DIVISION DE ESTUDIOS DE POSGRADO

Facultad de Ingeniería

INCREMENTO DE LA EFICIENCIA A TURBINAS DE VAPOR, MEDIANTE MODIFICACIONES AL DISEÑO ORIGINAL

Humberto Sandoval Olivares

T E S I S

PRESENTADA A LA DIVISION DE ESTUDIOS DE POSGRADO DE LA

FACULTAD DE INGENIERIA DE LA

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

COMO REQUISITO PARA OBTENER EL GRADO DE

MAESTRO EN INGENIERIA (MECANICA)

CIUDAD UNIVERSITARIA

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Contenido

Resumen

Notación

Introducción

1	Des	cripción de la turbina	6
	1.1	Componentes de una turbina	6
	1.2	Funcionamiento y clasificación de turbinas	9
2	Análisis de pérdidas de energía en una planta de energía		
	eléc	trica y en la trayectoría de flujo de vapor de la turbina	11
	2.1	Pérdidas en la planta de energía eléctrica.	11
	2.2	Pérdidas en trayectoria de flujo de vapor en turbina	14
3	Ana	álisis de pérdidas de energía por fugas de vapor de etapa	22
4	Іпся	remento de eficiencia a turbinas mediante el control de	
	pér	didas de energía en trayectoria de flujo de vapor	32
-	4.1	Control de las pérdidas por flujo no uniforme	32
	4.2	Control de las perdidas de flujo secundario, de separación y	
		por mezclado	35
	4.3	Control de vórtices.	37
	4.4	Control o reducción de fuga de vapor en el rodete	39
	4.5	Control o reducción de fugas de vapor en cinchos de rodete.	41
	4.6	Control o reducción de fugas de vapor en sellos de diafragma	
		de tobera y de raíz de álabe	43
	4.7	Control de pérdidas por salida del vapor de la turbina.	45

1.

3

5

이 가슴 가슴이 가지 않는 것이 같아.

5 Modificaciones al diseño

6 Conclusiones

Referencias

Apéndice

53 55 57

Incremento de la eficiencia a turbinas de vapor, mediante modificaciones al diseño original

Humberto Sandoval Olivares

1 -

Resumen

El objetivo de este trabajo es mostrar las posibilidades que existen para incrementar la eficiencia de una turbina de vapor. Con base en un proceso de capacitación y desarrollo en turbinas de vapor de diferentes tecnologias, mediciones de equipo en operación y con auxilio de un programa de cómputo se puede verificar que es posible incrementar la eficiencia interna de una turbina, mediante modificaciones a la trayectoria que sigue el flujo de vapor. Se hace un auálisis de las pérdidas de energía en la trayectoria de flujo de vapor de la turbina y se indica cómo incrementar su eficiencia, mediante el control de las pérdidas en la misma trayectoria de flujo. Se toma un diseño original de turbina en operación y se indican las modificaciones que deben hacerse al discño y se menciona cuanto se espera que se incremente la eficiencia. Se emplea para el cálculo un programa de cómputo y en forma breve se indican los datos que requiere y los resultados que proporciona. El incremento de eficiencia así obtenido se puede aplicar a cualquier turbina.

Notación

- A Area total de la sección de flujo de vapor
- Am- Longitud de la garganta del canal de flujo de vapor principal
- B Distancia entre bordes de tobera y álabe de rodete

b -Cuerda del álabe

C - Velocidad absoluta de salida del vapor

D - Diámetro medio de etapa

G-Flujo del vapor principal

GN-Flujo de fugas de vapor

h - Entalpía

L - Altura del álabe

L 1 -Longitud de la curvatura central del álabe de tobera

L 2 -Longitud de la curvatura central del álabe del rotor

M-Número de Mach

P - Presión

R - Radio de curvatura del perfil

Re-Número de Reynolds

r - Radio de rodete

T -Temperatura

t - Paso del álabe

U - Velocidad periférica del rodete

W - Velocidad relativa del vapor respecto del álabe

Z - Número de álabes

Letras griegas

α- Angulo de salida del vapor

 β – Angulo de entrada del vapor

 δ -Espesor del borde de salida del álabe

η-Eficiencia

 ψ -Coeficiente de velocidad en álabes

 ϕ -Coeficiente de velocidad en toberas

 ξ -Coeficiente de pérdidas

 ρ -Densidad del vapor

Subíndices

O-Se refiere a entrada a toberas

1- Se refiere a salida de tobera (álabe fijo)

2- Se refiere a salida de álabes (álabe móvil)

n-Ultima etapa

P- Pérdidas primarias

R-Rotor

S- Estator

T-Isentrópica

W- Pérdidas secundarias

O -Asociado a GN, en barreno de balance

W -Asociado a GN, en sello de diafragma y flecha

W1 -Asociado a GN, en aleta axial de rodete y diafragma

Z -Asociado a GN, en cincho de rodete

Introducción

Antecedentes

Como se sabe, la turbina de vapor reemplazó a principios de siglo al motor de vapor y es actualmente uno de los equipos mas importantes para la generación de energía eléctrica y para accionamiento.

