00573

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA Division de estudios de posgrado

POSIBLE INFLUENCIA DEL EFECTO ANOMERICO SOBRE LA ACTIVIDAD BIOLOGICA DE ANALOGOS DEL FENTANIL (CALCULOS TEORICOS)

TRABAJO

QUE PARA OBTENER EL GRADO DE: MAESTRO EN CIENCIAS QUIMICAS (QUIMICA ORGANICA) PRESENTA EL QUIMICO LORENZO JOSUE ALFARO LOPEZ

México, D. F.

1992

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

Resumen a			
Abstract		6	
Capi	ítulo		
I	Introducción	1	
II	Antecedentes	5	
11.1	Métodos Teóricos de Análisis Conformacional	5	
1.1	Métodos Semiempíricos	8	
1.2	Método de Mecánica Molecular	16	
11.2	Efecto Anomérico	19	
11.3	Oploides	25	
3.1	Modelo Conceptual de Receptor para 4-Fenilpiperidinas	33	
11.4	Momento dipolar, Potencial de ionización y Calor de formación	35	
III	Resultados y Discusión	38	

III.1	Análisis Conformacional	40
III.2	Análisis de Poblaciones	45
111.3	Propiedades Fisicoquímicas	47
III.4	Efecto anomérico: Origen y consecuencias sobre la estructura electrónica.	ө 49
III.5	Predicción de compuestos con posible actividad biológica.	55
IV	Conclusiones	59
v	Parte Experimental	61
VI	Bibliografía	62
VII.1	Anexo-1 (Parámetros geométricos)	69
VII.2	Anexo-2 (Propiedades Fisicoquímicas)	73
VII.3	Anexo-3 (Densidades Electrónicas)	77
VII.4	Anexo-4 (Ordenes de Enlace del anillo B)	81
VII.5	Anexo-5 (longitudes de enlace del anillo B)	82
VII.6	Anexo-6 (Distancias interatomicas de interés para el modelo de sitio receptor)	85
		n San yang sebagai sebagai San

RESUMEN. -

El análisis conformacional teórico del analgésico Fentanil y de 7 de sus análogos heterocíclicos, fué realizado usando el método de Mecánica Molecular MM2 asi como el método semiempírico de orbitales moleculares AM1/MNDO; con el objeto de evaluar el posible efecto anomérico que presentarían estos sistemas. Para el Fentanil y los análogos sustituidos con N, O, y S en las posiciónes 3 y/ó 5, se hizo el cálculo para cada una de las 4 conformaciones extremas (esquema 12), con los sustituyentes en N(1) y C(4) en relación Trans-1, Cis-2, Trans-2, y Cis-1.

Siguiendo el criterio de mínima energía se encontró que la conformación de más baja energía para el fentanil fué la Cis-1. Asi mismo, de los análogos estudiados se encontró que los heterocíclos que presentaron un mayor efecto anomérico resultaron ser los sustituídos con (OO), (SS), (NS), y (O), y que el derivado más estable en las 4 conformaciones fué el sustituído con (OO). Sin embargo, el derivado heterocíclico sustituído con (S) resultó ser el que presentó su conformación de más baja energía igual a la obtenida para el fentanil.

Se analizaron todos los parámetros fisicoquímicos obtenidos por el método mecánico-cuántico, así como la geometría obtenida para cada confórmero y se trató de proponer una interacción de los confórmeros que presentaron un mayor efecto anomérico con el modelo de sitio receptor que se ha postulado para el fentanil. Por otro lado, se encontró una diferencia entre nuestros resultados y los publicados en un articulo anterior en cuanto a las conformaciones de mínima energía para la molécula de fentanil. Lo anterior, invita a pensar en una posible modificación al modelo de sitio receptor propuesto para éste tipo de opioides. Por último, de acuerdo con los resultados obtenidos se propone que los compuestos que presentarán una actividad analgésica igual ó mayor que la mostrada por el fentanil son: la 1,3,5-Dioxazina y la 1,3-Tiazina. Lo anterior, tomando también en cuenta que la relación farmacofórica del fentanil no sería alterada puesto que los heteroatomos incluidos, se espera, no afectaran la actividad analgésica ya que forman parte del segmento espaciador entre la parte mensajera y directora del fármaco.

ABSTRACT.-

The theoric conformational analysis of the fentanyl analgesic and its seven heterocyclic analogs was made using the molecular mechanic method MM2 and the semiempirical molecular orbital method AM1/MNDO, with the aim of evaluate the possible anomeric effect that will show those systems. For the fentanyl and its substituted analogs with N, O and S at the positions 3 and/or 5, the calculation was made for each of the four extreme conformations (scheme 12), Trans-1, Trans-2, Cis-1 and Cis-2

In accordance with the minimum energy criteria we found that the lowest energy conformation for the fentanyl was the Cis-1. Likewise, its found that the heterocycles with the highest anomeric effect was those substituted with (OO), (SS), (NS) and (O).; the more stable derivative in the four conformations was the one substituted with (OO). However, the heterocyclic derivative substituted with (S) resulted the one who showed the conformation of lowest energy equal with the one obtained for the fentanyl.

All the physicochemical parameters and the geometry for each conformers obtained with the quantum-mechanical method were analyzed. Take in count these results its proposed an interaction of the conformers that showed the highest anomeric effect with the receptor site postulated for fentanyl. On the other hand, its found a difference between our results and others carly publicated with respect to the minumum energy conformation for the fentanyl molecule. This invite to think in a possible modification to the receptor site for this kind of opioids. Finally, with all these results its propose that the compounds 1,3,5-Dioxazine and 1,3,-Thiazine it will be those that present a similar or better analgesic activity related to showed by the fentanyl. This taking in count that the pharmacoforic arrangement of fentanyl should not be alter in these analogs due that the heteroatoms included just take part on the spacer between the menssage and address part of the drug.

I INTRODUCCION.-

Como se muestra en el siguiente esquema la actividad biológica de un compuesto puede ser la manifestación de alguna propiedad molecular en cualquier estado desde el sitio de su introducción al sistema biológico hasta su destino final.¹

Esquema I .- Los diferentes estados por los que atraviesa un fármaco en un sistema biológico y los parámetros fisicoquímicos involucrados en ellos.

Por lo tanto, es importante el estudio de cada una de dichas propiedades fisicoquímicas ó moleculares; esto se puede realizar a través del uso de recursos computacionales,² que en la investigación química y principalmente en el diseño de drogas es una poderosa herramienta, con la cual se pueden realizar los siguientes estudios:

1).- Examinar, evaluar y comparar estructuras moleculares complejas.

2).- Modificar las estructuras y estudiar las consecuencias energéticas de tales cambios.

3).- Realizar análisis conformacionales de sistemas flexibles.

4).- Construir macromoléculas ó estructuras supermoleculares.

5).- Sobreponer moléculas a macromoléculas.

6).- Analizar las propiedades de las cavidades receptoras en la macromolécula y examinar las interacciones intermoleculares.

Puesto que en la interacción con el sitio receptor es muy importante la conformación que adopta la molécula-droga, el realizar su análisis teórico conformacional permite determinar las causas y efectos que provoca dicha preferencia conformacional (estado gas), y así diseñar (sintetizar) un fármaco más efectivo. Este estado resulta ventajoso desde el punto de vista de que las interacciones estereoelectrónicas no se ven afectadas por ningun otro tipo de efecto, como el que presenta el análisis en estado sólido ó líquido, por ejemplo:

1) Difracción de rayos-X; en donde la energía de empaquetamiento del cristal puede modificar la conformación.

2) Resonancia Magnética Nuclear (RMN de ¹H y/6 ¹³C), para el estado líquido ó en solución en el cual existen interacciones con el disolvente.

A menudo, las técnicas de difracción de rayos-X y RMN coinciden con la existencia de un mismo conformero tanto en solución como en estado sólido. Sin embargo, este no es siempre el caso, por ejemplo en solución los conformeros gauche y trans de la dopamina existen en proporción casí equivalente, mientras que en estado sólido la dopamina existe unicamente en conformación trans.³ Sin embargo, ambas técnicas tratan situaciones a posteriori, es decir se tienen que sintetizar primero los compuestos para entonces realizar su estudio conformacional.

Por este motivo, el hecho de contar con herramientas que ayuden a analizar las propiedades que son responsables de la actividad biológica de un compuesto antes de sintetizarlo, racionaliza el proceso de diseño de fármacos.⁴ Esto trae como consecuencia un ahorro en el consumo de tiempo y dinero invertidos en los métodos tradicionales de prueba y error para el diseño de fármacos.

Los métodos teóricos emplean cálculos mecánico-cuánticos y/o semiempíricos para predecir barreras de energía, calcular las energías electrónicas y funciones de onda de sistemas moleculares. Estos estudios proporcionan información acerca del origen y naturaleza de las fuerzas repulsivas y de otro tipo que existen entre enlaces y sustituyentes de una molécula.

Por razones obvias los programas de cálculo usados, aunque eficientes, son aproximados y consecuentemente eso es una desventaja para estas técnicas. Sin embargo, con la aparición de computadoras de gran capacidad, este problema ha disminuido. Aún asi, las dificultades computacionales encontradas en el caso general, como también la magnitud de información generada por funciones de onda multielectrónicas, requiere del desarrollo de esquemas conceptuales que tengan un mayor significado físico ó químico, de tal forma que este tipo de estudios deje de ser un mero ejercicio matemático. Para lo cual, se ha necesitado mucho de la visión e imaginación química para el desarrollo de teorías cuánticas de la estructura molecular.⁵

Lo anterior ha convertido a técnicas tales como el modelaje molecular⁶ y dinámica molecular⁷ en herramientas muy poderosas en el campo del diseño de drogas. Por otro lado, estos métodos también han encontrado aplicación en el estudio de mecanismos de reacciones orgánicas.⁸

El objetivo de éste trabajo es estudiar la influencia que presentarían efectos estereoelectrónicos como el llamado efecto anomérico, sobre la conformación y alguna otra propiedad fisicoquímica en sistemas análogos de la molecula del fentanil (I), el cual es un morfinomimetico 300 veces más potente que la morfina. Dicho efecto podría presentarse al sustituir los átomos de carbono 3 y/6 5 en el anillo piperidínico del mencionado fármaco, por heteroatomos como N, O y/6 S.

I FENTANIL

Con base en los resultados obtenidos en el presente trabajo, se pretende predecir cual de los derivados estudiados presentaran una mayor similitud conformacional y electrónica con la molécula de fentanil y un mejor acomodo sobre el sitio receptor propuesto para este tipo de opioides, de esta forma llevar a cabo su síntesis y posteriormente observar los cambios en sus actividades biológicas.

Los resultados obtenidos, darán la pauta para llevar a cabo estudios similares en otros sistemas, con aplicación farmacológica, que puedan ser suceptibles, de acuerdo con su estructura, de presentar algun tipo de efecto estereolectrónico al modificar parte de la molécula. 4

II.1 Métodos Teóricos de Análisis Conformacional.

Una clasificación de los métodos teóricos de acuerdo al esquema que emplean y al origen de los parámetros en los cuales se basan, se presenta a continuación:

Esquema 2

En los cálculos de mecánica molecular MMX desarrollados por Allinger,⁹ el esquema teórico empleado es diferente al de los métodos mecánico-cuánticos. Debido a que la energía del sistema se describe en función de parámetros de fuerza clásicos tales como alargamiento y flexión de enlace ademas de los términos de atracción-repulsión de Lennard-Jones. La principal ventaja es la rapidez, ya que no emplea muchos recursos computacionales, sin embargo, debido a la naturaleza empírica de sus parámetros es que se encuentra limitado su uso. Aún así, es uno de los métodos más utilizados en éste tipo de análisis. En los métodos mecánico-cuánticos se trata de resolver la ecuación de Scheröedinger para encontrar la función de onda (ψ) que contiene la información física ó química del sistema dependiendo del operador lineal utilizado.

Ya que esto solo se puede hacer de manera exacta para el átomo de hidrógeno, se tiene que introducir aproximaciones al tratamiento mecánico-cuántico para sistemas moleculares multielectrónicos. Dichas aproximaciones se asocian con parámetros obtenidos a partir de los datos experimentales disponibles (Δ H_F).

En los métodos ab initio, los cálculos mecánico-cuánticos moleculares se hacen partiendo de orbitales atómicos aproximados por funciones de Slater¹⁰ ó Gaussianas¹¹ determinandose las integrales involucradas y entonces se calcula la energía haciendo operar el hamiltoniano completo, de esta forma se trata de encontrar la solución a la ecuación de valores propios sin emplear parámetros empíricos. Una limitación de este método es que de acuerdo a los medios computacionales con que se cuente, se debe hacer una elección del tipo y tamaño de la serie de orbitales atómicos que se usan para construir los orbitales moleculares, por lo tanto se puede introducir un error en el cálculo de la energía del sistema.

