

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

COLEGIO DE CIENCIAS Y HUMANIDADES

UNIDAD ACADEMICA DE LOS CICLOS PREFESIONAL Y DE POSGRADO

INSTITUTO DE INVESTIGACION EN MATERIALES

LABORATORIO DE ENERGIA SOLAR

POSGRADO EN ENERGIA SOLAR

这些子运费》在注

ANALISIS TERMICO DE UN COLECTOR SOLAR TUBULAR EVACUADO DE TIPO VIDRIO-VIDRIO: ESTUDIO TEORICO EXPERIMENTAL

> TESIS QUE PARA OBTENER EL GRADO EN MAESTRO EN ENERGIA SOLAR PRESENTA:

RAFAEL ENRIQUE CABANILLAS LOPEZ

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. **TESIS CON FALLA DE ORIGEN**

				1																					e							
																					10.14											
										19.11													S. 6		1.00			2.5.2	1.44			12 C -
								2	1.0											- 5-3			611.4			- ÷ ,			- e - e			6. G.
																			10 A 4													
																	÷							S "			· · · ·					
																		1.1.1						- A								1911
							1.1.1									- 1				10.1												
										÷.,								·							- C	- e - 61						
													- N		÷								- 201					** • • •	- e - e		. 198	
		- C																						_								
																				1		۱.	L 1	<u> </u>							e -	
									244									I		VI.	2 I I I			1.1.1	· F -							
			- C							- 14		1.2		· · · · ·	1.15	·			1.1	- N - S	· •		1 · ·	~	_	- 1454	i in			1.11.24		122.2
										×			1.1																			
													1																	10.1		
																														e 1.		
					S. 1						· •						· •				1.1											
÷ .				÷.				1.1								14.50				- N.	1.12											
																			·	22												
				- 2																			10.1						· · · ·	-		
						1.1																										
								·			1 a 1							1.11														
																	1.00		1.11		18.0 10	5 C -	· · ·									
															2.56	- A. I																
					- 4.3			- P. S.		10 A						14.1														·		

> , 64 ya manang sa pang sa pang

RESUMEN	I
INDICE	[I]
NOMENCLATURA	۱۷
CAPITULO 1. INTRODUCCION	
1.1.i-Introducción	1
1.2Objetivos	7
1.31-Metodologia	7
CAPITULO 2. PROBLEMA FISICO Y MODELO MATEMATICO	
2.1Planteamiento del problema físico.	8
2.2Modelo matemático	11
2.3Algoritmo de solución	14
CAPITULO 3. SELECCION DE MATERIALES, SUS PROPIEDADES Y CALCULO	DE
PARAMETROS.	
3.1Tubos de vidrio	16
3.2Pelicula receptora	17
3.3placa reflectora	18
3.4Fluido de trabajo	19
	21

3.5.-Coeficientes de transferencia de calor

CAPITULO 4. ESTUDIO DE LA RADIACION INCIDENTE EN LA PELIC	ULA
4.1Introducción	27
4.2Distribución de la radiación sobre el tubo	29
1.3Propuesta análitica	30
CAPITULO 5. METODOLOGIA Y EQUIPO EXPERIMENTAL	
5.1Metodologia experimental	33
5.2Arreglo experimental	34
5.3.,-Lista de equipo/utilizado	35
5.4Construcción del tubo evacuado	36
CAPITULO 6. RESULTADOS EXPERIMENTALES Y TEORICOS	
0.1Corridas experimentales	37
5.2Comparación de resultados	38
CAPITULO 7. DISCUCUION DE RESULTADOS Y CONCLUSIONES	
7.1Discusión de resultados	56
2Conclusiones	58
.3Recomendaciones	58
PENDICE A	60
PENDICE B	63
PENDICE C	65
PENDICE D	70

÷.

CAPITULO 1

INTRODUCCION.

El uso térmico de la Energía Solar se ha popularizado en aplicaciones para pequeños incrementos de temperatura sobre la temperatura del ambiente, los colectores planos son en la actualidad los dispositivos térmicos de aprovechamiento solar más comunes por su fácil construcción y bajos costos, aplicaciones como calentamiento de agua para uso doméstico o de albercas son resueltas con colectores planos con eficiencias aceptables, sin embargo presentan limitaciones cuando se pretenden lograr temperaturas mayores de SO C, debido a que las pérdidas de calor en colectores de este tipo aumentan considerablemente al incrementarse las temperaturas de operación.

Existe un gran potencial de aplicación para la E. S. en el terreno de temperaturas medias (mayores de 100 C y menores de 700 C), con las que se pueden operar equipos de refrigeración por absorción, producción de energía termoeléctrica, y un sin número de aplicaciones en procesos industriales, este gran mercado potencial sólo podrá ser penetrado por la E. S. si es posible construir dispositivos solares que sean suficientemente eficientes (térmicamente hablando) y económicamente competitivos comparados con los convencionales. Las pérdidas de <u>calor de los colectores al medio ambiente son la</u> principal causa de los valores bajos de las eficiencias, entendiéndose como eficiencia la relación del calor útil entregado por el colector entre la cantidad de radiación solar que incide sobre este.

Por lo que, disminuir las pérdidas de calor significa aumentar la eficiencia del colector, a la vez que se pueden lograr temperaturas de operación más altas.

El flujo de calor entre el colector y el medio ambiente se efectúa a través de los tres mecanismos de transferencia de calor, a saber; conducción, convección y radiación, y puede verse sensiblemente disminuido si se toman buenas estrategias para aminorar o eliminar cada uno de estos mecanismos.

Se pueden intuir en base a los parámetros que afectan directamente en cada mecanismo: de transferencia de calor, las características de un colector solar ideal, esto es, un colector suficientemente aislado del medio ambiente para que tenga pocas pérdidas y que estas no crezcan considerablemente, permitiendo así alcanzar altas temperaturas con buenas eficiencias.

Un factor común que influye directamente en los tres mecanismos es el área, por lo que una área pequeña presenta menos pérdidas, por

otro lado evacuar el aire entre el recibidor y una cubierta transparente reducirá sustancialmente las pérdidas por convección y conducción, y si además se utilizan películas selectivas (alta absortancia a la radiación solar y baja emitancia en infrarrojo) se estarán disminuyendo las pérdidas por radiación.

Unos de los trabajos pioneros sobre colectores de alta eficiencia es el publicado en 1965 por E. Speyer [1], quien utiliza tubos metálicos con recubrimientos selectivos como absorbedores y tubos de vidrio como cubiertas haciendo vacio entre los dos tubos, a este tipo de colectores se le conoce-como TUBOS-EVACUADOS, y sintetizan, por lo que aqui se ha visto, **muchas de las** características del colector ideal. En el mismo artículo de Speyer demuestra que la eficiencia de estos colectores se considerablemente más alta al evacuar el aire del espacio anular que si no se evacua, lo que mostró la gran posibilidad que presentan estos colectores, sin embargo aparecieron problemas como el alto costo de la unión vidrio-metal, el degasamiento o pérdida del vacio por evaporación de compuestos presentes en la pelicula selectiva o en el vidrio de la cubierta y la permeabilidad de los vidrios al helio (para altas temperaturas), las conexiones entre los tubos y otros problemas que fueron estudiados, como se verá posteriormente, por distintos autores.

Después del articulo de Speyer compañias como la Corning Glass, Philips, RCA y Westinghouse entre otras, se interesaron en estos

dispositivos y a mediados de los años 70's se encontraban en el mercado los primeros tubos evacuados y los primeros reportes de eficiencias de operación, en usos principalmente para refrigeración [2,3,4,5]. Distintos diseños son utilizados por los fabricantes (figura 1), que en términos generales pueden ser clasificados por el material de construcción en: a) los que usan un recibidor de radiación solar metálico con unión metal-vidrio y b) los que son construidos completamente de vidrio (vidrio-vidrio). En los del primer tipo con unión metal-vidrio se encuentran los producidos por Corning, Philips, Sanyo, NEG, entre otros y los construidos de vidrio completamente encontramos, Owens-Illinois y General Electric U. S. A.

Es frecuente encontrar TEs en combinación con algún tipo de concentradores solares, lo que permite aumentar el flujo radiactivo al colector sin aumentar el área de pérdidas de calor, en este respecto se encontraron trabajos reportados que analizan la factibilidad de aplicación para este tipo de arregios [14s].

Una mejora adicional a los TEs es la de depositar películas antirreflectoras en la superficie del vidrio que sirve como cubierta, con la finalidad de disminuir la cantidad de radiación solar reflejada [15]:

Los primeros tubos evacuados presentaron problemas tecnológicos fuertes, tales como la unión metal-vidrio y el degasamiento de los

materiales en contacto con el vacio. Lo que obligó a los fabricantes a ir mejorando sus diseños tratando de eliminar estos problemas.

Según B. Windows de Australia, quien es uno de las principales estudiosos de tubos evacuados a nivel mundial, en su artículo [6] publicado en 1985, considera que los T. E. construidos con la combinación metal-vidrio tienen varias desventajas, entre las que destacan los altos costos del sello y los problemas de degasamiento que presentan el metal y la película selectiva, para Windows la mejor alternativa para la construcción en serie de T. E. son los de vidrio-vidrio ya que resuelven de una forma fácil y económica el problema del sello quedando el problema de encontrar una película que mantenga sus propiedades ópticas de selectividad a altas temperaturas y de estabilidad ante el vacío.

Los colectores vidrio-vidrio han sido estudiados desde 1975 por distintas instituciones en todo el mundo [7-12], sobresaliendo por el número de publicaciones los australianos, quienes han estado estudiando este tipo de colectores en forma constante incluso ilegando a desarrollar un diseño propio ilamado "Sydney University All Glas Tubular, Solar Energy Collector" [13].

El colector de la Universidad de Sydney consiste de dos tubos de vidrio unidos en un extremo, dejando libre a la expansión térmica el otro, y utiliza una película selectiva basada en cromo

N N n

- Corning &

Philips, NEG

SANYD

OWENS-ILLINDIS Sydney University

Figura 1.1 Distintos diseños de tubos

depositada con el método de "magnetron sputtering". En la referencia [13] se puede encontrar el procedimiento de construcción de estos colectores el cual resulta relativamente complicado y de altos costos en bajos volúmenes de producción y presenta problemas de escalamiento para su producción en serie.

Teniendo como base estos antecedentes surge la idea de desarrollar un tubo evacuado que no tenga la pelicula selectiva en contacto con el vacio para evitar el degasamiento y que además el proceso de deposición de la película sea lo suficientemente sencillo y económico que facilite su producción masiva. En la literatura especializada no se encontró reporte alguno que analizara esta posibilidad, en la figura 2, se muestra un corte transversal de un colector que llamaremos por las siglas TEPI de tubo evacuado con película interna.

OBJETIVOS.

Hacer el análisis térmico de un colector tubular evacuado del tipo vidrio-vidrio con la película receptora de radiación solar depositada en la cara interna del tubo central.

METODOLOGIA.

Estudiar los procesos de transferencia de calor que se llevan a cabo en el colector proponiendo un modelo matemático que permita simular el comportamiento térmico del mismo.

Validar el modelo matemático experimentalmente probando los tubos evacuados en condiciones normales de trabajo (en exteriore).

CAPITULO 2

PROBLEMA FISICO Y MODELO MATEMATICO

En este capítulo se hace el plantamiento del problema físico, seccion 2.1, así como las consideraciones hechas para simplificar el análisis matemático. En la sección 2.2 se muestra el desarrollo del modelo matemático y en la sección 2.3 la metodologia de solución de las ecuaciones.

2.1. PLANTEAMIENTO DEL PROBLEMA FISICO

En-la figura 2.1 se muestra un corte transversal de un TEPI, el cual tiene tres elementos esenciales, a saber; la cubierta o vidrio 1, el tubo interior o vidrio 2 y la película absorbedora de radiación solar, depositada en la pared interna del vidrio 2 y la cual se encuentra en contacto con el fluido de trabajo:

La radiación solar atravieza ambos vidrios para finalmente ser absorbida por la película que al calentarse cederá su calor al fluido de trabajo. Las pérdidas de calor al ambiente tendran la dirección contraria a la seguida por la radiación solar.

El problema general presenta las siguientes características :

Figura 2.1 Elementos del Tubo Evacuado con Pelicula Interna (TEPI). 1) Es transitorio, <u>debido a la variación con el tiempo</u> de parámetros tales como la radiación solar, la temperatura ambiente, la velocidad del viento, etc.

2) De geometría cilindrica, por la forma del colector.

3) Es tridimensional, debido a que la radiación solar sobre el colector no es uniforme en toda la superficie, esto es una característica originada por la geometría cilindrica del colector.

4) Es compuesto, porque distintos elementos del colector con distintas propiedades intervienen en el balance general de energia, y hay que resolver simultaneamente el balance para cada elemento.

5) La transferencia de calor se lleva a cabo por los tres mecanismos de transporte de energía térmica, conducción, convección y radiación.

Por la compejidad que presenta resolver un modelo matemàtico que considere todas estas características y debido al carácter inicial de este estudio, el problema fue resuelto asumiendo las siguientes suposiciones :

1. - Estado estable

2. - La radiación solar incidente en la película está uniformemente distribuida tanto en dirección angular como a lo largo del tubo.
La evaluación de la cantidad de radiación que se recibe será analizada a detaile en el capitulo 4.

3.- Las propiedades radiativas de los materiales permanecen constantes en todo el espectro solar y para todas las temperaturas.

4. - Tanto la película como la cubierta de vidrio son consideradas como *cuenpos grises*, el vidrio es térmicamente opaco ($\tau_{IR} = 0$). La emisividad y la reflectividad del vidrio son independientes de la temperatura.

5. - El cielo actua como cuerpo negro a la temperatura ambiente.

6.- Se considera una temperatura promedio del fluido para cada elemento diferencial del anàlisis matemático. Pero si se desea, puede calcularse la distribución de la temperatura dentro del fluido para el caso de flujo laminar (ver apendice T.de C.en tubos).

7.- Para el cálculo de los coeficientes de transferencia de calor se utilizan correlaciones que se discuten en el siguiente capitulo.

El balance global de energía viene dado por

 $\sum_{j} Q_{(entradas)_{j}} + \sum_{j} Q_{(sal)das)_{j}} = 0$

el cual se aplica a cada elemento del TEPI como se muestra en la siguiente sección.

2.2 MODELO_MATEMATICO.

Considerando coordenadas cilindricas los volúmenes diferenciales de control en una sección del captador quedan como se muestra en la figura 3.1 Cada volumen de control tiene dx de longitud, y dA = 2 π r dx por elemento de área de intercambio de energia.

Aplicando la primera ley de la termodinámica a cada uno de los volúmenes diferenciales de control y suponiendo estado estable con propiedades termofísicas constantes, se obtiene, el siguiente conjunto de ecuaciones:

94.A.S	生物中 有此部门来的变计		and the second secon	ويؤبد البيزوان أأور البيلة والمنابخ	Second Barriers Press, St.	
ca	lores reci	del	sol	radiacio	n _4 .	conveccion
er	n el vidrio	αν			- 1 ₋) пь	
			an the test			
ca de	iores de sal 1 vidriol	lda o	$\frac{radiacion}{r_1(T_1^4)}$	T ⁴)	conveccion	[])

Balance en el elemento del Vidrio 1

$\alpha_{v} q_{1} r_{1} + \sigma FC_{1-2} r_{2} (T_{2}^{4} - T_{1}^{4}) + hb r_{2} (T_{2} - T_{1}) = \sigma \epsilon_{v} r_{1} (T_{1}^{4} - T_{a}^{4}) + hr_{1} (T_{1} - T_{a}) (2.1)$

donde FC₁₋₂ es :

$$FC_{1-2} = \frac{1}{\frac{1}{\varepsilon_2}} + \frac{1-\varepsilon_1}{\varepsilon_1} \left(\frac{\Gamma_2}{\Gamma_1}\right)$$

Vidrio 2 - Película

이 같이 가지 못했다. 것이 가락	del sol	convection
calor recibido por el vidrio2	αa qi τ1-τ2 r 2	kv-es (-T T_)

a ta sa	[11] A.	
	radiativo	ŀ
calores de salida del vidrio2	$\sigma \ FC_{1-2} \ r_2 \left(\begin{array}{c} T_2^4 \ - \ T_1^4 \end{array} \right) = \begin{array}{c} bb \ r_2 \left(\begin{array}{c} T_2 - \ T_1 \end{array} \right) = bc \ r_2 \left(\begin{array}{c} T_2 - \ T_1 \end{array} \right)$	A A A A A A A A A A

quedando la ecuación:

 $\alpha a q i \tau i \tau 2 r_2 + kv ls (T - T) = \sigma FC - 2 r_2 (T_2^4 - T_1^4) +$

$$\frac{1}{1} hb r_2 (T_2 - T_1) + hc r_2 (T_2 - T_3)$$
(2.2)

donde 1s es :

ls

Pelicula:

	1993 A 1988 1993 - 1994 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1				in de	10 S	<u> </u>	<u></u>				
			3950		10 jaj	図園		de 1	sol.			78 S
	Cal	ores	reci	bido	s	2.	1	n sejak	3 - 28 g		_	
	рог	la p	pelic	ula					<u>с</u> , др	41		
는 영상을 1990년					19 49 7 10 69							
	3.884-s.	338.4	325	3880	C C	nduo	c i o	n (2000)		conv	reco	ton
Calore	s de	sall	da	k	v es			N D S				
de la	pel i	cula			г2	- []	3	Γ ₂)	l t	ic (Т ₃	- T_4
		_	المجر وسيرو	_	_					_	_	

quedando la ecuación:

(2.3)

$\tau_1 \tau_2 \alpha_p q_1 = \frac{k_v e_s}{r_2} (T_3 - T_2) + hc (T_3 - T_4)$

Fluido:

ſ	1919	1.5		$\log 2r$		02 (d.		conv	ecc	ion		820
ſ	Ca	lor.	de er	trad	2							
ł		6111	140	<u>0</u> 94.			2 г	2π	hc	(т,	- T	_)
1				나무소	E and a			100 - 100 - 100 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100				د تو معندو <mark>م</mark> ر

quedando la ecuación:

$$m C_{p} \frac{dT_{3}}{dx} = hc 2 \pi r_{1} (T_{2} - T_{3})$$
 (2.4)

donde las temperaturas T_1, T_2 y T_3 , son funciones de x.