La información disponible acerca de los avances y trabajos que se hau desarrollado para incrementar la eficiencia interna de turbinas de vapor es escasa y los trabajos de investigación y desarrollo lo efectuan grandes compañias que fabrican y venden estos equipos pero no difunden la información. Sobre ésta se menciona que existe poca (y aún menos por dificultad con el idioma) en el bloque socialista y principalmente en ruso y polaco, en tanto que en occidente la información es nula.

Debido a que en la operación de un turbogenerador no se cumplió con el consumo de vapor especificado, ello dió motivo a buscar el rediseño de la turbina de vapor. Con base en la información, un proceso de capacitación y desarrollo en turbinas de vapor de diferentes tecnologias, con auxilio de un programa de cómputo y mediciones en campo se llevó a cabo este trabajo.

Este trabajo muestra una forma de incrementar la eficiencia interna de la turbina, tomando como referencia el diseño original.

Se muestra un análisis (no exhaustivo) de las principales pérdidas de energía en la trayectoria de flujo de vapor de la turbina y se indica el incremento de su eficiencia, mediante el control de las pérdidas en la trayectoria de flujo.

Se tomó una turbina en operación como referencia y se indican las modificaciones que se deben hacer al diseño y se menciona cuanto se espera que se incremente su eficiencia.

Puede tomarse otra turbina y se puede analizar si es posible incrementar su eficiencia.

Capítulo 1

Descripción de la turbina

Una turbina de vapor es una máquina de fluido compresible, que utiliza como fluido de trabajo vapor de agua, funciona bajo el principio de la cantidad de movimiento angular ó ley de Euler. Dado que funciona bajo el principio anterior también se le conoce como turbomáquina. Las turbomáquinas se clasifican en generatrices y motrices, en las del primer tipo la turbomáquina recibe energía mecánica y cede energía al fluido, en las del segundo, el fluido de trabajo cede energía a la máquina y ésta restituye energía mecánica.

En la turbina de vapor, el fluido de trabajo cede energía al rotor y éste la convierte en energía mecánica para accionar otra máquina o para generación de energía eléctrica.

Por tanto, una turbina de vapor es una turbomáquina motriz que utiliza vapor como fluido de trabajo.

1.1 Componentes de una turbina

Una turbina de vapor consiste de los componentes que a continuación se indican y que pueden verse en la figura 1.

Rotor, diafragmas o toberas, sellos de vapor, sellos de aceite, chumaceras y carcasas.

A continuación se describe brevemente cada uno;

Rotor.

Está formado por los discos, los álabes, los cinchos y la flecha o eje de rotación.

Los álabes y los cinchos van montados en los discos y a este conjunto se le llama rodete, entonces el rotor consiste de la flecha y rodete, sin embargo, un rotor puede consistir de eje y discos de una sola pieza con álabes y cinchos montados. El rotor recibe la energía cinética del vapor que viene de toberas y la convierte en energía de rotación o mecánica.

Diafragmas de toberas.

El diafragma de toberas consiste de dos anillos, uno interno y el otro externo en dirección radial y entre ellos estan alojadas las toberas, en la parte inferior del anillo interno pueden ir alojados los sellos de vapor entre etapas. Existen turbinas que no llevan anillos y las toberas son soldadas a las carcasas. La función principal de estos componentes son; transformar su energía térmica en energía de velocidad y dirigir al vapor.

Sellos de vapor.

Estan formados por empaquetaduras que tienen en el diámetro interno dientes de sellos, su función es la de no permitir fugas de vapor.

Sellos de aceite.

Se parecen a los sellos de vapor, solo que su función es impedir que se fugue el aceite a la zona de vapor.

Chumaceras.

Existen de dos tipos, las radiales y las axiales, las primeras sirven para que en ellas descanse el peso del rotor y scan el apoyo para la rotación del mismo, las axiales sirven para amortiguar las fuerzas de empuje axial del rotor.

