz líquido-vapor, dando como resultado una fluctuación de la intensidad de luz detectada por la fotoresistencia, de quien a su vez se obtuvo una señal de voltaje que se registró en cinta magnética paralelamente con la señal obtenida a través del micrófono para el correspondiente análisis comparativo de frecuencias, lográndose de esta forma, identificar entre todas las frecuencias presentes en el registro de sonido, la frecuencia característica del sonido emitido por la condensación directa .

Las señales registradas en cinta magnética mediante el micrófono y la fotoresistencia se procesaron en un aparato analizador de espectros marca Mitutoyo mod. 8475756 localizado en el laboratorio de comunicaciones de la D.I.M.E. de la Facultad de Ingenieria de la U.N.A.M.. A continuación se muestran a manera de ilustración, gráficas (frecuencia - amplitud) de la señal optica y la señal de sonido para un valor dado de subenfriamiento; las cuales corresponden a las pruebas I y II (sección 4.4), donde se puede apreciar de forma clara que los valores de frecuencia seleccionados para el análisis y su correspondiente interpretacion son aceptablemente correctos si se considera la aleatoriedad del proceso de condensación directa.

: 58

a)

b)

a)

Fig. 10. Gráfica frecuencia-amplitud P = 126.5 kPa $\Delta T_{pub} = 6^{\circ}C$ a) señal óptica , b) señal de sonido

a)

Fig. 11. Gráfica frecuencia-amplitud P = 175.5 kPa $\Delta T_{sub} = 81^{\circ}C$ a) señal óptica , b) señal de sonido

Fig. 12. Gráfica frecuencia-amplitud P = 175.5 kPa $\Delta T_{gub} = 66^{\circ}C$ a) señal óptica , b) señal de sonido
4.6. Interpretación de resultados

La presente parte tiene como finalidad la interpretación de los resultados de la medición de los parámetros y del procesamiento digital de la señal de sonido, siguiendo el criterio y la metodología del trabajo desarrollado por Simpson y Chan [14] en un estudio experimental similar, sirviendo éste a su vez como modelo comparativo para los resultados recopilados durante el desarrollo de las pruebas del presente trabajo.

Primeramente se incluyen en la Tabla 2, los datos de propiedades del vapor de agua para cada prueba efectuada ; posteriormente se presenta, según previa explicación del criterio asumido, la Tabla 3 con los valores de las frecuencias fundamentales del sonido para los diferentes subenfriamientos, incluyéndose también los números adimensionales: Strouhal (St), Jacob (Ja), Reynolds (Re), que de acuerdo al criterio de Simpson y Chan, gobiernan el fenómeno.

TABLA	2	PROPIEDADES	DEL	VAPOR	DE	AGUA	ΕN	LAS	PRUEBAS

PRUEBA	Go	Pab	T SAT	v _g	h _{fg}	pª	С	v	đ
	kg/m ² s	kPa	°c	m ³ /kg	kJ/kg	kJ/kg	m/s	m/s	m
I	149.69	126.5	106	1.326	2239	2686	482.7	198.4	.0063
II	313.16	175.5	116	1.004	2213	2700	489.1	314.9	.0063
III	498.93	273.6	130	0.657	2172	2721	497.8	327.7	.0063
IV	687.71	371.6	141	0.498	2142	2735	504.5	340.9	.0063
v	790.86	420.7	145	0.442	2128	2741	507.0	349.5	.0063
		~ ~	~						

TABLA 3 RESULTADOS EXPERIMENTALES

							<u></u>		252.6	a giner	1.2			1.1	191
PRUEBA	T _L °C	∆T _s °C	Ē,	St.	Ja	Re									
I	28	66	325	13.6	163.4	7.0 X	105								
	61	33	331	13.9	81.7	-									
	68	26	247	10.3	69.3	-		er A A Aby							
	89	5	137	5.7	12.3	-									
II	34	60	453	9.0	113.8	1.5 X	10 ⁸								
	46	48	394	7.8	87.2	-									
	88	6	381	7.6	11.3	-				1971 - N.					
111	22	72	549	7.4	91.0	2.2 X	10 ⁶								
	33	61	437	5.5	77.1	-									
	49	45	346	4.3	56.9	-									
	73	21	318	4.0	26.5	-									
	88	6	328	4.1	7.5	-									
IV	17	77	1532	14.0	74.8	3.0 X	10 ⁸								
	46	48	1032	9.5	46.6	-									
	60	34	857	7.8	33.0	-									
	88	6	381	3.5	5.8	. •				den e			<u> </u> ?		
v	17	77	375	2.9	66.9	з. 5 х	10 ⁶								÷ 1
	29	65	400	3.1	56.4	-									
	56	38	319	2.5	33.0	-									
	74	20	372	2.9	17.3	-						arta Alta ya			
	83	11	465	3.7	9.5	-									
	86	8_	_328_	2.6	6.9	ر 	•;								

Con el objeto de comparar los resultados de la Tabla 3 se utilizaron las correlaciones obtenidas por Simpson y Chan, las cuales se muestran en la Fig. 13. y la Fig. 14.; en las que se puede comprobar que los rangos de losexperimentos correspondientes a ambos trabajos son similares, pero se puede ver que el presente trabajo abarca un mayor rango en las pruebas. La Fig. 13. muestra la dependencia de la frecuencia del sonido. representada por el número de Strouhal (St), con el efecto térmico y el efecto hidrodinámico, representados respectivamente por los números de Jacob y de Reynolds. Por simple observación de la gráfica, se pueden notar diferentes modos de dependencia. caracterizados por las diferentes pendientes que se aprecian tanto para las pruebas realizadas por Simpson Chan como para las efectuadas en este trabajo. En la Fig. 14. se grafica la correlación mencionada anteriormente, mostrando claramente la existencia de diversos modos de dependencia de la frecuencia com el grado de subenfriamiento del líquido y la velocidad de entrada del chorro de vapor, evidenciado ésto, por la marcada dispersión de los puntos de las diferentes pruebas; infiriéndose de inmediato que la correlación no es aplicable con buena aproximación para los resultados del presente trabajo.

