11474

DIVISION DE ESTUDIOS DE POSGRADO Facultad de Ingeniería

FACTORES DE DAÑO EN POZOS DESVIADOS PARCIALMENTE PENETRANTES

POR RAUL BARRON TORRES

TESIS

PRESENTADA A LA DIVISION DE ESTUDIOS DE POSGRADO DE LA

FACULTAD DE INGENIERIA

DE LA

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

COMO REQUISITO PARA OBTENER

EL GRADO DE

MAESTRO EN INGENIERIA

١

PETROLERA TELIS CON FALLA DE ORIGEN

(

CIUDAD UNIVERSITARIA

MAYO 1991

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACTORES DE DAÑO EN POZOS

DESVIADOS PARCIALMENTE PENETRANTES

.

POR

RAUL BARRON TORRES

MAYO 1991

DEDICADO A MI MADRE , AMPARO , A MI ESPOSA , ELDA , Y A MIS HIJAS , ELDA Y ANA PATRICIA.

i

RECONOCIMIENTOS

EL AUTOR DESEA EXPRESAR SU AGRADECIMIENTO AL PROFESOR DR. HEBER CINCO LEY DE LA DIVISION DE ESTUDIOS DE POSTGRADO DE LA FACULTAD DE INGENIERIA U.N.A.M., POR SU DIRECCION, ENTENDIMIENTO Y ESTIMULO COMO ASESOR DE ESTE TRABAJO ; ASI COMO A LA GERENCIA DE PRODUCCION DE LA REGION SUR DE PETROLEOS MEXICANOS, POR LAS ATENCIONES Y RESPALDOS DTORGADOS FARA LA REALIZACION DE ESTE TRABAJO. I.- RESUMEN

II.- INTRODUCCION

III.- DERIVACION MATEMATICA

A.- FLANTEAMIENTO DEL SISTEMA DE FLUJO

B.- SOLUCION DEL SISTEMA DE FLUJO

IV.- SOLUCION PARA UN YACIMIENTO SEMI-INFINITO

A.- DISTRIBUCION DE FLUJO YACIMIENTO SEMI-INFINITO

INDICE

Pág.

1

2

17

64

B.- FACTORES DE DAÑO YACIMIENTO SEMI-INFINITO

V.- SOLUCION PARA UN YACIMIENTO FINITO

A.- FACTORES DE DAÑO YACIMIENTO FINITO

B.- EXTENSION PARA YACIMIENTOS ANISOTROPICOS

C.- EVALUACION DE FACTORES DE DAÑO

D.- EJEMPLO DE APLICACION

VI.- DISCUSION DE RESULTADOS 104 VII.- CONCLUSIONES Y RECOMENDACIONES 109 NOMENCLATURA 111 REFERENCIAS 113 APENDICE A: METODO DE LAS FUNCIONES DE GREEN 117 APENDICE B: PROGRAMAS DE COMPUTO 124 APENDICE C: DISCUSION SOBRE LA APLICACION DE LOS 133

TIEMPOS DE TERMINACION DEL PERIODO DE FLUJO RADIAL, INICIO DE FLUJO PSEUDORADIAL Y EL TIEMPO DE INTERSECCION DE AMBOS PERIODOS PARA DETERMINAR LA PERMEABILIDAD VERTICAL k_.

I RESUMEN

Aunque se han realizado varios estudios sobre el daño de pozos desviados parcialmente penetrantes, no se han llevado a cabo estudios detallados que tomen en cuenta el efecto del daño del pozo por la invasión de fluidos de perforación hacia la formación en estos casos.

El propósito de este trabajo es realizar un estudio completo sobre el efecto del daño en un pozo desviado parcialmente penetrante. Específicamente, este estudio fue hecho sobre un yacimiento homogéneo y anisotrópico, con un pozo parcialmente penetrante de conductividad infinita. Este pozo también contiene una zona dañada debido a la reducción de la permeabilidad de la formación por la invasión de fluidos de perforación.

Un análisis del flujo relativo estabilizado contra la localización en el intervalo abierto, para varios valores del daño del pozo adimensional, nos indica que al incrementar el daño del pozo adimensional la distribución de flujo tiende a uniformizarse. Ademós, se demostro que el daño por penetración parcial y el daño por la reducción de permeabilidad alrededor del pozo se pueden considerar adicionales.

Se desarrolló una técnica de la evaluación de factores de daño del anàlisis de pruebas de presión, demostrándose la confiabilidad de la determinación de la permeabilidad vertical del análisis de pruebas de presión en pozos parcialmente penetrantes.

II INTRODUCCION

autores han estudiado el estado de flujo¹⁻⁸estacionario Varios transitorio 5,9-27 pozos parcialmente Ellos hacia penetrantes. consideraron un pozo perpendicular en la formación y se concluyó que este tipo de terminación de pozos causa un decremento 1a en productividad del pozo. Sin embargo, como fue apuntado por Cinco Ley y colaboradores^{28,35}. muchos pozos no penetran 1a formación perpendicularmente. Esta situación crea 110 incremento en la productividad del pozo con respecto a un pozo vertical parcialmente penetrante. Por otro lado, es común encontrar que la permeabilidad de la formación en la zona inmediata del pozo k_ es diferente a la permeabilidad real k de la formación para zonas alejadas del pozo. Cuando $k_{<} k$ se dice que el pozo está dañado; si $k_{>} k_{+}$ el pozo está estimulado.

Al efecto causado en el flujo de fluidos por esta serie de factores se les llama factores de daño.

El propósito de este trabajo es evaluar el efecto del daño S para pozos parcialmente penetrantes utilizando la solución de conductividad infinita para el pozo en un yacimiento infinito y proponer una metodología del análisis de datos de pruebas de presión.

III DERIVACION MATEMATICA

A- PLANTEAMIENTO DEL SISTEMA DE FLUJO

ECUACION DIFERENCIAL

CONDICION INICIAL

CONDICIONES DE FRONTERA

El estado de flujo laminar transitorio de un fluido ligeramente compresible a través de un medio poroso homogéneo e isotrópico puede ser descrito por la ecuación de difusión en coordenadas cilíndricas²⁰:

$$\frac{\delta^{2}\Phi(\mathbf{r},z,t)}{\delta r^{2}} + \frac{1}{r} \frac{\delta\Phi(\mathbf{r},z,t)}{\delta r} + \frac{\delta^{2}\Phi(\mathbf{r},z,t)}{\delta z^{2}} = \frac{1}{\eta} \frac{\delta\Phi(\mathbf{r},z,t)}{\delta t}$$
(1)

donde $\Phi = \int_{-\infty}^{\infty} \frac{dP}{\rho} + gz$ (POTENCIAL DE HUBBERT)

Y.

$$\eta = \frac{k}{\phi \mu C}$$

k, ϕ , μ , C son constantes

La ecuación (1) fue derivada suponiendo gradientes pequeños de presión en todo el yacimiento. Si los efectos de la gravedad son despreciables, la ecuación (1) queda de la siguiente forma:

$$\frac{\delta^2 P(r,z,t)}{\delta r^2} + \frac{1}{r} \frac{\delta P(r,z,t)}{\delta r} + \frac{\delta^2 P(r,z,t)}{\delta z} - \frac{1}{\eta} \frac{\delta P(r,z,t)}{\delta t}$$
(2)

Por lo tanto, para determinar las condiciones iniciales y de fronteras del problema, nosotros consideraremos el siguiente sistema:

1.- Un medio poroso, horizontal, infinito, homogéneo e isotrópico de espesor h, porosidad ϕ y permeabilidad k. h, ϕ y k son independientes de la presión y el tiempo.

2.- Un fluido ligeramente compresible de viscosidad. μ y compresibilidad C constantes.

3.- Un pozo vertical parcialmente penetrante con un intervalo productor finito h_{W} y radio r_{W} de conductividad infinita³². Esto es, el gasto de producción total del pozo q_{W} es constante, y la presión del pozo es uniforme en el intervalo abierto.

4.- No existe flujo a través de los limites superior e inferior del yacimiento.

5.- La presión inicial del yacimiento es $\rho_{\frac{1}{2}}$ y no cambia cuando $\tau \rightarrow \infty.$

6.- Además, en este sistema de flujo se considera una zona de permeabilidad reducida k_s alrededor del pozo, de espesor infinitesimal debida al filtrado de los fluidos de perforación y terminación.

Una línea fuente localizada en el eje del pozo será usada para simular la producción del pozo. La figura 1 es un esquema de la

FIGURA 1 DIAGRAMA DE LA GEOMETRIA DEL SISTEMA DE FLUJO.

geometría y fronteras asociadas con la ecuación (2).

Una solución aproximada para la condición de conductividad infinita puede ser obtenida por un método usado por varios autores para el estudio de flujo estacionario² y transitorio²⁷ hacia pozos parcialmente penetrantes, y el flujo transitorio hacia fracturas verticales³¹.

En este método, la longitud del pozo h_w es dividida en N segmentos de longitud h_w/N. En cada uno de estos segmentos se tiene un flujo uniforme por unidad de longitud, q_n(z,t), n = 1...N. El primer segmento se extiende de 0 a h_w/N, el segundo segmento de h_w/N a $2h_w/N$, el n segmento de $[(n-1)/N]h_w$ a $(n/N)h_w$, y el último segmento de $[(n-1)/N]h_w$ a $(n/N)h_w$, y el último segmento de $[((n-1)/N]h_w$ a $(n/N)h_w$, se igual a q_w N/h_w y la presión es la misma en la parte media de cada segmento.

Para encontrar la solución de la ecuación (2) con las condiciones inicial y de fronteras antes mencionadas, nosotros usaremos las funciones de Green³⁰. Este método fue usado primero para resolver problemas de conducción de calor. Aplicaciones de esta técnica para resolver problemas de flujo de fluidos en yacimientos de petróleo se encuentran en la literatura.

B.- SOLUCION DEL SISTEMA DE FLUJO

En el apéndice A se muestra en forma detallada el método de las funciones de Green para resolver problemas de flujo de fluidos a través de un medio poroso.

ECUACION DIFERENCIAL ADJUNTA DEL SISTEMA:

De la ecuación (2) $\frac{\delta^2 G}{\delta r^{2}} + \frac{1}{r^{2} \delta r^{2}} + \frac{\delta^2 G}{\delta z^{2}} = \frac{1}{\eta} \frac{\delta G}{\delta r}$ $\frac{0 \langle r^{1} \langle \infty \rangle}{0 \langle z^{2} \langle h \rangle}$ $\frac{0 \langle z^{2} \langle h \rangle}{\tau \langle t \rangle}$

Condición inicial: la presión en el yacimiento para t=0 es P_i

 $P(r,z,0) = P_{r}$ para todo r y z

Condición inicial adjunta:

limite $\Theta(r',z',r,z,t-\tau) = \delta(r'-r,z'-z)$

Condiciones de frontera:

La presión en el vacimiento cuando r $\rightarrow \infty$ es P_j. P(ω, z, t) = P, para todo z y t

Condición de frontera adjunta:

limite $G(r', z', r, z, t-\tau)=0$ $|r'| \longrightarrow \infty$ (5)

(4)

(3)

No existe flujo a través de los límites superior e inferior del yacimiento.

$$\frac{\delta P}{\delta z} \begin{vmatrix} \frac{\delta P}{z=0} & \frac{\delta P}{\delta z} \end{vmatrix} = 0 \text{ para todo r y t}$$

Condición de frontera adjunta:

$$\frac{\delta G(r', z', r, z, t-\tau)}{\delta z'} \begin{vmatrix} \frac{\delta G(r', z', r, z, t-\tau)}{\delta z'} \\ z'=0 \end{vmatrix} = \frac{\delta G(r', z', r, z, t-\tau)}{\delta z'} \begin{vmatrix} z \\ z'=h \end{vmatrix}$$

. (6)

(7)

(9)

SOLUCIONES DE GREEN

En la dirección r':

Solución yacimiento infinito

$$B(r^{*}, r, t-\tau) = \frac{e}{\sqrt{r^{2}/4\eta(t-\tau)}}$$

En la dirección z':

Solución yacimiento finito (condición de frontera tipo Neumann)

$$G(z',z,t-\tau) = \frac{1}{2\sqrt{\pi\eta(t-\tau)}}$$
(B)

$$\sum_{n=-\infty}^{\infty} \left\{ e^{-\frac{(z+2nh-z')^2}{4\eta(1-\tau)}} + e^{-\frac{(z+2nh+z')^2}{4\eta(1-\tau)}} \right\}$$

 $G(r', z', r, z, t-\tau) = Gr'(r', r, t-\tau) Gz'(z', z, t-\tau)$

Sustituyendo las ecuaciones (7) y (8) en la ecuación (9):

1

$$G(r', z', r, z, t-r) = \frac{e^{-r^2/4\eta(t-r)}}{B(\pi\eta(t-r))^{2/2}}$$
$$\sum_{n=-\infty}^{\infty} \left\{ e^{-\frac{(z+2nh-z')^2}{4\eta(t-r)}} + e^{-\frac{(z+2nh+z')^2}{4\eta(t-r)}} \right\}$$

SOLUCION INTEGRAL

$$\Delta P(r',z'',r,z,\underline{t-\tau}) = \frac{1}{\phi C} \int_{z_c^{-1}/2h_v}^{t-z+i/2h_v} \int_{-\infty}^{\infty} q(r',z',\tau) dr$$

G(r',z',r,z,t-7)dr'dz'dr ----2df-

Si definimos

$$q(r', z', \tau) = \sum_{i=1}^{N} \frac{q_{wi}(\tau)}{h_{wi}} \delta(r)' \delta(z'-z_{i})$$
(12)

(10) y (12) y sustituimos las ecuaciones en la ecuación (11) **)** : همی از این از این این

tenemos:

$$\Delta P(r,z,t-\tau) = \frac{1}{\phi C} \sum_{i=1}^{N} \int_{0}^{t} \frac{q_{wi}(\tau)}{h_{wi}} \frac{e}{\theta(\pi\eta(t-\tau))^{3/2}}$$

$$\sum_{n=-\infty}^{\infty} \int_{z_{ci}-1/2h_{vi}}^{z_{ci}+1/2h_{vi}} \left\{ e^{-\frac{(z+2nh-z)^{2}}{4\eta(t-\tau)}} + e^{-\frac{(z+2nh+z)^{2}}{4\eta(t-\tau)}} \right\} dz_{1}^{2} d\tau$$

9

(13)

(10)

(11)

En la ecuación (13) tenemos que la distribución de flujo q_{wi} es función del tiempo. Una posible solución para este problema se encuentra utilizando la Transformada de Laplace. Sin embargo, para tiempos grandes³², se tiene que la distribución de flujo no es función del tiempo; por lo tanto, para tiempos grandes, la ecuación (13) queda de la siguiente manera:

$$\Delta P(r, z, t-\tau) = \frac{1}{\phi C B(\pi \eta)^{3/2}} \sum_{i=1}^{N} \frac{q_{wi}}{h_{wi}} \int_{0}^{t-\frac{-r^{2}/4\eta(t-\tau)}{(t-\tau)^{3/2}}}$$
$$\sum_{n=-\infty}^{\infty} \int_{z_{ci}-t/2h_{vi}}^{z_{ci}+t/2h_{vi}} \left\{ \frac{-\frac{(z+2nh-z_{i})^{2}}{4\eta(t-\tau)}}{4\eta(t-\tau)} + e^{-\frac{(z+2nh+z_{i})^{2}}{4\eta(t-\tau)}} \right\} dz_{i} d\tau$$

(14)

Van Everdingen³³ y Hurst¹⁴ definieron al factor de daño S como una caída de presión adimensional ∆P_s adicional a la existente en un pozo cuando no presenta daño:

$$\Delta P_{\rm s} = S - \frac{q_{\rm w} \mu}{P m (h)} \tag{15}$$

En este caso, para un pozo parcialmente penetrante, el flujo del pozo incrementa hacia la parte inferior del intervalo abierto; por lo tanto, la calda de presión por el daño S también incrementarA y será una función de z. Esta situación es ilustrada por la figura 2.

Por lo tanto, incluyendo la caída de presión debida al daño S

se tiene que:

tiene que:

$$\Delta P(r,z,S,t-r) = \frac{1}{\phi | C | B(\pi\eta)^{3/2}} \sum_{i=1}^{N} \frac{q_{wi}}{h_{wi}} \int_{0}^{t} \frac{e^{-r^{2}/4\eta(t-\tau)}}{(t-\tau)^{3/2}}$$

$$\sum_{n=-\infty}^{\infty} \int_{z_{ci}-1/2h_{vi}}^{z_{ci}+1/2h_{vi}} \left\{ \frac{(z+2nh+z_{i})^{2}}{4\eta(t-\tau)} + e^{-\frac{(z+2nh+z_{i})^{2}}{4\eta(t-\tau)}} \right\} dz_{i} d$$

$$+ \Delta P_{s}(z)$$

(16)

(17)

(22)

donde

$$\Delta P_{s}(z) = S \frac{q_{w}(z)\mu}{2\pi k h_{w}(z)}$$
Ahora, haciendo:

Ahora, haciendo:

$$u = \frac{2 + 2nh - z_{1}}{2n^{1/2} (t_{1} - \tau)^{1/2}}$$
(18)

$$du = \frac{-1}{2n^{1/2} (t_{1} - \tau)^{1/2}} dz_{1}$$
(19)

$$u = \frac{2 + 2nh + z_{1}}{2n^{1/2} (t_{1} - \tau)^{1/2}}$$
(20)

$$du = \frac{1}{2\eta^{1/2}(t-\tau)^{1/2}} - dz_{1}$$
(21)

y usando la definición de función error:

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^2} du$$

y substituyendo las ecuaciones (18) a la (22) en la ecuación (15) obtenemos:

$$\Delta P(r, z, S, t-\tau) = \frac{1}{|B||\phi'C|n'|\eta} \sum_{i=1}^{N} \frac{q_{wi}}{h} \int_{0}^{1} \frac{e^{-r^{-}/4\eta(t-\tau)}}{(t-\tau)}$$
$$\sum_{i=1}^{\infty} \int_{-arf}^{arf} \frac{(z+2nh-z_{ci}-1/2h_{wi})}{(z+2nh-z_{ci}+1/2h_{wi})} + arf$$

$$= \operatorname{erf} \left\{ \frac{(z+2nh+z_{c1}+1/2h_{w1})}{2n^{1/2}(t-\tau)^{1/2}} - \operatorname{erf} \left\{ \frac{(z+2nh+z_{c1}-1/2h_{w1})}{2n^{1/2}(t-\tau)^{1/2}} \right\}$$

 $d\tau + \Delta P_{z}(z)$

 $P_{DS} = \frac{h_{D}}{h_{WD}} \le \frac{q(z_{D})}{q}$

0

Definiendo las variables adimensionales

 $2n^{1/2}(t-\tau)$

$$r_{\rm D} = r / r_{\rm W}$$
(24)
$$z_{\rm D} = z / r_{\rm W}$$
(25)

 $2n^{1/2}(t-\tau)$

$$h_{\omega D} = h_{\omega} / r_{\omega}$$

$$h_{\mu} = h / r$$
(26)
$$h_{\mu} = h / r$$
(27)

$$h_{\rm D} = h / r_{\rm W}$$
(27)
$$t_{\rm D} = kt / \phi \mu C r_{\rm W}^2$$
(28)

 $q_i = q_W(z) / h_W(z)$

q = q_u / h_u

La ecuación (29-a) define el efecto del daño S debido a la zona de permeabilidad reducida k_s alrededor del pozo, donde la caida de presión adimensional es dependiente del flujo; esto es, la caída de presión a través de la zona dañada es directamente proporcional al flujo y éste, a su vez, es función de la localización en el intervalo abierto. Para un pozo totalmente penetrante, la caída de presión del daño S es uniforme en todo el pozo porque la distribución de flujo es uniforme.

Sustituyendo las ecuaciones (24) a la (31) en la ecuación (23) obtenemos:

$$P_{D}(r_{D}, z_{D}, S, t_{D}^{-\tau}) = \frac{h_{D}}{4h_{WD}} \sum_{i=1}^{N} \frac{q_{i}}{q} \int_{0}^{t_{D}} \frac{e^{-r_{D}^{z}/4t_{D}}}{(t_{D}^{-\tau})}$$

 $\sum_{n=-\infty}^{\infty} \left\{ - \operatorname{erf} \frac{(z_{D} + 2nh_{D} - z_{ciD} - 1/2h_{fiD})}{(4(t_{D} - \tau))^{1/2}} + \operatorname{erf} \frac{(z_{D} + 2nh_{D} - z_{ciD} + 1/2h_{fiD})}{(4(t_{D} - \tau))^{1/2}} \right\}$

$$\inf \left\{ \frac{(z_{\rm D} + 2nh_{\rm D} + z_{\rm CID} + 1/2h_{\rm fID})}{(4(t_{\rm D} - \tau))^{1/2}} - \inf \left\{ \frac{(z_{\rm D} + 2nh_{\rm D} + z_{\rm CID} - 1/2h_{\rm fID})}{(4(t_{\rm D} - \tau))^{1/2}} \right\}$$

$$d\tau + S = \frac{q(z_D)}{q} \frac{h_D}{h_{wD}}$$

(32)

(31)

Para resolver la integral con respecto al tiempo definiremos:

$$\frac{\frac{2^{2}}{1D}}{4t_{D}}$$

u²

____=

y usando la formula:

$$\int_{0}^{\infty} \exp(\chi) = \frac{\chi^{2}}{x} = \frac{1}{2} \ln \frac{\sqrt{u+1} + 1}{\sqrt{u+1} - 1}$$
(34)

949134 - ANNE - ANNE

1

1

Por lo tanto, cuando t_ntienda a infinito en la ecuación (32), y sustituyendo las ecuaciones (33) y (34) obtenemos para el pozo r_D^2 = 1:

$$P_{D}^{(1;z_{D},S,\omega)} = \frac{h_{D}}{4h_{wD}} \sum_{i=1}^{N} \frac{q_{i}}{q}$$

$$\int_{-\infty} \left[-\ln \frac{\sqrt{1/(z_{D} + 2nh_{D}^{-}(z_{ciD} + 1/2h_{WiD}))^{2} + 1}}{\sqrt{1/(z_{D} + 2nh_{D}^{-}(z_{ciD} + 1/2h_{WiD}))^{2} + 1}} - \right]$$

+ 1n

$$\frac{\sqrt{1/(z_{D}+2nh_{D}-(z_{ciD}-1/2h_{wiD}))^{2}+1}}{\sqrt{1/(z_{D}+2nh_{D}-(z_{ciD}-1/2h_{wiD}))^{2}+1}}$$

$$+ \ln \frac{\sqrt{1/(z_{\rm D} + 2nh_{\rm D} + (z_{\rm ciD} + 1/2h_{\rm wiD}))^2 + 1} + 1}{\sqrt{1/(z_{\rm c} + 2nh_{\rm c} + (z_{\rm ciD} + 1/2h_{\rm wiD}))^2 + 1} - 1}$$

$$-\ln \frac{\sqrt{1/(z_{\rm D}+2nh_{\rm D}+(z_{\rm ciD}-1/2h_{\rm WiD}))^{2}+1}+1}{\sqrt{1/(z_{\rm D}+2nh_{\rm D}+(z_{\rm ciD}-1/2h_{\rm WiD}))^{2}+1}-1}$$

$$+ \frac{h_D}{h_{\mu D}} s \frac{q(z_D)}{q}$$

(35)

(33)

La ecuación (35) representa la calda de presión adimensional total del sistema de flujo definido en estado estacionario, en donde tenemos (M + 1) incógnitas, que son la distribución del flujo y la calda de presión adimensional total, las cuales serán resueltas utilizando la condición de conductividad infinita en el pozo.

IV SOLUCION PARA UN YACIMIENTO SEMI-INFINITO

A.- DISTRIBUCION DE FLUJO YACIMIENTO SEMI-INFINITO

Para simplificar el problema, consideraremos primero un yacimiento semi-infinito. Esta solución es una aproximación y únicamente es válida para yacimientos cuya relación h_D/h_{wD} >>> 1, como se demostrará posteriomente.

De la misma manera en que se determinó la ecuación (35), podemos determinar que la ecuación que representa la caída de presión adimensional total de un pozo parcialmente penetrante en un yacimiento semi-infinito es:

$$P_{D}(1,z_{D},S,\omega) = \frac{h_{D}}{4h_{wD}} \sum_{i=1}^{N} \frac{q_{i}}{q}$$

$$\ln \frac{\sqrt{1/(z_{D}^{-}(z_{ciD}^{+1}/2h_{wiD}^{-}))^{2} + 1}}{\sqrt{1/(z_{D}^{-}(z_{ciD}^{+1}/2h_{wiD}^{-}))^{2} + 1}} - 1$$

$$= \ln \frac{\sqrt{1/(z_{\rm D}^{-(z_{\rm ciD}^{-1/2h_{\rm wiD}}))^2} + 1}}{\sqrt{1/(z_{\rm D}^{-(z_{\rm ciD}^{-1/2h_{\rm wiD}}))^2} - 1}}$$

$$\ln \frac{\sqrt{1/(z_{\rm D}^{+}(z_{\rm CiD}^{+}1/2h_{\rm WiD}))^{2}} +}{\sqrt{1/(z_{\rm D}^{+}(z_{\rm CiD}^{+}1/2h_{\rm WiD}))^{2}} -}$$

$$-\ln \frac{\sqrt{1/(z_{D}^{+}(z_{ciD}^{-}1/2h_{wiD}^{-}))^{2}} + 1}{\sqrt{1/(z_{D}^{+}(z_{ciD}^{-}1/2h_{wiD}^{-}))^{2}} - 1}\right]$$
$$+ \frac{h_{D}}{h_{wD}} \leq \frac{q_{(z_{D}^{-})}}{q}$$

(36)

La distribución de flujo será determinada utilizando la condición de conductividad infinita en el pozo; esto es, que la calda de presión en la parte media de cada segmento es igual, lo cual nos generará (N 1) ecuaciones; la n-ésima ecuación es obtenida de la condición de que el gasto de producción total a todo tiempo es constante:

$$P_{D}(1, \frac{2j-1}{2N} h_{wD}, S, \omega) = F_{D}(1, \frac{2j+1}{2N} h_{wD}, S, \omega)$$
(37)

N-1 oara j=1.

ŧ.

$$\sum_{i=1}^{N} \frac{q_{i}}{q} = \sum_{i=1}^{N} \frac{q_{w}(z)/h_{w}(z)}{q_{w}/h_{w}} = N$$
(3B)

Por definición:

$$z_{ciD} + 1/2h_{wiD} = \frac{L}{N}h_{wD}$$
(37)

$$z_{ciD} - 1/2h_{wiD} = \frac{t-1}{N}h_{wD}$$
(40)

Sustituyendo (39) y (40) en (36) y redefiniendo la siduiente variable adimensional:

 $z_{\rm D} = 2 \sqrt{h_{\rm W}}$

obtenemos:

$$4 P_{D}(1, z_{D}, S, \omega) \frac{h_{\omega D}}{h_{D}} = \sum_{i=1}^{N} \frac{q_{i}}{q}$$

$$-\ln \frac{\sqrt{1/h_{wD}^2 (z_D - \frac{t}{N})^2 + 1} + 1}{\sqrt{1/h_{wD}^2 (z_D - \frac{t}{N})^2 + 1} - 1}$$

+1n
$$\frac{\sqrt{1/h_{wD}^2(z_D - \frac{i-1}{N})^2 + 1} + 1}{\sqrt{1/h_{wD}^2(z_D - \frac{i-1}{N})^2 + 1} - 1}$$

+1n
$$\frac{\sqrt{1/h_{wD}^2(z_{\rm p}+\frac{i}{N})^2+1}+1}{\sqrt{1/h_{wD}^2(z_{\rm p}+\frac{i}{N})^2+1}-1}$$

$$-\ln \frac{\sqrt{1/h_{wD}^{2}(z_{D}^{+}+\frac{i-1}{N})^{2}+1}+1}{\sqrt{1/h_{wD}^{2}(z_{D}^{+}+\frac{i-1}{N})^{2}+1}-1}$$

Por lo tanto, sustituyendo (42) en (37) obtenemos:

(41)

(42)

$$\sum_{i=1}^{N} \frac{q_{i}}{q} \left[2 \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j+i-1/2)^{2}+1} + 1}{\sqrt{N^{2}/h_{wD}^{2}(j+i-1/2)^{2}+1} - 1} \right]$$

$$+ 2 \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j-i+1/2)^{2}+1} + 1}{\sqrt{N^{2}/h_{wD}^{2}(j-i+1/2)^{2}+1} - 1}$$

$$- \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j+i-3/2)^{2}+1} + 1}{\sqrt{N^{2}/h_{wD}^{2}(j+i-3/2)^{2}+1} - 1}$$

$$- \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j-i+3/2)^{2}+1} + 1}{\sqrt{N^{2}/h_{wD}^{2}(j-i+3/2)^{2}+1} - 1}$$

$$- \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j-i+3/2)^{2}+1} + 1}{\sqrt{N^{2}/h_{wD}^{2}(j-i+3/2)^{2}+1} - 1}$$

$$- \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j-i+1/2)^{2}+1} + 1}{\sqrt{N^{2}/h_{wD}^{2}(j-i-1/2)^{2}+1} - 1}$$

$$- \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j-i-1/2)^{2}+1} + 1}{\sqrt{N^{2}/h_{wD}^{2}(j-i-1/2)^{2}+1} - 1}$$

$$- \ln \frac{\sqrt{N^{2}/h_{wD}^{2}(j-i-1/2)^{2}+1} - 1}{\sqrt{N^{2}/h_{wD}^{2}(j-i-1/2)^{2}+1} - 1}$$

q

(43)

para j=1, N-1

Las ecuaciones (43) y (38) representan un sistema de N ecuaciones con N incógnitas. Las incógnitas son el flujo relativo en cada segmento, q_i/q.

La distribución de flujo puede ser encontrada para diferentes

valores de h_{wD} resolviendo el sistema de ecuaciones definido por las ecuaciones (43) Y (30), y la caída de presión adimensional puede ser calculada con la ecuación (42).

Para ejemplificar la solución del sistema de ecuaciones representaremos a la ecuación (42) por medio de una multiplicación de matrices, haciendo N=3.

$$\begin{bmatrix} A_{11}^{+4S} & A_{12} & A_{13} \\ A_{21} & A_{22}^{+4S} & A_{23} \\ A_{31} & A_{32} & A_{33}^{+4S} \end{bmatrix} \begin{bmatrix} a_1/a \\ a_2/a \\ a_3/a \end{bmatrix} = \begin{bmatrix} 4P_D & h_{wD}/h_D \\ 4P_D & h_{wD}/h_D \\ 4P_D & h_{wD}/h_D \end{bmatrix}$$

Aplicando las condiciones de las ecuaciones (37) y (38) obtenemos la siguiente representación:

A ₂₁ -A ₃₁ A ₂₂ -A ₃₂ +4S A ₂₃ -A ₃₃ -4S 4 ² / ⁹	=	0
1 1 i ^q 3'q		N

En el apéndice B se presenta el programa de cómputo para determinar el perfil de flujo y la caída de presión adimensional total.

El sistema fue resuelto para valores de h $_{\rm wD}$ mayores de 10, lo cual se tiene generalmente en la práctica.

Algunas restricciones fueron encontradas en el número de segmentos N, aunque se pueden obtener presiones uniformes con un mínimo de lo segmentos, algunos valores de q_i/q fueron negativos²⁷. Por lo tanto, fue

necesario usar 50 segmentos para obtener una presión uniforme y que todos los valores de q./q fueran positivos²⁷.

Para obtener la solución de flujo uniforme hacemos N=1 en la ecuación (42):

$$P_{D}(1, z_{D}, S, \omega) \frac{h_{wD}}{h_{D}} = \frac{1}{4}$$

$$\left[\ln \frac{\sqrt{1/h_{wD}^{2}(z_{D}+1)^{2} + 1} + 1}{\sqrt{1/h_{wD}^{2}(z_{D}+1)^{2} + 1} - 1} - \ln \frac{\sqrt{1/h_{wD}^{2}(z_{D}-1)^{2} + 1} + 1}{\sqrt{1/h_{wD}^{2}(z_{D}-1)^{2} + 1} - 1} \right]$$

S

(44)

La ecuación (44) es una aproximación del problema definido anteriormente y supone que el flujo dentro del pozo es uniforme en todo el intervalo abierto. Por lo tanto, la presión no es uniforme a lo largo del intervalo, lo cual es inconsistente con la realidad. La misma suposición ha sido usada por muchos autores y el error introducido ha sido considerado despreciable. El problema, sin embargo, es conocer cuál es la posición a lo largo del intervalo perforado, en donde la presión calculada represente la presión real del pozo.