FIGURA L. CORDE LONGITUDINAL DE TURBINA Y SUS PARTES [2]

ω

Las chumaceras consisten de material base y material blando o babbit. Las radiales pueden ser cilíndricas o esféricas y las axiales son discos planos o cóncavos. Entre flecha y chumacera radial existe una película de aceite en la operación.

carcasas.

Son las cubiertas de la turbina que contienen a las bridas de admisión y descarga de vapor, en ellas se alojan los diafragmas de toberas o toberas, normalmente las carcasas se dividen horizontalmente y por ello se dice, de carcaza superior e inferior.

Una turbina para su operación completa requiere de otros componentes que normalmente se les denomina como "equipo auxiliar" el cual contiene, bomba principal de aceite, sistema de lubricación, sistema de control de la turbina, válvula de paro, válvula de control, filtro de vapor, entre otros.

1.2 Funcionamiento y clasificación de turbinas.

Funcionamiento.

El vapor que viene de la caldera, pozo geotérmico, etc; trae una energía térmica manifestada en forma de entalpía y de trabajo de flujo, entra a la turbina y el primer diafragma de toberas transforma su energía térmica a energía cinética o de velocidad, despues es guiado hacia el primer rodete del rotor, éste recibe la energía cinética del vapor y ello produce una fuerza en el mismo provocando su rotación.

Clasificación.

La clasificación mas importante se refiere a la dirección que sigue el flujo, de tipo axial y de tipo radial. El flujo de vapor en la primera es paralelo al eje de rotación y en la segunda el flujo es perpendicular al eje de rotación. La turbina de tipo axial es la de mayor aplicación y tiene varias clasificaciones, unas de ellas son:

 a) Atendiendo a la caida de presión que tiene lugar en trayectoria de flujo, de impulso y de reacción, en las primeras la caida de presión se lleva a cabo en toberas y en las segundas en toberas y rodete.

- b) De acuerdo a la presión que admiten: alta, media, baja y presión mezclada.
- c) De acuerdo al tipo de descarga; de extracción, de condensación , no condensación o contrapresión.
- d) De acuerdo al arreglo físico; simple, tandem o compuestas.
- e) Al tipo de accionamiento; directo ó indirecto.

De acuerdo a la clasificación anterior la turbina mostrada en la figura 1 es una turbina tipo axial, impulso-reacción, baja presión, de contrapresión, simple, de generación y de accionamiento indirecto.

Capítulo 2

Análisis de pérdidas de energía en una planta de energía eléctrica y en la trayectoría de flujo de vapor de la turbina

2.1 Pérdidas en la planta de energía eléctrica.

Las pérdidas de energía disponible en una planta de energía eléctrica (planta de fuerza) son diversas y aquí se mencionan las pérdidas por componentes. La energía que se le suministra a la caldera mediante el combustible representa el 100% de la energía disponible de la planta, después de efectuarse la combustión los gases que salen de la caldera via chimenea llevan energía que se pierde y representa aproximadamente el 7% [7], al mismo tiempo hay pérdidas de energía debido al ciclo que sigue la caldera y que representa un 3%, dando como resultado que la eficiencia de la caldera sea de 90% por tanto, la energía que lleva el vapor al entrar a la turbina es de 90%, después el vapor se expande en la turbina y hay pérdida de energía en ella, de aproximadamente 15% de la energía disponible resultando que la cnergía disponible al salir de la turbina sea de alrededor de 75-80%. Las pérdidas de energía mayores en toda la planta termoeléctrica son las que se tienen en el condensador, en éste se pierde alrededor del 30% de la energía disponible del vapor al salir de la turbina, lo cual conduce a que la energía disponible rotor de la turbina sea de aproximadamente el 45% del total, después existen pérdidas de energía en chumaceras y bomba de aceite o llamadas pérdidas mecánicas de cerca de 1%, luego vienen las pérdidas en el generador que son de alrededor de 1% y luego las pérdidas de los auxiliares de alrededor de 2% dando como salida de energía final del sistema, alrededor del 42% [7]. Lo anterior se muestra en el esquema de energía de la figura 2.

FIGURA 2 · PERDIDAS DE ENERGIA EN UNA PLANTA DE ENERGIA ELECTRICA

2.2 Pérdidas en trayectoria de flujo de vapor en turbina.

Las pérdidas de energía inherentes a la turbina de vapor son las que interesan para este estudio y estas pérdidas en la turbina son:

- a) pérdidas de etapa
- b) pérdidas por fuga de vapor de etapa
- c) pérdidas de descarga
- d) pérdidas por caida de presión
- e) pérdidas por fricción o mecánicas
- f) pérdidas por fugas de vapor en empaquetaduras

Las tres primeras son las mayores y estan intimamente relacionadas con el diseño de la turbina, las otras estan asociadas o dependen de otros componentes.