Con base en lo anterior se juzgó conveniente investigar por separado, la dependencia de la frecuencia del sonido con el subenfriamiento, Fig. 15. y con la velocidad, Fig. 16., para los rangos de operación del presente estudio.

Fig. 13. Comparación de resultados del presente trabajo con Simpson y Chan [14].

Fig. 15. Dependencia de la frecuencia (Strouhal) con el subenfriamiento (Jacob).

Fig. 16. Dependencia de la frecuencia (Strouhal) con la velocidad (Reynolds).

La Fig. 15. revela que para los rangos contemplados en el presente estudio, la frecuencia del sonido producido por la condensación cambia linealmente con el subenfriamiento para todas y cada una de las velocidad asociadas con cada prueba; pero además, cambia con diferentes pendientes, lo cual denota la existencia de regiones definidas de variación.

La Fig. 16. muestra la variación no lineal de la frecuencia con la velocidad, revelando más claramente la regionalización del modo de variación; en otras palabras, dependiendo del valor de la velocidad, la frecuencia adquiere valores con diferentes grados de dispersión.

Para tratar de explicar la aparente regionalización caracterizada por el grado de dispersión de los valores que adquiere la frecuencia del sonido, se estimó necesario realizar el análisis dimensional correspondiente (Apéndice II), en el que con base a la observación realizada durante los experimentos, se considero detalladamente la física del fenómeno y se incluyó el mayor número de variables; a continuación se muestra la Tabla 4 que complementa a la Tabla 3 y que incluye los números adimensionales: Strouhal (St), Jacob (Ja), Reynolds (Re), Weber (We), Mach (Ma), Richardson (Ri); que de acuerdo al análisis dimensional son los que incluyen los parámetros que gobiernan al proceso en estudio.

TABLA 4 RESULTADOS EXPERIMENTALES

PRUEBA	 Т _L	 ∆T,		st,	 Ja		Re	Ma	Ri
	°c	<u>°c</u>	Hz						
I	28	66	325	13.6	163.4	178.4	7.0 X 10 ⁵	0.20	1.5 X 10 ⁻⁸
	61	33	331	13.9	81.7	194.8			
	68	26	247	10.3	69.3	196. 9	1	-	
	89	5	137	5.7	12.3	209.1	• 1		
II	34	60	453	9.0	113.8	243.0	1.5 X 10 ⁸	0.41	6.2 X 10 ⁻⁷
e del 1 Programme	46	48	394	7.8	87.2	249.1	-	•	
	88	6	381	7.6	11.3	277.7	~	-	. -
III	22	72	549	7.4	91.0	357.4	2.2 X 10 ⁸	0.65	5.7 X 10^{-7}
aan ay lahaan Afrikan Afrikan	33	61	437	5.5	77.1	370.0	-	-	-
	49	45	346	4.3	56.9	383.7	-		-
	73	21	318	4.0	26.5	407.6	-		• ·
	88	6	328	4.1	7.5	427.7	-	-	-
IV	17	77	1532	14.0	74.8	470.7	3.0 X 10 ⁸	0.67	5.3 X 10 ⁻⁷
	46	48	1032	9.5	46.6	508.8	-	-	
	60	34	857	7.8	33.0	532.3	-	-	•
	88	6	381	3.5	5.8	567.2	. .		ta ta 🗧 a sa si
v	17	77	375	2.9	66.9	535.1	3.5 X 10 ⁸	0.69	5.0 X 10 ⁻⁷
	29	65	400	3.1	56.4	546.4	-	-	-
	56	38	319	2.5	33.0	587.4	-	-	
	74	20	372	2.9	17.3	610.4	-	-	
	83	11	465	3.7	9.5	630.1	-	-	
	86	8_	328	2.6	6.9	640.4			

Del análisis de la Tabla 4 se puede ver que en el proceso de condensación directa toman parte los efectos; acústico, térmico, hidrodinámico y de tensión superficial. El efecto hidrodinámico esta representado por los números de: Reynolds, Mach y Richardson; y debido a que la variacion de Strouhal es similar con cada uno de ellos, según se puede constatar en la Fig. 17., se considerará únicamente al número de Reynolds como el que caracteriza al efecto hidrodinámico. Una vez establecido lo anterior, solo al efecto de de tensión superficial se le puede atribuir la responsabilidad de la variación de mayor ó menor grado de dispersión que presentan los valores de frecuencia para las diferentes condiciones que imperan durante las diferentes pruebas del experimento. La Fig. 18. permite corroborar la anterior afirmación, ya que muestra la correspondencia entre las distintas regiones de variación que aparecen en las gráficas particulares de los efectos de subenfriamiento y de velocidad.

Una vez demostrada la importancia de tomar en cuenta el efecto de la tensión superficial en el presente estudio, Fig. 18., se consideró necesario proponer una correlación general del tipo:

$$St = k (Ja)^{\alpha} (Re)^{b} (We)^{c}$$

que para los datos de la Tabla 4 , la constante k y los coeficientes de regresión toman los siguientes valores :

73.

Fig. 17. Dependencia de la frecuencia (Strouhal) con el efecto hidrodinámico (Mach).

Fig. 15. Dependencia de la frecuencia (Strouhal) con la tensión superficial (Weber).

k = 5.58, $\alpha = 0.174$, b = -0.011, c = -0.72

Fig. 19., siendo válida la correlación para los siguientes rangos:

5.8 < Ja < 163.4 7.0 x 10 ⁵ < Re < 3.5 x 10 ⁶ 178.4 < We < 640.4

Fig. 19. Correlación propuesta en el presente trabajo, la cual considera los efectos del subenfriamiento, del momentum, y la tensión superficial sobre la frecuencia del sonido.

Para finalizar con la presente parte, se comenta el comportamiento cualitativo de la frecuencia fundamental determinada de los espectros de frecuencias tridimensionales.

Examinando la Tabla 4 se pueden señalar las siguientes tendencias:

(1) La frecuencia del sonido (f_i^*) se decrementa al disminuir el subenfriamiento (ΔT_i).