En el apèndice B se presenta el programa de cómputo para resolver la ecuación (44).

Los resultados fueron obtenidos para $h_{WD} = 100$ y $h_{WD} = 500$, para diferentes valores de S, O, 1, 10 y 100, usando ambas soluciones la solución de conductividad infinita y la solución de flujo uniforme, y dichos resultados se muestran en las tablas 1 y 2.

En las figuras 4 a la 12 se muestra una comparación de los

resultados obtenidos, y fue posible en cada caso encontrar un punto dentro del intervalo abierto en el cual la presión de ambas soluciones fueran idénticas.

La localización de esta "presión promedic efectiva" está dada como una función de h_{un} y S, como se muestra en la siguiente tabla:

$$S=0 \qquad S=1 \qquad S=10 \qquad S=100$$

$$r_{wD}=100 \qquad z_{DA}=0.7258 \qquad z_{DA}=0.7079 \qquad z_{DA}=0.6821 \qquad z_{DA}=0.6738 \qquad z_{DA}=0.6738 \qquad z_{DA}=0.6741 \qquad z_{DA}=0.6675 \qquad z_{DA}=0.6675 \qquad z_{DA}=0.6741 \qquad z_{DA}=0.6675 \qquad z_{DA}=0.6675 \qquad z_{DA}=0.6675 \qquad z_{DA}=0.6741 \qquad z_{DA}=0.6675 \qquad z_{DA}=0.675 \qquad z_{DA}=0.6675 \qquad z_{DA$$

Por lo tanto, la solución simple de flujo uniforme del problema de un pozo dañado parcialmente penetrante toma el valor de la solución de conductividad infinita, cuando se calcula en el punto de "presión promedio efectiva", por lo que la ecuación (42) puede escribirse de la siguiente manera:

En las figuras 3 y 8 se muestran las gráficas de la distribución de flujo estabilizado en un pozo parcialmente penetrante ($h = \infty$), donde se observa una total dependencia de la distribución de flujo con S, por lo que al aumentar el daño en el pozo, la distribución de flujo tiende a uniformizarse.Las oscilaciones en las graficas de la distribución de flujo estabilizado es debido a que N tiene que ser mayor, o al menos igual que, h_{wD}.

TABLA 1.- DISTRIBUCION DE PRESION EN ESTADO ESTACIONARIO (N=INFINITO) PARA LAS SOLUCIONES DE COMPUCTIVIDAD INFINITA (GASTO VARIABLE) Y GASTO CENSTANTE (N=2=100)

		San San	C=1				S=10				S=100					
	6.3	FASTO				GASTO				GASTO						
	CONSTANTS	VARIABLE			CONSTANTE	VARIABLE			CONSTANTE	VARIABLE			CONSTANTE	VARIABLE		
75	2005u/h		F5bw/h		Pihw/h		P0hw/h		FEhw/h		PDhw/h		PDhw/n		PDnw/h	
0.01	5.2983	0.9072	4.9245		6.2983	0.9310	5.9513		15.2983	0.9776	14.9853		105.2983	0.9971	104,9751	
0.03	5.2980	0.9105	4,9245		6.2980	0.9312	5.9513		15,2980	0.9776	14,9853		105.2950	0.9971	104.9951	
0.05	5,2978	0.9048	4.9245		6.2975	0.9306	5.9513		15,2978	0.9776	14.9953		105.2978	0.9971	104.9761	
0.67	5.2961	0.9099	4.9245		6.2961	0.9315	5.9513		15.2951	0.9778	14.9853		105.2951	0.9971	104.9951	
0.09	5.2945	0.9095	4.9245		6.2945	0.9317	5.9513		15,2945	0.9779	14.9853		105.2945	0.9571	104.9961	
0.11	5.2928	0.9068	4.9245		5.2928	0.9316	5.9513		15,2928	0.9780	14.9953		105.2928	0,9971	104,9961	
0.13	5,2902	0.9105	4,9245		6.2902	0.9323	5.9513		15.2902	0.9781	14,9853		165.2902	0.9972	104.9951	
0.15	5.2873	0.7076	4.9245		6.2873	0.9328	5.9513		15,2873	0.9783	14.9853		105.2973	0.9972	104,0061	
0.17	5.2839	0.9107	4,9245		6.2639	0.9334	5.9513		15.2839	0.9786	14.9853		105.2839	0.9972	104,9951	
0.19	5,2802	0.9121	4.9245		6.2802	0.9340	5.9513		15,2802	0.9788	14.9853		105.2802	0,9973	104,9951	
0.21	5,2762	0.9109	4,5245		6.2752	0.9345	5.9513		15.2762	0.9791	14.9853		105.2762	6.9973	104.9961	
0.23	5.2715	0.5149	4,9245		6.2715	0.9355	5.9513		15.2715	0.9794	14,9853		105.2715	0.9973	164.9961	
0.25	5.2657	0.9115	419245		6.2657	0.9359	5.9513		15.2667	0.9797	14,9853		105.2867	0.9974	104,9951	
0,27	5.2606	0.9173	4.9245		6.2696	0.9375	5.9513		15.2605	0.9802.	14.9853		105.2695	6.9975	1ê4,9951	
0.29	5.2545	0.9166	4,9245		6.2545	0.9385	5.9513		15.2545	0.9805	14.9853		105.2545	0.5975	104.9961	
0.31	5,2492	0.9160	4.9245		6.2482	0.9392	5.9513		15.2482	0.9910	14,9853		105.2483	0.9975	104,9951	
0.00	5,2409	0.9210	4.9245		6.2409	0.9409	5.9513		15.2409	0.9815	14.9853		105.2409	0.9976	104.9961	
0.25	5,2333	0.9195	4,9245		6.2333	0.9419	5.9513		15.2333	0.9920	14.9853		105.2333	0.9977	104.9961	
0.37	5.2252	0.9210	4.9245		6.2252	0.9431	5.9513		15.2252	0.9826	14.9853		105.2252	0,9978	104,9961	
6.39	5.2160	0.9254	4,9245		6.2160	0.9451	5.9513		15.2160	0.9933	14.9853		105.2160	0.9979	104,5961	
0.41	5.2063	0.9251	4.9245		6.2063	0.9468	5.9513		15.2063	0.9839	14.9553		105.2063	0.9980	104,9951	
0.43	5.1962	0.9291	4,9245		6,1962	0.9485	5.9513		15,1962	0.9846	14.9853		105.1952	0,9981	104,5961	
0.45	5.1859	0.9269	4.9245		6.1859	0.9497	5.9513		15.1859	0.9853	14.9653		105.1959	0.9982	104,9951	
0.47	5,1717	0.9251	4.9245		6.1737	0.9525	5.9513		15.1737	0.9962	14.9853		105.1707	0.9951	104.9961	
6,49	5.1610	0.9347	4.9245		6.1610	0.9547	5.9513		15,1610	0.98/1	14.9655		107,1810	0,9994	104.9951	
0.51	5.1476	0.9391	4.9245		6.1476	0.9572	5.9513		15,1476	0.4880	14.9835		100.1476	0,7753	104.9951	
0.53	5.1338	0.9405	4,9245		6.1338	0.9594	5.9513		15,1358	0.9890	14,7535		1/3.15.8	0.9757	104.7701	
0.55	5.1191	0.9412	4.9245		6.1191	0.9616	5.9513		15,1191	0.9900	14.9800		100.1171	0.7708	104.7701	
0.57	5.1022	0,9495	4.9245		6.1022	0.9654	2.4217		15.1022	0.9912	14,9805		100.1011	0,7770	104.7701	
0.57	5.0843	019520	4,9245		6.0843	0.9668	2.4217		10.0043	0.1720	14,7000		100.0045	A 0207	104.7701	
0.61	5.0554	0,9552	4,9245		6.0654	0.9723	5.9515		10.0604	0.77.58	14.4800		100.00074	0.1113	104.7701	
0.65	5.0454	0.9502	4.9245		6.0+34	0.9760	5.7513		10.0404	0.7752	14.7033		10010404	A 6227	104.7701	
0.65	5.0240	0.9650	4.9240		6.0240	0.9798	2.4317		15.0240	0.7705	14.7000		105.0240	0.9999	164.9951	
0.67	3,0011	0.7052	4.7240		5 0750	0.7856 A 9946	5 0513		13 9750	1.0003	14.9853		104.5750	1.0662	104.9961	
0.67	1 3455	0,7520	4.7240		5 0265	0.9940	5 9517		14.9485	1.6027	14,9653		104.9495	1.0905	104.9951	
0.71	7.0131	0.9700	1 9725		5 9181	1 0009	5.9517		14, 9161	1.0045	14.9853		104.9181	1.0007	104.9961	
0.75	1.7101	0.7724	3 0745		5 9651	1.0078	5.9513		14,8851	1.0059	14.9853		104.5651	1.0011	164.9951	
6 77	4,00.1	1 1/149	A 9725		5,8490	1.0153	5.9513		14.8490	1.0095	14.9853		104.8490	1.0014	194,9961	
0.79	1 9550	1.0167	a 9745		5.6092	1.0278	5,9513		14,6092	1.0126	14.9853		104.8092	1.0018	104.9961	
0.81	4.7450	1.0278	4.5745		5.7650	1.0234	5.9512		14.7650	1.0159	14.9853		104.755	1.0002	104.9961	
0.63	4.7154	1.0414	4.9745		5.7154	1.0444	5.9513		14.7154	1.0197	14.9253		104.7154	1.0027	104.9951	
0.85	4.6590	1.0519	4.9745		5.6590	1.0571	5.9513		14.6590	1.0240	14,9853		104.6590	1.0033	104.9951	
6.87	4.5919	1.0842	4.9245		5.5919	1.0749	5.9513		14.5918	1.0293	14.9953		194.5913	1.0039	104.9961	
0.89	4.5149	1.0917	4.9245		5.5149	1.0932	5.9513		14.5149	1.0354	14.9853		104.5149	1.0047	104.9951	
0.91	4.4174	1.1403	4,9245		5,4194	1,1205	5.9513		14.4194	1.0432	14.9853		104.4194	1.0056	104.9961	
0.93	4,3013	1.1563	4.9245		5.3013	1.1539	5.9513		14.3013	1.6530	14,9853		194.3013	1.0068	104.9961	
0.95	4,14%)	1.2693	4,9243		5.1460	1.2086	5.9513		14,1400	1.0667	14.9853		104.1400	1.0093	104.9961	
0.97	2.8975	1.1775	4.9245		4.8976	1.3086	5.9513		13.8976	1.0891	14.9853		103.6975	1.0107	104.9961	
0.99	3.4327	2.4970	4.9245		4,4337	1.6848	5.9513		13,4337	1.1358	14.9853		102.4337	1.0154	104.5961	

- 24

qihw/qw

PDhw/h

PDhw/h

PDhw/h

qihw/qw

PDhw/h

TABLA 2.- DISTRIBUCION DE PRESION EN ESTADO ESTACIONARIO (N=1N5INITO) PARA LAS SOLUCIONES DE CONDUCTIVIDAD INFINITA (GASTO VARIABLE) Y GASTO CONSTANTE (N=0500)

	4	5=0		· •	5=1			S=10	анана 1		S=100	
	GA	STO		GA	STO		GA	STO		67	STO	
	CONSTANTE	VARIABLE		CONSTANTE	VARIABLE		CONSTANTE	VARIABLE	1. 1997	CONSTANTS	VARIABLE	
ZD	Fûnw/h		PDhw/h	PDhw/n		PDhw/h	PDhw/h		PDhu/h	PDhw/h		PDhw/h
0.01	6.9163	0.9357	6.5745	7,9163	0.9492	7.5835	16.9183	0.9799	16.6044	106.9163	0.9971	105.6142
0.03	6.9020	0.9522	6.5745	7.9020	0.9559	7.5835	15.9020	0.9813	16.6044	106.9020	0.9973	105.6142
9.05	6.9182	0,9349	6.5745	7.9182	0.9475	7.5835	16.9182	0.9797	16.6044	106.9182	Ú.9971	105.6142
0.07	6.9219	0.9322	6,5745	7.9219	0.9457	7.5835	16.9219	0.9793	16.6044	105.9219	0,9971	106.6142
0.0	6.9091	0.9454	6.5745	7.9091	0.9528	7,5835	15.9091	0.9806	16.6044	106.9091	0,9972	105.6142
0.11	6.9154	0.9343	6.5745	7.9154	0.9474	7.5835	16.9154	0.9798	16.6044	105.9154	0.9971	105,5142
0.13	6.9038	0,9465	6.5745	7,9038	0.9539	7.5835	16.9028	0.9809	16.6044	106,9038	0.9973	106.6142
0.15	0.9127	0.9338	6.5745	7.9127	0.9472	7.5835	16.9127	0.9799	16.6044	106,9127	0.9972	105.6142
0.17	6.9020	0.9434	6.5745	7,9020	0.9523	7.5835	16.9020	0.9809	16.6044	106.9020	0,9973	106.6142
0.19	6.E918	6,9463	6.5745	7.8918	0.5548	7.5835	16.8718	0.9817	16.6044	105.8918	0.9974	105.6142
0.21	6.8943	0.9400	6.5745	7,8943	0.9515	7.5935	16.8943	0.9813	16.6044	106.9943	0.9973	106.6142
6.23	5.9252	0.9475	5.5745	7.8952	0.9555	7,5935	16,8852	0,9820	16.6044	105,9652	0.9974	105.6142
0.25	6.8918	0.9374	6.5745	7.8918	0.9501	7.5835	16.8918	0.9812	16.6044	106.8918	0.9974	106.6142
0.27	6.6336	0.9429	5.5745	7.8836	ú.9531	7.5835	16.8936	0,9819	15.6044	106,8836	0.9974	105.5142
0.29	6.8680	0.9494	6.5745	7.8560	0.9578	7.5835	16.8690	0.9831	16.6044	106.8580	0.9976	105.6142
0.3	6.8533	U.9575	6.5745	7.8533	0.9526	7.5835	16,8533	0,9843	15.6044	105.8533	0.9977	106.6142
0.33	6.8657	0,9390	6.5745	7,8657	0.9527	7.5825	16.8557	0,9828	16.6044	106,8657	0,9976	105.6142
0.3	5 6.5526	0.9492	6.5745	7,8526	0.9581	7.5835	16,8525	0.9839	15.6044	106.8526	0.9977	106.6142
0.5	6.8340	0,9569	6.5745	7,8340	0.9643	7.5835	15.8340	0.9854	16.6044	106.8240	0.9979	106.6142
0.5	6.8462	0.9401	6.5745	7.8462	0.9542	7.5835	16.8462	0.9939	16.6044	106.8462	0.9979	105.5142
(0, 4)	6.9301	0.9528	6.5745	7,8301	0.9610	7.5835	16,8301	0.9852	16.6044	105.8301	0.9979	105.6142
0.4	6.9150	0.9560	6.5745	7,8150	0.9639	7.5875	16,8150	0.9863	15.6044	105.8150	0.9981	166.6142
0.4	5 A 7961	0.9617	4.5745	7.7951	0.9481	7 5835	16 7961	0 9977	16 6044	106 7941	0.0501	106 6142
0.4	7 6 7795	0.9693	5745	7 7795	6 9759	7 5835	16 7795	0.9399	16 6044	106 7795	A 6934	106 6147
6.4	6.7916	0.9469	6.5745	7.7916	0.9609	7.5835	16.7916	0.9972	16 6044	166.7916	6 9997	166 6142
0.5	6.7592	0.9525	6.5745	7.7592	0.9695	7.5835	16.7592	0.9890	16.6044	106 7692	0.9985	105 6142
0.5	6.7485	0.9674	6.5745	7.7485	0.9737	7.5835	16.7496	0.9905	16.6044	105.7485	0.9987	105.6142
0.5	5 5.7255	0.9741	6.5745	7.7266	0.9786	7.5835	16.7265	0.9921	16.6044	105.7265	0,9989	106.6142
0.5	6.7062	0.9812	6.5745	7.7063	0.9833	7.5935	16,7953	0.9935	16.6044	106.7063	0.9991	106.6142
0.5	9 6.7185	0.9577	6.5745	7.7165	0.9708	7.5835	16.7185	0.9918	16.6044	106.7185	0.5990	105.6142
0.6	6.6947	0.9736	6.5745	7.6947	0.9792	7.5835	16.6947	0.9936	16.6044	106.6947	0.9992	106.6142
0.5	6.6683	0.9782	6.5745	7.6688	0.9839	7.5835	16.6698	0.9954	16.6044	106.6688	0.9995	166.6142
0.6	6,6398	0,9870	6.5745	7.639B	0.9902	7.5835	16.6398	0.9975	16.6044	106.6398	0.9998	105.6142
0.6	6.6106	0.9934	6.5745	7.6105	0.9956	7.5835	16.6105	0.9995	16.6044	106.6105	1.0000	106.6142
0.5	6.5801	1.0054	6.5745	7.5801	1.0031	7.5B35	16.5801	1.0017	16.6044	106.5801	1.0000	106.6142
0.7	5.5921	0.9747	5.5745	7.5921	0.9872	7.5835	16.5921	0.9997	16.6044	106.5921	1,0002	105.5142
0.73	5 6.5559	0.9963	6.5745	7.5559	0.9992	7.5835	16.5559	1.0025	16.6044	105.5559	1.0005	105.6142
6.7	5 6.3377	1.0046	5.5745	7.5177	1.0065	7.5835	15.5177	1.0052	16.6044	106.5177	1.0009	106.5142
0.7	7	1.0147	4 5745	7.4757	1 0143	7.5935	16.4757	1 0091	16 6044	106 4757	1.0013	106 6147
0.7	9 6 4364	1 0236	6 5745	7 4304	1 6777	7.5875	16.4704	1 0117	16 6034	105 4763	1.0017	106 6142
0.8	1 6.3504	1.0349	L.5745	7.3804	1.0312	7.5835	16.3804	1.0146	16.6044	106.0804	1.0022	105.6142
0.8	3 6.3247	1.0461	6.5745	7.3247	1.0410	7.5835	16.3247	1.0185	15.5044	105.3247	1.0628	166 5142
0.9	5 6.2621	1,0610	6.5745	7,2621	1.0530	7.5835	16.2621	1,0229	16.5044	106,2621	1.0034	105.6142
0,9	7 6.1905	1.0847	6.5745	7.1905	1.0694	7.5835	16,1905	1.0281	16.6044	106.1905	1.0010	105.5142
0.8	9 6.1627	1.0576	6.5745	7,1627	1.0586	7.5835	16.1627	1.0288	16.6044	106.1627	1.0045	105.5142
0.9	1 6.0523	1.0982	6.5745	7.0623	1.0851	7.5835	16.0523	1.0364	16.6044	106.0623	1.0053	105.6142
0.9	3 5.9367	1,1313	6.5745	6.9367	1.1123	7.5835	15.9367	1.0458	16.6044	105,9367	1.0065	106.6142
6,9	5 5.7585	1.1787	6.3745	6.7585	1.1504	7.5835	15.7685	1,0585	15,6044	105.7685	1.0081	195.6142
0.9	7 5.5135	1.2544	6.5745	6.5135	1.2142	7.5835	15.5135	1.0787	16.6044	105.5135	1.0106	105.6142
0.9	9 4.9685	1.5050	5.5745	5.9865	1.4340	7.5835	14.9695	1.1272	16.6044	104,9665	1.0150	106.6142

PDhw∕h

З

PDhw/h

PDhw/h

К

B.- FACTORES DE DANO YACIMIENTO SEMI-INFINITO

Por definición, el factor de daño S_{P+fP}, causado por un daño S y la penetración parcial del pozo, es:

$$S_{P+fP}(h_{\omega D}, b, S) = \lim_{D \to \infty} \{P_D(1, z_D, S, \omega) - P_D(t_D)\}$$
(46)
$$t_D - 2\omega$$

 $P_D(1, z_D, S, \omega)$ es la presión adimensional de conductividad infinita para un pozo parcialmente penetrante y da^mado, la cual es obtenida con la ecuación (42); $P_D(t_D)$ es la solución de línea fuente para un pozo totalmente penetrante. De la ecuación (36), la solución de línea fuente puede expresarse como:

$$P_{D}(z_{D},h_{D}) = \frac{1}{4} \begin{bmatrix} \ln \frac{1/(z_{D}+h_{D})^{2}+1}{\sqrt{1/(z_{D}+h_{D})^{2}+1}} + 1} & \ln \frac{1/(z_{D}-h_{D})^{2}+1}{\sqrt{1/(z_{D}-h_{D})^{2}+1}} \\ \sqrt{1/(z_{D}-h_{D})^{2}+1} - 1 \end{bmatrix}$$

La condición de presión uniforme en el pozo puede ser expresada en términos de S_{P+fP}:

$$S_{P+fP}(\frac{2j-1}{2N}) = S_{P+fP}(\frac{2j+1}{2N})$$
(48)

para j=1, N-1

Ahora, nosotros tenemos que resolver un sistema de N ecuaciones con N incógnitas, dado por las ecuaciones (48) y (38).

Para ejemplificar la solución del sistema de ecuaciones,

representaremos la ecuación (46) por medio de una multiplicación and the state of the second aciendo N=3:

haciendo N=3:

$$\begin{bmatrix} A_{11} + 4S & A_{12} & A_{13} \\ A_{21} & A_{22} + 4S & A_{23} \\ A_{31} & A_{32} & A_{33} + 4S \end{bmatrix} \begin{bmatrix} q_1/q \\ q_2/q \\ q_3/q \end{bmatrix} = \begin{bmatrix} 4(S_{p+fp} + P_D(1))h_{wD}/h_D \\ 4(S_{p+fp} + P_D(2))h_{wD}/h_D \\ 4(S_{p+fp} + P_D(3))h_{wD}/h_D \end{bmatrix}$$

Aplicando las condiciones de las ecuaciones (48) y (38) obtenemos la siguiente representación:

$$\begin{bmatrix} A_{11} - A_{21} + 4S & A_{12} - A_{22} - 4S & A_{13} & A_{23} \\ A_{21} - A_{31} & A_{22} - A_{32} + 4S & A_{23} - A_{33} - 4S \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} q_1/q \\ q_2/q \\ q_3/q \end{bmatrix} = \begin{bmatrix} 4 (P_D(1) - P_D(2)) h_{wD}/h_D \\ 4 (P_D(2) - P_D(3)) h_{wD}/h_D \\ N \end{bmatrix}$$

Para simplificación del sistema de ecuaciones utilizaremos la siguiente igualdad:

$$\ln \frac{\sqrt{1/A^{2}+1} + 1}{\sqrt{1/A^{2}+1} - 1} = 2 \ln A + \sqrt{A^{2}+1}$$

Por lo tanto, la ecuación (47) puede escribirse como:

$$2 P_{D}(z_{D}, h_{D}) = \ln \frac{z_{D} + h_{D} + \sqrt{(z_{D} + h_{D})^{2} + 1}}{z_{D} + h_{D} + \sqrt{(z_{D} - h_{D})^{2} + 1}}$$
(50)

(49)

y la ecuación (42) de la siguiente manera:

The states of th

$$2 P_{D}(1,z_{D},S,\omega)h_{\omega D}/h_{D} = \sum_{i=1}^{N} q_{i}/q$$

19) 1994 - Salara 1997 - Salara

$$\begin{bmatrix} 1n - \frac{h_{wD}(z_D - \frac{i-1}{N}) + \sqrt{h_{wD}^2(z_D - \frac{i-1}{N})^2} + 1}{h_{wD}(z_D - \frac{i}{N}) + \sqrt{h_{wD}^2(z_D - \frac{i}{N})^2} + 1} \end{bmatrix}$$

$$\ln \frac{h_{wD}(z_{D} + \frac{1}{N}) + \sqrt{h_{wD}^{2}(z_{D} + -\frac{1}{N})^{2}} + 1}{h_{wD}(z_{D} + -\frac{1}{N}) + \sqrt{h_{wD}^{2}(z_{D} + -\frac{1-1}{N})^{2}} + 1} \right] + 2S \frac{q_{(zD)}}{q}$$

(51)

(52)

Ahora, substituyendo las ecuaciones (50) y (51) en (46):

W. C. Starter Brank

$$2S_{P+fP}(h_{wD}, b, S) \frac{h_{wD}}{h_{D}} = \sum_{i=1}^{N} \frac{q_{i}}{q_{i}} \left[\frac{h_{wD}(z_{D} - \frac{i-1}{N}) + \sqrt{h_{wD}^{2}(z_{D} - \frac{i-1}{N})^{2} + 1}}{h_{wD}(z_{D} - \frac{i}{N}) + \sqrt{h_{wD}^{2}(z_{D} - \frac{i}{N})^{2} + 1}} \right]$$

$$\ln \frac{h_{wD}(z_{D} + \frac{1}{N}) + \sqrt{h_{wD}^{2}(z_{D} + \frac{1}{N})^{2} + 1}}{h_{wD}(z_{D} + \frac{1 - 1}{N}) + \sqrt{h_{wD}^{2}(z_{D} + \frac{1 - 1}{N})^{2} + 1}} \right] + 2S \frac{q_{(zD)}}{q}$$

$$\frac{h_{wD}}{h_{D}} \frac{1n}{z_{D} + h_{D} + \sqrt{(z_{D} + h_{D})^{2} + 1}} \frac{z_{D} + h_{D} + \sqrt{(z_{D} - h_{D})^{2} + 1}}{z_{D} - h_{D} + \sqrt{(z_{D} - h_{D})^{2} + 1}}$$

Por lo tanto, aplicando la condición de la ecuación (48), obtenemos:

$$\sum_{i=1}^{N} q_{i}/q \left[\ln \frac{\frac{A+\sqrt{A^{2}+1}}{B+\sqrt{B^{2}+1}}}{\frac{A+\sqrt{AA^{2}+1}}{B+\sqrt{BB^{2}+1}}} + \ln \frac{\frac{C+\sqrt{C^{2}+1}}{D+\sqrt{D^{2}+1}}}{\frac{CC+\sqrt{CC^{2}+1}}{D+\sqrt{DD^{2}+1}}} \right] + 2S(\frac{q_{ij}}{q}, \frac{q_{ij+1}}{q})$$

$$\frac{h_{wD}}{h_D} \ln \frac{\frac{E+\sqrt{E^2+1}}{F+\sqrt{F^2+1}}}{\frac{EE+\sqrt{EE^2+1}}{FF+\sqrt{FF^2+1}}}$$

(53)

para j=1, N-1

Esta solución es una aproximación del problema real, ya que el yacimiento es finito y en este caso se está considerando semi-infinito. Las ecuaciones (53) y (30) representan un sistema de N ecuaciones con N incógnitas. Las incógnitas son el flujo relativo en cada segmento, q_i/q.

La distribución de flujo puede ser encontrada para diferentes

valores de h_{wD}, b y S resolviendo el sistema de ecuaciones definido por las ecuaciones (53) y (38), y el daño adimensional $S_{P\pm fP}$ puede ser calculado con la ecuación (52).

En el apéndice B se presenta el programa de cómputo para determinar el perfil de flujo y el daño adimensional S_{P+FP} .

Los resultados fueron obtenidos para $h_{WD} = 50$ y. $h_{WD} = 100$ para diferentes valores de b, 1/2, 1/4, 1/10, 1/20, 1/40. Dichos resultados se muestran en las tablas 3 a la 12 y en las figuras 13 a la 22 se presentan una gráfica de la distribución de flujo.

Para validar las soluciones obtenidas se realizó una corrida con S=0 y b=1 para h_{wD} =50 y h_{wD} =100; obteniéndose una distribución de flujo uniforme y un daño adimensional S_{P+fP}=0 en ambos casos. Además, de acuerdo a las figuras 13 a la 22 se demuestra que la simple solución de flujo uniforme de un pozo parcialmente penetrante dañado toma el valor correspondiente al caso de presión uniforme, cuando se resuelve en el punto de presión promedio efectiva en el pozo. Este punto está localizado aproximadamente 75% de la longitud del pozo cuando el intervalo productor está en la cima o en el fondo de la formación.