Los métodos ab initio proporcionan las geometrías y las energías más aceptables para una molécula, pero son los que necesitan de más recursos computacionales.

A diferencia del método anterior en los cálculos semiempíricos, algunos de los elementos del Hamiltoniano multielectrónico no se evaluan numericamente, sino que se hacen tal variedad de aproximaciones en los elementos de la matriz de Fock, desprecíandolos ó tomando como parámetros, datos obtenidos de mediciones experimentales. Como regla, se trata de mantener el número de parámetros tan pequeño como sea posible ya que por lo general no se dispone de muchos datos experimentales.

Por otra parte, los primeros métodos semiempíricos fueron desarrollados por Pople,¹² y se pueden dividir en 2 grupos :

a) Métodos de interpenetración máxima.

b) Métodos que desprecian la diferencial de interpenetración (NDDO).6 Métodos con diferencial de interpenetración cero (ZDO).

Entre los métodos NDDO más populares estan aquellos conocidos como CNDO¹³ (Complete Neglect of Differential Overlap) y MNDO¹⁴ (Modified Neglect of Diatomic Overlap).

Debido a que estos cálculos sólo consideran electrones de valencia, por esto y lo antes mencionados los métodos semiempíricos son evidentemente más rápidos que un cálculo ab initio (10 al00 veces). Actualmente existen una gran cantidad de métodos teóricos,¹⁵ pero es difícil decidir en un momento dado cual de ellos es el mejor, ya que se ha visto que eso depende del sistema a estudiar y de la información que uno quiera obtener de ellos.

A continuación se presentan los fundamentos de los métodos semiempíricos y de mecánica molecular usados en éste trabajo.

1.1 Método Semiempírico MNDO y su Modificación AM1.-

A partir de la resolución de la ecuación de Schrödinger se puede conocer el comportamiento mecánico de un sistema, obteniendo asi cualquier cantidad física observable. Dicha ecuación en su forma más sencilla establece:

donde

$\widehat{H} = \sum Z_A Z_B / r_{AB} - \sum \sum Z_A / R_{Ai} + \sum 1 / r_{ij} - \sum h^2 / 8 \Pi^2_m \nabla^2_i \dots (2)$ $A < B \qquad i A \qquad i < j \qquad i$

La ecuación (1) es en realidad una serie de ecuaciones con una función Ψ n correspondiente a cada una de las energías permitidas En (eigenvalue). En donde H es el operador* de energía que se conoce como Hamiltoniano (ec.2), y es la suma de la energía potencial (V) debida a la repulsión coulómbica internuclear, la atracción coulómbica entre electrones y núcleos atómicos, la repulsión coulómbica interelectrónica; y finalmente, el último término que representa la energía cinética de los electrones en los 3 ejes de un sistema de coordenadas, (sin tomar en cuenta las vibraciones y flexiones de la molécula).

La solución de un problema mecánico-cuántico consiste en la determinación de la función de onda propia Ψ y la evaluación de la energía E. Si se conoce la función de onda apropiada (bien comportada) para un sistema molecular dado, se puede sustituir en la ecuación diferencial (ec.1) y resolver entonces para la energía del sistema.

*El operador es un concepto matemático que indica que hay que hacerte algo a lo que sigue al símbolo, por ejem.: d/dx ($9x^2 + 2$), señala que se debe obtener la derivada con respecto a x de lo que sigue, es decir a ($9x^2 + 2$).

Por otro lado, debido a que no se conoce con precisión los valores de las variables dinámicas de un sistema (principio de incertidumbre de Heisenberg) la energía se obtiene sólo como un valor promedio (ec.3), despues de multiplicar el lado izquierdo de (ec.1) por la conjugada $\Psi *$ de la función propia, integrar y despejar.

Donde $\Psi *$ (ec.3) es el complejo conjugado de Ψ . Si Ψ no fuera una función de onda compleja (i) entonces $\Psi * \Psi = \Psi^2$, lo cual representa la probabiliad de hallar a la particula por unidad de volumen, es decir, la densidad de probabilidad de encontrar al electrón asociada al estado (Ψ), tomando en cuenta todo el espacio de configuraciones (d τ). Las funciones de onda tienen que cumplir 2 condiciones básicas: Deben estar normalizadas:

 $\Psi = \Psi d\tau = 1$

.....(4)

y deben ser también ortogonales.

$$\int \Psi_1 \Psi_2 d\tau = 0$$

Si cumple con ambas, la serie de funciones es ortonormalizada. Por otro lado, como lo anotamos anteriormente la ecuación de Schrödinger solo se puede resolver para algunos casos especiales; se tiene entonces que recurrir a métodos aproximados para el estudio del sistema molecular.

Uno de esos métodos es la aproximación de Born-Oppenheimer¹⁶ el cual considera un Hamiltoniano que acepta la separabilidad entre los movimientos electrónicos y de núcleos, considerando que estos últimos permanecen fijos con respecto al movimiento más rápido de los electrones.

Así entonces la energía del sistema queda definida como:

$$E = \Sigma C^2 ZAZ_B / rAB + \frac{\Psi + H\Psi dr}{\Psi + \Psi}$$

$$A \le B \qquad \Psi + \Psi$$
(6)

En donde el primer término es una constante (energía de repulsión del core) que representa la energía potencial debida a las repulsiones entre los núcleos y el 2° término corresponde a la energía electrónica.

El procedimiento a seguir es entonces resolver la ecuación diferencial de Schrödinger independiente del tiempo.

Una forma de lograr esto es usar la aproximación del orbital molecular, que representa la función de onda electrónica total considerando que esta se puede expresar como un producto normalizado de funciones de onda monoelectronicas antisimétricas (espín-orbital), las cuales dependen de las coordenadas espaciales y el espín del electrón. A éste tipo de representaciones se le conoce como determinante de Slater.

 $\Psi_{(1,2..n)} = \frac{1}{(n!)^{1/2}} / \Psi_{1}(1) \Psi_{1}(2) \dots \Psi_{n}(2n-1)} \Psi_{n}(2n) / \dots \dots (7)$

Donde $\Psi_1(1)$ y $\Psi_1(2)$, son orbitales con spines electrónicos opuestos y $1/(n!)^{1/2}$ es la constante de normalización, esto para el caso de sistemas con capa llena y n electrones. Para encontrar la función de onda molecular, es común aplicar la aproximación conocida como CLOA-OM (Combinación lineal de Orbitales Atómicos-Orbital Molecular); en la cual los orbitales moleculares se desarrollan como una combinación lineal de orbitales atómicos.

$$\Psi_{p(l)} = 1/(N_p) \Sigma C k^p \phi_{k(i)}$$
(8)

En donde ϕ_k son los orbitales átomicos (funciones base linealmente independientes) y Ck^{*p*} los coeficientes de participación de los mismos (eigenvectors). En este momento, el problema de encontrar la función de onda para el sistema, se reduce a obtener los coeficientes Ck^{*p*} del desarrollo, lo que se logra aplicando el método de variaciones es decir estableciendo un límite superior para la energía en el estado fundamental. Para encontrar la mejor combinación lineal, es decir los orbitales moleculares de más baja energía se hace uso del método de Hartree-Fock (H-F). De esta forma se obtiene la función de onda H-F a través de un proceso iterativo SCF (self consistent field) aplicado en orbitales de spin antisimétrico como los de Slater.

Asi, aplicando estos métodos se llega a la expresión para la energía total de la molécula con capa llena:

$$E = \sum \Sigma \underline{Z_{12}} \underline{Z_{1b}} + \sum \Sigma Pki Hki + 1/2 \Sigma Pki Pmn (- 1/2 < Km/in>) (9)$$

a < b Rab k1 kimn

de la cual, pueden calcularse los términos de repulsión nuclear, así como los términos monoelectrónicos Hz y bielectrónicos < / > (método ab initio), ó usar estos últimos de forma aproximada (métodos semiempíricos).

Entonces usando el método variacional se minimiza la energía total con respecto a cada uno de los coeficientes del desarrollo Ck^p , haciendo:

De donde se obtiene una serie de ecuaciones lineales homogéneas (11) para cada índice k, la cual tendra una solución no trivial unicamente si cumple con el determinante secular (12).

/Fu - EP Su/= 0

Esta es la base de todos los métodos de orbitales moleculares tanto semiempíricos como αb initio; su solución (diagonalización) da la energía E^p de cada orbital molecular y al sustituir éstas en la serie de ecuaciones lineales (ec.11), se obtienen los coeficientes Ck^p y los términos de distribición electrónica Pki dados por la siguiente expresión:

 $Pkl = 2\Sigma CkP ClP$

Por otro lado, Fulson los elementos de la matriz de Fock que forman parte de la ecuación de Rothann-Hall. 12

 $Fki = Hki + \Sigma \Sigma Pmn (< ki/mn > - 1/2 < km/in>)$ (14)

Donde Hkl es el operador Hamiltoniano que representa la energía cinética y de atracción nuclear de un electrón que se encuentra en la zona de interpenetración k-1, Pm es la población electrónica total en la zona de interpenetración de los orbitales átomicos k y l, <kl/mn> es la integral de repulsión coulombica entre 2 electrones situados en ambas regiones de traslape y <km/ln> es la integral de intercambio.

Para resolver el determinante secular (12) se requiere la evaluación de los elementos de la mátriz de Fock (Fk1), que a su vez están en función de coeficientes desconocidos C_n y C_m a través de P_{mn} . Una forma de salvar esta dificultad es usar el método de Hartree el cual supone una distribución de carga inicial.

13

.....(12)

......(13)

Esto es, que el movimiento de un electrón en el campo de los núcleos y demás electrones se puede remplazar de manera aproximada por el movimiento de un e-cn ese campo y la distribución de carga promedio de los otros electrones.

Entonces es posible determinar una primera serie de valores P_{mn} , con los que se calcula los elementos de la matriz de Fock y se resuelve el determinante secular. Esto da valores de Eo que como se dijo antes sirven para determinar los coeficientes Cp, los que a su vez se usan para obtener una nueva serie de valores de P_{mn} . El proceso se repite iterativamente hasta que los valores de P_{mn} obtenidos de un ciclo, dentro de los limites, sean igual a los usados en el ciclo anterior, es decir, se alcanza la autoconsistencia.

En resumen, la diferencia básica entre los métodos <u>no empfricos</u> y los <u>semiempfricos</u>, es que en los primeros se calculan todos los términos implicados en Fk1 (ec.14), mientras que en los semiempfricos se usan aproximaciones.

En el caso de MNDO¹⁴ (Modified Neglect of Biatomic Overlap), desarrollado por M.J.S Dewar, se utiliza la aproximacion del "core",¹⁷ y solo se menosprecian las integrales de repulsión electrónica, que involucran a la diferencial de sobreposicion diatomica. Estas aproximaciones son más justificables que las hechas por el esquema INDO¹⁸, por lo cual Dewar considera al método NDDO la base lógica para un tratamiento semiempírico.

Asi como otros métodos semiempíricos, MNDO nació de la necesidad de superar errores sistemáticos encontrados en modelos previos. Es asi como MNDO al tomar en cuenta la direccionalidad y anisotropía de los orbitales atómicos al calcular las integrales de repulsión, trajo como consecuencia una mejor reproducción de los efectos debidos a repulsiones entre pares de electrones libres.

De la misma forma MNDO presenta alguna fallas, en particular en reproducir puentes de hidrogeno y en el caso de calores de formacion. estos resultan ser demasiados positivos para moleculas estericamente impedidas y muy negativo para sistemas con anillos de 4 miembros.

En general, las principales fallas en las que incurre MNDO tienen una causa comun, es decir, la tendencia a sobrestimar las repulsiones entre atomos cuando estos se encuentran separados por mas que su distancia de Van der Waals.

Después de varios años de esfuerzo, finalmente se ha desarrollado una "3ª generación" de metodos en los cuales dichas deficiencias han sido salvadas.

Este nuevo método se conoce como AMI (flustin Model1).¹⁹ basado también el esquema NDDO, el cual trató este problema modificando la función de repulsión del core y obteniendo:

 $\begin{array}{c} 4 \\ EAB - ZAZB < SASA/SESB > + Z<u>AZB }{Z} \ \ Zai (A)exp. -bi(A) (RAB - RAB i-1) \\ Ci(A)^2) + ai(B)exp. -bi(B)(RAB - Ci(B)^2) / \qquad(15) \end{array}$ </u>

Dicha función se modifico asignando a cada atomo un numero de funciones gaussianas esféricas.²⁰ lo cual intenta imitar los efectos de correlación a grandes distancias, dando asi una optima forma a la funcion la que probablemente representa la mejor que se haya llevado a cabo utilizando la aproximación de NDDO como base.

En la actualidad 17 elementos han sido incluidos en los parametros base de AM1 (F, Cl, Br, I, Si, Al, P, S, B, Zn, Hg, C, O, H, N, Ge.).