(2) Independientemente de la magnitud del subenfriamiento (ΔT_{a}), la frecuencia (f_{i}^{*}) disminuye al incrementarse el gasto másico de vapor G_{o} ; aunque para $G_{o} = 687.71 \text{ kg/m}^{2}\text{g}$ y altos subenfriamientos, los valores de frecuencia obtenidos triplicaron a los valores esperados, según la tendencia mostrada por este parámetro en el rango que abarca al presente estudio; caracterizándose así un punto singular en el comportamiento que a su vez es frontera entre dos regiones diferentes.

(3) La entalpía del vapor inyectado tiene una aparente influencia en el valor inicial que toma la frecuencia del sonido al iniciar cada prueba; mostrando la tendencia de que a mayor entalpía mayor valor de frecuencia inicial hasta llegar a un máximo y ahí ocurre una disminución súbita.

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

A la luz del estudio realizado en el presente trabajo se puede concluir que la condensación directa de un chorro de vapor en el seno de un fluido subenfriado es un fenómeno aleatorio de extrema complejidad, por lo que el entendimiento cabal del proceso se encuentra aún en las primeras etapas, siendo tales etapas: la de clasificación y la de descripción cualitativa. No obstante, ya se han realizado diversos esfuerzos para encontrar modelos matemáticos que intentan describir el fenómeno y pueden ser utilizados para predecir el comportamiento en una primera aproximación.

ESTA TESIS NO DEBE

BIBLIOTECA

SALIR DE LA

En virtud de que el interés del presente trabajo experimental esta orientado al análisis del ruido producido por la condensación directa de un chorro de vapor, en este estudio se ha centrado la atención en la región de la interfaz. Como resultado de lo anterior se puede concluir que, según lo muestran las pruebas adicionales, la variación de la frecuencia del ruido producido en la condensación depende directamente de la variación de la configuración de la interfaz.

Considerando las cinco pruebas realizadas, en general se puede afirmar que el tamaño de la interfaz en el inicio del proceso esta determinada de manera proporcional por la presión del vapor de descarga y en consecuencia a la entalpía del mismo, e inversamente proporcional al grado de subenfriamiento.

Durante la realización del experimento para cada una de las pruebas, quedó de manifiesto que cuando el fenómeno se caracteriza por tener una alta tasa de condensación (altos subenfriamientos), la correspondiente interfaz adquiere su mínimo tamaño con una geometría definida y estable; mientras que para el caso contrario (bajo subenfriamiento) el tamaño de la interfaz se incrementa y presenta una geometría menos definida e inestable. Lo anterior implica que el tamaño, la geometría y la estabilidad de la interfaz dependen de la tasa de condensación.

De lo anterior se sigue que, el proceso de la condensación de un chorro inicia presentando una interfaz pequeña y estable, caracterizada por un valor máximo de la frecuencia del sonido emitido. A medida que el subenfriamiento decrece, la interfaz incrementa su tamaño y su inestabilidad, emitiendo un sonido de menor frecuencia.

En resumen, para los experimentos realizados en el presente estudio y en relación con la frecuencia del sonido emitido por el fenómeno de condensación directa de un chorro de vapor, se puede concluir lo siguiente:

1.- La frecuencia del sonido producido por la condensación directa depende principalmente: de la velocidad del vapor a la salida del inyector, del grado de subenfriamiento del líquido y de la tensión superficial en la interfaz.

2.- La fuerza directora que aparece ejerciendo mayor influencia en la variación de la frecuencia es la de cantidad de movimiento, seguida de la tensión superficial y de la de transferencia de energía.

3.- Para el universo particular que comprende los rangos de operación contemplados en el estudio. la variación de la frecuencia cambia bruscamente dependiendo de la región en particular, Fig.16. ; además de que en regiones diferentes по contiguas, aparecen similares modos de variación de la frecuencia. Lo anterior se debe aparentemente a un supuesto desbalance en magnitud entre los efectos de la velocidad. el subenfriamiento y la tensión superficial que representan a las principales fuerzas directoras que gobiernan el proceso. En todas las pruebas realizadas en el presente estudio, se pudo observar la presencia y el desbalance entre magnitudes de las fuerzas directoras, y que en función de la magnitud adquirida por una de ellas, ésta funge como la fuerza directora predominante en determinadas regiones del universo del presente trabajo.

4.- Debido a la regionalización no uniforme de los modos de variación de la frecuencia, es difícil encontrar una correlación general que abarque todos los rangos de subenfriamientos para procesos con regímenes subsónicos de flujo.

5.2. Recomendaciones para Investigaciones Posteriores Es recomendable que los estudios sobre condensación directa se realicen para pequeñas regiones de variación de los parámetros que gobiernan el fenómeno; lo cual permitirá obtener correlaciones más precisas, que predigan adecuadamente el comportamiento paramétrico.

También es recomendable desarrollar un análisis de estabilidad en aquellas regiones en las que se presenta un singular comportamiento, Fig. 16., dicho análisis permitiría identificar y caracterizar de forma más precisa las regiones estables e inestables.

Por último, se recomienda que, para fines de cálculo del coeficiente de tranferencia de calor en un proceso de condensación directa, la superficie de la interfaz se estudie más detalladamente utilizando métodos de digitalización de imágenes para poder determinar si la interfaz debe seguir considerándose como una superficie plana.

REFERENCIAS

1 Merte, H., Jr. Condensation Heat transfer. Advances in Heat Transfer, Vol.9, 1973. Academic press.

2 Griffith, P., Condensation. Handbook of Multiphase Systems, Gad Hestroni, McGraw-Hill, 1982.

3 Kerney, P. J., Faeth, F. M., and Olson, D. R., "Penetration Characteristics of a Submerged Steam Jet," A I Ch E Journal, Vol 18, 1972, pp. 548-553.

4 Weimer, J. C, Faeth, F. M., and Olson, D. R., "Penetration of Vapor Jets Submerged in Subcooled Liquids," A I Ch E Journal, Vol. 19, 1973, pp. 552-557.

5 Kudo, A., "Basic Study on Vapor Suppression," Proc. 5th Int. Heat Transfer Conf., Tokyo, Vol. 3, 1974, pp. 221-225

6 Young, R. J., Yang, K. T., and Novotny, J. L., "Vapor-Liquid Interaction in a High Velocity Vapor Jet Condensing in a Coaxial Water Flow," Proc. 5th Int. Heat Transfer Conf., Tokyo, Vol.3,1974, pp. 226-230.