Por lo tanto, podemos escribir la ecuación (52) de la siguiente manera:

$$S_{f+fP}(h_{wD}, b, S) = \frac{1}{b} \frac{1}{2} \left[ln \frac{(1.75)h_{wD} + \sqrt{(3.0425)h_{wD}^2 + 1}}{(-0.25)h_{wD} + \sqrt{(0.0425)h_{wD}^2 + 1}} \right] + \frac{S}{b}$$

$$-\begin{bmatrix} 1n & \frac{(0.75+1/b)h_{wD} + \sqrt{(0.75+1/b)^2 h_{wD}^2 + 1}}{(0.75-1/b)h_{wD} + \sqrt{(0.75-1/b)^2 h_{wD}^2 + 1}} \end{bmatrix}$$

40

(54)

TABLA 3.- DISTRIBUCION DE FLUIO ESTABILIZADO Y SP+TONWIN PARA UN POZO PARCIALMENTE PENSTRANTE EN UN VACIMIENTO SEMI-INFINITO (5=0.5,1mm)=50)

	5=1	0	S=1		g=	5	S=	10	S=	00
	GASTO		GASTO		GASTO		GASTO		GASTO	
20	VARIABLE	So+fçhw/n	VARIABLE :	Ss+fphw∕n	VARIABLE	So+fohw/h	VARIABLE	So+fphw/h	VARIABLE	So+fphu/h
0.01		1 66/1	0.0050	n / 7*/	0.000					
0.01	0.00727	1.0001	0.7235	2,6333	0.7545	6.6626	0.9785	11.6709	0.9973	101.6809
0.02	0.0070	1.0051	0.9239	7.0773	0.9647	6.5525	0.9785	11.5709	0.9973	101.6509
0.02	0.8740	1.0651	0,9250	2.0441	0.9648	6.65.0	0.9786	11.6709	0.9973	101.6809
0.07	0.6410	1.5661	0.9261	2.6551	0.9549	6.6626	0.9737	11.6709	0.9974	101.5809
0.09	0.8915	1,5861	0,9254	2.6331	0.9650	6.6626	0.9788	11,6709	0.9974	101.6509
0.11	0.8744	1.5851	0.9259	2.5331	0.9553	5.6626	0.9799	11.6709	0.9974	101.6809
0.13	0.8902	1.5861	0.9271	2.6331	0.9655	6.5525	0.9791	11.6709	0.9974	101.5909
0.15	0.8767	1.5861	0.9278	2.6331	0.9658	6,6525	0.9793	11.6709	0.9974	101.5809
0.17	0.8934	1.5861	0.92Bi	2.6331	0.9651	5.5676	0.9795	11.6709	0.9975	101.6809
0.19	0.9433	1.5851	0.9287	2.6331	0.9664	6.6525	0.9797	11.5709	0.9975	101.6809
0.21	0.8965	1.5851	Ú.9295	2.6331	0.9668	6.6626	0.9800	11.6709	0.9975	101.6809
0.23	0.8928	1.5861	0.9303	2.6331	0.9673	6.6525	0.9802	11.6709	0.9975	101.6808
0.25	0.9023	1.5861	0.9310	2.6331	0.9678	6.6626	0.9806	11.6708	0.9976	101.6808
0.27	0.8930	1.5861	0.9317	2.6331	0.7683	6.6626	0.9809	11.6709	0.9977	101.5808
0.29	0.9052	1.5861	0.9230	2.6331	0.9659	6.6626	0,9813	11.6709	0.9977	101.6808
0:31	0.8946	1.5661	0.9338	2,6331	0.9695	6.5626	0.9817	11.6708	0.9978	101.6808
0.33	0.9053	1.5861	0.9352	2,6331	0.9702	6.6626	0.9822	11.6708	0.9978	101.4909
0.35	0.9028	1.5861	0.9355	2,6331	0.9710	6.6626	0.9827	11.6709	0.9979	101 4868
0.37	0.9047	1,5861	0.9378	2.6331	0.9718	6.6626	0.9832	11.4709	0.9990	8084 101
0.39	0.9064	1.5861	0.9393	2.6331	0.9727	5 6676	0.9937	11 6709	0,9990	101.2000
0.41	0.9697	1.5860	0.9410	7 6731	0 9777	L 11010	0 6014	11 4769	0.000	101.6000
0.43	0.9107	1.5860	0 9474	2 6331	0,7757	L 1171	0.7074	11.0705	0,7701	101.0000
0.45	0.9109	1 5840	0 9444	210401	0.7747	D+D020	0.7000	11.0/08	0.9982	101.200
0.47	0.9155	1.5840	0.0444	7 4771	0,77,37	0.0040	0.7037	11.6708	0.9783	101.6508
0.49	0 9174	1 5860	0.7400	2+0221	0.7/07	0.0020	0.9863	11.6708	0,9984	101.6808
0.51	0.9193	1.5840	0.9511	2,0001	0.7702	0,0010	0.70/3	11.6708	0.9980	101.8809
0.53	0.9222	1.5860	0.9517	2,0001	0.7770	3.8520 L LL9L	0.7082	11.6/08	0.9985	101.8608
0.55	6.9272	1.5260	0.9545	7 6771	0.70.1	0.0010	0.7671	11.6/08	0.998/	101.0908
0.57	0.9772	1.5940	0.7505	2 6731	0.7027 0.0044	0,0020	0.7701	11.6708	0.7787	101.6808
0.59	0.0147	1 5840	0.9477	2.0001	A 6017	1 1171	0.7712	11,6705	0.7770	101.6809
0.61	0.0730	1 5940	0.7017	1 6774	0.0502	0.0010	0.7729	11.6708	0.7772	101.5808
0.43	0 9471	1 5940	0.7003	2.0301	0.7023	0,0010	0.7757	11.6708	0.7775	101.5808
ñ 45	0 0440	1 5840	0,7702	2.0331	0.0000	0.00.0	0.7731	11,6/08	0,9995	101.6608
0.63	0 06 77	1.5000	0.7799	2,0001	0.7720	0.0020	0.7705	11.6708	0.9997	101.6808
0.07	0.7323	1.3000	0.0044	2.0331	0.9933	0.0010	0.9982	11.6708	0.9999	101.6808
0.07	0173/1	1.0009	0,7899	2,5331	0.9482	0.0020	1.0000	11.6708	1.0001	101.6808
0.71	0.7050	1.3559	0.9900	2.0001	1.0019	6.6626	1.0019	11.6708	1.0004	101.6808
0.73	0.9705	1.3669	0.9964	2.6331	1,0048	6.6525	1.0041	11.6708	1.0007	101.6808
0./3	0.9785	1.0820	1.0055	2.6331	1.0087	6.6626	1.0064	11.6708	1.0010	101.6808
0.77	0.9574	1.5859	1.0115	2.6551	1.0100	6.6026	1.0091	11.6708	1.6013	101.6808
0.77	0.9783	1.3660	1.0209	2,6331	1.0178	6.6625	1.0120	11.6768	1.0017	101.4808
0.01	1.0087	1.3860	1.0515	2.6331	1.0233	6.6625	1.0153	11.6708	- 1.0021	101.6608
0,00	1.0294	1.0050	1.0441	2.6331	1.0297	6.66.3	1.0192	11.6708	1.0025	101.6909
0,83	1.0287	1.3860	1,0390	2,6551	1.0371	6.6625	1.0236	11.6708	1.6031	101.4809
0.57	1.0271	1.3009	1.0772	2.8330	1.0459	0.6620	1.0288	11.6708	1.0037	101.5908
0,57	1 46730	1.0850	4.1004	2.6330	1.0368	0.66.0	1.0.51	11.6709	1.0044	101.6808
0.71	1.1014	1.3000	1.1309	2.6550	1.0704	6.6625	1.0429	11.6708	1.0053	101.6609
9.75	1.0250	1.3660	1.1/43	2.6330	1.0884	6.6625	1.0530	11.6708	1.0064	101.6808
0.45	1.5.81	1.3560	1.2445	2.6530	1.1141	5.6625	1.0670	11.6708	1.0079	101.5809
0.77	0.4303	1.5850	1.5856	2.6330	1.1548	6.6625	1.0881	11.6708	1.0101	101.6808
0.99	2.8999	1.5860	1.7420	2.6330	1.2279	6.6625	1.1241	11.6708	1.0136	101.6808
					41					

, 1,2 TABLA 4.- DISTATUDCION DE FLUIO ESTAFILIZAGO Y SD+forma/n PARA UN POZO PARCIALMENTE FENETRANTE EN UN VACIMIENTO SEMI-INFINITO (b=0.25.hkd=50)

		5=0		. S= I		5=5		S=1	l0	5=	100	
		64ST0		CASTO		GASTO		SASTO		SASTO		
	20	VARIABLE !	So+foh⊮/n	VARIABLE	So+fphu/h	VARIABLE	Sp+fphu/h	VARIABLE	5p+fphw/h	VARIABLE	Sp+fph4/h	
											1 . L	
	0.01	0.8839	2.7140	0.9208	3.7624	0.9522	7.7931	0.9770	12,8017	0.9971	102.8122	
	0.03	0.8908	2.7140	0,9206	3.7624	0.9522	7,7931	0.9770	12,9017	0.9971	102,8122	
	0.05	0.9870	2,7140	0.9207	3.7624	0.9622	7.7931	0.9771	12,5017	0,9972	102.8122	
	0.07	0.8544	2.7140	0.9208	3.7624	0.9623	7.7931	0.9771	12,6017	0.9972	102.8122	
	0.09	0.8916	2.7139	0.9210	3.7624	0.9625	7.7931	0.9772	12,8017	0,9972	102.8122	
	0.11	0.9371	2.7139	0.9219	3.7524	0.9525	7,7931	0.9774	12.8017	0.9972	102.8122	
	Û.13	0.6843	2,7139	0.9223	3.7624	0.9531	7.7931	0.9775	12.8017	6.9972	102.8122	
	0.15	0.8586.	2.7139	0.9228	3.7624	0.9534	7.7931	0,9778	12.6017	0.9973	102.8122	
	0.17	0.6872	2.7139	0.9233	3.7524	0.9637	7.7931	0.9760	12,8017	0.9973	102,8122	
	0.19	0.8964	2.7139	0.9239	3.7624	0.9641	7.7931	0.9785	12,5017	0.9973	102.8122	
	9.21	0.8723	2.7139	0.9247	3.7624	Ú.9545	7,7931	0.9785	12.9017	0.9974	102.8122	
	0.23	0,8653	2.7139	0.9255	3.7624	0.9650	7,7931	0.9789	12,8017	0.9774	102.8122	
	0.25	0.8958	2.7139	0.9255	3.7524	0.9555	7.7931	0.9792	12.5017	0,9974	102.8122	
	0.27	0.9886	2,7139	0.9274	3.7624	0.9652	7.7931	0.9796	12.8017	0.9975	102.8122	
	0.29	0.5965	2.7139	0.9285	3.7624	0,9558	7.7931	0.9501	12,8017	0.9975	162.8122	
	6.31	0.8706	2.7139	0,9297	3.7624	0,9676	7.7931	0.9805	12.8017	0.9976	102.8122	
	0.73	0.8995	2.7139.	0.9312	3.7624	0.9584	7.7931	0.9810	12.6017	0.9977	102.8122	
	0.35	0.9966	2.7139	0,9326	3.7524	0.9592	7.7931	0.9816	12.8017	0.9978	102.8122	
	0.37	0.8997	2.7139	0.9341	3.7524	0.9701	7,7931	0.9822	12.6017	0.9978	102.8122	
	0.39	0.9017	2.7139	0.9359	3.7624	0.9711	7,7931	0,9928	12,8017	0.9979	102.8122	
	· · · · · · · · · · · · · · · · · · ·	0.9036	2.7139	0.9377	3.7524	0.9722	7.7931	0.9835	12,8017	0,9980	102.8122	
f de l'entre et	0.43	0.9065	2.7139	0.9396	3.7624	0.9732	7.7931	0.9842	12,8017	0,9981	102,8122	
	0,45	0.9066	2.7139	0.9418	3.7624	0.9745	7.7931	0,9850	12,2017	0.9982	102.8122	
	6.47	0.9123	2.7129	0.9441	3.7624	0.9759	7,7931	0.9859	12,8017	0,9983	102,6122	
	0.49	0.9134	2.7139	0.9465	3.7624	0.9773	7,7931	0.9668	12.8017	0.9984	102.8122	
	0.51	0.9166	2.7139	0.9492	3.7624	0.9786	7,7931	0.9877	12.8017	0.9985	102.8122	
	0.53	0.9199	2.7139	0,9521	3.7624	0.9805	7.7931	0.9988	12,8017	0.9987	102,9122	
	0.55	0.9244	2.7139	0.9552	3.7624	0.9822	7.7931	0,9599	12,5017	0.9959	102.8122	
	0.57	0.9257	2.7139	ú.9585	3.7524	Ú.984I	7.7931	0.9911	12.5017	0.9990	102.8122	
	0.59	0.9342	2.7139	0,9622	3.7623	0.9862	7.7931	0,9924	12.8017	0.9992	102.8122	
	0.51	0.9325	2.7139	0.9552	3.7623	0.9884	7.7931	0,9938	12,8017	0,9994	102.9121	
	0.63	0.9460	2,7129	0.9706	3.7623	0.9908	7,7931	0.9953	12.8017	0.9996	102,8121	
	0.65	0.9416	2.7139	0.9747	3.7523	0.9932	7,7931	0.9969	12.9017	0.9998	102.8121	
	0.67	0.9533	2.7139	0,980)	3.7623	0.9961	7,7930	0.9986	12,8017	1,0000	102.8121	
	0.69	0.9579	2.7139	0.9657	3.7623	Ú.9992	7.7930	1.0005	12.8017	1,0002	102.8121	
	0.71	0.9546	2.7139	0.0010	3.7623	1.0025	7,7930	1.0026	12.8017	1.0005	102.8121	
	0.73	0,7757	2.7137	0.9929	3.7523	1.0062	7.7930	1.0047	12,6017	1.0008	102.8121	
	6.75	0.9788	2.7129	1.0062	3.7623	1.0103	7.7930	1.0074	12,8017	1100.1	102.8121	
	0.77	0.9926	2.7139	1.0150	3.7623	1.0148	7.7930	1.0102	12.8017	1.0014	102.6121	
	6.79	1.0014	2.7139	1.0249	3.7623	1.6200	7,7930	1.0134	12,8017	1.0018	102.8121	
	i.21	1.0178	2.7139	1.0264	3.7623	1.0258	7.7930	1.0159	12,8017	1.0023	162.8121	
	0,83	1.0291	2.7139	1.0492	3.7623	1.0324	7.7930	1.0209	12.8017	1.0027	102.8121	
	0.85	1.0451	2.7139	1.0651	3.7623	1.0402	7,7930	1.0255	12.6017	1.0033	102.8121	
	0.57	1.0749	2.7139	1.0244	3.7623	1.0494	7.7930	1,0309	12.8017	1,6039	102.8121	
	0.69	1.0802	2.7139	1.1080	3.7623	1.0603	7,7930	1.0374	12,6017	1,0047	102.8121	
	6.41	1,1633	2.7179	1 1 97	3.7623	1.0746	7,7930	1.0454	12.8017	1.0656	162.0121	
	. 9	1.0765	2,7139	1,1846	3.7623	1.0932	7.7930	1.0558	12.6016	1.0057	102.8121	
	ý.65	1.5444	2.7139	1.2560	3.7623	1.1193	7.7930	1.0700	12,8015	1.0083	102.8121	
	ر <u>د</u>	0.4257	2.7129	1.4000	3.7623	1.1507	7.7930	1.0915	12.8016	1.0105	102.9121	
	9	3.9277	2.7129	1.7513	3,7623	1.2345	7,7930	1.1278	12.8016	1.0140	102.8121	
						1			-			
		. In all		ile en el pre	e ge de la serv	43		e de la serie de la serie La serie de la s	a a anna anna Airte			
· · · · · · · · ·												

qiħw∕qw

TABLA 5.- DISTRIBUCION DE FLUID ESTABILIZADO Y S5+10 PARA UN POZO PARCIALMENTE FENETRAVIE EN UN VACIMIENTO SEMI-INFINITO (5=0,1,1=0=50)

		. S. Sr	0	S=1		S=	5	- S=	10	S=	100
ς.'		CASTO -		GASTO		GASTO		6ASTO		GASTO	
	20	VARIABLE	Bo+fphu/h	VARIABLE	Sa+fphw/h	VARIABLE	So+fohw/h	VARIABLE	Sp+foh#/h	VARIABLE	Sp+fah#/h
	6.01	0.8852	3.5181	0.9198	4.5567	0.9617	8.5976	0.9768	13.6052	0.9971	103.6168
÷.,	6.05	0.8797	3.5181	0.9198	4.5657	0.9518	8.5975	9.9768	13.6062	0.9971	103.5167
	0.05	0.8864	3.5181	0.9201	4.5657	0.9619	8.5975	0.9749	13.6052	0.9971	107.6167
	0.07	0.8525	3.5191	0.9707	4.5567	0.9670	8.5575	0.9749	13,4057	0 9971	107:5167
	0.09	0.2341	3.5180	0.9205	4.5667	0.9477	8.5975	0 9771	17 6047	A 9070	103 5167
	0.11	0.9848	3.5160	0.9210	4.5657	0.9525	8,5975	0.9772	17.6042	0.9977	103.6167
	0.13	0.9846	3.5180	0.9716	4.5657	0.9679	R.5075	0.9774	17.4042	0.9979	103.4147
	0.15	0.2672	3.5189	0.9222	4.5567	0.9631	9.5975	0.9776	13.4042	0.9977	107.6167
	0.17	0,6875	3.5199	0.9228	4.5667	0.9475	8,5375	0 9779	13,6047	0 9973	163 4147
	5.19	6.8637	3,5189	0.9276	4.5667	0.9479	0 5075	0.9707	13 6047	0.9977	103.6167
	0.21	0.8994	3.5180	0.9747	4.5467	0 9434	9 5975	0 9725	17 1060	A 6677	103/3137
	0.23	0.2777	3.5180	0.9744	4.5557	ALA2 6	8 5975	0.9703	13,4042	0.1775	103.4147
	0.15	0.8968	3,5180	0.9057	1 9667	0.0040	0.5775	0.7707	13,0002	0.7774	103.0107
	A 27	0.5869	3.5150	0.9267	4.0007	A 0.20	0,0775	A 0704	1310/01	0.17/14	103.0107
	0.00	0.5959	3 5190	6 0770	1 5447	0.7027 A DILL	0.5075	0.0700	12.6002	0.7773	. 103.0157 .
	0.71	1 2007	7,5120	0.7277 0.0505	5 5417	0,7265	0.0770	0.1771	13.0002	0,7973	102.5157
	0.37	0.0000	7 5196	0.1212	+ 5117	0,70/0	0.37/J D 5075	0,9504	13.6052	0.77/5	102.516/
	0.22	0.0707	3.3150	0.0700	4,000/	0.4665	5,3973	0.9909	13.6952	0.9977	193.6157
	0.20	0.0000	7 5100	0.7322	4.200/	0.7570	8.37/3	0.9815	15.606.	0.9977	103.5167
÷ .	6.27	0.0772	7 5120	0.7558 A C754	4.200/	0.9700	8,3773	0.9821	13.6052	0.9979	103.6167
	10.21	010010	3.5190	0.7336	4.0007	0.9/10	0.5075	0.9627	15.5052	0.9979	105.6167
	0.47	A CALL	3 5190	0.7373	4.5507	0.9721	8.3973	0.9834	10.5052	0.4480	103.5167
	6.45	0.9077	T 5100	6 0497	4.3007	0.4733	8.0970	0.9842	15.5052	0.9981	103.6157
	0.45	010070	7 5190	0.2417	4.300/	0.9745	8,34/3	0.4820	13.8062	0.9982	105.6167
	6.30	0.7102	- 7 5+C/	0.7492	4.0000	0.9739	8.37/2	0.4858	15.6062	0.4483	103.5167
	0.51	0.7177	7 9120	0.7407	4.J000	0.9773	5.0970	0.9868	10.6002	0.9981	103.6167
	6 57	0.1017	3.5160	0.745J	4.5000	0.9750	8,37/3	0.95/5	13.6962	9.9735	195.6167
÷	0.33	0.7214	3.5150	0.7016	4.3655	0.9805	8.5975	0.988/	15.6062	0.9987	103.6167
	0.55	0.7250	3.5100	0.7345	4.5000	0.9821	8.39/3	0.9898	13.6062	0.9933	103.5157
	0.50	0.7200	3.5160	0.4383	4.0000	0.9840	8,0970	0.4910	13.6962	0.9950	103.6167
	0.07	0.0771	3.5100	0.7620	4.3020	0.9651	8.34/3	0.9924	13.5062	0.9992	103.6167
	0.61	0.7351	3.3169	0,7550	4.J000	0.4997	8.27/3	0.9939	15.6062	0.9994	105.6167
	0.03	0.7451	3.3160	0.9704	4.0000	0.9907	8.59/3	0.9753	15.6062	0.9995	103.6167
	9.60	0,9443	5.5180	0,4/51	4.3666	0.9934	8.5975	0.9969	13.6062	0.9998	103.6167
	- 0127 - 5176	0.7113	0.0159 7 EIDS	0.9305	4.2665	0.9462	8.5975	0.9987	13.6052	1.0000	162.0167
	99.67 A 14	0.7360	3.0109 -	0.4850	4.0665	0.9973	8.5975	1.0005	15.6062	1.0002	103.6157
	- 9,71 - 5,77	0.7555	3.3180	0.9925	4.0655	1.0017	8.37/3	1.0028	12.6052	1.0005	103.5167
	0.72	0.7710	3,3100	0.4993	4.0000	1.0057	8,34/3	1.0651	12.6952	1.0008	103.6167
	0.75	0.7003	3.5189	1.0075	4.0065	1.0105	8.3975	1.0076	15.6061	1.0011	103.5157
	0.77	0.9855	3.3180	1.0149	4.3656	1,0150	8.54/5	1.0105	13.6062	1.0014	103.6167
	0.14	1.0043	4.0107 7.545A	1.0000	4.3666	1.0201	8.57/0	1.0135	13.6051	1.0918	102.6167
	N.61	1,914/	5.3189 . 7 Exco	1,0,23	4.3665	1,0250	8,5475	1.0170	13.6951	1.0023	101.6157
	- 9480 A - 76	1.0314	- 3.3160 7.6100	1.0477	4.3000	1.0527	8.3473	1.0210	15.6961	1.0023	103.6167
	0.50	1.0457	3.310V 7.418A	1.0607	4.3666	1.0405	8.27/3	1.0157	15.6051	1.0033	102.6167
	V.d/	1.0735	0.0180 7.5460	1.0649	4.3055	1.0478	8.3775	1.0311	13.6951	1.0040	103.0167
	0.84	1.0835	1.316V 7.516V	1.1071	4.3565	1.0510	8,5975	1.0377	13.6061	1.0947	103.6167
	0.41	1.1648	7.2160	1.1408	9.0555	1.0/51	8.3475	1.0457	13.6061	1.0056	103.6167
	0.93	1.0687	3.5180	1.1856	4.5655	1.0937	8.5975	1.0561	13.6051	1.0069	103.6167
	0.95	1.55(0)	3.5150	1.2576	4.5636	1,1200	8.5975	1.0704	13.6061	1.0083	105.6167
	0.97	0.4341	3.5180	1.4017	5655	1.1614	8.5975	1.0919	13,6961	1.0105	102.6167
	- Q.97	2,9373	312150	1.7537	4.3666	1,2354	8.57/5	1.1293	13.6951	1.0141	103.6157

.

TABLA C. OISTRIEUCION DE FLUJO ESTASILIZADO Y SOFTONAIN DAPA UN POLO PAPOIALMENTE FENETPANTE EN UN VACIMIENTO SEMI-INFINITO (D=0.05.nm/0=50)

		S≠0	a dadi kaj	S=		S=	;	5=1	0	S=	(ii)	
		EAETO		EASTO		GASTO		EASTO		GASTO	lan di se	
	75	VARIABLE	Sa+fahw/h	VARIABLE	Sp+fonw/h	VARIABLE	So+fshw/h	VARIABLE	Sp+fphw/b	VARIABLE	Estichwin.	
		1992 - 1993										
	0.01	0.8356	3.9284	0.9200	4,8770	0.9519	5.9079	0.9768	13.9164	6.597:	103.9259	
	0.03	0.8793	5.8294	0.7199	4.5770	0.9518	3.9078	0.9728	13.9154	0.9971	103.9259	
	6705	0.8855	3.8264	0,7201	4.8770	0.9519	8.4073	0.5719	12.9164	0.9071	102,9249	
	ù.97	0.2376	3.8284	0,9203	4,3770	0.9620	8.9075	0.9770	13,9164	0.9971	105.9259	
	0.09	0,9341	3.8294	0.9206	4, 8770	0.9622	9.9078	0.9771	13,9164	0.9972	103,9259	
	0.H	0.9249	3.8294	0.9210	4.8770	0.9525	8.9076	0.9772	13.9154	0.9972	103.9259	
	0.13	0.5544	3,8094	0,9215	4,9770	0.9627	8,9075	0.9774	13.9164	0.0077	165,9769	
	9.15	0.2373	2.9294	0.9221	4.8770	0.9631	8.9075	0.9776	13.9164	0.9972	103,9769	
	9,17	0.8365	3.8294	0.9227	4.8770	0,9534	8,5078	0.9779	13.9164	0.9973	103,9269	
	0.19	0.5856	1.8294	0,9234	4.6770	0.9639	8,9078	0.9781	13,9164	0.9973	107.4763	
	0.21	0.8717	3.8284	0.9242	4,8770	0.9643	6.9078	0.9784	13.9164	0.9975	163, 9789	
	0,23	0.8947	3.9294	0.9250	4.8769	6.9548	8.9078	0.9758	13.9154	0.9974	103, 9259	
	0.25	0.8952	3.8284	0.9261	. 8769	0.9654	8,9078	0.9791	13.9164	0.9974	103.9269	
	0.27	0.8681	3.8264	0,9270	4,5759	0.9560	8,9075	0.9795	13,9164	0.9975	103,9259	
	6,29	0.2960	3.8294	0.9282	4.8769	0.9557	e.9077	0,9200	13,9164	6,9975	105,9269	
	6.31	0.8962	1.8264	0.9294	4.8769	0.9574	8,9077	0.5604	13,9164	0.9976	103,9769	
	0.00	0.8991	3.5284	0.9309	4.6769	0,9682	8,9077	0.9810	13.9154	0.9577	103.9769	
	0. 3 5	0.3953	3.9284	0,9324	4.2769	0.9591	8,9077	0.9815	13.9154	ú.979	107,9749	
	0.37	0.8774	3.8194	0,7340	4.8769	0,9700	5.9077	0.9821	13.9164	0.9978	105,9759	
	6.39	0,9015	3.5283	0.9357	4.8769	0.9710	8,9077	0,9928	13,9164	6.9974	107.4759	
	6.41	0.9035	3,8093	0.9375	4.6769	0.9721	B.9077	0.9875	17.9164	0 6625	167 9249	
	ő,42	0.9067	3,6283	0.9396	4,8759	0.9733	8.9077	6,9042	13.9164	0.5521	167, 9749	
	6,45	0.9065	3.8283	0.9417	4.8759	0.9745	8.9077	0.9850	13.9164	0.9525	107 9749	
	0,47	6.9123	3.8263	0.9441	4.8769	0.9759	5.9077	0.9559	13,9154	0.9987	103.7237	
	6.49	0.9134	3.6083	0.9466	4.8769	0.9773	9.9077	0,9948	17.9164	0.9991	103.9749	
	6.51	0.9157	3.6283	ú.9493	4.9769	0.9793	8.9077	0.9878	12,9164	0.9986	103.9769	
and a second	0.53	0.9203	3.8283	6.9522	4.8749	0,9865	B,9977	0.9888	13,9164	0.9987	103.9259	
an ang ang ang ang ang ang ang ang ang a	0,55	6.9245	3.8263	0.9553	4.8769	0.9823	3.9077	0.9899	13.9164	Ú.99E9	103.9259	
	0.57	0.9260	3.8283	0.9587	4.8769	0.9842	5.9077	0.9912	13.9164	0.9990	103.9269	
	6,59	0.9241	3.8283	0.9624	4.9769	0.9863	8.9077	0.9925	13.9164	0,9992	103.9269	
	0.61	0.9337	1.0293	0.9654	4.8769	0.9885	8.9077	0.9939	13.9164	0.9994	103.9269	
	0.53	0.9438	3.8283	0.9708	4.8769	0.9909	5.9077	0.9954	13.9164	0.9995	103.9259	
	0.65	0.9447	3.8283	0.9755	4,8769	0.9935	8.9077	0.9970	13.9164	0.9998	163.9259	
	0,67	0.9549	3.9293	0.9807	4.8767	0,9954	8.9077	0.9988	13.9164	1,0600	103.9259	
	0.67	0.9546	3.8283	0.9865	4.8769	0.9975	5,9077	1.0007	13.9164	1.0662	103.9269	
	6,71	0.7790	3.8235	0.9932	4.8759	1.0029	8.9077	1.0028	13.9164	1,0005	103.9259	
n an an an tha bha an	0.73	0.9597	3.8283	0,9978	4.8769	1.0061	8,9077	1.0047	13,9164	1.0008	102,9267	
	6.75	0.9854	3.8283	1.0060	4.6769	1.0102	9.9077	1,6074	13.9164	1.0011	103,9259	
	ê.77	0,9895	3.6263	1.0148	4.8769	1.0143	8.9077	1.0102	13,9164	1.0014	103.9269	
	0,79	1.0029	2.8283	1.0248	4.8769	1.0209	8.9077	1.0134	13.9164	1.0018	163.9269	
	0.91	1.0149	1.6293	1.0363	4.8769	1.0259	8.9077	1.0169	13.9164	1.0023	103.9269	
na an a	<u>6.85</u>	1.0368	2.8283	1.0496	4.6769	1.0025	3.9077	1.0209	13.9164	1.0027	103.9259	
	9,65	1.0453	3.6283	1,0654	4,8769	1.0404	9.9 077 /	1.0255	. 13.9164	2.0033	197.9259	
	0.87	1.0751	1.8283	1.0846	4.9769	1.0496	8.9077	1.0510	13.9163	1,6039	103,9265	
	9.89	1.05.0	2.8283	1,1057	4.6769	1.0408	E.9077	1.(375	13.9163	1.0047	163,9269	
and the second	0.91	1.1643	3.8265	1,1404	4.8759	1.0749	8.9077	1.0455	13.9163	1.0056	103.9259	
	0,93	1.0652	3.8293	1.1252	5769	1.0935	9.9077	1.0560	13.9163	1.0065	100.9265	
	0.45	1.5492	1.9283	1,2571	4.8759	1.1197	8.9077	1.0703	13.9163	1.0083	103.9269	
	9197	0.4239	1.8283	1.4011	4.5769	1.1611	2.9077	1.0917	13,9162	1.0105	103.9268	
	0.77	5.9250	3.8283	1.7652	4.8769	1.2351	8.9077	1.1281	13.9163	1.0140	103.9268	