El esquema de la figura 3 muestra mayor información sobre las pérdidas. Se aclara que hay diferentes clasificaciones de pérdidas en turbina, se ha tomado la clasificación de [7].

La representación del esquema anterior en el diagrama H-S convencional para expansión del vapor en la turbina se muestra en la figura 4 de pérdidas internas y eficiencia interna de la turbina.

FIGURA 3. PERDIDAS DE ENERGIA EN TURBINAS [7]

FIGURA 4. PERDIDAS INTERNAS Y EFICIENCIA INTERNA DE TURBINA [7]

De la gráfica anterior se obtiene que la eficiencia interna de la turbina es $\eta = \frac{h_x - h_x}{h_x - h_x}$ que en general se encuentra entre 75 y 85%.

A continuación se mencionan brevemente las pérdidas más importantes de: etapa, fugas de vapor de etapa y de descarga.

a) Pérdidas de etapa

Estas pérdidas se deben principalmente al perfil, éste provocará que se incrementen o disminuyan las pérdidas asociadas. A las pérdidas de etapa se les divide en la literatura como pérdidas primarias y secundarias.

Las pérdidas por perfil inducen pérdidas no mostradas en la figura 3 entre ellas por flujo no uniforme y por fricción.

Las pérdidas por flujo no uniforme se deben fundamentalmente a la relación del paso de toberas al paso de álabes t_1/t_2 , a la distancia óptima entre los bordes de salida de tobera y entrada de álabes "B", así como al espesor del borde de salida de toberas δ .

Las pérdidas por fricción, en perfiles se deben básicamente al rozamiento del vapor con los lados cóncavo y convexo de los álabes.

Las pérdidas por flujo secundario, son las pérdidas mayores por perfil de etapa y se deben a la diferencia de presión entre los lados cóncavo y convexo del álabe, el lado convexo tiene menor presión y el flujo secundario va de presión alta a presión baja en la raíz y punta del canal de álabes, el flujo secundario es mayor porque el vapor principal es de alta presión en el centro y menor en la raíz y punta del canal (debe intentarse que la ΔP sea baja para tener menores pérdidas por flujo secundario).

A la salida del vapor del canal de álabes hay una diferencia de presión entre el lado cóncavo y convexo del perfil y debido a que el vapor principal está a alta presión, aparecen en la raíz y punta del perfil pérdidas adicionales que se denominan como pérdidas por separación de flujo y pérdidas de mezcla o mezcladas.

Pérdidas por el ángulo de incidencia de entrada del vapor.

El vapor debe entrar al canal de álabes con un ángulo determinado, normalmente este ángulo está referido al ángulo mecánico del álabe. La desviación del ángulo óptimo provoca pérdidas de energía, en el canal de flujo, la raíz es más sensible y la punta menos al ángulo de incidencia.

Las pérdidas por ventilación se deben al efecto de ventilador que hace el rodete al girar dentro de un medio de vapor.

Las pérdidas por humedad se deben al hecho que provoca el vapor al condensarse y pegarse a los álabes y rodete.

Las pérdidas por admisión parcial se deben a que en la primera etapa se admite una parte de vapor y no se aprovecha la energía del vapor que no entra.

Las pérdidas de etapa son aún mayores que las pérdidas por fugas de etapa y de descarga, dependiendo del tipo de perfil y del arreglo de la etapa pueden aumentar o reducir otras pérdidas.Las pérdidas por fugas de etapa, no mostradas en la figura 3, estan incluidas en las pérdidas de etapa y se indican a continuación.

b) pérdidas por fuga de vapor de etapa

Las pérdidas por fugas de vapor de ctapa se originan en sellos de diafragmas, raíz de álabes y punta de álabes, y se deben a una disposición inadecuada de toberas, sellos y rodetes. Las principales pérdidas por fuga de etapa son:

- fuga de vapor en la raíz del álabe
- fuga de vapor a través de cincho y sello en punta de álabe
- fuga de vapor a través del sello del diafragma

El arreglo de las pérdidas por etapa y de fugas de etapa en una turbina se muestra en la figura 5. Al conjunto de pérdidas de etapa y por fugas se le denomina también como pérdidas en trayectoria de flujo.