1.2 MM2 (Molecular Mechanics).²¹

Este método, es conocido también como de campo de fuerza (force field) ó de Westheimer, y se trata a la molécula desde el punto de vista clásico, es decir, se considera que los átomos estan unidos por resortes mutuamente independientes.

La energía total del sistema se calcula como la suma de varias contribuciones (ec.16), y entonces la energía se minimiza usando el método de Newton-Raphson modificado.²²

 $E = V_r + V_{\Theta} + V_{vdw} + V_{tor} + V_{d-d} + terminos cruzados \qquad (16)$

Donde Vr y V Θ son las energías de estiramiento y de flexión que estan relacionadas con sus componentes de fuerza según las ecuaciones clásicas de el oscilador armónico (ecs.17 y18).

 $V_{\Theta} = \Sigma 0.5 \text{ Ke} (\Theta - \Theta_0)^2 \Theta =$ ángulo de valencia(18)

Para calcular el alargamiento de un enlace y la flexión de los ángulos se hace uso de las series de potencias como la serie de Taylor:

Vow es la energía del sistema debida a las interacciones de Van der Waals, entre pares de átomos que no estan enlazados entre si ni a un átomo en comun. El término de atracción es el resultado de la correlación electrónica y es inversamente proporcional a la sexta potencia de la distancia que separa los átomos.

Esta interacción se calcula con la "función de Hill":

$$V_{vdw} = \mathcal{E} \left(C_1 \left(\frac{r^4}{r^6} \right)^6 + C_2 \exp \left(-C_3 r/r^4 \right) \right)$$
(20)

 \mathcal{E} = parámetros de energía C1,C2 y C3= Constantes universales r^* = suma de los radios de Van der Wanls de los átomos que interactuan r = distancia interatómica mínima

Para moléculas que presentan poca tensión en los enlaces como los hidrocarburos alifáticos (etano), y que muestran mínimas diferencias de energía entre sus conformaciones eclipsada y alternada, se debe incluir un término torsional en el cálculo que se relacione con el ángulo diedro a través de la ecuación:

 $V_{tor} = \frac{V_0}{2} (1 - \cos 3\tau)$ (20)

Donde V_{tor} es la energía de torsión, V_0 es una constante de fuerza y τ es el valor del ángulo diedro analizado.

Lo anterior ya no es válido para el caso de moléculas ciclícas con deformación de ángulos la cual se calcula a través de una serie de Fourier, en donde además se toman en cuenta funciones compuestas denominadas términos cruzados, ejemplo, el término flexión-torsión.

Por otro lado, Vd-d es la energía de interacción dipolo-dipolo (término electrostático).

La idea fundamental de este método es suponer que cada una de las funciones de potencial que constituyen este campo de fuerza es transferible de una molécula a otra, es decir, que un tipo de enlace mantendrá sus mismas características en toda la molécula.

La estructura final de la molécula es aquella que posee una geometría de mínima energía.

II.2 Efecto anomérico.-

Los electrones que forman los enlaces de una molécula no funcionan unicamente como su esqueleto sino que también sirven como una especie de sistema nervioso que transmite las perturbaciones (estímulos) entre distintos puntos en la molécula ya sea por efectos estéricos ó electrónicos. Es debido a esto que los átomos rotan sobre enlaces sencillos para lograr adquirir la conformación que presente la mínima energía y por lo tanto la de mayor población entre varias posibilidades; es así que la importancia de los efectos esterecelectrónicos en la configuración y conformación de moléculas orgánicas se ha reconocido dentro de una gran variedad de contextos.²³

Entre los efectos conformacionales especiales se encuentra el llamado efecto anomérico,²⁴ descubierto hace 25 años por Lemiux, el cual se refiere a la preferencia de un grupo sustituyente electroatractor en el carbono anomérico de un anillo de piranosa C(2) por la orientación axial, en contra de la observación tradicional de preferir la posición ecuatorial.

2-ax

Se acostumbra medir la magnitud del efecto anomerico como la diferencia entre los ΔG_{XY} para el sistema estudiado y el ΔG_Y para el ciclohexano.²⁶ Las causas que lo provocan aún no han sido determinadas, aunque existen algunas proposiciones para darle explicación, estas adolecen de que solo se aplican a ciertos casos en específico. Tales proposiciones son:

a).- Interaccion Dipolar.

En este caso se atribuye la preferencia del sustituyente por la posición axial a la repulsión electrostatica entre dipolos, desfavorable en el confórmero ecuatorial mientras que la atracción dipolo-dipolo lo estabiliza en la orientación axial, (esquema 4).

Una manera de verificar si este tipo de interaccion es la que influye en la preferencia conformaciónal del sistema, es realizar el cálculo de ΔG_{XY} mediante la espectroscopia de RMN de ¹H; así se esperaria que el equilibrio conformacional se desplazara hacia la derecha a medida que aumentara la

constante dielectrica del medio.²⁷ debido a estabilización de dipolos por efecto del disolvente en el conformero ecuatorial.

b).- Interacción Estereoelectrónica.- 28

Aquí la preferencia se atribuye a la deslocalización del par electrónico libre de un heteroátomo endocíclico, a través de un efecto hiperconjugativo hacia el orbital vacio de antienlace σ^* c-y (Esquema 5).

La magnitud de dicha interacción depende de la energía relativa de dicho orbital, ya que la energía del orbital nx permanece constante²⁹ (Esquema. 6).

Por otro lado, existe también la posibilidad de que la deslocalización antiperiplanar n_y - σ *c-x sea más estabilizante para el confórmero ecuatorial que la interacción n_x - σ *c-y, lo cual se ha observado en sistemas de tetrahidropirano y se explica como un efecto anomérico exo,³⁰ en donde el grupo substituyente (y) es mejor donador que el elemento endocíclico (x). (ver esquema 6).

Esquema 6

La manifestación de este tipo de efecto se debe reflejar en una disminución en la distancia del enlace C-X y un aumento en longitud del enlace C-Y. Lo cual podemos observar a través del estudio espectroscópico de rayos-x, además del estudio de parámetros geométricos obtenidos por métodos semiempíricos de orbitales moleculares.

Otro efecto conformacional especial que se presenta también en este tipo de sistemas es el conocido como:

c).- Efecto Gauche.31

Es una tendencia conformacional que sigue la estructura, en la cual se presenta un mayor número de interacciones entre pares electrónicos y/o enlaces polares adyacentes (no unidos), es decir, la preferencia conformacional de estos es perpendicular más que antiperiplanar.

Para grupos substituyentes grandes la conformación antiperiplanar es claramente favorecida con base en consideraciones clásicas estéricas y polares. Sin embargo, existe también una interacción repulsiva no enlazante entre los orbitales 3p de los sustituyentes X y Y lo cual provoca una preferencia hacia el isomero axial en donde tal efecto es estabilizante.

A lo cual se le ha llamado efecto gauche repulsivo (esquema 7).

Esquema 7

Por otro lado, se ha informado recientemente la existencia de efecto anomérico en sistemas no heterocíclicos debido a interacciones transanulares entre un orbital hibrido spd ocupado y un orbital $C\beta$ -C2O* (esquema 8).

Esto es un nuevo efecto estereo electrónico a través de un metal de transición (Ir ó Rh). 32

Esquema 8

II.3 OPIOIDES.

El dolor físico es una experiencia traumática de todos los seres humanos; la tarea de definirlo, medirlo y entenderlo ha ocupado la mente de científicos, filósofos y teólogos por siglos.

Desde hace mucho tiempo la droga principal para el alivio del dolor severo ha sido el opio, el cual es el latex secado al sol de las cápsulas inmaduras de la amapola **Papaver somniferum**: que contiene una mezcla de alcaloides (20%), azúcares, resinas, gomas y otras sustancias. Los principios activos más importantes en cuanto a su acción depresora (narcótica y analgésica), son la morfina (II) y la codeina (III),

п

ш

siendo la morfina el primer compuesto biologicamente activo separado y cristalizado a partir de una fuente natural, en1803.³³ A partir de entonces fué rápidamente reconocida como la sustancia responsable de las propiedades curativas de la planta.

Sin embargo, aunque sigue siendo la droga más prescrita para el alivio del dolor severo, ésta presenta varios efectos secundarios indeseables: depresión respiratoria y sanguínea, naúsea, vómito, constipación y lo más grave la dependencia física. Poco después de la primera guerra mundial, fué iniciado en E.U.A un programa de investigación cuyo objetivo principal era encontrar un sustituto sintético de la morfina, que conservara sus propiedades analgésicas pero sin riesgo de adicción.³⁴ Sin embargo, las variaciones en la estructura de la morfina debida a cambios en los sustituyentes no dió una solución definitiva en la creación de nuevos fármacos ya que la materia prima seguía siendo la misma morfina. Debido a lo anterior y al interés de conocer la porción estructural mínima necesaria para la acción biológica, las modificaciones se dirigieron hacia la fragmentación de la molécula de la morfina buscando estructuras más sencillas eliminado así la dependencia que se tenía de la planta.

El siguiente esquema presenta las principales desconexiones que se han hecho en la estructura de la morfina y las diferentes familias de opioides generados.

Esquema 9

Se ha observado que cada una de las diferentes clases de compuestos obtenidos presentan actividades que diferen en mayor 6 menor grado en alguno de los efectos biológicos mencionados anteriormente. Por otro lado, como se aprecia en el esquema 9, la eliminación del metileno bencílico en la molécula del benzomorfano nos deja la estructura vital de la morfina: las fenilpiperidinas, en las cuales se ha llevado a cabo la supresión de los tres anillos.

Dentro de los compuestos más importantes relacionados estructuralmente con las 4-fenilpiperidinas se encuentra el Fentanil³⁵ (I) el cual es un agente narcótico-analgésico utilizado en mezcla con oxido nitroso en intervenciones quirurgícas. Es 300 veces más potente que la morfina, y hasta 10,000 veces al introducir un sustituyente apropiado en el anillo piperídinico en posiciones 3 y/ó 4.³⁶

Las 4-fenilpiperidinas y en particular la molécula de fentanil presenta conformaciones muy flexibles y por estudios de RMN de ¹H se ha sugerido que la conformación preferida es la de silla con el grupó anilido en posición ecuatorial.³⁷ Por otro lado, estudios teóricos mecánico-cuánticos a través del método de PCILO³⁸ (Perturbative Configuration Interaction using Localized Orbitals) mostraron que la molécula de fentanil presenta 306 posibles conformaciones y que a medida que se sustituye la parte piperidínica de la molécula, el espacio conformacional decrece lo cual también se refleja en un aumento en la potencia analgésica del análogo estudiado.³⁹

Lo anterior invitó a pensar que la construcción de análogos conformacionalmente rígidos del Fentanil, provocaría un aumento en la selectividad y por ende en la actividad biológica. Por lo tanto, se llevaron a cabo investigaciones exhaustivas con el objeto de estudiar las consecuencias farmacológicas de dichos análogos. Por un lado, se realizó la restricción conformacional en el N de la piperidina obteniendo asi los derivados de las benzo(a)quinolizidinas IV de las cuales ninguno de ellos presentó actividad biológica.⁴⁰

IV

Posteriormente, las sustituciones en la posición 7 de la molécula produjo compuestos que presentaron un Iso casi 0.5% del presentado por el Fentanil y 2% en relación a la morfina, lo cual indica la importancia de la libertad conformacional del grupo fenetilo.⁴¹

Por otro lado, se ha descrito también la restricción de la flexibilidad conformacional de la porción N-acilo, por medio de la síntesis de las perhidro(1,6)-naftinidrin-2-onas, en dichos análogos se perdio totalmente la actividad analgésica tanto en el isómero cis V como en el trans VI, confirmándose lo sensitivo del fragmento anilido para la actividad biológica.⁴²

Asi mismo el análogo indólico VII, con el grupo anilido axial tampoco presentó apreciable efecto térapeutico.⁴³

VII

Los resultados anteriores, indican que la actividad farmacológica del Fentanil es altamente dependiente de factores conformacionales, sin embargo, se debe tener presente que los cambios causados en parámetros tales como absorción, distribución y metabolismo, efectuados al realizar esas modificaciones estructurales juegan también un papel muy importante. Por lo tanto, es esencial advertir que para tener una conformación rígida con un mismo grupo farmacofórico, se estan adicionado ó eliminando átomos que de alguna forma van a interactuar con el sitio receptor,⁴⁴ influyendo asi en la actividad biológica.

Por otra parte, la mejor explicación que se da al hecho de la multivariedad estructural de opioides que provocan efectos analgésicos similares, se tiene en el momento que se postula, y posteriomente se comprueba, la existencia de al menos tres tipos de receptores de opioides (μ , κ , δ), los cuales intervienen para provocar una gran variedad de efectos fisiológicos centrales y periféricos.⁴⁵

Las características estructurales de dichos sitios se estudian diseñando antagonistas no peptídicos, con el objetivo de crear ligandos de alta afinidad, los cuales no sufran ataques por peptidasas y sean capaces de atravesar el sistema nervioso central (SNC). Las técnica más utilizada para el seguimiento estructural de receptores de opioides es el concepto mensaiero-dirección (message-address).⁴⁶

En él se considera que el componente mensajero de la molécula lleva a cabo la señal de transmisión en el receptor, es decir, la información farmacofórica, y por otro lado, una parte directora que produce la afinidad adicional ó selectividad hacia un subsitio en específico.