qihw/qw

6,8

Little Tr. DISTRIBUTION EFUID ESTABLIZZON Y Sort EF0 5×1 5×5 GSST3 EST0 SSST0 ZD <variable es+tphw="" n<="" td=""> VARIABLE Ss+tphw/n VARIABLE Ss+tphw/n VARIABLE Ss+tphw/n 0.01 0.8255 4.0007 0.7105 5.0455 0.7618 9.0804 0.03 0.8274 4.0007 0.7202 5.0455 0.7618 9.0804 0.047 0.8244 4.00078 0.7202 5.0455 0.7622 9.0804 0.070 0.8244 4.00078 0.7202 5.0455 0.7622 9.0803 0.11 0.8247 4.0008 0.7207 5.0455 0.7623 9.0803 0.12 0.8242 4.0008 0.7224 5.0455 0.7623 9.0803 0.12 0.8244 4.0008 0.7224 5.04455 0.7623 9.0803 0.12 0.8244 4.0008 0.7244 5.04455 0.7633 9.0803 0.12 0.8254 4.0008 0.7214</variable>	10 007	- <u>1</u>			14				1. 1. <u></u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 521	FLUIO	010 E	ESTABL	ILIZ	ADO Y So+	tchw/t	n PAR	I UN POZO			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	YACIN	n Gr y	N YAC	ACINIES	MT0	SEMI-INFI	INITO	(5=0.)(125,hwD=50	}		
5-10 5-11 5-10 5-10 5-10 5-10 ID VARIABLE Sp+fphu/n VARIABLE Sp+fphu/n VARIABLE Sp+fphu/n VARIABLE Sp+fphu/n VARIABLE Sp+fphu/n 0.01 0.6255 4.0007 0.9155 5.0475 0.9518 9.0804 0.03 0.8777 4.0007 0.9205 5.0475 0.9418 9.0804 0.067 0.8254 4.0008 0.9205 5.0475 0.9421 9.0803 0.07 0.8254 4.0008 0.9205 5.0475 0.9422 9.0803 0.11 0.8247 4.0008 0.9225 5.0495 0.9227 9.0803 0.12 0.6217 9.1824 4.0008 0.9220 5.0495 0.9237 9.0803 0.12 0.6214 5.0495 0.9247 9.0803 0.123 9.182 9.0603 0.12 0.6215 4.0008 0.9225 5.0495 0.9247 9.0803 0.13 0.5874 4.0008 0.9214 5.0495 0.9247 </th <th></th> <th></th> <th>1.1</th> <th></th> <th>r.e</th> <th>100 - 100 - 100</th> <th>148.5</th> <th></th> <th></th> <th>a de la composición d</th> <th>ina di la</th> <th></th>			1.1		r.e	100 - 100 - 100	148.5			a de la composición d	ina di la	
2000 2010 <th< th=""><th>E1</th><th></th><th></th><th>- C1070</th><th>5=0 m</th><th></th><th> C10</th><th>. 5=10 270</th><th>*</th><th>a:eta</th><th>100</th><th></th></th<>	E1			- C1070	5=0 m		 C10	. 5=10 270	*	a:eta	100	
10 (Heinele Exploration Vertrete Exploration Vertrete Exploration 0.01 0.2525 4.0007 0.9155 5.0455 0.7518 9.0504 0.05 0.5284 4.0007 0.7202 5.0455 0.7620 9.0504 0.07 0.9524 4.0007 0.7202 5.0455 0.7620 9.0504 0.07 0.8540 4.0008 0.5205 5.0455 0.7622 9.0604 0.070 0.8540 4.0008 0.5225 5.0455 0.7622 9.0803 0.13 0.5842 4.0008 0.9225 5.0455 0.7627 9.0803 0.17 0.8554 4.0008 0.9225 5.0455 0.7623 9.0803 0.23 0.6945 4.0008 0.9245 5.0455 0.7642 9.0803 0.23 0.6954 4.0008 0.7245 5.0455 0.7642 9.0803 0.23 0.6954 4.0008 0.9235 5.0455 0.7645 9.0803 0.23 0.5979 4.0008<	11501	5. 5. 15 - 1	L 115	04510	0 0 E E	 Alfahiith	UAD 17	519 Static (d	as fam. th	HASTALE	En chining	
0.01 0.8255 4.0007 0.9197 5.0475 0.9518 9.0804 0.03 0.8777 4.0077 0.9107 5.0495 0.9518 9.0804 0.067 0.8254 4.0007 0.9205 5.0495 0.9422 9.0803 0.070 0.8254 4.0008 0.9207 5.0495 0.9422 9.0803 0.131 0.8247 4.0008 0.9214 5.0495 0.9427 9.0803 0.115 0.8247 4.0008 0.9215 5.0495 0.9427 9.0803 0.117 0.8543 4.0008 0.9215 5.0495 0.9417 9.0803 0.117 0.8515 4.0008 0.9214 5.0495 0.9417 9.0803 0.121 0.8154 4.0008 0.9247 5.0495 0.9459 9.0803 0.127 0.8278 4.0008 0.9253 5.0495 0.9459 9.0803 0.127 0.8278 4.0008 0.9254 5.04956 0.9253 9.0803	- VHD1		а ун 	VHDIHEL	ne a	utionw/d	VHTLF	-515 :	0+10/12/11	VORTHOLE	-59*106W/A	
0.03 0.277 4.6607 0.9155 5.6475 0.415 7.6254 0.05 0.5824 4.0607 0.9202 5.6495 0.9420 9.6604 0.07 0.8294 4.0608 0.9202 5.6495 0.9420 9.6604 0.07 0.8294 4.0608 0.9207 5.0495 0.9224 9.6803 0.11 0.8242 4.6646 0.9214 5.0495 0.9227 9.6803 0.115 0.8242 4.6648 0.9225 5.0495 0.9424 9.6803 0.117 0.8254 4.0608 0.9225 5.0495 0.9424 9.6803 0.21 0.4254 4.0608 0.9247 5.0495 0.9424 9.6803 0.217 0.8258 4.0608 0.9223 5.0445 0.9454 9.6803 0.217 0.8578 4.0608 0.9223 5.0445 0.9457 9.6803 0.217 0.8578 4.0608 0.9223 5.0445 0.9457 9.6803 <t< td=""><td>· · n.</td><td>195</td><td></td><td>0.951</td><td>18</td><td>9 0904</td><td>n. t</td><td>9749</td><td>14, 0890</td><td>0.9971</td><td>102 6996</td><td></td></t<>	· · n.	195		0.951	18	9 0904	n. t	9749	14, 0890	0.9971	102 6996	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	1495		0.961	18	9.0204	0.9	9768	14.0390	0.9971	164.0976	
0.07 0.9524 4.0609 0.9202 5.0495 0.9212 9.0804 0.09 0.6840 4.0028 0.9205 5.0495 0.9224 9.0803 0.11 0.9342 4.0028 0.9205 5.0495 0.9224 9.0803 0.115 0.6371 4.6008 0.9220 5.0495 0.9243 9.0803 0.117 0.3842 4.6008 0.9225 5.0495 0.9243 9.0803 0.117 0.8543 4.0008 0.9247 5.0495 0.9442 9.0803 0.121 0.6954 4.0008 0.9247 5.0495 0.9457 9.0803 0.125 0.5950 4.0008 0.9253 5.0495 0.9454 9.0803 0.127 0.5876 4.0006 0.9253 5.0495 0.9452 9.0803 0.133 0.5879 4.0006 0.9253 5.0495 0.9452 9.0803 0.133 0.5874 4.0006 0.9253 5.0495 0.9453 9.0803	÷.	495		0.951	19	9.6504	0.5	7768	14,0290	6.9971	164.6995	
0.69 0.6940 4.0008 0.9205 5.0495 0.9212 9.0803 0.11 0.8247 4.0008 0.9207 5.0495 0.9224 9.0803 0.12 0.8242 4.6668 0.9212 5.0495 0.9227 9.0803 0.115 0.8251 4.6668 0.9225 5.0495 0.9237 9.0803 0.117 0.8254 4.0008 0.9225 5.0495 0.9427 9.0803 0.21 0.61515 4.0008 0.9224 5.0495 0.9447 9.0803 0.227 0.8954 4.0008 0.9247 5.0495 0.9459 9.0803 0.257 0.5958 4.0008 0.9259 5.0495 0.9459 9.0803 0.31 0.8978 4.0008 0.9252 5.04455 0.9457 9.0803 0.33 0.8979 4.0008 0.9252 5.04455 0.9459 9.0803 0.33 0.8979 4.0008 0.9252 5.04450 0.9752 9.0803	Û.	495		0.963	20	9,0604	0.9	9769	14.0890	0.9971	104.0976	
6.11 0.8342 4.0008 0.4507 5.0495 0.9224 9.0803 0.115 0.8342 4.6668 0.9214 5.0495 0.9217 9.0803 0.115 0.8571 4.6608 0.9225 5.0495 0.9237 9.0803 0.117 0.8553 4.0608 0.9225 5.0495 0.9417 9.0803 0.121 0.6715 4.0608 0.9212 5.0495 0.9417 9.0803 0.121 0.6195 4.0008 0.9217 5.0495 0.9427 9.0803 0.127 0.8578 4.0008 0.9223 5.0495 0.9454 9.0803 0.127 0.8578 4.0008 0.9233 5.0495 0.9456 9.0803 0.131 0.8579 4.0008 0.9228 5.0495 0.9457 9.0803 0.132 0.8792 4.0008 0.9228 5.0495 0.9459 9.0803 0.137 0.8792 4.0008 0.9228 5.04945 0.9719 9.0803 <td>Û.</td> <td>495</td> <td></td> <td>0.953</td> <td>22</td> <td>9.0803</td> <td>0.9</td> <td>9770</td> <td>11.0390</td> <td>0.9972</td> <td>104.0995</td> <td></td>	Û.	495		0.953	22	9.0803	0.9	9770	11.0390	0.9972	104.0995	
0.12 0.3342 4.6665 0.9214 5.0495 0.9237 9.0203 0.15 0.6271 4.6663 0.9220 5.0495 0.9230 9.0803 0.17 0.6253 4.0602 0.9232 5.0495 0.9233 9.6803 0.13 0.6415 4.0602 0.9232 5.0495 0.9447 9.0803 0.23 0.6945 4.0608 0.9247 5.0495 0.9447 9.0803 0.25 0.5959 4.6608 0.7250 5.0495 0.9459 9.0603 0.31 0.5959 4.6608 0.9223 5.0495 0.9459 9.0803 0.31 0.5959 4.6608 0.9223 5.0495 0.9459 9.0803 0.325 0.5959 4.6608 0.9223 5.0495 0.9459 9.0803 0.31 0.5959 4.6608 0.9223 5.0495 0.9459 9.0803 0.327 0.5959 4.6608 0.9235 5.0495 0.9459 9.0803 <tr< td=""><td>θ.</td><td>495</td><td></td><td>0.962</td><td>24</td><td>9.0803</td><td>0.5</td><td>772</td><td>14,0890</td><td>0.9972</td><td>104.0995</td><td></td></tr<>	θ.	495		0.962	24	9.0803	0.5	772	14,0890	0.9972	104.0995	
0.15 0.6271 4.6603 0.9220 5.6495 0.9623 9.0603 0.17 0.8563 4.6006 0.9225 5.0495 0.9614 9.6503 0.19 0.6554 4.0006 0.9212 5.0495 0.9642 9.0603 0.211 0.6545 4.0008 0.9247 5.0495 0.9647 9.0603 0.125 6.5950 4.0008 0.7250 5.0495 0.9647 9.0603 0.127 0.6597 4.0008 0.7250 5.0495 0.9647 9.0603 0.131 0.5597 4.0008 0.7320 5.0495 0.9612 9.0603 0.133 0.5597 4.0006 0.9233 5.0495 0.9452 9.0603 0.137 0.5897 4.0006 0.9233 5.0495 0.9452 9.0693 0.137 0.5897 4.0006 0.9235 5.0495 0.9712 9.0693 0.137 0.5942 4.0008 0.9273 5.0495 0.9712 9.0603	0.)495		0.963	27	9.0905	0.5	9774	14.0890	0.9972	104.0995	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	495		0.963	:30	9.0803	0.9	776	14.0890	0.9972	104.0995	4. D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	495		0.963	34	9.0503	0.9	778	14.0870	0.9973	104.0995	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С.)495		0.963	35	9.0803	0.9	7781	14.0370	0.9973	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø.	1495	i i	0.95	12	9.0805	0.9	7794	14.09%)	0.4973	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	θ.)495	i	0.964	47	9.0803	0.9	767	14.0390	0. 9974	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.)495		0.965	53	9.0603	0.9	7791	14.6870	ð.9574	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.	495		0.965	59	9.0603	0.9	9795	14.0590	0.9975	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ŷ.	1495		0.965	56	9.0802	0.5	7799	14.0590	6.9975	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.)475		0.967	73	9.0803	ũ.9	16(+4	14.0890	0.9576	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ð.	1495		0.923	52	6.0802	0.5	9609	14.0870	0.9977	164.6995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,	1495	i	0.949	90	9.0903	0.9	7815	14.6890	0.9777	101.0595	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ú,	495		ú.959	97	9.0200	ð.9	7821	14.0590	0.9978	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>,</u>	495		0,971	10	9.0303	Q.9	927	14.0990	0,9979	194.0975	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	H95		0.972	20	9.0803	ý.9	7834	14.0890	(1,998)	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ę.	495		0.973	32	9.0903	0.9	7841	14.0390	0.9981	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. A	1473 1304		0,974	44	9.0603	0.5	7849 Nor 0	14.05%	0.9982	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U. A	1979		0.973	38	9.0505	0.5	1858	14,0840	0.9785 N.0551	104.0995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	٥. ۵	1474 1401		0.477	12	7.08VU 0.0007	0.5	755/	14.0690	0.9784	104.0973	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 6	101		6.920	ាចរ ដោង	9 6967	0.7	10/7	14.0570	0,7766	104.0770	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	О	1201		0.720	100	9.0003	0.5 6 9	1007	14.0070	A 6699	104.0770	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		104		6 953	121	9 A0AT	0.0	2011	12 0000	017 (D) A 800A	161.6005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ů.	191		0.101	161	9 6503	n 9	D074	14 0295	A 6657	10410772	
	Û.	104		0.985	894	9.6963	0.9	978	14 6990	0.0991	164 6995	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n.	194		0.990	108	9 0967	0.9	295.3	14 0396	A 5604	104.0095	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.	1494		0.993	134	9.0503	0.5	949	14.0590	0.10000	102 0005	
0.67 0.9581 4.0002 0.9887 5.0494 0.9787 9.0603 0.71 0.6556 4.0002 0.9887 5.0494 1.0027 9.0603 0.73 0.733 4.0065 0.9791 5.0494 1.0027 9.0603 0.75 0.9622 4.0005 1.0054 5.0494 1.0016 9.0503 0.77 0.5920 4.0003 1.0155 5.0494 1.0151 9.0603 0.77 0.5920 4.0003 1.0155 5.0494 1.0151 9.0603 0.77 1.9322 4.0003 1.0155 5.0494 1.0151 9.0603 0.77 1.932 4.0003 1.0254 5.0494 1.0251 9.0603 0.81 1.0153 4.0004 1.0256 5.0494 1.0251 9.0603 0.85 1.0470 4.0006 1.04551 5.0494 1.0406 9.0603 0.85 1.0470 4.0006 1.04551 5.0494 1.0478 9.0603	e.	494		0.994	62	9.0803	0.9	9997	14.0890	1.0000	104.0995	
0.71 0.4555 4.0005	0.	494		0,999	193	9.0203	1.0	005	14,0870	1.0002	104.0795	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.)494		1,002	27	9.0800	1.0	027	14.0370	1.0005	101.0795	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.	494		1.005	64	9.0503	1.0	0050	14.0890	6000	164.6995	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.	494		1.010	05	9,0500	1.0	2075	14.0856	1,0011	104.0995	
	1.	494	ł	1.015	51	4.0803	1.0	5164	14.0870	1.0015	104.0995	an an an
0.81 1.0158 4.0008 1.0328 5.0494 1.0261 9.0803 0.83 1.0215 4.0008 1.0501 5.0494 1.0328 9.0803 0.85 1.0216 4.0008 1.0459 5.0494 1.0328 9.0803 0.85 1.0470 4.0008 1.0459 5.0494 1.0328 9.0803 0.67 1.0372 4.0006 1.0451 5.0494 1.0406 9.0803 0.67 1.0372 4.0008 1.0451 5.0494 1.0468 9.0603 0.67 1.0372 4.0008 1.1059 5.0494 1.0511 9.0603 0.91 1.1549 4.0008 1.1409 5.0494 1.0751 9.0803 0.91 1.1549 4.0008 1.1557 5.0494 1.0751 9.0803 0.92 0.93 4.0568 4.0008 1.1557 5.0494 1.0737 9.6503	1.	1494	i	1,020	202	9,0803	1.0	0135	14.0990	1.0018	104.0995	
0.83 1.0215 4.0005 1.0501 5.0494 1.0238 9.0903 0.85 1.0470 4.0006 1.0859 5.0494 1.0406 9.0603 0.87 1.0738 4.0006 1.0859 5.0494 1.0406 9.0603 0.87 1.0738 4.0006 1.0951 5.0494 1.0449 9.0603 0.87 1.0637 4.0006 1.0451 5.0494 1.0449 9.0603 0.91 1.637 4.0006 1.1459 5.0494 1.0511 9.0603 0.91 1.1549 4.0006 1.1459 5.0494 1.0751 9.0803 0.92 1.0538 4.0006 1.1657 5.0494 1.0751 9.0803 0.93 1.0568 4.0006 1.1657 5.0494 1.0737 9.6503	۱.)494		1,026	161	9.6803	1.0	9171	14.0870	1.0623	104.0995	
0.85 1.0470 4.0006 1.0659 5.0494 1.0406 9.0807 0.87 1.0732 4.0006 1.0951 5.0494 1.0498 9.0807 0.87 1.0537 4.0006 1.1692 5.0494 1.0611 9.0803 0.91 1.1549 4.0008 1.1409 5.0494 1.0751 9.0803 0.93 1.0569 4.0006 1.1557 5.0494 1.0937 9.0503	1.)494		1.032	28	9.0803	1.0	9211	14.0970	1.0028	104.0995	
0.87 1.0732 4.0006 1.0651 5.0494 1.0493 9.0603 0.89 1.0637 4.0006 1.1092 5.0494 1.0611 9.0603 0.91 1.1549 4.0006 1.1409 5.0494 1.0751 9.0603 0.93 1.0568 4.0006 1.1557 5.0494 1.0737 9.0503	. 1.	494		1.040	105	7.0302	1.0	257	14.0990	1.0033	164.6995	
0.87 1.6637 4.0006 1.1692 5.0494 1.0611 9.6603 0.91 1.1649 4.0608 1.1409 5.0494 1.0751 9.0803 0.93 1.0568 4.0606 1.1657 5.0494 1.0937 9.6503	1.	194		1,045	78	5.0602	1.0	212	14.0229	1.0040	104,0995	
0.91 1.1549 4.0003 1.1409 5.0494 1.0751 9.0803 6.73 1.0558 4.0006 1.1557 5.0494 1.0937 9.0503	1.	1494	i	1,061	11	9.0803	1.0	5277	14.0669	1.0047	104.0995	
0.43 1.0668 4.0008 1.1557 5.0494 1.0937 9.6503	1.	194		1,075	51	9.0201	1.0	9458	14.0889	1.0055	164.0995	
	1.)494	ł	1,093	157	9.6503	1.0	5.61	14.6259	1.0063	104.6995	
0.95 1.5500 4.0008 1.2576 5.0494 1.1200 9.0802	1.	494		1,120	00	9.0301	1.0	0704	14.0589	1.0093	104.0995	
0.77 0.4342 4.0008 1.4015 5.0494 1.1614 9.0803	. 1.	1494	÷ .	1.161	14	8° 6 <u>8</u> 02	1.0	1919	14.0889	1.0105	104.0995	

alihw∕qw

TABLA B.- DISTRIFLCION DE FLUJO ESTAEILIZACO Y E0+fphu/h PARA UM POZO PARCIALMENTE PENETRANTE EN UM YACIMIENTO SEMI-INFINITO (b=0.5,hu0=100) S=0 S=1 E=5 S=10 S=10 S=100

	3-0	, .	. 5~1		. 3-7		. 274	. v.,			
	SASTO		GASTO		GASTO		GASTO		GASTO		
20	VAPIABLE	Sp+fph⊮/h	VARIABLE.	So+fphw/n	VARIABLE	Sp+fph#/h	VARIABLE	Sp+fphw/h	VARIABLE	Sp+fphu/h	
			· · · · · ·								
0.01	0.9126	1.9541	0.9356	2.9800	0,9668	7.0047	0.9792	12.0125	0.9973	102.0228	
0.03	0.9173	1.9541	0.9365	2,9800	0.9571	7.0047	0.9794	12.0125	0.9975	102.0229	
0.05	0.9134	1.9541	0.9362	2.9800	0.9570	7.0047	0.7793	12.0126	0.9973	102.0228	
0,07	0.9163	1.9541	0.9364	2.9600	0.7671	7.0047	0.9794	12.0126	0.9973	102.0228	
0.07	0.9133	1.9541	0.9360	2,9800	0.9571	7.0047	0.9794	12.0125	0.5973	102.0228	
0.11	0.9164	1.7540	0.9370	2,9800	0.9675	7.0046	0.9795	12.0125	0.9974	102.0226	
0.13	0.9156	1.9540	0,9371	2,9800	0.9677	7.0046	0.9798	12.0125	(1.9974	102.0228	
0.15	0.7152	1.9540	0.9376	2,7800	0.9679	7.0045	0.9799	12.0125	0.9774	102.0228	
0.17	0.9191	1.9540	0.9394	2,9800	0.9693	7.0046	0,9802	12.0125	0,9974	102.0228	
0,19	0,9151	1.9540	0.9384	2.9800	0.9695	7,0046	0,9803	12.0125	0.9975	102.0228	
0.21	0.9204	1.9540	6.9395	2,9800	0.9690	7.0045	0.9806	12.0125	0.9975	102.0228	
0.53	0.9176	1.9540	6,0109	2,9800	0.9693	7.0046	0.9909	12.0125	0.9975	102.0228	
à 75	0 0199	1 9540	0.9409	2,9800	0.9499	7.0046	0.9917	12.0125	0.9976	102.0228	
0.27	0.9228	1.9540	0.5419	7,9800	0.9704	7.0046	0.9815	12,0125	0.9976	162.0229	
0.29	0.9194	1.9540	0.9419	2,9800	0.9707	7.0046	0.9919	12,0125	0.9977	102.0228	
6 71	0.0177	1.9540	0.9474	2.0000	0.9714	7.0046	0.9823	12.0125	0.9977	102.0278	
0.51	0.03/7	1 \$540	0 9434	2 9800	(1 977)	7 10044	0 9877	12.0125	0.9978	102.0228	
0.00	0.0241	1 0544	0.9451	2,0000	0.9757	7 (6)16	0.9871	12 0125	0.9979	102.0229	
- 0.00 - A - 7	0 00/0	1.7342	0.7431	2.0200	0.0735	7 60040	0.0017	12.0125	1 0010	10210220	
0.07	0.7200	1.7349	0.7400	2.7000	0.7753	7.0041	0,7007 A 0010	12.0113	0.0000	10210220	
- 1944 T - 54 - 64	0.0701	1.7040	0.74/7	2.7000	0.7743	7.0045	0.7642	12.0125	0.7700 N 0001	102.0220	
0.41	0.9305	1.9040	0.9495	2.9800	0.9722	7.0045	0.7843	12:0110	0.9761	10210210	
0,43	0.9302	1.9340	0.9507	2.9899	0.9751	7.0046	0.9524	12.0123	0.7782	102,0228	
0.45	0.9349	1.9540	0.9551	2.9800	0,9775	7.0046	0,9352	12.0125	0.9983	10210228	
0.47	0.9058	1.9540	0.9547	2,9600	0.9783	7.(*)46	0.9359	12.0125	0.4984	102.0228	
0.49	0.9377	1.9540	ú.9565	2.9800	0.9795	7,0046	0.9976	12.0125	0,9985	102.0228	
9.51	0.9409	1.9540	0.9587	2,9800	0,9808	7.0046	0,9894	12.0125	0.9985	102.0228	
0.53	0.9427	1.9540	0.9608	2.9799	0.9921	7.0046	0,9893	12,0125	0.9957	102.0228	
0.55	0.9454	1.9540	0.9633	2.9799	0.9836	7.0046	0,9903	12.0125	0.99988	102.0228	
0.57	0.9494	1.954ú	0.9652	2.9799	0.9852	7.0046	0,9914	12.0125	0.9990	102.0228	
0.59	0,9531	1.9540	0.9691	2,9799	0.9870	7.0046	0.9925	12.0125	0.9791	102.0228	
0.61	0.9546	1.9540	0.9718	2.9799	0.9887	7.0046	0,9936	12,0125	0.9993	102.0228	
0.63	0.9612	1.9540	0,9757	2.9799	0.9908	7.0046	0,9750	12.0125	0.9995	102.0228	
0.65	0.9629	1.9540	0.9790	2.9799	0.9929	7.0046	0.9964	12.0125	Ú.9997	102.0228	
0.67	0.9761	1.9540	0.9835	2.9799	0.9954	7.0046	0.9980	12.0125	Ù.9999	102.0228	
0.69	0.9741	1.9540	0.9979	2,9799	0.9980	7.0045	0,9997	12,0125	1.0001	102.0228	
6.71	0.9801	1.9540	0.9928	2.9799	1.0009	7.0046	1,0015	12.0125	1,0004	102.0228	
0.77	0.9564	1,9540	0.9984	2,9799	1.0040	7.0045	1.0035	12.0125	1.0006	102.0228	
. 6 75	- 6 994T	1 9540	1.0047	7 9799	1.0076	7.0046	1.0058	12.0175	1.0009	162.6229	
. 6. 77	1 0015	1 65.1/1	1.0115	2 6790	1.0115	7 0044	1.0097	12 0125	1.0012	102.0278	
0.77	1,0010	1.05.4/	1 0195	2.7717	1.6150	7.6644	1 6411	12 0125	1.0014	102.0220	
0,19	1.0112	1.7340	1.0173	2.7/77	1.0137	7.6612	1.0111	12.0128	1.0020	102.0220	
0,81	1.0222	1.7240	1.028/	2.7/77	1.0210	7.0040	1.0170	12.0123	1.0625	102.0220	
0.83	1.0051	1.9540	1.0252	2.7/77	1.0258	7.0012	1.0721	12.0123	1.0020	102,0220	
0.85	1,0497	1.9340	1.0520	2,7/77	1.0314	7.0046	1.0221	12.0125	1.0030	102.0227	
0.27	1,06/9	1.9340	1.06/4	2,7/77	1.0410	7.6542	1.0770	12.0120	1.0000	10210127	
u.89	1.0208	1.4340	1.0866	2.4/99	1.0010	7.1046	1.0220	12,0123	1.0044	102.0227	
0.91	1,1212	1.9540	1.1114	2.9799	1.0659	7.0045	1,0404	12.0125	1.0053	102.0227	
0.93	1.1555	1.9540	1,1458	2.9799	1.0804	7.0046	1.0501	12.0125	1.0084	102.0227	
0.95	1.2513	1.9540	1.1979	2.9799	1.1040	7.0046	1,0637	12.0125	1.0079	102.0227	
0.97	1.1643	1.9540	1.2958	2.9799	1.1435	7.0045	1.0855	12.0125	1.0103	102.0227	
0.99	2.4531	1.9540	1.2656	2,9799	1.2349	7.0045	1.1319	12.0125	1.0149	102.6227	
					51				1. 1	a de la seconda de	

qīhw∕qw

TABLA 9.- DISTRIBUCION DE FLUJO ESTABILIZADO Y Sc+fonw/h PARA UN POZO PARCIALMENTE PENETRAVITE EN LN VACIMIENTO SEMI-INFINITO (6=0.25, h=0=100)

	1997 - 1999 19	Sa	0	S=	1	S=	5	5=	10	5=	100
		GASTO		GASTO		GASTO		GASTO		GASTO	
an an an an Anna an An Anna an	ZD	VARIABLE	Sc+fphw/h	VARIABLE	So+fphw/h	VARIABLE	So+føh∞/h	VARIABLE	So+fohw/h	VARIABLE	Sp+fphw/h
	0.01	0.9074	3.2559	6,9313	4.2827	0.9545	9.3093	0.9772	13.3165	0.9971	103.3273
	0.03	0.9103	3,2559	0.9321	4.2827	0.9647	8.3093	0.9779	13.3165	0.9971	103.3273
	0.05	0.9107	3,2559	0.9325	4.2827	0.9649	8.0093	0.9780	13.3165	0.5971	103.2273
	0.07	0.9077	3,2559	0.9314	4.2827	0.9646	8.3083	0.9779	13.3165	0.9971	103,3273
		0.9092	3,2559	0.9319	4.2627	0,9549	8.3093	0.9780	13.3165	0.9971	103,3273
	0.11	0.9092	3.2559	0.9324	4.2827	0.9651	8.3083	0.9782	13.3165	0.9972	103.3273
	0.13	0.9129	3,2559	0.9334	4.2827	0.9555	8.3083	0.9784	13.3165	0.9972	105.3273
	0.15	0,9066	3,2559	0.9324	4.2627	0,9654	8.3083	0,9784	13.3165	0.9972	103.3273
	0.17	0.9136	3,2559	0,9339	4.2827	0.9659	8.3083	0.9787	13.3165	ú.9972	103.3273
	0.19	0.9097	3.2559	0.9343	4.2827	0.9663	8.3083	0.9790	13.3165	0.9973	103.3272
	0.21	ù.9152	3.2559	0.9358	4.2827	0.9670	5.3083	0.9794	13.3165	0.9973	103.3272
	0.23	0.9153	3.2559	0,9366	4.2827	0.9675	8.3083	0.9797	13.3165	0.9974	103.3272
	0.25	0.9121	3,2559	0.9361	4.2827	Û.9575	8.3083	0.9799	13.3155	0.9974	103.3272
	0.27	0.9168	3,2559	0.9377	4.2627	0,9683	8.3053	0.9803	13.3165	0.9975	103.3272
	0.27	0.9158	3,2559	0,9389	4.2827	0,9590	8.3093	0.9208	13.3165	0.9975	103.3272
	0.31	0.9220	3,2559	0.9407	4.2827	0.9699	8.3083	0.9813	13.3165	0.9975	103.3272
	0.33	ú.9165	3.2559	0,9403	4.2827	0,9702	8.3083	0.9815	13.3165	0.9976	103.3272
and see proceeding	0.35	0.9214	3,2559	0.9421	4.2826	0.9711	8,3052	0.9921	13.3165	0.9977	103.3272
and the second second	0.37	0.9216	3,2559	0.9438	4.2826	0.9720	8.3083	0.9828	13.3165	0.9978	103.3272
i stra en año	. 0.39	0.9282	3.2559	0.9461	4.2826	0.9731	8.3083	0.9834	13.3165	0.9979	103.3272
	0.41	0.9232	3,2559	0.9461	4.2826	0.9737	8.3083	0.9839	13.3165	0.9950	103.3272
	0.43	0.9283	3,2559	0,9484	4.2826	0.9749	6.3083	0.5846	13.3165	0.9981	103.3272
	0.45	0.9305	3.2559	0.9507	4.2826	0.9752	8.3083	0,9955	13.3165	0,9962	103.3272
	0.47	0.9356	3.2559	0.9533	4.2826	0.9775	8.3083	0.9863	13.3165	0.9983	103.3272
	0.47	0.9327	3.2559	0.9541	4.2826	0.9785	8.3083	0.9870	13.3165	0.9984	105.3272
	0.51	0.9389	3.2559	0.9570	4,2826	0.9800	8.3083	0.9880	13.3165	0.9985	103.3272
	0.53	0.9408	3.2559	0.9597	4,2825	0.9816	8.3083	0.9890	13.3165	0.9987	103.3272
	0.55	0.9465	3.2559	0.9630	4.2826	0.9834	8.3082	0.9902	13.3165	0.9988	103.3272
	0.57	0.9460	3.2559	0,9648	4.2826	0.9848	8.3082	0.9911	13.3165	0.9990	103.3272
	0.59	0.9512	3,2559	0.9684	4.2826	0.9868	8.3082	0.9924	13.3165	0.9991	103.3272
	0.51	0.9975	3,2559	0.9725	4.2825	0.9890	8.0092	0,9938	13.3165	ú.9993	103.3272
	0.63	0.9576	3.2559	0,9750	4.2826	0.9908	8,3082	0.9951	13.3165	0.9995	103.3272
	0.55	0.9545	3,2559	0.9795	4,2825	0.9933	8.3062	0.9967	13.3165	0.9997	103.3272
	0.67	0.9699	3,2559	ú.9844	4.2826	0.9961	8.3082	0.9984	13.3165	0.9999	103.3272
a and the second	0.69	0,9780	3.2559	0.9898	4.2925	0,9990	8,3082	1.0003	13.3165	1,0002	103.3272
	0.71	0.9798	3,2559	0.9940	4.2826	1.0018	8.3082	1.0021	13.3165	1.0004	103.3272
	0.73	0.9890	3.2559	1.0005	4.2826	1.0053	B.3082	1.0044	13.3165	1.0007	103.3272
	0.75	0.9992	3, 2559	1.0078	4,2826	1.0092	8,3082	1.0068	13, 3165	1.0011	(03.3272
	6.77	1.0033	3.2559	1.0140	4,2826	1.0131	8.3082	1.0095	13, 3145	1.0014	107, 2072
		1:0155	7,7559	1.0731	4.2826	1.0179	8.3082	1.0123	13, 3145	1.0018	103.3272
	0.81	1.0794	3.7559	1.0334	4.2825	1.0234	8.3082	1.0157	13.3165	1.0027	103.3272
	0.63	1 0797	3 2559	1.6434	4.2826	1.0297	8.3082	1 0194	13.3145	1.0077	103.3272
	0.85	1.0567	7,0559	1.0573	4,2826	1.0364	8.3692	1.6238	13.3145	1.0022	103.2272
	0.00	1:0775	7 2550	1 0779	4 7974	1 0449	9 3067	1 0291	13, 3165	1.0039	103.3272
	0.60	1.0775	3,2337	1 00150	4 2020	1 0548	8 3087	1.0351	13 3145	1.0046	103.3272
	0.07 A DI	1 1754	7 7555	1 1103	4 7074	1 0677	8.3082	1.0429	13, 3145	1.0054	103.3272
	V.71 1 01	1.1300	3.2008 5.055p	1.1100	4,7874	1 0847	8.3082	1,0528	13.3145	1.0557	103.3272
	6.65	1.10/7	1.1000	1 2048	4.7874	1.1095	8.3082	1.0645	13.3164	1.0083	103.3272
	6 at	· ···2017	3.2200	1 2000	1 7074	1 1497	8.7622	1.0297	13.3164	1.0167	103.3272
	0.77 A 05	- 111/00 1 2 40/0	7 7550	1 4000	A 7974	1 2012	9.3082	1 1 154	13, 3164	1.0157	163.3272
	9.75	4.9797	4.200	1.0047	7+2020	142712	0.0002	111114	1010104		
						53					
· · · · · · · · · · · · · · · · · · ·		and and						1. 1. 1. 1. 1. 1.	and the second s		والمعادية المحادي

ž

TABLA' 10.- DISTRIBUCION DE FLUIG ESTABILIZADO Y SO+TONWIN PARA UN POZO PARCIALMENTE PENETRANTE EN UN VACIMIENTO SEMI-INFINITO (b=0.1.nud=100)

