01173 4 2e1

DIVISION DE ESTUDIOS DE POSGRADO

Facultad de Ingeniería

INCREMENTO DE LA EFICIENCIA A TURBINAS DE VAPOR, MEDIANTE MODIFICACIONES AL DISEÑO ORIGINAL

Humberto Sandoval Olivares

T E S I S

PRESENTADA A LA DIVISION DE ESTUDIOS DE POSGRADO DE LA

FACULTAD DE INGENIERIA DE LA

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

COMO REQUISITO PARA OBTENER
EL GRADO DE

MAESTRO EN INGENIERIA (MECANICA)

CIUDAD UNIVERSITARIA

TESIS CON

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Contenido

	esum	nen - Miller State (1995) eta	1				
N	otaci						
Ir	itrod	lucción	5				
1	Des	scripción de la turbina	в				
	1.1		6				
	1.2	Funcionamiento y clasificación de turbinas	9				
2	Análisis de pérdidas de energía en una planta de energía						
	eléctrica y en la trayectoría de flujo de vapor de la turbina 11						
	2.1	Pérdidas en la planta de energía eléctrica	11				
	2.2	Pérdidas en trayectoria de flujo de vapor en turbina	14				
3	Análisis de pérdidas de energía por fugas de vapor de etapa 22						
			4				
4	Inc	remento de eficiencia a turbinas mediante el control de					
4			32				
4		didas de energía en trayectoria de flujo de vapor					
4	pér	didas de energía en trayectoria de flujo de vapor Control de las pérdidas por flujo no uniforme	32				
4	pér 4.1	didas de energía en trayectoria de flujo de vapor Control de las pérdidas por flujo no uniforme	32				
4	pér 4.1	didas de energía en trayectoria de flujo de vapor Control de las pérdidas por flujo no uniforme	3 2 32				
4	pér 4.1 4.2	didas de energía en trayectoria de flujo de vapor Control de las pérdidas por flujo no uniforme	3 2 3 2 3 5				
4	pér 4.1 4.2 4.3	didas de energía en trayectoria de flujo de vapor Control de las pérdidas por flujo no uniforme	32 32 35 37				
4	pér 4.1 4.2 4.3 4.4	didas de energía en trayectoria de flujo de vapor Control de las pérdidas por flujo no uniforme	32 32 35 37 39				
4	pér 4.1 4.2 4.3 4.4 4.5	didas de energía en trayectoria de flujo de vapor Control de las pérdidas por flujo no uniforme	32 32 35 37 39 41				

* *	5	Modificaciones al diseño	4
	в	Conclusiones	5
	R	eferencias	5
	A	péndice	5

Incremento de la eficiencia a turbinas de vapor, mediante modificaciones al diseño original

Humberto Sandoval Olivares

Resumen

El objetivo de este trabajo es mostrar las posibilidades que existen para incrementar la eficiencia de una turbina de vapor. Con base en un proceso de capacitación y desarrollo en turbinas de vapor de diferentes tecnologias, mediciones de equipo en operación y con auxilio de un programa de cómputo se puede verificar que es posible incrementar la eficiencia interna de una turbina, mediante modificaciones a la trayectoria que sigue el flujo de vapor. Se hace un análisis de las pérdidas de energía en la trayectoria de flujo de vapor de la turbina y se indica cómo incrementar su eficiencia, mediante el control de las pérdidas en la misma trayectoria de flujo. Se toma un diseño original de turbina en operación y se indican las modificaciones que deben hacerse al diseño y se menciona cuanto se espera que se incremente la eficiencia. Se emplea para el cálculo un programa de cómputo y en forma breve se indican los datos que requiere y los resultados que proporciona. El incremento de eficiencia así obtenido se puede aplicar a cualquier turbina.

Notación

- A Area total de la sección de flujo de vapor
- Am- Longitud de la garganta del canal de flujo de vapor principal
- B Distancia entre bordes de tobera y álabe de rodete
- b -Cuerda del álabe
- C Velocidad absoluta de salida del vapor
- D Diámetro medio de etapa
- G-Flujo del vapor principal
- GN-Flujo de fugas de vapor
- h Entalpía
- L Altura del álabe
- L 1 -Longitud de la curvatura central del álabe de tobera
- L 2 -Longitud de la curvatura central del álabe del rotor
- M-Número de Mach
- P Presión
- R Radio de curvatura del perfil
- Re-Número de Reynolds
- r Radio de rodete
- T -Temperatura
- t Paso del álabe
- U Velocidad periférica del rodete
- W Velocidad relativa del vapor respecto del álabe
- Z Número de álabes

Letras griegas

- α- Angulo de salida del vapor
- β Angulo de entrada del vapor
- δ-Espesor del borde de salida del álabe

- η-Eficiencia
- ψ-Coeficiente de velocidad en álabes
- φ-Coeficiente de velocidad en toberas
- E-Coeficiente de pérdidas
- p-Densidad del vapor

Subindices

- O-Se refiere a entrada a toberas
- 1 Se refiere a salida de tobera (álabe fijo)
- 2- Se refiere a salida de álabes (álabe móvil)
- n-Ultima etapa
- P- Pérdidas primarias
- R-Rotor
- S- Estator
- T-Isentrópica
- W- Pérdidas secundarias
- O -Asociado a GN, en barreno de balance
- W -Asociado a GN, en sello de diafragma y flecha
- WI -Asociado a GN, en aleta axial de rodete y diafragma
- Z -Asociado a GN, en cincho de rodete

Introducción

Antecedentes

Como se sabe, la turbina de vapor recmplazó a principios de siglo al motor de vapor y es actualmente uno de los equipos mas importantes para la generación de energía eléctrica y para accionamiento.

La información disponible acerca de los avances y trabajos que se han desarrollado para incrementar la eficiencia interna de turbinas de vapor es escasa y los trabajos de investigación y desarrollo lo efectuan grandes compañias que fabrican y venden estos equipos pero no difunden la información. Sobre ésta se menciona que existe poca (y aún menos por dificultad con el idioma) en el bloque socialista y principalmente en ruso y polaco, en tanto que en occidente la información es nula.

Debido a que en la operación de un turbogenerador no se cumplió con el consumo de vapor especificado, ello dió motivo a buscar el rediseño de la turbina de vapor. Con base en la información, un proceso de capacitación y desarrollo en turbinas de vapor de diferentes tecnologias, con auxilio de un programa de cómputo y mediciones en campo se llevó a cabo este trabajo. Este trabajo muestra una forma de incrementar la eficiencia interna de la turbina, tomando como referencia el diseño original.

Se muestra un análisis (no exhaustivo) de las principales pérdidas de energía en la trayectoria de flujo de vapor de la turbina y se indica el incremento de su eficiencia, mediante el control de las pérdidas en la trayectoria de flujo. Se tomó una turbina en operación como referencia y se indican las modificaciones que se deben hacer al diseño y se menciona cuanto se espera que se incremente su eficiencia.

Puede tomarse otra turbina y se puede analizar si es posible incrementar su eficiencia.

Capítulo 1

Descripción de la turbina

Una turbina de vapor es una máquina de fluido compresible, que utiliza como fluido de trabajo vapor de agua, funciona bajo el principio de la cantidad de movimiento angular ó ley de Euler. Dado que funciona bajo el principio anterior también se le conoce como turbomáquina. Las turbomáquinas se clasifican en generatrices y motrices, en las del primer tipo la turbomáquina recibe energía mecánica y cede energía al fluido, en las del segundo, el fluido de trabajo cede energía a la máquina y ésta restituye energía mecánica.

En la turbina de vapor, el fluido de trabajo cede energía al rotor y éste la convierte en energía mecánica para accionar otra máquina o para generación de energía eléctrica.

Por tanto, una turbina de vapor es una turbomáquina motriz que utiliza vapor como fluido de trabajo.

1.1 Componentes de una turbina

Una turbina de vapor consiste de los componentes que a continuación se indican y que pueden verse en la figura 1.

Rotor, diafragmas o toberas, sellos de vapor, sellos de accite, chumaceras y carcasas.

A continuación se describe brevemente cada uno;

Rotor.

Está formado por los discos, los álabes, los cinchos y la flecha o eje de rotación.

Los álabes y los cinchos van montados en los discos y a este conjunto se le llama rodete, entonces el rotor consiste de la flecha y rodete, sin embargo, un rotor puede consistir de eje y discos de una sola pieza con álabes y cinchos montados. El rotor recibe la energía cinética del vapor que viene de toberas y la convierte en energía de rotación o mecánica.

Diafragmas de toberas.

El diafragma de toberas consiste de dos anillos, uno interno y el otro externo en dirección radial y entre ellos estan alojadas las toberas, en la parte inferior del anillo interno pueden ir alojados los sellos de vapor entre etapas. Existen turbinas que no llevan anillos y las toberas son soldadas a las carcasas. La función principal de estos componentes son; transformar su energía térmica en energía de velocidad y dirigir al vapor.

Sellos de vapor.

Estan formados por empaquetaduras que tienen en el diámetro interno dientes de sellos, su función es la de no permitir fugas de vapor.

Sellos de aceite.

Se parecen a los sellos de vapor, solo que su función es impedir que se fugue el aceite a la zona de vapor.

Chumaceras.

Existen de dos tipos, las radiales y las axiales, las primeras sirven para que en ellas descanse el peso del rotor y scan el apoyo para la rotación del mismo, las axiales sirven para amortiguar las fuerzas de empuje axial del rotor.

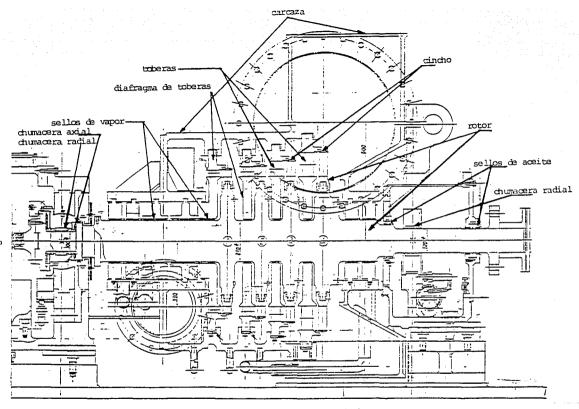


FIGURA 1. CORIE LONGITUDINAL DE TURBINA Y SUS PARIES [2]

Las chumaceras consisten de material base y material blando o babbit. Las radiales pueden ser cilíndricas o esféricas y las axiales son discos planos o cóncavos. Entre flecha y chumacera radial existe una película de aceite en la operación.

carcasas.

Son las cubiertas de la turbina que contienen a las bridas de admisión y descarga de vapor, en ellas se alojan los diafragmas de toberas o toberas, normalmente las carcasas se dividen horizontalmente y por ello se dice, de carcaza superior e inferior.

Una turbina para su operación completa requiere de otros componentes que normalmente se les denomina como "equipo auxiliar" el cual contiene, bomba principal de aceite, sistema de lubricación, sistema de control de la turbina, válvula de paro, válvula de control, filtro de vapor, entre otros.

1.2 Funcionamiento y clasificación de turbinas.

Funcionamiento.

El vapor que viene de la caldera, pozo geotérmico, etc; trae una energía térmica manifestada en forma de entalpía y de trabajo de flujo, entra a la turbina y el primer diafragma de toberas transforma su energía térmica a energía cinética o de velocidad, despues es guiado hacia el primer rodete del rotor, éste recibe la energía cinética del vapor y ello produce una fuerza en el mismo provocando su rotación.

Clasificación.

La clasificación mas importante se refiere a la dirección que sigue el flujo, de tipo axial y de tipo radial. El flujo de vapor en la primera es paralelo al eje de rotación y en la segunda el flujo es perpendicular al eje de rotación. La turbina de tipo axial es la de mayor aplicación y tiene varias clasificaciones, unas de ellas son:

a) Atendiendo a la caida de presión que tiene lugar en trayectoria de flujo. de impulso y de reacción, en las primeras la caida de presión se lleva a cabo en toberas y en las segundas en toberas y rodete.

- b) De acuerdo a la presión que admiten: alta, media, baja y presión mezclada.
- c) De acuerdo al tipo de descarga; de extracción, de condensación , no condensación o contrapresión.
- d) De acuerdo al arreglo sísico; simple, tandem o compuestas.
- e) Al tipo de accionamiento; directo ó indirecto.

De acuerdo a la clasificación anterior la turbina mostrada en la figura 1 es una turbina tipo axial, impulso-reacción, baja presión, de contrapresión, simple, de generación y de accionamiento indirecto.

Capítulo 2

Análisis de pérdidas de energía en una planta de energía eléctrica y en la trayectoría de flujo de vapor de la turbina

2.1 Pérdidas en la planta de energía eléctrica.

Las pérdidas de energía disponible en una planta de energía eléctrica (planta de fuerza) son diversas y aquí se mencionan las pérdidas por componentes. La energía que se le suministra a la caldera mediante el combustible representa el 100% de la energía disponible de la planta, después de efectuarse la combustión los gases que salen de la caldera via chimenea llevan energía que se pierde y representa aproximadamente el 7% [7], al mismo tiempo hay pérdidas de energía debido al ciclo que sigue la caldera y que representa un 3%, dando como resultado que la eficiencia de la caldera sea de 90% por tanto, la energía que lleva el vapor al entrar a la turbina es de 90%, después el vapor se expande en la turbina y hay pérdida de energía en ella, de aproximadamente 15% de la energía disponible resultando que la energía disponible al salir de la turbina sea de alrededor de 75-80%. Las pérdidas de energía mayores en toda la planta termoeléctrica son las que se tienen en el condensador, en éste se pierde alrededor del 30% de la energía disponible del vapor al salir de la turbina, lo cual conduce a que la energía que tiene el

rotor de la turbina sea de aproximadamente el 45% del total, después existen pérdidas de energía en chumaceras y bomba de aceite o llamadas pérdidas mecánicas de cerca de 1%, luego vienen las pérdidas en el generador que son de alrededor de 1% y luego las pérdidas de los auxiliares de alrededor de 2% dando como salida de energía final del sistema, alrededor del 42% [7]. Lo anterior se muestra en el esquema de energía de la figura 2.