7 Spalding, D. B., " Convective Mass Transfer," Edward Arnold Publishers, Ltd., London, 1963.

8 Cumo, M., Farello, G. E., and Ferrari, G., Direct Heat Transfer in Pressure Suppression Systems, Proc. 6th Int. Heat Transfer Conf., Toronto, Vol. 5, 1978, pp. 101-106.

9 Chan, C. K., Dynamical Pressure Pulse in Steam Jet Condensation, Proc. 6th Int. Heat Transfer Conf., Toronto, Vol. 2, 1978, pp. 395-400.

10 Block, J. A., Condensation-Driven Fluids Motions, Int. J. Multiphase Flow, Vol. 6, 1980, pp. 113-129.

11 Bankoff, S. G., Some Condensation Studies Pertinent to LWR Safety, Int. J. Multiphase Flow, Vol. 6, 1980, pp 51-67.

12 Chan, C. K., and Lee, C. K. B., A Regime Map for Direct Contact Condensation, Int.J.Multiphase Flow, Vol.8,1982, pp.11-20. 13 Simpson, M. E., and Chan, C. K., Hydrodynamics of a Subsonic Vapor Jet in Subcooled Liquid, J. Heat Transfer, A S M E, Vol. 104, 1982, pp. 271-278.

14 Chen, L-D., and Faeth, G. M., "Condensation of Submerged Vapor Jets in Subcooled Liquids," J.Heat Transfer, A S M E,Vol.104, 1982. pp. 774-780.

15 Del Tin, G., Lavagno, E., and Malandrone, M., "Thermal and Fluid-Dynamics Features of Vapour Condensing Jets," Heat and Technology, Vol. 1, 1983, pp. 13-35.

16 Nariai, H., and Aya, I., "Oscillation Frequency at Condensation Oscillation Induced by Steam Condensation into Pool Water, Basic Aspects of Two Phase Flows and Heat Transfer, HTD-Vol. 34, A S M E, 1984.

17 Lambier G. R., and Chow, L. C., * Pressure Pulses During Vertical and Horizontal Discharges of Steam into Subcooled Water, 84-WA/HT-54, A S M E, 1984,

18 Nariai, H., and Aya, I., "Fluid and Pressure Oscillation Ocurring at Direct Contact Condensation of Steam Flow with Cold Water," Nuclear Engineering and Design, (95), 1986, pp. 35-45.

19 Celata, G. P., Cumo, M., Farello, G. E., y Focardi, G. "Direct Contact Condensation of Steam on Slowly Moving Water", Nuclear Engineering and Design 96 (1986) 21-23.

20 Brown, S. J., Khoo, Ch. B., Sonin, A. A., "Rate Correlation for Condensation of Pure Vapor on Turbulent Subcooled Liquid". Int. J. Heat Mass Transfer, Vol.33, No. 9, pp. 2001-2018, 1990.

21 Aya, I., "Evaluation of Heat-Transfer Coefficient at Direct - Contact Condensation of Cold Water and Steam". Nuclear Engineeringand Design, 131(1991) 17-24.

22 Crow, S. C., and Champagne, F. H., * Orderly Structure in Jet Turbulence, * J.Fluids Mechanics, Vol.48,part3, 1971,pp.547-591. Apéndice I: Fenómenos relacionados con la nucleación

Nucleación de superficie sólida

En la nucleación de superficie sólida, a diferencia de la anterior. la remoción de energía del vapor tiene lugar por transferencia de calor de la fase gaseosa además de la de superficie sólida.

En virtud de que la nucleación siempre se origina en una interfaz es conveniente entonces examinar algunos fenómenos en relación con la misma.

Tensión superficial

Una propiedad comúnmente observada en la superficie de los líquidos es la de que éstas siempre tienden a contraerse espontáneamente a la menor área posible. Las superficies de área mínima estan descritas para cualquier punto por

$$\frac{--\frac{1}{R_{1}} + -\frac{1}{R_{2}} - = cte}{R_{1}}$$
 (1)

donde $R_1 y R_2$ son los radios principales en dicho punto. Las fuerzas directoras que propician las áreas mínimas son de naturaleza molecular, como se muestran en la Fig. 1.

Fig. 1. Fuerzas intermoleculares en una superficie.

Los líquidos se distinguen de los sólidos por la libertad que presentan las moléculas para moverse, y de los gases por la mayor fuerza de cohesión entre las moléculas, las cuales inhiben la libertad de movimiento y las mantienen juntas. En el interior del líquido de la Fig. 1 cada molécula esta sujeta a las mismas fuerzas de atracción F en todas direcciones. En la superficie, las fuerzas moleculares tangenciales F se cancelan, pero debido al gran espaciamiento intermolecular imperante en la fase vapor las fuerzas externas no logran balancear a las fuerzas internas У por lo tanto cada molècula de la superficie eta sujeta a una gran fuerza de atracción interna F_i perpendicular a la superficie. Esta fuerza provoca un movímiento de las moléculas dirigido hacia el interior hasta que un maximo de moléculas se encuentra en el interior y un minimo permanece en la superficie, dando esto como resultado una área de superficie minima.

El hecho de que la superficie del líquido se contraiga espontáneamente muestra que la energía libre termodinámica esta asociada estrechamente a este fenómeno, porque cualquier sistema que pueda desarrollar espontáneamente un proceso posee energía libre y puede hacer trabajo. Contrariamente a la contracción espontánea de la superficie considerada anteriormente, la expansión de una superficie requiere que se realice un trabajo para atraer moléculas adicionales desde el interior hacia la superficie, dando como resultado un incremento de energía de superficie, la energía libre de superficie.

Otro punto de vista que aparece en la literatura, es el que considera que el equilibrio entre las moléculas de la interfaz y el interior del líquido requiere que las energías libres en ambos lugares sean iguales. Si las fuerzas F_i y F_p son idénticas, las energias libres son diferentes y las moléculas de la superficie son atraidas al interior, agotando de esta manera las moléculas de la superficie, lo que da como resultado un incremento en el espaciamiento intermolecular, de lo cual resultan fuerzas adicionales de atracción entre las moléculas de la superficie, reduciéndose la tendencia a escapar de ésta. Estas fuerzas adicionales constituyen el fenómeno de la tensión superficial.