		- S=	9	S=1		S=:	5 .	S=	10	S=	100	
		GASTO		GASTO		GASTO		SASTO		EASTO		
	- 20 -	VARIABLE	Sa+fahw/h	VARIABLE	Sp+tpnw/h	VARIABLE	Sp+fph⊮/h	VARIABLE	So+fohw/h	VARIABLE	So+fohw/h	
	0.01	0.9072	4.1644	0.9510	5.1912	0.9544	9.2169	0.9777	14.2252	0,9971	104.2360	
	0 . 03	0.9098	4.1644	0.9315	5.1912	0.9645	9.2169	0,9777	14.2252	0.9971	104.2360	
	0.05	0.9074	4.1644	0.9314	5.1912	0.9645	9.2169	0.9778	14.2252	0.9971	104.2350	
	0.07	0.9105	4,1644	0.9319	5.1912	0.9547	9,2159	0.9779	14.2252	0.9971	104.2360	
	0.09	0.9088	4,1644	0.9319	5.1912	0.954B	9.2169	0.9780	14,2252	0.997t	104.2360	
	9.11	0.9091	4.1644	6.9322	5.1912	0,9650	9.2169	0,9781	14.2252	0.9972	104.2350	
	0.13	0.9099	4.1644	0.9326	5.1912	0.9653	9.2169	0,9785	14,2252	0.9972	104.2350	
	0.15	0.9095	4.1644	ú.9532	5.1912	0.9656	9.2169	0.9785	14,2252	0,9972	104.2350	
	ú.17	0.9137	4.1644	0.9342	5.1912	0.9660	9.2169	0.9769	14.2252	0.9973	104.2360	
	0.19	0.9098	4.1643	0.9343	5.1912	0.9664	9,2169	0.9790	14.2252	0.9973	104.2350	
	9.21	0.9153	4.1643	0.9356	0 5.1912	0.9669	9.2169	0.9793	14.2252	0.9973	104.2560	
	0.23	0.9125	4.1643	0.9359	5.1912	0,9573	9.2169	0.9795	14.2252	0.9974	104.2260	
	0.25	0.9151	4.1643	6.9371	5.1912	0.9679	9,2169	0.9500	14.0052	0.9974	104.2360	
	0,27	0.9171	4.1643	û.9381	5.1912	0.9665	9.2169	0.9604	14.2252	0.9975	104.2359	
	0.29	0.9164	4.1643	0.9390	5,1912	0.9691	9.2169	0.9808	14.2252	0.9975	104.2359	
	0.31	0.9201	4,1643	0.9405	5.1912	0.9699	9,2169	0.9813	14,2252	0.9975	164.2359	
	0.33	0.9196	4.1643	0.9417	5,1912	0.9705	9.2169	0.9818	14.2252	0.9977	104.2359	
	0.35	0.9259	4.1643	0.9437	5.1912	0.9715	9.2169	0.9873	14,0050	0 9977	104 2059	
	0.37	0.9153	4.1643	0.9415	5.1912	0.9713	9,2169	0.9624	14.2252	0.9976	104 2359	
	0,39	0.9243	4.1643	0.9440	5.1912	0.9724	9.2169	0.9830	14,2752	0.9979	104 7359	
	0.41	0,9242	4.1643	0.9456	5.1912	0.9734	9.2169	0.9837	14.0050	6 9970	101.2350	
	0.43	0.9268	4.1643	0.9475	5.1912	0.9745	9,2169	0.9844	14,0050	0.9926	101.2357	
	0.45	0.9294	4.1643	0.9496	5.1912	0.9757	9.2169	0.9852	14.2752	0.9921	104.2357	
	6.47	0.9319	4.1643	6.9517	5.1912	0.9759	9.2169	0.9850	14.2252	0.9937	104.2359	
	0.49	0.9342	4.1643	0.9540	5.1912	0.9783	9.2169	0.9859	14.2252	0.99£4	104.7359	
	0.51	0.9379	4.1643	0.9565	5.1912	0.9797	9.2169	0.9878	14.2252	0.5935	104.2359	
	0.53	0.9400	4.1643	ù, 9589	5.1912	0.9812	9.2169	0.9888	14.2251	0,9987	104.2359	
	0.55	0.9431	4.1643	0.9617	5.1912	0.9829	9.2169	0.9899	14.2251	0.9988	104.2359	
	0.57	0.9477	4.1643	0.9649	5.1911	0.9847	9.2169	0.9911	14.2251	0.9990	104.2359	
	0.59	0.9506	4.1643	0.9650	5.1911	û.9865	9.2169	0.9923	14,2251	0,9991	164.2359	
	0.61	0.9548	4.1643	0.9715	5.1911	0.9887	9.2169	0.9935	14.2251	0.9993	104,2359	
	0.63	0.9598	4.1643	0.9754	5.1911	0,9909	9.2169	0.9951	14.2251	0.9995	104.2359	
	0.65	0.9641	4.1643	0.9795	5.1911	0.9933	9,2169	0.9967	14.2251	0,9997	104.2359	
	0.57	0.9698	4.1643	0.9841	5.1911	0.9959	9.2169	0.9983	14.2251	0,9999	104.2359	
	0.69	0.9754	4.1643	6.9890	5.1911	0.9988	9.2169	1.0002	14.2251	1.0002	104.2359	
	ð.71	0.9820	4.1843	0.9945	5.1911	1,0019	9.2169	1.0022	14.2251	1.0004	104.2359	
	0.73	0.9590	4.1643	1.0006	5,1911	1.0054	9.2169	1.0044	14.2251	1.0007	104.2359	
,	0.75	0.9971	4.1643	1.0073	5.1911	1.0092	9.2169	1.0068	14.2251	1.0011	104.2359	
	.0.77	1.0058	4.1643	1.0148	5.1911	1.0134	9,2169	1.0095	14.2251	1.0014	104.2359	
	0,79	1.0140	4.1643	1.0234	5.1911	1.0181	9.2169	1.0125	14.2251	1.0018	104.2359	
	0.81	1.0277	4.1643	1.0332	5.1911	1.0235	9.2168	1.0158	14.2251	1,6022	104.2259	
	0.83	1.0410	4.1643	1.0445	5.1911	1.0296	9.2168	1.0196	14.2251	1,0027	104,2359	
	ù.85	1.0570	4.1643	1,0579	5.1911	1.0367	9.2169	1.0240	14.2251	1.0033	104,2359	
	ù . 37	1.076Z	4,1643	1.0740	5.1911	1.0451	9.2168	1.0292	14.2251	1.0039	104.2359	
	0.99	t.099B	4.1643	1.0940	5.1911	1.0554	9.2168	1.0354	14.2251	1.0047	104.2359	
	ú.91	1.1318	4.1543	1.1197	5.1911	1.0682	9.2168	1.0431	14.2251	1.0056	104,2359	
	0.93	1.1671	4.1643	1.1551	5.1911	1.0851	9.2168	1.0531	14.2251	1.0068	104.2359	
	6,95	1.2558	4.1643	1.2697	5.1911	1.1093	9.2168	1.0570	14.2251	1,0083	104.2359	
	9.97	1.1781	4.1643	1.3084	5.1911	1.1494	9.2168	1.0891	14.2251	1.0107	104.2359	
	0.99	2,4977	4.1643	1.6844	5.1911	1.2418	9.2168	1.1358	14.2251	1.0154	104.2359	

55

a particular a series and

	e je			TABLA 11	DISTRIBUC	IN DE EU	UN ESTARI	17400 Y 5-	+fotw/n Pi	96 IPJ PA7A		la sur e la grif Algenda i grif
				PARCIALMEN	TE PENETRA	NTE EN UN	YACIMIENT) SENI-INFI	NITO (5=0.	05.hwD=100	e tra	
				an an Anna Anna An Anna Anna Anna								
			S=()	S=1	1.11	S=5	5 ⁻	S=1	0	• S=	00
and a star and a second	- aŭ	1	SASTO		6AST0		EASTO		GASTD		CASTO	ang
		ZD	VARIABLE	Sp+fphw/h	VARIABLE	Sp+fphw/h	VAPIABLE	Sp+fphµ/h	VARIABLE	So+fphw/h	VARJABLE	Sp+fehw/h
		0.01	0.9068	4.5083	0.9307	5.5352	0.9641	9.5669	0.9775	14.5692	0.5971	104.5800
		0.03	0.9093	4.5082	0.9311	5.5352	0.9643	9.5509	0.9776	14.5692	0.9771	104.5800
		0,05	0.9068	4.5083	0.9310	5.5352	0.9543	9.5609	0.9776	14.5692	0.9971	104.5800
	2.12	0:07	0.9097	4.5083	0.9315	5.5352	0.9645	9.5509	0.9777	14.5692	0.9971	164.59(*)
		0.07	0.9032	4.5083	0.9314	5.5352	0.9545	9.5609	0.9778	14.5692	0.9971	104,5800
		0.11	0.9085	4.5093	0.9316	5.5352	0.9647	9.5609	0.9779	14.5692	0.9971	104.5800
		0.Ï3	0.9092	4.5083	0.9321	5.5352	0.9650	9.5609	0.9781	14.5692	0.9972	164.5800
		0.15	0.9088	4,5083	0.9326	5.5352	0.9553	9.5609	0.9783	14.5692	0.9972	104,5800
		ő.17	0.9129	4.5083	0.9335	5.5351	Ú.9657	9.5609	0.9786	14.5692	0.9972	104,5600
		0.19	(0,9090)	4.5083	0.9337	5.5351	0.9650	9,5609	0.9789	14.5692	0.9973	104,5600
		ú.21	0.9144	4.5083	0.9349	5.5351	Ú.9656	9.5509	0.9791	14.5692	0.4973	194.5900
		Ú.23	0.9117	4,5083	0.9352	5.5351	0.9670	9.5609	0.9794	14.5192	0.9973	104.5800
		0.25	- 6.9142	4.5093	0.9363	5.5351	0,9675	7.5607	0.9799	14.5892	0.9974	194,5800
		0,27	0.9160	4.5083	0.9373	5.5251	0.9681	9.5609	0.9802	14.5692	0.9975	104.5800
		0.29	0.7153	4.5083	0.9381	5,5351	0.9587	7.5609	0.9806	14.5592	0.9975	164,5800
		6,31	0.9186	4.5083	0.9395	5.5351	0.9694	9.5609	0.9810	14.5592	0.9976	1(4.590)
		0.33	0.9187	4,5081	0.9465	5.5351	0.9701	9.5609	0.9815	14.5692	0.9975	164,5800
		Ú.35	0.5208	4.5083	0.9418	5.5351	0.9769	9.5509	0.9220	14.5592	0.9977	104,5900
a a de come o		ú.37	0.9212	4.5083	0.9432	5.5351	0.9718	9.5609	0,9826	14.5692	0.9978	104.5800
		0.39	Ú.9251	4.5683	0.9450	5.5351	0.9728	9,5509	0.9832	14.5692	0,9979	104,5800
		0,41	0.9255	4.5083	0.9465	5.5351	0.9737	9.5609	0.9B39	14.5692	0.9980	104.5800
والمراجع والمراجع		0.43	0.9277	4.5093	0.9482	5.5351	0.9749	9.5609	0.9846	14.5692	6.9981	104.5799
		Ú.45	0.9303	4.5683	ú.9503	5.5351	0.9760	9.5609	0.9654	14.5692	0.9982	104.5799
		0.47	0.9327	4.5083	0.9523	5.5351	0.9772	9.5509	0.9862	14.5692	0.9983	104.5799
		0:49	0.9350	4.5083	0.9545	5.5351	0.9785	9.5609	0.9870	14.5692	0.9984	104.5799
		0.51	0.9385	4.5085	0.9570	5.5351	0.9800	9.5609	0.9680	14.5691	0.9985	104.5799
		0.55	0.9407	4.5085	0.9594	5.5351	0.9815	9.5609	0.9870	14.5591	0.9987	104,5799
		0.55	0.9437	4.5083	0.9622	5.5351	0.9831	9.5509	0.9900	14.5691	0,9988	104,5799
		0.57	0.9462	4.5083	0.9653	5.5351	0.9849	9.5509	0.9912	14.5691	0.7970	104.5799
		0.54	0.9512	4.3083	0.9684	5.5451	0.9868	9.5609	0.9924	14.5691	0.9991	104.5799
la la compa		0.51	0.9333	4.5083	0.9719	5.5351	0.9959	9.5509	0.9938	14.5691	0.9993	104.5799
		0.65	0.9695	4.5085	0.9758	5.5351	0.9911	9.5609	0.9952	14.5691	0.9995	104.5799
		0.63	0.7040	4.0083	0.9/99	2,2221	0.4422	9.5609	0.9958	14.5671	0,9997	104.5/47
		0.6/	0.9702	4.3085	0.9844	2.2721	0.9951	9.5608	0.9965	14.5691	1,0000	104,5799
		0.59	0.9758	4.2082	0,9894	5.5351	0.9990	9.5508	1.0003	14.5691	1.0002	104.5799
		0.71	0.9823	4.3082	0.9948	5.5351	1.0921	9.5508	1.0023	14.5691	1.0005	104.5799
		0.75	0.7073	4.3082	1.0008	2.2721	1.0035	9,5608	1.0045	14.2671	1.0007	104.5/99
		0,73	0.4474	4,2082	1,0075	2.2721	1.0072	9.3608	1.0069	14.5691	1.0011	104.5799
an a sa ang pang pang dari T		N.11. 1. 70	- 1.0001 + A177		1.0151	3.3001	1.0125	9.5508	1.0096	14.3591	1,0014	104.5/99
		0.17	1.0152	* 50002 * 5000	1.0236	2.0001	1.0277	7.2608	1.0120	14.2071	1.0016	104.3/99
		0.01	1.0200	4.0004 A ECOD	1.0417	5.5351	1.0200	7.000 0.5/00	1.0107	14.0071	1.0022	104.0779
		0.03	1.0413	4 EACO	1.044/	5,5331	1 0210	9 ELNO 9 ELNO	1.0244	14.3671	1.6577	104.3777
		0.00	1.0072	5 FAQD	1.0741	5 5751	1 0452	9 5400	1.0291	14 5691	1.0003	103 5700
		9,0/	1.0704	1.3002	1 6084	J.J.J.J.J.J. 5 5751	1.0402	0 51AG	1.0256	14.3271	1.0024	163 5700
		107	1.1700	******* * \$63*	1 (100	5 5751	1.0004	7.0000	1.0000	14.3071	1.00947	10410/14
		0.071	1 1127	5.3082 3.5433	1.1177	5,53331	1.0657	7.JOUD 9.5600	1.0573	14,0071	1.0005	104.0/74
		0.73	1,10/1	4.6002 8.6660	1.1002	5 5751	1.0032	9.5469	1.0331	15.0071	1.0000	101 5790
		6 97	1 1707	4.5052	1 7065	5 5751	1 1495	9.5462	1 0501	14 5691	1 0160	104 5799
		A 66	1+1/04 D //076	1.000L 1.5000	1 10/5	5 5751	1.1473	0 5400	1.1756	14.5691	1.0153	104 5790
			T / D		110090	1.000	1 1 4 1 7 4 1	1100000	111400	17100/1	112107	

qihw/qw

TARLA 12.- DISTRIPUCION DE FLUID ESTABILIZATO Y So+fohw/h PARA (N POZO PARCIALMENTE PENETPANTE EN UN VACIMIENTO SEMI-INFINITO (b=0.025,hwD=100)

		S=0		5=1		S=	5	S=	10	5=1	100	
		GASTO		GASTO		GASTO		GASTO		GASTO		
	ZD	VARIABLE	So+fphu/h	VARIABLE	Sp+fphw/h	VARIABLE	Sp+fphw/h	VARIABLE	Sa+fphw/h	VARIABLE	So+tohu/h	
	0.61	0,9070	4.7078	0.9369	5.7346	0.9642	9.7604	Ú.9776	14.7586	0.9571	104.7794	
	0.03	0.9094	4.7078	0.9312	5.7345	0.9543	9.7604	0.9776	14.7685	0.9971	104.7794	
	0:05	0.9049	4.7075	0.9311	5.7346	0.9614	9.7664	0.9777	14.7686	0.9971	104.7794	
	0.67	0.9098	4.7078	0.9315	5.7344	0.9545	9.7604	0.9779	14.7686	0.9971	104.7794	
	0.09	0.9097	4.7078	0.9315	5.7346	0.9426	9 7404	0.9778	14.7686	0.5571	104.7794	
	0.11	0.9084	4.7678	0.9317	5.7344	0.9548	9.7604	0.9780	14.7496	0.9971	104 7794	
	0.13	0.9093	4.7678	0.9321	5 7346	0 9650	9 7604	0.9781	14 7494	A 5977	164 7794	
	0.15	0.9098	4,7678	017021	5.7346	0.9454	9 7404	0.9793	14.7600	0.9972	101.7793	
	6 17	0.9130	4 7076	0.0734	5 7344	0.9450	9 7403	0.9784	14 7484	6 9575	105 7703	
	6 19	6 9696	4 7079	0.7000	5.734	0.7650	7.7000	0.7700	14.7600	A 9973	103 7793	
	0.51	6 9125	1 7076	6 0756	5 7746	0.7001	0 7403	A 9701	13 7404	6 0973	103.7704	
	0.57	0.7150	A 7670	0.7550	5 77.1	0,7000	7.7000	0.7771	14.7000	0,7774	104.7774	
	0.10	0.0142	4.7070	0,7000	5 7744	0.7070	7,7055	0.7779	14,7000	0.7174	104.7774	
	6.23	- A 0121	A 7670	0.1004 3 atts	5 7744	0.707J	7.7203	0.7.70	14.7000	0.0075	10417774	
	0.20	···	4.7070	0.73/4 A 6701	517540	0,7001	7.7893	0.7072	14.7020	0,77(J A. COTE	104.7774	
	0.27	A 0107	4.7078	0.7002 A 0701	2./340	0.765/	9.7693	0.9606	14.7555	0.9970	104.7774	
	0.31	0.7167	4,7070	9.737a A 01A/	0.7040	0.7074	9.7603	0.9810	14.7586	0.9975	104.7794	
	0.00	0.0060	4.7075	0.7400	J./348 5 774/	0.7701	9.7603	0.7813	14./686	0.9975	104.7744	
	0.00	0.7200	4.7079	0.9419	3.7345	0.9709	9.7603	0.9820	14.7696	0.9977	104.7794	
- 1	0,37	0.9215	4.7078	0.9452	5./346	0.9718	9.7605	0.9825	14.7686	0.9978	104.7754	
	0.37	0.9231	4.7073	0.9401	5./345	0.9728	9.7603	0.9832	14.7686	0.9979	104,7794	
	0.41	0.7233	4.7078	0.9463	5./346	0.9757	9.7603	0,9819	14.7686	0.9980	104.7794	
	0.45	0.72/0	4.7077	0.7463	J./240 5 774/	0.07/48	7.76.3	0.9846	14,7686	0.4481	104.7794	
	0.43	0.7505	4.7077	0.7303	5.7345	0.9769	9.7603	0.9804	14.7696	0.9982	104.7794	
	0.47	0.7327 A 0754	4.7077	0.9323	3.7345	0.9772	4.7602	0.9862	14.7686	0.9983	104.7794	
	0.47	0.7330	4.7077	0.9343	3./345	0.9796	9.7603	0.9870	14.7686	0.9984	104.7794	
	0.51	0.0407	4.7077	0.9370	3./246	0,9800	9.7503	0.9880	14.7686	0.9985	104,7794	
	0.00	0.7407	4.7077	0.9394	J./346	0.7513	9,7603	0.9890	14.7686	0.9987	104.7794	
	0.55	0.7437	4.7077	0.7022	3./340	0.9831	9.7603	0.9900	14.7666	0.9988	104.7794	
	0.50	0.7462	1.7077	0.7633	3./340	0.7849	9.7603	0.9912	14.7685	0.9990	104.7794	
	0.37	0.7312	4.7077	0.9584	3./346	0.9868	9.7603	0.9924	14.7685	0.9991	104.7794	
	0.01	0.9352	4.7077	0.9/19	5./346	0.4884	9.7603	0.9938	14.7686	0.9993	104.7794	
	0.65	0.9502	4.7077	0.9758	5.7346	0.9911	9.7603	0.9952	14.7685	0.5995	104.7794	
	0.60	0.9643	4.7077	0.9/97	5./346	0.9935	9.7603	0.9959	14.7686	0.9997	104.7794	
	0,6/	0.9702	4.7077	0.9844	5./346	0.9961	9.7503	0.9984	14.7685	0.9999	104.7794	
	0.07	0.9/3/ A 0037	4.7077	0.4843	5.7345	0.9989	9.7603	1,0003	14.7685	1.0002	104.7794	
	0.71	0.7023	* 7072	0.7745	5./345	1.00.1	9.7603	1.0023	14.7686	1.0005	104.7794	
	0.75	0.7070	4.7077	1.0008	0./040 6 774/	1.0055	9.7603	1.0045	14./685	1.0007	104,7794	
	5.73	0.77/4 1 Minut	A 7677	1.0073	5.7746	1.0075	91/603	1.0059	14./695	1.0011	104.7794	
	0.17	1.0001	4.7077	1.0130	5.7745	1.0103	9.7603	1.0095	14.7686	1.0014	104.7794	
	0.01	1.0162	**/9//	1.0250	5.7340	1.0102	9.7603	1.0125	14.7885	1.0018	164.7794	
	0.01	1.0279	4.7077	1.0000	3./340	1.0255	9.7503	1.0109	14./695	1.0022	104.7794	
	0.05	1.0412	4.7077	1.0446	0./340 c 774/	1.0297	9,7593	1.0147	14.7685	1.0927	104.7794	
	0.03	1.03/1	4.7077	1.0350	5.7345	1.0368	7./003	1.0241	14.7685	1.0033	104.7794	
	0.87	1.0763	4.7077	1.0741	3./345 6 7716	1.0452	9.7503	1.0295	14.7685	1.0039	104.7794	
	0.87	1.0999	4.7077	1.0740	5.7343	1.0004	9.7603	1.0355	14./686	1.0047	104.7794	
	0.41	1.1319	4.7077	1.1198	5./345	1.0682	9.7603	1.0431	14./686	1.0056	104,7794	
	0.93	1.1572	4.7077	1.1551	5.7345	1.0551	9,7603	1.0531	14.7696	1.0068	104.7793	
	.0.95	1.2658	4,7077	1.2086	5.7345	1.1093	9.7503	1.0670	14.7586	1.0083	104.7793	
	0.97	1.1/81	4.7077	1.3084	5.7345	1.1494	9,7603	1.0871	14.7685	1.0107	104.7793	
	0.77	2.47/3	9.70	1.5044	3./343	1.2418	4./203	1.1.57	14.7686	1.0154	194.7793	

alhw∕qw

State of the second Para validar los resultados de la ecuación (54) se realizo una comparación de los resultados obtenidos en este estudio con los obtenidos por otros autores (tabla 13) para S=0. La figura 23 muestra una gráfica de S_p contra b para varios valores de h_{un} (tabla 14).

TABLA 13. - COMPARACION DE VALORES DE DAÑO POR PENETRACION PARCIAL DE ESTE ESTUDIO CON KUCHUK/KIRWAN, STRELTOSOVA Y BRONS/MARTINE, S=0

h_{wD} = 50

b este estudio kuchuk/kirwan s	TRELTOSOVA	BRONS/MARTING
0.1 35.022 34.911	36.067	34.898
0.2 14.760 14.646	15,222	15.686
0.4 5.007 4.891	5.169	4.692
0.6 1.985 1.871	2.033	2.949
0.8 0.635 0.537	0.614	1.034
1.0 0	·	· ·

ne Galerian (States) and an angle $h_{\omega D} = 100$

0.1 41.254	41.440	42.256	41,137
0.2 17.529	17.563	17.970	18.453
0.4 6.045	6.002	6.196	5.732
0.6 2.446	2.377	2.487	3.411
0.8	0.737	0.782	1.207
1 0	-	→	

TABLA 14.- PSEUDODANO POR PENETRACION PARCIAL SP PARA POZOS TERMINADOS EN LA CIMA O EN EL FONDO DE LA FORMACION

(lien)	50	100	250	500	1000	5000
j s du						
1.0000	0.00	0,00	0.00	0.00	0.00	0.00
0.5000	G.16	3.85	4.77	5.45	6.16	7.77
jo.3333	5.91	8.29	10.12	11.51	12.90	15.11
0.2500	10,80	12.87	15.62	17.70	19.78	24.61
0.2000	14.76	17.53	21.19	23.97	25.74	33.18
0.1667	18.77	22.23	26.81	30.27	33.74	41.79
0.1429	22.30	26.96	32.45	36.61	40.77	50.43
0.1250	26.86	31.71	38.12	42.97	47.82	59.09
0.1111	30.93	36.47	43.80	49.35	54.89	67.77
0.1000	35.02	41.25	49.50	55.74	61.97	76.46
0.0909	39.12	46.04	55.20	62.14	69.07	85.15
0.0833	43.22	50.84	60.92	68.54	76.17	93.87
0.0749	47.34	55.65	65.54	74.96	83.27	102.59
0.0714	51.45	60.45	72.37	81.38	90.39	111.31
0.0667	55.58	55.27	78.10	87.80	97.51	120.04
0.0625	59.71	70.09	83.83	94.23	104.63	128.77
0.0588	63.84	74,92	89.58	100.67	111.76	137.51
0.0556	67.97	79.75	95.32	107.10	118.87	146.25
0.0526	72.11	84.58	101.07	113.54	125.02	154.99
0.0500	76.25	89.41	106.82	119.99	133.16	163.73
0.0476	80.40	94.25	112.57	126.43	140.29	172.48
0.0455	84.54	99.09	118.32	132.88	147.44	181.23
0,0435	88.69	103.93	124.08	139.33	154.58	189.99
0.0417	92.84	108.77	127.84	145.78	161.72	178.74
0.0400	96.99	113.61	135.60	152.23	168.87	207.50
0.0385	101.15	118.46	141.36	158.67	176.02	216.25
0.0370	105.30	123.31	147.13	165.15	183.17	225.01
0.0357	109.45	128.15	152.89	171.60	190.32	233.77
0.0345	113.61	133.01	158.66	178.05	197.47	242.54
0.0333	117.77	137.86	164.42	184.52	204.63	251.30
0.0323	1.1.93	142.71	170.19	190.99	211.78	260.05
0.0313	126.09	147.56	175.96	197.45	218.94	268.63
0.0303	130.26	152.42	181.73	203.91	226.09	277.59
0.0294	134.42	157.27	187.50	210.38	233.25	286.30
0.0286	138.58	162.13	193.28	216.84	240.41	295.13
0.0278	142.75	165.78	199.05	223.31	247.57	303.90
0.0270	146.91	171.84	204.82	229.78	254.73	312.67
0.0263	151.08	176.70	210.60	236.24	261.89	321.44
0.0256	155.24	181.56	216.37	242.71	269,05	330,21.
	159.41	185.42	222.15	249.18	276.21	338.98
0.0244	143.58	191.28	227.93	255.65	283.38	347.75
0.0238	167.75	196.14	233.70	262.12	290.54	356.53
0.0233	171.92	201.00	239.48	268.59	297.70	365.30
0.0.27	176.09	205.87	245.26	275.04	304.87	374.07
0.0222	180.26	216.73	251.04	281.53	312,03	382.95
0.0217	184.43	215.59	256.82	288.01	319.20	391.62
0.02131	188.50	220146	262.60	294.48	326.36	400.40
0.0208	192.77	225.32	268.38	300.95	333.53	109 17
4.0204	198.94	230.18	274.15	307.43	340,70	417.99
6.0000	201,121	235.05	279.94	313.90	347.87	426.73

- spin (

a at an Las

V.- SOLUCION PARA UN YACIMIENTO FINITO

A.- FACTORES DE DANO YACIMIENTO FINITO

Para este caso, la solución de línea fuente de acuerdo a la ecuación (35) puede ser expresada como:

$$P_{D}(z_{D},h_{D}) = \frac{1}{4} \sum_{n=-\infty}^{\infty} \left[\ln \frac{\sqrt{1/(z_{D}+2nh_{D}+h_{D})^{2}+1} +1}{\sqrt{1/(z_{D}+2nh_{D}+h_{D})^{2}+1} -1} \right]$$

$$\ln \frac{\sqrt{1/(z_p + 2nh_p - h_p)^2 + 1} + 1}{\sqrt{1/(z_p + 2nh_p - h_p)^2 + 1} - 1}$$

Aplicando la ecuación (49), la ecuación (55) puede escribirse como:

(55)

$$2P_{D}(z_{D},h_{D}) = \sum_{n=-\infty}^{\infty} \left[\frac{\ln \frac{z_{D}+2nh_{D}+h_{D}+\sqrt{(z_{D}+2nh_{D}+h_{D})^{2}+1}}}{z_{D}+2nh_{D}+\sqrt{(z_{D}+2nh_{D}-h_{D})^{2}+1}}} \right]$$
(56)

y la ecuación (35) de la siguiente manera:

$$P_{D}^{(1,z_{D},S,\omega)} \frac{h_{wD}}{h_{D}} = \sum_{v=1}^{N} \frac{q_{v}}{q}$$

$$\sum_{n=-\infty}^{\infty} \left[1_{n} \frac{z_{0} + 2nh_{D} + h_{wD} \frac{1}{N} + \sqrt{(z_{D} + 2nh_{D} + h_{wD} \frac{1}{N})^{2} + 1}}{z_{D} + 2nh_{D} + h_{wD} \frac{1}{N} + \sqrt{(z_{D} + 2nh_{D} - h_{wD} \frac{1}{N})^{2} + 1}} \right]$$

+
$$\ln \frac{z_{D} + 2nh_{D} - h_{wD} \frac{1 - 1}{N} + \sqrt{(z_{D} + 2nh_{D} - h_{wD} \frac{1 - 1}{N})^{2} + 1}}{z_{D} + 2nh_{D} + h_{wD} \frac{1 - 1}{N} + \sqrt{(z_{D} + 2nh_{D} + h_{wD} \frac{1 - 1}{N})^{2} + 1}} \right] + 2S \frac{q(z_{D})}{q} (57)$$

Ahora, sustituyendo las ecuaciones (56) y (57) en (46):

Ahora, sustituyendo las ecuaciones (56) y (57) en (46):

$$2S_{P+f[2]}(h_{WD}, b, S) = \frac{h_{WD}}{h_{D}} = \sum_{i=1}^{N} \frac{q_{i}}{q_{i}} \sum_{n=-\infty}^{\infty} \left[\frac{1}{1-\frac{1}{n}} \left[\frac{1}{1-\frac{1}{n}} \right] \right]$$

$$\ln \frac{z_{D}^{+2nh}_{D}^{+h}_{wD}\frac{1}{N} + \sqrt{(z_{D}^{+2nh}_{D}^{+h}_{wD}\frac{1}{N})^{2} + 1}}{z_{D}^{+2nh}_{D}^{-h}_{wD}\frac{1}{N} + \sqrt{(z_{D}^{+2nh}_{D}^{-h}_{wD}\frac{1}{N})^{2} + 1}}$$

$$\ln \frac{z_{D}^{+2nh}_{D}^{+h}_{wD}\frac{1}{N}^{+}\sqrt{(z_{D}^{+}2nh_{D}^{+h}_{wD}\frac{1}{N})^{2}+1}}{z_{D}^{+2nh}_{D}^{-h}_{wD}\frac{1}{N}^{+}\sqrt{(z_{D}^{+}2nh_{D}^{-h}_{wD}\frac{1}{N})^{2}+1}}$$

$$\ln \frac{z_{D}^{+2nh}_{D}^{+h}_{wD}\frac{1-1}{N}^{+}\sqrt{(z_{D}^{+}2nh_{D}^{+h}_{wD}\frac{1-1}{N})^{2}+1}}{z_{D}^{+2nh}_{D}^{+h}_{wD}\frac{1-1}{N}^{-}+\sqrt{(z_{D}^{+}2nh_{D}^{+h}_{wD}\frac{1-1}{N})^{2}+1}}\right]$$

$$+2S \frac{q(z_{D})}{q} - \frac{h_{wD}}{h_{D}} \sum_{n=-w}^{\infty} \left[\ln \frac{z_{D} + 2nh_{D} + h_{D} + \sqrt{(z_{D} + 2nh_{D} + h_{D})^{2} + 1}}{z_{D} + 2nh_{D} + \sqrt{(z_{D} + 2nh_{D} - h_{D})^{2} + 1}} \right]$$

(58)

Por lo tanto, aplicando la condición de la ecuación (48) obtenemos:

$$\sum_{i=1}^{N} \frac{q_{i}}{q} \sum_{n=-\infty}^{\infty} \left[\ln \frac{\frac{A + \sqrt{A^{2} + 1}}{B + \sqrt{B^{2} + 1}}}{\frac{A + \sqrt{A^{2} + 1}}{B + \sqrt{BB^{2} + 1}}} + \ln \frac{\frac{C + \sqrt{C^{2} + 1}}{D + \sqrt{D^{2} + 1}}}{\frac{CC + \sqrt{CC^{2} + 1}}{D + \sqrt{D^{2} + 1}}} \right]$$

$$+ 2S \left(\frac{q_{(j)}}{q} - \frac{q_{(j+1)}}{q} \right) = \frac{h_{wD}}{h_{D}} \sum_{n=-\infty}^{\infty} \ln \frac{\frac{E + \sqrt{E^{2} + 1}}{EE + \sqrt{EC^{2} + 1}}}{\frac{EE + \sqrt{EC^{2} + 1}}{EE + \sqrt{EC^{2} + 1}}}$$
(59)

para j=1, N-1, 이는 이 것 같은 이렇는 것은 것이다. 그는 것은 가격이 있는 것이 같이 같이

N

donde 94<u>9</u>0400

$$A = \frac{h_{wD}}{N} (j-1/2 + 2nRN + i) \qquad A \Lambda = \frac{h_{wD}}{N} (j+1/2 + 2nRN + i)$$

$$a = \frac{h_{wD}}{N} (j-1/2 + 2nRN + i)$$

 $C = \frac{h_{wD}}{N} (j-1/2+2nRN-j+1) \qquad CC = \frac{h_{wD}}{N} (j+1/2+2nRN-j+1)$

$$D = \frac{h_{wD}}{N} (j-1/2+2nRN+i-1) \qquad DD = \frac{h_{wD}}{N} (j+1/2+2nRN+i-1)$$

$$E = \frac{h_{wl}}{N} (j - 1/2 + 2nRN + RN) \qquad EE = \frac{h_{wD}}{N} (j + 1/2 + 2nRN + RN)$$
$F = \frac{h_{wD}}{N} (j-1/2+2nRN-RN) \qquad FF = \frac{h_{wD}}{N} (j+1/2+2nRN-RN)$

Nuevamente se tiene un sistema de N ecuaciones con N incógnitas. En este caso, la solución de las ecuaciones (59) y (38) nos determina el diagrama de flujo y la solución de la ecuación (58) nos da el daño adimensional S_{p+fp} . En el apéndice B se presenta el programa de computo para determinar el perfil de flujo y el daño adimensional S_{p+fp} para un pozo parcialmente penetrante con una zona dañada a su alrededor de permeabilidad k_s menor que la permeabilidad de la formación k. El numero de términos que se utilizó en la serie infinita fue de 11(-5,-4,...,5), con los cuales se obtiene una buena aproximación³². Los resultados obtenidos son similares a los obtenidos para un yacimiento semi-infinito (tablas 15 y 16, figura 24), por lo que podemos escribir la ecuación (58) de la siguiente forma:

$$S_{P+fP}(h_{wD}, b, S) = \frac{1}{2} \cdot \frac{1}{b} \sum_{n=-\infty}^{\infty} \left[\ln \frac{h_{wD}(1.75+2/bn) + \sqrt{(1.75+2/bn)^2 h_{wD}^2 + 1}}{h_{wD}(-0.25+2/bn) + \sqrt{(-0.25+2/bn)^2 h_{wD}^2 + 1}} \right]$$

$$\frac{S}{b} = -\frac{1}{2} \sum_{n=-\infty}^{\infty} \left[\ln \frac{h_{wD}(0.75 + 2/bn + 1/b) + \sqrt{(0.75 + 2bn + 1/b)^2 h_{wD}^2 + 1}}{h_{wD}(0.75 + 2/bn - 1/b) + \sqrt{(0.75 + 2bn - 1/b)^2 h_{wD}^2 + 1}} \right]$$

(60)

La ecuación (60) únicamente es válida cuando el intervalo abierlo al flujo está localizado en la cima (fondo) de la formación productora.