Agrupando términos y simplificando la notación las ecuaciones

2.1-2.4, adquieren la forma:

$$A_1T_1^4 + B_1T_1 + C_1T_2^4 + D_1T_2 + K_1 = 0$$
 (2.4)

$$A_2T_1^4 + B_2T_1 + C_2T_2^4 + D_2T_1 + E_2T_2 + K_2 = 0$$
 (2.5)

$$D_{3T} + E_{5T} + E_{5T} + H_{5} = 0.$$
 (2.6)

$$2 \quad 3 \quad 3 \quad 3 \quad 4 \quad 3$$

$$\frac{dI_{3}}{dx} = G_{3} \left(T_{2}^{-} T_{3}^{-} \right) , \quad T_{3}(0) = T_{3}^{0}$$
(2.7)

donde Ai,Bi....Ki, con i = 1..3, son constantes que involucran los coeficientes de transporte energético y las propiedades de los materiales. En este sistema de ecuaciones (2.4-2.7), tres son algebraicas y una es diferencial ordinaria de primer orden. Las tres ecuaciones se encuentran acopladas: Debido al exponente cuártico de la temperatura el sistema es no-lineal.

2.3- ALGORITHO DE SOLUCION

El sistema de ecuaciones se resuelve numéricamente. El

algoritmo de solución que se utilizó se describe a continuación. Se discretiza \times como \times = $J^{-}\Delta x^{+}$, J = 0 , 1 , 2 . . N.

$$T_{1}(x) = T_{1}(j \Delta x) = T_{1}^{j}$$

Similarmente se tiene: T_2^j y T_3^j . Para j = 0 en x = 0 se conoce $T_3^{(0)} = T_3^{\circ}$, con este valor y usando algún método de solución se puede resolver el sistema de ecuaciones 2.4-2.7, en este estudio se usó un método iterativo [15], obteniendose T_2° y T_1° .

Aplicando el método de Euler a la ecuación 2.7 se obtiene

$$T_{3}^{J+1} = T_{3}^{J} + \Delta x \ G_{3} \ (T_{2}^{J} - T_{3}^{J})$$
(2.8)

Con los valores de T_2° , T_3° y la ecuación 2.8 se obtiene T_3^{1} . De nueva cuenta se repite el procedimiento anterior para obtener $T_{4'}^{2}$, y así susecivamente. los valores de los parámetros y de los coeficientes de transferencia, así como las propiedades de los materiales <u>que fueron utilizados para alimentar el modelo</u> se discutirán en el capítulo siguiente. CAPITULO 3

SELECCION DE MATERIALES, SUS PROPIEDADES Y CALCULO DE PARAMETROS En este capítulo se presentan los materiales de construcción del TEPI, así como las propiedades de estos que son utilizadas en el modelo matemático, además se muestran las fórmulas que se usaron para el cálculo de los coeficientes convectivos de transferencia de calor.

3.1 TUBOS DE VIDRIO.

El TEPI que se estudió consistió de dos tubos de vidrio del tipo de borosilicatos 3.3 DURAN que presenta buenas características de resistencia térmica y a la corrosión, además de tener altos valores de transmitancia a la luz solar, un compendio de las propiedades de estos vidrios se muestra en el apéndice A. Las medidas del TEPI aparecen en la figura 3.1 y tabla 3.2.

Tabla 2.2 dimensiones del TEPI

Longitud total 135	cm.
Longitud cubierta 115	cm.
Diámetro del tubo interno 3	cm.
Diámetro del tubo externo 4	cm.
Espesor de la pared de los tubos 0.16	cm.

3.2 PELICULA RECEPTORA.

las películas receptoras de radiación solar fueron desarrolladas y estudiadas por el GRUPO DE SISTEMAS FOTOVOLTAICOS del LABORATORIO DE ENERGIA SOLAR, en lo que respecta al presente estudio solo utilizaremos los valores de las propiedades que se requieran, basados en las publicaciones de dicho grupo [1b], sin profundizar en los procesos o procedimientos de deposición, ni en sus propiedades en detalle.

Se utilizaron dos tipos de películas, $\operatorname{Bi}_{2,3}^{-Cu}$, y PbS-Cu_xS, las cuales fueron depositadas quimicamente a temperatura ambiente, para posteriormente ser horneadas a 150°C, presentando finalmente las propiedades ópticas que aparecen descritas en la tabla 3.3.

Compuesto de	la pel	icula	abs	ortanc	la refl	ectancia
Bi ₂ S ₂ -Ci	u S ×			85 %	in a start and a	15 %
PbS - Ci	u _x S			80 %		20 %

Tabla 3.3. Propiedades ópticas de las películas

Los espesores de las películas van de 0.1 a 0.3 $\mu\text{m},$ por lo que su

influencia en volumen es insignificante.

Las películas fueron depositadas en la pared interna del tubo del centro quedando la configuración como se describió en el capítulo anterior.

3.3 PLACA REFLECTORA.

Un dispositivo que aumenta considerablemente la cantidad de radiación solar incidente en el TEPI es una placa reflectora, la cual colocada en la parte posterior del tubo evacuado permite iluminar la sección del tubo que no recibe radiación directa:

Esta placa pude ser de distintos materiales, dependiendo del tipo de reflección que se desee tener: especular o difusa.

Para este estudio se preparó una superficie formada por un espejo comercial con la cara pulida con grano grueso buscando tener una reflexión alta pero con componente difusa, que ademas mantuvlera las propiedades reflectivas constantes, lo cual es difícil de lograr con las pinturas blancas,

En un espectrofotómetro (SHIMATDZUJV 365) se calculó la reflectancia difusa hemisférica de la placa encontrándose el valor de 0.7.

3.4 FLUIDOS DE TRABAJO

traines and and and the

Agua desmineralizada y aceite térmico fueron los fluídos de trabajo que se utilizaron en las pruebas experimentales del TEPI.

No es objetivo del presente estudio profundizar en la selección del fluido óptimo para su uso en un TEPI, por lo que solo se señalarán los aspectos considerados importantes.

Las principales ventajas del agua son; su fácil disposición, su precio, sus idóneas propiedades como fluido térmico para la transferencia de calor (alto Cp. baja viscosidad y estabilidad química), sin embargo su uso presenta algunas desventajas entre las que destaca su gran capacidad de diluir metales (la película depositada es un compuesto metálico) lo que origina un ataque de adelgazamiento permanente a la película si esta se encuentra en contacto directo, la otra desventaja es el punto de ebullición del agua dado que en tubos evacuados fácilmente se sobrepasa los 100°C se requiere de presurizar el sistema para evitar la evaporación del fluido.

Tratando de evitar las desvenjas que presenta el agua se desidió también utilizar un aceite térmico (Mobiltherm Light 603, información general en el apéndice [aceite]), con el cual se minimiza el problema de ataque a la película; y se puede trabajar hasta 300°C, según su fabricante este aceite tiene buena estabilidad química en un amplio rango de temperaturas, sus principales desventajas comparado con el agua son; su precio más elevado, tiene una viscosidad mucho más alta y su Cp es menor que el del agua, lo que aumenta los requerimientos de bombeo.

Para el uso de la simulación matemática del TEPI se ajustaron a funciones polinomiales las principales propiedades termodinámicas de los fluidos de trabajo, ver apéndice [propiedades]. En la tabla 3.2 se encuentran algunos valores típicos de estas propiedades.

. 1996년 2016년 - 1997년 1997년 - 1997년 1997년 1998년 19 1997년 1998년 199 1999년 1998년 1998년 1998년 1999년 1998년 199	a de la companya de l	
VIDRIO		angan proposition againm Alam ang karatanan Banan ang karatanan
Conductividad Térmica (W/mK)	kv =	1.2552
Absortividad en el visible	αv =	. 05
Transmitancia visible	.τν =	
Emitancia en infrarrojo	= 13	.8413
FLUIDO (aceite a 50°C)		
Conductividad Térmica (W/mK)	Ka =	0.1311
Calor especifico (J/kgK)	Cp =	1995.83
Densidad (kg/m)	ρe =	837:34
viscosidad (kg/m seg)	VT) =	1.21E-02
FULLEDO (agua)		
Conductividad Térmica (V/mK)	r -	61/17/
Calor especifico (1/kgK)	Λa - Γ- =	1186.9
Densided (kg/m)	 	997 424
Viscosidad (kg/m seg)	 	8 54F-04
(155051444 (NB) = 56B)		0.010.01
AIRE	- Pro-	
Densidad (kg/m ³)	Pa =	1.158
Viscosidad (kg/m s)	µa 1₽=	1.87E-06
Conductividad térmica (W/m K)	Ka i 😑	. 0266
PELICULA RECEPTORA		
Absortividad de rad. solar	α _P =	. 85
Reflectividad	ρ _p =	.15
CONSTANTES GEOMETRICAS:		
Longitud en dirección x (m)	LX =	1.15
Radio de cubierta (m)	F1 =	. 02
Radio de tubo interior (m)	г2 =	.015
Espesor de los tubos (m)	es =	.0016

loge i

ويراجعه المعدين والحسيسية أفكرن

Tabla 3.2- Valores típicos de los parámetros usados para la simulación. Para mayor detalle de el cálculo de estos valores ver apéndices correspondientes.

3.5 COEFICIENTES DE TRANSFERENCIA DE CALOR.

En el modelo del TEPI (capítulo 2) se utilizan tres coeficientes

convectivos de transferencia de calor; ha, hb, y hc, que

corresponden a los coeficientes con el medio ambiente, en el espacio anular, y entre la película receptora y el fluido, respectivamente. Para el cálculo se usaron las siguientes correlaciones:

1.- Coeficiente convectivo entre la cubierta de vidrio y el medio ambiente (ha), es función de la velocidad del viento en contacto con el vidrio [SANDIA], donde se presentan dos casos:

<u>ha</u> = 0.314 $\left(\frac{T_2 - T_a}{2T_2}\right)^{0.27}$ (3.1)

b) Para valores de NRe entre 0 y 2.5 × 10⁵, convección forzada laminar,se tiene :

and the second	「「「「」」」「「」」」「「」」」」「「」」」」」」」」」」」」」」」	and the second	the second s	[10] A. Kim, M. M. Markell, M. M. Markell, J. M. Markell, J. M. Markell, Nucl. Phys. Rev. Lett. 71, 100 (1997).	
1 I I I I I I I I I I I I I I I I I I I	オリナス みんだい 保険 二日 しかしや やくした しし		(1) (1) (1) (2) (3) (3) (3) (3) (4)		
The second s	the second second of the second	and the second		the second s	
	and second second second second second	the state to be set and the set of the set o	はんだい ひかがた レイト・マイト ふうだい	 Constant Acceleration 	그는 말에 다 물러 도망하게 다 가지 않는 것이 없다.
	AND REAL PROPERTY AND	the second s	the second s	and the second se	The state of the s
and the second se	• • • • • • • • • • • • • • • • • • •	NAMES OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO	a second s	and the second of the second second	
	CONTRACTOR CONTRACTOR CONTRACTOR		ing a start of the s	Contract of the second s	
and the second	the second s			the set of	and the second
The fight share a set of second billion of the second second second second second second second second second s		a service of the serv			
and the second	 A state of the sta			 A share the second sec second second sec second second sec	しんかいがい ひとう かがっ かいしょう しんし
	The second s		A A M A A A A A A A A A A A A A A A A A	A state of the state of the state of the state	
 A second state of the second se second second s second second se	しょうかい おおがた ひろう かいしょう ほうかん かっかがた ひろう	いたい ふため いたい しかいかん しかいかい		1 10 10 10 10 10 10 10 10 10 10 10 10 10	
(a) an off the first of the second s second second se second second s	e state i de la seconda de	A MARK THE REAL PROPERTY AND A		シード・ビード しんしょう かいしょう ひんしょう	
			an ing a state of the second		
	— 1.1 mm		A 197 Y Column 1 & C. Y. Takati A.	(a) A set of the local set of the set of	
a factor and a second	2 State 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ATTENDED STATES	The second s	And the second	
	i na la del se sta la la la se se del se	and the second	5 C (5 C C C C C C C C C C C C C C C C		
	A Contraction of the second	where the second s	A. M.	The second s	10 July 10 10 10 10
the second se		the standard and the standard and			
The second se	A second seco		a substantia de la seconda de la substantia de la seconda de la seconda de la seconda de la seconda de la secon	the second s	アン・ション オン ほうがたてい シー・トート
A state of the second s	Contraction of the second s Second second s Second second se	and the second of the second second second	2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
	2 11 T 12		A 1 Area to 100 has a feature of the		a she a she a fara she a fara she a she a she a she a
(i) Experience of the second state of the s			· · · · · · · · · · · · · · · · · · ·		
the second se		and the second second second second second	the second se		
the second s	and an	And the second sec	C. S. Sandar, S. S. Sandar, M. S. Sandar, M. S. Sandar, M. S. Sandar, Nucl.	ほうしん かんりょう ふくりょう	コイト 秋草 ションパロ ション・ション たたいし
		a second second second second second	a service and the service of the ser	and the first sector and the sector of the s	the second se
the second s	사람들은 영국 영국 위험에 다시 가지가 가지는 것이 같다.	ふかくしん ひとと とも あたない	the second s		
"你们的你们的你们,你们的你的你们,你们不能能了。"	and the second sec	a second s	2 B B B B B B B B B B B B B B B B B B B	 A Construction of the United States of the St	

donde C y m están dadas por la siguiente tabla:

NRe		m
1-4 4-40 40-4000 4000-40,000 40,000-250,000	0.891 0.821 0.615 0.174 0.0239	0. 330 0. 385 0. 466 0. 618 0. 805

2.- Coeficiente convectivo en el espacio anular (hb), puede ser calculado dependiendo de la presión del gas contenido en el espacio anular. Se pude decir que existen tres rangos de presión donde para cada rango un mecanismo de transferencia de calor es dominante. Para presiones alrededor de la atmosférica domina la conveccion natural, cuando la presión es menor de 0.01 atmósferas la transferencia se lleva a cabo por conducción, y para presiones menores de 10⁻⁷atm la conducción es prácticamente eliminada por lo que la transferencia de calor es solamente radiativa.

a) Cuando la presión es de una atmósfera o mayor el valor de hb depende esencialmente del NRa (número de Raleigh), y la transferencia de calor es por convección natural, Bhowmik y Mullick [1] desarrollan expresiones semiempiricas para este caso. En las referencias [2,3] ser encuentra mayor información al respecto.

b) Cuando se evacua el gas contenido en el espacio anular y la presión se encuentra entre 0.01 y 1 atm-el número de Nusselt pude calcularse con la siguiente expresión [4] :

$$k = 0.002528 \frac{T_{m}}{(T_{m} + 200)} \left(\frac{W}{m^{\circ}K}\right)$$
(3.3)

donde Tm está en °K y el Nu = -

1.1.

donde

A'bajas presiones, cuando la distancia entre la cubierta del colector y el absorbedor es menor que el camino libre medio de las moléculas de gas contenido, la conducción térmica a través del gas es proporcional a la presión del gas y a la diferencia de temperaturas entre el absorbedor y la cubierta. La fórmula general para la conducción de calor entre cilindros concéntricos está dada por [6]:

h L

k

$$Qc = \frac{7 + 1}{7 - 1} \sqrt{\frac{R}{8 - 1}} \left(\frac{P (T_1 - T_2)}{X} \right)$$
$$\frac{1}{X} = \frac{1}{\alpha_1} + \frac{1}{T_2} \left(\frac{1}{\alpha_2} - 1 \right)$$

(3.4)

 γ es Cp/Cv del gas, M es el peso molecular del gas, R=8.32J/mol^oK, P es la presión del gas a la temperatura To y α i, α z son los coeficientes de acomodación, Ti, Tz son las temperaturas y ri, rz son los radios interno y externo respectivamente:

Los coeficientes de acomodación están definidos como [5]:

$$\alpha = \frac{E(reflejada) - E(incidente)}{E(de pared) - E(incidente)}$$

donde E(incidente) es la energia total de la molécula incidente,

- 24 -

E(reflejada) es la energía total de la molécula reflejada; E(de-pared) es la energía total de la molécula en equilibrio térmico con la pared.

Los coeficientes de acomodación dependen del tipo de la relación superficie-gas un trabajo interesante para distintos gases en Lubos evacuados se encuentra en [6].

Para fines prácticos usando el aire como gas la expresiones anteriores puden verse reducidas al siguiente desarrollo [7]:

La dependencia de la conductividad térmica con la presión está controlada por el número de Knudsen, definido como:

$$Kn = \frac{\Lambda^2}{L} \quad , \tag{3.5}$$

donde Λ es el camino libre medio de la molécula, y L la distancia de transferencia de calor. Para el aire se puede usar con razonable presición:

$$\Lambda = \Lambda_{o} \left(\frac{T_{m}}{T_{o}} \right) \left(\frac{P_{o}}{P} \right), \qquad (3.6)$$

donde $\Lambda_0 = 6.38 \times 10^{-8} \text{m}$, $T_0 = 288^{\circ} \text{K}$ y Po = 1 atm.