Algunas consecuencias importantes aparecen como resultado del fenómeno de energía libre de superficie. Una primera, es que se puede comprobar que no existe en forma natural y espontánea una

interfaz líquido-vapor plana, solo existe cuando aparecen fuerzas de diversos tipos, como la gravedad, considerablemente mayores que la debida a la energía de superficie.Para una gota pequeña $\sigma \rightarrow$ mg, y se asume que tiene una forma esférica si esta no moja la superficie sobre la cual esta situada. Un líquido moja una superficie sólida si las fuerzas de adhesión entre el líquido y el sólido son más grandes que las que existen entre las particulas del líquido. Un parámetro que describe la relación entre las fuerzas de cuerpo o de aceleración y las capilares o fuerzas de tensión superficial es el número de Bond, dado por

 $B_{o} = \frac{F_{a}}{F_{a}} = \frac{Ma}{\sigma L} = \frac{\rho L^{2} a}{\sigma}$ (2)

donde L es alguna longitud característica del sistema bajo consideración. Otra consecuencia de la energía libre de superficie es que existe una diferencia de presión a través de la interfaz curvada, siendo menor la presión del lado convexo. Considerando la superfie A de la Fig.2 descrita por el radio de curvatura R_i y R_2 con origenes en O_i y O_2 . El desplazamiento de la superficie A en una distancia ó a A' paralela a si misma requiere de un trabajo debido a que el area se incrementa. Este trabajo es suministrado por la diferencia de presiones $P_i - P_2$, que evaluado en la Fig.2 da como resultado la ecuación fundamental de la capilaridad:

$$P_{1} - P_{2} = \sigma(\frac{1}{R_{1}} + \frac{1}{R_{2}})$$
(3)

Para una superficie esférica $R_{1} = R_{2} = R$

Fig. 2. Diferencia de presiones a través de una interfaz

(4)

(6)

Para la mayoria de las sustancias las mediciones muestran que la tensión superficial decrece cuando la temperatura crece. Kelvin mostro que existe una absorción de calor cuando la superficie de un líquido se extiende isotermicamente. Aplicando la ecuación de la energía a una interfaz extendida isotermicamente, se puede mostrar que la energía de superficie total esta dada por

$$\varepsilon_{\rm g} = \sigma + q_{\rm g} = \sigma - T \frac{d\sigma}{d\tau}$$
(5)

donde

$$q_s = -T - \frac{d\sigma}{dT}$$

 q_s es el calor latente de la superficie, esta ecuación representa la cantidad de calor que se debe agregar a la superficie para mantener la temperatura constante durante una expansión térmica.

La energía total de la superficie ε_{s} (por unidad de area) consiste de dos partes: la energía libre de superficie σ y el calor latente -T d σ /dT. ε_{s} es la diferencia entre la energía total por unidad de área de las moléculas en la superficie y la energía del mismo número de moléculas del interior del líquido. El calor se absorbe al extender una superficie debido a que las nuevas moléculas que forman la superficie son llevadas desde el interior venciendo las fuerzas de atracción dirigidas hacia el interior. La atracción hacia el interior tiende a retrasar el movimiento de las moléculas en su viaje hacia el exterior de tal suerte que la temperatura de las capas superficiales es siempre menor que la de las interiores, siempre y cuando el calor no se suministre desde fuera.

Para comparar las magnitudes de la energía libre de superficie y el calor latente de superficie la ec. (5) se escribe como

$$\frac{\varepsilon_{\rm s}}{\sigma} - 1 = -\frac{T \, d\sigma/dT}{\sigma} \tag{7}$$

Algunos valores experimentales correspondientes al lado derecho de la ec.(7) muestran que el calor latente de superficie es del mismo orden que el de la energia libre de superficie. Para cantidades de

líquido de tamaño razonable, donde el número de moléculas en el interior del líquido es grande comparado a el número en la interfaz, la contribución del calor latente de superficie puede despreciarse. Sin embargo, cuando se consideran pequeños conglomerados de moléculas las cuales puedan servir como embriones para el inicio de la nucleación bajo condiciones apropiadas, el calor latente de superficie debe tomarse en cuenta.

El efecto que resulta de incrementar la presión del vapor o del gas sobre la superficie de un líquido es un decremento en la tensión superficial, debido a la concentración de un mayor número de moléculas cerca de la superficie del lado del vapor. La atracción de estas moléculas neutraliza en cierta medida la atracción hacia el interior de las moléculas de la superficie del líquido, decrementando de esta manera la tensión superficial. Para una sustancia pura la tensión superficial decrece hasta cero cuando la sustancia alcanza la temperatura y presión críticas. La tensión superficial en la interfaz entre dos líquidos no miscibles es menor que la tensión superficial de cualesquiera de ambos líquidos y su propio vapor o gas debido a la reducida fuerza neta de atracción hacia adentro sobre las moléculas de la interfaz.

Si dos líquidos B y C que estan inicialmente en contacto con A (Fig. 3) son puestos en contacto entre si, la energía de interfaz cambia de $\sigma_{BA} + \sigma_{CA}$ en la Fig.3a a σ_{bc} en la Fig.3b. La sustancia A puede ser aire, vacio, o cualquier otro material. El

trabajo requerido para separar B y C nuevamente se llama trabajo de adhesión

 $W_{\rm BC} = \sigma_{\rm BA} + \sigma_{\rm CA} - \sigma_{\rm BC} \tag{8}$

como es obvio de la ec.(8) el trabajo de adhesión se define en terminos de la sustancia A (vapor,vacio,etc) y así debe ser entendido.Cuando el trabajo de adhesión $W_{Bc} < (\sigma_{BA} + \sigma_{CA}), \sigma_{BC} > 0$ y se forma una interfaz entre B y C. Si la tensión de la interfaz σ_{Bc} es cero o negativa, no puede existir una interfaz entre B y C dado que el trabajo de adhesión es igual o mayor que la energía requerida ($\sigma_{BA} + \sigma_{CA}$) para formar las dos interfaces.