TABLA 15.- DISTRIBUCION DE FLUJO ESTABILIZADO Y Sp+fphw/h PARA UN POZO PARCIALMENTE PENETRANTE EN UN YACIMIENTO FINITO (b=0.1,hwD=100)

1.141	5=	0	S=1		5=	5	5=	10	S=	00
	GASTO		GASTO		GASTO		GASTO		GASTO	
ZĐ	VARIABLE	Sp+fphw/h								
0.05	0.9108	4.1351	0.9320	5.1545	0.9646	9.1770	0.9778	14.1847	0.9971	104.1946
0.10	0,9115	4.1351	0.9326	5,1545	0.9649	9.1770	0.9780	14.1847	0.9971	104,1948
0.14	0.9129	4.1351	0.9336	5.1545	0.9655	9.1770	0.9754	14.1947	0.9972	104.1948
0.13	0.9139	4.1351	0,9346	5.1545	0.9662	9.1770	0.9768	14.1847	0.9973	104.1948
0.22	0.9153	4.1351	0.9360	5,1545	0.9670	9.1770	0.9794	14.1847	0.9973	104.1945
0.25	0.7183	4,1351	0.9351	5.1544	0.9582	9.1776	0.9801	14.1247	6.9974	104,1948
-0.20	0.9199	4.1351	0,9399.	5.1544	1.9694	9.177)	0.9810	14.1545	0.9976	104,1945
0.34	0.9232	4,1351	0,9425	5.1544	0.9709	9.1770	0.9820	14.1845	0.9777	104,1948
- 0,35	0.9264	4.1354	0.9454	5.1544	0.9726	9.1770	0.9831	14.1846	0.9979	104, 1948
0.42	0.9305	4.1350	0.9488	5.1544	0.9747	9.1770	0.9845	14.1546	0.5920	104,1946
0.45	0.9349	4,1350	0.9526	5.1544	0.9770	9.1770	0.9860	14,1846	0.9953	104.1948
0.50	0.9401	4.1350	0.9571	5.1544	0.9797	9,1770	0.9877	14.1845	0,9935	104.1946
0.54	0.9463	4.1350	0,9623	5.1544	0.9627	9.1770	0.9897	14.1846	0.5533	104.1948
0.58	0.9532	4.1350	0.9683	5.1544	0,9863	9.1770	0.9921	14.1845	0.0991	104,1947
0.62	0,9619	4.1350	0.9754	5.1544	0.9904	9.1769	0.9947	14.1846	0.9594	104.1947
0.85	0.9715	4.1350	0.9837	5.1544	0.9953	9.1769	0.9979	14.1846	0.9999	104,1947
9. 70	0.9835	4.1350	0.9938	5.1544	1.0010	9.1769	1.0015	14.1846	1.000	104.1947
0.74	0,0730	4.1350	1.0059	5.1544	1.0079	9.1769	1.0059	14,1846	1.0007	104.1947
0.72	1.0162	4.1350	1.0212	5.1544	1.0164	9.1769	1.0113	14.1846	1.0016	164,1947
0.92	1.0401	4.1350	1.0410	5.1544	1.0271	9.1769	1.0181	14.1846	1.0025	104,1947
0.20	1.0728	4,1350	1.0681	5.1544	1.0415	9.1759	1.0269	14.1846	1.0036	104.1947
0.70	1.1254	4,1350	1.1088	5.1543	1.0522	9.1769	1.0395	14.1845	1.0051	104.1947
0.94	1,1807	4.1350	1.1801	5.1543	1.0959	9.1769	1.0598	14.1845	1.0075	104.1947
Ú,93	1.7819	4,1350	1.4662	5.1543	1.1872	9.1769	1.1081	14.1845	1.0126	104.1947

છ

TABLA 16.- DISTRIBUCIÓN DE FLUJO ESTABLILIZADO Y EP+formu/h PARA UN POZO PARCIALMENTE FENETPANTE EN UN YACIMIENTO FINITO (S=0,h=D=160)

		5=1 55555	1.199	5=0 07265	0.650	b= EASTO	0.033	51210	0.025	b=0	.020	h=0	.010
	ZD	VARIABLE	Sp+fphw/h	VARIABLE	Sp+fohw/h	VARIABLE	Sp+fpn⊍/n	VARIABLE	Sp+fpnw/h	VARIABLE	Sa+fphw/h	VARIABLE	Sp+fpha/h
e.	0.05	0.9108	4,1351	0.9112	4,5202	0.9112	4.6531	õ.9113	4.7210	0.9113	4.9377	0.9:13	4.9083
	0.10	0,9115	4.1351	6.9119	4.5201	0.9119	4.6531	0.9120	4,7210	0.9120	4,9377	0,9120	4.9393
	0,14	0.9128	4.1251	0.9131	4.5201	0.9131	4.6531	0.9132	4,7209	0.9132	4.9377	0.9133	4,9383
	0.18	0.9139	4.1251	0.5142	4,5201	0.9142	4.6531	0,9143	4.7209	0.9143	4.9377	6.9145	4.9392
	0.22	0.9153	4.1251	0.9155	4.5201	0.9156	4.6531	ú.9155	4.7209	0.9156	9377	0.9155	4.9282
	0.26	0,9193	4:1351	0.9185	4.5201	0.9185	4.6500	0.9185	4,7269	0.9195	4,9377.	0.9188	4.9782
÷	ú:30	-0.7197	4.1351	0.9260	4.5201	0,9201	4.6530	0.9201	4,7209	0.9201	4.9377	0.9201	4.9282
	0.34	0.9232	4.1351	0.9233	4.5201	0.9233	4.6530	0.9234	4.7209	0.9234	4.9377	0.9234	4,9392
	0.38	0.9254	4,1051	0.9255	4.5201	0.9255	4.6530	0.9255	4,7209	0.9265	4.9377	0.9765	4.9382
	0.42	6.9305	4,1350	0.9306	4.5201	0,9305	4.6530	0.9306	4.7209	0.9305	4,9377	6.9345	4.9382
÷	0.45	0.9249	4.1350	0.9349	4.5201	0.9349	4.5530	0,9350	4,7209	0,9350	4.9377	6.9350	4.9782
	9,50	0.9401	4.1350	0.9401	4.5001	0,9401	4,6530	0.9401	4.7207	0.9401	4.9277	6.946)	4.9392
	0.54	0.9463	4.1350	0.9463	4.5201	0.9453	4.6530	0,9463	4.7209	0.9463	4.9376	0.9463	4,9752
	ú.58	0.9532	4.1350	0.9532	4.5201	0.9532	4.6530	0.9532	4.7209	0.9532	4.9376	0.9532	4.9382
	0.5 2	0.9619	4.1350	0.9518	4.5201	0.9619	4.6530	0.9618	4,7209	0.9517	4.9376	0.9517	4.9362
	0.65	0.9715	4.1350	0.9714	4.5201	0.9714	4.6530	6,9714	4.7209	0.9714	4.9375	0,9714	4.9382
	(0.70)	0.9525	4.1050	0.9833	4.5201	0.9933	4.6530	0.9833	4.7209	6.9613	4.9376	0.9833	4.9082
	0.74	0.9960	4.1350	0,9979	4.5200	0.9978	4.6530	0.9978	4.7209	0.9978	4.9376	0.9978	4.9382
	0.79	1.0162	4,1250	1.0160	4.5260	1.0160	4.6530	1.0150	4.7269	1.0160	4.9275	1.0160	4.9382
	(0.92)	1.6401	4.1250	1.0399	4.5200	1.0398	4.6530	1.0398	4.7209	1.0598	4.9376	1.0798	4.9362
-	0.25	1.0725	4.4250	1.0725	4.5200	1.0724	4,6530	1.0724	4.7209	1.0724	4.9376	1.0724	4.9382
	ð,90	1.1254	4.1350	1,1251	4.5200	1.1250	4.6529	1.1250	4.7298	1.1249	4.9375	1.1249	4.9392
	0,94	1.1607	4.1350	1.1603	4,5200	1.1602	4.6529	1,1202	4.7208	1,1902	-4.9376	1.1502	4.9382
	0.99	1.7819	4.1350	1.7812	4.5200	1.7811	4.6529	1.7810	4.7208	1.7810	4,9376	1.7810	4.9322

B.- EXTENSION PARA YACIMIENTOS ANISOTROPICOS

Nosotros podemos considerar un medio poroso en el cual las pormeabilidades horizontales $k_{\mu} - \gamma - k_{\gamma}$ en las direcciones $x - \gamma - \gamma$ respectivamente son iguales, pero diferentes de la permeabilidad k_{μ} . El flujo transitorio de un fluido ligeramente compresible a través de un macio poroso homogéneo y anisotrópico es descrito por la ecuación:

$$\frac{\delta^2 p(r,z,t)}{\delta r^2} + \frac{1}{r} \frac{\delta p(r,z,t)}{\delta r}$$

$$\frac{\frac{k_z}{k_z}}{\frac{\delta^2 p(r,z,t)}{\delta z^{+2}}} = \frac{1}{\eta} \frac{\delta p(r,z,t)}{\delta t}$$

Los efectos gravitacionales fueron considerados despreciables en la ecuación (51). Si nosotros definimos z'=z $|k_r/k_z|$, la ecuación (51) se reduce a la ecuación (2).

(61)

Por lo tanto, todos los resultados obtenidos en las secciones previas también pueden aplicarse cuando el pozo parcialmente penetrante dañado está en un medio poroso anisotrópico. Sin embargo, para este caso redefiniremos las siguientes variables adimensionales:

$$z_{\rm D} = \frac{z}{r_{\rm w}} \int \frac{k_{\rm P}}{k_{\rm Z}}$$
(62)
$$h_{\rm wD} = \frac{k_{\rm w}}{r_{\rm w}} \int \frac{k_{\rm P}}{k_{\rm Z}}$$
(53)
$$h_{\rm D} = \frac{h}{r_{\rm w}} \int \frac{k_{\rm P}}{k_{\rm Z}}$$
(54)

(65) (66)

72

C. EVALUACION DE FACTORES DE DANO

Gringarten y Ramey²⁵ han demostrado que para tiempos pequeños la ecuación (13) se reduce a la siguiente expresión:

$$b P_{D}(r_{D}, r_{D}, t_{D}) = -\frac{1}{2} E_{1}(-r_{D}^{2}/4t_{D})$$
(67)

Esto es que para tiempos pequeños el pozo parcialmente penetrante se comporta como un pozo totalmente penetrante. Si nosotros consideramos, además, una caída adicional de presión debida a la reducción de la permeabilidad de la formación debida a la invasión de fluidos de perforación, la ecuación (67) queda de la siguiente manera:

$$b P_{D}(r_{D}, z_{D}, t_{D}, S) = -\frac{1}{2} E_{1}(-r_{D}^{2}/4t_{D}) + S$$
(68)

Esta ecuación es válida si²⁵:

$$t_n \leq 0.05 \delta_n^2$$

Y.

$$cD = 0.5h_{WD} \langle z \langle z + 0.5h_{WD} \rangle$$
(70)

(69)

El símbolo $\delta_{\rm D}$ representa la distancia vertical adimensional entre el punto en el cual la presión es medida y el extremo más cercano del intervalo abierto. Nosotros podemos representar a $\delta_{\rm D}$ como una función de $z_{\rm DA}$ de la siguiente manera: For lo tanto, δ es función de h_{wD} y S. Cuando incrementa S, el tiempo en el cual la ecuación (68) es válida incrementará:

$$t_{\rm D} \leq 0.05 (1-z_{\rm DA})^2$$
 (72)

(71)

(73)

(74)

De acuerdo a los resultados observados en este estudio, z_{DA}≅ 0.75. Ahora, sustituyendo variables reales utilizando el sistema de unidades inglés:

$$\frac{t_{\rm D}}{h_{\rm wD}^2} = 0.000264 \quad \frac{k_z t_1}{\phi \ \mu \ C \ h_{\rm w}^2} \le 0.003125$$

De acuerdo a la ecuación (73) se concluye que el tiempo durante el cual un pozo parcialmente se comporta como totalmente penetrante es función de k, y $h_{\rm m}$ cuando S tiende a cero.

Para valores grandes de tiempo:

$$t_{\rm D}/r_{\rm D}^2$$
 > 25

$$t_{D} \ge 0.5 h_{D}^2$$

La ecuación (13) puede ser escrita como:

 $P_{D}(r_{D}, z_{D}, t_{D}) = \frac{1}{2} (\ln \frac{t_{D}}{r_{D}^{2}} + 0.80907) + S_{P}$

donde S_pes la caída de presión adimensional adicional debida a la convergencia de los fluidos debida a la penetracion parcial. Ahora, si nosotros consideramos el daño adimensional del pozo S, se ha demostrado en este estudio que la ecuación (76) queda de la siguiente manera:

$$P_{D}(r_{D}, z_{D}, t_{D}, S) = \frac{1}{2} (\ln \frac{t_{D}}{r_{D}^{2}} + 0.80907) + S_{P} + \frac{S}{b}$$
 (77)

(76)

Sustituyendo variables reales en la ecuación (75) utilizando el sistema de unidades inglés:

$$\frac{t_{\rm D}}{h_{\rm D}^2} = \frac{0.000264}{\phi \, \mu \, C \, h_{\rm C}^2} \ge 0.5$$
(78)

Por lo tanto, el tiempo en el cual empieza a ser válida la ecuación (77) es función de $k_{\rm c}$ y h.

De acuerdo a las soluciones anteriores, se indica que el comportamiento de flujo puede ser dividido en 3 periodos de flujo:

(1) Un periodo de flujo radial, durante el cual el yacimiento se comporta como si el espesor de la formación es igual a la longitud del intervalo abierto.

(2) Una zona de transición, en la cual puede presentarse un flujo esférico o semi-esférico (Raghavan y Clark^{ad}).

(3) Un periodo de flujo pseudoradial.

Si se cuenta con datos de presión tanto de flujo radial como pseudoradial, las técnicas convencionales semilog pueden ser usadas. Para analizar el periodo de flujo esférico puede utilizarse el método desarrollado por Raghavan and Clark³⁰que posteriormente se describe.

Se ha demostrado que para

la ecuación (68) puede ser escrita de la siguiente forma con un error del 1%:

$$P_{D}(r_{D},z_{D},t_{D},S) = \frac{1}{2} (\ln \frac{c_{D}}{r_{D}^{2}} + 0.80907) + S$$
 (80)

Sustituyendo variables reales en la euación (80) y utilizando el sistema de unidades inglés:

$$\Delta P = 162.6 \frac{q B \mu}{k_r h_w} (\log t + \frac{\log k_r}{\phi \mu C r_w^2} - 3.2275 + 0.875)$$
(B1)

La ecuación (81) nos indica que la recta semi-log del flujo radial tiene una pendiente igual a:

$$m_1 = 142.6 \frac{q B \mu}{k_r h_w}$$
(B2)

donde m₁ es la pendiente medida de una gráfica de $(\Delta P)_1$ contra log(t). De esta pendiente, la permeabilidad radial k_r puede ser calculada si conocemos el intervalo abierto (éste debe ser medido con molinete): Notese que para determinar k_r no necesitamos conocer el espesor de la formación h, el cual puede ser desconocido si ningún pozo del campo ha penetrado totalmente la formación productora. Rearreglando la ecuación (81) podemos encontrar una expresión para determinar el daÑo del pozo S para t=1 hora:

 $k_{r} = 162.6 \frac{4 \text{ b m}}{m_{1} \text{ h}}$

S = 1.151
$$\left(\frac{(\Delta P_1)_1}{m_1} - \log \frac{k_r}{\phi \,\mu \, C \, r_w^2} + 3.2275\right)$$
 (24)

Ahora, sustituyendo variables reales en la ecuación (77) y utilizando el sistema de unidades inglés:

$$\Delta P = 162.6 \frac{q B \mu}{k_{r} h} (\log t + \log \frac{k_{r}}{\phi \mu C r_{W}^{2}} - 3.2275 + 0.87(S_{p} + \frac{S}{h}))$$

(35)

La ecuación (85) nos indica que la recta semi-log del flujo pseudo-radial tiene una pendiente igual a:

$$m_2 = 162.6 - \frac{q B \mu}{k_p h}$$
 (86)

La permeabilidad radial k_ puede ser calculada de esta pendiente:

$$k_{p} = 1 \pm 2.4 \quad \frac{q \ B \mu}{m_{2} \ h}$$
(B7)

Para determinar k_{r} se requiere conocer el espesor de la formación

h, el cual puede ser calculado de la siguiente relación:

$$\frac{\frac{m_2}{m_1}}{\frac{m_1}{m_1}} = \frac{h}{h} = b$$

Por lo tanto:

h

$$= h_{W} \frac{m_{1}}{m_{2}}$$
(87)

donde h es el espesor neto de la formación que aporta fluidos al pozo.

Rearreglando la ecuación (85) podemos encontrar una expresión para determinar el daño total $\frac{S}{b}$ + S_p para t=1 hora:

$$S_{T} = S_{P} + \frac{S}{b} = 1.151 \left(\frac{(\Delta P_{1})^{2}}{m_{2}} - \log \frac{k_{\Gamma}}{\phi \mu C \Gamma_{u}^{2}} + 3.2275 \right)$$
 (90)

Por lo tanto, de acuerdo a los resultados de este estudio:

$$\mathbf{S}_{\mathbf{p}} = \mathbf{S}_{\mathbf{T}} - \frac{\mathbf{S}}{\mathbf{b}}$$
(91)

Ahora, nosotros podemos determinar la permeabilidad vertical ya que conocemos el valor de S_p y b utilizando la solución de Fapatzacos³⁷ o la solución de Cinco Ley , Ramey y Miller³⁵, como se verá en el ejemplo de aplicación.

Para el caso de un pozo desviado:

(88)

$$S_T = S_p + S_p + \frac{5}{12}$$

ESTA TESIS NO DEBE

ANALISIS DEL PERIODO DE FLUJO ESFERICO O SEMIESFERICO

Carslaw y Jaeger³⁰ (y Moran y Flinkeä³⁰) demostraron que la caida de presión debida a una esfera localizada en un medio poroso anisotrópico infinito puede ser expresada por

$$\Delta P(r_{g},t) = \frac{141.2 \ q\mu B}{2r_{g}k_{r}} \ erfc \left[\left(\frac{0.25 \ \phi\mu Cr_{g}^{2}k_{r}}{0.000264 \ k_{r}^{2}k_{z}} \right)^{1/2} \right]$$
(92)

donde ($r_s = \sqrt{r^2 k_z / k_r + z^2}$) es la distancia radial en el sistema de coordenadas esféricas. Usando las definiciones de presión y tiempo adimensional

$$P_{D}(r_{sD},t_{D}) = \frac{h}{2r_{s}} \operatorname{erfc} \left[\left(\frac{0.25 \ k_{T} r_{s}^{2}}{r_{w}^{2} \ k_{z} \ t_{D}} \right)^{1/2} \right]$$
(93)

Dos métodos de obtener el radio esférico ideal del pozo (S=O) han sido presentados en la literarura^{40,41}. La primera aproximación iguala las áreas abiertas al flujo, cilíndricas y esféricas. Fara este caso, los radios cilíndricos y esféricos son relacionados por Culham⁴⁰:

$$r_{swi} = \sqrt{r_w h_w / 2} \sqrt[4]{k_z / k_r}$$
(94-a)

La segunda aproximación iguala la distritución de presión debida a fuerzas esféricas y cilíndricas iguales. Esta expresión, presentada por Rodríguez-Nieto y Carter⁴¹ es

$$\mathbf{r}_{SWi} = \mathbf{h}_{W} \left[\ln \left(\frac{0.5 + \sqrt{0.25 + 1/h_{WD}^2}}{-0.5 + \sqrt{0.25 + 1/h_{WD}^2}} \right) \right]^{-1}$$

Ambas ecuaciones, (94-a) y (94-b), incorporan el efecto de anisotropia del medio. La ecuación (94-b) tiene una base teórica; sin embargo, la (94-a) no la tiene. Raghavan y Clark³⁰ demostraron que la aproximación sugerida por Rodríguez-Nieto y Carter¹¹ es superior a la sugerida por Culham⁴⁰.

Por lo tanto, utilizando la definición de espesor adimensional de la formación podemos escribir la ecuación (73) como

$$P_{D}(r_{SwD}, t_{D}) \cong P_{D}(1, z_{D}, t_{D}) = H_{D} \operatorname{erfc}\left[\frac{h_{D}}{4H_{D}}\left[\frac{1}{t_{D}}\right]\right]$$
(95)

donde $H_D = h/2r_{swi}$. Como es bien conocido, para pequeños valores del argumento (<0.1), la función error complementaria puede ser representada como sigue:

$$erfc(x) = 1 - \frac{2}{\sqrt{\pi}} x$$
 (96)

For lo tanto, la ecuación (92) puede ser escrita como

$$\Delta P(r_{swi},t) = \frac{141.2 \ q\mu B}{2 \ r_{swi}k_r} - \frac{2452.91 \ q\mu B \sqrt{\phi\mu C}}{k_r k_z^{1/2}} \frac{1}{\sqrt{t}}$$
(97)

y la ecuación (95) como

$$F_{D}(1,z_{D},t_{D}) = H_{D} - \frac{h_{D}}{2\sqrt{\pi}} \sqrt{\frac{1}{t_{D}}}$$
(98)

La ecuación (97) indica que la calda de presión es una función lineal de $1/\sqrt{t}$. La pendiente de ΔP vs. $1/\sqrt{t}$ es la siguiente:

2452.91 qμΒ√φμC k_rk^{1/2}

La ecuación (99) contiene dos incógnitas $(k_{_{\Gamma}} \ y \ k_{_{2}})$. Normalmente, $k_{_{\Gamma}}$ puede ser calculada de los periodos de flujó radial y pseudoradial. Por lo tanto, podemos determinar la permeabilidad vertical k_

$$k_{z} = \left(\frac{2452.91 \ \mu B \left(\phi \mu C \right)}{k_{z} \ m_{z}} \right)^{2}$$
(100)

(99)

(102)

La ecuación (97) deberá ser usada únicamente si consideramos el daño del pozo S despreciable, o de lo contrario tendrá que ser tomado en cuenta.

Si suponemos el daño S adicional de la misma forma que en el periodo de flujo radial y pseudoradial

$$b_{sp} = \frac{141.2 \ q\mu B}{2r_{sw}k_{r}} = \frac{141.2 \ q\mu B}{k_{r}h} \left(\frac{h}{2r_{swi}} + \frac{s}{b}\right)$$
(101)

Por lo tanto, considerando el daño adimensional S podemos escribir la ecuación (97) como

$$\Delta P(r_{swi}, t, S) = \frac{141.2 \ q\mu B}{k_r} \left(\frac{1}{2r_{swi}} + \frac{S}{h_w}\right)$$

$$\frac{2452.91 \text{ q}\mu\text{B} \sqrt{\phi\mu\text{C}}}{k_{r} k_{z}^{1/2}} \frac{1}{\sqrt{t}}$$

La ordenada al prigen de AP vs. 1/ t es la siguiente:

$$b_{sp} = \frac{141.2 \ q\mu B}{k_{r}} \left(\frac{1}{2r_{swi}} + \frac{s}{h_{w}} \right)$$

S

de donde podemos determinar el daño adimensional S:

$$= \frac{b_{sp}k_{r}h_{w}}{141.2 q\mu B} - \frac{h_{w}}{2r_{sw1}}$$
(104)

(103)

Por lo tanto, podemos concluir que la pendiente m_{sp} es independiente del daño adimensional S, y que cuando el daño admensional S es diferente de cero, el radio esférico real del pozo puede ser aproximado por la siguiente expresión:

Y la permeabilidad horizontal k_:

$$r = \frac{141.3 \ q\mu B}{2 \left(\frac{2S}{h_{\mu}} + \frac{1}{r_{swi}}\right)^{-1} b_{sp}}$$
(106)

Fara determinar la permeabilidad horizontal k_r , sin embargo, la permeabilidad vertical k_z debe ser conocida porque r_{swi} es función de k_z . Esto requerirá un calculo por ensayo y error utilizando las

ecuaciones (74-b), (79) y (106), que unicamente podrá realizarse cuando el daño adimensional S,sea conocido. Para el caso en que el intervalo abierto esté localizado en la cima o en el fondo de la formación, entonces el flujo tiende a ser semi-esférico, más que esférico. En este caso hay que considerar que el pozo produce el doble de su producción.

D.- EJEMPLO DE APLICACION

ANALISIS E INTERPRETACION DE LA CURVA DE INCREMENTO DEL POZO UNAM 1 (TECOMINDACAN 446)

Para realizar el análisis de los datos de presión se utilizó el Sistema Automatizado de Pruebas de Presión (SAPP) desarrollado por el Instituto Mexicano del Petróleo y la Universidad Nacional Autónoma de México.

De la interpretación de la curva de incremento de presión realizada el 11 de octubre de 1989 se concluye lo siguiente:

1.- El comportamiento de la función derivada define la presencia de un pozo parcialmente penetrante, determinándose tres periodos de flujo⁴¹ (figura 27):

a) flujo radial (n = 0)
b) periodo de transición (n = -0.32)
c) flujo pseudoradial (n = 0)

2.- Del anàlisis del flujo radial se determinó que el poco está estimulado, como se nuestra a continuación:

analisis semilogaritmico (MDH y Horner)

MDH (figura 29) HORNER (figura 31) k_h_ = 1099 md-pie k_h_ = 1094 md-pie

k_ = 8.33 md k = 8.38 md S = -2.64S = -2.66 $\Delta P_{=} = -612.6 \text{ lb/pg}^2$ $\Delta P_{=} = -618.9 \text{ lb/pg}^2$ EF = 1.29

3.- En el periodo de transición no se alcanzó flujo esférico debido a que la relación entre el intervalo abierto al flujo y el espesor de la formación b no es menor a 0.1, como se demostrará posteriormente, y, por lo tanto, no fue analizado.

4.~ Del periodo de flujo radial y pseudoradial se determinó la relación entre el intervalo abierto al flujo y el espesor de la formación b, el espesor efectivo de la formación h, el pseudodaño por penetración parcial S_p y la permeabilidad vertical k₁.

> b = 0.45 h = 235.2 pies $S_{\text{P}} = 7.90$ $k_{2} = 0.38 \text{ md}$

analisis semilogaritmico (MDH y HORNER) y curva tipo de

<u>flujo</u> <u>radial</u>

MDH (figura 30)	HORNER (figura 32)	CURVA TIPO (figura 28)
k _r h = 2388 md−pie	k_h = 2009 md-pie	k_h = 2042 md-pie
k = 8.37 md	k = 8.38 md	k = 7.16 md
$S_{T} = 2.16$	$S_{T} = 2.17$	S _T = 0.82
$\Delta P_{ST} = 230.5 ls/pg^2$	$\Delta P_{ST} = 230.9 \text{ lb/pg}^2$	$\Delta P_{ST} = 102.1 \text{ lb/pg}^2$
	FF = 0.94	

5.- El resultado obtenido de permeabilidad vertical del flujo radial y pseudoradial transitorios nos indican que se trata de un yacimiento anisotrópico, además de determinarse que el pozo está estimulado, por lo que este ejemplo demuestra la confiabilidad de la determinación de la permeabilidad vertical de pruebas de presión en pozos parcialmente penetrantes. En este caso, para poder analizar el periodo de transición, es necesario determinar el perfil de flujo en este periodo, el cual es función de tiempo y espacio debido a que no se alcanzó el flujo esférico (gasto constante), siendo éste un tema de posteriores trabajos.

6.- RESULTADOS OBTENIDOS

 $k_r = 8.38 \text{ md}$ $k_z = 0.38 \text{ md}$ $S_T = 2.16$ $S_p = 7.90$ $S_{\theta} = 0$ S = -2.64h = 2E5.2 pies

P D Z O U. N. A. M.