Basandose en un coeficiente de acomodación de 0.95 y para valores

$$k = \frac{k_0}{1 + 3.68 Kn}$$

siendo ko el valor de k a la presión atmosférica.

Para 0.1 Kn < 10 la relación usada es [Kreith]:

$$h = \frac{k_0}{(-L^2 + 2\Lambda^2)}$$
 (3.8)

3. - La obtención del coeficiente de transferencia de calor entre la pelicula y el fluido de trabajo dentro del tubo se analiza en el apendice (tdc) de este trabajo, si el flujo es laminar la ecuación usada es:

Si el flujo es turbulento forzado la relación usada es (sandia):

$$Nu = 0.023 \text{ Re}^{0.8} \text{Pr}^{0.4}$$

(3.10)

(3.7)

CAPITULO 4

ESTUDIO DE LA RADIACION INCIDENTE EN LA PELICULA. Un dato de gran importancia para la modelación matemática del TEPI es la cantidad de radiación que incide sobre la cubierta cilíndrica del colector. Calcular o medir esta cantidad de energia con presición resulta, como se verá, un tanto difícil.

4.1 INTRODUCCION.

La geometria cilindrica de los tubos evacuados, presenta una complejidad especial para este cálculo, ya que dicha geometria permite la existencia de una distribución angular no-homogénea de la radiación solar que llega al tubo. En la figura 4.1 se muestra la geometria estudiada en el presente trabajo, y donde se puede observar las principales componentes de la radiación incidente.

El cálculo del calor que recibe un tubo evacuado ha sido estudiado de diversas formas; analiticamente [1,2,3,4], usando la técnica de trazado de rayos (ray-tracing) [5,6,9], ó calorimétricamente [7,8]. La forma analitica consiste en evaluar la cantidad de radiación recibida en base al desarrollo de relaciones geométricas entre los distintos componetes del colector, y que resulta en una expresión matemática de dicha cantidad, lo que facilita su uso en

Figura 4.1 Componentes de la radiacion incidente

la modelación del TEPI. La técnica de trazado de rayos es un método numérico que trata de símular el comportamiento de los rayos solares al incidir en la geometría estudiada, el resultado de un desarrollo de esta naturaleza es un número, lo que dificulta su utilización en la modelación del TEPI. Por último, el método calorimétrico consiste en la medición experimental del calor que se recibe en una muestra bien estandarizada . con todas las propiedades termodinámicas y ópticas del colector conocidas, resulta por demás decir que no puede ser utilizado en la modelación matemática del TEPI.

Cabe señalar que los autores S.P. Chow y G.L. Harding del School of Phisics (University of Sydney, Australia), han reportado en sus estudios sobre tubos evacuados una buena concordancia entre la técnica de trazado de rayos y el método experimental calorimétrico; ambos recursos aparecen frecuentemente en sus articulos [10, 11, 12, 13].

La forma como se decidió atacar el problema de calcular la cantidad de radiación recibida por el TEPI en este trabajo fué:

 -Conocer experimentalmente como era la distribución angular de la radiación sobre la película. Esto obligó la construcción de un dispositivo especial que pudiera medir radiación en forma angular, debido a que no existe en el mercado un sensor especial con tal
Figura 4.2 Geometria estudiada

81 cm.

and a second of the second second

7 cm.

2.-Posteriormente se hicieron mediciones de la radiación en distintos ángulos dentro del tubo se efectuó una integración para calcular la cantidad total de energía recibida por unidad de área.

3.-Por último, en base a los resultados obtenidos con este dispositivo y al análisis geométrico del sistema, se propone un modelo matemático que predice la cantidad global de radiación que incide en el tubo evacuado, en función de las lecturas comunes hechas con piranómetros (global y difusa), lo que evita tener que estar repitiendo las mediciones angulares.

4.2 DISTRIBUCION DE LA RADIACION SOBRE EL TUBO.

Para-el cálculo de la cantidad de radiación que incide sobre un elemento de área de la geometria que se muestra en la figura 4.2, se construyó un dispositivo original al cual por simplicidad se le llamó DEMAR (Dispositivo Experimental para la Médición Angular de la Radiación), el cual utiliza como elemento sensor una fotodiodo, ver detalles en el apéndice [E], con dicho instrumento se pudo evaluar la cantidad de radiación incidente en el interior del segundo tubo del TEPI.

La distribución de la radiación sobre el tubo varia con la posición del sol a lo largo del dia, por lo que se hicieron

mediciones a distintas horas.

La gráfica en coordenadas cartecianas de la figura 4.3, muestra la distribución medida a medio día (12:00 hrs. TSV), donde O[°]significa el Zenit, que coincide con la posición del sol a esa hora. Window [14] reporta una distribución de radiación semejante a la de la fig 4.3 calculada en base de un estudio de "trazado de rayos" (ray-trace) para la misma geometria y para el mismo ángulo de incidencia. No se encontro reportado un estudio experimental sobre la distribución de la radiación. En la figura 4.4 se muestra una gráfica polar de esta distribución, donde el circulo del centro representa el tubo receptor. En el apendice [E] aparece un conjunto de gráficas polares que exhiben el registro horario para un día de la distribución de la radiación medido con el DEMAR.

Según estimaciones hechas con el DEMAR aproximadamente el 60 % de la radiación incidente en el tubo [E], proviene del hemisferio superior (primeros 180°) del TEPI y un 40 % del hemisferio que "ve" a la placa reflectora.

4.3 PROPUESTA ANALITICA.

La cantidad de radiación incidente (qì) en el tubo tiene tres componetes principales:

siendo Ai el <u>área exterior de</u> la cubierta de TEPI, y Rt la radiación total recibida. Cuando el colector-tiene una inclinación con respecto a la horizontal igual a la declinación solar para ese dia se cumple que:

a) El calor que recibe por radiación directa (Rb), es igual al producto de la radiación directa del sol (Ib) por el área proyectada del tubo (Ap = Diámetro x longitud).

$$Rb = Ib \times Ap$$
(4.2)

(4.1)

 b) Calor que recibe por radiación difusa (Rd), es igual al producto de la radiación difusa (Id)por el factor de forma entre el tubo y el cielo (F3-1) por una área hipotética del cielo (A3)

ver apéndice [F].

$$Rd = Id \times F_{3-1} \times A_3 \tag{4.3}$$

c) La cantidad de calor que se recibe por reflección de la placa inferior (Rr) está dada por la radiación global (Ig) recibida por la placa reflectora por la reflectividad hemisférica (ρ_h) (ver capítulo 3), multiplicados por el factor de forma (F2-1) (ver apendice [F]) y por el área de la placa reflectora A2.

finalmente el flujo de radiación solar sobre la cubierta tomado de la ecuación (4.1) es:

$$q_1 = \frac{Rt}{A2}$$
(4.5)

De esta manera se calcula la radiación incidente sobre la cubierta del TEPI usada en el modelo matemático.

CAPITULO 5

METODOLOGIA Y EQUIPO EXPERIMENTAL.

En este capítulo se muestra la metodología que se siguió para el desarrollo de los experimentos así como el arreglo del equipo experimental utilizado para validar el modelo matemático propuesto en el capítulo 2.

5.1 METODOLOGIA EXPERIMENTAL.

En base a las características del modélo matemático desarrollado se hizo el diseño de experimentos que generara suficiente información para probar su validez.

Una restricción del diseño experimental fué la de efectuar las pruebas en condiciones naturales de operación del colector, esto es, en exteriores. Bajo esta condición, variables tales como la radiación solar, la temperatura del medio ambiente, y la velocidad del viento, se encuentran libres de control. Por lo que las únicas variables suceptibles ha ser controladas son: la temperatura de entrada y el flujo másico del fluido de trabajo.

Por otra parte, no fué objeto de estudio para el presente trabajo la influencia del coeficiente de transferencia de calor en el espacio anular (hb), el cual depende de la presión del aire en ese

lugar como se discutió en el capitulo 3, por lo que se trató de lograr disminuir al mínimo posible su valor y mantenerlo constante (ver construcción del tubo evacuado en este mismo capitulo).

En base a las anteriores consideraciones las corridas experimentales fueron de la siguiente forma:

1.- Variando la temperatura del fluido de entrada al colector.
2.- Variando el flujo másico.

Las corridas se repitieron para los fluidos de trabajo aceite con la película de Bismuto y para agua con la película de Plomo (ver detalles en Capitulo 3).

5.2 SET EXPERIMENTAL.

El arreglo experimental consistió en el tubo evacuado colocado sobre una mesa de pruebas, la cual puede inclinarse al ángulo deseado para igualar al de la declinación solar.

En la figura 5.1 se ilustran los principales elementos del equipo experimental, donde al TE se le alimenta el fluido de trabajo impulsado por la bomba (B1), el flujo es medido por el rotámetro (R1), a la entrada y salida del colector se encuentran termopares monitoriando las temperaturas (T1,T2), el fluido de salida del TE se lleva hasta el depósito (D1). El depósito tiene la finalidad de controlar la temperatura de entrada al colector, en dicho recipiente se cuenta con calentamiento dado por una resistencia eléctrica y con enfriamiento al hacer circular agua por un serpentin de cobre sumergido en el fluido; tambien se cuenta con un agitador magnético para mantener mezclado el fluido tratando de homogenizar la temperatura global, la cual es medida con el termopar (T3). El recipiente que sirvió como depósito fue aislado térmicamente para evitar sufrir variaciones de la temperatura debidas a pérdidas de calor al medio ambiente.

Los piranómetros P1 y P2 median la radiación global y difusa respectivamente, y fueron colocados con un ángulo de inclinación igual al del colector.

Todas las variables fueron censadas cada minuto con un adquisidor de datos automático conectado <u>a una</u> computadora que almacenaba la información.

5.3 LISTA DEL EQUIPO UTILIZADO.

+ Sensores de temperatura tipo cobre-constantano

+ Piranómetros marca EPPLEY

a) Piranómetro de radiación difusa (CM5-731900)

b) Piranómetro de radiación global (CM5-731947)

+ Adquisidor automático de datos marca HEWLETT-PACKARD 3421A.

+ Computadora marca HEWLETT-PACKARD 150 SERIE 100.

+ Bomba de manguera marca COLE-PARMER

+ Calentador eléctrico de 2000 W con agitador magnético.

5.4 CONSTRUCCION DEL TUBO EVACUADO (TE). Para la construcción del TE se efectuó el procedimiento que se describe a continuación:

1.- Limpieza de los tubos de vidria, esto tiene la finalidad eliminar impurezas que podrian afectar tanto la soldada de los tubos como el vacio al que estarán sometidos.

2. - Unión de los tubos, en un torno para vidrio y con un soplete de acetileno y oxigeno se hicieron las uniones en los extremos de los tubos, para soldar no se utilizó ningún material de aporte. Dos tubos pequeños se soldaron en los extremos del TE, con la finalidad de por uno de ellos efectuar el vacio y por el otro hacer mediciones de la presión en el espacio anular.

3. - Limpieza del espacio anular, una vez terminada la construcción

mecánica del tubo se volvió a efectuar la limpieza del espacio anular con solventes fuertes tanto organicos e inorganicos para eliminar posibles impurezas que el manejo puede dejar.

4. - Evacuación, la evacuación del aire del espacio anular se llevó a cabo en varias etapas; la primera consistió en hacer un vacio primario con bomba mecánica, posteriormente con una bomba de difusión, al mismo tiempo el tubo es calentando en un horno construido especialmente para el caso, lograndose vacios en el espacio anular de 10⁻⁴Pa a temperaturas de 350°C. la última etapa consiste en sellar el tubo fundiendo los tubos pequeños colocados en los extremos del TE, dejandose enfriar el tubo lentamente.

5. - Depósito químico de la película receptora, la película receptora de radiación solar se depositó químicamente siguiendo el procedimiento reportado en [Nair]. CAPITULO 6

RESULTADOS EXPERIMENTALES Y TEORICOS.

En este capítulo se muestran los resultados obtenidos de los experimentos, así como la forma de selección de los mismos para su uso en el modelo matemático. También los resultados obtenidos con el modelo son presentados, y finalmente, la comparación entre ambos.

6.1 CORRIDAS EXPERIMENTALES.

Dado el arreglo experimental del equipo de pruebas descrito en el capítulo 5, se monitorearon las variables cada minuto con el adquisidor de datos automático, generándose un conjunto de datos diarios que muestran el comportamiento térmico del tubo evacuado bajo distintas condiciones ambientales (radiación solar, temperatura ambiente, velocidad de viento), para distintos fluidos (aceite y agua) y para distintas razones de flujos.

Los resultados se muestran en forma gráfica en las figuras 6.1-6.8 para los días correspondientes indicados en cada gráfica. Donde Ig representa la radiación solar global en el plano de la placa reflectora, Id la radiación difusa para el mismo plano. Ib la radiación directa, Te y Ts la temperatura de salida del colector respectivamente. Para los dias: octubre 31, noviembre 1, noviembre 2, noviembre 3, noviembre 6, que corresponden a las figuras 6.1-6.5 las corridas fueron hechas con aceite, y con agua la de los dias diciembre 9, diciembre 10, y diciembre 11.

En la tabla 6.1 se describen los tipos de corrida para cada dia, siendo estos de tres formas; a) variación del flujo de alimentación, b) variación de la temperatura de alimentación, c) flujo constante durante toda la corrida.

6.2 COMPARACION DE LOS RESULTADOS.

Con la finalidad de validar el modelo matemático propuesto se efectuó una selección de entre todos los datos obtenidos en las corridas experimentales, escogiendo periodos que cumpliesen con los siguientes criterios:

1.-Que no se registran variaciones significativas de ninguno de los parámetros medidos. Esto debido al carácter de estado estable del modelo.

2.- Que el periodo seleccionado fuera mayor de xx minutos que es un valor promedio de respuesta del sistema (Apéndice Tiempo).

Los valores de cada uno de los parámetros, de los rangos seleccionados por cumplir con los anteriores criterios, fueron

promediados, de donde se obtuvieron 14 "puntos" para el aceite y 12 "puntos" para el agua. En la figura 6.9 se muestra gráficamente los períodos seleccionados de una corrida.

Una vez calculados los valores promedios de cada parámetro se alimenta el modelo con estos datos y se resuelve numéricamente de la forma descrita en el capitulo 2 obteniendose la distribución de la temperatura en función de la longitud x. Dado que en el experimento solo se midió la temperatura a la salida del tubo el modelo solo puede ser validado con la temperatura al final de la longitud total del tubo (Ts):

En las tablas 6.2 y 6.3 para aceite y agua respectivamente, se mues<u>tran los datos experimentales seleccionados, así como los</u> resultados calculados con el modelo matemático. En las mismas tablas se tabulan las eficiencias y los errores para cada caso bajo las siguientes consideraciones:

a).-Para la eficiencia se usó la ecuación 6.1

$$\eta = \frac{1}{(q_1 \times A_4)}, \qquad (6.1)$$

donde η es la eficiencia, Qu el calor útil recibido por el fluido y A4 el área del tubo interior del colector. Esta definición se adoptó dado que no existe una regla generalizada en la forma de calcular la eficiencia térmica en colectores tubulares [1,2]. A diferencia de los colectores planos para los cuales existe la norma de calcular la eficiencia dividiendo el calor útil entre la cantidad de radiación incidente en el colector (ecuación 6.2)[3].

$$\eta = \frac{Qu}{Ig \times Ac}, \qquad (6.2)$$

los colectores tubulares presentan la problemática de no ofrecer la misma área de recepción de radiación durante todo el día, agregando que la radiación incidente en la superficie cilindrica es distinta de la radiación solar recibida por una superficie plana (Ig x Ac), como lo es para un colector plano.

b).-Los errores porcentuales fueron calculados de dos formas distintas:

Error
$$(T) = \frac{(Tse - Tsc)}{Tee} \times 100$$
 (6.3)

Error (E) =
$$(\eta_e - \eta_c) \times 100$$
 (6.4)

siendo la ecuación 6.3 usada para calcular el error para la diferencia de temperaturas entre la experimental (T₅₀) y la _calculada_(T₅c), las temperaturas en grados centigrados y la 6.4 para el error de las eficiencias, siendo ηe la eficiencia experimental y ηc la eficiencia calculada: En la figura 6.10 se presenta la gràfica de los 14 puntos del aceite y la figura 6.11 para el agua, para ambas figuras las barras verticales significan el rango de las temperaturas experimentales dado por el margen de error de medición de los termopares, el cual es de ±0.5 °C [omega], y las barras horizontales los valores de las temperaturas calculadas.

41

ana tahu bertu atu tahu bahis dalam

Figura	Dia	Fluido	Tipo de corrida	
- 180, s. 265				
6.1	Oct. 31	aceite	variacion del flujo de alimentacion	An shi
6.2	Nov. 1	aceite	variacionde la temperatura de alimentacion	
6.3	Nov. 2	aceite	flujo constante durante toda la corrida	1174 E.S
6.4	Nov. 3	aceite	variacionde la temperatura de alimentacion	
6.5	Nov. 6	aceite	flujo constante durante toda la corrida	1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
6.6	Dic. 9	agua	flujo constante durante toda la corrida	
6.7	Dic. 10	agua	variacion del flujo de alimentacion	
6.8	Dic. 11	agua	variacionde la temperatura de alimentacion	

Tabla 6.1 Descripcion de las corridas experimentales.