Esta idea aplicada al terreno de los opioides endógenos peptídicos, se muestra a continuación para el caso de la encefalina VIII.

and the transformed states and

Aquí el residuo de tirosina comprende la parte mensajera y la secuencia que comienza con fenilalanina constituye la dirección; por último dos moléculas de glicina actuan como espaciadores entre ambas partes. La validez de esta teoria se ha probado en moléculas tales como los oximorfanos.⁴⁷ los cuales son ligandos selectivos hacia sitios μ , y en donde al variar el peptido de la parte directora la selectividad cambia hacia subsitios κ ó δ modificando de esta manera sus efectos.

En cuanto al papel que juegan los espaciadores en este tipo de opioides peptidomimeticos se ha observado, por ejemplo, que para diferentes derivados heterocíclicos del naltrindol IX, la variación del heteroatomo en el anillo indólico no afecta la actividad biológica lo cual indica que actúan unicamente como fijadores de la parte directora provocando asi un aumento en la selectividad de la interacción con receptores específicos, sin modificar la naturaleza farmacofórica de la molécula.⁴⁸

31

27

IX

3.1 Modelo Conceptual de Receptor para 4-fenilpiperidinas.

A partir de datos de estructura-actividad, se ha construído un modelo de sitio receptor para este tipo de opioides;⁴⁹ en el cual se supone que los centros aromáticos de dichos compuestos, corresponden a las partes aminoacidas Phe y Tyr de ciertos opioides peptídicos endógenos.

Por otro lado, existe una gran evidencia de que dichos aminoacidos son muy importantes en la actividad biológica de la encefalina (VII), el cual es el opioide endógeno más pequeño. En éste modelo la estructura terciaria de la encefalina se mantiene via puente de hidrógeno entre Phe y Tyr, produciendo un enlace alrededor de los residuos de glicina.

De esta forma, el modelo de receptor propuesto (Esquema 10), consiste de 2 subsitios de enlace aromático y uno responsable de la interacción con el ión amonio en posición 1 del anillo B. El subsitio **T**, se enlaza preferentemente a anillos aromáticos hidroxilados (como la morfina y el residuo de tirosina en la encefalina). El segundo sitio de interacción aromática **P** esta a casi 5.5 Aº del sitio aniónico, 5^0 dicho subsitio se enlaza preferentemente a anillos aromáticos no hidroxilados como la mefedrina ó la fenilalanina en el caso de la encefalina.

La interacción con la parte correspondiente a una protuberancia estérica (Pe), depende de los sustituyentes en la amina terciaria del anillo B, los cuales pueden elevar a dicho átomo alejándolo de ese subsitio, cambiando asi su naturaleza de agonista a antagonista.⁵¹ Es asi como se puede entender la alta potencia de la molécula del fentanil en relación con otros opioides como la metadona y el propoxifeno (Darvon), los cuales no interactúan con los 3 subsitios importantes, no alcanzando asi la orientación precisa requerida para un mayor efecto.

1.- Sitio T 2.- Sitio N⁺ 3.- Protuberancia estérica

4.- Sitio P

Esquema 10.- Modelo conceptual gráfico de sitio receptor.

11.4 Momento Dipolar, Potencial de Ionización y Calor de formación.

El método semiempírico de orbitales moleculares AM1, además de los datos analizados anteriormente proporciona otros parámetros fisicoquímicos como: momento dipolar, potencial de ionización y el calor de formación. Estas propiedades pueden relacionarse en algún momento con la reactividad, estabilidad ó actividad biológica de un sistema molecular. Por lo tanto, es conveniente discutir brevemente cada uno de estos parámetros.

Momento Dipolar.

Es considerado como la suma de 4 contribuciones:

a).- La debida a la asimetría de la carga en los electrones de unión.

b).- La que surge de la desigualdad del tamaño de los átomos.

c.)- La de la posible asimetría de los orbitales atómicos involucrados en la unión, por ejemplo, la hibridación.

d).- La polarización de cualquiera de los electrones de no unión.

Esta propiedad se expresa generalmente por medio de 2 teorias: En la de unión valencia,⁵² corresponde la contribución relativa de la estructura iónica más importante, por otro lado, en la de orbital molecular⁵³ se asocia al valor de los coeficientes de los orbitales atómicos utilizados en la combinación lineal.

En general, el conocimiento del momento dipolar de un compuesto resulta muy útil en la determinación de la conformación molecular, asi mismo, proporciona información acerca de la posición atómica relativa en el espacio de una molécula, es decir, su simetría.

Potencial de Ionización.

Una de las propiedades fisicoquímicas que frecuentemente se asocian con el experimento, es el potencial de ionización (PI), el cual se define como la energía nesesaria para eliminar un electrón de una molécula en fase gaseosa.

R ----- R⁺ + e⁻

El primer potencial de ionización se refiere al electrón menos unido a la molécula, desde un punto de vista teórico, estos son importantes ya que su valor corresponde de manera aproximada a la energía del orbital molecular más alto ocupado (HOMO) del sistema. En 1933,⁵⁴ el teorema de Koopmans comprobó que la energía necesaria para sustraer un e⁻ de un orbital en un átomo ó molécula de capa cerrada tiene un valor aproximado al negativo de la energía Hartree-Fock, Eú del orbital ú. Ya que esa cantidad es, en general, negativa, el PI (comunmente llamado PI vertical) es un numero positivo que puede aproximarse al PI observado. Por consiguiente, la energía tionización molecular ó PI, puede estimarse tomando la -Eú del HOMO.

Al aplicar éste teorema, se supone que los orbitales del ion son idénticos a los del sistema de capa cerrada, lo cual obviamente es una aproximación, sin embargo, dicho teorema se cumple en muchos casos con gran precisión.

Los valores experimentales de los PI, se pueden obtener mediante 2 técnicas básicas diferentes:

- 1.- Espectroscopía Fotoelectrónica.55
- 2.- Impacto Electrónico.

En esta última, el tiempo es extremadamente corto, por lo que si la ionización ocurre durante este período, el ion permanece con la misma configuración geométrica y por lo tanto no se produce en su estado de menor energía.

A este tipo de ionización se le llama "vertical" y su diferencia con la ionización "adiabática" (ion producido en su estado basal), puede considerarse como una medida de la ganancia en energía del ion debida a la reorganización nuclear y electrónica en la molécula.

En éste trabajo el cálculo fue realizado sobre una conformación fija para cada sistema; idéntica a la molécula en su estado neutro y en consecuencia los valores obtenidos son "verticales".

Calor de formación ΔH_{f} .--

Otra propiedad molecular importante es el calor de formación estándar, definido como el cambio de entalpía para la reacción en la que un mol de cierto compuesto se produce a partir de sus elementos en sus formas más estables.

Este tipo de datos se obtienen de manera directa por medición en un calorímetro, pero la mayoría de las veces se hace indirectamente usando calores de combustión junto con la ley de Lavoisier-Laplace y la de Hess. Los compuestos para los cuales ΔH_f es negativo son, en general, más estables con respecto a sus elementos ya que liberan energía en su formación. Por otra parte, el valor positivo de éste indica que el compuesto puede formarse a partir de los elementos sólo cuando se proporciona cierta cantidad de energía al sistema reaccionante, tales compuestos son menos estables que los elementos puros.

III RESULTADOS Y DISCUSION.

En este trabajo se realizó el análisis teórico conformacional y el cálculo de la estructura electrónica de una serie de compuestos análogos de la N-fenil-/1-(2-feniletil)-4- piperidinil)/-propanamida (fentanil), sustituyendo los átomos de carbono de las posiciones 3 y/ó 5 por los heteroatomos N, O y S.

Sustituyente

Nombre del heterocíclo56

K3=X5=S	1,3,5-Ditiazina
X3=X5= 0	1,3,5-Dioxazina
K3=S , X5=N-H	1,3,5-Tiadiazina
K3= O, X5 = N-H	1,3,5-Oxadiazina
K3=N-H, X5= C	1,3,-Diazina
X3≕ O , X5≕ C	1,3- Oxazina
K3=S, X5= C	1,3-Tiazina

Esgema 11.- Análogos del fentanil estudiados en este trabajo.

Estudiandose las cuatro diferentes conformaciones extremas consideradas en los siguientes equilibrios (esquema12) para los 7 análogos, utilizando para tal efecto el método de Mecánica Molecular MM2²¹ y el semiempírico de orbitales moleculares AM1¹⁹.

Esquema 12.- Conformaciones extremas de los análogos del fentanil estudiadas.

Al describir la posición de un átomo A con respecto a su definición con otros átomos, la longitud de enlace (d) es la distancia C-D, el ángulo de valencia (θ) es el formado por los átomos B-C-D, el ángulo diedro (ϕ) es el ángulo formado por los planos ABC Y BCD, tomando como eje de giro el enlace B-C. Se asignó un valor positivo al ángulo diedro cuando al ir de A a D, (observando a través del enlace B-C), se gira A en el sentido de las manecillas del reloj, en caso contrario el valor del ángulo fué negativo (esquema 13).

Esquema 13.- Explicación gráfica de la convención para describir la posición de un átomo dado en la molécula.

III.1 Análisis Conformacional.

El análisis de los parámetros geométricos correspondientes a la conformación de mínima energía (relajada), ó dicho de otra forma, aquélla en la que se evitan al máximo tensiones intramoleculares, interacciones estéricas y electrónicas presentó los siguientes resultados para cada una de las conformaciones extremas:

1,3,5- Dioxazina en conformación Trans-1.

El átomo 9 del anillo A esta formando un ángulo diedro de -168.2 ° con la cadena de átomos C8-C7-N1 presentando una rotación positiva a través del enlace C9-C8 de 13°. El ángulo diedro formado por la cadena de átomos C7-N1-C6-O5 es de 176.3° y el anillo B adquiere una conformación clásica de silla con un ángulo de torsión promedio de 53.5° el cual se aproxima al valor observado para el ciclohexano usando difracción electrónica (55.9°).⁵⁷

El oxígeno del carbonilo amídico se encuentra casi coplanario con el C4 del anillo B y presenta un ángulo diedro de 9.14º con el plano formado por la cadena C16-N15-C4

El átomo 17 del anillo C, exhibe un ángulo diedro de 48.7° con el plano que forman los átomos N15-C4-O5, lo cual situa el anillo C a 41.8° fuera del plano formado por el grupo amida y C4 (si estos fueran coplanarios). El ángulo formado por los carbonos orto del anillo C presenta valores de -63.9° y 114.7° para los átomos C19 y C20 respectivamente, lo que indica que dichos átomos no estan equidistantes a los átomos O3 y O5 del anillo B y por lo tanto existe una rotación positiva de 24.7° sobre el enlace N15-C17.

Por otro lado el carbono del metilo de la etanamida tiene un ángulo diedro de 98.7º en relación al plano formado por C18-C16-O42.

Esquema 14.- Conformación de mínima energía obtenida por el método mecánico-cuántico AM1 para la 1,3,5-Dioxazina en isomería Trans-1.

1,3-Oxazina en conformación Cis-2.-

El C9 del anillo aromático A forma un ángulo diedro de -172.7° con la cadena de átomos C8-C7-N1 y observa una rotación positiva sobre el enlace C7-C8 de solo 5°.

El ángulo formado por la cadena de átomos C7-N1-C6-O5 es de 176°. El anillo B adoptó una conformación de silla con un ángulo de torsión promedio de 47.7° .

El oxígeno del carbonilo de la amida esta casi eclipsado con el C4 del anillo B formando un ángulo diedro de 8.8°.con el plano formado por los átomos C4-N15-C16. El C17 del anillo aromático C presenta un ángulo diedro de -91.7° con la cadena N15-C4-O5 lo que lo situa perpendicular al plano formado por los átomos O42-C16-N15-C4. Por otro lado, éste anillo muestra una rotación de 34.8° hacia el anillo B a través del enlace N15-C17.

El carbono metílico del grupo amida se encuentra casi eclipsado con el O42, formando un ángulo diedro de13.0°, con el plano formado por los átomos C18-C16-O42.

Esquema 15. - Conformación de mínima energía obtenida por AM1 para la 1,3-Oxazina en relación Cis-2.

1,3-Tiazina en conformación Cis-1.-

El anillo A en esta conformacion se encuentra hacia afuera del anillo y el C9 del mismo forma un ángulo diedro de -167.2° con la cadena de átomos C8-C7-N1, observandose una rotación positiva de 5° a traves del enlace C8-C7. La cadena de átomos C7-N1-C6-S5 tiene un ángulo diedro de 87.6° y el anillo B mantiene una conformación de silla con un angulo de torsión promedio de 55.8°.