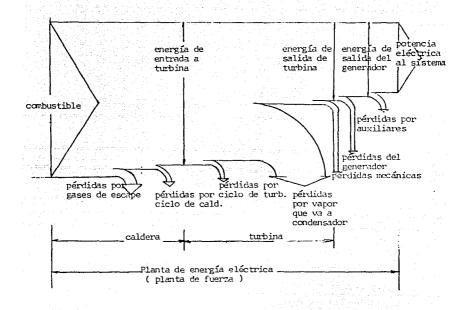


FIGURA 2 - PERDIDAS DE ENERGIA EN UNA PLANTA DE ENERGIA ELECTRICA

2.2 Pérdidas en trayectoria de flujo de vapor en turbina.

Las pérdidas de energía inherentes a la turbina de vapor son las que interesan para este estudio y estas pérdidas en la turbina son:

- a) pérdidas de ctapa
- b) pérdidas por fuga de vapor de etapa
- c) pérdidas de descarga
- d) pérdidas por caida de presión
- e) pérdidas por fricción o mecánicas
- f) pérdidas por fugas de vapor en empaquetaduras

Las tres primeras son las mayores y estan intimamente relacionadas con el diseño de la turbina, las otras estan asociadas o dependen de otros componentes.

El esquema de la figura 3 muestra mayor información sobre las pérdidas. Se aclara que hay diferentes clasificaciones de pérdidas en turbina, se ha tomado la clasificación de [7].

La representación del esquema anterior en el diagrama H-S convencional para expansión del vapor en la turbina se muestra en la figura 4 de pérdidas internas y eficiencia interna de la turbina.

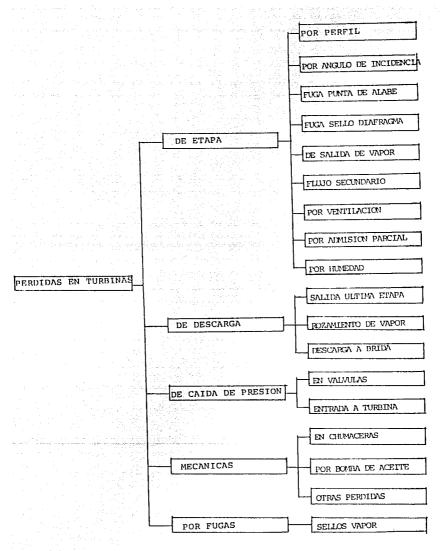


FIGURA 3. PERDIDAS DE ENERGIA EN TURBINAS [7]

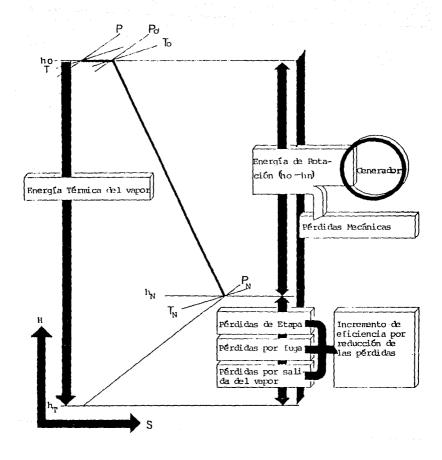


FIGURA 4.PERDIDAS INTERNAS Y EFICIENCIA INTERNA DE TURBINA [7]

De la gráfica anterior se obtiene que la eficiencia interna de la turbina es $\eta = \frac{h_a - h_a}{h_a - h_a}$ que en general se encuentra entre 75 y 85%.

A continuación se mencionan brevemente las pérdidas más importantes de: etapa, fugas de vapor de etapa y de descarga.

a) Pérdidas de etapa

Estas pérdidas se deben principalmente al perfil, éste provocará que se incrementen o disminuyan las pérdidas asociadas. A las pérdidas de etapa se les divide en la literatura como pérdidas primarias y secundarias.

Las pérdidas por perfil inducen pérdidas no mostradas en la figura 3 entre ellas por flujo no uniforme y por fricción.

Las pérdidas por flujo no uniforme se deben fundamentalmente a la relación del paso de toberas al paso de álabes t_1/t_2 , a la distancia óptima entre los bordes de salida de tobera y entrada de álabes "B", así como al espesor del borde de salida de toberas δ .

Las pérdidas por fricción, en perfiles se deben básicamente al rozamiento del vapor con los lados cóncavo y convexo de los álabes.

Las pérdidas por flujo secundario, son las pérdidas mayores por perfil de etapa y se deben a la diferencia de presión entre los lados cóncavo y convexo del álabe, el lado convexo tiene menor presión y el flujo secundario va de presión alta a presión baja en la raíz y punta del canal de álabes, el flujo secundario es mayor porque el vapor principal es de alta presión en el centro y menor en la raíz y punta del canal (debe intentarse que la ΔP sea baja para tener menores pérdidas por fluio secundario).

A la salida del vapor del canal de álabes hay una diferencia de presión entre el lado cóncavo y convexo del perfil y debido a que el vapor principal está a alta presión, aparecen en la raíz y punta del perfil pérdidas adicionales que se denominan como pérdidas por separación de flujo y pérdidas de mezcla o mezcladas.

Pérdidas por el ángulo de incidencia de entrada del vapor.

El vapor debe entrar al canal de álabes con un ángulo determinado, normalmente este ángulo está referido al ángulo mecánico del álabe.

La desviación del ángulo óptimo provoca pérdidas de energía, en el canal de flujo, la raíz es más sensible y la punta menos al ángulo de incidencia.

Las pérdidas por ventilación se deben al efecto de ventilador que hace el rodete al girar dentro de un medio de vapor.

Las pérdidas por humedad se deben al hecho que provoca el vapor al condensarse y pegarse a los álabes y rodete.

Las pérdidas por admisión parcial se deben a que en la primera etapa se admite una parte de vapor y no se aprovecha la energía del vapor que no entra.

Las pérdidas de etapa son aún mayores que las pérdidas por fugas de etapa y de descarga, dependiendo del tipo de perfil y del arreglo de la etapa pueden aumentar o reducir otras pérdidas. Las pérdidas por fugas de etapa, no mostradas en la figura 3, estan incluidas en las pérdidas de etapa y se indican a continuación.

b) pérdidas por fuga de vapor de etapa

Las pérdidas por fugas de vapor de ctapa se originan en sellos de diafragmas, raíz de álabes y punta de álabes, y se deben a una disposición inadecuada de toberas, sellos y rodetes. Las principales pérdidas por fuga de etapa son:

- fuga de vapor en la raíz del álabe
- fuga de vapor a través de cincho y sello en punta de álabe
- fuga de vapor a través del sello del diafragma

El arreglo de las pérdidas por etapa y de fugas de etapa en una turbina se muestra en la figura 5. Al conjunto de pérdidas de etapa y por fugas se le denomina también como pérdidas en trayectoria de flujo.

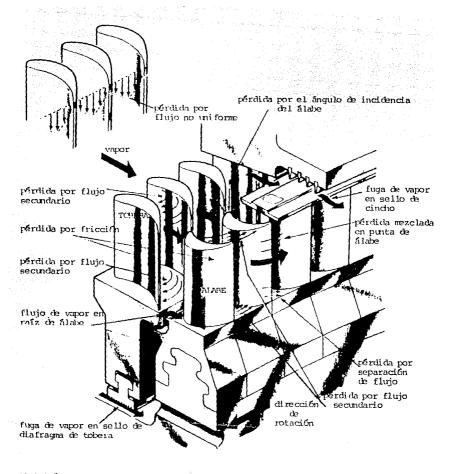


FIGURA 5. PERDIDAS DE ENERGIA DE ETAPA Y FUGAS EN TRAYECTORIA DE FLUJO [7]

Las pérdidas por fugas (por el arreglo) de etapa, como se mencionó, se deben a la disposición de los anillos interno y externo de los diafragnias, al tipo de sello (de laberinto, plano, etc.) su empaquetadura y claros, al tipo de cincho, el tipo de sello sobre el cincho, la prolongación del anillo externo del diafragma, a la distancia entre diafragmas y rodete, etc.

A continuación se menciona como se incrementan las fugas de etapa:

Pérdidas por fugas de vapor en raíz de álabe.

Serán mayores cuando la distancia entre toberas y álabes sea mayor, si se puede disminuir el claro las fugas disminuirán, la limitante es la vibración del álabe.

Pérdidas en cincho y sello en punta de álabe.

Son mayores cuando sobre el cincho no hay sellos y el claro es grande entre rodete y carcaza.

Pérdidas en sellos de diafragma.

Son altas cuando el claro es grande entre la punta del sello y la flecha del rotor o cuando no hay sello tipo laberinto donde debe llevar.

c) pérdidas de descarga o salida del vapor de la turbina.

Estas se deben principalmente a que el vapor al salir de la última etapa de la turbina, lleva energía la cual ya no se utilizará mas, además el vapor que va a salir de las carcasas debe guiarse de tal manera que la pérdida de energía por salida sea pequeña.

d) pérdidas por caida de presión.

Se deben a la caida de presión en válvulas de paro, de control y por rozamiento con toberas y rodetes del vapor.

e) pérdidas por fricción o mecánicas.

Se deben a las pérdidas de rozamiento entre flecha (muñón) y chumacera y por accionamiento de bomba principal.

f) pérdidas por fugas en empaquetaduras.

Estas pérdidas son diferentes a las de etapa y estan relacionadas solamente con sellos de vapor de alta y baja presión, aumentan cuando el claro entre punta del sello y flecha del rotor es grande.

Capítulo 3

Análisis de pérdidas de energía por fugas de vapor de etapa

Como ya se mencionó, las pérdidas por sugas de etapa pueden ser de las mayores en turbinas.

En esta parte se analizan las pérdidas de energía que se tienen debido a las fugas de vapor de etapa.

En la figura 6 se muestra la etapa de una turbina y en ella el flujo principal es GO y una parte de él se fuga por el sello de diafragma de toberas GNW, a la salida de toberas el flujo es G1 y del cual una parte se fuga hacia la raíz del álabe movil GNW1 y otra parte hacia el cincho del álabe GNZ, además la suma de los flujos de fugas de vapor en sellos de diafragma y la raíz de toberas, forman el flujo de fugas GNO que se va por el barreno de balance del disco del rodete. Como puede observarse, los flujos G1, G2 y GNO son función de las áreas de flujo y de la temperatura y presión del vapor.

Las áreas de flujo se miden y los flujos G1, G2 y GN dependen o son función de las velocidades relativa W_2 y absoluta C_1 .

A continuación se muestra el proceso de cálculo resumido de los slujos de vapor principal y de sugas.

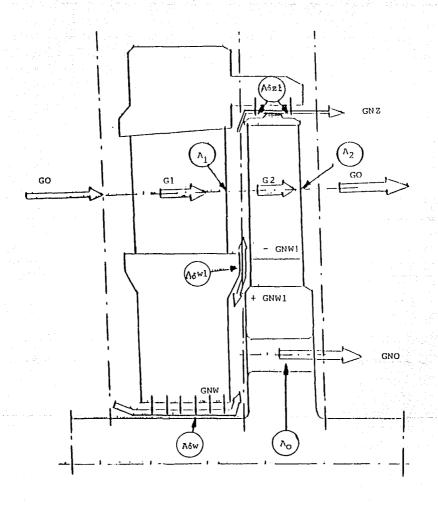


FIGURA 6. FLUJO DE VAPOR, DE FUGAS Y AREAS DE FLUJO

De acuerdo a la figura 6.

$$G1 = GO - GNW = G1(A_1, A\delta_W, T, P)$$
(3.1)

$$G2 = G1 - GNZ - GNW1 = G2(A_2, A\delta_{Z1}, A\delta_{W1}, T, P)$$
 (3.2)

$$GNO = GNW + GNW1 = GNO(A_0, A\delta_W, A\delta_{W1}, T, P)$$
 (3.3)

De la figura 7, se observa que la longitud de la garganta de flujo de un canal se puede calcular con;

$$sen\alpha_1 = A_1^m/t_1; A_1^m = t_1 sen\alpha_1$$
 (3.4)

$$sen\beta_2 = A_2^m/t_2; \ A_2^m = t_2 sen\beta_2$$
 (3.5)

el paso de álabes vale;

$$t_1 = \frac{2 \mathrm{II} r}{Z_1} \tag{3.6}$$

$$t_2 = \frac{2\Pi r}{Z_2} \tag{3.7}$$

El área anular de flujo total de una etapa se calcula con; Para el área de toberas

$$A_1 = Z_1 \int_{r_*}^{r} A_1^m dr = Z_1 \int_{r_*}^{r} t_1 sen \alpha_1 dr = 2 \prod_{r_*}^{r} sen \alpha_1 r_1 dr_1$$
 (3.8)

donde la integral, significa el flujo de vapor que circula desde la raíz (r) hasta la punta (p) del álabe en cada canal de flujo.