ACEITE

the second s									A					
ing ng mga tin	1	2	3	4	. 5	6	7	8	9	10	11	12	13	14
RESULT	ADOS E	XPERIM	ENTAL	ES	· .									
HORA	11.59	12.25	12.43	12.83	13.74	14.56	12.25	12.23	12.96	14.31	11.16	11.82	13.74	14.9
b Id	148.9	152.1	158.0	163.3	166.4	163.2	158.2	185.1	154.8	153.9	77.3	77.3	69.9	67.7
lg	977.64	969,80	954.45	934.29	\$50.38	729.54	969.38	944.05	932.79	781.63	931.38	994.38	903.04	706.4.3
lb lb	833,48	819.50	\$01.50	789.40	762.00	722.64	\$12.92	760.30	\$03.45	763.64	\$75.15	913.12	928.22	8\$1.10
Ta	26.67	27.33	27.71	27.57	29.37	30,42	27.82	27.19	27.50	29.00	27.00	27.00	28,00	27.14
Ts	44.57	42.50	42.07	41.67	58.47	47.75	56.61	40.54	77.24	77.09	41.66	41.51	44.58	44,41)
Te	35.82	36.18	37.06	38.03	36.70	39.16	52.60	32,66	74.03	74.22	30.86	31.10	32.82	33.65
Ts - Te	8,5	6.3	4.4	3.6	21.7	S. 0	4.0	8.2	3.2	2.9	11.1	10.4	11.8	10.7
m	2.0E-03	2.9E-03	4.0E-03	5.1E-03	8.512-04	2.0E-03	3.8(2-03	2.815-03	3.0E-03	3.1E-03	2.1E-03	2.1E-03	2.0E-03	2.08-03
qi	647.64	642.56	635.52	628.47	595.89	\$44.71	643.79	634.51	627.70	565.40	606.37	639.28	610.43	534.71
Qu	33.38	35.93	34.27	36,38	35,80	33.42	30.92	43.61	19.75	18.77	43.87	41.21	46.59	42.61
Eficiencia	47.55%	51.67%	49.75%	53,40%	55,43%	56.619	44.31%	63.41%	29.02%	30,47%	66.76%	59.4377	70.41%	73,60
RESULT	'ADOS C	ALCULA	ADOS		•									
Ts	46,00	43.34	42.73	42.00	58.38	47.77	\$6.94	40.69	77.49	77.02	41.22	41.84	43.10	42.45
Ts · Te	10.2	7.2	5.1	4.0	21.6	8,6	4.3	\$.0	3.5	2.8	10.4	10.7	10.3	S , 3
Eficiencia	55.47%	58.49 Z	57.12%	58.27%	55.20%	\$6,90%	47.99%	62.15%	31.33%	29.65%	62.27%	61.27%	61.53%	60,44
ERRORES														
Error (T)	3.22%	1.98%	1.57%	0.79%	0.16%	0.05%	0.59%	0.37%	9.32%	0.10%	1.06%	0.79%	3.31%	4,30
Error (E)	7.91%	6.827	7.37%	4.86%	-0.23%	0.297	3.68%	-1.26%5	2.30%	-0.79%	-4.49%	1.79%	-8.88%	-13.14

Tabla 6.2 Resultados experimentales y calculados para el aceite.

AGUA

									· · · ·				
PUNTOS	1	2	3	4	5	6	7	8	9	10	11	12	
RESULTADOS EXPERIMENTALES													
HORA	13.31	13.81	14.71	15.31	15.86	10.24	10.86	11.83	12.71	13.40	14.82	12.64	
ld	188.69	181.66	165,05	152.33	131.48	117.83	218.14	116,99	121.19	121.11	109.05	133.43	
lg	\$58.71	\$15.57	666,70	533.28	430.05	\$32,80	917.00	<u>983,44</u>	971.02	925.66	702.39	944.99	
lb	711.27	712.15	660,78	587.89	561.22	793.74	\$35,81	\$67,34	864,72	\$61.94	\$01.92	\$22.96	
Ta	25.47	26.69	27.51	28.65	28.26	21.36	22.92	24.24	25.55	26.67	25.10	25,60	
Ts	31.04	31.45	30.81	30.22	29.52	29.67	32.29	36,56	29.42	31.23	64.S0	77.18	
Te	25.76	26.15	26.02	25.95	25.77	24.53	25.14	25.55	25.85	26.78	60.72	73.70	
difT	5.29	5,30	4,79	4.27	3.74	5.14	7.15	11.02	3.56	4.45	4.07	3.45	
m	2.21E-03	2.21E-03	2.21E-03	2.21E-03	2.21E-03	2.22E-03	1.61E-03	9.40E-04	3.86E-03	2.99E-03	2.26E-03	2.29E-03	
qi	692.36	5\$5.13	\$12.69	440.43	357.76	532.10	620.50	650,74	648.36	633.21	537.22	633.82	
Qu	49.01	49.12	44.45	39.57	34.68	47.74	45.04	43.33	57.54	55.75	38.59	33.40	
EFICIENCIA	75.07%	77.45%	79.99%	\$2,89%	82.529	75.67%	71.44%	61.44%	\$1.85%	\$1.23%	66.28%	48.62%	
RESULT	RESULTADOS CALCULADOS												
Τs	31.23	31.49	30,75	30.07	29.41	29.69	32.70	35,75	29.76	31.07	63.71	76,73	
Ts - Te	5.47	5.34	4.73	4.12	3.64	5.16	7.56	13.23	3.41	4.29	2.99	3,03	
EFICIENCIA	77.50%	77.89%	78,73%	79.91%	\$0.01%	75.637	75.367	73,45%	78.30%	73.077	48.56%	42.227	
ERRORE	ERRORES												
Error (T)	0.60%	0.13%	-0.20%	-0.48%	0.38%	0,06%	1.27%	6,0797	-0.52%	-0.52%	-1.68%	-0.59%	
Error (E)	3.23%	0.57%	-1.58%	-3.60%	-3.04%	-0.05%	5.49%	19.55%	-4.37%	-3.90%	-26.73%	13.17%	

Tabla 6.3 Resultados experimentales y calculados para el agua

CAPITULO 7

DISCUSION DE RESULTADOS Y CONCLUSIONES.

En este capítulo se hace un análisis de los resultados obtenidos con el modelo matemático en comparación con los datos experimentales, se presentan conclusiones derivadas de este análisis y se hacen sugerencias y recomendaciones para posteriores estudios.

7.1 DISCUSION DE RESULTADOS.

En el capítulo 6 se mostraron los valores experimentales comparados con los obtenidos con el modelo propuesto en el capítulo 3, se puede observa que en general las temperaturas calculadas caen en el rango de error de medición de las temperaturas experimentales, de los 26 puntos seleccionados en condiciones de operación distintas, solo en 5 puntos los resultados del modelo no concuerdan con los experimentales, tres de los cuales pertenecen a las corridas hechas con aceite y dos a las efectuadas con agua. No se pudo encontrar una relación general entre los valores que no concuerdan, por lo que es probable que distintas causas provoquen estas desviaciones.

Si se toman los valores correspondientes al punto 1 de las corridas con aceite y el punto 8 de las de agua, puede verse que ambos presentan desviaciones positivas, esto es, el modelo predice una temperatura superior a la experimental, ambos puntos están próximos a las 12:00 horas. El tubo evacuado a las 12:00 horas se encuentra sobre su sombra proyectada en la placa reflectora, esto es la región de la placa reflectora más cercana al tubo se encuentra sombreadaen esos momentos; por lo cual la contribución de la radiación reflejada es menor, asimismo la cantidad de radiación total calculada con el DEMAR a las 12:00 horas mostrada en la figura 3 apéndice DEMAR'es menor que a horas vecinas, este caso no se contempla en la relación propuesta para el cálculo de ql (capítulo 4) que es la cantidad de radiación que llega al tubo, por, lo que se pudiera estar sobreestimando esta cantidad para tiempos cercanos a las 12:00 horas.

Los valores de la cantidad de radiación incidente sobre la película, calculados con el DEMAR, presentan buena concordancia con los valores de Qu obtenidos experimentalmente a pesar de ser para distintos días.

Por otra parte el tubo presenta eficiencias más altas cuando el fluido de trabajo es agua que con aceite, en las tablas 6.2 y 6.3 se <u>puede apreciar diferencias significativas entre las eficiencias</u> conseguidas por los fluidos.

Tamblén se observa que la eficiencia del colector decrece sensiblemente al aumentar la temperatura de entrada al colector y para valores de alrededor de 50 C sobre la temperatura ambiente el aceite presenta eficiencias del 30%, mientras que el agua de 40%. En la figura 7.1 se grafican las eficiencias calculadas con el modelo para temperaturas de operación mayores.

7.2 CONCLUSIONES.

Los resultados calculados teóricamente concuerdan estrechamente con los obtenidos experimentalmente, tanto para el aceite como para el agua, para distintas películas como para distintos flujos másicos, lo cual confiere validez al modelo matemático y a las suposiciones hechas para su implementación.

El uso del Dispositivo Experimental de Medición Angular de la Radiación (DEMAR), contribuyó a entender la problemática planteada en el cálculo de la radiación incidente en colectores cilindricos y presenta potencial uso en el estudio térmico de estos tipos de colectores. Asimismo los valores obtenidos con el DEMAR coincidieron con los experimentales, lo que permite tener confianza en sus mediciones.

7.3 RECOMENDACIONES.

A pesar de que los resultados teóricos y experimentales coinciden en casi todos los puntos, mayor precisión se requiere en el cálculo de qi. Desarrollar una relación que involucre la corrección por la sombra del tubo evacuado a las 12:00 horas es el siguiente paso en este sentido.

Se recomlenda probar los tubos evacuados a temperaturas más altas

SALIR LE LA BIBLIOTECA LA BIBLIOTECA

de 77 C que fué el limite superior de este trabajo para seguir estudiando la validez del modelo.

Por otra parte las propiedades ópticas de los materiales (vidrio y películas), se consideraron constantes para todas las temperaturas estudiadas, esto puede ser un punto de imprecisión para temperaturas muy alejadas de la temperatura ambiente a la que generalmente se miden estas propiedades, por lo que sería conveniente estudiar los cambios (si los hay) a altas temperaturas.

El DEMAR con algunas mejoras en su diseño se puede convertir en un instrumento muy útil en posteriores estudios de radiación incidente en colectores, estas mejoras serian acoplándole un motor de paso con el que pudiese controlar la posición del fotodiodo dentro del tubo y darle mayor movilidad interna.

APENDICE A

PROPIEDADES DE LOS VIDRIOS
DURAN®

características químicas

resistencia al agua

según DIN 12116

según DIN 12111, ISO R 719 según USP XIX. ISO R 720 clase hidrolitica 1

grupo ácido 1

resistencia a los álcalis según DIN 52322

resistencia a los ácidos

orupo alcalino 2

DURAN es muy resistente al agua, soluciones neutrales y ácidas, ácidos luertes y sus mezclas, así como al cloro, bromo, ycdo y sustancias orgánicas. Incluso, en periodos prolongados de acción y temperaturas superiores a 100°C, supera, en cuanto a su resistencia química, a la mayoria de metales y otros materiales.

Mediante la acción del agua y de los ácidos, se disuelven del vidrio sólo cantidades pequeñas, principalmente iones monovalentes, formándose entonces, en la superficie del vidrio, una capa muy fina de gel de silice pobre en poros, la cual detiene otros ataques.

La superficie del vidrio es atacada de manera creciente, a medida que aumenta la concentración y la temperatura, por el ácido fluorhídrico y por las soluciones alcalinas y de ácido fosfórico altamente calentadas.

indicaciones técnicas para la transformación

Las características favorables del material DURAN originan una buena propiedad de manipulado en los procedimientos de transformación usuales para vidrios técnicos, es decir, el ensamblar y separar. Para eliminar tensiones temporales que surjen durante la manipulación, el DURAN se calienta a un máximo de 550°C, manteniéndose a esta temperatura durante más de 30 minutos. En consideración a la resistencia química del vidrio, esta temperatura de destensionado no debería aplicarse durante un tiempo prolongado (horas).

Para el posterior entriado se recomiendan descensos de temperatura según la siguiente tabla:

gama de temperat	tura	550 a 480°C	48	30 a 400°C	400 a	20°C
espesor del vidrio			velocida	id de enfriamiento		
3 mm 6 mm 12 mm		12 grd/min 3 grd/min 0,8 grd/min	24 6 1	f grd/min 5 grd/min 1,6 grd/min	nasta 480 hasta 120 hasta 32	grd/min grd/min grd/min

Caso de ser necesario destensionar varias veces una misma pieza, la suma de tiempos de destensionado a 550°C no debería exceder a dos horas. licatos del mismo tipo y se manipula y destensiona a las mismas temperaturas.

DURAN puede imprimirse con pinturas de difusión de plata y con pinturas de serigrafía.

DURAN suelda, sin producir tensiones, con vidrios borosi-

Características lísicas

	valor	• unidad
coeficiente medio de dilatación líneal a _{20/300} (según DIN 52328)	3,25	10 ⁻⁶ K-¹
Temperatura de transformación	530	°C
Temperatura del vidrio para las viscosidades 10 ^{13.0} dPa s – Temperatura superior de recocido	560	•C
10 ^{7.6} dPa s – Temperatura de reblandecimiento	815	•C
10 ⁴ dPa s – Temperatura de trabajo	1270	•C
Temperatura máxima admisible para empleo en tiempo breve	500	•C
densidad	2,23	ʻg/cm³
módulo de elasticidad E	63	10 ³ N/mm ²
número de Poisson µ	0,20	
tensión térmica específica ϕ	0,26	Nmm ⁻² K ⁻¹
conductibilidad termica λ (válida para 90°C)	1,16	. ₩/m·K
temperatura para la resistencia elèctrica especifica de $10^{9} \Omega \text{ cm}$ (DIN 52362) t _k 100	248	•C
logaritmo de la resistencia elèctrica volumétrica a 250°C a 350°C	7,9 6,5	Ω•cm Ω•cm
propiedades dieléctricas (1 MHz, 25°C) número dieléctrico	4,7	1
factor de pérdida dieléctrica tan b	55	10-4
indice de refracción (λ = 587,6 nm) nd	1,473	1
constante óptica de tensión (DIN 52314) K	4,0	10 ^{_6} mm²/N

						11.5		1.1			<u>81</u>	8 9	· · · · · · · · · · · · · · · · · · ·		10		1 n	1		- 22	12		
	1 1 997 1 997	1 2	1, 1	47	1		5		1 6		2 J 🖓	$1 \leq 1 \leq 1$		Elect	rical Value	• <u> </u>	1			Chemi	cal resista	nce	
Gless	Туре	Shapes	1/5C	Tg	Temp	eroture o Viscositie	f the Gla ts of (pair	11 (°C) 1es)	d	۲۰ ۰۵	E E Br	10.5 keal cm ³ m h ^c i	- 1×100	e =	nts for I(T) R.10-2	K 100.0-10	p, nd	w	w.		s	ι, ι	1
	a di kata kata kata kata kata kata kata kat	l'iouve	20 330 °C		10***	10	107+	10+	G.cm.		10						1 .				<u>· · · ·</u>		
	Apparatus and Laboratory Glasses	1.	1.1.1.2	1.1	1.1	F	<u>.</u>	1	1			63 100	248	-14	491	11 4	1.177	0.074	0.079		0.75		4
8771	Duron M P	FTES		512	610	518	015	1 1041	2.2.22			67 0.93	269	-153	519	51 40	1 497	0.019	0.015		n /	1 127	
8454	Supton *	-	415	- 335	530	570	807	1205	2 15	· · · · · · · · · · · · · · · · · · ·		92 100	616	+187	5.50	4.2 23	1.547	0.025	10004		100	3 : 044	
8439	Supremps •	FRS	41	740	690	740	540	1235	7 56	20.	j	7.2 1.02	195	-1.44	441	57 E5	1.492	0.076	0 CG3 (0 22	A9	
1.17	Gerbetegias 20	FIRS	49	505	525	570	750	1170	2.40		·								1				1
	Ampoule Glasses				1	1		÷		1		<i>,</i> ,	. 197	-115	4.31	56 81	1 1.00	5.004	0.00		07 :	1	1
5417	Finlos • stear		1 19		514	547	· 781	1141	2 222		,	7.1 0.93				60 95	1 578	0.032	0.017		0.14	1	
2743	Fiolas 🕈 omber	R	55	548	515	520	773	1135	2.46	-									1	.		1	1
	Thermometer Glasses		i		i.			1		1 110		7.4 0.69	165	-7.19	4.46	7.1 AS	1 574	0.35	0.11		0.30	1 105	
1699	Normalalas #	85	1 84	515	493	535	708		2 52	140		7.4	137	-1.47	3.57	67 143	1.507	0.044	10000		0.65	1 111 m	- 1 - 5
2954	Thermometer glass	RS	62	590	549	590	782	1125	2.42				· .	1			;					1	1
	Sealing Glasses	1			1		1 -		1	190		68 <u> </u>	252	-1 61	5.05	48 30	1.485	074	0.23	1	10	2 400	Ξ.
1645	Tungsten sealing glass	5	42	515	485	534	.754	1095	2.27			.8	275	-1.47	517	50 38	1 482	0 193	0.06	2	(29)	150	2
E487	Tungsten seuling glass	1 R5	1 43	523	472	1 528	770	1132	2.27	163) /		232	-1.72	4 69	5.2 40	1 1.495	1 42	6 44	4	15	2 230	- <u>-</u>
1637	Molybdenum sealing glass	15	50	531	501	540	735	1 1025	1 2.30	185	5_i_(61 0.90	355	: -1.87	6 23	50 18	1.433	(3.9)	(1.2)		400) -	- (500,	- 1
8243	Sealing glasses for molybdenum and	FRS	50	450	450	495	716	1 1045	2.25	185	یے ا	59 1 0.90	197	-1.62	4 ±0	63 95	1 1.5:7	0 C 15	0.017	1	05 1	735	13
1447	Feitli-Co allays	FRS	5)	5.3	453	1 529	725	1075	2 48	- i =		······	223	17;	4 52	57 _ 85	1 4:3	0 079	3 0 2 5	1 1	0.16	140	2
8245	Giass for X-roy tubes	FRS	52.5	510	465	518	718	1000	2 31			5.2 0.78	316	-7.24	5.96	66 11	1.55	619	0.19	3	7.3 1	3 215	: 3
6:95	Lead glass	I RS	1 93	430	1 405	439	632	975	1 3 01			5.8	322	<u></u>	7.49	67 18	1,503	125	0 39	4 - 1	10	2144	2
6510	Glass free from lead, highly insulating	RS	1 93	445	1 405	455	674	\$69	2.54	110	·	56 0.69	272	.; - 4 5 _	678	65 17	1.508	078	0 25	3 0	0.3	130	2
5195	Glass for TV-tubes	. F	97	432	402	440	655	1023	2.59			081	177	2.42	4.71	7.9 45	1.550	13 9}	0.2	- (127) -	~ 171	3
4210	fron sealing glass	RS	124	450	1 415	455	614	650	2.48	' .	i.												÷.
	UV Glasses	i	· •						1			- 0 85	2/ 5		4 52		1,505	0 67	0.27	4	0.6	130	? .
8405	Uvial # glass	I FR	. 95	_410	391	446	657	1 985	2.51		<u> </u>	<u> </u>	235	<u> </u>		67 . 32	i	0 93	0.28	4	1.2 1 :	2 141	12
5473	Black Uviol glass	\$ F\$	1 96	465	1 425	470	657	974	2 67		a (25j t _a	100 = temperature	for g = 10	0		12 (11, We	-	• 13 #*er	uzard-ng	te D:N 13	118 m G.Gt #	t HCL's	
Annalation 1	effore to commo 1 Stapes produced, 1244 a constalling point (upper annealing temperature)				ersturel		·· · ·		cal recistivity d the equation	м,		Ψ.		- C - Ca		d 14 equire	alent quents	,					
****	T a plate plate				1	orking temp				· ·		log g =	44 P			3	a bears et	*****	erding to	0IN 1211	à in mg cÌ	loss in	
	S = rodi				2 (2) (1) (1) (1)	miliy wmai ikan		(DIN 52.225)				T = etiol.	le lanperate	• in *K		;	= c. 3 f 3					Anna Ca	
	- 3 (27 at - coefficient of Loope the	ormal espans	non		1 (IT) E = Ye	why's modul						K = directric s	ar slant		ind .			o) (−)	iterating h	1/1			~
79	t (77) Ta a regestormation resepter	clard corresp	randing to		1 (21) 2 + 11	armal cond.	()	•C		14	, ten	b = dielectric k	***	1 23.4		1			Laure		منتب واعمدو	14 I.	-
••	S (27) Viscoury (poised)				• udd lianof	tobia al pr		pages 42 an	D		n	nd = refractive :	indee for its	Helina d 🕅	- 527,4 mm]		4 Ct . 74's	1612-16.	rest meiha	NI 0.0 M	r preid any		
	15" a those point flower chi	lealing lamp	erolure!		** deviation 1	rom Ditv 12	324, healing	raie 4 Com	.														