El oxígeno del carbonilo muestra un àngulo diedro de 10.3° con el plano formado por los àtomos C4-N15-O16 del anillo B. El C17 del anillo C forma un àngulo de 79.5° con la cadena de àtomos N15-C4-S5. Los carbonos orto 19 y 20 del anillo C presentan ángulos diedros de -123.3° y 55.7° respectivamente lo que indica una rotación positiva de C hacia B en 35°. El carbono del grupo metilo tiene un àngulo diedro de 59.7° grados con el plano que forman los àtomos C18-C16-O42

Esquema 16. - Conformación de minima energía para la 1,3-Tiazina en somería Cis-1,obtenida por AM1. 1,3,5-Dioxazina en conformación Trans-2.

El C9 del anillo A forma un ángulo diedro de -179.6° con el plano formado por la cadena de átomos C8-C7-N1 y no muestra rotación sobre el enlace C7-C8. El anillo B adquiere la conformación de silla con un ángulo de torsión promedio de 46,5°.

El átomo de oxígeno del carbonilo muestra un ángulo diedro de 4.5° y mantiene una coplanaridad casi total con el plano que forman los átomos C16-N15-C4.

El C17 del anillo C forma un ángulo diedro de -112.7° con la cadena de átomos N15-C4-O5. En este caso el anillo C muestra una mínima rotación negativa de 2° hacia el anillo B sobre el enlace N15-C17.

El átomo de carbono del metilo de la amida forma un ángulo diedro de 8.5° con el plano de los átomos C18-C16-O42.

Esquema 17. - Conformación de mínima energía obtenida por AM1 para la 1,3,5_dioxazina en relación Trans-2.

Del análisis de los datos anteriores se observa que los cambios conformacionales más importantes en cada serie de conformaciones extremas se presentan en: la disposición espacial del grupo etilo de la amida, la rotación de anillo C sobre el enlace C17-N15 y la variación del ángulo diedro formado por el O42 y el heteroatomo en posición 5 del anillo B.

III.2 Análisis de Poblaciones Conformacionales para la molécula de fentanil y sus 7 análogos estudiados.

La diferencia de energía entre las 4 conformaciones extremas de un análogo, considerando el equilibrio de la conformación de más baja energía con las 3 restantes, demostró que existe "preferencia" por alguna de ellas.

Una forma aproximada de cuantificar dicha tendencia es a través del cálculo del porcentaje de cada confórmero que existe en el equilibrio a una temperatura dada. Para conocer esta proporción se utiliza la energía total más baja de algun análogo, suponiendo que la fracción del número de moléculas con energía Ei sigue la Ley de distribución de Boltzmann y, además, que la función de partición de cada par de isómeros era la misma. De esta forma el cociente de la fracción molar del conformero de más baja energía con respecto a alguno de los otros 3 es:

NI = eEI-EII/RT	
eEI-EII/RT + 1	(23)

y sabiendo que :		:	Ni + Nii = 1			(24)				

Se obtiene :
$$NII = \frac{1 - eEI - EII/RT}{eEI - EII/RT + 1}$$
(25)

45

Usando estas ecuaciones se encuentra que a $T=25^{\circ}C$ el porcentaje de probabilidad de existencia en el equilibrio favoreció a las conformaciones Cis-2 y Trans-1 en 4 de los análogos heterocíclicos estudiados.

A continuación se presenta una tabla donde se muestran los resultados obtenidos en relación a dichos porcentajes en el equilibrio, para todos los análogos analizados (Tabla 1).

	And the second se		A REAL PROPERTY AND A REAL PROPERTY.	
DERIVADO	Trans-1	Cis-2	Cis-1	Trans-2
Fentanil	4.10%	(*)	95.73%	(*)
0-0	(*)	.0648%	(*)	99.93%
S-S	(*)	(*)	1.98%	98.01%
N-0	36.18%	63.81%	(*)	(*)
N-S	0.80%	99.20%	(*)	(*)
N	43.15%	56.84%	(*)	(*)
0	33.13%	66.86%	(*)	(*)
S	(*)	(*)	97.53%	2.46%

Tabla 1

En los espacios donde aparece (*), no se informa el porciento de población ya que la razón de esos análogos en relación a su confórmero de más baja energía presenta un valor sumamente alto, lo cual indica una probabilidad de existencia muy pequeña en equilibrio con el confórmero más estable.

En el Anexo-1, se presenta en tablas los parámetros geométricos de los confórmeros de más baja energía observados para cada uno de los análogos, obtenidas con AM1, siguiendo las reglas de posición descritas anteriormente. Por simplicidad en las 46

anteriores tablas no se toman en cuenta los datos correspondientes a los átomos de hidrógeno.

Por otro lado, en el esquema 18, se presenta los arreglos espaciales adoptados por la molécula del Fentanil en sus conformaciones de mínima energía.

Esquema18 .- Estructuras de los 2 confórmeros más estables del fentanil en equilibrio a 25°, obtenidas por AM1.

III.3 Propiedades Fisicoquímicas.

En cuanto a los valores de energía total (estabilidad), de los análogos estudiados se observa que los que presentan más baja energía son los que mantienen la conformación Cis-2, con excepción de los sustituidos con (O,O) y (S,S), los cuales presentan la conformación más estable en la isomería Trans-2. Así mismo, los valores de Δ Hf muestran una completa correlación con los valores de energía total.

Por otro lado, se observa que el potencial de ionización es mayor en el conformero Trans-1 para los análogos sustituidos con (O), (N,O) y (O,O), asi como para el fentanil mismo, y en la conformación Trans-2 para la 1,3,5-Ditiazina y Cis-1 para la 1,3-Tiazina. Para los análogos sustituidos con (N,S) y (N), lo muestran en la relación Cis-2.

De lo anterior podemos observar que dentro de una conformación dada, la capacidad de ceder electrones depende de los heteroatomos que esten en el anillo B. Así mismo, la energía electrónica es menor en todos los análogos estudiados en la conformación Cis-1, lo cual también sucede con la energía de repulsión core-core ó factor estórico.

Las energías de HOMO (Highest Qccupied Molecular Qrbital) y LUMO (Lowest Unoccupied Molecular Qrbital) son índices de gran interés químico y farmacológico muy útiles, estos miden respectivamente la capacidad de una parte de la molécula para donar δ aceptar electrones. Esto es, un valor grande del HOMO indica una tendencia importante a donar electrones, asi como uno pequeño de LUMO indica la menor resistencia a aceptar electrones.

Este tipo de parámetros son importantes, pues en un momento dado, la molécula de fármaco podría interactuar con el sitio receptor a través de enlaces ionicos, dipolo-ión ó dipolodipolo, en los cuales la capacidad donadora ó aceptora de electrones resulta significativa.⁵⁸

Por ejemplo, se han encontrado relaciones lineales entre la potencia analgésica y la energía del HOMO.⁵⁹

El método semiempírico de orbitales moleculares utilizado, provee los valores de HOMO Y LUMO para cada uno de los análogos estudiados en las 4 diferentes conformaciones extremas, asi como los coeficientes de los orbitales átomicos que contribuyen más a dicho orbital molecular. A partir de esos datos, se puede ver que la molécula de fentanil presenta una mejor capacidad para donar electrones en la conformación Cis-2 y que el orbital átomico que contribuye más es el del átomo N(1), de igual forma, la energía del LUMO es también la más baja en la misma conformación.

El análogo que presenta las mismas características en relación a estos parámetros es la 1,3-Tiazina, sin embargo, el orbital atómico que contribuye más corresponde al átomo de azufre.

Asi mismo, en los análogos en donde el sustituyente en el N(1)se encuentra en la orientación axial (Cis-1 y Trans-2), los átomos que contribuyen más al HOMO son los vecinos, en el anillo B, al átomo N(1); esto se refleja claramente en los valores de los coeficientes, lo que los convierte en el centro rico en electrones de la molécula en dichas conformaciones extremas.

En general, en la mayoría de los análogos estudiados el C(17) del anillo C es el que contribuye más al LUMO y se observa que la capacidad para aceptar electrones es mayor en la conformación Cis-1, excepto para los análogos 1,3,-Tiazina y 1,3,5-Ditiazina, los cuales lo presentan en conformación Cis-2 y Trans-2, respectivamente.

En el Anexo-2 se presentan las propiedades fisicoquímicas calculadas para cada uno de los análogos, en las 4 conformaciones extremas.

III.4 Efecto Anomérico: origen y consecuencias sobre la estructura electrónica .

Como se discutió en la sección II.2, el efecto anomérico es una manifestación de la preferencia por la posición axial de un sustituyente electroatrayente en la posición anomérica (C2), en un anillo de pirano.

Asi mismo, el análisis teórico conformacional de los análogos del fentanil, descrito en la sección III.1, reveló que los conformeros más estables (de acuerdo con el criterio de mínima energía), que presentan mayor efecto anomérico son: la 1,3,5-Oxadiazina, 1,3,5-Tiadiazina 1,3,-Diazina y 1,3-Oxazina todos en la conformación Cis-2. Además, se observa que la 1,3-Tiazina en conformación de mínima energía exhibe el mismo arreglo espacial (Cis-1), que el fentanil en su conformación más estable.

Por otro lado, se calculó la estructura electrónica para todos los análogos, utilizando el método mecánico-cuántico AMI, obteniendo las densidades electrónicas en cada átomo asi como los ordenes de unión en el anillo B de la molécula en su conformación más estable, (ver anexos 3 y 4).

Lo anterior con el fin de observar cuantitativamente los cambios en la estructura electrónica del anillo B, provocados por el mencionado efecto sobre los análogos del fentanil estudiados en las 4 diferentes conformaciones extremas, dichas variaciones se discuten a continuación:

En la mayoría de los confórmeros estudiados, excepto en la 1,3-Tiazina y en la 1,3.5-Tiadiazina, cuando el sustituyente en N(1) está en orientación axial la densidad electrónica en el mismo es menor que cuando se encuentra en posición ecuatorial, disminuyendo aún más cuando el sustituyente en C(4) es axial también, esto se atribuye a la atracción que ejerce el heteroatomo en posición 3 y/6 5, el cual jala la densidad de carga hacia el orbital de antienlace C(4)-N(15) provocando la deslocalización del par electrónico de N(1) hacia el orbital de antienlace de la unión C(6)-X(5) ($n_{N(1)} - \sigma^* c_{-x}$). Esto se refleja también en el aumento de la densidad electrónica este átomo, por parte del par libre de N(1) en la conformación Trans-2.

Por otro lado, probablemente debido a los mismos efectos la densidad electrónica del heteroatomo en posición 3 y/ó 5 aumenta al pasar del confórmero Trans-2 al Cis-1, ya que en esta conformación los orbitales $n(x) \neq O^{\bullet}C(4)$ -N(15) ya no son antiperiplanares y por lo tanto ya no existe efecto anomérico. Lo anterior sucede en los análogos sustituidos con (S), (S,S), y (O,O), como se muestra en esquema 19.

Esquema 19 .- Densidades electrónicas en los conformeros Trans-2 y Cis-1 de la 1,3,5-Dioxazina.

Sin embargo, en los análogos restantes se observa el efecto contrario, es decir, una disminución en la densidad electrónica del heteroatomo X en los conformeros Cis-1. Esto va de acuerdo con el hecho de que en estos análogos el efecto anomérico es provocado por la interacción del par libre del heteroatomo en 3 y/6 5 no víendose involucrado el par del N(1). Cabe mencionar que lo anterior también se refleja en una disminución de la densidad electrónica del carbono en posición 4, en el confórmero que presenta mayor efecto anomérico. Por otro lado, se puede observar que la participación en el efecto anomérico de los pares libres de los heteroatomos en 3 y/65 del anillo B no son de la misma magnitud en el caso de los análogos sustituidos con (N,S) y (N,O) el que contribuye más es el par libre del nitrógeno y el del átomo de oxígeno respectivamente. Con heterociclos como la: 1,3-Diazina, 1,3-Tiazina y 1,3-Oxazina se observa en general un mayor grado de dicho efecto en los derivados sustituidos con oxígeno ó azufre, cuando el sustituyente en N(1) es ecuatorial; por el contrario para el análogo sustituido con N-H el confórmero que lo presenta con mayor grado es el axial.

Así mismo, la densidad electrónica sobre estos heteroatomos aumenta al pasar la orientación del sustituyente en N(1) de ecuatorial a axial.

Por otro lado, el análisis de los órdenes de enlace en el anillo B muestran como para los análogos en conformación Trans-2 y Cis-1 el átomo N(1) retiene menos carga y permite así una mayor población electrónica en el enlace N(1)-C(6) en relación a lo presentado por los isómeros Cis-2, en los cuales la escasa disponibilidad del par electrónico en N(1) provoca un orden de enlace menor.