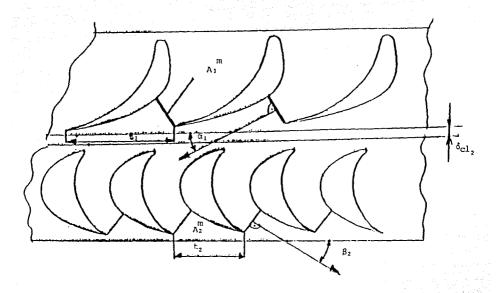


FIG. 7 PARAMETROS GEOMETRICOS DE TOBERAS Y ALABES

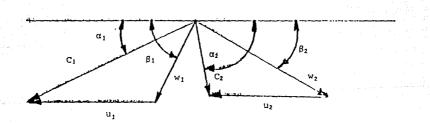


FIG. 8 TRIANGULO DE VELOCIDADES DEL FLUJO Y ROTACION DE RODETE

Ya que

$$sen\alpha_1 = \frac{A_1^m}{t_1}$$

es constante y la integral del álabe desde la raíz hasta la punta es L_1 , se tiene;

$$A_1 = Z_1 A_1^m L_1 = 2 \prod_i L_1 sen \alpha_1 = \prod_i L_1 sen \alpha_1$$
 (3.9)

 D_1 , es el diámetro medio del diafragma de toberas, por tanto el área de flujo total en toberas es:

$$A_1 = \Pi(D_1 + L_1)L_1 sen \alpha_1 \tag{3.10}$$

y el área del flujo total en el rodete es:

$$A_2 = Z_2 A_2^m L_2 = \Pi(D_2 + L_2) L_2 sen \beta_2$$
 (3.11)

Una vez obtenidas las áreas se procede a calcular los flujos de vapor: El flujo a la salida del diafragma de toberas es;

$$G1 = \rho_1 A_1 C_1 \tag{3.12}$$

El flujo a la salida del rodete es;

$$G2 = \rho_2 A_2 W_2 \tag{3.13}$$

Una de las maneras prácticas para calcular las áreas A_1yA_2 es medir $A_1^myA_2^m$ en cada canal.

Ahora bién

$$C_1 = \phi C_1, \tag{3.14}$$

$$\phi = \sqrt{1 - \xi_s} \tag{3.15}$$

 C_1 , es la velocidad teórica de salida del diafragma de toberas y C_1 es la velocidad real

$$W_2 = \psi W_2 \tag{3.16}$$

$$\psi = \sqrt{1 - \xi_R} \tag{3.17}$$

 W_{2} , es la velocidad teórica de salida del rodete y W_{2} la velocidad real. C_{1} , y W_{2} , se obtienen del triángulo de velocidades de la figura 8. Los coeficientes de pérdidas se obtienen mediante

$$\xi_s = (\xi_p + \xi_w)_s \tag{3.18}$$

$$\xi_R = (\xi_p + \xi_w)_R \tag{3.19}$$

donde los coeficientes de pérdidas primarios y secundarios ξ_p y ξ_w son función de;

$$\xi_p = \xi_p(t/b, \delta/b, \Delta\alpha, R, M, Re, espesor del perfil)$$
 (3.20)

$$\xi_w = \xi_w(b/L, \alpha_o, \alpha, M, Re, espesor \ del \ perfil)$$
 (3.21)

y pueden obtenerse de gráficas como las mostradas en la figura 10. Otros parámetros geométricos de toberas y álabes se aprecian en la figura 9. La figura 11 muestra los perfiles de los coeficientes de pérdidas primarias y secundarias.

Para el cálculo de los flujos de fugas en sellos de diafragmas de toberas, agujeros de balance de presión y sellos en cinchos de rodete, es necesario mencionar lo siguiente. En general el cálculo de estas fugas es muy dificil de obtener, se han hecho esfuerzos mediante fórmulas empíricas [1], sin embargo, la mayoria de ellas son para casos específicos. Las fórmulas mayormente empleadas son las de; Martin, Newman y las de Troyanovski.

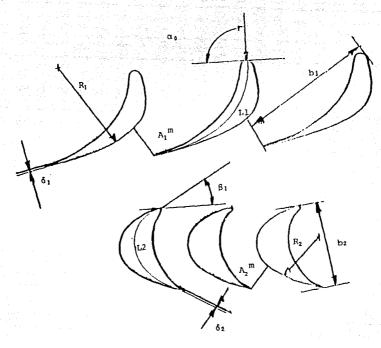


FIG. 9 PARAMETROS GEOMETRICOS ADICIONALES DE TOBERAS Y ALABES

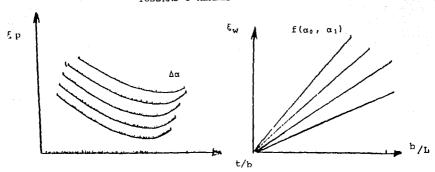
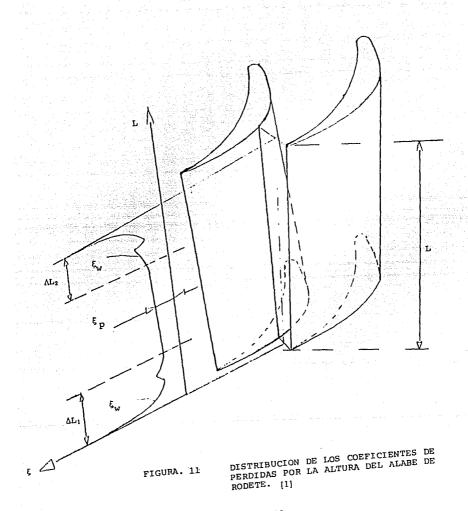



FIG. 10 COEFICIENTES DE PERDIDAS EN FUNCION DEL ANGULO, t/b y b/L

Como se puede observar de la figura 6 existen cuatro flujos de fugas en el arreglo de la etapa, y en ellos existen diferentes sentidos que puede seguir el flujo, los parámetros que influyen para lo anterior son, si la turbina es de impulso o reacción, el tipo de sello y el grado de reacción (ro), si es de impulso y el grado de reacción es grande, el sentido de las fugas puede invertirse.

El grado de reacción (ro) desde el punto de vista de las presiones significa que si es cero, la caida de presión de la etapa solo se lleva a cabo en toberas y si es mayor que cero, parte de la caida de presión ocurre en el rodete.

Analizando el caso que la turbina sea de impulso, si el rodete fuera puramente de impulso el grado de reacción es cero, y como se dijo, una parte del vapor principal GO se va hacia los sellos de diafragma y el chorto de vapor que sale del diafragma succiona al vapor que se fue por los sellos y esto provoca que el vapor que sale del rodete una parte sea succionado y circule por el barreno de balance en sentido contrario al flujo de vapor principal, otro caso que se puede presentar es; si el grado de reacción es pequeño, del vapor que sale del diafragma de toberas, una parte se dirige hacia los sellos del cincho y otra parte hacia el barreno de balance, en donde se une con el de sello del diafragma y los dos flujos circulan en sentido del vapor principal. Otro caso es cuando una parte del flujo de sellos de diafragmas se va por el barreno y otra parte se succiona por el vapor principal.

De la figura 6, en términos generales se tiene;

$$GNO = GNW1 + GNW (3.22)$$

y

$$GNZ = GNW (3.23)$$

para

$$ro = 0; GNW1 = 0$$

١

$$GNO = GNW$$

para $ro \neq 0$; para este caso se emplea la expresión general y ecuaciones específicas (4-35) y (4-36) de [1], que con la nomenclatura aquí empleada y con los valores de algunas constantes quedan como:

$$\frac{GNW}{GO} = \frac{7.2X \cdot 10^{-4} D_i^2}{(D_1 + L_1) L_1 sen \alpha_1 Z_o} \sqrt{\frac{1 - (ro)_r}{1 - (ro)_m}}$$
(3.24)

donde:

Di = diámetro de la flecha

 $Di = 1/3 D_1$ para turbinas de vapor pequeñas

Di = f(n, pel) para otras

n - revoluciones por minuto

pel - potencia eléctrica

Zo = número de dientes de sellos

 $Zo = f(\Delta p)$

(ro), - grado de reacción en raíz de álabe

 $(ro)_m$ - grado de reacción a la mitad del álabe

у

$$\frac{GNW1}{GO} = \frac{7.2X10^{-4}D_i^2}{(D_1 + L_1)L_1 sen\alpha_1} \sqrt{\frac{(ro)_t}{1 - (ro)_m}}$$
(3.25)

donde;

(ro), - grado de reacción en punta del álabe

De la anterior manera se calculan los flujos y sus fugas de la etapa.

Capítulo 4

Incremento de eficiencia a turbinas mediante el control de pérdidas de energía en trayectoria de flujo de vapor

En la parte 2 se han mencionado las pérdidas de energía mas importantes que aparecen en la trayectoria de flujo de vapor, inclusive se han indicado, en forma breve, sus causas.

En esta parte se presenta cómo incrementar la eficiencia a una turbina mediante el control (reducción) de sus pérdidas de energía en la trayectoria de flujo. Esta parte, es la base para los cambios que se puedan hacer a un diseño original. Se menciona que la mayoría de información de este capítulo está tomado de [7].

4.1 Control de las pérdidas por flujo no uniforme

En una turbina, normalmente el número de toberas no es el mismo que de álabes, el número de toberas siempre es menor. La relación del paso de toberas al paso de álabes t_1/t_2 varía de 1.2 a 1.4. Existe una

longitud (distancia) óptima "B" entre el borde de salida de tobera y el borde de entrada del álabe en el canal de flujo, la cual está determinada por la resistencia mecánica, la vibración de los álabes así como de la eficiencia de la etapa. La combinación de la relación t_1/t_2 y la longitud óptima "B" entre bordes conduce a obtener la menor pérdida por flujo no uniforme además se da especial atención al espesor del borde δ_1 de salida de tobera, ya que de otra forma, con la variación del espesor del borde las pérdidas varían.

Lo anterior se muestra en la figura 12, en donde al variar la relación t_1/t_2 y la longitud òptima , las pérdidas aumentan o disminuyen.

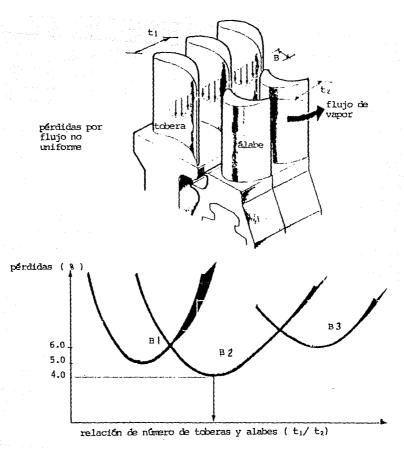
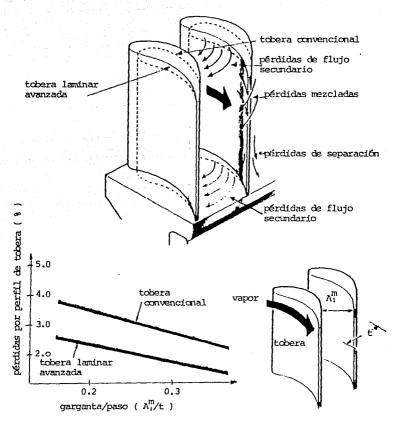


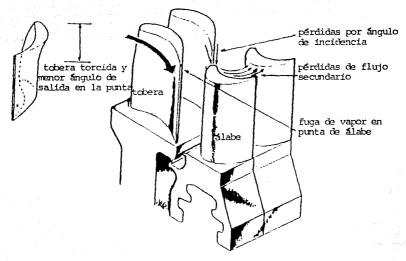
FIGURA 12. CONTROL DE PERDIDAS POR FLUJO NO UNIFORME [7]

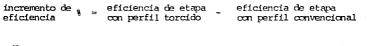
4.2 Control de las pérdidas de flujo secundario, de separación y por mezclado

Como se mencionó anteriormente las pérdidas por flujo secundario se deben a la diferencia de presiones entre el lado cóncavo y convexo del álabe de tobera y rodete, además esta misma diferencia de presiones provoca adicionalmente pérdidas por separación y pérdidas mezcladas.

Aprovechando la información anterior se ha encontrado que la relación; garganta de salida del álabe de tobera a paso A_1^m/t_1 es igual al paso del ángulo de descarga $A_1^m/t_1=$ ángulo de descarga, valor que disminuye la diferencia de presión y el valor óptimo de esta relación oscila entre 0.2 a 0.3, lo que conduce a que el ángulo de salida (descarga) del vapor sea entre 12 y 18° y eso conduce a diseñar un perfil especial, diferente al convencional para reducir las pérdidas por flujo secundario, separación y de mezclado hasta en un 5%, lo que representa una reducción sustancial de las pérdidas totales. Lo anterior se muestra en la figura 13.




FIGURA 13, PERFIL DE TOBERA LAMINAR AVANZADO PARA REDUCCION DE PERDIDAS [7]


4.3 Control de vórtices.

Normalmente hay vórtices a la salida del álabe de tobera y si se controla este remolino hay menor pérdida y por tanto mayor eficiencia.

La tobera convencional es recta en la salida y el perfil especial está torcido de la parte media hacia la punta, el incremento de la eficiencia ha sido probado para toberas de 60 a 250 mm de altura [7] y este incremento de eficiencia varía de 0.5 a 1% en cada etapa y depende de la altura de la tobera.

Lo anterior puede observarse en la figura 14.

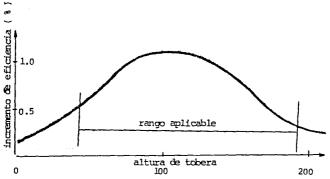


FIGURA 14. PERFIL ESPECIAL TORCIDO PARA CONTPOL DE VORTICE [7]

4.4 Control o reducción de fuga de vapor en el rodete.

En cada rodete del rotor normalmente hay un block candado y un block de balance, el block candado es la base o raíz del álabe y sirve para dar el apriete necesario del total de álabes en el rodete. El block de balance tiene como objetivo balancear el rodete y normalmente consiste de base o raíz de álabe. Ambos bloques están incompletos lo que provoca que exista fuga de vapor en donde estan colocados, estos bloques. Como se ve, esta fuga de vapor no fue mencionada antes, ya que era dificil su interpretación, pero su valor es considerable.

Actualmente es posible usar en vez de block candado, un álabe candado, el cual hace la función de block de candado y ademas de álabe transmisor de energía. lo mismo puede hacerse con el block de balance utilizando un álabe de balance, el problema es la fuerza centrífuga, pero al utilizar un álabe de Titanio se puede reducir un 34% de la fuerza centrífuga, debido a que la densidad del Titanio, es menor a la del acero aleado, su resistencia es también menor y por ello no puede utilizarse en turbinas de alta presión.