Fig. 3. Trabajo de adhesión

Si el líquido B es el mismo que el líquido C, entonces el trabajo de adhesión se denomina trabajo de cohesión,y $\sigma_{BA} = \sigma_{CA}$ y $\sigma_{BC} = 0$. y la ec. (8) da

$$W_{BB} = 2\sigma_{BA}$$

Si en la ec. (8)

$$\sigma_{CA} \stackrel{2}{=} \sigma_{BA} \stackrel{+}{=} \sigma_{BC}$$

entonces la energía se decrementará debido a que B se dispersará espontáneamente en C. La diferencia de los terminos del lado izquierdo y el lado derecho de la ec. (10) se define como el coeficiente de dispersión S

(9)

(10)

$$S = \sigma_{CA} - (\sigma_{BA} + \sigma_{BC})$$
(11)

Para S \geq 0, B se dispersa en C, mientras que para S < 0, B no se dispersa, pero forma una gota. Si la sustancia C en la Fig.3 es un sólido, las ecs. (8) y (11) también se aplican como el trabajo de adhesión y el coeficiente de dispersión entre el líquido B y el sólido C. Adicionalmente, se observa que una partícula de líquido en reposo sobre una superficie sólida forma un ángulo de contacto θ en la interfaz triple, como se muestra en la Fig.4. Resolviendo las componentes horizontales in la Fig.4, en el equilibrio

Fig. 4. Angulos de contacto

(12)

 $\sigma_{CA} = \sigma_{BC} + \sigma_{RA} \cos \theta$

combinando la ec.(12) con la ec.(8) se tiene

$$W_{p,q} = \sigma_{p,1} \left(1 + \cos \theta \right) \tag{13}$$

Generalmente hablando, se considera que un líquido no moja una superficie si $\theta \rightarrow 90^{\circ}$ y que la moja si $\theta < 90^{\circ}$. $\sigma_{_{CA}}$ y $\sigma_{_{BC}}$ de la ec.(12) son de difícil medición directa, pero mediciones del ángulo de contacto θ permiten la estimación del trabajo de adhesión, ec.(13), la cual esta relacionada con las propiedades del sólido mediante la ec.(8).

Calor latente

El calor latente de vaporización al igual que el fenómeno de energía de superficie involucran fuerzas intermoleculares y se

debe esperar que exista una relación entre ellas. Esta relación se ha demostrado en base a un análisis de orden de magnitud.La energía de superficie total por unidad de area en la ec.5, en la superficie del líquido, puede expresarse como

$$\varepsilon_{z} = u \left(z - z' \right) n'$$
 (14)

donde u es la energía potencial mutua de dos moléculas vecinas de espaciamiento medio r. z es el número de vecinas cercanas dentro de la masa del líquido, z' es el número de vecinas cercanas en la superficie líquida, y n' es el número de partículas de la superficie por unidad de grea $(1/r^2)$. Para evaporar el liauido en la superficie se requiere que la energía potencial entre las partículas de la superficie y aquellas de las partes inferiores sea vencida. La energía que logra esto es el calor latente de evaporación, y puede expresarse en base a la unidad de volumen COMO

$$\bar{\mathbf{h}}_{fg} = \frac{1}{2} \operatorname{nzu}, \qquad (15)$$

donde n es el número de partículas por unidad de volumen ($\sim 1/r^2$). El factor 1/2 toma en cuenta el hecho de que solo son efectivas las fuerzas de atracción de las partículas localizadas en el lado inferior de la superficie. Dividiendo la ec.14 por la ec.15 y sustituyendo un valor aproximado para n' y n se tiene que

$$\frac{\varepsilon_{s}}{\tilde{h}_{fg}^{\vee}} = \frac{2(z-z')}{z} r \approx r \approx 10^{-8} \text{ cm} \quad (16)$$

El espaciamiento intermolecular de la mayoria de los líquidos es del orden de 10^{-8} cm, y la ec.16 se verifica para la mayoría de los líquidos.

Otra manifestación de la tensión superficial en los líquidos puros es la habilidad de resistir grandes tensiones. Para estimar el esfurzo de tensión requerido para romper un líquido se puede utilizar la ec.9, la cual expresa que la minima energia requerida para separar un líquido sobre un area A a temperatura constante es 20A, esto es dado a que es la cantidad que se incrementa la energia de superficie. La cantidad anterior se puede considerar suficiente para romper el líquido si las moléculas estan separadas una distancia adicional del orden de magnitud del espaciamiento molecular r. El trabajo de separación es entonces el producto de esta distancia y la fuerza de tensión máxima (presión negativa x area) que el líquido puede resistir sin separarse.

$$P_{max}A r = 2a$$
(17)

(18)

ο

El fenomeno de interfaz líquido-vapor

Mediante experimentos basados en la naturaleza de la reflección de la luz sobre una superficie se ha evidenciado que el cambio de densidad de una fase líquida a una de vapor es muy abrupta y que el espesor de la capa de transición es de solamente 1 o 2 moléculas.

Si la interfaz no esta bien definida pero consiste de una zona de transición, el concepto de temperatura de la interfaz pierde significado. Sin embargo, parece razonable asignar una temperatura a cada uno de los lados de la interfaz, quedando solamente una muy pequeña zona de incertidumbre. De hecho, el concepto clásico de temperatura pierde significado a escala molecular.

Para evitar la complicación propia de una interfaz curva, se considera la condensación de una sustancia pura en fase vapor sobre una interfaz plana, como se presenta en la Fig.5. El proceso se examina primeramente en base a un continuo o un punto de vista macroscópico. Asumiendo equilibrio termodinámico, en la notación de la parte superior de la Fig.5 se tiene que

Fig. 5. Continuo de una interfaz líquido-vapor.