CURVA DE INCREMENTO 11/10/89 Datos utilizados en el analisis

> $P_{i} = 9812 \ 1b/pg^{2}$ T_y = 289⁰F P_b = 3545 1b/pg² R_c = 196 pies³/pie³ $B_{o,i} = 1.601 \text{ pies}^8/\text{pie}^9$ $P = 5292 \, lb/pg^2$ $P_{wf} = 4753.64 \text{ lb/pg}^2$ $P_{wfc} = 4720.82$ B_ = 1.725 pies³/pie³ (figura 26) $\mu_{p} = 0.235 \text{ cp}$ $C = 20.96 \times 10^{-6}$ (1b/pg $\phi = 0.032$ S = 0.106 r_w = 0.27 pies h_ = 131.2 pies $q_{\rm p} = 4441 \text{ bls/dia}$ t_ = 34824 hrs

Pws (lb/pg2) (Thousando)

(Cpq/dl) qC

FIG. NO. 28 .-AJUSTE DE LA CORRELACION CORINE/SAPP EN LA PRUEBA DE PRESION DEL POZO U. N. A. M. 1 11/0CT/89

FIG.NO.²⁹. -APLICACION DE LA TECNICA MDH A LOS DATOS DEL POZO U. N. A. M. 1 11/0CT/89

FIG.NO. 30 -- APLICACION DE LA TECNICA MDH A LOS DATOS DEL POZO U. N. A. M. 1 11/0CT/89

FIG. NO. 31. -APLICACION DE LA TECNICA DE HORNER A LOS DATOS DEL POZO U. N. A. M. 1 11/0CT/89

FIG. NO. 32. -APLICACION DE LA TECNICA DE HORNER A LOS DATOS DEL POZO U. N. A. M. 1 11/0CT/89

AN ANTAL ANTALYSIS DE PRUSSAN DE PRESION. AGAPTA ANTALYSIS DE PRESION ANTALYSIS DE PRESION ANTALYSIS ANTALYSIS

> UNIVERCIDAD ANGICAAL AUTOMENA DE MEXILO INSTITUTE OF (ICANO DEL PETROLEC

hees

16

PCDD : UNAM 1 FECHA : 11/GDT/39 「「「「「「「「「「」」」」

ANALISTA : BAUL ÉARRON TORRES NPERADOR : P E M E X

t fillen

an a	an an the second se References and second	na na mana a na mana ana ang
Const. : Upsail :		an an an Arran an Ar Arran an Arran an Arr
· · · · · · · · · · · · · · · · · · ·		
France France	Calda de 👘	Eestc
(fors.) (psi)	Eneeled	(bpd)
	44.50	in an an ar an ar thatan a∰ ,∰N
4865, 18 0. 19 11 1 4 4865, 18 1	- 377 . 29-	9.00
·····································	94	(0, 36)
· · · · · · · · · · · · · · · · · · ·	173-992 1911-57	- \$1.\$45. - 药工造药
4871.73	180.91	0.00
0.0211 4901.83	181.04	0.00
0.02497 4726,12 0.02497 4756,04	217.30 ···	
0,0310 4973.04	E72.22	0.00
0.0329 5009.05	288.24	0.00
	352.74	
0.0496 5135.04	414.22	0.00
0.0564 5178.35	437.53	0.00
0.0405 5230.32 0.0405 5271 47	509.50	-0,00,00 - 0,00,00 - 0,00 -0,000
3.0000 3.0000 3.0001 3.0000 5.0000 5.0000 5.0000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.00000 5.0000	532.12	0,00
0.0952 5326.29	607.47	a.00
0,1152 3353,28	632.46	
0.1565 5394.15	673.33	0.00
	697.93	0.00
0.1953 0.2000 5420.95	700.13	-0.00 m c
0.2483 5447.92	727.10	0.00
0.2310 5462.78	- 742.1S	0.00
	755,20	
0.3945 5503.10	782.23	0,00 - 1
0.4445 05 516.9 00	795.03	0.00 ·
0.5274 5526.05	915.El	0.00
	350.35	9.00
().82-4) USBB.17	962.231	C - 20
· · · · · · · · · · · · · · · · · · ·	372.47	
· · · · · · · · · · · · · · · · · · ·	1971.72	10.00 m
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Men.70	1.11
	713.41 ·	3.00
n na status de la construcción de l No se a construcción de la construcc	n an an Anna a An Anna an Anna	n an tha an t
Seat Seat Seats	and a set of the	53 a.
	932.02 mmo eo	9.93 5.6
· · · · · · · · · · · · · · · · · · ·	- HOM-MA	a an
07		
and the second		

	and the second	Versely were encounted as
n de la presente de la Sisistición	, ÉE ANALISIE DE-PRUÉBANUD	1 PEESION (SEPT)
		and a second

				Appres See See
71242	Freedo	Cales de	Basta -	
(668.0 P	- contra	Constant	i da se se s	
2,71 ma	GRABE, 2	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	9 , 50 - ¹ -	
5 E. 21-40	Secolar			
3.1044	2275.0E	무거나 연간		
3.4.44	1870t.3:	: TP .5	1. 10 N	
- 3.7144 J	10795.ES.	一 一 伊朗森 " 年长 " " "	5.00	
5.91	- 5768.45	1 497. SB		
9.1144	5711.62	770.91	0.00	
4.4144	5715.71	and Se	0.00	
+. ±114	5710.57	997,73	0.00	
4.7144	5722.201.	1001.38	ϕ , $\phi\phi$	
5.9477	5723.66	1007,80	0.00	
6.7841	- 行740,19.	1017.37	e.oo	
6.9175	574.1.Gi	1020.49	0.00	
8.1494	5751.84	1031,04	0.00	
5.7397	5757.54	1036.75	0.00	
9,9064	5763.15	1047.54	e q.pcl	
10.9053	5765.74			
11.7877	5773.43	1052:61	0.Q0	
12.9052	5777.28	105 <u>/</u> 2,44	0.00	
13.9064	5781.37	1040.55	0.00.	
14.7377	5734.52	1043.70	0.00	
15.4111	3767.06	1062.24	0.00	
15,9111	5785.32	1053,00	0.00	100 At 1997
16.9111	5792.04	1071.28	-0.00 ····	
17.9111	5795.06	1074.24	. e . ee	
18.9111	3798.05	1077.84×100	0.00	
19.7953	8800,76	1079.94	_0 . 00	
20,9075	3803.90	1082.08	9.00	
E1.91E5	5305.74	1084.92	0.00	
28.3917	590 9. :9	1087.31		
s0190	5610.67	1087.37	0.00	
14.16日代	5311.09	1070.21	0.00	
			1	

SECUENCIA DE CALCULO

De las gráficas ΔP vs. log Δt (figuras 29 y 30) obtenemos las pendientes flujo radial transitorio m, y flujo pseudoradial transitorio m_o.

> $m_{n} = 122.6 \text{ psi/ciclo}$ m, = 266.4 psi/ciclo

Con la ecuación (88) podemos determinar la relación entre e1 intervalo abierto al flujo y el espesor de la formación:

$$b = \frac{122.6}{266.4} = 0.46$$

For lo tanto, usando la ecuación (89):

$$h = \frac{131.2}{0.46} = 285.2 \text{ pies}$$

De acuerdo a la fórmula (91):

$$S_p = 2.16 + \frac{2.64}{0.46} = 7.90$$

Ahora, utilizando la solución de Papatzacos³⁷, podemos determinar la permeabilidad vertical.

Despejando k_ de la ecuación (63):

$$k_z = k_r \left(\frac{h_w}{h_{wD} r_w}\right)^2$$

(107)

La solución de Papatzacos para determinar S_p es la siguiente:

$$S_{P} = \left(\frac{1}{b} - 1\right) \ln \frac{\pi}{2} \frac{h_{wD}}{b} + \frac{1}{b} \ln \left[\frac{b}{2+b} \left(\frac{A-1}{B-1}\right)^{1/2}\right]$$

donde:

$$A = 1/(z_{1D} + b/4)$$
(109)

$$B = 1/(z_{1D} + 3b/4)$$
(110)

$$z_{1D} = z_{1}/h$$
(111)

(108)

z_l es la distancia de la cima de la formación a la cima del intervalo disparado. Para este caso:

$$z_1 = \frac{h}{2} - \frac{h_{w}}{2}$$
(112)

Despejando h_{WD} de la ecuación (108):

z 1

$$h_{wD} = a^{\left\{\frac{E_{F} - \frac{1}{b} \ln \left[\frac{b}{2+b} \left(\frac{A-1}{B-1}\right)^{1/2}\right]}{(1/b-1)}\right\}} \frac{2b}{\pi}$$
(113)

Sustituyendo valeres:

$$=\frac{285.2}{2}-\frac{135.2}{2}=77$$

77 0.27 295.2

A = 1 / (0.27 + (0.25) (0.46)) = 2.597B = 1 / (0.27 + (0.75) (0.46)) = 1.626

lan ili Martina

$$\left\{\frac{\frac{7.90-\frac{1}{0.46}\ln\left[-\frac{0.46}{2+0.46}(\frac{2.597-1}{1.626-1})^{1/2}\right]}{(\frac{1}{0.46}-1)}\right\}_{2(0.46)}$$

$$h_{wD} = 2297$$

 $k_{z} = (8.38) \left(\frac{(131.2)}{(2297)(0.27)}\right)^{2} = 0.38 \text{ md}$

Otra forma de determinar la permeabilidad vertical es utilizar l solución de Cinco Ley , Ramey y Miller.³⁵

Los resultados presentados por Cinco Ley , Ramey y Miller están e función de los parámetros adimesionales siguientes:

espesor adimensional

$$h_{\rm D} = h/r_{\rm W} \sqrt{k_{\rm r}/k_{\rm z}}$$

altura adimensional del punto medio del intervalo

$$z_{wD} = z_w / r_w \sqrt{k_r / k_z}$$
(62-a)

razón de penetración

hwD cosew

donde
$$h_{wD} = h_w/r_w \sqrt{k_r/k_z}$$
 (53)

Cince Ley , Ramey y Miller demostraron que el factor de pseudodaño por convergencia y por inclinación del pozo en forma individual S_p y S_{∂} o en conjunto S_{A+P} presentan una relación lineal cuando se grafican

(64)

(63-a)

contre logaritmo de de h..

Para este ejemplo:

$$\frac{z_{wD}}{hwD} = \frac{z_w}{hw} = \frac{142.6}{285.2} = 0.5$$

$$\frac{h_{uD} \cos \theta_{u}}{h_{D}} = \frac{h_{u}}{h} \cos \theta_{u} = b \cos \theta_{u} = 0.46 \cos(0) = 0.45$$

De las tablas l y 2⁸⁵.

θ"

0⁰ 0

$$h_{D} = \frac{\frac{2}{h_{D}}}{h_{D}} = h_{wD} \cos \theta_{w} / h_{D} = S_{P}$$
100 0.5 0.46 2.90

VALORES UTILIZADOS PARA INTERPOLAR Los valores de Sp

Z _{WD} /hD	h _{wD} cos0/h _D	h _p =100	h _D =1000
0.5	0.1	15.213	35.246
0.5	0.25	5.611	13.655
0.5	0.5	2.359	4.777
0.5	1	ulter and the set of t	0 ¹¹

Tomando en cuenta la relación lineal de $\mathsf{S}_{\partial + \mathsf{P}}$ con h_{D} :

$$S_{\theta+P} = S_{\theta+P} + (S_{\theta+P} - S_{\theta+P}) \log(h_D/100)$$

 $7.90 = 2.90 + (5.85-2.90) \log(h_{\rm D}/100)$
$h_{\rm D} = \left[\begin{array}{c} (\frac{7.90-2.90}{5.35-2.90}) \\ 10 \end{array} \right] 100$

hn 954

Despejando k_z de la ecuación (64):

 $k_{z} = k_{r} \left(\frac{h}{h_{D} r_{w}}\right)^{2}$

 $k_z = 8.38 \left(\frac{285.2}{(4954)(0.27)}\right)^z = 0.38 \text{ md}$

VI DISCUSION DE RESULTADOS

En este capítulo serán presentados los resultados obtenidos en este estudio. En las primeras secciones se discutirá cómo diferentes parámetros afectan la distribución de flujo y el daño adimensional S_{P+TP} . La última sección discutirá la influencia de la penetración parcial y el daño del pozo S en la interpretación de los datos de presión.

De acuerdo al estudio realizado, se determinó que el perfil de flujo y el daño adimensional S_{P+fP} de un pozo parcialmente penetrante es función de los siguientes parámetros:

- 1) Relación de penetración, b
- 2) Espesor adimensional del pozo, $h_{\omega D}$

3) Daño del pozo adimensional, S

El método usado para analizar el efecto de cada parámetro es variar un parámetro manteniendo los otros parámetros constantes.

Para validar la solución obtenida se realizó una corrida con S=0 y b=1 para diferentes valores de h_{WE} , obteniéndose una distribución de flujo uniforme y un daño adimensional $S_{P+fp} = 0$ en todos los casos. Ademas de compararse los resultados obtenidos para S=0 para diferentes valores de h_{WE} y b, con los reportados en la literatura.

El intervalo abierto adimensional representa un efecto de

anisotropla. La definición de h $_{\rm wh}$ fue dada por la ecuación (63):

$$h_{wD} = \frac{h_{w}}{r_{w}} \sqrt{\frac{r_{w}}{r_{w}}}$$

Cuando la permeabilidad vertical k_z disminuye relativamente con respecto a la permeabilidad radial k_r , h_{WD} se incrementa. Por lo tanto, pera valores grandes de h_{WD} corresponden a valores bajos de permeabilidad vertical y cuando h_{WD} tiene valores pequeños corresponde a sistemas isotrópicos o sea $\sqrt{k_x/k_z} \cong 1$.

(63)

Como es de esperarse, la distribución de flujo en el intervalo abiento es función de h_{WD} . En la figura 33 se demuestra que cuando h_{WD} aumenta, la distribución de flujo relativo estabilizado tiende a uniformizarse. La condición límite es cuando $h_{WD} \rightarrow \infty$ corresponderá para una permeabilidad vertical cero. El resultado será una distribución de flujo relativo uniforme donde el efecto de penetración parcial desaparece. Este es el caso de yacimientos muy estratificados. Para todos los valores de h_{WD} el punto de correlación entre la solución de flujo uniforme y la solución de conductividad imfinita es aproximadamente de 75% de la longitud del pozo cuando el intervalo productor está en la cima o en el fondo de la formación.

El efecto del daño del pozo adimensional 5 representa una resistencia al flujo en la pared del pozo. la definición de la calda de presión adimensional debida al daño 5 fue dada por la ecuación (32).

$$F_{DS} = \frac{h_D}{h_{pll}} S - \frac{q(z_D)}{q}$$
(32)

Es lógico esperar encontrar una reducción a la capacidad de flujo

.

debido al daño a la formación de los procesos de perforación y terminación del poro.

Esta reducción a la permeabilidad es comunmente causada por la invasión de fluidos de perforación y terminación. Matemáticamente, este daño de la formación puede ser representado por una resistencia de una película de espesor infinitesimal alrededor del pozo. La caída de presión a través de esta película está dada por la ecuación (17).

ΔP

$$s_{5}^{(z)} = S \frac{q_{\mu}^{(z)\mu}}{2\pi kh(z)}$$
(17)

Hurst³³ y Van Everdingen³⁴ introducen el efecto del daño a la formación dentro de la teoría de pruebas de pozos. Ellos supusieron un pozo totalmente penetrante. La caída de presión debida al daño S es uniforme para todo el pozo porque la distribución de flujo es uniforme. Por otro lado, la distribución de flujo no uniforme en el pozo influencia grandemente la caída de presión debida al daño S para pozos parcialmente penetrantes. La ecuación (17) define que la caída de presión debida al daño S es directamente proporcional al gasto de fluido q_w(z) que pasa por el segmento h_w(z). En el fondo del intervalo abierto se tienen valores mayores de flujo y por lo tanto tiene que corresponder a mayores caídas de presión.

Como es de esperarse, la distribución de flujo relativo estabilizado es afectada por el daño del pozo adimensional S. Las figuras 13 a la 23 ilustran este punto. Cuando el daño del pozo adimensional S incrementa, la distribución de flujo relativo estabilizado tiende a ser más uniforme.

El incremento del daño del pozo adimensional S tiene un

efecto similar sobre la distribución de flujo como el incremento de h_{wD}. De hecho, ambos parámetros adimensionales producen la misma distribución de flujo cuando h_{un} o S tienden a infinito.

Las figuras 13 a la 23 y la tabla 14 ilustran el efecto de la relación de penetración b sobre la distribución de flujo para diferentes h_{wD} y S. Una conclusión de este estudio es que la distribución de flujo relativo estabilizado es completamente determinada por h_{wD} y S, pero es independiente de b. También, para todos los valores de h_{wD} y S el valor del flujo relativo igual a la unidad está localizado aproximadamente 75% de la longitud del pozo cuando el intervalo productor está en la cima o en el fondo de la formación. Por lo tanto, el daño del pozo adimensional S no cambia significativamente esta localización.

For lo tanto, de acuerdo a los resultados de este estudio, se pueden considerar como aditivos el daño por penetración parcial S_P y el daño por reducción de la permeabilidad alrededor del pozo 5 con un error menor al 1%.

$$S_T = S_p + \frac{S}{b}$$

Con respecto al análisis de datos de pruebas de presión, es necesario tomar en cuenta la ponetración parcial en el análisis del período de flujo esférico transitorio ya que, como se demostro, la distribución de flujo en el intervalo productor no es constante.

VII CONCLUSIONES Y RECOMENDACIONES

Fue desarrolado un modelo analítico en dos dimensiones y una sola fase en este estudio para un vacimiento circular, homogéneo y anisotrópico. La condición de frontera interna consiste de un pozo parcialmente penetrante de conductividad infinita considerando el efecto de la reducción de permeabilidad alrededor del pozo debida al filtrado de los fluidos de perforación. Los resultados de este estudio sugieren las siguientes conclusiones útiles para aplicaciones de campo:

> 1.- La distribución de flujo para un pozo parcialmente penetrante no depende de la relación espesor de la formación entre el intervalo abierto.

- 2.- A medida que S aumenta, la distribución de flujo tiende a uniformizarse porque la formación dañada no altera la distribución de flujo para un pozo totalmente penetrante. El efecto S para un pozo totalmente penetrante y uno parcialmente penetrante no son enteramente análogos.
- 3.- El daño por penetración parcial y el daño por la reducción de permeabilidad alrededo. del poro se pueden considerar como aditivos.
- 4.- La permeabilidad vertical puede ser obtenida del anàlisis de pruebas de presión en przos parcialmente penetrantes.
- 5.- Se recomienda realizar el cierre en el fondo durante pruebas de incremento de presión para que se

realice un anàlisis adecuado de los datos obtenidos ya que el periodo del flujo radial y esférico es muy corto y en la mayoría de los casos no son detectados por los efectos de almacenamiento.

NOMENCLATURA	
C	COMPRESIBILIDAD
h	espesor de la formación
hw	longitud del intervalo abierto a producción
$\left(\left(\left$	permeabilidad de la formación
P	presión
q	gasto por unidad de longitud
9 _W	gasto del pozo
aller F ill Filler	distancia radial
	radio del pozo
S	factor de daño por invasión de fluidos
Spafe	factor de daño por invasión de fluidos y penetración
	parcial
S_	factor de pseudodaño por penetración parcial
P Sale	factor de pseudodaño por inclinación y penetración
6+12	parcial
e	factor de daño por inclinación popotración parcial o
71	inversion de fluides
· · ·	
C	tiempo produciendo
ang dasar Z ang terter (* 1777) Sang terter	distancia vertical
μ	viscosidad
ϕ	porosidad
÷ω	inclinación del poza
	an a

subindices

Ð

i .

r.

W W_f

z.

adimensional segmento i radial intervalo abierto, radio del pozo

fluyente

vertical

unidades

Sistema de unidades c-g-s Sistema de unidades en inglés

REFERENCIAS

- e¹1

 Kozeny, J.: "Theorie und Berechnung der Brunnen", <u>Wasserkraft u.</u> <u>Wasserwirtschraft</u> (1933) Vol. <u>26</u>, 101 (in German).

- Muskat, M.: <u>The Flow of Homogeneous Fluids Through</u> <u>Porous</u> <u>Media</u>, J.W. Edwards, Inc., Ann Arbor, Mich. (1946) 263.
- Polubarinova-Kochina, P. Ya.: <u>Theory of Filtration of Liquids in</u> <u>Porous Media</u>, Advances of Applied Mechanics (1951) Vol. 2, 207.
- Hantush, M. S.: "Non-Steady Flow to a Well Partially Penetrating in an Infinite Leaky Aquifer", <u>Proc.</u> <u>Iraoui</u> <u>Scientific</u> <u>Societies</u> (1957).
- Hantush, M. S.: "Drawdown Around a Partially Penetrating Well", <u>Proc.</u>, <u>ASCE</u>, HY4 (1961) Vol. <u>97</u>, 83.
- Hantush, N. S.: "Hydraulic of Wells", <u>Advances</u> in <u>Hydrosciences</u>, Academic Press, Inc., New York (1964) Vol. 1, 307.
- Cdeh, A. S.: "Steady-State Flow Capacity of Wells With Limited Entry to Flow", <u>Soc. Pet. Eng. J.</u> (March 1968) 43-51.
- Minskii, E. M. and Markov, P. P.: "Experimental Investigation of the Flow Resistance in Imperfect Wells", <u>Problems in the</u> <u>Hydrodynamics and Thermodynamics</u> of Reservoirs, Gosloptekhizdat, Leningrad (1956) (in Russian) Trudy VNII, No. 8, 35-65.
- Nisle, R. G.: "The Effect of Partial Penetration on Pressure Buildup in Oil Wells", <u>Trans</u>, AIME (1958) Vol. <u>213</u>, 85.
- Brons, F., and Marting, V. E.: "The Effect of Restricted Fluid Entry on Well Productivity", Paper SFE 1322-G presented at the SFE-AIME 34th Annual Fall Meeting, Dallas, Oct. 4-7, 1959.
- 11. Brons, F., and Marting, V. E.: "The Effect of Restricted Fluid Entry on Well Productivity", <u>J. Fet. Tech.</u> (Feb. 1961) 172-174.
- Dupuy, M.: "Modeles Mathematiques a Penetration Fartielle et a Permeabilities Variees Realisees pour le Bureau Reservoir de la CFPA", <u>Revue d l'Institut Français du Petrole</u> (Oct. 1961) Vol. XVI, No. 10, 1071 (in French).
- Dzalilov, K. N., and Gulamov, K. A.: "On the Non-Stationary Filtration of Liquids and Gases to Imperfect Well in Non-Homogeneous Porous Media", <u>Dok. Akad. Nauk Azerb</u>, USER (1961) Vol. 16, E (in Russian).
- 14. Pizzi, G., Giucci, G. M., and Chierici, G. L.: "Duelques Cas de Reachtees de Pression dans des Counches Heterogenes à Penetration Partielle. Stude par Analyseur Electrique", <u>Revue de l'Institut</u> Franzeis <u>du Petrole</u> (dac. 1955) Vol. XX. No. 12, 1311 (in French).

15. Javandel, I. and Witherspoon. P. A.: "Use of Thermal Model to Investigate the Theory of Transient Flow to a Partially-Penetrating Well", <u>J. Water Resource Research</u> (1967) Vol. <u>3</u>, 591.

and the state of the state of the

- Javandel, I. and Witherspoon, F. A.: "Analysis of Transient Fluid Flow in Multilayered Systems", <u>Water Resources Center Contribution</u> No. 124, U. of California, Berkeley (1968).
- Seth, M. S.: "Unsteady-State Pressure Distribution in a Finite Reservoir With a Partial Wellbore Opening"", <u>J. Cdn. Pet. Tech.</u> (Oct.-Dec. 1968) Vol <u>7</u>, 153.
- Kazemi, H. and Seth, M. S.: "Effect of Anisotropy and Stratification on Pressure Transient Analysis of Wells with Restricted Flow Entry", <u>J. Pet. Tech.</u> (May 1969) 639-646.
- Eurns, W. A., Jr.:Discussion on "Effect of Anisotropy and Stratification on Pressure Transient Analysis of Wells with Restricted Flow Entry", <u>J. Pet. Tech.</u> (May 1967) 646-647.
- 20. Clegg, M. W. and Mills, M.: "A Study of the Behavior of Partially Penetrating Wells", <u>Soc. Pet. Eng. J.</u> (June 969) 189-203.
- Burns, W. A., Jr.: "New Single Well Test for Determining Vertical Permeability", <u>J. Pet. Tech.</u> (June 1959) 743-752.
- 22. Prats, M.: "A Method for Determining the Net Vertical Permeability Near a Well From In-situ Measurements", <u>J. Pet. Tech.</u> (May 1970) 637-643.
- 23. Gringarten, A. C.: "Unsteady-State Pressure Distributions Created by a Well With a Single Horizontal Fracture, Partial Penetration or Restricited Entry", PhD Dissertation, Stanford U. (1971).
- 24. Weeks, J. .: "Effects of Well Loss, Development and Factial Penetration on Drawdown on Discharge Wells", Engineer Thesis, Stanford U. (1972).
- Gringarten, A. C., and Ramey, H. J., Jr.: "Unsteady-State Pressure Distributions Created by a Well With a Single Horizontal Practure. Partial Penetration or Restricited Entry", Soc. Pet. Eng. J. (Aug. 1974) 413-425.
- Bilhartz, H. L., Jr.: "Effects of Nellbore Damage and Storage on Behavior of Partially Penetrating Wells", PhD Dissertation. Stanford U. (June 1973).
- 27. Gringarten, A. C., and Ramey, H. J., Jr.: "An Approximate Infinite Conductivity Solution for a Partially Penetrating Line-Source Well", Spc. Pet. Eng. J. (April 1975) 140-148.
- 23. Cinco, H., Miller, F. G. and Ramey, H. J., Jr.: "Well Test Analysis for Slanted Wells". Paper SPE 5131 presented at the SPE AIME 49th Annual Fall Meeting, Houston, Tex., Oct. 6-9, 1974.

- 29. Matthews, C. S. and Russell, D. G.: Pressure Build-up and Flow Tests in Wells, <u>Soc. Pet. Eng. Monograph Series</u>, Vol. 1, SPE, Dallas (1967) 4.
- Gringacten, A. C., and Ramey, H. J., Jr.: "The Use of Source and Green's Functions in the Solution of Unsteady Flow Problems in Reservoirs", <u>Soc. Pet. Eng. J.</u> (Oct. 1973) 285-296.
- 31. Gringarten, A. C., and Ramey, H. J., Jr., and Raghavan, R.:"Unsteady-state Pressure Distributions Created by a Well With a Single Infinite Conductivity Vertical Fracture". <u>Soc. Pet. Eng.</u> J. (ug. 1974) 347-360.
- 32. Cinco, H.: Unsteady-State Pressure Distributions Created by a Slanted Well, or a Well With an Inclined Fracture". PhD Dissertation, Stanford U. (April 1974).
- 33. Van Everdingen, A. F.: "The Skin Effect and its Influence on the Productive Capacity of a Wall", Trans., AINE (1953) 198, 171-176.
- 34. Hurst, W.: "Establishment on the Skin Effect and its Impediment to Fluid Flow into a Wellbore", <u>Pet. Eng.</u> (Oct. 1953) 25, B-6.
- 35. Cinco Ley, H., Ramey, H. J., Jr., and Miller, F. G.: "Fseudoskin Factor for Partially Penetrating Directionally Drilled Wells", Paper SPE 5589, AIME (1975).
- Raghavan, R. and Clark, . K.: "Vertical Permeability from Limited Entry Flow Test in Thick Formations", Trans, AIME (1975) 6573, 65-73.
- Papatzacos, F.: "Approximate Partial Penetration Pseudoskin for Infinite-Conductivity Wells, SPE Reservoir Eng. (May 1987) 227-234.
- 38. Carslaw, H. S., and Jaeger, J. C.: Conduction of Heat in Solids, 2nd. ed., Oxford U. Fress, Oxford. England (1959) 257.
- Moran, J. H., and Flinkea, E. E.: "Theoretical Analysis of Pressure Phenomena Associated with the Wireline Formation Tester", J. Pet. Tech. (Aug. 1962) 899-908; Trans. AIME, Vol. 225.
- 40. Culham, W. E.: "Pressure Buildup Equations for Spherical Flow Regime Problems", paper presented at 47th Annual Fall Meeting, San Antonio, Tex., Oct. 3-7, 1972.
- 41. Rodriguez-Nieto, R., and Carter, R. D.: "Unsteady Inree-Dimensional Gas Flow in Thick Reservoirs", paper SPE 4256 was submitted for publication consideration but not preprinted. Copies of original manuscript available from SPE-AIME office.
- 42. Cinco Ley, H.: "Apuntes de Análisis Noderno de Pruebas de Fresión y Datos de Production", U.N.A.M., D.E.P.F.I., 1989/I.

43. Gringarter, A. C.: "The Use of Source and Green's Function in the Solution of Unsteady Flow Froblem in Reservoirs", FWB. ITTE 71-9, Dept. of Civil Engineering, U. of California at Berkeley (Dec. 1971).

er erendere elfiner och de bisse

APENDICE A

METODO DE LAS FUNCIONES DE GREEN

Se considera un medio poroso D homogéneo y anisotrópico limitado por una superficie S y un punto M dentro del dominio D.

Ŷ

El flujo transitorio de un fluido ligeramente compresible es descrito por la ecuación de difusión derivada de la ecuación de continuidad y la ley de Darcy. Suponiendo permeabilidades, porosidad y viscosidad del fluido constantes y efectos gravitacionales despreciables, la ecuación de difusividad puede ser descrita como:

$$\eta_{\mu} \frac{\delta^2 P(M,t)}{\delta \kappa^2} + \eta_{\gamma} \frac{\delta^2 P(M,t)}{\delta \gamma^2} + \eta_{\Xi} \frac{\delta^2 P(M,t)}{\delta z^2} = \frac{\delta P(M,t)}{\delta t}$$
(A-1)

donde x. y y z son los ejes principales de permeabilidad y los coeficientes η_x . η_y y η_z son las difusividades hidráulicas principales. Cuando $\eta_x = \eta_y = \eta_r$ (sistema cilíndrico), la ecuación de difusividad puece escribirse como:

$$n_{r} = \frac{1}{r} = \frac{\delta}{\delta r} \left(r \frac{\delta F(11,t)}{\delta r} \right) + n_{z} = \frac{\delta^{2} F(11,t)}{\delta z^{2}} = \frac{\delta F(M,t)}{\delta z}$$
(A-2)

Las constantes de difusividad están dadas por:

$$\eta_{j} = \frac{k_{j}}{\phi \mu C}, \qquad j = x, y, z \circ \tau$$
 (A-2)

Si nesotres multiplicames cada coordenada j per $\left(\frac{k}{k_{j}}\right)^{k/2}$, dende k puede ser elegida arbitrariamente, la ecuación (A-1) o ecuación (A-2) quedan así:

$$\eta \nabla^2 P(M,t) = \frac{\delta P(M,t)}{\delta t}$$
 (A-4)

la cual es una ecuación para un dominio isotrópico; por consiguiente, el problema en el dominio anisotrópico puede ser reducido a el correspondiente problema en el dominio isotrópico cuando el dominio es infinito o cuando es limitado por planos perpendiculares al eje principal de permeabilidad o, en el caso del sistema cilíndrico, por planos perpendiculares al eje z y por cilindros circulares con sus ejes z. En la mayoría de los casos la superficie de la frantera es irregula.

La solución P(M,t) de la ecuación de difusión es unicamente determinada predeterminando (1) la distribución de la presión inicial en D, y (2) el valor de la presión en la frontera S (problema Dirichlet) o el valor del flujo a través de la frontera S (problema Neumann) para todo tiempo. Como en el caso de estado estacionario la solucion de la ecuación de difusión puede ser obtenida por medio de funciones de Green, las cuales son definidas como sigue:

Las funciones instântaneas de Green para el dominio D con respecto a la ecuación de difusión (ecuación A-4) es la presión para el punto N'(x',y',z') para el tiempo t debido a una fuente instântanea de fuerza

unitaria generada en el punto M(x,y,z) para el tiempo 7, con $\tau < t$, el dominio D inicia para una presión cero y la superfice S inicia para otra presión cero, o flujo impermeable.

Las funciones instántaneas de Green, representadas por u = G(M,M',t-r) tiene las siguientes propiedades:

(1) es una solución de la ecuación de difusión adjunta si L[V] representa la forma de difusión diferencial. La forma diferencial adjunta M[u] es definida por el requerimiento de esta expresión:

será integrable. En nuestro problema, $L=(\eta \nabla^2 - \frac{\delta}{\delta t})$, $t > \tau$, y la forma adjunta es $M=(\eta \nabla^2 + \frac{\delta}{\delta t})$, $\tau < t$.

(2) es simétrica en los puntos M y M'

(3) es una función delta. Desaparece para todos los puntos dentro de los límites S cuando t $\rightarrow \tau$ excepto para el punto M donde tiende a infinito. Para cualquier función continua f(M):

$$\lim_{t \to \tau} \int_{n}^{\infty} f(M') G(M,M',t-\tau) dM' = f(M)$$
 (A-5)

Además, de la definición de fuente instantánea unitaria, la función instantanea de Green también satisface:

$$G(M,M',t) dM' = 1 \qquad \forall t \ge 0 \qquad (A-6)$$

(4) La función instantanea de Green^{*}, o su derivada normal^{**}, desaparece cuando M está sobre el límite S.

funciones de Green de primera clase
 funciones de Green de segunda clase, o funciones Neumann

Si tal función puede ser encontrada, entonces la presión para M para el tiempo t, P(M,t), debida a la distribución de presión inicial Pi(M), y una presión dada o flujo para la frontera, es dada por:

$$\eta \int_{0}^{t} \int_{S} \left[S(M,M',t-\tau) \frac{\delta P(M',\tau)}{\delta n} - P(M',\tau) \frac{\delta S(M,M',t-\tau)}{\delta n} \right] dS_{M'} dt$$

donde $\frac{\delta}{\delta n}$ denota la diferenciación a lo largo de la normal exterior el elemento dS_M, del límite S.