Se han efectuado pruebas y se ha observado que una relación de velocidad periférica a velocidad de vapor w/c_o óptima relacionando block candado y álabe candado da un incremento de eficiencia (al utilizar este último) de 0.4 a 0.5% por etapa, además la relación de velocidad óptima oscila entre 0.48 y 0.65.

La figura 15 muestra el cambio antes mencionado.

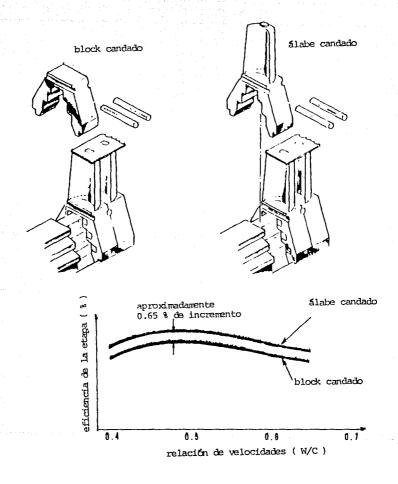


FIGURA 15. SUSTITUCION DE BLOCK CANDADO Y DE BALANCE POR ALABE
CANDADO Y DE BALANCE [7]

4.5 Control o reducción de fugas de vapor en cinchos de rodete.

Como se ha mencionado anteriormente en punta y en la raiz de salida de toberas se tienen pérdidas por flujo secundario, y por mezclado, estas pérdidas aunadas a las pérdidas por vórtices de salida de tobera y por ventilación entre diafragma y rodete, provocan que en la punta del rodete haya pérdidas de flujo de vapor. Para evitar lo anterior se procede a prolongar el diafragma de toberas y ahí se colocan dientes de sellos, para reducción de fuga óptima se requiere que el tetón del álabe sea plano y que el número de dientes sea grande, pueden tenerse otros arreglos pero su incremento en la eficiencia será menor.

De la misma manera en la raíz del álabe existen pérdidas por flujo secundario de separación, por vórtices y de ventilación, para reducir la fuga del vapor se recomienda utilizar una aleta radial en raíz de álabe móvil (de rodete).

Lo anterior se muestra en la figura 16. La reducción de fugas en la punta (cincho) del álabe móvil es de 25% y el incremento en la eficiencia de la turbina puede ser de hasta 3%.

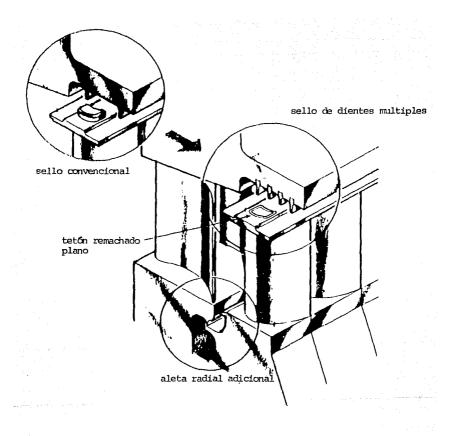


FIGURA 16. CONTROL DE FUGAS EN CINCHO Y REDUCCION DE FUGAS EN
RAIZ DE ALABE [7]

4.6 Control o reducción de fugas de vapor en sellos de diafragma de tobera y de raíz de álabe.

Como se mencionó hay un flujo que se separa del principal y se va por la parte inferior del diafragma y ahí hay sellos de vapor del diafragma, sin embargo, el claro de estos sellos en ocasiones resulta grande y existe una fuga alta de vapor, para reducir esta fuga se recomienda poner empaquetaduras de sello flotante con ajuste de resorte para mantener un claro mínimo, al mismo tiempo se recomienda hacer barrenos de balance en los discos del rotor. Los barrenos tienen doble finalidad, la primera es ignalar o balancear las presiones de vapor en los discos antes y después de cada etapa, la segunda es la de permitir que por estos barrenos fluyan las fugas de vapor que provienen del diafragma y de la raíz del álabe.

Si hay un flujo de succión adecuado, la zona de flujo alterado se succionará hacia abajo. Para obtener el valor adecuado hay que ajustar el diámetro del orificio de balance, el diámetro es mayor que lo que había en la turbina original y con ello se obtiene el flujo de succión óptimo.

Lo anterior se muestra en la relación cantidad de fuga a pérdidas que indica la figura 17, se espera que el incremento en la eficiencia sea de 0.3%.

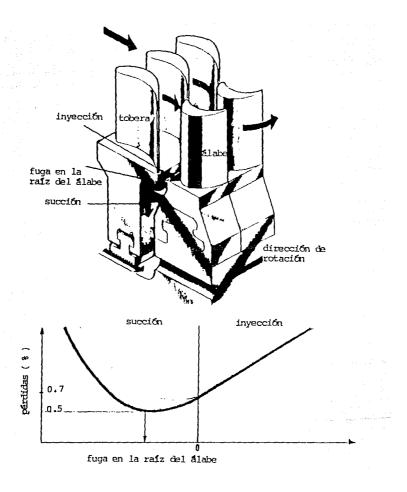
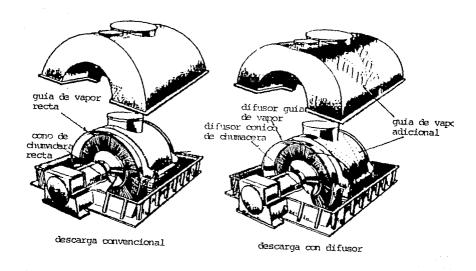



FIGURA 17. CONTROL DE FUGAS EN RAIZ DE ALABE Y DIAFRAGMA DE TOBERAS [7]

4.7 Control de pérdidas por salida del vapor de la turbina.

Después de la última etapa el vapor debe guiarse para salir en la brida de descarga, si no se lleva a cabo lo anterior, se provoca en la última etapa pérdida por fricción, vórtices, etc., por lo tanto, es ideal permitir que la presión estática del vapor baje controladamente, se ha observado que una relación de área de abertura de salida a área anular del álabe adecuado, utilizando un difusor en la carcaza contra una descarga convencional da en el primer caso una pérdida de presión estática menor.

Lo anterior se muestra en la figura 18, dependiendo del difusor se puede obtener hasta 0.5 de incremento en la eficiencia.

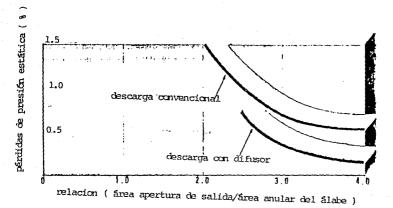


FIGURA 18. CONTROL DE PERDIDAS POR DESCARGA DEL VAPOR DE TURBINA [7]

Capítulo 5

Modificaciones al diseño

Como se mencionó, con base en la información, un proceso de capacitación y desarrollo en turbinas de vapor de diferentes tecnologias, auxilio de un programa de cómputo y mediciones en campo, se realizó este trabaio.

El Instituto de Investigaciones Eléctricas (IIE) participó en un proyecto de asimilación y transferencia de tecnología de diseño y fabricación de turbogeneradores geotérmicos de 3 a 7 MW de capacidad, con la firma japonesa Toshiba. Debido a que en la operación del turbogenerador (producto del proyecto) no se cumplió con el consumo de vapor especificado, debido a esto, se busco el rediseño de la turbina, para ello, se revisaron tecnologias de Toshiba, Mitsubishi y Turbodyne. En esta revisión pudo apreciarse que los discños de trayectoria de flujo eran diferentes y para tal efecto se efectuaron mediciones de consumo específico y pruebas de comportamiento a las unidades Toshiba [11] y Mitsubishi [12] instaladas en los Azufres, Michoacan, resultando la última de mayor eficiencia. Posteriormente se tomaron mediciones geométricas de trayectoria de flujo de la unidad Mitsubishi, se analizó la geometría de esta unidad así como de la información de una turbina Turbodyne. Se aplicaron al diseño riginal Toshiba algunas modificaciones a la travectoria de flujo utilizando el programa de cálculo polaco "Turbina 88" y los resultados mostraron que la eficiencia interna de la turbina Toshiba se incrementaba. Por otra parte con la experiencia de inspección de otras turbinas se pudo llegar a proponer cerca de veinte modificaciones al diseño original Toshiba, sin embargo, no todas podian cuantificarse con el programa de cálculo.

Por lo tanto en este trabajo se mencionan solamente nueve modificaciones en trayectoria de flujo, que se consideraron que podian influir sustancialmente en el incremento de la eficiencia interna de la turbina de estudio. Las modificaciones sugeridas se enuncian a continuación:

- Inclinar el anillo externo del diafragma de toberas, y la altura de álabe a la salida, hacerla mas grande que la entrada.
- Prolongar la saliente del anillo externo del diafragma y arriba del cincho colocar dientes de sello en la prolongación del diafragma.
- 3. Hacer el álabe móvil con una punta-aleta en la raíz.
- 4. Hacer cinco barrenos de balance en discos de cada rodete.
- Hacer sellos de laberinto en flecha y colocar una empaquetadura de sellos con resorte en diafragma de toberas.
- 6. Hacer drenes de condensado en soporte de sellos del cincho.
- Colocar álabes candado y álabes de balance en lugar de bloques de candado y de balance.
- 8. Colocar un difusor de salida del vapor.
- Aumentar altura de álabe del rotor en la segunda, tercera y cuarta etapa.

Con las modificaciones anteriores se espera incrementar la eficiencia de la turbina de la siguiente manera;

- a) Al inclinar el anillo externo del diafragma el flujo de vapor será guiado y reducido el claro a la entrada del álabe móvil, de esta manera se reducen las fugas sobre el cincho y se espera que el incremento de eficiencia en turbina sea de 0.3%.
- b) El prolongar el anillo externo del diafragma y colocar sellos de vapor en él, sobre el cincho, reduce la fuga de vapor y de esta manera se espera que el incremento en la eficiencia sea de hasta 2%.

- c) Colocar una aleta en la raíz del álabe móvil y colocar barrenos de balance reduce las pérdidas de vapor y efectua el balance de presión a la entrada y salida de la etapa y de esta manera se espera que el incremento de la eficiencia sea del 0.5%.
- d) Hacer dientes de sello en flecha y sellos en diafragmas de toberas con resorte, reduce el claro y por tanto la pérdida por fuga de vapor, por lo que el incremento de la eficiencia será del orden de 1.5%.
- e) El número y tamaño de drenes de tobera debe ser óptimo de tal manera que se permita el drenado del condensado y esto produce un incremento de la eficiencia de la turbina del orden del 1%.
- f) La colocación de los álabes candado y álabes de balance en los puntos donde se colocaban bloques candado y de balance produce un incremento de la eficiencia de 1.5%, se dice que se incrementa la eficiencia de etapa entre 0.4 y 0.9%.
- g) La instalación de un difusor de salida del vapor, produce un incremento de eficiencia de turbina de 0.2%.
- h) El cambio de altura de álabes móviles en la 2a, 3a y 4a etapa, produce menos pérdidas por fuga del vapor ya que no hay el cambio brusco de altura y lo anterior produce un incremento de la eficiencia de la turbina del orden del 1.5%.

Al sumarse los valores anteriores la eficiencia interna de la turbina se incrementará por arriba del 8% y el valor mínimo que se espera incrementar la eficiencia es del 6%.

La justificación de las modificaciones propuestas se basa en el cálculo que se efectuó a seis de las nueve modificaciones. Con el auxilio del programa de cómputo "turbina 88" se efectuó el cálculo con la configuración de diseño original y con las seis modificaciones de diseño 1, 2, 3, 4, 5, y 9.

El programa "turbina 88" requiere datos geométricos de trayectoria de flujo y termodinámicos de entrada y salida y da como resultado parámetros termodinámicos, eficiencia y potencias de cada etapa entre otros.

El incremento en cficiencia interna que se obtuvo entre el diseño original y sus modificaciones fue de 1.65%. Conviene aclarar que el programa "turbina 88" es un programa con limitaciones, que hace cálculos uni y bidimensionales y que respecto a valores reales esta alrededor de 6% arriba del valor real. En el apéndice se muestra mayor información sobre el programa y se muestran los resultados subrayándose las eficiencias y potencias.

Respecto a las tres modificaciones 6, 7 y 8 que no pudieron calcularse en el programa, se menciona que en esos casos se han tomado los valores de [7].

Tanto las modificaciones calculadas en el programa y las no calculadas, por experiencia se consideran las mas convenientes, entre otras modificaciones.

En las figuras 19 y 20 se muestran la configuración actual de la turbina y la configuración con las modificaciones recomendadas.

Los métodos actuales para calcular los incrementos de eficiencia se basan en el elemento finito en tres dimensiones y en mediciones experimentales. Para este caso se hicieron corridas de programas de cómputo de los parámetros de la trayectoria de flujo de vapor, unidimensionales comparados contra mediciones de consumo específico y prueba de comportamiento. Se menciona en el apéndice los programas y sus limitaciones.

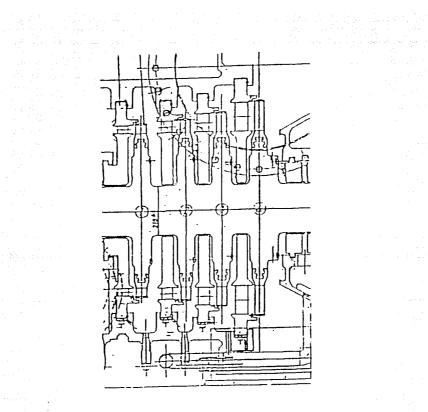


FIGURA 19. CONFIGURACION SE DISERO TURBINA TOSHIBA [2]

And the property of the second second



FIGURA 20. CONFIGURACION CON MODIFICACIONES AL DISEÑO TOSHIBA

Capítulo 6

Conclusiones

Como se indico, con las modificaciones de diseño se espera que el incremento de la eficiencia interna de la turbina sea de al menos 6% y si la eficiencia interna real de la turbina es alrededor de 77% por tanto la eficiencia interna llegará a 83%. Hitachi indica que es posible alcanzar en una turbina hasta 92%.