$$T_{L} = T_{Li} = T_{Vi} = T_{V} = T_{V\alpha} = T_{S}$$
 (19)

considerando también que no habrá cambios en ausencia de culaquiera de las fuerzas directoras que gobiernan el fenómeno. En el estado de no equilibrio, existe una diferencia de temperatura entre T y T del sistema. si se exploraran las temperaturas en la interfaz, se podrían definir la temperatura del líquido y del vapor en la interfaz. Si se dispusiera de un microdispositivo de medición de temperatura colocado en el líqudo, y se explorara la distribución de temperatura tan cerca como fuera posible, la extrapolación de esta temperatura en la interfaz se definiría como la temperatura de la interfaz del liquido, T, . En la región de vapor, también una extrapolación de la temperatura del vapor definiria la temperatura de la interfaz del vapor, T.... La extrapolación anterior se considera sobre una o dos trayectorias libre media para evitar el problema de definir temperatura en
términos de una distribución de velocidad no-Maxwelliana la cual pude existir en la vecindad inmediata de la interfaz. Debido a la incapacidad de detectar la diferencia entre T_{vi} y T_{Li} , y en la ausencia de cualquier relación conocida entre ellas, un proceso de no-equilibrio tratado sobre la base de un continuo considera que

$$T_{Li} = T_{vi} = T_{s}$$
(20)

aunque ''a priori'' no existe base para lo anterior. Para que la condensación tenga lugar se debe remover por conducción el calor latente, en una o ambas fases. Si el líquido esta en reposo, la interfaz se moverá hacia la derecha de la fig.5. Un análisis de primera ley en un volumen de control sobre la interfaz da

$$\rho_{\rm c} h_{\rm c} dX_{\rm c} / dt = k_{\rm c} (dT_{\rm c} / dx)_{\rm c} - k_{\rm c} (dT_{\rm c} / dx)_{\rm c}$$
 (21)

La tasa de transferencia de masa entre las dos fases se puede describir en terminos de dX_i/dT . El primer término del lado derecho de la ec.21 representa la tranferencia de calor por conducción en la fase líquida, y el segundo término es la transferencia de calor por conducción en el lado del vapor; siendo

la diferencia, la energía neta de calor latente removida, lado izquierdo de la ec.21. Con una diferencia de densidades entre las dos fases,tiene lugar el movimiento másico en el vapor,expresado esto por

(22)

Para que tenga lugar el movimiento del vapor es necesario que exista una fuerza directora. Con la condensación, la concentración de vapor en la interfaz se reduce por la remoción neta de vapor a un valor inferior que el que impera para las condiciones de equilibrio. Por esta causa existe un decremento en la presión,como se representa en la parte inferior de la fig.5, $P_{t,i} \leftarrow P_{v,i}$. La influencia de la presión hidrostática se desprecia en esta consideración. Para alcanzar esta presión reducida se requiere que la temperatura de la interfaz líquida T, este por abajo de la temperatura de saturación de equilibrio T_s, correspondiente a la presión de vapor P_{ij} . La temperatura de interfaz de vapor T_{ij} puede o no ser la misma que T_s, esto depende de la distribución de velocidad de las moléculas de vapor en la interfaz, la cual consiste de moléculas viniendo de la región de vapor de la derecha, moléculas reflejadas de la interfaz, y moléculas emitidas del liquido. Si la suma neta de esto proporciona la misma distribución de velocidad Maxwelliana presente a la temperatura T, entonces

$$\mathbf{T}_{\mathbf{v}_{i}} = \mathbf{T}_{\mathbf{S}} \tag{23}$$

La literatura relacionada con el tema proporciona el argumento de que cuando la region entera de vapor esta a temperatura de saturación (por ejemplo $T_v = T_s$), entonces $T_{vi} = T_s$. Sin embargo, para un vapor sobrecalentado, es probable que las interacciones de los tres grupos de moléculas dieran como resultado una distribución de velocidad no-Maxwelliana, por lo tanto no se podría esperar que la ec.23 se cumpla.

La conclusión neta de lo anterior es que existe una diferencia de temperatura interfacial ($T_{v_i} - T_{L_i}$) a través de una interfaz líquido-vapor, algunas veces llamada "salto de temperatura", aún considerando un continuo como modelo del proceso. Sin embargo el cálculo de la magnitud de este salto de temperatura requiere la introducción de conceptos microscópicos. Se puede estar tentado a incluir esta diferencia de temperatura ($T_{v_1} - T_{L_1}$) en la formulación macroscopica de la ecuación de la energía en la interfaz dada por la ec.21, pero esto no sería correcto debido a que las tranferencias de energía en el líquido y el vapor estan ya cuantificadas para gradientes definidos de temperatura en la interfaz. No obstante, la formulación del problema requiere de una relación adicional entre T_{vi} y T_{Li} . Al buscar esa relación se puede considerar a la diferencia de temperaturas como la manifestación térmica de una resistencia molecular. especialmente cuando se trata con una serie de resistencias térmicas como en la condensación de película. La diferencia (T. - T_{gi}) no se detectó hasta después de haberse realizado un gran número de trabajos sobre condensación de metales líquidos. La detección depende de la magnitud de la resistencia de la interfaz comparada con otras resistencias térmicas.

Si la película de líquido en la parte superior de la fig.5 tiene relativamente una alta resistencia, entonces

$$(T_{Li} - T_{W}) \gg (T_{Vi} - T_{Li}).$$
 (24)

Como el término del lado derecho es pequeño se puede despreciar y no se incurre en un error grave al tomar $T_{vi} \approx T_{Li} \approx T_{S}$. Lo anterior es una condición indispensable en el desarrollo de la teoría de Nusselt para condensación de película para varios fluidos incluyendo al agua.

Para derivar una expressión para la diferencia de temperatura de interfaz se debe asumir que la masa de vapor esta a temperatura de saturación o sea que $T_{vi} = T_s$. La transferencia de masa en la interfaz se puede ver como una diferencia entre la tasa de moléculas que llegan desde la región de vapor a la interfaz y la tasa de moléculas de salida de la superficie del líquido a la región de vapor. Cuando se realiza la condensación la tasa de llegada excede a la tasa de salida.

1.2. Clasificación

La condensación se clasifica cualitativamente en función de donde se lleve a cabo el cambio de fase de vapor a liquido de una sustancia, y este puede tener lugar en el seno de la masa de un fluido (condensación directa) ó sobre una superficie enfriada, (condensación por gotas ó por película), [1], Fig. 6.