. .

a in 🚽 d'airsiù i

Physical and Chemical Properties of Technical Glasses Teble (1)

د

APENDICEB

INFORMACION ACEITE TERMICO

Mobimherm[®] Light, 600,603 transmisión de calor.

P Line in the line of the second s

Los aceites Mobiltherm Light 600 y 603 han sido especialmente seleccionados para ser usados en sistemas cetrados de transmisión de calor que utilizan acuite frio. Este tipo de sistemas de transmisión de calor se utilizan ampliamente en la industria, donde se prefiere calor indirecto per razones económicas o técnicas, en los cualas las temperaturas requeridas no se pueden alconzar con aqua o vapor caliente sin presiones excesivamente altas. Las temperaturas de estos sistemas pueden llegar a 316 °C (600 °F) o más, y a estas temperaturas, los aceitos normales de petroleo tienden a descomponerse debido al resquebrajamiento térmico en compuestos inferiores de ebullición, reduciendo el punto de inflornación y aumentando el riesgo de que los vapores inflainables sean eliminados. En forma simultánea, en condiciones reactivas, algunas maléculas se polimerizan formando moléculas niayores y más pesadas las cuales, después de largos períodos de operación, pueden conducir a la formación de depósitos de carbón sobre las superficies transmisoras de calor y a una consecuente reducción en la eficiencia de transferencia de cator. Los aceitas con cualidades adecuadas de transmisión de calor resisten la descomposición térmica y la oxidación quíniica y tienden a mantener en solución, todos las productos de descomposición que se forman. También poseen gran eficiencia en transferencia de calor y sus viscosidades son tales que pueden ser fácilmente bombeados tanto a temperaturas iniciales como de operación.

DESCRIPCION DEL PRODUCTO

Mobiliherín Light y 600 son aceites aromáticos de un ilpo que resiste la descomposición térmica en condiciones continuos de allo tempratolura. Mobiliherm 603 es un aceite paratinico de alte indice de viscosidad es muy resistente a los efectos de descomposición térnica y oxidación a altas temperaturas. Es lo más recomendable para la mayoría de las nuevas uplicaciones donde el mayor caler específico y la conductividad térmica, asícomo las mejores características de temperatura-viscosidad resultan ventajosas (ver gráfico).

Mobililierri tight y 600 son aceites cuidadosamente refinades con rangos muy estrechos de destilación y puntos de influmación relativamente altas. Debido a su resistencia a la descomposición términa a temperaturas de operación para las cuoles se tecomiendan, los puntos de influmación no se reducen significativamente durante el servicio: La naturaleza aromática de estos aceites tembién proporciona alta solubilidad para tados los productos de oxidación que se forman, por lo que se reduce tanto la tendacian de estos menetades e depositerse an las superficies transmismos de color, como la Interformatia con la eliciencia en la transmisión de color, Mobililaren Light - tiene un punto de ebilición de color,

más de 232 °C (450 °F), lo cual es la suficientemente alto como para permitir su uso en sistemas cerrados que operan a temperaturas generales del aceite tan altas como 204 °C (400 °F). La poca viscosiciad y el pento de descongelamiento de este producto lo hacun particularmente adecuado para utilizarlo en sistemas que estén expuestos a temperaturas, durante períodos de paraliza-ción tan bajos como ---26 °C (---15 °F). Al iniciar la eperación de tal sistema, Mobiltherm Light / circulará júcilmente sin consumo excesivo de energía en la bomba, Mobilitherm 600 con un punto inicial de ebullición de 321°C(610 °F), puede utilizarse con seguridad en sistemas cerrados que operan a temperaturas hasta de 316 °C (600 °F) sin numentos de presión o descampesición térmica. También puede utilizarse a temperaturas inferiores al punto de concelamiente sin consumo excesivo de energía al iniciar la operación. Mobiltherin 603 es un aceite de aito IV, es fácil de bom-

山司加合的国合同

Mobilitarin 603 es un aceite de alto IV, es fácil de bombear al principio, aún a temperaturas relativamente bajas. A comparación con Mobiliherm Light v 600, tiene mayor conductividad específica y tármica a todas las temperaturas, así que proporciona una mayor flexi-

bilidad y calentamiento más rápidos en un sistema, con características de temperatura-viscondud más lavorables lo rual dará muy buenos resultados cleatro de un emplio rango de temperatura. También resulta adecuado para utilizarlo en sistemas cerrados que aperan temperaturas hosta de 316 °C (600 °F).

CARACTURISTICAS TIPICAS:

Las constenisticas lísicas y químicas de Mobilithens tught ; 600 y 603 aparecen en la table, Los valores are no se investran como máximos o mínimos son valores lípicos que pueden variar lígeramente.

的方面的前面。而且这种问题。但是

der feiter gestert etermine der sie gestern

APLICACION

El Mabilitherm Light se recomienda para utilizarlo en sistemas donde el máximo de temperatura del aceite no sea mayor de 20.4 °C (400 °F), y es particularmente aplicable cuando parte del sistema puede estar expuesto a condiciones severas como en los sistemas de fusión de nievo, hosta temperaturas inferiores al congelamiento (-26 °C --15 °f) durante periodos de descanso.

Mobiltherm 600 se recontienda para sistemas en los cuales la temperatura máxima puede lleaar a ser de 316 °C (600 °F) y en los cuales la temperatura minima en el descanso no será inferior a -15 °C (5 °F). Mobiliherm 603 se recomienda para los sistemas que operan a temperaturas máximas de areite hasta de 316 °C (600 °F) y en los cuales la temperatura minimo de descanso no sea inferior a -7 °C (20 °F). Es particularmente aplicable cuando se descan altas relaciones de transferencia de calor o fluies altos a temperaturas razonablemente bajos. Las características de este producto lo hacen adecuado nara los sistemas en los cuales se utilizan ciclos combinances of color y enfricamiento, pues funciona eficazmente tanto a temperaturas altas como bajas y resiste un ciclado térmica repetido. Mobiliherm 603 es especialmente adecuado para sistemas en los cuales la filtración de aire y el arrostre aumentan la posibilidad de axidación.

No se recomiendo mezclar los aceites Mobiliherm con aceites convencionales que ya están dentro del sistema, ni añadir un aceite convencianal al Mobiltherm. Dicha mezcia puede provocar la pérdida de elgunas de las propiedades del Mobiliherm y complicar la interpretación del análisis hecho para determinar la vida útil del aceite para la transferencia de calor. Más aún, la excelente estubilidad térmica y de oxidación de los aceites Mobiltherm puede verse impedida. Si el Mobiltherm Light 6 600 se añade a un sistema que tenga un aceita convencional, la juerte acción disolvente de estos productos punde desprender los depósitos dejados nor el aceita anterior. Esta acción de purga es benéfica para mejorar la eficiencia del sistema de intercambio de calor y circulación, pero será necesaria la inspección regular y limpieza del filtro hasta que los depósitos sean eliminados. Así tenemos que la duración de la carga inicial puede acortarse debido al material pecajoso contenido en solución. Los empaques y bujes duben ser de material resistance of evolution Draw

93 °C (200 °F), Runa N será satisfactorio para los sellos y anillos "O". Para temperaturas hasta de 121 °C (250 °F), pueden utilizaros esilos Viton. Si la temperatura es superior a 121 °C (250 °F) pero inferior a 204 °C (400 °F), utilice tipos de resinos fluorinadas toles como Teflón. Para temperaturas superiores a 214 °C (400 °F), debe utilizar sellos metálicos o de asbesto.

Los aceites Mobililierm, al igual que otros aceites minerales, deben ser utilizados únicamente en sistemas de circulación forzada. Los sistemas que dependen de la convección o circulación del medio transmisor de calor, no proporcionan un flujo lo suticientemente rópido como para evitar el sobrecalentamiento localizado y el rópido deterioro del aceite. Mós aún, estos aceites no se recomiendan para utilizarse en sistemas abiertos en los cuales el aceite n altos temperaturas estó expuesto directamente al oire. Los aceites Mobilherm, al igual que los productos de petróleo en general, son combustibles va autemon si están expuestos a una fuente de ignición. Los aceites Mobilherm caliantes no encenderán por sí solos si se atomizan o escapan por los puntes de fuga, para ello se requiere una fuente de ignición.

Al igual que con los demás productos de petróleo, la exposición excesiva y prolonguda de la piet o los aceites Mobilherm puede causar problemas en la misma Se recomienda un programa de buena higiene personal si hay contacto cutáneo: hay que lavar con agua y jabón, si la ropa se moja, quitesela y lávela antes de vol-

VENTAJAS

Cuando se siguen las recomendaciones, los aceites Mobiliherm de transferencia de color proporcionarán las siguientes ventajas y beneficios:

Mayor resistencia a descomposición térmica.

Mayor libertad contra ladas y carbón.		Neg Weight	i.	
Mayor duración de la vida de servicio.				<u>i</u> re
Más facilidad en sistemas fríos al iniciar				
Mayor transferencia de calor.	1	1997	12	_
Protección contra la corresión.				

non resistante di ocenet i ord temperateris interio	nes o menores cosios de	senergia.	
Caracteristica	Mobilibern Light	Anobiltherm 600	Mobiltherm 603
Gravedod API	12.4	15.1	33
Gravedad especifica 15/15 °C (60/60 °F)	0,983	0.966	0.865
Punto mínimo de fluidez móx. F (C)	20 (29)	0(-18)	5
Punto de inflamación, min. F (C)	250 [121]	350 (177)	350
Viscosidad		11 A.	
SUS @ 100 P	41,5	275	105
SUS (0 210 F		45	40
cSt (i) 38 C	2.7	59.3	21.7
εSI (⁰) 50 C	3.6	31.0	14.5
cSI (1) 99 C P	낮 집안 만 <mark></mark> 여러 집안 물 것이 한 것	5.7	4.2
Color, ASIM	(negro)	5.5	2.0
Eango de destilación F (C)	이 아이는 아이는 아이는 아이는 것을 가지?		
10% destilación	· 500 (260)	640 (330)	680 (360)
50% destilación	575 (302)	700 (371)	750 (372)
90,% destilación	670 (354)	760 (404)	820 (310)
CTYLERIC SELL CLASSICILISHE LASTER MARKER RECTORS	STATISTIC LOSS CONSTRUCTS	1	لاستادهم تشادر وسيسار ومراكبته ولاقاطقه
NUT. 6MC.012		Mobil O	il de México, 5. A.

PROCESOS DE TRANSFERENCIA DE CALOR

FriFlatt-

Ver-unversernallik hill meine

251795

1.0 ESPECIFICA TL TEMEPERATURA DERIVADOS DEL PETROLEO DAPA del Kansas City Test. Lab. Datos trmades Buffetin Ho. 25, P.301 a 612; tantién del 0.9 Natural Gazoline Supplements Ass'n. 1936 Bulletia P.31 60 Grateda especifica a 67./60 0.5 0.4 ω xo 200 400 Temperatura 600 700 800 • 7 Gravedades específicas de hidrocarburos FIC. 6.

914

APENDICE C

PRPIEDADES DE LOS FLUIDOS DE TRABAJO

VISCOSITY - LIQUID

A recommended equation was released following the work of the Sixth International Conference on steam (1964 Skeleton Tables): $\mu(\text{Nom}^{-1}) = 2.414 \times 10^{-7} \times 10^{\lfloor 24.14 / [T-145]})$ (T in K)

An excellent review of the subject was made by Kestin [515]. The viscosity of water at atmospheric pressure and at a temperature of 20 C was measured accurately by Swindells [594] and by Roscoe [762] so that accordingly a reasonable values is $\mu_{TC, 15K} =$ (1.00210, 001) 10⁻³ N see m⁻². The first equation above covers the range 273.15 K to 573.15 K and was adopted to generate the present values up to 573.15 K.

REPRICENANT 718

At the Seventh International Conference on steam several papers were presented, based on a unique equation to represent the whole p, T, µ domain [666, 773, 596]. The correlated values fall within the tolerances of the 1964 Skeleton Tables, and so does a correlation by Bruges [104] which is extended to the critical point. Tanishita's [596] values were used to generate recommended values between 573.15 K and the critical point. The accuracy stated in the 1964 Skeleton Table is ± 2 percent.

The tabular values so obtained were fitted to two functional forms which differ from the above. Below 625 K, the equation

 $\ln \mu (10^{-1} \text{ Nsm}^{-}) = A + B/T + C/T^2$

was used to represent the values with the following results;

Range (°K)	A	В		С	Av. d	ev. (%)	Max.	dev. (%)
273-350	0. 030155	-2191.60	6.3	8605 - 105	0.	6	1.5 (300 13
350-500	-3.22950	13, 195	74 2.G	5531 · 10 ⁵	0.	1	0.3 (390 K)
500-620	-8.77361	5875.87	-1.2	8275 - 10	0.	6	1.1(500 K)

From 600 to 640 K, the pulynomial

 μ (10⁻¹ Nsm⁻⁷) = 51.616867 - 0.25235392 T +4.1242657 x 10⁻⁴ T² - 2.250000 x 10⁻⁴ T³

fitted the values to an average deviation of 0.07 percent and a maximum deviation of 0.13 percent at 620 K. These fittings were used as basis of the present tables,

VISCOSITY - SATURATED VAPOR

The Sixth International Conference on Steam acreed on an equation representing the excess viscosity from 1 has pressure to saturation pressure in the range 373.15 K to 573.15 K. The subject has been discussed at length by Kestin [515] in his presentation of the 1964 international Skeleton Table. The equation is

 $(\mu - \mu_i) = (5.90 \text{ t} - 1858)\rho_i \quad \rho \ln g \cos^3$ (L in C)

6

Ľ,

63

k-j

pia

(T in K)

(T in K)

(t in C)

(7 6 15

where

 $\mu_1(10^{-1} \text{ Nsm}^{-2}) = (80.4 + 0.407 \text{ L})$

The first equation is largely based on determinations at Brown University [507,511] as primary references, while the second , equation is that used to generate the 1 atm gas values. The tolerance stated is ±1 percent.

At the Seventh International Conference on steam, two papers were presented [666,896] hased on a unique equation for representing the whole viscosity - pressure - transcrature domain, and a paper by Bruges [104] which takes also into account new results by Bay [752]. Their correlated values fall close to the tolerance of the International Skeleton Table (1964). The values of this work were interpolated from the values of the latter, in the range 373.15 K to 575.15 K. At higher temperatures Tablehist's values were used to generate the recommended values.