Como habrá podido notarse, en la configuración de diseño Toshiba, no estan implementados varios cambios de diseño que incrementen la eficiencia de la turbina.

En las modificaciones sugeridas, las pérdidas por fugas en cinchos, raíz del álabe y sellos de diafragma se estan minimizando. El diseño original no contempló estas pérdidas y la disposición de algunos componentes es incorrecta, los claros entre disco de rotor y diafragma han sido modificados, así como la altura de los àlabes de rodete. Puede notarse que el incremento de eficiencia, obtenida mediante cálculo fue pequeño, sin embargo, se debe a la limitación del programa.

Para conocer el punto de vista del fabricante, se le envió la configuración del diseño modificada y se le indicó un incremento de eficiencia de 8% esperado.

El fabricante reconoció que se podia incrementar la eficiencia hasta un 6% e indicaba en que porcentaje se incrementaba cada modificación. Posteriormente en una conferencia de Hitachi [7], el expositor indicó en que porcentaje se incrementaba cada modificación y en general sus

valores eran un poco mayores que los de Toshiba y parecidos a los valores que se han indicado en la parte 5.

Los incrementos de eficiencia que han tenido las turbinas en los últimos años son de 10 a 15%, por lo que un incremento de 6 a 8% es considerable.

En este trabajo se verifica que es posible incrementar la eficiencia a turbinas.

Referencias

- 1. A. V. Schegliaiev. Turbinas de vapor, Editorial Mir Moscú, 1978
- Toshiba, Diseño de la trayectoria del vapor y especificación para documentar tecnología de Toshiba para las turbinas pequeñas de vapor. Toshiba IIE 1985
- A. Gardzilewics. Comentarios al discño de turbinas de vapor, reporte No. 161/84 (en polaco), Instituto de Maquinaria de Flujo de Fluidos, PAS, Gdansk, 1984.
- E. Blazko; M. Lidke. Programa de cómputo para turbinas de vapor de un sistema de fluido de geometría dada, reporte de descripciones generales IFFM No. 58/86, Gdansk, 1986.
- K. Kosouski. Optimización en las ctapas de la turbina, tesis doctoral, Gdansk, 1987.
- R. Puzyrewski L. Bogdali. Analysis of efficiency of the turbine stage, report No. 69/82, 166/81 Institute of Fluid Flow Machinery (PAS), Gdansk, 1982
- 7. Haraguchi; et al, Preventive maintenance & advanced technology seminar for steam turbine & generator, Nov 28-Dec 1, 1989 Hitachi conference, México city.
- 8. A. Gardzilewics H. Sandoval. Prelimary Thermodynamic calculations of steam path flow for cylindrical and semicylindrical stages. Reporte interno IIE. IIE/34/3962/1/039/1 1987.
- 9. II. Sandoval O. Procedimiento de cálculo termodinámico de una turbina geotérmica de 5 MW a boca de pozo. Il Simposium Nacional de Ciencias Térmicas, México D.F. 1985.

- H. Sandoval. Cálculo termodinámico de una turbina geotérmica,
 H. Seminario IMP-IIE sobre especialidades tecnologicas, México D.F.
 1985.
- 11. J. L. Gonzalez R. Informe de los resultados de la prueba de comportamiento de la unidad 6 (Toshiba) de los Azufres, Mich., reporte interno IIE. IIE/34/3962/1/045/1.
- 12. H. Saudoval O. Reporte de la prueba de comportamiento de la U-2 Mitsubishi de 5 MW de los Azufres, Mich., reporte interno IIE. IIE/34/3962/1/050/1.
- 13. Haraguchi; et al, Primer seminario latinoamericano de turbinas de vapor, 19, 23 de marzo 1990, Manzanillo México.

Apéndice

El programa de cómputo que se ha utilizado es el "turbina 88". Contiene un algoritmo que solicita los datos de flujo, presión y temperatura de entrada del vapor y la presión de salida de vapor, además toda la geometría de la trayectoria de flujo de vapor y calcula parámetros termodinámicos y de flujo de vapor en la trayectoria.

En la turbina, se efectuaron mediciones geométricas a la trayectoria de flujo del vapor, estas mediciones son diámetros, altura de álabes, claros, espesores de borde, etc., ademas a los perfiles de los álabes se les efectuan mediciones geométricas de radio de curvatura, ángulo mecánico de entrada y salida, espesores de bordes, ancho, espesor de álabe, paso, claros, etc. En cada etapa se efectuaron estas mediciones, que se pueden apreciar en la TABLA 1 DATOS AL PROGRAMA de datos geométricos. Cabe menciouar que en la medición algunos parámetros geométricos no se pueden cuantificar, lo que implica suponer un valor y por ende tener error en los resultados de cálculo.

Una vez que se han introducido los datos al programa, se corre y se obtiene una gama de parámetros geométricos, termodinámicos y de flujo, segun se aprecia en la TABLA 2 RESULTADOS DEL PROGRAMA. Lo importante de los resultados es su interpretación correcta.

El programa "turbina 88" se ha comparado contra pruebas de comportamiento y consumo específico y esta un poco arriba de los valores reales, sin embargo, con este programa se han obtenido mejores resultados.

Lo ideal seria tener, mejores programas de cómputo que avalaran cabal-

mente las mediciones experimentales. Para las mediciones se requiere implementar técnica e instrumentación adecuada ya que en las mediciones hay errores y alta incertidumbre.

Para entender el programa "turbina 88" se utilizarán la figura 6, 7, 8 y 9 y A1 para definir cada uno de los parámetros que alimentan al programa. Se hace la aclaración que los parámetros de la tabla 1 del apéndice no tienen exactamente la misma notación que la del trabajo, para tal efecto, a continuación de la notación del parámetro se anota su equivalente.

Los parámetros de la TABLA 1 DATOS AL PROGRAMA quedan de la siguiente forma:

Dw1- diámetro de la raíz de tobera en la parte de salida de vapor [mm].

Dw2- diámetro de la raíz del álabe de rodete [mm].

DwO- diámetro de la raíz de tobera en la parte de entrada de vapor [mm].

 L_{1} - altura del álabe de tobera en la parte de salida de vapor [mm].

L2- altura del álabe del rodete [mm].

Lo- altura del álabe de tobera en la parte de entrada del vapor [mm].

tal- longitud axial del diafragma de toberas [mm].

ta2- longitud axial del rodete [mm].

z1- número de álabes de tobera de etapa [-].

z2- número de álabes de rodete de etapa [-].

Dz1- diámetro del rodete a la punta del tetón [mm].

delta Z1 - 621-claro radial entre punta de tetón y anillo externo de diafragma [mm].

Zz1- número de dientes de sello sobre el cincho [-].

Dz2- diámetro a la parte media de etapa Bauman [mm].

deltaZ2 -622-claro radial a parte media de etapa de Bauman [mm].

Zz2- número de dientes de sello a parte media de etapa de Bauman [mm].

Dw- diámetro del eje o flecha del rotor [mm].

deltaw - δw —claro radial entre punta de sello de diafragma y eje o flecha [mm].

Sw- distancia entre dientes de sello de diafragma [mm].

Zw- número de dientes de sello de diafragma [-].

Zwn- número de dientes de sello de diafragma incompletos [-].

dw1- diámetro a aleta axial en rodete [mm].

deltaw1- $\delta w1$ -claro radial entre aleta axial y diafragma de toberas [mm].

ro- radio de curvatura de bisel de barreno de balance [mm].

Do- diámetro a la linea de centro del barreno de balance [mm].

do- diámetro del barreno de balance [mm].

no- número de barrenos de balance por rodete [-].

bol- claro axial entre diafragma de toberas y disco de rodete [mm].

nd- número de cartabones (alambres) de álabes para evitar su vibración [-].

dzeta- pérdida de energía (%) debido a cartabones de álabe [-].

alfa20- α_o – ángulo de entrada de vapor al diafragma de toberas [grados].

Ra1- rugosidad relativa de la superficie de la tobera [mm].

Ra2- rugosidad relativa de la superficie del rotor [mm].

al- A_1^m -longitud de la garganta de flujo de tobera [mm].

a2- A_2^m -longitud de la garganta de flujo del rodete [mm].

b1- cuerda del álabe de diafragma de toberas [mm].

b2- cuerda del álabe de rodete [mm].

bet $10-\beta_1$ -ángulo de entrada de vapor al paso de flujo del rodete [grados].

R1- radio de curvatura del alabe de diafragma de toberas [mm].

R2- radio de curvatura del álabe del rotor [mm].

delta1-61-espesor del borde de salida del álabe de toberas [mm].

delta2-62 - espesor del borde de salida del álabe del rodete [mm].

L1- longitud de la curvatura central del álabe de diafragma de toberas [mm].

L2- longitud de la curvatura central del álabe del rodete [mm].

alw- $A_1^m min$ – longitud mínima de pasaje de flujo en la raíz de álabe de tobera [mm].

alz- A_2^mmin —longitud mínima de pasaje de flujo en la raíz del álabe del rodete [mm].

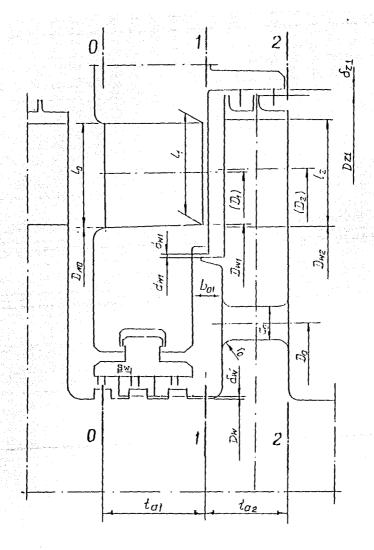


FIGURA A1. PARAMETROS GEOMETRICOS DE LA TRAYECTOPIA DE FLUJO [4]

	네 삼 요네		en ege.			44 A.						
	TA	BLA 1 D	ATOS	AL PRO	GRAMA						2000 Burney	
		ROGRAH		9 1 N 4 -				2 - Mile 2 - Mile	1 3 274			
	OBLICZENIA PR		RMOLYNAM	ICZNE UHLAS	U O ZADA							
	OPRACONALI: (A	LGORYTH:-E.E WJACE SCHE			TOKE ##11	MP.PANGDA	NSK					
	DAME OF IS	DONCE SCHE	IN OBLI	CZENIUMI								
	NIOBRAMINA		.G(-)			Agrico Sagranti Ali Sagranti						
	HE(-)	4 RK (-)	1 TE(-)	NWP(-) Th	(?(-) N	KK(-) TWK	(-) NR.SI		A(-)			
	1	146 (-7	0	i i	0 N		0 1	-1 3100	1			
	2	2	0	2	0		0 1		ŧ	111 J. H.		
	3	3	0	3	0		0 1		1			
	DANE DLA	4 Stopni typ	ี 0 ม ก. 1. ว	4	0 -	-5			0			
			• •,.,-					y re				
	NE (~)							4.5.0				
	DH1 (MM)	Dw2 (MM)	Dw0 (MM)	11(88)	12(00)	10 (MH)	tal(MM)	ta2(MM)				
	460.000	658,400	660.000	32.000	34,300	32.000	52.000					
	:1(-) B0,000	22(-) 55,000	D21(MM) 743.000	delta21 (MM 1.270	1.000		delta/21MM	0.000				
	80,000	00,000	743.000	1.270	1.000	0.000	0.000	0.000		- ,		
	Dw(HH)	deltaw(MM)	Sw(MM)	2 m (-)	2 mn (-)		deltawl(NA)					
	210.000	0.000	5.000	7.000	1.000	558.40 0	5.680	0.000				
	DO (NH)	d0 (MN)	n0(-)	601 (MH)	na (-)	dzeta(-)	alfa20(ST)	Ra1(-)				
a di Santa d	0.000	0.000	0.000	14.000	0.000	0.000	90.000	0.2E-03				
	Ra2(-)	ai (MM)	a2(MM)	b1 (MM)	b2(NH)	bet10(ST)	R1 (MM)	R2(MM)				
	0.2E-03	7.700	12,608	70.000	45.000	45.000	75.000	0.000				
	N. Assalass	**		1.2								
	deltal(MM) 0.440	delta2(KM)	75.000		alw(MM) 7.180	alz (MM) 8.280						
			73,000	551777		0.20.						
	KE(-)		e in the contract of									
	Dw1 (HH)	Dw2(HM)	Dw0 (HH)	11(MM)	12(88)	10 (HH)	tal(MM)	ta2(MM)				
	660.000	658,400	660.000	48.200	50.500	48.200	52.000	43.000				
	:1(-)	z21-)	Dz 1 (MM)	deltali (Mi	1) 771(-1	Dz 2 (Mm)	delta22:MM	1201-1				
	80.000		775.400	1.270	1.000		0.000	0.009				
			6									
a partira	Dw(MM) 210,000	deltaw(MM) 0.640	Sw(MM) 5.000	In(-) 7.000	7wn(-) 1.000	658.400	deltaw1(MM) 5.680	0.006				
	2141666	V+U7V	2.009	*****			0.000	V. VU				
	DO (HH)	40 (MM)	n0(-)	601 (MM)	nd (-)		alfa20(ST)					
	0.000	0.000	0.000	15.000	0.000	0.000	90.000	0.2E-03				
	Ra2(-)	a!(#M)	a2(MM)	bl (MH) .	b2 (MM)	bet10(ST)	R1 (MM)	R2(MM)				
	0.2E-03	7.860	13.028	70.000	45.000	45.006	75.000	0.000				
	deltal(MM)	delta2(MM)	11(88)	12(88)	a1x(88)	alz(MM)						
	0.440	0.740	75.000		7.230	8.760						