Esto también se refleja en los valores de la unión N(15)-C(4) en donde la mayor atracción electrónica del N(15) por efecto anomérico debilita el índice de unión entre ellos. Así mismo, se observa que para el derivado Cis-1 de la 1,3-Tiazina en el cual no hay efecto anomérico la deslocalización del par libre en N(1)provoca un orden de unión muy alto entre los átomos N(1)-C(6)-S(5); debido a que no existe una relación antiperiplanar con N(15) la carga no se deslocaliza hasta dicho átomo. Un ejemplo muy ilustrativo de este fenómeno, se presenta en la 1,3,5-Dioxazina en conformación Trans-2, la cual según los datos obtenidos por la ecuación de Boltzmann es el que presenta mayor efecto anomérico (Tabla 1), lo cual también se refleja dramaticamente en los ordenes de unión del anillo B, donde se observa que lo anterior se debe a la fuerte deslocalización del par libre del átomo N(1) por efecto atractor de los heteroatomos en 3 y/ó 5, manifestándose en un alto índice de enlace entre N(1) y C(6), así mismo, se observa como el enlace O(5)-C(6) esta muy debilitado (ó no existe), ya que la carga en el átomo de oxígeno se encuentra polarizada hacia el N(15) de la amida, lo cual se podría ver como un efecto de deslocalización sobre 5 centros.

En el esquema 20, se presentan los valores obtenidos para dichos parámetros en la 1,3,5-Dioxazina.

Esquema 20 .- Valores obtenidos por AM1 para los ordenes de enlace en el anillo B de la 1,3,5-Dioxazina en conformación Trans-2. Otra forma de observar este efecto de hiperconjugación es a partir de las distancias de enlace, las cuales se acortan y alargan para la unión heteroatomo-C(4) y C(4)-N(15) respectivamente, lo cual sucede en todos los análogos que presentan efecto anomérico. Estos datos correlacionan muy bien en cuanto a los obtenidas para las densidades electrónicas ya que también la diferente participación de los pares libres de los heteroatomos en el anillo B se refleja en las longitudes de enlace de esos átomos.

En el Anexo-5, se presentan en tablas los cambios en las longitudes de enlace del anillo B para los análogos estudiados en todas sus diferentes conformaciones.

III.5 Predicción de los Compuestos con Probable Actividad Analgésica.

El propósito del presente trabajo es tratar de predecir la actividad biológica de uno ó varios compuestos análogos del fentanil; un fármaco del cual ya esta probada su eficiente acción narcótico-analgésica. Esto es, que sin llegar a los niveles de un $QSAR^{60}$ formal, es decir, sin contar con los datos de actividad biológica de dichos compuestos debido a que son teóricos, se pueda elaborar una hipótesis en la que la influencia de un efecto estereoelectrónico sea relevante para la acción biológica en alguno de los modelos análogos estudiados. Las características que fundamentan tal posibilidad son las siguientes:

Las propiedades conformacionales, fisicoquímicas y la topografía del sitio receptor supuesto (las distancias entre los subsitios más importantes en el receptor como lo son: la Distancia del centro del anillo C hacia el N(1) = 5.5 A° y del centro del anillo A hacia el N(1) = 4.5 A°).

Esquema 21

Con base en los resultados obtenidos desde el punto de vista tanto electrónico como conformacional se puede postular que de los análogos considerados, los que posiblemente ofrecerán un comportamiento farmacológico más similar al fentanil, pero con una mayor selectividad (menores efectos secundarios) y considerable potencia, seran los que presenten un mayor efecto anomérico, debido a restricciones que se provocan en sus espacios conformacionales; asi como los que muestran una conformación de mínima energía igual a la que exhibe el fentanil.

De acuerdo a lo anterior se postula que la 1,3,5,- Ditiazina y 1,3,5-Dioxazina serían los compuestos más adecuados debido a que tienen un mayor efecto anomérico, por ende menor flexibilidad conformacional y por lo tanto mayor selectividad.

Sin embargo, analizando los parámetros fisicoquímicos de ambos compuestos (Anexo-5), se observa que en el caso de la ditiazina la estabilidad de la molécula es muy baja y los valores de dichas propiedades, en general, muy diferentes a los presentados por la molécula del fentanil en su conformación de mínima energía. Por otro lado, el derivado dioxazínico muestra a partir de sus datos fisicoquímicos ($\Delta H_{fy} E$ total), una alta estabilidad de la molécula.

De la misma manera y de acuerdo a los resultados de poblaciones conformacionales, presenta también la inclinación más marcada hacia uno de sus conformeros estudiados en 99.93% de probabilidad del Trans-2 (Tabla1). Sin embargo, al igual que en la ditiazina el arraçlo espacial adquirido por dicho análogo no parece acomodarse al modelo de sitio receptor propuesto en la sección **3.1** (esquema 10), aún así los datos de distancias interatómicas solo muestran una diferencia de .5 Aº en relación a la requerida por el sitio receptor, desde el centro del anillo C hasta el N(1).

Otro de los compuestos que presentan un apreciable efecto estereoelectrónico (<90% de un confórmero en el equilibrio), es la 1,3,5-Tiadiazina cuya conformación (Cis-2) se adapta bien al esquema del sitio receptor en cuanto a la orientación de los grupos importantes (anilido y fenetilo). Sin embargo, las distancias interatómicas significativas (anexo-6) de esta molécula difieren en 1 Aº de las requeridas por el modelo de sitio receptor. Por otro lado, sus propiedades fisicoquímicas indican una muy baja estabilidad de la molécula en relación a la dioxazina.

Del análisis anterior, se observa que en los compuestos estudiados las características antes mencionadas para una óptima interacción con el sitio receptor propuesto (esquema 10) no son completamente satisfactorias. Aun así, si se sigue el modelo anterior se puede pensar en una mayor posibilidad de acción similar a la del fentanil, para la 1,3,5- Dioxazina y la1,3,5-Tiadiazina, ya que en los análogos restantes difieren las 3 propiedades analizadas en relación al fentanil.

Por otro lado, en un trabajo publicado en 1984³⁹ acerca del análisis conformacional teórico del fentanil se encontró que la disposición espacial adoptada por esta molécula es la Trans-I. Sin embargo nuestros resultados, utilizando el método semiempírico AM1, indican que dicha conformación corresponde más bien a la Cis-1, la cual coexiste con la Trans-1 a 25^{0} C según el análisis de población de un 95.7% a un 4.1% respectivamente (ver tabla 1). Esta diferencia en resultados, podría explicarse con base en el distinto esquema de los métodos semiempíricos empleados.

Por otro lado, la disparidad de los resultados entre la conformación obtenida por rayos X^{61} y los nuestros, se trató de explicar al llevar a cabo un cálculo semiempírico AMI para las conformaciones Trans-1 y Cis-1 de la mólecula de fentanil declarando una carga positiva en el N(1).;lo anterior debido a que dicho análisis de difracción se realizó con un cristal de la sal del fentanil (citrato).

Los resultados obtenidos muestran, mediante el análisis de poblaciones, un porcentaje en equilibrio a 25^{0} C para ambas conformaciones de 53% y 47% para Cis-1 y Trans-1 respectivamente; lo cual puede explicar el arreglo espacial que exhibe la molécula en el análisis de rayos-X, ya que probablemente por el empaquetamiento del cristal sólo se detecte una conformación, a pesar de ser estas de casi igual energía.

Entonces, si se tiene en cuenta esta diferencia en resultados se tendría que plantear la modificación del modelo de sitio receptor y por lo tanto el análogo que se postula presentará mejor interacción con éste será la 1,3-Tiazina, cuyas propiedades fisicoquímicas son también muy similares a las presentadas por el fentanil en relación Cis-1. Asi mismo, otra ventaja presentada por este compuesto es que su equilibrio conformacional según nuestros cálculos se encuentra muy desplazado hacia uno de los posibles confórmeros extremos, (ver fig.11).

IV CONCLUSIONES

Se llevó a cabo la evaluación, en fase gaseosa, del efecto anomérico en 7 análogos del fentanil; a través del método semiempírico de orbitales moleculares AM1, realizando el estudio de dicho efecto, en las 4 conformaciones extremas de cada compuesto.

El orden relativo del efecto estereoelectrónico en función del sustituyente en posición 3 y/ó 5 del anillo B, mostró que la participación del par libre de dicho sustituyente en la interacción $n---\sigma^*$ es distinta dependiendo del heteroatomo que se encuentre en las posiciones mencionadas, de lo cual también depende la energía del HOMO de la molécula según el análisis realizado.

La presencia del efecto anomérico en cada sistema se analiza desde 3 puntos de vista: cambios en la distribución electrónica y en el orden de unión del anillo B, asi como en las diferencias en las longuitudes de los enlaces heteroatomo-C4 y C4-N15. En los diferentes compuestos estudiados se observa que de acuerdo con los 3 parámetros anteriores el análogo que presenta mayor efecto anomérico es la 1,3,5-Dioxazina.

La distribución electrónica en los anillos A y C se mantuvo sin alteraciones apreciables al cambiar los heteroatomos en las posiciones 3 y/ó 5 del anillo B.

Se observa que el centro electrofílico en la mayoría de los compuestos estudiados, cae en el C(17) del anillo C, encontrándose el sistema en la conformación Cis-1

59

Para cada uno de los compuestos analizados existen 2 conformaciones de energía equiparable, las cuales coexisten segun la Ley de distribución de Boltzmman a 25° C en diferentes proporciones, y se encontró que la conformación más favorecida para 4 de los análogos estudiados fué la Cis-2. Sin embargo, en el caso de la ditiazina y de la dioxazina el arreglo preferido fué el Trans-2.

Se analizaron las similitudes presentadas en parámetros fisicoquímicos y conformacionales, así como topográficos en relación al sitio receptor; con el objeto de predecir cuales de los compuestos estudiados podrian presentar una similar acción analgésica con respecto al fentanil.

Se postula, de acuerdo al modelo de sitio receptor propuesto⁴⁹ para este tipo de opioides, que los análogos más factibles para la interacción con dicho modelo serian la 1,3,5-Dioxazina y la 1,3,5-Tiadiazina.

Sin embargo, de acuerdo a los resultados se propone también la posible modificación del sitio receptor en cuyo caso el análogo más indicado resulta ser la 1,3-Tiazina.

Por último, la síntesis y posterior evaluación de la actividad analgésica de los compuestos que en el presente trabajo se predicen como probablemente activos; comprobará la viabilidad de este tipo de estudios.

V PARTE EXPERIMENTAL

Las conformaciones de mínima energía de los compuestos estudiados se obtuvieron inicialmente con el método de Mecánica Molecular MM2 incluido en el programa Chem3D plus⁶² y también por el método MMX del programa PCMODEL 4.0 instalados, respectivamente, en una PC Macintosh SE y en una PC Gateway 486/33C.⁶³

De esta forma, las coordenadas internas (matriz-z) obtenidas se alimentan al programa AM1 contenido en un paquete de métodos semiempíricos de orbitales moleculares conocido como MOPAC 6.0,64 el cual se encuentra instalado en la supercomputadora CRAY/MP, a la cual se tiene acceseo por medio de una PC Gateway 486/33C con emulador de terminal, así como por una SiliconGraphics Workstation Personal Urís 4D/35. Dicho programa realiza una optimización total de los parámetros geométricos de la molécula, produciendo de esta manera unas nuevas coordenadas para el sistema estudiado, las cuales se escriben en el procesador de textos Word 4.0, para ser transformadas a estructuras tridimensionales a través del programa Chem3D plus.

Asi también, se utilizó una terminal UNISYS conectada a la computadora A-12, para el manejo del programa PCILO.

61

VI BIBLIOGRAFIA.

- H. Tolleneare; Trends in Medicinal Chemistry '88, Pag. 46, Edited by H. Van Der Goot, G. Domány y L.Pallos; Elsevier, (1989).
- 2.- C. Deljis, Science, 240, 47, (1988).
- 3.- T.M. Bustard y R.S. Egan, Tetrahedron , 27, 4457, (1971).
- 4.- Frank Blaney; Chem. and Ind., 791, (1991).
- K.F. Freed, Somiompirical Methods of Electronic Structure Calculation, Part A: Techniques (G.A., Segal, Ed.), Plenum Press, New York (1977).
- P. Gund, T.A. Halgren y G.M. Smith; Annual Reports in Modicinal Chemistry, Cap. 27, pag. 26, Academic Press, (1987).
- 7.- M. Karplus y T.A. Petsko; Nature; 347, 631, (1990).
- a) K.N. Houk, H.Y. Duh y S.R. Moses; J. Am. Chem. Soc., 108 ,2754 ,
 (1986). b) S.D. Khan, K.D. Dobbs y W.J. Hebre; J. Am.Chem. Soc., 110 ,4602, (1988).
- a) N.L. Allinger, J. Am. Chem. Soc., 99, 8127, (1977). b) QCPE 395, Bloomington, Indiana.