Una comprobación de este teorema está dada en el Carslaw and Jaeger,pag. 354. P(M',t) y G(M,M',t-r) satisfacen las siguientes ecuaciones diferenciales:

$$(\eta \nabla^2 - \frac{\delta}{\delta \tau}) P(M', \tau) = 0, \quad \forall M' \in D$$
 (A-B)

$$(\eta \nabla^2 + \frac{\delta}{\delta \tau}) G(M, M', t - \tau) = 0 \quad \forall M \in D$$
 (A-7)

respectivamente. For lo tanto:

$$\frac{\delta}{\delta\tau} = \mathsf{P}(\mathsf{M}^{\prime},\tau) - \mathsf{G}(\mathsf{M},\mathsf{M}^{\prime},\mathsf{t}-\tau) = \mathsf{P}(\mathsf{M}^{\prime},\tau) - \frac{\delta}{\delta\tau} - \mathsf{G}(\mathsf{M},\mathsf{M}^{\prime},\mathsf{t}-\tau) + \mathsf{G}(\mathsf{M},\mathsf{M}^{\prime},\mathsf{t}-\tau) - \frac{\delta}{\delta\tau} - \mathsf{P}(\mathsf{M}^{\prime},\tau)$$

= $\eta \left[G(M,M',t-\tau)\nabla^2 P(M',\tau) - P(M',\tau)\nabla^2 G(M,M',t-\tau) \right]$

 $\int_{\Omega} \left[\int_{\infty} \frac{\delta}{\delta \tau} P(M',\tau) G(M,M',t-\tau) dM' \right] d\tau = 0$

$$\eta \int_{0}^{t-\varepsilon} \left\{ \int_{0}^{t} \left[\mathbf{G}(\mathbf{M},\mathbf{M}^{\prime},\mathbf{t}-\tau) \nabla^{2} \mathbf{P}(\mathbf{M}^{\prime},\tau) - \mathbf{P}(\mathbf{M}^{\prime},\tau) \nabla^{2} \mathbf{G}(\mathbf{M},\mathbf{M}^{\prime},\mathbf{t}-\tau) \right] d\mathbf{M}^{\prime} \right\} d\tau \quad (\mathbf{A}-10)$$

El espacio integral empieza tomando el dominio D, y s empieza con cualquier número positivo menor que t, tan pequeño como nosotros queramos.

Intercambiando el orden de integración en el lado izquierdo de la ecuación (A-10).

$$\int_{D} \left[P(M',\tau) G(M,M',t-\tau) \right]_{\tau=t-\varepsilon} dM' - \int_{D} \left[P(M',\tau) G(M,M',t-\tau) \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' - \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' - \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' - \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' - \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' - \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' - \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' - \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' + \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',\varepsilon) dM' + \int_{D} P_{i}(M') G(M,M',t) dM' \right]_{\tau=0} dM' = \int_{D} \left[P(M',t-\varepsilon) G(M,M',t) dM' + \int_{D} P_{i}(M') G(M,M',t) dM' + \int_{D} P_{i}(M')$$

Ahora, tomando el límite del primer término cuando ε tiende a cero, uno obtiene de la definición de función delta:

$$P(M',t) = \int_{B} P_i(M') G(M,M',t) dM'$$

Aplicando el Teorema de Green para el lado derecho de la ecuación (A-10) y tomando el límite cuando c tiende a cero:

$$\eta \iint_{O} \left\{ \int_{S} \left[G(M,M',t-\tau) \frac{\delta F(M',\tau)}{\delta n} - P(M',\tau) \frac{\delta G(M,M',t-\tau)}{\delta n} \right] M' \in S \\ dS_{M'} \right\} d\tau$$

donde $\frac{\delta}{\delta n}$ denota diferenciación a lo largo de la normal exterior para el elemento dS_M, del límite S.

Substituyendo estos últimos dos resultados dentro de la ecuación (A-10) da el resultado de la ecuación (A-7).

Ahora, si el dominio D es limitado por un límite interior S_{w} y un límite exterior S_{c} , la distribución despresión P(M,t) está dada por:

$$P(M,t) = \int_{D} P_{1}(M') G(M,M';t) dM' +$$

$$n \iint_{O} \left\{ \int_{S_{v}} \left[\frac{(G(M,M_{w},t-\tau)}{S_{v}} - \frac{\delta P(M_{w},\tau)}{\delta n(M_{w})} - P(M_{w},\tau) - \frac{\delta G(M,M_{w},t-\tau)}{\delta n(M_{w})} \right] dS_{(M_{w})} \right\} d\tau$$

$$+ \eta \int_{O} \left\{ \int_{S_{e}} \left[\frac{G(M,M_{e},t-\tau)}{S_{e}} \frac{\frac{OP(M_{e},\tau)}{\delta n(M_{e})} - P(M_{e},\tau)}{\delta n(M_{e})} \frac{\frac{OG(M,M_{e},\tau-\tau)}{\delta n(M_{e})}}{\delta n(M_{e})} \right] dS_{(M_{a})} d\tau \qquad (A-11)$$

donde M_w y M_e representan las variables de integración de S_w y S_e, respectivamente.

P(M,t) es, por lo tanto, obtenida como la suma de tres términos de diferente naturaleza:

El primer termino en la ecuación (A-11) considera la distribución inicial; el segundo y tercer término consideran las condiciones de frontera interna y externa, respectivamente. En particular, si D es un dominio infinito, el tercer término en la ecuación (A-11) desaparece y únicamente los dos primeros terminos se consideran, con la condición que la función Green's es cero cuando M o M' es infinita. El tercer término también desaparece cuando D es finito si la condición de frontera externa es presión cero o cero flujo:

 $P(M_{e},t) = 0, \qquad \frac{\delta}{\delta n} P(M_{e},t) = 0, \qquad \forall t \in W_{e} \in S_{e}$

APENDICE B PROGRAMAS DE COMPUTO

- 1.- Programa de cómputo para calcular el perfil de flujo estabilizado y la calda de presión adimensional total para un pozo parcialmente penetrante de conductividad infinita en un yacimiento semi-infinito.
- 2.- Programa de cómputo para calcular la caída de presión adimensional total para un pozo parcialmente penetrante. Solución de gasto constante en un yacimiento semi-infinito.
- 3.- Programa de cómputo para calcular el perfil de flujo estabilizado y los factores de daño para un pozo parcialmente penetrante de conductividad infinita en un yacimiento semi-infinito.
- 4.- Programa de cómputo para calcular el perfil de flujo estabilizado y los factores de daño para un pozo parcialmente penetrante de conductividad infinita en un yacimiento finito.

```
to GREW "A:SALIDA.DAT" FOR CUTPUT AS #1
 CO DEFICIT I-M-C
CO DEFERL A-H:0--Z
 1 DIN (50,50) H (50) D (50)
                                     U.N.A.M. D.S.S.F.F.I
SE DER BOUL BORDON TORRES
SO REM PROGRAMA DE COMPUTO PARA CALCULAR EL PERFIL DE FLUTO ESTACILISTICO
 TO REM Y LA CAIDA DE PRESION ADIMENSIONAL TOTAL PARA UM POZO PARCIOUSHIE
BO PER FENETRANTE DE CONDUCTIVIDA INFINITA EN UN VACINIENSO SEMI-AUTOUTO
20 PEG DATES
 100.0-50:000=100:5=0
 110 BER SECUENCIA DE CALCULO
2 100 FOR J=1 TO N:
 100 500 1=1 70 0
140 A) ~((50R(()) ^2/(FBD ^2*(J+T+-5) *2))+1))+1)
 150 A2=((SOR((N*2/(HWD*2+(J+1-.5)*2))+1))-1)
160 IF (J+1-.5)>0 THEN A=24L06(A1/A2) ELSE A=2*L06(A2/A1)
 170 形けま((S向母((N*22(日辺ひを2を(Jーモナ・5)*2))+1))+1)
180 B2=((SGR((N*2/(HWD*2+(J-J+.5)*2))+1))+1)
 190 IF (J-1+.5)>0 THEN B=2*LOG(B1/B2) ELSE B=2*LOG(B2/B1)
 200 Di=((SOB((N*2/(HWD*2*(J+I-1.5)*2))+1))+1)
②171 - C2m+(SOB((FF22)(HWD12+(J+F-1,5)12))+1))+1)
○かくすべ (J+T~J,5)>0 THEN C=L06(C1/C2) ELSE C=L06(C2/C1)
  D) D(≈((SOR((N*2/(HWD*2*(J-1+1.5)*2))+1))+1)
○月() わつどく(公内() (N)(ウノ(FRD)(つ)((ブーチャト・5))(ウ))+1())→1()
250 JF ((-1+1.5)>0 THEN D=LOG(D1/D2) ELSE D=LOG(D2/D1)
 265 El=((598((11*2/(HWD*2+(J+I+.5)*2))+1))+1) -
「シアハービジャ」(公司臣子(村本学子(田田乃本芝来(チャチャント)へで))チャチン(一キ)
 285 IF. (J+1+,5)>0 THEN E=LOG(51/62) ELSE E=LOG(62/61)
280 Fire(SGR((N^2/(HWD^2*(J-I-.5)^2))+1))+1) groupped
SO() ED=((SOB((N^2/(HWD^2*(J+1-.5)*2))+1))-1)
310 IF (J-1-.5)>0 THEN E=LOG(E1/E2) ELSE E=LOG(E2/E1)
 320 G(J, D)=A+8-C-D-E-F
  10 1F 3=1 THEN G(J,I)=G(J,I)+4+S
 540 IE J+1=1 THEN 6(J,1)=6(J,1)-4*8
250-18 Jab THER G(J.I)=1
 Sale de la L
NO MENT J
 380 FOR J=1 TO N
 笑いひ 村 (う)声音。
GOG DE J=N THEN H(J)⇒N
JIO DEXE J
420 FOR THE TO N
400 P19-6(1,1)
18/1 11-141
455 BED BED ZETV
453 1º 1=1 5070 560
STO FERRISHED TO N.
420 6((,))=0(1.))/PIV
490 NENT J
500 FOR JELL TO N
STO FOR PELL TO N
***** ら(1,1)**(1,1)**(1,1)**(1,1)
5CO NELT R
540 H(I)=H(I)=H(I)+G(J,I)
550 NEED J
```

```
560 HENT IN
570 F(P 1=0-TO N )
566 2 9 4 4 1 1 1
553.11-3+1
200 - 9084-0
ELO FOR ESTI TO N.
ADD SOME STREET, R) +H(R)
HERE NUMBER
2010 H (1) H (1) - SUM
450 NEXT 1
640 FUS IN TO N
ATH FOR INT TO N
800 A1+F(SBR((N*2/(HWD*2*(J+1-5)*2))+1))+1)
879 A2=((SOB((N1*2/(HWD*2*(I+I+.5)*2))+1))-1)
700 IF (1+1-.5)>0 THEN A=LOG(A1/A2) ELSE A=LOG(A2/A1)
710 Bis((SOB((N^2/(HWD^2*(J-1+.5)^2))+1))+1)
700 BC=((SOB((N^2/(HWD^2*(J-I+.5)^2))+1))-1)
700 (F (J--I+.5)>0 THEN B=106(B1/B2) ELSE B=106(B2/B1)
740 E1+((@OR((H(*2/(HWD*2*(J+1-1.5)*2))+1))+1)
750 C2=7 (SOB ( (U*27 (BUD*2* (J+1-1.5)*2) )+1 ) )-1)
740 1F (()+(-),5)>0 THEN C=LOG(C1/C2) ELSE C=LOG(C2/C1)
754 F1=(\SGR((N^2/(HWD^2*(J-1-.5)^2))+1))+1)
2月の一日2~((1900円)(1日本27(日回日本2+(月~日~15)本2))+1))-1)
7900 (F1x3-10.5)>0 THEN F=106(F1/F2) ELSE F=106(F2/F1)
800 B(J, D)=0+B-C-F
EIC NEXT I-
020 NEXT J
800 FOR Jai TO N
240 EUN=0.
-850 F08.1=1 T0 N
350 SUPERUPE(J.I) #H(1)
BIO DEPT 1
605 G(1)**.25*SUM*S*H(J)
aan they to t
CTO PRINT HL." PUNTO
                                           PPESTON
                            GASTO
520 PRIME B1."
                            aihw/aw
                                            P0hw/h
900 FOR I = 1 TO N :PRINT #1.,
(空4) アク(広米1-1)/(2米村)
950 PRIDT #1.USING K#:P.H(I).O(I):
960 MEXT 1
970 CLOSE 昇1
SRO END
```

```
- 10 OPEN "A: SALIDA.DAT" FOR OUTPUT AS #1 ....
                                  CONDEFINT I-N SALAR I
... DO DEFADL A-H.O-Z ....
 40 Dig G(50).0(50)
 SCH BER BAUL BARRON TORRES
 20 PEM PROGRAMA DE COMPUTO PARA CALCULAR.LA CALDA DE PRESEDU:
  TO BEH ADIMENSIONAL TOTAL PARA UN POZO PARCIALMENTE PENETRADIE
 BO REH SOLUCION DE GASTO CONSTANTE EN UN YACIMIENTO SEMI-10F MITO.
 20 REN DATOS
 100 N=50:HUD=100:5=0 -
 110 REH SECUENCIA DE CALCULO
  120 FOR Jat IT N
 150 Al=((SBR((N^2/(HWD^2*(J+.5+N)*2))+1))+1)
  140 AP=((SOR((N^2/(HWD^2*(J-.5+N)^2))+1))-1)
 150 IF (J-.5+N)>0 THEN A=L06(A1/A2) ELSE A=L06(A2/A1)
 100 Fit=((SUR((N^2/(HND^2*(J-.5-N)^2))+1))+1) -
 170 F2+((SDR((N^2/(HUD^2*(J-.5-N)^2))+1))+1)
 190 IF (J-.5-H)>0 THEN F=106(F1/F2) ELSE F=106(F2/F1)*
 190 G(1)=A-F
 200 G(J)=.25+G(J)+S
 DIO NEXT 1
 210 和6天下 1
220 书记::" 和,我什么你,我却我,我我我把我我一些。"
 250 PR(PT #1." PUNTO PRESION "
240 PR(PT #1." PDhw/b
                                         mana and a start of
 250 FOR 1 = 1 TO N :PRINT #1,
 260 F=(2+I-1)/(2+N)
  270 PELNT #1.0SING R4:P.O(I):
 230 NEXTI
```

290 CLUSE #1 300 END

```
haden de en er en retere er er
TO SPEN "A: SALIDA.DAT" FOR OUTPUT AS #1
20 DEFINI I-M.
ZH. DEFDEL A-H.D-Z
40 0101.6(50,50),H(50),0(50),P(50)
50 REM PAUL BARRON TORRES
60 REM PROGRAMA DE COMPUTO PARA UN CALCULAR EL PERFIL DE FLUID ESTABLI 1200
70 RENTY LOS FACTORES DE DANG PARA UN POZO PARCIALMENTE PENETRANTE DE
80 REH CONDUCTIVIDAD INFINITA EN UN YACIMIENTO SEMI-THEINIGO
SO BEN DATOS
100 N=25:HWD=100:S=0:R=10
110 REN SECUENCIA DE CALCULO
100 FOR J=1 TO N
130 FOR 1=1 TO N
140 A+(BWD/H)+(J-.5+E)
150 AA=(HWD/N)+(J+.5+I)
160 B=(HWD/N)+(J-.5-1)
170 BB=(HWD/N) + (J+.5-I)
180 C=(HWD/N)*(J-.5-I+1)
190 CC=(HWD/N)+(J+.5-T+1)
200 0×(GWD/N)+(J-.5+I-1)
210 PD=(HWD/H)+(J+.5+1-1)
220 A1=(A+SOR(A*2+1))/(B+SOR(B*2+1))
「第9」62本(66+508(66^2+1))/(88÷508(88^2+1))
2411 A0x1 06 (A17A2)
250 E1=(C+SOR(C*2+1))/(D+SOR(D*2+1))
260 82*(SE+S08(CC*2+1))/(DD+S08(DD*2+1))
270 BOSELOG(81782)
280 B (J. L) =A3+83 -
290 IF J=I THEN G(J,1)=G(J,1)+2*5 1
300 1F J+1=E THEN 6(J,J)=0(J,I)-2*5
STO IF JEW THEN G(J.I)=1
329 HEYT N
SGO NEXT J
540 FOR J=1 TO N
350 EF(H0D/N)+(J-.S+R+N)
360 EF= (BUB/N) + (J+.5+R+N)
570 F=(H007N)+(J-.5-R+N)
380 FFF=(HWD/M)*(J+.5-R*M)
290 01= (E+SQR (E*2+1)) / (F+SQR (F*2+1)) -
400 C2= (EE+SOR (EE*2+1)) / (EE+SOR (EE*2+1))
410 CS=LOG(C1/C2)
420/H(J)=63*(1/R)
470 IF J=N THEN H(J)=N
440 NEKT J
450 FOR 1=1 TO N.
460 PIV=6(1.1)
470 11=1-1
480 HO >=H(I) ZP1V
490 IF 1=N GOTO 590
500 FOR J=11 TO N
510 G(1,J)=G(1,J)/PIV
520 MEXT J
570 F08 J=11 TO N
SHO FOR RELL TO N.
550 G(J,K)=G(J,K)-G(I,K)*G(J,I)
```

566 BEXT 「お手んと 設置なないすい。」 1000、1000、1142、170、71 6/1+ 3=1-1+1 620 01=3+1 630 - 500#0 630 SUM=0 540 FOR M=31 70 N ASO SUMESUMAR(J.L)AR(K) 660 NEXT F 870 H(T)=H(C)=SUM SEC NEXT IN 690 FOR 1=1 TO N ... 700 FOR 1=1 TO N 700 FDR I=1 TD N 710 A=(HWD/N)*(J-.5+I) 720 B=(HWD/N)*(J-.5+I) 730 C=(HWD/W)+(J-.5-I+1) 740 D=(HWD/N4)+(J-.5+1-1) 750 A1=A=S09(A12+1) 760 ACHE-SGB (B10+1) 770 A3=LOG(A1/A2) · . 780 B1=0+S6R(C12+1) 790 B2=D+SQR(D12+1) 800 (85+106(81/82)) E10 G(J,I)=A3+B3 820 NEXT I 230 NEXT J 840 FOR J=1 TO 8 850 E=(HWD/N)+(J-.5+R+N) 860 F= (HWD/N) * (J-.5-RKN) 870 C1=E+SQE(E12+1) BBO C2=F+SQR(F12+1) 890 C3=L06(C1/C2) 900 P(J)=C3 910 NEXT J 920 FOR J=1 TO N 930 SUM=0 940 FOR I=1 TO N 950 SUM=SUM+G(J.1)+H(I) 960 NEXT 1 970 D(J)=.5*SUM+5*H(J)-.5*F(J)/R 980 NEXT J 면면이 K 목록부 분고부밖 . 1000 PRINT #1," PUNTO GASTO Sp+fphw/f 1010 PRINT #1," qihw/qw 1020 FGR I = 1 TA N ±PRINT #1 1020 FOR I = 1 TO N :PRINT #1, 1030 P=(24I-1)/(2+N) 1040 PRINT #1,USING KS:P,H(I),D(I); 1050 NEXT I 1060 CLOSE #1 1070 END

30 Gale "A: SAUSDA, BATT FOR DECRET AS IN 10 DEFINITIENS STR 20 DEFINITIENS 20 DEFIDELIA-H.O.2 40 DIM 6(50.50) H(50) (6(50) P(50) SO REM RAUL BARRON TORRES S.M.A.M. D.F.P.F.T AN ARM PROGRAMA DE COMPUTO PARA CALCULAR EL PERFIL DE FLUJO ESTABILIZAD 70 REM Y LOS FACTORES DE DAND PARA UN POZU PARCIALMENTE PENETRANTE DE BO REM CONDUCTIVIDAD INFINITA EN UN VACIMIENTO FINITO 90 REM DATOR 100 N=50:HWD=100:R=20:6=0 110 REM SECUENCIA DE CALCULO 120 FOR J=1 70 N 130 FOR LET TO N 140 SUM=01 150 FOR K=-5 TO 5 160 百年(日期1/10)+(3~,5+2+1/+6×10+1)-170 AA=(HWD/N)+(J+.5+29K8830+1) 1800 R= (HMD/21) + (J = (S + CS1) + R=N + T). 190 BB=(HWD/N)*(J+.5+2*F*R*G+I) 200 C=(HKD/N)+(J-,5+2+K+R+N-1+1) -210 CC=(HWD/N)+(J+,5+2*K*R*N-I+1) 220 D= (HUD/N) + (J+.5+2+N+D+N+J-1) 230. DD=(HWD/N)+(J+.5+2wK#R+N+I-1)-------240 A1=(A+SOR(A*2+1))/(B+SOR(B*2+1)) 250 A2=(AA+SOR(AA*2+1))/(EE+SOR(BE*2+1)) 260 IF (A1/A2)>1E+12 THEN GOTO 280 (270 A3=L00(A1/A2) 280 B1=(C+SQP(C^2+1))/(D+SQR(D^2+1)) 290 B2=(EC+SQR(CC^2+1))/(DD+SQR(DD^2+1)) 300 IF (B1/B2)>1E+12 THEN GBTG 330 310 B3=106(E1/E2) 320 SUM=SUM+A3+B3 330 NEXT K 340 G(J.I)≈SUM 350 IF J=I THEN B(J,I)=B(J,I)+2*8 360 IF J+1=1 THEN G(J.I)=G(J.I)-2+9 370 IF J=N THEN G(J,I)=1 380 NEXT I 390 NEXT J 400 FOR J=1 TO N 410 SUM=0 420 FOR K=-5 TO 5 430 E=(HWD/N)*(J-.5+2+K*R*N+R*N) -440.EE=(HWD/N)+(3+,5+2+K+R+N+F+N) 450 F=(H0D/N)+(J-,5+2+K+R*R*N-R*N) 460 FF=(HWD/N)*(J+.5+2*K*R*N-R*N) 470 C1=(E+S0R(E12+1))/(E+S0R(F12+1)) 480 C2= (EE+SOR (EE^2+1)) / (FE+SOR (FE^2+1)) 490 IF (C1/C2)>1E+12 THEN GOTO 1110 : 500 C3=L0G(C1/C2) 510 SUM=SUM=C3 520. NEXT K 530 B(J)#SUM*(1/R) 540 IF JEN THEN H(J)EN 550 NEXT J

NAME TO A LANCE TO A CONTRACT OF soversettert 5合作: 43 ml+3 () - 5 - 5 びやう ほくゴチモンチョンセイヤ 200 1F 1=0.5510 700 1 &10 FOR J=11 TO N 620 G(1,3)=8(1,3)/PIV . aco next a 540 FOR J=11 TO'N 550 FOR K=II TO N 660 B(J,K)=B(J,K)=B(I,K)#B(J,I) -ATO NEXT R 680 H(J)=E(J)-H(1)+6(J,1) 1696 NEXT J 700 NEXT I 710 FOR 1=2 TO H 720 3=N-1+1 730 J1=J+1 740 SUM=0 756 FOR KEJI TO N ... 760 SUM=SUM+6(J.10+H(E) 770 NEXT 1. 780 H(J)=H(J)-SUM 790 NEXT I 800 FOR J=1 T0 N BIG FOR I=1 TO N 820 SUM=0 830 FOR K=-5 TO 5 840 A=(HWD/W)+(J-.5+28K+84W-1) 850 B=(HWD/N)+(J-.5+2+M*R*N-I) 860 C=(HWD/W)+(I-.5+2+K+R+W-I+1) 670 D=(H0D/N)*(3-.5+2*K*R*N+I-1) 880 A1=A+SOR(A12+1) 890 A2+8+808(8*2+1) 900 IF (A1/A2)>15+12 THEN GOTO 920. 910 A3=L06(A1/A2) 920 B1=C+SOR(C^2+1) 900 B2=0+80R(D12+1) 940 1F (B1/B2)>1E+12 THEN GOTO 970 950 BS=LOG(B1/B2) 960 SUM=SUM+A3+53 970 NEXT K 980 G(J,I)=SUM 990 NEXT 1 1000 NEXT J 1010 FOR J=1 .10 N 1020 SUM=0 1030 FOR K=-5 TO 5 1040 E=(HWD/N)+(J-.5+2+K+R*N+R*N) 1050 F=(HWD/N)*(J-.5+2*K*R*N-R*N) 1060 C1=E+SQR(E*2+1) 1070 C2=F+SQR(F*2+1) 1080 C3=L06(C1/C2) 1090 IF (01/02/>1E+12 THEN GOTO 1110 . 1100 SUM=SUM+C3

```
1.10 PPT

1120 PPT

1120 PPT

1140 PPR J=1 TP N

1140 PPR J=1 TP N

1150 PPR J=1 TP N

1150 PPT J

1200 NEYT J

1210 Let" d. dt dt

1210 Let" d. dt

1210 PPH T S1." PUNTO GAPTO Sp+form/h

1220 PPH T S1." PUNTO GAPTO Sp+form/h

1250 PPH T S1." PUNTO SP+fo
```

Ξ.

APENDICE C

DISCUSION SOBRE LA APLICACIÓN DE LOS TIEMPOS DE TERMINACIÓN DEL PERIODO DE FLUJO RADIAL, INICIÓ DEL FLUJO PSEUDO-RADIAL Y EL TIEMPO DE INTERSECCIÓN DE AMBOS PERIODOS PARA DETERMINAR LA PERMEABILIDAD VERTICAL k_{\downarrow} .

Tiempo de terminación del período de flujo radial (t_{D})

Haciendo N≈1 y h →→ ∞ podemos escribir la ecuación (32) de la siguiente forma:

Por lo tanto, para:

$$\frac{(z_{D}-h_{wD})}{\sqrt{4t_{D_{1}}}} \geq -5$$
(C-2)

(C-1)

(C-3)

$$\frac{(h_{wD}^{-z_D})}{\int^{4t_D}} \ge -5$$

La ecuación (C-1) toma la forma de la solución de línea fuente.

Para el caso de pozos parcialmente penetrantes terminados en la cima en la base de la formación:

 $(\Gamma - 4)$

(C-5)

(C--6)

(C-7)

 $t_{\rm D} \le 0.00135 h_{\rm WD}^2$

Para pozos terminados en el centro de la formación:

 $t_{D_1} \le 0.00078125 h_{wD}^2$

El pozo se comportará como un pozo totalmente penetrante cuyo espesor de la formación será h_w. Estos tiempos adimensionales fueron calculados con un error de 0%. Si nosotros consideramos un error del 1%:

 $t_{D_1} \le 0.0078125 h_{wD}^2$

 $y = t_{D_1} \le 0.001953125 h_{wD}^2$

respectivamente, por lo que se demuestra que no es confiable la determinación de la permeabilidad vertical del tiempo final del periodo de flujo radial.

Tiempo de inicio del flujo pseudoradial (t_{D_})

Como se demostró anteriomente, la solución de flujo uniforme y conductividad infinita concuerdan si la presión es evaluada en el 75% de la cima o en el fondo del intervalo abierto. Nosotros podemos usar la expresión presentada por Gringarten³³ para desarrollar una expresión

para el inicio del flujo pseudoradial.

La solución de flujo uniforme para pozos parcialmente penetrantes terminados en la cima o en la base de la formación es:

S |

$$\Delta P(r,z,t) = \frac{q_{w} \mu}{4\pi k_{r}h} \int_{0}^{t} e^{-r^{2}/4\eta_{r}\tau} \left[1 + \frac{4}{\pi b} \sum_{n=1}^{\infty} \frac{1}{n} \right]$$
$$= \frac{(-n^{2}\pi^{2}\eta_{z}t \wedge h^{2})}{\sin \frac{n\pi b}{2}\cos \frac{n\pi b}{2}\cos \frac{3\pi b}{4}} \left[\frac{\delta \tau}{\tau} \right]$$

1.

Derivando (C-8) con respecto al logaritmo natural del tiempo:

$$\frac{\delta\Delta P(r,z,t)}{\delta \ln(t)} = \frac{q_{\omega} \mu}{4\pi k_{r}h} e^{-r^{2}/4\eta_{r}t} \left[\frac{1}{1+\frac{2}{\pi b}} \sum_{n=1}^{\infty} \frac{1}{n} \right]$$
$$\frac{(-n^{2}\pi^{2}\eta_{z}t/h^{2})}{e^{-r^{2}\eta_{z}t/h^{2}}} = \frac{3}{r^{2}} nrb$$

Por lo tanto, el inicio del periodo de flujo pseudoradial es cuando el lado derecho de la ecuación (C-9) permanece constante; esto es. cuando:

$$\frac{k_r t_2}{\phi \mu C r^2} \ge 25$$

(C-10)

(C-9)

(C-8)

$$\frac{k_z t_2}{\phi \mu C h^2} \geq \frac{1}{2}$$

En variables adimensionales:

$$\frac{t_{D2}}{r_D^2} \ge 25$$
$$\frac{t_{D2}}{h_D^2} \ge \frac{1}{2}$$

Ahora, si consideramos un error de 1%

$$0.01 = e^{\left(-\pi^{2}k t/\phi\mu ch^{2}\right)} \frac{2}{\pi b} \operatorname{sen}\pi b \cos\frac{3}{4}\pi b$$

$$\frac{{}^{1}D_{2}}{h_{D}^{2}} \ge 0.1267$$
 (C-15)

(C-1.1)

(C-12)

(C-13)

(C-14)

Por lo cual concluimos que no es apropiado determinar la permeabilidad vettical con el tiempo final del periodo de flujo radial o el de inicio de flujo pseudoradial del análisis de datos de pruebas de presión.

Tiempo de intersección de los periodos de flujo radial y pseudoradial $({\bf t_p}^{\ast})$

Para este tiempo, las soluciones para el periodo de flujo radial y

pseudoradial son iguales, por lo tanto:

periodo de flujo radial

$$P_{\rm D} = \frac{1}{2b} (\ln t_{\rm D} + 0.80907) + \frac{\rm S}{\rm b}$$

periodo de flujo pseudoradial

$$P_{\rm D} = \frac{1}{2} (\ln t_{\rm D} + 0.80907) + \frac{S}{b} + S_{\rm P}$$
 (C-17)

(C-16)

(C-18)

Igualando las ecuaciones (C-16) y (C-17):

$$\frac{1}{2b} (\ln t_{D}^{*} + 0.80907) + \frac{S}{b} = \frac{1}{2} (\ln t_{D}^{*} + 0.80907) + \frac{S}{b} + S_{P}$$

de donde:

Y

$$t_{D}^{*} = e^{(2S_{P}^{/(1/b-1)} - 0.00007)}$$
(C-19)
$$S_{P} = \frac{1}{2^{2}} \left[(\ln t_{D}^{*} + 0.80907) (\frac{1}{b} - 1) \right]$$
(C-20)

Con la ecuación (C-20) podemos construir una gráfica de $\rm S_{p}$ contra log t $_{\rm D}^{\star}$ (figura C-1).

Ahora, conociendo S_p y b estamos en posibilidades de determinar la permeabilidad vertical como se muestra en el ejemplo de aplicación. Utilizando las pendientes de los periodos de flujo radial y pseudoradial

FIGURA C-1 FACTOR DE PSEUDODAÑO SP Vs. TIEMPO ADIMENSIONAL t_D t_D = $\frac{0.042926 t^*q_B}{\emptyset c_r w^2 h w m_1}$
podemos escribir la ecuación (C-20) de la siguiente forma:

$$B_{\rm P} = \frac{1}{2} \left[(\ln \frac{0.042926t^{*}qB}{\phi \ C \ r_{\rm w}^{\rm P} \ h_{\rm w} \ m_{\rm 1}} + 0.80907)(\frac{m_{\rm 1}}{m_{\rm P}} - 1) \right]$$

(C-21)

Para el ejemplo de aplicación, $t^* = 1.5$ horas (figura 29).

 $S_{p} = \frac{1}{2} \left[(1n - \frac{(0.042926)(1.5)(4441)(1.73)}{(0.03)(2.096\times10E-06)(0.27)^{2}(131.2)(266.4)} \right]$

+ 0.80907)C <u>266.4</u> - 1)

S_c = 7.89