									The second secon
		17555			n na nga na bas na nga nga n		ineraking. Basah da Busa	rayyî dikeren ji Mani zirkere	
	Dal (MM)	Dat2 (MM)	DROTHED -	ilimm)	12090	10 (nm)	tal(MM) 52.000	ta2 (85).	The second secon
		653.400	560.000	75.100	77.400	75.100	52.000	43.000	
		1000	V 4 - 4 :			200			
	::(-)						deltal2(MM)		
447 44 24	88.000	58.000	B30.200	1.270	1.000	0.000	0.000	0.000	
									Marketin and America
	Dw(HH)	ieltan(HM)	(HK) #2	ZH (-)	(-)	dw1 (HH)	deltawl(MM) 5.920	r@(88)	
	210.000	0.640	5.000	6.000			5.920	0.000	
					 Figure 		25 1 3 2 2	ara wa	Commence of the second
	DO (MH)	40 (HH)	n0(-)	601 (MM)	na (-)	dzeta(-)	alfa20(ST)	Ra1(-)	
	0.000	0.000	0.000	12.000	0.000	0.000	90,000	0.2E-03	
	the second of the second								
	Ra2(-)	al (HM)	a2(HM)	b1 (MM)	62 (MM)	bet 10 (ST)	R1 (MM)	R2(MM)	
	0.2E-03	7.650	15.568	70.000	53.360	45.000	75.000	0.000	
m Maga	Treating to								
	deltai(MM)	delta2(MM)	L1 (HH)	L2 (80)	alw (MM)	a12 (MM)			
	0.440					B. 830			
				•			1000000	Marie Co.	
							file at syl		
	NE (-)								
1. 1. y + 1.	4					5.543			
		Dw2 (NN)	DwD (MM)	11 (MH)	12 (HH)	16 (89)	tai(MM)	ta2(MM)	
10/4							52.000		
		000.100							
	:1(-)	22(-)	D-1 (MM)	deltali(MM	1"7:11=1"	Dr 2 (NN)	deltal2(MM)	7-7(-)	
		58.000	917.000	1. 270			0.000		
	00.000	30.070	,,,,,,,,,	*****					
	Decided	deltaw(MM)	CHINNI	Jul-1			deltawi (MM)		
	210.000			6.000	1 000	450 400	8. 420	0.000	
	2.0,000	V, 0.17	5.000				J. 1.	*****	
	00(88)	d0 (MM)	n0(+)	FOLIMM)	nd (-)	dzata(-)	al (a20(ST)	0.11-1	
	0.000	0.000	0.000	12.000	0.000	0.000	90.000	0. 2E=03	
	0.000	0.000	0,000			0.000	101000	V122 03	
	Ra2(-)	a1 (BH)	a2(8M)	bi (MM)	h2 (88)	het10/ST1	R1 (BB)	R2 (MM)	
							75.000		
	0.11 03	0.110	10.000	70.000	33.300	13.000	13.000	0.000	
	401+11 (MM)	delta2(MM)	LICHEL	1.27883	-1 - /XXI	-1-/881			
	0.440			66.400		10.570			
	0.440	0.000	/3.009	00.400	0.020	10.310			
	DANE DLA	HE 21 MW							
	NR NR	NETECH							
	NR 1								
		DC (ba /a)	1010	TOP C) P	a lbael	EL-O/	Davi-R		
	G(k;ç/s)			1.500	o(bar)	EtaD(-) 0.000			
	19.444	0.000	. 17	1.300	0.000	0.000	8.00	V	
	NR S			in a second	201102	gelatistis.	444	nasa sa	
	5					TEN YES			All the contract of the contra
	P2(bar)						11 11 15		
DANE .	0.843		100000	93 141 50	UA CTOUCE	N9 1			
		A STOPNI LIC	NICH Z		111				
CICIBI	= INAGTE A	c		6	2	独身 等级			
K T N	INT UB	LICZEN					1. 1	1.0	
						1 Post 1			

Para la interpretación de la tabla 2 de resultados del programa se da una notación correspondiente y con el auxilio de las figuras 4, 6, 7, 8 y 9 se tiene;

NOMENCLATURA DE DATOS DE SALIDA (RESULTADOS) DEL PROGRAMA

- A1 área total de salida de flujo (pasaje de flujo) de álabes de diafragma de toberas $\{m^2\}$
- A2 área total de salida de flujo (pasaje de flujo) de álabes de rodete $\lfloor m^2 \rfloor$
- A2/A1 Relación de área de flujo del vapor [adimensional]
- U1 velocidad periférica o circunferencial del rodete en la raíz del álabe y entrada (del vapor) del álabe [m/seg]
- U2 velocidad periférica o cincuncferencial del rodete en la salida (del vapor) del álabe en la raíz del álabe o solo considerando el disco [m/seg]
- ALFA I ángulo de salida del vapor del álabe (o de diafragmas de toberas) [grados]
- BETA 1 ángulo de entrada del vapor al pasaje de flujo del rodete en coordenadas absolutas (ángulo que forma la velocidad relativa w) Igrados
- ALFA 2 ángulo de salida del vapor del rodete en coordenadas absolutas [grados]
- BETA 2 ángulo de salida del vapor del rodete en coordenadas relativas [grados]
- FI coeficiente de velocidad del diafragma de toberas [adimensional]
- PSI coeficiente de velocidad del paso de flujo de álabes de rodete fadimensional!
- G1 flujo másico del vaper a la salida del diafragma de toberas [Kg/Seg]
- G2 flujo másico del vapor a la salida del (álabe de) rodete [Kg/Seg]
- GNW flujo másico del vapor a través de sellos de diafragma de toberas y flecha del rotor (fugas) [kg/seg]

GNW1 - flujo másico de vapor a través del claro entre el diafragma de toberas y aleta axial del rotor hacia el rotor o flecha del rodete (fugas) [Kg/Seg]

GNO - flujo másico del vapor a través de los agujeros de balance (Kg/seg)

GNZ - flujo másico de vapor a través del claro entre sello de rodete y cincho (fugas) [Kg/seg]

MI tW - coeficiente de flujo de vapor a través del claro de flujo GNW1 hacia la flecha (adimensional)

MI 0 - coeficiente de flujo de vapor a través de los agujeros de balance [adimensional]

MI 1 - coeficiente de flujo de vapor a través de las fugas entre diafragma de toberas y flecha de rotor [adimensional]

MI 2 - coeficiente de flujo de vapor a través del anillo del rodete (entre cincho y diafragma) [adimensional]

PO - presión de entrada del vapor a la etapa en diafragma de toberas [bar]

T0 - temperatura de entrada del vapor a la etapa de diafragma de toberas [°C]

I0-ho - entalpía de entrada del vapor a la etapa [Kj/Kg]

X0 - calidad del vapor de entrada a la etapa [adimensional]

V0 - volumen específico del vapor de entrada a la etapa [m3/Kg]

ALFA 1G - ángulo geométrico de salida del vapor del diafragma de toberas [grados]

P1 - presión de salida del vapor del diafragma de toberas en la etapa [bar]

I1-h1 - entalpía de salida del vapor de tobera de etapa correspondiente [Kj/Kg]

SIG1 - consumo de energia de entrada efectivo (adimensional)

K1 - energía de entrada al rodete (ganancia por velocidad) [Kj/Kg]

P2 - presión de salida del vapor del rodete en la etapa correspondiente (1, 2 ... etc.) [bar]

T2 - temperatura de salida del vapor del rodete en la etapa correspondiente (1, 2, ... etc.) [°C]

I2-h2 - entalpía de salida del vapor del rodete en la etapa correspondiente (1, 2, ... etc.) [Kj/Kg]

X2 - calidad del vapor de salida del rodete en la etapa correspondiente (1, 2 ... etc.) [adimensional]

V2 - volumen específico de salida del vapor del rodete en la etapa correspondiente (1, 2 ... etc. [m³/Kg]

BETA2G - ángulo geométrico de salida del vapor del rodete [grados]

U2/C0 - relación de velocidades o carga de la etapa [adimensional]

G V2T - flujo volumétrico del vapor a través de una etapa [m³/seg]

SIG 2 - consumo de energía de salida (de rodete efectivo) [adimensional]

K2 - energía de (entrada) salida del rodete [Kj/Kg]

HS - caida de entalpía isentrópica después de pérdida de energía por entrada de vapor a la turbina de la etapa [Kj/Kg]

HC - caida de entalpía total (antes de pérdidas de energía por entrada de vapor a turbina) de la etapa [Kj/Kg]

HIS - caida de entalpía de la estapa sin considerar pérdidas de salida de vapor [Kj/Kg]

HI - caida de entalpía real de la etapa considerando pérdidas de salida del vapor de la etapa [Kj/Kg]

ETAI - ηi- eficiencia interna de la etapa [adimensional]

ETAIS - eficiencia interna de la etapa sin considerar pérdida de salida de vapor [adimensional]

RO - grado de reacción de la etapa [adimensional]

HC/U2 - cociente de energías [adimensional]

NI - potencia interna de la etapa [kw]

MI - número de Mach del vapor a la salida del diafragma de toberas [adimensional]

M2 - número de Mach del vapor a la salida del rodete [adimensional]

MIW - número de Mach del flujo de fuga que va hacia la flecha [-]

DH1 - pérdidas de energía en toberas [Ki/KG]

DH2 - pérdidas de energía en álabes de rodete [Kj/Kg]

DHN - pérdidas de encrgía debido a las fugas de sellos en la etapa [Kj/Kg]

DHT - pérdida de energía debido a fricción [Kj/Kg]

DHW - pérdidas de energía por ventilación [Kj/Kg]

DHX - pérdidas de encrgía debido al flujo de vapor húmedo [KJ/Kg]

DHD - pérdidas de cuergía debido a los alambres de rigidez que unen a los álabes [Kj/Kg]

RE 1 - número de Reynolds del vapor a la salida del diafragma de toberas [adimensional]

RE 2 - número de Reynolds del vapor a la salida del álabe [-]

RE W1 - número de Reynolds del flujo de vapor hacia la flecha [-]

PL - fuerza axial actuando en el cincho (álabes) del rotor [newtons]

PT - fuerza axial actuando en el disco del rotor [newtons]

P - fuerza radial [newtons]

QA - fuerza axial debido al vapor actuando en un álabe individual [newtons]

QU - fuerza circunferencial debido al vapor actuando en un solo álabe [newtons]

	NR.51	OPNIA	A 1	. 2	A 2/A 1	U 1	4 2 At	FA 1 30	ETA 1 ALI	FA 2. BE1-	-2 FI	PSI	
	DOC.	PROJ.	z – eni	2 /	- 1	M/E	1. 7.		51		100	-	1
			0.0197	0.0302	1.532 2	20.59 22	1.45 16	.46 38	.24 89	20 22.4	1. 0.9529		
	. 2	2.	0.0303		1.550 2				9.25 90	. 29 22.5	6 0.9531	0.9402	
	5		0.0506		1.525 2	14.33 23	7.10 -15	.95 4	3.87 81	. 47 - 12.7	3 0.9589		
	4		0.0876		1.465 2	18.00 . 25	1.73	. 69 51	7.99 97	.74 23.2	1 0.9645		
	HR. SI	DENIA	6 1	G 2	S NN	S No.1	6 NO	S NI	#1 1¥	11 0	NI. I	81.2	
			∤			1.5/5			7				
								0.8479	0.272	V. 5335	0.9808		
				16.7874		0.2135				0.4316			
					0.0199					0.4295	1.0100	0.9975	
	4	4	19,4327	19.1678	0.0113					0.3857			
				10									
	WF . 51	OPNIA	FG	10	تاء	ıD.	VO	ALFA 16	Pi	11	519-1	LI.	
	KOLI	PROJ.	BAE	, SC	/ 1.37KG				/ 869	7 11/16	1 - 1	KJ/86	
	· 1	1	7.6757	171.51	2779,4968	1.066	0.2750	16.46	4.764	5 2711.99	71 0.986	14, 193	
					2705.5232			16.47		1839.53		14.716	
	7	3			2624.0847						56 1.000		
	. 4		1.3954		2543.9746					7 2499.09		6.275	
				y da le						• • • • • • • • • • • • • • • • • • • •			
	NS.51	OPNIA	P2	12	12	12	¥2	SETA 28	10700	64921	516.2	1.2	
					/ K3785 /		H#13/4.E	/ 51		/ M#13/S		YJ/88 /	
		1	4:2841	144, 10	2705 5232	6 984	0.4762	20.2		8.2367		4.199	
	. 2	2	2.4563	126, 63	2674.0847	9.959	0.76:3	22.5		13.5547			
	3	3	1.3954	109.70	2524.0847 2543,9746	0.935	1.1601	22.7		22.4657		5.684	
	· ·	4	0.8410	94.91	2489.9153	0.918	1.8253	23.2		35, 2874		5.300	
					2.0177700	•••••				7012011	••••		
	NP. 51	ALNGO	H 5	нс	H 15	H 1	ETA 1	FFA IS	RD .	H. C/U112	NI		
					3786 7		•			. /			
					70.2163		0.7785	0.7494	0.2054	1.9132	v.105-6970		
					81.7744		0.8270	0.8322	0.7552	1.9812	0.1554373		
					82.0234		0.8515	9.8724	0.3133	1.7844			
					71.4095								
										.,			
	NS. ŠTI	DENTA.	81	82	Hin	D 81	D H2	D SN	10 HT	9 ны	0.40	D H2	
					, , ,	•		•	K2/KG			1	
	. 1		0.8471	0.5721	0.3595	A. 859A	4.7677	6. 6911			0.4320	0.0000	
÷		5	0.387	0.5404			4.8005	2,8855	0.6125	0.0000		0.0000	
		3		0.6695		5.6143	7,5037	1.9410	0.4174	0.0000			
					2.2674				0.2943				
						3					•		
	NR.SI	DPNIA	RF 1	RE	2	RE NI	PL	F		P	64	QU	
		PROJ.		n.			1			N			
	1			+07 0.1AT	020E+07 0.	380000E+05	490	.,	3901.7	8804.4	74.3	95.2	, '
	2				905E+07 e.		558		868.5	6451.4	84.6	107.6	
	- 3				573E+07 0.				512.3		105.1	117.3	
	4				570E+05 0.					6429.8		70.	
							0.00						

Se anexan los programas de cálculo del diseño original y el de las seis modificaciones propuestas, se subrayan las modificaciones incluidas en los datos y las eficiencias internas y potencias del diseño original y del modificado.