- 10.- J.C. Slater ; Phys. Rev. ; 36, 57, (1930).
- 11.- P.M. Pitzry, W.M. Lipscomb; J. Chem. Phys., 39, 1995, (1965).
- 12.- J.A. Pople y D.L. Beveridge ; "Aproximate Molecular Orbital Theory", McGraw-Hill, New York, (1970).
- 13.- J.A. Pople, D.P. Santry y G.A. Segal; J. Chem. Phys., 43, 5129, (1965).
- 14.- M.J.S. Dewar y W. Thiel; J. Am. Chem. Soc., 99, 4899, (1977).
- 15.- W. Thiel; Tetrahedron; 44, 7393, (1988).
- 16.- M. Born y J.R. Oppenheimer; Ann. Phys. Leipzig; 84, 457, (1927).

17.- M.J.S. Dewar; "The Molecular Orbital Theory For Organic Chemist",

Pag. 84, McGraw-Hill, New York, (1969).

- 18.- J.A. Pople, D.L. Beveridge y P.A. Dobosh; J. Chem. Phys., 47 , 2026, (1967).
- 19.- M.J.S. Dewar, E.G. Zoebisch y J.J.P. Stewart, J. Am. Cham. Soc., 107, 3902, (1985).
- 20.- M.J.S. Dewar, W. Thiel; J. Am. Chem. Soc., 99, 4899, 4907, (1977).

- a) N.L. Allinger, M.T. Tribble, M.A. Miller y D.H. Wertz; J. Am. Chem. Soc., 93, 1637, (1971). b) D.B. Boyd y K.B.Lipkowitz; J.Chem. Educ., 59, 269, (1982). c) J.P. Bowen y N.L. Allinger; Reviews in Computational Chemistry, Cap. 3, pag. 81, Ed. por Boid y Lipkowitz
- 22.- R.W. Counts ; QCPE Bull., 4 , 91 , (1984).
- 23.- P. Deslongchamps; "Stereoelectronic effects in Organic Chemistry"; Pergamon: Oxford, (1983).
- 24.- a) R.U. Lemieux, "Abstracts of Papers", 133rd Nat. Meeting of the A.C.S., San Fco.; CA., (1958). b) E.L. Eliel; Angew. Chem. Int. Ed., 11, 739, (1972).
- 25.- E. Juaristi, J. Tapía, R. Mendez ; Tetrahedron ; 42, 1253, (1986).
- 26.- a)A.J. Kirby ; "The anomeric effect and related stereoelectronic effects at Oxygen", Springer-Verlag: Berlín, p.7-11, (1983).b) E.L. Elicl, N.L. Allinger y G.A. Morrison "Conformational Analysis", Interscience Publisher: New York, (1965).
- a) M. Oki, T. Endo y T. Suguawara; Bull. Chem. Soc. Jap., 48, 2496, (1975).b) J.T. Praly y R.V. Lemieux ; Can. J. Chem., 65 , 213, (1987).
- 28.- S. Wolfe, M.H. Whangbo y D.J. Mitchell ; Carbohydr. Res.,69, 1-26,(1979). b) O. Eisenstein, N. Trong Anh y J. Cantacuzène; Tetrahedron; 30, 1717, (1974).
- 29.- A.S. Cieplak; J. Am. Chem. Soc., 103, 4540, (1981).
- 30.- H. Booth y K.A. Khedhair ; J. Chem. Soc., Chem. Commun., 467, (1985).
- N.S. Zefirov, L.G. Gurvich, y E.A. Vorobeva; *Tetrahedron*, 32, 1211, (1976).
 M. Mikolajczyk, P. Graczyk y A.P. Baranov; *J. Org. Chem.*, 54, 2859, (1989).
- 32.- Erik B. Tjaden, K.E. Schwiebert y J.M. Stryker; J. Am. Chem. Soc., 114, 1100, (1992).
- 33.- F.W. Sertürner; Trommsdroff's J. Pharmazie; 13, 234, (1805).
- 34.- Everette L. May ; J. Med. Chem., 23, 225, (1980).
- 35.- P.A.J. Janssen, C.J.E. Niemegeers ; Arzneim. Forsch. (Drug Res.) ; 13, 502, (1963).
- 36.- M.W. Lobbezoo y Willem Joudjin ; J. Med. Chem., 24, 777, (1981).
- 37.- A.F. Casey, M.M.A Hassan y A.B. Simonds; J. Pharm. Pharmacol., 21, 434, (1969).
- 38.- S. Diner, J.P. Malriew y F. Jordan; Theor. Chim. Acta; 15, 110, (1970).
- 39.- "Drug Research"; 30, p. 91, Ed. Ernst Jucker, (1984).

- 40.- J.M. Van Dyke Jr. y HJ. Javero ; J. Mod. Chem. , 15, 91, (1972).
- 41.- B.E. Marianoff, D.F. McComsey y J.F. Gardocki ; J. Med. Chem., 24, 79, (1981).
- 42.- R.F. Borne, E.K. Fifer y I.W. Waters; J. Med. Chem., 27, 1971, (1984).
- 43.- T.N. Riley y J.R. Bagley ; J. Mod. Chom., 22, 1167, (1979).
- 44.- "X-ray Crystallography and Drug Action", Cap. 6, p. 95, Edited by A.S. Horn y C.J. De Ranter, Oxford University Press, (1984).
- 45.- a) J.H. Jaffe y W.R. Martin"The Pharmacological basis of therapeutics", Pag. 485,8th. ed., Ed. G.A. Gilman, Pergamon Press, New York, (1990). b) J.A.H.Lord, A.T. Waterfield y J. Hughes; Nature, 267, 495, (1977).
- 46.- R. Schwyzer; Ann. N.Y. Acad. Sci., 3 ,297, (1977).
- 47.- A.W. Lipkowski, S.W. Tam y P.S. Portoghese; J. Med. Chem., 29, 1222, (1986).
- P.S. Portoghese, M. Sultana y A.E. Takemon; J. Med. Chem., 33, 1714, (1990). b) P.S. Portoghese, J. Med. Chem., 35, 1927, (1992).
- 49.- D.H. Thorpe ; Anesth. Analog., 63 , 143, (1984).

- 50.- P.S. Portoghese, B.D. Alreja y D.L. Larson ; J. Med. Chem., 24 ,782 , (1981).
- 51.- V.M. Kolb; J. Pharm. Sci., 67, 999, (1978).
- 52.- J.R. Partinton; "Advanced Treatise on Physical Chem. Molecular Spectra, Molecular Structure, Dielectrics"; Vol. V , Ed. Longmans-Green and Co., London, pag. 107, (1964).
- 53.- A.R. Pinder ,"Physical Methods in Org. Chem.", x The English Universities Press, L.T.D. London, pag. 107, (1964).
- 54.- T. Koopmans; Physica, 1, 104, (1933).
- 55.- H. Bock y P.D. Mollère ; J. Chem. Educ., 51 , 506 , (1974).
- 56.- G.R. Newkome y W.W. Paudler ; "Contemporary Heterocyclic Chemistry", cap. 1, pag. 5, John Wiley and Sons.
- 57.- H.G. Geise, H.R. Buys y F.C. Mijlhoff; J. Mol. Struct., 9, 447, (1971).
- 58.- A. Goldstein, L. Aronow y S.M. Ralman; "Principles of Drug Action: The Basis of Pharmacology", Cap. 1, Wiley Int. Ed., (1974).
- 59.- K.H. Sabhi-Razzak y K.H. Hamid ; J. Pharm. Sci., 69, 796, (1980).
- 60.- a) C. Hansch ; Acc. Chem. Res., 2, 232, (1969).
 b) S.P. Gupta; Chem. Rev., 87, 1183, (1987).

61.- O.M. Peeters, N.M. Blanton y C.J. De Ranter, J. Cryst. Mol. Struct., 9, 153, (1979).

68

62.- a) S. Rubenstein, Cambridge Scientific Computing, Inc., 875 Massachusetts Ave., Suite 41, Cambridge MA 02139. b) C.K. Gerson, R.A. Love; Anal. Chem., 59, 1031A, (1987).

63.- Serena Software, Box 3076 Bloomington, IN 47402-3076.

64.- J.J.P. Stewart, QCPE Bull., 9, 10, (1989).

PARAMETROS GEOMETRICOS

Cadena de átomos	tong.entace Aº	óngulo de valencia	ángulo diedro
N1-C2	1.465		
N1-C2-O3	1.422	114.173	
N1-C2-O3-C4	1.432	117.084	80.115
C2-O3-C4-O5	1.417	102.714	-70.378
03-C4-05-C6	2.910 103.792		49.998
C7-N1-C6-O5	1.458	125.522	114.283
C8-C7-N1-C2	1.531 114.108		76.338
N15-C16-O3-C2	1.445 117.579		-54.895
042-C16-N15-C4	1.241	119.655	-137.936
C19-C17-N15-C4	1.409	122.702	116.022
C20-C17-N15-C4	1.415	118.736	-63.818

Tabla 2. -Parámetros geométricos del análogo sustituído con 0 y 0 en posición 5 y 3 en la conformación Trans-2.

Cadena de átomos	ena de átomos long.enlace Aº		ángulo diedro
N1-C2	1.428		
N1-C2-S3	1.813	117.972	
N1-C2-S3-C4	1.800	106.384	50.034
C2-S3-C4-S5	1.803 113.008		-40.900
S3-C4-S5-C6	1.813	106.070	41.219
C7-N1-C6-S5	1.448	117.279	81.198
C8-C7-N1-C2	1.532	117.578	70.214
N15-C16-S3-C2	1.432 115.195		-94.575
042-C16-N15-C4	1.246	120.807	-1.471
C19-C17-N15-C4	1.410	120.310	88.755
C20-C17-N15-C4	1.410	120.474	-89.741

Tabla 3. -Parámetros geométricos del análogo sustituído con S y S en posición 5 y 3 en la conformación Trans-2.

Cadena de átomos	long.enlace R ^e	long.enlace ángulo de Rª valencia	
N1-C2	1.443		
N1-C2-S3	1.775	112.929	
N1-C2-S3-C4	1.829	103.979	45.819
C2-S3-C4-N5	1.443	111.800	-38.039
S3-C4-N5-C6	1.463 118.797		44.991
C7-N1-C6-N5	1.457	1.457 111.996	
C8-C7-N1-C2	1.532	113.356	159.217
N15-C16-S3-C2	1.472	110.347	-98.854
042-C16-N15-C4	1.244	120.981	-0.215
C19-C17-N15-C4	1.409	120.926	105.268
C20-C17-N15-C4	1.411	120.050	-73.435

Tabla 4. –Parámetros geométricos del análogo sustituido con N-H y S en posición 5 y 3 en la conformación Cis-2.

Cadena de átomos	long.enlace Aº	long.eniace ángulo de Rº valencia	
N1-C2	1.448		
N1-C2-O3	1.429	115.819	
N1-C2-O3-C4	1.443	114.797	48.842
C2-03-C4-N5	1.454	110.539	-57.426
03-C4-N5-C6	1.460	117.848	35.146
C7-N1-C6-N5	1.456	113.563	142.201
C8-C7-N1-C2	1.533	117.130	66.134
N15-C4-O3-C2	1.486 110.18		-76.245
042-C16-N15-C4	1.248	121.553	6.474
C19-C17-N15-C4	1.410	120.988	85.869
C20-C17-N15-C4	1.411	120.081	-92.130

Tabla 5. -Parámetros geométricos del anàlogo sustituido con N-H y O en posición 5 y 3 en la conformación Cis-2.

Cadena de átomos	long.enlace Rº	ng.enlace ángulo de Rº valencia	
N1-C2	1.448		
N1-C2-C3	1.531	117.566	
N1-C2-C3-C4	1.525	111.576	60.214
C2-C3-C4-S5	C2-C3-C4-S5 1.842		-62.284
C3-C4-S5-C6	1.808	98.057	54.913
C7-N1-C6-S5	1.447	116.620	87.651
C8-C7-N1-C2	1.533	117.810	65.481
N15-C4-C3-C2	1.437	114.998	-173.157
O42-C16-N15-C4	1.245	119.466	-10.357
C19-C17-N15-C4	1.412	120.371	123.366
C20-C17-N15-C4	1.411	120.869	-55.729

Cadena de átomos	long.enlace ángulo de Rº valencia		ángulo diedro
N1-C2	1.457		
N1-C2-C3	1.524	112.928	
N1-C2-C3-C4	1.534	115.066	40.949
C2-C3-C4-O5	1.427	112.254	- 36.954
C3-C4-05-C6	1.425	116.815	44.213
C7-N1-C6-O5	1.456	110.838	176.034
C8-C7-N1-C2	1.532	113.609	64.253
N15-C16-C3-C2	1.465	115.940	-91.454
042-C16-N15-C4	1.245	120.855	-8.804
C19-C17-N15-C4	1.410	120.576	122.515
C20-C17-N15-C4	1.411	120.453	-55.179

Tabla 7. - Parámetros geométricos del análogo sustituido con 0 en posicion 5 y en la conformación Cis-2

Codena de átomos	long.enlace Rº	ángulo de valencia	ángulo diedro
N1-C2	1.432		
N1-C2-C3	1.525	117.972	
N1-C2-C3-C4	1.554	106.384	50.034
C2-C3-C4-N5	1.458	113.008	-40.900
C3-C4-N5-C6	1.459 106.070		41.219
C7-N1-C6-N5	1.444 117.279		81.198
C8-C7-N1-C2	1.535	117.621	73.386
N15-C4-C3-C2	1.486	110.673	-73.641
042-C16-N15-C4	1.248	120.806	6.560
C19-C17-N15-C4	1.411	120.798	101.756
C20-C17-N15-C4	1.410	120.363	-76.826

Tabla 8. - Parámetros geométricos del análogo sustituído con N-H en posición 5 y en la conformación Cis-2.