The values so derived could be represented by the empirical equation

μ (10" Nam") = Λ + BT + CT2 + DT

with the following results:

Range ("K) A	ВС	DAV	. dev. (%) Max. dev. (%)
373-500	0 21142 -2 01400-10-	2 79720 in-1	n 1
500-600 -580.0762	3. 35383 -6. 34324 + 10-1	4 01420-10-6	0 1 0 2 (580 K)
600-640 -14155, 30286 7	0.53207 -0.117171429	6.50000.10-1	0 0 1 (620)

These lits were used as basis of the present tables.

153

THERMAL CONDUCTIVITY - LIQUID

The values so obtained were fitted to the empirical equation

$k (Wm^{-1}K^{-1}) = A + BT + CT^{2} + DT^{3}$

(T in K)

(T in K)

with the following results:

Range (°K)	A	в	C D Av. dev. (70) Max. dev. (70)
273-400	-0.61694	7.17851 - 10-3	-1.16700 · 10-5 4.70358 · 10-3 0.05 0.15 (310 K)
400-600	-0.14532	4.02217-10-3	-4.64993 • 10 ⁻⁴ -4.89256 • 10 ⁻⁴ 0 0.06 0.19 (570 K)
600-645	190.40346	-0.94130500	1.5584704 · 10 ⁻³ -8.6195285 · 10 ⁻⁴ 0.04 0.13 (530 K)

These fits were used as basis of the present tabular values.

THERMAL CONDUCTIVITY - SATURATED VAPOR

Following the Sixth International Conference on the properties of steam, a supplementary release on transport properties tabu-Inted recommended values of thermal conductivity for various pressure and temperatures and not for saturated states. A convenient source for this tabulation is [644a]. Surprisingly, the converted tables in engineering units in [644a] likewise are not for saturated states. However, the recommended tables were used with a later paper to produce tables at saturation conditions [755] for 5 C increments. Other similar tables for larger increments have also appeared [356a, 990]. These were inter-compared and quite good agreement between the [990] and [755] tables occurs below 600 K (usually within one digit in the values). Some larger differences occur between either of these sets and the [356a] values. In view of the close increments of the [755] tables these were used to generate the recommended values to 625 K and values above 600 K were also generated from a large scale graph. Values from both methods between 600 and 625 K were adjusted to provide a smooth transition. No assessment of accuracy below 625 K is given in [755]. At higher temperatures a ten percent uncertainty is assessed. This is considered to be applicable to somewhat lower temperatures also, the unertainty gradually decreasing to a few percent at 373 K and as much as five percent at 273 K.

The values so obtained were fitted to the empirical equation

 $k (Wm^{-1}K^{-1}) = A + BT + CT^{2} + DT^{3}$

with the following results:

Range (°K)	٨	в	C		D		Av.	dev.	(%)	Max.	dev.	(%
273-500 500-600	-0.033991	4.48666 10"4 0.025038	 1.24255 · -4.85793 ·	10 ⁻¹	1.35385	·10		0.3		0.9	273 K 560 K	3
600-640	-148.0835	0.7358720	 1.220443	10-3	6.75990	7 - 10	7	0.6		1.6	(605 K	3

These fits were used as basis of the present tables.

THERMAL CONDUCTIVITY - GAS

At the time of compilation of our earlier tables [405, 585, 920] severe discord existed between the data of Geier and Shafer [296], Vines [520a] and various [085, 99], etc.] Russian data at temperatures alove alout 600 K. More recently, never experimental [107a] and theoretical [1072a] studies have appeared which support the Russian data. Brokaw [100] was also able to adjust the Geier and Stafe. data by considering both calibration and neglect of accommodation coefficient errors while the Vines data were shown by Drain [88a] to be compatible with such a choice if the highest temperature datum is neglected. In addition to the above work numerous tables [356a, 644a, 755, 900] have appeared as well as a calculation [886a] for the hydrogen - oragen mixture (which included life) up to 5000 K. Comparison of these newer values showed our previous tables to be reasonable below 600 K and such values were related. Between 600 and 1000 K the values were selected from a composite of the [88a, 356a, 644a, 755] tables. The various experimental data and more

VISCOSITY - GAS

The Sixth International Conference on the properties of steam charged a panel with the task of producing new tables on transport properties. The result was the recommendation of the equation:

µ = (80.4 + 0.407 t) 10" N sec m"2

which served for the representation of the viscosity of superheated steam in the range 100-700 C, in the International Skeleton Table (1964). This equation is based on Shifrin's [644] results as a primary reference. An excellent discussion on the subject can be found in a paper by Kestin [515]. The tolerances are \pm 1 percent in the range 373-573 K and \pm 3 percent in the range 573-973 K.

Several papers presented at the Seventh International Conference (Tokyo, 1959) were dealing with the subject. Three of these arbased on a unique equation for the representation in the whole viscosity - pressure - temperature domain, instead of four equations representing four separate domains (Tanishita [696], Miyabe [666], Rivkin [773]). Another paper, by Druges [164] which is an extension of a previous work [105] uses several equations characteristic of different domains, and includes the experimental results of Latto [569]. Based on the same primary sources of references the values obtained in different correlations fail within the tolerances given by the International Skeleton Table (1964). Therefore the values were generated from the above equation.

The values so derived were fitted to the semi-empirical equation

$$\mu (10^{-1} \text{ Nsm}^{-1}) = \sqrt{T}/(A + B/T + C/T^{2})$$

with the following results:

Range (°K)	Α.	В	C	Av.	dev. (%)	Max. de	v. (%)
280-500	0.590699	365.423	16015		0.03	0.08 (4	90 K)
500-750 750-1000	0.365683	490,099	-13608	2900 -	0.01	0.03 (6	50 K) 70 K)
				11.200	·		

These fits were used as basis of the tabular values given here.

(T in K)

ويبير والمعاط

(t in C)

recent calculations have been compared. Many older calculations, entimates or tables [358,436a 476a,517,544a,579,691,955a] are now considerably in error. While some workers [69a,918, elc.] feel the uncertainty up to nearly 1000 K may be less than two prevent, a little greater uncertainty would appear to be realistic in the upper part of this temperature range.

The values so obtained can be represented by the semi-empirical equation

$$k(Wm^{-1}K^{-1}) = T/(A + B/T + C/T^{-1})$$

with the following results:

Range (°K)	A	B	С	Av. dev. (7)	Max. dev. (%)
373-600	-135.819	4.50327 - 105	-4. 58631 - 101	0.1	0.5 (450 K)
600-800	-3.40306	3.30796+105	-7.28429 · 10	0.0	0.1 (770 K)
800-1000	98.3050	1.72543 · 105	5.43128 · 10 ⁷	0.0	0.1(930 %)

The present tables were based upon the above fits.

(T in h)

SPECIFIC HEAT - LIQUID

There exist about 30 sources of information for the isobaric specific heat of liquid water. As water has been the most universally used reference liquid in the measurements of heat capacity, it has been extensively investigated and the discrepancy among the reputed data is rather small. The colorimetric data of Ginnings and Furukawa [307] and Osborne et al. [608] are considered to be the most reliable in the temperature range between the n.m.p. and the n.b.p. Therefore, heavy weight is given to these data. Furthermore, to obtain the correlation at higher temperature, weight is also given to two sets of derived values from P-V-T relations [544, 814] and to two sets of compiled values under saturation vapor pressures [855,556]. However, no weight is given to other sets of calorimetric data [160, 177, 274, 434, 440, 719, 794, 789], derived values from P-V-T relations [168], compiled values [284, 473,656, 787,859, 872] and several sets of correlated and cited values [222, 381, 526, 562, 829, 1052].

The correlation formulas obtained are as follows:

For temperatures from 273 K to 430 K:

 $C_{p}^{(kJ kg^{-1}K^{-1})} = 17.6611 - 0.147914 T + 6.05619 \times 10^{-4} T^{2} - 1.11867 \times 10^{-4} T^{3} + 7.60297 \times 10^{-19} T^{4}$ (T in K)

For temperatures from 430 K to 603 K:

 C_{n} (kJ kg⁻¹K⁻¹) = - 95.6159 + 0.635694 T - 1.33872 x 10⁻³ T² + 9.44662 x 10⁻¹ T³

These equations are found to fit the above enumerated data with mean deviations of 0.05 and 0.77 percent and maximum deviations of 0.13 and 2.3 percent, respectively. The values were based upon the above formulas. Values below 500 K should be substantially correct within one percent, however, the uncertainty increases above this temperature. These values, compared with steam tables [15, 337, 817], are found to apprex with them with a maximum deviation of 1.1 percent at 553 K.

SPECIFIC HEAT - SATURATED VAPOR.

Several sources of information are available for the isobaric specific heat of saturated water vapor. Among them, the correlated values in steam tables [267,617] are considered to be the most reliable, and therefore, the original values in this analysis were determined by graphical interplation of these sets of values, because it was difficult to find a single empirical equation which could represent the values over the entire temperature range from the n.m.p. up to near the critical point. Several sets of data found in the literature were compared with the present recommended values. They are correlated values of Engineering Sciences Data Unit [15], thermodynamically calculated values of Sheindlin et al. [614,641], and compliation of experimental and theoretical data by Sirota [855]. All the values cover temperatures from n.b.p. to the critical point, lawyere, the differences are somewhat large.

By fitting the tabular data to polynomials of the form

$$C_{1}$$
 (kJ kg⁻¹ K⁻¹) = A + BT + CT² + DT³

(T in K)

over various temperature ranges the results were:

				3.5.5 A					
Range (°K)	A	в	C	י ס ג	Av. dev.	(%)	Max.	dev.	(51
290-380	-0.23980	0.022988	-8.56702·10-1	1.08197·10 ⁻⁷	0.03		0.09	(370)	K)
380-470	-1.4G152	0.032407	-1.08275 . 10-4	1.24709 . 10-1	0,02		0,08	(450.)	ĸĵ .
470-560	-236, 736	1.45001	-2.95528 · 10 ⁻¹	2.03069 10-5	0.36		0,70	(490 1	n -
570-610 -	12,432.635	64.553357	-0.11282929	6.55000 • 10"	0.39		0.74	(590)	кi .
610-630	4305, 8	-14.3600	0.01200	0.0	0.00	1100	0,00		1.1

(It should be noted that the last fit is exact as only three data points were used as input.) The tabulated values were based upon the above fits.

SPECIFIC HEAT - GAS

There exist more than one hundred sources of information on the specific heat at constant pressure of water vaper. A number of extensive hent equentity values for the ideal gas state have been derived from specificeepite and molecular structure data. The values presented by Gordon [334]. Me Bride et al. [635], and Gordon [634] are considered to be reliable, as well as four compilation tables [10.218,401,1050]. Therefore, equal weight is given to these works in this analysis. However, other sets of extensive theoretical values [97, 156,266,267,311,465,517,758,816,1011,1017,1060] and earlier statistical calculations [102,103,328,329,462,522,541,560] are given no weight as well as a single paint value obtained by empirical correlation [44]. The extrapolated values to zero pressure from calorimetric measurements [166,288,638] also are not used in this analysis. The correlation formulas obtained for the ideal gas specific heat are as follows:

For temperatures between 270 K and 500 K:

C_{0}^{0} (kJ kg⁻¹K⁻¹) = 1,69208 - 5,40671 x 10⁻⁴ T + 1,74476 x 10⁻⁶ T² + 8.36450 x 10⁻¹⁰ T³

(T in K)

(1 in Ki

For temperatures between 600 K and 1500 K:

C_{1}^{-6} (kJ kg⁻¹ K⁻¹) = 1.5271 + 6.42096 x 10⁻⁴ T + 1.39713 x 10⁻¹ T² - 7.46571 x 10⁻¹¹ T³

These equations are found to fit the above enumerated values with mean deviations of 0.03 and 0.13 percent, and maximum deviations of 0.07 and 0.73 percent, respectively. The values are based upon the above formular. The tabulated values of C_p^{+} bound be substantially correct within one present value for the entire temperature range. The present values are also compared with steam tables 15.817] and found to agree with them within 0.40 percent.

A number of experimental and theoretical values are available for the specific heat in the real gas state. The theoretical values derived by statistical mechanics and the correction of gas imperfection have been presented by many investigators. A mong them, results of Masi [620], Fano et al. [267,265], Heck [394,359], Keyes et al. [522], and Hilseurath et al. [401] are considered to be reliable, as well as two sets of correlated values [544,102]. These values are given equal weight in the present analysis. Two sets of contributions (530,635) are also reliable and are given weight. However, no weight is given to the following works: calorimetric data [288,596,725], theoretical values [330], derived values from P-V-T data [158,470,654,729], from velocity of sound [437], empirical correlations [44,66,76,222,373,311,522,550] and compilations [67,319,435,594,685,555,1011]. The correlation formulas obtained for the reactific between 373 K and 535 K.

 C_{n}^{-1} (kJ kg⁻¹K⁻¹) = 8.13705 - 3.73435 x 10⁻² T + 7.48227 x 10⁻⁵ T² - 4.95562 x 10⁻¹ T³ (T in k)

For lemperatures between 535 K and 1500 K:

 C_{1}^{-1} (kJ kg⁻¹K⁻¹) = 1.55444 - 1.19405 x 10⁻⁴ T + 6.30425 x 10⁻⁷ T² - 2.77702 x 10⁻¹⁹ T³

These equations are found to fit the above connerated values with mean deviations of 0.46 and 0.43 percent, and maximum deviations of 1.4 and 1.9 percent, respectively. The values of C_p^{-1} , based upon the above formulas, should be substantially correct within two percent over the entire temperature range. These values are also found to coincide with a steam table [617] with a maximum deviation of 0.99 percent. Various empirical equations [60,81,310,372,530,831,657], values at higher temperatures [69, 117,632,1040,1049] and at lower temperatures [381], high pressure data [194,516,814,841,854,855], and mean specific heat values.

TABLE 30, THERMOPHYSICAL PROPERTIES OF REFRIGERANT 718

Temp.	Viscosity 1bm / (ft) (hr)			Thermal Conductivity Btu / (hr) (ft) (F)			Specific Heat, cp · Btv / (15 _m) (F)			Temp.	
(F)	Sət. Liquid	Sat. Vapor	Gas, P=1 atm x 10 ^{°2} f	Sat. Liquid	Sat. Vapor	Gas, P=1 atm × 10 21	Sət. Liquid	Sat. Vapor	Gas (c _p) ₀ atm	Gas (c _p) _{1 atm}	(F)
32	4.98	0.0195	•	0, 329	0,0100	1997 - 1997	1.007	40, AU	0. 44:15		32
40	3 69	- n. n199	· · · ·	0.334	0.0103		1.005	ada di Shatara ya	0.4442		40
50	9 19	0.0204	-	0 339	0 0105		1 003		0 4445		50
c0	0.12	0.0210		0.345	0 0107		1 001	0 4446	D 4149	방 승규는 문	
70	5.00	0.0210		0.355	0 0109	- Har <u>2</u> 11 - 1	1 000	0.4454	0 4157	9 - E 2 - E	50
	Z. J2	0.0215		0.350	0.0105		1.000	0.4454	0, 44 52	한 것 같은 것	10
80	2.03	0.0221	· ·	0.351	0.0112	이 사람 문제	0.999	0.4464	0.4456		E0 00
105		0.0220		0.305	0.0114		0.552	0.4413	0.4439	19 1 A E9 1 A	100
100	1.60	0.0232		0.353	0,0116	승규는 신문 가슴을 가지?	0,998	0.4155	0.4463	And the second	100
110	1.44	0.0237		0.307	0.0116		0,998	0.4504	0,4467		110
120	1.30	0.0243	•	0.371	0.0121	김 씨가 구나요.	0, 938	0.4522	0.4472		120
130	1.19	0.0249		0.374	0.0123	-	0, 999	0.4543	0.4476	이 아이 아이 아이	130
140	1.093	0.0253	-	0.378	0.0125	1991년 5 1년 1월	1,000	0,4567	0.4480		140
150	1.010	0.0259	. –	0.351	0.0128	•	1.000	0.4595	0.4455	and the second	150
160	0,938	0.0264		0.383	0.0130		1.001	0.4625	0.4490	S. 19	150
170	0,876	0.0270		0.386	0.0132	영영 2018년 11월 11일 11일 11일 11일 11일 11일 11일 11일 11일	1.002	0.4661	0, 4495		170
180	0.513	0.0275	. -	0.358	0.0135		1.003	0,4699	0,4500	-	150
190	0.762	0.0291	-	0.390	0.0137	-	1.005	0, 4743	0.4505	3.24 - A - Aligar	190
200	0.715	0.0266	-	0,392	0,0140	-	1.006	0.4791	0.4510	- '	200
212	0.668	0.0293	2.93	0.394	0,0143	1.43	1.005	0, 4859	0,4516	.	212
220	0.638	0,0295	2.97	0,395	0.0145	1.44	1,009	0.4902	0.4521	0,4557	220
240	0.574	0.0305	3.08	0.397	0.0151	1.47	1.013	0.5019	0:4532	0.4919	240
260	0.521	0.0316	3.19	0.395	0.0158	1.53	1.017	0.5157	0 4544	0 4750	260
280	0.475	0.0326	3.30	0.398	0.0165	1.58	1.022	.0.5319	0.4555	0.4750	0.040
300	0.439	0.0335	3.41	0.397	0.0172	1.64	1.029	0.5508	0.4569	0.4729	200
320	0.406	0.0345	3.52	0,396	0.0151	1.70	1.040	U. 573	0.4582	0, 4714	320
340	0.379	0.0354	3.63	0.394	0.0190	1.75	1.053	0 598	0 4595	0 4706	340
360	0.355	0.0363	3.74	0.391	0 0199	1 41	1 066	0.676	0 4609	0 4703	360
350	0 324	0 0373	3 85	0 397	0 0210	1 87	1.000	0.020	0 4623	0 4704	540
400	0 315	0.0382	3.96	0 363	0 0722	1 94	1 085	0.605	0 4638	0 4709	400
420	0.299	0,0391	4.07	0.377	0.0234	2.00	1,095	0,740	0,4653	0.4716	420
440	0.295	0.0400	4.16	0.371	0.0248	2 06	1 107	0 765	0 4368	0.4724	440
460	0.272	0.0412	4.29	0 365	** 0 0267	2 13	1 174	0 635	0 4683	0 4732	460
480	0.261	0.0422	4.40	0 357	0.0265	2 19	1 149	0.805	0 4699	0 4740	430
500	0.251	0.0432	4.50	0.349	0 0306	2 76	1 180	0 968	0 4715	0.4745	5.00
520	0.241	0.0443	4.61	0.340	0.0329	2, 33	1, 222	1,058	0, 4731	U. 475B	120
540	0.230	0.0455	4.72	0.330	0 0357	2 40	1 275	1 170	0 4747	0 4772	540
560	0.220	0.0470	4.83	0.319	0.0392	2.47	1.344	1.301	0.4764	0.4787	560
580	0.210	0.0485	4.94	0.308	0.0434	2 54	1 427	1 48	0.4751	0.4502	5.90
600	0.700	0.0510	5.05	0.296	0.0486	2 62	1 578	1 71	0 4798	0 4917	600
620	0.190	0.0537	5.16	0.252	0,0543	2.69	1.65	2.10	0.4515	0.4532	620
610	0.180	0.0573	5.27	0.269	a 6a0 . 0	2 76	1 70	9 74	0 4832	0.4847	6.19
660	0.170	0.0620	5.3B	0.253	0.0756	2 83	2.4	3.9	0.4550	0.4863	1.69
650	0.155	0.0692	5.49	0.229	0.0934	2,90	3.6	6.4	0.4567	0,4879	650
700	0.121	0.077	5.60	0.158	0.1203	2 98			0.4555	0.4595	700
706*	0,101	0,101	5.63	0,139	0, 139	3.00			0,4890	0,4900	1 706
750		-	5. 67	이 아파 문문	등 가격물을 한다.	7 17			0.4929	0.4935	750
800			6.15		신 것을 하는	3.37			0,4973	0,4977	800
850		1	6.42		Speed Look (3.56			0.5016	0.5020	850
900	_		6.69			3.77	Nationala Sectore	요즘 같은 말 같은	0.5062	0, 5063	900
950			6.97			3. 97	1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	요생활-440	0.5105	0,'5107	950
1000			7.24		20 M	4 18		나라고 다	0.5150	0.5152	1000
1100	아이 그는 물이 된	김 옷에 가장을	7.79			4.60	신 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.5245	0, 5245	1100
	 A second sec second second sec	1. A.		いんごう ちょうりょう じょうしん	化化化 化过滤器 化分析器 建氯基	としょう シリーキ 大声 シイ・ビー	ero esta a la contra de la contra				
1200			8.33	1 1997년 - 사람 전화		5.02			0. 5340		· 1200