Análisis de resultados

Para este análisis se requiere el auxilio de las figuras 19, 20 y A1 asi como de las tablas 1 y 2 del programa y los listados de DATOS Y RESULTADOS DEL DISEÑO ORIGINAL Y MODIFICADO. En esta parte se describen y analizan las modificaciones efectuadas al diseño original Toshiba, el listado UATOS DISEÑO ORIGINAL TOSHIBA muestra los datos que requiere el programa. Para cada etapa se requieren seis renglones y ocho columnas o sea exactamente cuarenta y seis datos geométricos, ya que la turbina Toshiba tiene cuatro etapas (los datos en cada etapa estan separados en renglones en el listado) requiriendo ciento ochenta y cuatro datos geométricos y siete datos termodinámicos (al pie del listado). Las modificaciones que se han efectuado estan subrayadas y son once por cada etapa y en total son cuarenta y cuatro parámetros geométricos modificados, no se hace ninguna modificación de parámetros termodinámicos.

Dentro del listado RESULTADOS DEL DISEÑO ORIGINAL hay sesenta y ocho parámetros principales, para cada etapa, entonces para las cuatro etapas hay doscientos setenta y dos resultados totales, siendo todos ellos importantes, sin embargo, para este análisis solo se tomarán la eficiencia interna de la etapa (ETA 1) y la potencia interna de la etapa (NI) como los mas importantes y los cuales han sido encerrados en un cuadro.

El listado DATOS DE MODIFICACIONES AL DISEÑO muestra los mismos parámetros subrayados que en DATOS DISEÑO ORIGINAL, con la diferencia de que los valores numéricos son diferentes, esto es, la altura del álabe de rodete (L₂) ha sido aumentada, la altura del álabe de tobera a la entrada (L₀) ha sido reducida, el diámetro del rodete a la punta del tetón (Dz1) se incrementó, el número de dientes de sellos sobre cincho (Zz1) incrementado, el claro radial entre punta de sellos de diafragma y flecha (deltaw) reducido, el diámetro a aleta axial en

rodete (dw1) modificado y mejor definido como aleta para reducción de fuga de vapor hacia barreno de balance, el claro radial entre aleta axial y diafragma de toberas (deltaw1) reducido, el radio de curvatura de bisel de barreno de balance (ro), el diámetro a la línea de centro del barreno de balance (Do), el diámetro del barreno de balance (do) y el número de barrenos de balance por rodete (no) existen, pero en el diseño original no existian.

Todas las modificaciones anteriores se han indicado en el capítulo 5 en los incisos "a" hasta "h" y se dice como se espera que se incremente la eficiencia interna de la turbina.

Respecto a los resultados, en RESULTADOS DEL DISEÑO ORIGINAL y en RESULTADOS DE MODIFICACIONES AL DISEÑO los cuadros de la eficiencia interna (ETA I) y potencia interna (NI) muestran que los valores de las MODIFICACIONES son mayores que los del DISEÑO ORIGINAL, excepto el valor de la potencia interna de la última etapa que es menor que el diseño original, sin embargo, la eficiencia en la última etapa es mayor que el diseño original. En la figura A2 se muestran las líneas de comportamiento con y sin incremento de eficiencia, que de hecho es un resumen de lo antes expuesto.

2										
		TOS DIS		RIGINA		<u>II [BA</u>	1500	141.22	a Tyda T La alaman	
	OBLICZENIA PI					EI GEOMETR	11			
	DPRACOWALI: 1	ALGORYTM:-E.I SUJACE SCHE			IDXE 1111	IP.PAN6DA	NSK	ger 18		
	DAME OF I	300466 3666	HHI UELI	CTCATORT						
	N (OBR/MIN						and the second		150 mm	
	6088 NE(-)	4 Nik (-)	1 TE(-)	NWP(-) TH	P(-) N	K(-) TWK	(-) NR.6(-) SIGMA	(-)	
	1	. 1	0	-	0		0 1			
	2 3	2	0	2	0		0 1			
	4	4	0	4	0		4 1		0	
	DANE DLA	STOPNI TY	PU 0,1,2	.3						
	NE (-) 1									
	Dw1 (MM) 660,000	Dw2 (MM) 658,400	Dw0(NM) 660.000	11(MM) 32.000	12(KM) 34.300	10 (MM) 32.000	tal(MM) 52.000	ta2(MM) 43.000		
	z1(-)	z2(-)	Dz 1 (HN)	delta71/MM	11 7711-1	Dz 2 (MM)	delta22(MM)	7,2(-)		
	80.000	66.000	743.000	1.270	1.000	0.000	0.000	0.000		
	D≅(HH)	deltam(MM)	Sw(HH)	2m(-)	Zwn (-)		deltawl(MM)	re(HH)		
	210.000	0.000	5.000	7.000	1.000	658.400	5.680	0.000		
	DO (MM)	d0(MM)	n0(-)	PO3 (HM)	nd (-)		alfa20(ST)			
	0.000	0.000	0.000	14.000	0.000	0.000	90.000	0.2E-03		
	Ra2(-)	a1 (88)	a2(MM)	61 (MM)	62 (MM)	bet10(51)		R2(HN)		
A	0.2E-03	7.700	12.608	70.000	45.000	45.000	75.000	0,000		
	delta!(MN)				alm(MM)	alz (MM)				
	0.440	0.740	75.000	56.000	7.180	8.280				
	NE (-) 2									
	Del (MN)	De2(MM)	DaO(MM)	11(88)	12 (88)	10(88)	tal(KM)	ta2(MM)		
	660.000	659.400	660.000	48.200	50.500	48.200	52.000	43.000		
	z1(-)	22(-)	Dz 1 (MM)	deltali (MM		Dz 2 (MM)	delta22(MM)			
	80.000	66.000	775.400	1.270	1.000	0.000	0.000	0.000		
	Dw (AA)	deltaw(MM)	Sw (MM)	2m (-)	2wn (-)		deltawl(MM)	rO(MM)		
	210.000	0.640	5.000	7.000	1.000	658.400	5.680	0.000		
± + '+	DO (HH)	d0 (HH)	n0(-)	P01 (HH)	nd (-)		a1fa20(ST)			
	0.000	0.000	0.000	15.000	0.000	0.000	90.000	0.2E-03		
	Ra2(-)	al (dH)	a2(MM)	61 (MM)	52 (NH)	bet 10 (ST)		R2(MM)		
	0.2E-03	7.860	13.028	70.000	45.000	45.000	75.000	0.000		
	deltai(MM) 0.440	delta2(MM) 0.740	L1 (MM) 75.000		alw(MM) 7.230	alz (MM) 8.760				

es Si si						Tales			
an .	:1(-) 86.000		Dz 1 (MM) 830.200	delta21(MM 1.270	1.000	Dz 2 (MM) 0,000	delta12(MM) 0.000	1;2(-) 0,000	
	Dw (MM) 210.000	deltaw(MM) 0.640	S# (MM) 5.000	Zw(-) 6. 000	Zwn (-) 1.000	d#1 (HM) 658.400	deltaw1(MM) 5.920	r0(MM) 0.000	
	DO (MM) 0.000	0.000	n0(-) 0.000	b01(MM) 12.000	nd(-) 0.000	dzeta(-) 0.000	alfa20(ST) 90.000	Ral(-) 0.2E-03	
	Ra2(-) 0.2E-03	a1 (MM) 7.650	a2(MM) 15.568	b1(MM) 70.000	62(MM) 53.360	bet 10 (ST) 45.000	R1 (NH) 75.000	R2(HM) 0.000	\$ 1 A 1
	deltal(MM) 0.440	delta2(MM) 0.880		L2(MM) 66-400	alw(MM) 6.740	alz (MM) 8.830			
	NE (-)								
	4 Dwl (MM) 660.000	Bw2(HM) 658.400	DwO(MM) 660.000	11(MM) 118,000	12(MM) 120.300	10(MM) 118.000	tal(MM) 52.000	ta2(MM) 43.000	
	21(-) 88.000	z2(-1 58.000	Dz 1 (MM) 917.000	delta21(M 1,270	1) Iz1(~) 1.000	Dz2(MM) 0.000	delta22(MM 0.000	772(-) 0,000	
	Bw(MM) 210.000	deltam(MM) 0.640	Sw (MM) 5.000	2w(-) 6.000	2wn (~) 1.000	dw1 (MM) 658.400	deltaw1(HM) 8.920	r0(MM) 0.000	
	0.000	0.000	n0(-) 0.000	601(MM) 12.000	nd(-) 0.000	dzeta(-) 0.000	alfa20(ST) 90.000	Ral(-) 0.2E-03	
	Ra2(-) 0.2E-03	a1(MM) 8.440	a2(MM) 16.860	61(MM) 70.000	62 (MM) 53.360	bet10(ST) 45.000	R1(NN) 75.000	R2(MM) 0.000	
	delta1(MM 0.440	0.880 delta2		L2(MM) 66.400	aim(MM) 6.820	alz (MM) 10.570			
	DANE DLA NR	WEZLOW							
	1 61kg/s 19.44			TOP C) 1 1.500	0.000	EtaD(-) 0.000			
	NR 5 P2 (bar) 0.84								
		LA STOPNI LIC	ZONYCH Z	PODZIALEM 70	NA STRUBI				

C E RESULTADOS DEL DISENO ORIGINAL TOSHIBA

6 R U F A S 1 D F N I NR.= 1

LICZER SIOFNI BRUPY= 4 6 GR.= 19.4449 KZ/S A.26SI.= 9.0709 NIN

HS = J62.2398 kJ/K6 HC = 19.2.2398 kJ/K6 E TA. IS= 0.9295 -
HS/UNU= 1.6736 -- S= 1.0126 -- ETA.I = 9.8105 -
P = 9.4459/30E+05 N NI = 9.5708568E+04 KM

N O C U K L A D U = .5708568E+04 KM

				7.00								4.4
	NR.ST	AINGG	A 1	4.2	A 27A 1	U 1 6	A	LFA I EE	TA L ALE	A 2 BETA	2 F1	PS!
	YOL.	PR03.4	H112	1	- 1				ST	원생 현실 시험	17	
	- 1	1 :	9.0197					5,45 39	.93 34.	10 22.48	0.9558	0.9418
	. 2	2	0.0303	0.0434	1.433	225.75 225		6.42 40		42 22.7	0.9545	0.7476
٠.		3		0.0699					.75 72.			0.9594
	4	4				248.00 248				19 23.5		0.9531
		100	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•••			14.4		
	88. ST	DPNIA	G 1	6.2	6 88	6 NV1	6 89	6 NZ	#I 1¥	Mi U	. 81 5	NI 2
		FROJ./				1.6/5			. 1 .		•	1
	. 1	1		17,4927	0.0000		0.0000	2,0413	0.6000	0.0000	0.9805	8449.0
	. 5	•	19.3497		9.6943		0.0000				0.9945	0.9829
		3		18.7012								0.9768
			19.4087		0.0353			0.5241			1.0202	1,0093
		4.1			******	******	******	0.02				
	NR. ST	OPNIA	PS	. 10	10	10	VD	ALFA 16	FI	11	\$16.1	M
					/ KJ/KG		H113/KG			/ K3/K6		
		1	7.1367	171.51	2779.01		0.2726			4 2713,400		
		- 2		146.42	2705.34		0.4225			0 7540.141		
	3	3	2.4835	127,19	2626.17			16.95		4 2575.276		
			1.4124	107.56	2547.90		1.1488			15 2507.897		
	. 7	- 7	11.7124	171130	2377.10	C. V.131	1.1700	. 17.07	1.37	13 2307, 677	1 0.070	3,355
	NE	OPNIA	P2	12	12	. 12	¥2	SETA 26	02/00	SEVET	516.2	4.2
		FROJ./				1 - 1				1 811375 1		£378G: 1
		1	4.3235	146.42	2705.34		0.422					4.465
		2	2, 4835	127.19								
			1.4174	107.19		29 0.960	9.493				0.909	
	3						1.148				0.907	
	•	. 4	0.8430	94.91	2485.42	21 0.920	1.929	3 23.5	b 0.593	35.3176	0.000	5.242
	P.T	cours			0.75			I		ا منشم ا		
			H S		H IS		ETA I	ETA 15	RO	H C/UFF2	. NI	1
					37KB	7				/ }	1.2	
	1		73.6973		69.5577		0.7753	0.7424	0.2317	1.9217	0.1343718	
	2			102.4525			0.8040	0.8082	0.3363	2.0063	0.1512499	
			93.9727		79.8575		0.8316	0.6499	9.4061	1.8163	0.15083709	
	, 4 ,	4		87.8815	71.9261		0.7855	0.9653	0.4573	1.4263	0.13439811	+04
-				تر سلمت								1.5
		DENIA	HI	M2	Alw		D H2	D HN	D HT		l HI	D HD
				· · · · <u>-</u>		1			K371.6			· · · · · · · · · · · · · · · · · · ·
		1	0.8316	0.5942	0.3584		3,9546					0.0000
		2	0.B424	0.6770	0.3485		4.5311				1.7329	0.0000
	. 2		0.8163	0.7193	0.3083		3.6593				2.2824	0.6000
	4	4	0.7567	9.6975	0.2460	3,4908	3.0426	2.2966	0.2915	6.6000	2.8975	0.6656
					_							
		AINGO	RE 1	ñŁ	2		P 1		PT	Ρ	ÛΑ	QU
		PRD1.			-		1		100	'n		
	1					0.00000E+00			0.0	5216.7	79.0	94.3
	2	2				0.492342E+65			0204.B	16909.0	100.9	105.4
	3					0.444857E+05 0.579329E+05		60.8 64.9		12708.1 9864.5	123.5	116.4