Cadena de átomos	long.enlace Aº	ángulo de volencio	éngulo diedro
N1-C2	1.449		
N1-C2-C3	1.527	116.717	
N1-C2-C3-C4	1.536	110.337	51.904
C2-C3-C4-C5	1.536	108.645	-55.982
C3-C4-C5-C6	1.528	110.354	55.478
C7-N1-C6-C5	1.445	116.261	94.008
C8-C7-N1-C2	1.533	118.489	67.083
N15-C16-C3-C2	1.457	112.981	-177.826
042-C16-N15-C4	1.247	119.946	1.224
C19-C17-N15-C4	1.411	120.533	88.673
C20-C17-N15-C1	1.410	120.662	-90.464

Tabla 9. - Parámetros geométricos de la molécula de Fentanil en la conformación Cis-1.

PROPIEDADES FISICOQUIMICAS

Conformero/prop. Fqa. Trans-1	∆Hf Kcai/mol	Energ. tot. Ev	Energ. elec Ev	Energ. de rep. core-core Ev	Pot. de ioniz. Ev	Energ. de LUMO Ev	Moment dipolar Debyes
Fentanyl	9.07	-3936.23984	-31203.6517	27267.41192	9.12	.087	2.57
SS	153.29	-4012.99734	-30984.7002	26971.70293	8.45	.140	1.19
00	-47.27	-4264.97275	-32119.7438	27854.77110	9.32	.300	1.13
NS	47.27	-4039.08341	-31353.2243	27314.14089	8.54	.208	0.75
NO	-0.02	-4165.20509	-31175.1885	27609.98343	9.30	.121	2.17
N	30.35	-4000.74305	-31418.0211	27417.27807	8.09	.174	1.91
0	-17.55	-4100.53942	-31701.5076	27600.96824	9.18	.198	2.11
S	24.32	-3974.62257	-31011.3875	27036.73500	8.52	.113	2.47

Conformero/prop. Fqa. Cis-2	∆Hf Kcal/mol	Ener. tot. Ev	Ener. elec. Ev	Ener. de rep. core-core Ev	Pot. de ioniz. Ev	Ener. de LUMO. Ev	Moment dipolar Debyes
Fentanyl	13.86	-3936.03231	-31699.5750	27763.54278	8.742	.017	3.84
SS	61.71	-4013.10477	-31191.5676	27178.46289	8.457	087	2.90
00	-22.20	-4265.21363	-32763.7328	28498.51923	9.003	067	3.71
NS	44.41	-4039.20748	-31482.2292	27443.02248	8.600	003	3.15
NO	9.07	-4165.21963	-32430.9094	28265.68984	8.835	.054	2.60
N	30.19	-4000.75014	-32172.5801	28171.83004	8.757	.037	3.50
0	-17.98	-4100.55793	-32047.1345	27946.57656	8.953	.067	2.81
S	25.59	-3974.59738	-31373.2607	27398.66339	8.458	057	3.61

Conformero/prop. Fqa. Cis-1	∆Hf Kcal/mol	Ener. tot. Ev	Ener. elec. Ev	Ener. de rep. core-core Ev	Pot. de ioniz. Ev	Ener. de LUMO Ev	Momen dipola Debye
Fentanyl	7.21	-3936.32088	-32272.9236	28436.60274	8.93	.040	4.04
SS	36.54	-4013.19666	-32017.7014	28004.50476	8.56	.115	2.08
00	13.62	-4262.33204	-33368.9094	29106.57292	7.67	286	1.13
NS	82.22	-4037.56772	-32375.7772	28338.20949	7.02	179	5.65
NO	103.64	-4160.70971	-32583.3970	28422.68737	7.50	331	7.21
N	128.29	-3998.89106	-32503.1422	28504.25116	6.38	372	7.97
0	23.29	-4098.76793	-32275.7556	28176.98774	8.36	120	7.03
S	20.76	-3974.80707	-32281.7211	28306.91405	8.62	.084	3.53

Conformero/prop. Fqa. Trans-2	∆Hf Kcal/mol	Ener. tot. Ev	Ener. elec. Ev	Ener. de rep. core-core Ev	Pot. de ioniz. Ev	Ener. de LUMO Ev	Moment dipolar Debyes
Fentanyl	16.58	-3935.91455	-32223.7256	28287.81111	8.88	.376	2.48
SS	34.23	-4013.29680	-31762.7472	27749.45041	8.61	092	2.67
00	-57.17	-4265.40217	-32828.3307	28562.92859	9.18	043	3.16
NS	94.67	-4037.03136	-32224.2344	28187.20306	7.23	.024	4.91
NO	116.83	-4160.23846	-31533.8417	27373.60398	7.25	.170	3.04
N	74.37	-3998.83432	-32007.4645	28008.63023	8.72	.223	4.08
0	23.51	-4098.76525	-31848.0715	27749.30627	8.94	.054	6.16
S	22.94	3974.71241	-31838.1993	27863.48698	8.59	044	3.68

Análogos en Conformación Trans-1	Atomoly or biltar atomico de mas contribucion al HC?10	Atomo - orbital atomico de maz contribución al 20140
Fentanil	NI Pz 0.6247	CIT Py 0.4108
SS	S5 Pz 0.6898	C1- Px 0.4402
00	C17 Pr 0.4540	C17 Px 0.4556
NO	C17 Px 0.3994	CI7 Px 0.5393
NS	S3 Pz 0.6174	Cr. Py 0.4472
N	NI Pz 0,5006	C17 Py 0.5091
0	N15 Pz 0.8974	CI- Py 0.4618
S	S5 Pz 0.8974	C17 Py 0.4525

Análogos en Conformación Cis-2	Atomo y orbital Atomo y orbita átomico de más átomico de más contribución al HOMÚ contribución al L	
Fentanil	N1 Pz 0.6155	C17 Pz 0.5459
SS	S5 Pz 0.6646	Cr Pz 0.4160
00	N1 Pz 0.6607	C17 Pz 0.5377
NO	NI Pz 0.4632	C17 Pz 0.5321
NS	S3 Pz 0.6218	C17 Pz. 0.5731
N	N1 Pz 0.6267	C17 Pz 0.5526
0	NI Pz 0.6390	C17 Pz 0.5413
5	S5 Pz 0.8371	C17 Pz 0.4435

Análogos en Conformación Cis-1	Atomo y orbital Atomo, orbital átomico de maria stomico de maria contribución al HOP10 contribución al	
Fentanil	Ni Py 0.5731	C17 Py 0.3975
SS	S5 Pz 0.6421	C17 Pz 0.3645
00	C2 Pz 0.6115	C17 Py 0.4736
NO	C2 Pz 0.6808	CI7 Pr 0.5561
NS	C6 Pz 0.3155	CI7 Pz 0.3723
N	C6 Pz 0.6687	C17 Py 0.5294
0	C6 Pz 0.5246	C17 Px 0.4713
S	S5 Pz 0.9087	CI7 Py 0.4713

Análogos en Conformación Trans~2	Atomo y orbital átom ico de más contribución al HOMO	Atomo y orbital átomico de más contribución al LUMO
Fentanil	Nt Py 0.5770	C17 Pz 0.5634
SS ·	S5 Pz 0.6522	C17 Pz 0.4480
00	C6 Pz 0.5466	C13 Py 0.5478
NO	NI Py 0.6086	C17 Pz 0.4929
NS	C6 Pz 0.6366	C17 Pz 0.4166
N	C6 Pz 0.5363	C13 Py 0.4623
0	C22 Pz 0.4123	C9 Py 0.5133
S	S5 Pz 0.8843	C17 Py 0.4876

DENSIDADES ELECTRONICAS

1,3,5-Dioxazina Trans-2

ORDENES DE ENLACE DEL ANILLO B

Análogo/orden de enlace	N(1)-C(2)	C(2)-X(3)	C(4)-X(3)	C(4)-N(15)	X(5)-C(4)	X(5)-C(6)	C(6)-N(1)	N(1)-C(7)
O,O /Trans-2	0.902	0.965	0.950	0.885	0.980	0.0002	1.600	0.900
S,S /Trans-2	0.966	0.985	0.932	0.973	0.957	0.972	0.982	0.956
N,O /Cis-2	0.955	0.951	0.950	0.863	0.960	0.988	0.936	0.973
N,S /Cis-2	0.995	0.951	0.912	0.912	0.986	0.991	0.925	0.967
N/ Cis-2	0.966	0.980	0.955	0.870	0.977	0.994	0.940	0.976
O/ Cis-2	0.964	0.980	0.952	0.867	0.985	0.965	0.956	0.970
S/ Cis-1	0.960	0.963	0.973	0.910	0.770	1.276	1.082	0.953

LONGITUDES DE ENLACE DEL ANILLO B

Conformero/Distancia	S3-C4	\$5-C4	N15-C4
SS Trans-1	1.818	1.808	1.425
SS Cis-2	1.791	1.796	1.436
SS Cis-1	1.815	1.817	1.422
SS Trans-2	1.799	1.803	1.432
Δ(T1- C2)	.027	.012	.011
Δ(C1 -T2)	.016	.014	.010

Conformero/ Distancia	O3-C4	O5-C4	N15-C4
OO Trans-1	1.436	1.430	1.446
OO Cis-2	1.408	1.409	1.468
00 Cis-1	1.417	1.478	1.441
OO Trans-2	1.411	1.414	1.466
Δ(T1- C2)	.028	.021	.021
Δ(C1 -T2)	.005	.064	.025

Conformero/ Distancia	S3-C4	N5-C4	N15-C4
NS Trans-1	1.831	1.462	1.460
NS Cis-2	1.829	1.443	1.472
NS Cis-1	1.816	1.534	1.449
NS Trans-2	1.823	1.511	1.445
Δ(T1- C2)	.002	.018	.012
Δ(C1 -T2)*	.007	.022	.004

*T1= Trans-1 , T2= Tran-2, C1= Cis-1 y C2= Cis-2

Conformero/ Distancia	O3-C4	N5-C4	N15-C4
NO Trans-1	1.446	1.473	1.459
NO Cis-2	1.443	1.459	1.486
NO Cis-1	1.584	1.435	1.451
NO Trans-2	1.453	1.416	1.470
Δ(T1- C2)	.002	.013	.027
Δ(C1 -T2)	.131	.019	.018

Conformero/ Distancia	N5-C4	N15-C4
N Trans-1	1.473	1.475
N Cis-2	1.458	1.486
N Cis-1	1.519	1.464
N Trans-2	1.447	1.487
Δ(T1- C2)	.015	.011
Δ(C1 -T2)	.072	.023

Conformero/ Distancia	N5-C4	N15-C4
O Trans-1	1.449	1.453
O Cis-2	1.427	1.465
O Cis-1	1.418	1.465
O Trans-2	1.407	1.463
Δ(T1- C2)	.021	.012
Δ(C1 -T2)	.011	.001

Conformero/ Distancia	S5-C4	N15-C4
S Trans-1	1.836	1.437
S Cis-2	1.801	1.446
S Cis-1	1.842	1.437
S Trans-2	1.810	1.444
Δ(T1- C2)	.034	.008
Δ(C1 -T2)	.031	.006

DISTANCIAS INTERATOMICAS DE INTERES PARA EL MODELO DE SITIO RECEPTOR

Fentanil y Análogos	Del centro del anilio A al N(1). Valor óptimo= 4.5 A ⁰	Dei centro del anillo C al N(1). Valor óptimo≕ 5.5 A ⁰	Del oxígeno del carbonilo al N(1), Valor óptimo= 5.49 A ^o
Fentanil Trans1	4.712	5.794	5.470
Fentanil Cis-1	4.817	5.868	5.474
OO Trans-2	5.233	6.190	4.495
SS Trans-2	5.198	6.991	3.515
NO Cis-2	5.230	6.080	3.508
NS Cis-2	5.224	6.540	4.084
N Cis-2	5.226	5.858	3.415
O Cis-2	5.206	6.540	3.413
S Cis-1	5.219	6.01	5.502