- 영화는 것은 유명한 화가 물건을 받는 것을 수 있는 것을 수 있다.

Critical Temperature, Tabulated properties ignore critical region effects.

Actual value = (Table value) x (Indicated multiplier).

- جيبيني - ---

APENDICE

TRANSFERENCIA DE CALOR PARA FLUJO LAMINAR EN TUBOS CIRCULARES

APENDICE D

TRANSFERENCIA DE CALOR PARA FLUJO LAMINAR EN TUBOS CIRCULARES

La transferencia de calor por convección en un tubo circular cuando el flujo es laminar es un problema que tiene solución analítica, y esta se encuentra frecuentemente reportada en los libros de texto. En este caso se usó el libro de B. V. Karlekar y R. M. Desmond, "Transferencia de Calor".

Debido a las suposiciones hechas en el capítulo 2 de este trabajo se reproduce parte del desarrollo de la obtención de la distribución de la temperatura dentro del fluido, así como la temperatura promedio y el coeficiente convectivo de transferencia de calor (h).

Para un flujo laminar completamente desarrollado dentro de un-tubo de radio rw, la distribución de velocidad está dada por la ecuacion :

 $\frac{u}{u_0} = 1 - \left[\frac{r}{r_y}\right]^2$

donde

= es la velocidad en direccion x en r = r

 $u_o = es la velocidad máxima = -g_c \beta \left[\frac{r_c^2}{4\mu} \right]$

 $\beta = dp/dx$

ge = aceleración de la gravedad

 $\mu = viscosidad$

La distribución de temperaturas para flujo de calor constante en

la pared está dado por :

$$T = To^{2} = -\frac{q_{w}^{2} r_{w}}{k} \left[-\left(-\frac{r}{r_{w}} \right)^{2} - \frac{1}{4} \cdot \left(-\frac{r}{r_{w}} \right)^{4} \right]$$

para esta expresión

T = es la temperatura del fluido a r = r

To = es la temperatura en la linea central del fluido

La ecuacion de la temperatura promedio es :

$$T_{b} = T_{0} + \frac{7}{24} \left(-\frac{q_{w} T_{w}}{\kappa} \right)$$

a To se le conoce como temperatura promedio o de bulto

Para calcular el número de Nusselt basado en la temperatura promedio T_b se utiliza la siguiente ecuación :

 $\mathbf{k} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{r}} \right)_{\mathbf{r} = \mathbf{r}} = \mathbf{h} \left(\mathbf{T}_{\mathbf{w}} - \mathbf{T}_{\mathbf{b}} \right)$

Sustituyendo las anteriores expresiones en esta última se encuentra :

$$Nu = \frac{h}{k} \frac{D}{k} = \frac{2}{k} \frac{h}{k} \frac{r_{W}}{r_{W}} = \frac{48}{11} = 4.364$$

El número de Nu es independiente del número de Reynolds, lo cual es típico de la fransferencia de calor *laminan* completamente desarrollado. Ademas el Nu, en este caso, es independiente de la coordenada x.

APENDICE si shi ya aki ka ka ka ka

DISPOSITIVO ANGULAR DE MEDICION ANGULAR DE LA RADIACION (DEMAR).

APENDICE E

DISPOSITIVIO EXPERIMENTAL DE MEDICION ANGULAR DE LA RADIACION (DEMAR).

Para la medición de la radiación dentro de los tubos se construyó un dispositivo que denominamos por su siglas DEMAR, el cual consta de las siguientes partes :

1. - Sensor de radiación (fotodiodo).

2. - Soporte mecánico del fotodiodo.

3. - Transportador para la medición de angulos.

4. - Resistencia eléctrica variable de carbón.

5.- Perilla de giro.

El DEMAR posee dos circuitos electrónicos que facilitan la adquisición automática de las lecturas:

a) El CIRCUITO DEL FOTODIODO que consta del fotodiodo y una resistencia fija de 1000 Ω , ver diagrama 1.

b) El CIRCUITO DE LA RESISTENCIA para la medición de la posición angular del fotodiodo ver diagrama 2.

terre transmission in the second s

CARACTERIZACION DEL FOTODIODO.

El fotodiodo utilizado es de la marca H.P. de la serie 5082-4220, sus características tanto ópticas como eléctricas se muestran en la información proporcionada por el fabricante (ANEXO 1).

La respuesta del fotodiodo fué caracterizada a distintas intencidades de luz producida por una lámpara de tugsteno, la intensidad de la luz incidente en el fotodiodo es controlada con filtros atenuantes no selectivos. La respuesta del fotodiodo para distintas cantidades de luz es lineal como se puede apreciar en los resultados tabulados y graficados en el ANEXO 2.

CALIBRACION DEL FOTODIODO CON UN PIRANOMETRO

Se hizo un experimento comparativo entre la respuesta del fotodiodo y la lectura en W/m² de un piranómetro marca EPPLEY (clasificacion CMS-731947), ambos dispositivos fueron colocados en posición horizontal. Se probaron tres funciones de ajuste entre la respuesta del fotodiodo y la lectura del piranómetro, encontrándose buena concordancia para las tres funciones propuestas. Dos de las funciones propuestas incluyen ademas de la respuesta en milivolts del fotodiodo, la temperatura del fotodiodo, y el ángulo horario del sol, estas correlaciones _ presentan los mas bajos valores de error. Sin embargo una tercera función propuesta solo utiliza la respuesta en milivolts del fotodiodo; y su máximo error absoluto es de 2.6 %, por <u>lo</u> que se decidió usar esta última función dada su sencillez y practicidad al requerir menor información sin penalizar la presición.

La función seleccionada es:

$Ig = 61,69582 \times (Fd)^{0.33695}$

donde Ig es la radiación solar global en W/m², y Fd la respuesta de fotofiodo en milivolts. En la figura 1 se hace una comparación entre las curvas generadas por el priranómetro y la del fotodiodo.

MEDICION ELECTRICA DE LA POSICION DEL FOTODIODO EN EL TUBO: Con el fin de medir eléctricamente la posición angular del fotodiodo en el interior del tubo, para que el adquisidor de datos lo pudiera registrar, se diseñó un circuito, que utiliza una resistencia eléctrica variable circular de cinta de carbón de 100 Ω (usada comunmente en el volumen de los radios), ver diagrama 2. Se ajustó la señal de la resistencia frente a un voltaje constante de 4.82 volts y los ángulos medidos con el tranportador colocado en una de las caras del DEMAR. Con esto la lectura de los ángulos es directa al girar la perilla de DEMAR.

CALCULO DE LA RADIACION TOTAL RECIBIDA POR LA PELICULA. Para calcular la radiación total recibida por la película se utilizaron los datos angulares de la radiación medidos por el DEMAR en los 360° del tubo, en intervalos de aproximadamente 15° posteriormente se hizo una integral numérica siguiendo la regla trapezoidal [Chapra].

En el Anexo 3 de este apéndice se muestra un conjunto de gráficas de la distribución de la radiación con tomas horarias durante el dia 30 de noviembre de 1990, así como los calores totales calculados con la integral.

a de la companya de la comp

The HP silicon planar PIN photodiodes are ultrafast light detectors for visible and near infrared radiation. Their response to blue and violet is unusuelly good for low dark current elitican photodiodes.

The speed of response of these detectors is less than one nanosecond. Leser pulses shorter than 0.1 nanosecond may be observed. The frequency response extends from de to 1 GHz.

 \mathcal{E} and

 $\therefore \overline{\chi}$

5.00

4

The low dark current of these planar diodes enables detection of very low light levels. The quantum detection efficiency is constant over six decades of light intensity, providing an excellent dynamic range.

The 5082-4201 has an integral glass fiber-optic light guide which places the 0.020 inch diameter sensitive zone optically on the end surface of the device. Both plotodiade terminals are electrically insulated from the header.

The 5082-4203, -4204, and -4207 are packaged on a standard TO-18 header with a plane glass window cap. For versatility of circuit connection, they are electrically

insulated from the header. The light sensitive area of the 5082-4203 and -4204 is 0.020 incl; (0.500 mm) in diameter and is located 0.075 inch (1.905 nm) behind the window. The light sensitive area of the 5002-4207 is 0.040 inch (1.905 mm) in diameter and is also located 0.075 inch (1.905 mm) behind the window.

The 5082-4205 is in a low capacitance Kovar and ceramic package of very small dimensions, with a hemispherical lens.

The 5082-4220 is packaged on a TO-46 header with the 0.020 inch (0.508 mm) diameter sensitive area located 0.100 inch (2.540 mm) behind a flat glass window,

NOISE FREE PROPERTIES

The noise current of the PiN diodes is negligible. This is a direct result of the exceptionally low leakage current, in accordance with the shot noise formula $I_X = (2q_{\rm In}\Delta f)^{1/2}$. Since the leakage current does not exceed 400 picoamps for the 5032.4304 at a reverse bias of 10 volts, shot noise current is less than 1.2 × 10⁻¹¹ amp $Hz^{-1/2}$ at this voltage.

Excess noise is also very low, appearing only at frequencies below 100 Hz, and varying approximately as 1/f. When the output of the diode is observed in a load. thermal noise of the load resistance (R_i) is 1.20×10^{-10} $(R_L)^{-1/2} \times (\Delta f)^{1/2}$ at 25°C, and far exceeds the diode shot noise for load resistances less than 100 megohms (see Figure 6). Thus in high frequency operation where low values of load resistance are required for high cutoff frequency, all PIN photodiodes contribute virtually no noise to the system (see Figures 6 and 7).

Ultra-fast operation is possible because the HP PIN photodiodes are capable of a response time less than one nanosecond. A significant advantage of the device is that this great speed of response is exhibited at relatively low reverse bias (-10 to -20 volts).

Because of its high sensitivity over a wide spectral range, unprecedented speed of response, unrivaled lownoise performance, and low capacitance, the HP PIN photodiodes are the most useful and versatile silicon photodiodes available.

NOTES: 1. Peak Pulse Power

L

When exposing the diode to high level irradiance the following photocurrent limits must be observed:

$$\begin{aligned} (avg) &\leq \frac{0.1}{E_{\rm F}} \\ and \\ (peak) &\leq 500 \text{ mA or} \\ &\leq \frac{1000 \text{ Amps}}{t(\mu \text{ sec})} \\ &\leq \frac{I_{\rm F}(avg)}{I_{\rm F}} \end{aligned}$$

whichever of the above three conditions is least li-nhotocurrent

OI.

- E-supply voltage
- t-pulse duration

I-pulse repetition rate

2. Current Responsivity

Response of the photodiode to a uniform field of Irradiance II, parallel to the polar axis is given by

Choracteristics		Response at 7700 λ (1) βπ	Sensitive Area	Diametor	Speed of Response	D*	Noise Equiva- lent Power NEP
		μA/mW/cm³	cm² .	Inches mm	nsec		
		V = -20 R _u = 1 MΩ			$\begin{array}{c} V=-20\\ R_{h}=50\Omega \end{array}$	(0.0, 100, 6)	Walts
	Min.				 And Andrewson, and Andrewson, Andrews Andrewson, Andrewson, Andr	0.9 X 10 ¹⁹	
5082-4201	. Typ.	1.0	. 2 × 10-3	0,020 0,508	<1		
	Max.	동안에서 관계하는 것이 같이 있다.				E RE-TRACE	5.1 × 10-"
	Min.					0.9 × 10"	
5082-4203	Тур.	1.0	2 × 10-	0.020 0,508			
	Max.			Loring Andreas		an trink filler in States interested	5.1 × 10-"
5082-4204	• Min.					4.1 × 10"	
	Тур.	1.0	2 × 10-3	0.020 0,508		计算机算法	
	Max.						1:2 X 10-"
	" Min.					3.95 × 10" (2)	
5082-4205	Тур.	1.5 (2)	3 × 10" (2)	0.010 0.254	1 1	N. A. Andrewski (1995) 1996 - Maria Maria (1996)	n Skolet († 1911) 1947 - Standard
	Max.				 Destruction of the second secon		1.4 × 10 ⁻¹⁴
5002-4207	Min.					2.5 × 10 ¹⁴	
	· Typ.	4.0	0 × 10 ⁻¹	0.040 1.016	<1		
	Max.		Lain Amplehoff Anno Adaiste		Res Canto G		3.6 × 10-"
5002-4220	Min.				884 (1771 - 1	0.57 × 10"	
	Тур.	1,0	2 × 10-	0.020 0.508	1		
	''Max.			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	26 (6) - aj	2237.24534	8 × 10 ⁻¹¹

 $I = \beta_{\rm H} \times H$ for 7700 Å. The response from a field not parallel to the axis can be found by multiplying $\beta_{\rm H}$ by a normalizing factor obtained from the radiation pattern at the angle in question. For example, the multiplying factor for the 5082-4207 with irradiance H, at an angle of 40° from the polar axis is 0.8. If H = 1 mW/cm², then I = k × $\beta_{\rm H} \times$ H; I = 0.8 × 4.0 × 1 = 3.2 µamps.

To obtain the response at a wavelength other than 7700 Å, the relative spectral response must be considered. Referring to the spectral response curve, Figure 1, obtain response, X, at the wavelength desired. Then the ratio of the response at the desired wavelength to response at 7700 Å is given by:

Ratio =
$$\frac{X}{0.5}$$

Multiplying this ratio by the current response at 7700 λ will give the current response at the desired wavelength.

3. 5082-4205 Mounting Recommendations

ų

a. The 5082-4205 is intended to be soldered to a

printed circuit board having a thickness of from 0.920 to 0.060 inch (0.051 to 0.152 cm).

b. Soldering temperature should be controlled so that at no time does the case temperature approach 280°C. The lowest solder melting point in the device is 200°C (gold-lin eutectic). If this temperature is approached, the solder will soften, and the lens may fall off. Lead-tin solder is recommended for mounting the package, and should be applied with a small soldering iron, for the short-

est possible time, to avoid the temperature approaching 260°C.

c. Contact to the lens end should be made by soldering to one or both of the tabs provided. Care should be exercised to prevent solder from coming in contact with the lens.

d. If printed circuit board mounting is not convenient, wire leads may be soldered or welded to the devices using the precautions noted above.