		14 × 500 × 60	F 2.50		98 W. W.	The way of the		A 17 19 19 19 19 19 19 19 19 19 19 19 19 19	
	DA	TOS DE	MODIF	ICACIO					
	F	ROGRAN	3 U.T.	B.1.N.4 -	1988	18 July 18	Taring a		
	OBLICZENTA FR OPRACOWALI: #A								
		UJACE SCHEN							
			23.34						
		LE(-) (
	NE (-)		TE (-)	NWP (-) Ti			(-) NR.6(-) SIGNA(-)
	1 2	1 2	0		0	3			
	3	3	0	2 3	0	3 () !) !		
	4	4		- - 4	0	5	1	0	
$(x,y) \in \mathbb{R}^{n \times n}$	DANE DLA	STOPNI TYP	ນ 0,1.2	.3					
	NE (-)								
	1				4.4	g i Aren Landina			
	9w1 (MM) 660.000			32.000		10 (MM) 26.640	tal(MM) 52.000	43.000	
	z1(-) B0.000		747.000	deit=211M1 1.270	1) Iz1(-) 5.000	0.000	delta22(HH) 0.000		laur (1997) (1997) Autolius Sangraman (1997) (1997)
erio de la resolución Maria de Maria de	80.000	66.0nú	747.000		3.000	0.000	0.000	0.000	
	Die (MM)	deltaw(RM)		7 m (-)	Zwn (-)		deltawi(MM)		
	210.000	0.200	5.000	7.000	1,000	642.180	2.030	5.000	
	DOIMH	d0 (Kn)	n0(-)	501 (MM)	nd (-)		alfa20(ST)		
	340.000	40.000	5.000	14,060	6.000	0.000	90.000	0.2E-03	e mireno minera e incluiro.
	Ra2(-1	al (fill)	a2(NN)	b1 (88)	b2(MM)	bet10(ST)	RI (MM)	R2(MM)	
	0.2E-03	7.700	12.508	70.000	45,000	45.000	75.000	0.000	
	deltat(MM)	delta2(MM)	L1 (88)	L2(MB)	alw(HH)	alz(MM)			
	0.440		75.000		7.180	8.280			
	NE 1-1								
	2 · De1 (MX)	Dw2(nd)	Dw0 (M:t)	11 (00)	12 (MK)	10,444	4.		4. 被据的标准。
	660,000	658.400		48,200			tal(MM) 51.000		
	21(-) 80.000	22(-) 66.000	Dz1 (MH) 784,456	deltall(M) 1.270	1) Iz1(-) 5.000	Dz2(MH) 0.000	delta/2(KM) 0.000		
		00100	7611130		3.300		4		والمراورة المراورة والأراوة
	Dw(MM) 210.000	deltak(MM) 0.200	5.000	2×(+) 7.000	Iwn(-) 1.000	dwl(MM) (642.180	deltaw1(MM) 2.030	r0(MM) 5.000	
,	210,000	0.200	3.000	7.000	1.000	042.180	. 2.030	3,000	
	DO (MM)	d0 (##)	n0(-)	b01 (MM)			alfa20(ST)		* * * *
	340.000	40.000	5.000	15.000	0.000	0.000	90.000	0.2E-03	
	Ra?(-)	al (MM)	a2(88)	b1 (MM)	a2 (HH)	bet10(ST)	R1 (HM)	R2 (HM)	
	0.2E-03	7.260	13.028	70.600	45.000	45.000	75.000	0.000	
	deltal(MM)	delta2:NM1	LILMEN	L2 (88)	alwimm)	alz (MH)			
	0.440	0.740		54.000	7,230	8.760			
	NE (-)								
	3								

	ree in the system of			e vanjur vran		esi maranana		again an a					
المستركات والمعوا			Springer										- 1 -
The second second			and the second			era a era era era era era era era era er		Service a service	. 44.19				-
			* 12.5°										
	54 30						12111						
		50 Barrier	31.3%					inde National Salas				1.1	
		e in thinkey week!											
	650.000	658.400	640.000	75.100	95.400	£1.910	51.000	54.000					
		26.1	D. 4 (MM3			D. MHH1							
	21(-) 88.000	22(-1 58.000	Dz 1 (MM) 845, 200	1.270	MH) Z:!(-) 5.000	0:2(MM) 0:000	deltazzimn 0.000	0.060					
	69.000	36.000	043.200	11270	3.000	0.000	0.000	0.000	•				
	Du (MM)	deltaw(MM)	Sw (MM)	Zn (-)	Zwn (-)	4×1 (HR)	deltawi(MM)	re(MM)					
State and Established	210.000	0.200	5.000	6.000	1.000	642.180		5.000	4 * 4				
					1976	4 4	2					garge en	
	DO (MM)	(MM) 0b	n0(-)	P01 (WW)	nd (-)	dzeta(-)	alfa20(5T)	Ral (-)					
	340,000	40.000	5.000	16.000	0.000	0.000	90.000	0.2E-03					
	Ra2(-)	al (HM)	a2(MM)	61 (HM)	b2(MM)	bet10(ST	R1 (HH)	R2(Mh)					
	0.ZE-03	7.650	15.569	70.000	53.360	45.000	75,000	0.000					
		100											
	deltal(MM			L2 (NM)	alm(HH)	alz(MM)					1.5		
	0.440	0.880	75.000	66.400	6.740	8.830				191.9			
					Estima.								
	NE (-)		. W										
	4									124			
	Dw1 (MM)	Dw2 (HN)	DHG (NN)	11 (88)	12(88)	10(MH)	tal (MM)	ta2(MM)					
The state of their	560.000	658.400					51.000	54.000					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				i i i grandi neng				ozzana Waliotek			1, 117 114)		
The state of the s	21(-)	z2(-)	Dz1(HM)	deltalili	(H) Zz1(-)	D22(MM)	delta22(MM)	7221-)			7,000		
	88.000	58.000	937.300	1.270	. 5.000	0.000	0.000	0.000					
	Section 2												
	Dw (MM)	del tam (MM)	SH (MM)	Zw(-)	2 un (-)		deitawi(MM)						
	210.000	0.200	5.000	6.000	1.000	542.180	2.030	5.000					-
网络神经	BA (NW)					41-4							
	DO (MM)	d0(MM) 40.000	n0(-)	601 (MM)	nd(-)		alfa20(5T)	0.2E-03					
	340.000	40.000	5.000	18.000	0.000	0.006	90.000	0.2E-03					
	Ra2(-)	a1 (MM)	a2(MM)	61 (MM)	62 (MM)	bet10(ST)	RI (HH)	R2(HH)					
	0.2E-03	8.440	16.860	70.000	53,360	45.000	75.000	0.000					
	*****	•••••											
	deltal(MM) delta2(MM	L1 (HH)	L2(HH)	alw(MM)	alz (MH)							
14	0.440	0.880	75.000	65.400	6.820	10.570							
											, and		at is
	DANE DLA	WE Z LLOW											
	NR								7				
	i Sika/s) DB(kg/s	1 1015	TOP C)	Po(bar)	EtaDI-I	Porialb	1-1					
	19.44						8.00				- 11		-
	NR	. 0.00			V. VVV	V.000	0,00	•					
	5					a a					,		
	P2(bar)											
	0.84		**		N. A.								
	DOCATKONE D		CZONYCH Z	POLZIALEN	NA STRUGI								
LICZ	BA STOPNI =	0			72								

C
C
C
RESULTADOS DE MODIFICACIONES AL DISERO TOSHIBA

BRUFA STOPNI RE: 1

1.125 CIAQUE COLONGA RECE : 0 1410 MES 0.7651 = 0.0454 MIN B R U F A S T O F N 1 ' KR.= 1

L1C28A S10PNI B KPYE 4 B BR.= 19.4447 KB/S A. ZBST.= 0.0454 HIM

HS = 351.02785 KJ/KB HC = 351.0278 KJ/KB ETA. IS= 0.8450 -
HS/UIU= 1.6385 -- S= 1.0119 -- ETA. I = 0.9270 -
F = 0.7829478E+05 N NI = 0.5805619E+04) M

H O C U K L A D U = .5805619E+04 KM

		- · · · ·						the state of					
	NP ST	CPN16	Δ1.	A 2	A 2/A 1 1	1.1	2 21	FA 1 RET.	1 01 F6	P . BETA.	2 F1	PS1	
												- ''''	
			HET2		- 1	n/S			ST		I		
	. 1	1	9.9197	0.0302	1.532 22).59 221	.45 16	. 46 3B.	24 39.7	0 -22.41	0.9529	0.9257	
	. 2	2	0.0303		1,560 22						0.9533		
													e a kana si kacam
	3		0.0504	9.0771	1.525 23	1.33 23/	.10 16	. 45.1	3/ 51.4	1 22.13	0.5589		
	- 4	4	0.0876	6.1084	1.465 24	8.00 251	.73 17	.69 59.1	8 97.7	4 23.21	0.7648	0.9543	to the control of the con-
									1.				
					2.00	- 1		1.0		144	100	100	
			6 1	62.	6 NN	S NV:	6 NO	G NI	HI IM	MIO.	, KL 1	RI 2	
	YOL.	PROJ. 1		the second		K6/S		0.8479 0.4123	1		• 4		1
				17.7742	0.0478		A 0100	6 9470	0.2722	0.5335	6 6000	0.9571	
							0.0111	0.0477					
		2		18,7874		0.2135							
	- 3	3	19.4241	18.9968	9.0197	0.1251	0.1450	0.3022	0.2722	0.4295	1.0100	0.9975	
	1	4	19.4327	19.1528	0.0113	0.0500	0.0513	0.2199	0.2050	0.3867	1.0218	1.0100	
						******	******						
						- 1		100	Pl	11			Access to the second
	NR.ST	AIRGO	PO	10	10	10	٧Đ	ALFA 16		11	Sig 1	. K1	
	Kn:	PROJ /	RAR	7. SE	1. KJ/KB 1			/ ST /		XJ/XG	1 2 1	EJ/89 7	
		1	7.0797				0.2750			2711.947			
	-												
	2	2	4.2961		2705.5232					2639.590		14.715	
	3	3	2,4563	126.83	2624.0847	0.759	0.7003	16.95	1.2728	2565.145	9 1,000	11.382	
					2543.9746			17.69					
	7	٠,	1.3734	101.20	1345.1140	0 32	1.7501	17.07	1.024	1477.071	0.134	0.110	
	NR. 51	TOPNIA	P2	12	12	12	¥2	BETA 26	02750	S1V21	516 2	1.2	and the first file of the con-
			BAR		/ K3/K6 /							3.378.E 7	Control of the Contro
	1				2705, 5232				0.511			4.187	
	2	. 5	2.4563	126.83	2624.0847	0,959	0.7003	22.56	0.502	13.5547	0.972	5. 374	
	3	3	1.3954	109.20	2543.9746	0.535	1.1601	22.73	0.537	22,4657	0.990	5.684	
		4								35.2974		5.360	
	•	7	0.0430	79.11	1400.2133	7, 110	1.023	23.21	0.511	33 217	0.000	3.300	
								r		1			
	NE.S'	TOFNIA	H S	ΗC	H 15	H I	EIA I	EIA IS	RO H	i C/U112	N1		
		PREJ./			6378S /			_			1.8	1	
					79,2163		A 770E						
		ı									0.135c9878		
	2	2.1	98.2667	102.4557	31.7744	80.4553	9.8270	0.8322	0.2552	1.9812	0.15643738	+04	
	3		94.0163	99, 1885	82.0234	79,7093	0.6515	0.8724	0.3133	1.7644	0.15496689	+04	
			79.2132			38.6325	0.8095			1.3380	0.1334490		
	•	4	14.2132	84.7803	71.4073	28.2373	0.8075	0.4012	0.3304	1.3380	0.1354470	***	
	NR.S	TOPNIA	H1	82	nin	D HI	G H2	E HN	D HI	D HW	D #3	D HD	
	¥ OI	PROJ.		-					KJ/KG				
i							1 *: 1*				0.4736	5 -: 666	
		1		0.5723				5.6911		0.0000			
	2	2	0.8876	0.6404	0.3868	7.9547	4.6005	2.8945	0.6125	0.0000	1.3191	0.0000	and the second second
	3.	3	0.8679	0.6695	0.3502	5.5143	3,5037	1.9410	0.4174	0.0000	2,3141	0.0000	
	i						2,5272					0.0000	
	,	4	0.7886	0.6465	0.2674	3.7818	2.32.2	1.0384	V. 1743	0.0000	2.7770	0.0000	
													1 × 1 × 1 × 1
	NR.5	TOPNIA	RE 1	8	£ 2	RE W1	. P 1	. P	1	P	94	- 80	
		PROJ.					1	-		N			,
													_ f
	1				1023E+07 O.						74.3		
	2	7	0.3197658	E+97 0.12	B905E+07 0.	360000E+05	559	32.9	868.5	6451.4	84.6	107.	6 .
	3	7	0.2004214	107 0 10	0577EAA7 A	11000005.05	105	11.7	512 3	6609.0	105.1	117.	3
		, ,	A 130764	E 4 0 3 0 4 7	6670E+05 0.	2247115.05		57.5	177 7				
	•	+	v. 1207041	2401 0.63	00/06*05 0.	££43125+03	5 52	32.3	111.3	0417.0	107.8	.75.	y .

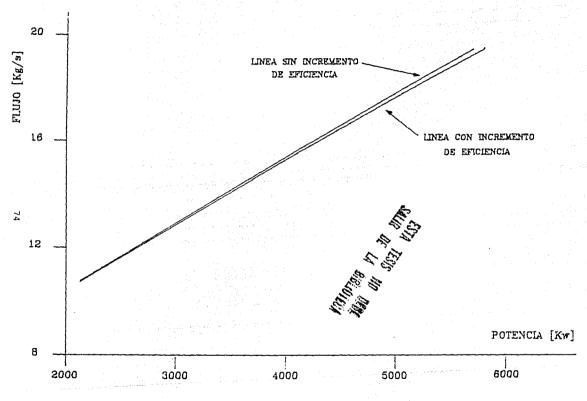


FIGURA A2. LINEAS DE COMPCRTAMIENTO CON Y SIN INCREMENTO DE EFICIENCIA.