Apendice I : Analisis Dimensional

En 1914 E. Buckingham dió a conocer un procedimiento llamado Teorema Π para obtener los grupos adimensionales de cualquier problema de análisis dimensional. El termino Π proviene de la notación matemàtica y significa un producto de variables. Los grupos adimensionales determinados con el teorema son productos de potencias denominadas Π_i , Π_2 , Π_3 , etc. El método permite conocer los parámetros sin necesidad de de utilizar los exponentes libres.

La primera parte del teorema explica cual es la reducción de variables esperada: Si un proceso l'isico satisface el principio de la homogeneidad dimensional y relaciona n variables dimensionales, se puede mediante una relación entre solo k escribir variables adimensionales. La reducción j = n - k es igual al máximo número de variables que no pueden formar un grupo adimensional entre ellas y es siempre menor o igual que el númerc $d\mathbf{a}$ dimensiones que describen estas variables.

La segunda parte del teorema muestra como encontrar los parametros adimensionales.

para encontrar la reducción j , seleccionan i 96 variables no puedan formar un parámetro adimensional entre allas. que Cada parámetro adimensional deseado estará formado por producto de potencias de estas j variables con una variable

adicional a la que se le asigna un exponente conveniente no nulo. Todos los grupos adimensionales asi determinados son independientes.

se

Pai	ra el	proceso	de conde	ensación	dire	cta	que	по	s o	cupa,
cor	nsidera	que las	variables	dimensio	nales	que	int	ervi	enen	son :
La	frecuer	ncia del	sonido	f	[мо	Lo	T ^{- 1}	J	
El	diametr	ro del in	nyector	d	• [Mo	L¹	т ^о	J	
La	velocio	ad del v	apor	V V	ť	Mo	L1	T ⁻¹]	
La	entalpi	a del va	apor	h	٢	Mo	L²	T ⁻²	3	
La	entalpí	a del lí	quido	h_	Ľ	Mo	L ²	T ⁻²	j	n an Alafa Na Kabupatén Na Kabupatén
La	densida	nd del va	apor	Pv	C	M1	L ⁻³	то	1	
La	viscosi	dad del	vapor	μ_{\sim}	E	M1	L ⁻¹	T ^{- 1}	1	
La	tensiór	superfi	icial	σ	ε	Mi	Lo	T ⁻²	3	
La	acelera	ación de	la graveda	ad g	ſ	Mo	L1	T ⁻²	3	

Después de una inspeccion adecuada se encuentra que j = 3. Entonces, k = 9 - 3 = 6. Por lo tanto habra seis grupos adimensionales. Eligiendo arbitrariamente 3 variables, por ejemplo:

 $\mathbf{h}_{_{\mathrm{O}}}$, $\boldsymbol{\rho}_{_{\mathrm{O}}}$, d se tiene que:

para la frecuencia f. $[L^2 T^{-2}]^{\alpha} [M^i L^{-3}]^{b} [L^i]^{c} [T^{-1}] = M^{0} L^{0} T^{0}$ M : b = 0 L : 2a - 3b + c = 0

para la tension superficial σ . $[L^2 T^{-2}]^{\alpha} [M^1 L^{-3}]^{b}$ $[L^1]^{c} [M^1 T^{-2}] = M^{\alpha} L^{\alpha} T^{\alpha} M : b + 1 = 0$ L : 2a - 3b + c = 0

para la entalpia del liquido h_{L} . $[L^{2} T^{-2}]^{\alpha} [M^{1} L^{-3}]^{b} [L^{1}]^{c} [L^{2} T^{-2}] = M^{0} L^{0} T^{0} M : b = 0$ $L : 2a + c + 2 = 0 \rightarrow c = 0$ $T : -2a - 2 = 0 \rightarrow a = -1$. $\prod_{4} = h_{v}^{-1} h_{L} = -\frac{h_{L}}{h_{v}^{-}}$ (Jacob)

 $\begin{bmatrix} L^{2} & T^{-2} \end{bmatrix}^{\alpha} \begin{bmatrix} M^{1} & L^{-3} \end{bmatrix}^{b} \begin{bmatrix} L^{1} \end{bmatrix}^{c} \begin{bmatrix} M^{1} & L^{-4} & T^{-1} \end{bmatrix} = M^{0} L^{0} T^{0} M :$ + 1 = 0 L : 2a - 3b + c - 1 = 0 + c = -1 T : -2a - 1 = 0 + a = -1/2 ; b = -1 . $\prod_{s} = h_{v}^{-\frac{1}{2}} \rho_{v}^{-1} d^{-1} \mu_{v} = \frac{\mu_{v}}{\rho_{v}^{-\frac{1}{v}} d^{-1}} (\text{Reynolds}).$

para la velocidad del vapor V. $[L^2 T^{-2}]^{\alpha} [M^1 L^{-3}]^{b} [L^1]^{c} [L T^{-1}] = M^{0} L^{0} T^{0} M : b = 0$ L : 2a - 3b + c + 1 = 0 T : -2a - 1 = 0 $\rightarrow a = -1/2$; c = 0. $\prod_{2} = h_{v}^{-\frac{1}{2}} V = -\frac{V}{v}$ (Mach)

T: -2a - 1 = 0 $\rightarrow a = -1/2$; c = 1. $\prod_{i} = h_{v}^{-\frac{1}{2}} d$ f = $-\frac{f_{i}}{v} d$ (Strouhal)

para la vis ∞ sidad del vapor μ_{0}

 $T: -2a - 2 = 0 \qquad \Rightarrow a = -1 \qquad ; b = -1 \qquad ; c = -1 \qquad .$ $\prod_{s} = h_{v}^{-1} \rho_{v}^{-1} \quad d^{-1} \quad \sigma = -\frac{\sigma}{h_{v}} - \frac{\sigma}{\rho_{v}} - \frac{\sigma}{d} - \qquad (Weber)$

para la aceleración de la gravedad g. $[L^2 T^{-2}]^{\alpha}$ $[M^1 L^{-3}]^{b} [L^1]^{c} [L^1 T^{-2}] = M^{o} L^{o} T^{o} M : b = 0$ L : 2a + c + 1 = 0T : $-2a - 2 = 0 \rightarrow a = -1$; c = 1. $\prod_{\sigma} = h_{\nu}^{-1}$ g d $= -\frac{g}{h_{\mu}} \frac{d}{d} = -c$ (Richardson)