	MAXIMUM RATINGS								
Junction C	apacitance	Capacitance to Shield		Dark C	Series Resist- once	Steady Reverse Voltage	Peak Inverse Voltage	Power Dissi- pation	
pF.	pF	pF	pF	⊨ pA:	pΛ	۵	Volts	Volts	mW
$V_{H} = -10 V$	$V_{R} = -25 V$	$V_{\mu} = -10 \dot{V}$	$V_{\mu} = -25 V$	$V_{\mu} = -10 \ V$	$V_{H} \simeq -25 V$				25°C
1998年1月1日日本	1.5		2						
$\sum_{\substack{i=1,\dots,n\\ i=1,\dots,n\\ i=1,\dots,n\\ i=1,\dots,n}}^{n-1} \sum_{\substack{i=1,\dots,n\\ i=1,\dots,n}}^{n-1} \sum_{\substack{i=1,\dots,n}}^{n-1} \sum_{\substack{i=1,\dots,n\\ i=1,\dots,n}}^{n-1} \sum_{i=1,\dots,n\\ i=1,\dots$			$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$		2000	50	50	200	100
							$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$		
	· 1.5		2						
					2000	50	50	200	100
								1999 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	
2.0		2				Scherkorne Former			
	A 124 - 49 -		Start St.	400 *		50	20	200	100
A STATE	And Andrewson Mary 199		1. C. A. S. M.		1.14		Maria Maria		
0.7		Solarite - Fritz						Shine and Mark	
				150 •		50	50	200	50
		All Andrews			2014 - 267 - 572 - 567 - 572		1.22.0	10.52	
5.5		2			· 例如他们说				Anna Anna Anna Anna Anna Anna Anna Anna
			200 Additions	2000		50	20	200	: 100
					Aren - And - Aren		1. 化酸盐油		
2.0		anteria en anteria. Anteria		anna a' shine ann ann a' shine	lari oʻshi dalar Igʻi oʻshi dalar				
<u>an staan</u> Tiri kaala	ngage matter de Stability of the state		1997年1997年1月1日 18月1日日第三日日日		5000	50	50	200	100
	同時時期的結果時代發展	操作局的影响的风险。即	和中国新闻的新闻	and the second second	<u> </u>	L		<u> </u>	<u> </u>

• Not isolated from header.

Exceeding the peak inverse voltage may cause permanent damage to the diode. Forward current is harmless to the diode, within the power dissignition limit. For forthmum performance, the diode should be reverse biased at between 5 and 20 volts.

ANEXO 2

CARACTERIZAC	ION DE LA RE	SPUESTA DE	L FOTODODC		AJUSTE UNEAL DE LOS RESULTADOS
# loma	A	<u> </u>	<u> </u>		
1	0	332	100 0.00	56164	Regression Output:
E	02	260	53 005	64.631	Constant -51082435
4	0.3	203	50115	51.683	Std Err of Y Est 222353028
5	0.4	171	39 811	42 730	R Souared 0.9947548
6	0.5	140	31 623	34.058	No. of Observations 11
8	07	92	19 953	23 629	Degrees of Freedom 9
9	08	71	15849	14 755	
10	09	59	12.589	11.397	X Coefficient(s) 0.27975758
11	1	51	10.000	5.159	Std Err of Coel. 0.00677149
12	1.1	47	7.943	8.040	
13	1.2	32	6.310	3.844	· · · · · · · · · · · · · · · · · · ·

A -->

Porcentaje de atenuamiento.

B --> Respuesta del fotociado en milivolts

C --> Porciento de cantidad de luz = lectura sin filtro * 10^ -porciento de atenuamento

D -> Ajuste lineal del porciento de atenuamiento.

- DISTRIBUCION ANGULAR DE LA RADIACION EN EL TUBO PARA EL DIA 30 DE NOVIEMBRE, 1990.

y A4 el area del tubo interior del colector. Esta definición se adopto dado que no existe una regla generalizada en la forma de calcular la eficiencia térmica en colectores tubulares [1,2]. A diferencia de los colectores planos para los cuales existe la norma de calcular la eficiencia dividiendo el calor útil entre la cantidad de radiación incidente en el colector (ecuación 6.2)[3].

$$\eta = \frac{Q_u}{-Ig \times Ac}, \qquad (6.2)$$

los colectores tubulares presentan la problematica de no ofrecer la misma area de recepción de radiación durante todo el dia, agregando que la radiación incidente en la superficie cilindrica es distinta de la radiación solar recibida por una superficie plana (Ig x Ac), como lo es para un colector plano.

Los errores fueron calculados de dos formas distintas:

$$\operatorname{Error}\left(\left[T\right]\right] = \frac{\left(\left[\operatorname{Tse}\right] - \operatorname{Tsc}\right)}{\operatorname{Tse}} \times 100$$
(6.3)

Error (E) = (
$$\eta_e - \eta_c$$
) × 100 (6.4)

siendo la ecuación 6.2 usada para calcular el error para las temperaturas en grados centigrados y la 6.3 para el error de las eficiencias.

En la figura 6.10 se presenta la grafica de los 14 puntos del aceite y la figura 6.11 para el agua, para ambas figuras las

CALCULO DE LOS FACTORES DE VISTA.

Para el cálculo de la radición incidente sobre el tubo evacuado se utilizan factores de forma o de "vista", en la figura 1 se muestra el arreglo geométrico del tubo y sus alrededores, donde se señalan las distinas áreas que conforman este arreglo; a saber, el área A1 representa el área de la cubierta exterior del tubo, el área A2 representa el área de la placa reflectora, y el área A3 es el área supuesta del cielo. Esta última para fines prácticos se consideró como un semi-cilindro de diámetro igual a lo ancho de la placa reflectora y ambas tiene el mismo largo:

 $A1 = 0.1445 \text{ m}^2$

 $A2 = 0.9545 \text{ m}^2$

 $A3 = 1.4993 \text{ m}^2$

BALANCE RADIATIVO DEL ARREGLO A1-A2-A3.

El balance radiativo general del arregio se expresa en las siguientes seis ecuaciones:

 $F_{1-2} + F_{1-3} = 1$

(1)

Arreglo geometrico para el calculo de los factores de vista.

Por el principio de correspondencia:

and a star dependence of

A1 x F1-2 = A2 x F2-1

 $F_{3-1} + F_{3-2} = 1$ (3)

F2-1 + F2-3 = 1

 $A1 \times F1 - 3 = A3 \times F3 - 1$ (5)

(2)

(4)

(6)

 $A2 \times F_{2-3} = A3 \times F_{3-2}$

Donde Fi-j es el factor de vista para las áreas i,y correspondientes.

En el ANEXO FACTORES se muestra el cálculo del factor:

 $F_{2-1} = 0.066$

Teniendo como base este valor de F2-1 y las ecuaciones (1-6) se pueden calcular los valores de los otros factores, entre ellos el factor que relaciona el área del cielo y el tubo evacuado F3-1, el cual es utilizado en el capitulo 4 para el cálculo de la radiación incidente sobre el tubo, obteniéndose :

 $F_{3-1} = 0.054$

ANEXO FACTOR

El calculo del factor de vista f2-1 se efectua integrando numericamente la El calculo del factor de vista f2-1 se efectua integrando numericamente la expresion reportada en el "Handbook of Heat Transfer", para la geometria que se muestra en la figura y la cual corresponde al intercambio radiativo entre el tubo y la placa reflectora.

La integracion se efectuo en el softmare llamado MATHCAD 2.5.

d •= 2 cm.

:= 7c... b := 83 c....

c := 115 c

 $\frac{z}{F} = \frac{z}{Y} \int_{0}^{2} \frac{dM}{dM}$

F = 0.066

REFERENCIAS

 E. Speyer, "Solar Energy Collection with Evacuated Tubes", American Nachine and Foundry Co., Springdale, Conn., July 1965, pp. 270-276.

2 S. Karaki and D. M. Frick, "Performance of an Evacuated Tube Solar Collector", *Sharing the Sun* 76, Winnipeng, Manitoba, August 15-20, 1976.

3 S. P. Chow, G. L. Harding and R. E. Collins, "Degradation of All-Glass Evacuated Solar Collector Tubes", Solar Energy Naterials, vol. 12, 1985, pp. 1-41.

4 B. Window and G. L. Harding, "Progress in the Materials Science of All-Glass Evacuated Collectors", *Solar Energy*, vol. 32, No. 5, 1984, pp. 609-623.

5 S. P. Chow, G. L. Harding and Y. Zhiqiang, "Optimisation of Evacuated Tubular Solar Collector Arrays with Diffuse Reflectors", Solar Energy, vol. 33, No. 3/4, 1984, pp. 277-282.

6 B. Window and I. M. Bassett, "Optical Collection Efficiencies of Tubular Solar Collectors with Specular Reflectors", Solar Energy, vol. 26, 1981, pp. 341-346.

7 B. Window and J. Zybert, "Optical Efficiencies of Arrays of Tubular Collectors with Diffuse Reflectors", Solar Energy, vol. 26, 1981, pp. 325-331.

8 J. J. O'Gallagher, A. Rabl and R. Winston, "Absorption Enhancement in Solar Collectors by Multiple Reflections", Solar Energy, vol. 24, 1980, pp. 323-326.

9 W. R. McIntire, "Factored Approximations for Biaxial Incident Angle Modifiers", Solar Energy, vol. 29, No. 4, 1982, pp. 315-322.

10 W. R. McIntire, "Optimization of Stationary Nonimaging Reflectors for Tubular Evacuated Receivers Aligned North-South", Solar Energy, vol. 24, 1980, pp. 169-175. 11 D. E. Prapas, B. Norton and S. D. Probert, "Thermal Desing of Compound Parabolic Concentrating Solar Energy Collectors", Solar Energy Technology Center, vol. 109, United Kingdom, May, 1987, pp. 161-168.

12 R. L. Sawhney, N. K. Bansal and Inderjit, "Rating Parameters for a Solar Energy Collector of Tubular Shape", *Journal of Solar Energy Engineering*, vol. 109, November, 1987, pp. 343-348.

13 S. P. Chow, G. L. Harding and K. J. Cathro, "Optical Efficiency of Evacuated Tubular Collectors with Selective Surface of High Solar Absorptance and Envelopes Coated with Antireflection Layers", Solar Energy, vol. 36, No. 3, 1986, pp. 241-244.

14 G. L. Harding, "Absorptance and Emittance of Metal Carbide Selective Surfaces Sputter Deposited onto Glass Tubes", Solar Energy Materials, vol. 2, 1980, pp. 469-481.

15 D. Proctor and S. R. James, "Analysis of the Sanyo Evacuated Tube Solar Collectors Test Results from the IEA Task III Programme", Solar Energy, vol. 35, No. 5, 1985, pp. 387-392.

16 D. Proctor, "Daily Thermal Characteristics for some Evacuated-Tubular Solar Collectors", Solar Energy, vol. 33, No. 5, 1984, pp. 451-453.

17 W. Kamminga, "The Testing of an Evacuated Tubular Collector with a Heat Pipe Under Transient Conditions", PROCEEDINGS OF THE NINTH BIENNIAL CONGRESS OF THE INTERNATIONAL SOLAR ENERGY SOCIETY Intersol 85, Groningen, 1985, pp. 1279-1283.

18 R. E. Collins, D. Mackey and G. L. Morrison, "Comparative Performance of Evacuated Tubular Collectors and Flat Plate Collectors in Thermosyphoning Systems", PROCEEDINGS OF THE NINTH BIENNIAL CONGRESS OF THE INTERNATIONAL SOLAR ENERGY SOCIETY Intersol 85, Sydney, Australia, 1985, pp. 1285-1293.

19 R. Winston and J. O'Gallagher, "Integrated Evacuated CPC's for High Temperature Solar Thermal Systems", PROCEEDINGS OF THE NINTH BIENNIAL CONGRESS OF THE INTERNATIONAL SOLAR ENERGY SOCIETY Intersol 85, Chicago, Illinois, 1985, pp. 1148-1151.

20 C. W. J. van Koppen and P. Verhaart, "Evacuated Tube Collectors Simplify Solar Thermal System Layout", PROCEEDINGS OF THE NINTH BIENNIAL CONGRESS OF THE INTERNATIONAL SOLAR ENERGY SOCIETY Intersol 85, Netherlands, 1985, pp. 1152-1157.

21 S. T. Bushby, "The Performance of an Evacuated Tube Heat-Pipe Collector System in Brisbane", PROCEEDINGS OF THE NINTH BIENNIAL CONGRESS OF THE INTERNATIONAL SOLAR ENERGY SOCIETY Intersol 85, Australia, 1985, pp. 1158-1171.

22 R. Schmid and R. E. Collins, "Characterization of Evacuated Tubular Collectors", PROCEEDINGS OF THE NINTH BIENNIAL CONGRESS OF THE INTERNATIONAL SOLAR ENERGY SOCIETY *Intersol 85*, Sydney, Australia, 1985, pp. 1189-1193.

23 G. L. Harding and T. T. Moon, "Evacuation and Deterioration of All-Glass Tubular Solar Thermal Collectors", Solar Energy Materials, vol. 7, 1982, pp. 113-122.

24 G. L. Harding, " A Sputtered Copper-Carbon Selective Absorbing Surface for Evacuated Collectors", *Solar Energy Materials*, vol. 7, 1982, pp. 123-128.

25 A. Castrejón, R. Martínez y L. del Castillo, "Algunas Propuestas de Diseño de Colectores Solares Evacuados", Presentado en el IV Congreso de la Academia Nacional de Ingenieria, México, D. F. 1980, pp. 74-77.

26 G. L. Harding and Y. Zhiqiang, "Thermosiphon Circulation in Solar Water Heaters Incorporating Evacuated Tubular Collectors and a Novel Water-in-Glass Manifold", *Solar Energy*, vol. 34, No. 1, 1985, pp. 13-18.

27 N. K. Bansal and A. K. Sharma, "Transit Theory of Tubular Solar Energy Collector", Solar Energy, vol. 32, No. 1, 1984, pp. 67-74.

28 B. A. Pallthorpe, R. E. Collins and S. O'Shea, "Temperatura Limitation in Evacuated Solar Collector Tubes", *Solar Energy*, vol. 39, No. 1, 1987, pp. 73-75.

29 R. Schmid, B. A. Pailthorpe and R. E. Collins, "Heat Transport in Liquid Filled Tubes", Sydney, Australia, 1986, pp. 919-943.

30 J. Appelbaum and O. Bergshtein, "A Solar Radiation

Distribution Sensor", Solar Energy, vol. 39, No. 1, 1987, pp. 1-10.

31, R. B. Pettit, "Effect of Surface Curvature on Measurement of the Absorptance Properties of Solar Coatings", *Solar Energy*, vol. 21, 1978, pp. 247-248.

32 C. K. Hsleh and K. C. Su, "Thermal Radiative Properties of Glass from 0.32 to 206 μm", Solar Energy, vol. 22, 1979, pp. 37-43.

33 E. J Guay, "Maximally Concentrating Collectors for Solar Energy Applications", Solar Energy, vol. 24, 1980, pp. 265-270.

34 V. M. Garcia, M. T. S. Nair and P. K. Nair, "Optical Properties of Pbs-CuxS and Bi2S3-CuxS Thin Films with Reference to Solar Control and Solar Absorber Applications", Laboratorio de Energia Solar, IIM, México, pp. 1-18.

35 A. Castrejón, "Diseño, construcción y simulación de un colector solar tubular evacuado", Universidad Autónoma Metropolitana, México, D. F., 1979, pp. 1-69.

36 ASHRAE, "Methods of Testing to Determine the Thermal Performance of Solar Collectors", The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, N. Y., 1977

37 G. L. Harding and B. Window, "Free Molecule Thermal Conduction in Concentric Tubular Solar Collectors", Solar Energy Naterials, vol. 4, 1981, pp. 265-278.

38 K. G. T. Hollands, "Free Convection in solar Collector", University of Waterloo, Waterloo, Ontario, Canadá, pp. 125-147.

39 K. G. T. Hollands, "Advance Non-Concentrating Solar Collectors", University of Waterloo, Waterloo, Ontario, Canadá, pp. 149-164.

40 N. C. Bhowmik and S. C. Mullick, "Calculation of Tubular Absorber Heat Loss Factor", *Solar Energy*, vol. 35, No. 3, 1985, pp. 219-225. 41 S. C. Mullick and S. K. Nanda, "An Improved Technique for Computing the Heat Loss Factor of a Tubular Absorber", *Solar* Energy, vol. 42, No. 1, 1989, pp. 1-7.

42 T. H. Kuehn and R. J. Goldstein, "Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders", J. Heat Nass Transfer, vol. 19, 1976, pp. 1127-1134.

43 L. Guirong, W. lei and X. Gaohang, "Cheap and Efficient Solar Energy Collectors with Vacuum Tubes", *Jiangxi Academy of Sciencies*, Nanchang, Jiangxi, P. R. China, pp. 732-737.

44 W. S. Duff, "Experimental Results from Twelve Evacuated Collector Installations", *Colorado State University*, Fort Collins, Colorado, pp. 499-502.

45 "Technical Data for Neg Evacuated Tube Solar_Collector and Solar Collector Module", Nippon Electric Glass Co., Ltd., pp. 1-15.

46 Y. Zhiqiang et. al., "Comparative Study of Fluid-in-Metal Manifolds for Heat Extraction from Single Ended Evacuated Glass Tubular Collectors", *Solar Energy*, vol. 35, No. 1, 1985, pp. 81-91.

47 G. L. Harding, Y. Zhiqiang and D. W. Mackey, "Heat Extraction Efficiency of a Concentric Glass Tubular Evacuated Collector", Solar Energy, vol. 35, No. 1, 1985, pp. 71-79.

48 R. E. Collins and R. Schmid, "Temperature Measurement in Dewar Type Evacuated Tubular Collector", *Solar Energy*, vol. 40, No. 2, 1988, pp. 181-183.