Las pérdidas por fugas (por el arreglo) de etapa, como se mencionó, se deben a la disposición de los anillos interno y externo de los diafragmas, al tipo de sello (de laberinto, plano, etc.) su empaquetadura y claros, al tipo de cincho, el tipo de sello sobre el cincho, la prolongación del anillo externo del diafragma, a la distancia entre diafragmas y rodete, etc.

A continuación se menciona como se incrementan las fugas de etapa:

Pérdidas por fugas de vapor en raíz de álabe.

Serán mayores cuando la distancia entre toberas y álabes sea mayor, si se puede disminuir el claro las fugas disminuirán, la limitante es la vibración del álabe.

Pérdidas en cincho y sello en punta de álabe.

Son mayores cuando sobre el cincho no hay sellos y el claro es grande entre rodete y carcaza.

Pérdidas en sellos de diafragma.

Son altas cuando el claro es grande entre la punta del sello y la flecha del rotor o cuando no hay sello tipo laberinto donde debe llevar.

c) pérdidas de descarga o salida del vapor de la turbina.

Estas se deben principalmente a que el vapor al salir de la última etapa de la turbina, lleva energía la cual ya no se utilizará mas, además el vapor que va a salir de las carcasas debe guiarse de tal manera que la pérdida de energía por salida sea pequeña.

d) pérdidas por caida de presión.

Se deben a la caida de presión en válvulas de paro, de control y por rozamiento con toberas y rodetes del vapor.

e) pérdidas por fricción o mecánicas.

Se deben a las pérdidas de rozamiento entre flecha (muñón) y chumacera y por accionamiento de bomba principal.

f) pérdidas por fugas en empaquetaduras.

Estas pérdidas son diferentes a las de etapa y estan relacionadas solamente con sellos de vapor de alta y baja presión, aumentan cuando el claro entre punta del sello y flecha del rotor es grande.

Capítulo 3

Análisis de pérdidas de energía por fugas de vapor de etapa

Como ya se mencionó, las pérdidas por fugas de etapa pueden ser de las mayores en turbinas.

En esta parte se analizan las pérdidas de energía que se tienen debido a las fugas de vapor de etapa.

En la figura 6 se muestra la etapa de una turbina y en ella el flujo principal es GO y una parte de él se fuga por el sello de diafragma de toberas GNW, a la salida de toberas el flujo es G1 y del cual una parte se fuga hacia la raíz del álabe movil GNW1 y otra parte hacia el cincho del álabe GNZ, además la suma de los flujos de fugas de vapor en sellos de diafragma y la raíz de toberas, forman el flujo de fugas GNO que se va por el barreno de balance del disco del rodete. Como puede observarse, los flujos G1, G2 y GNO son función de las áreas de flujo y de la temperatura y presión del vapor.

Las áreas de flujo se miden y los flujos G1, G2 y GN dependen o son función de las velocidades relativa W_2 y absoluta C_1 .

A continuación se muestra el proceso de cálculo resumido de los flujos de vapor principal y de fugas.

FIGURA 6. FLUJO DE VAPOR, DE FUGAS Y AREAS DE FLUJO

De acuerdo a la figura 6.

$$G1 = GO - GNW = G1(A_1, A\delta_W, T, P)$$
(3.1)

$$G2 = G1 - GNZ - GNW1 = G2(A_2, A\delta_{Z1}, A\delta_{W1}, T, P)$$
(3.2)

$$GNO = GNW + GNW1 = GNO(A_0, A\delta_W, A\delta_{W1}, T, P)$$
(3.3)

De la figura 7, se observa que la longitud de la garganta de flujo de un canal se puede calcular con;

$$sen \alpha_1 = A_1^m / t_1; \ A_1^m = t_1 sen \alpha_1$$
 (3.4)

$$sen\beta_2 = A_2^m/t_2; \ A_2^m = t_2 sen\beta_2$$
 (3.5)

el paso de álabes vale;

$$t_1 = \frac{2\Pi r}{Z_1}$$
(3.6)
$$t_2 = \frac{2\Pi r}{Z_2}$$
(3.7)

El área anular de flujo total de una etapa se calcula con; Para el área de toberas

$$A_{1} = Z_{1} \int_{r_{*}}^{r} A_{1}^{m} dr = Z_{1} \int_{r_{*}}^{r} t_{1} sen \alpha_{1} dr = 2 \prod_{r} \int_{r_{*}}^{r} sen \alpha_{1} r_{1} dr_{1} \quad (3.8)$$

donde la integral, significa el flujo de vapor que circula desde la raíz (r) hasta la punta (p) del álabe en cada canal de flujo.

FIG. 7 PARAMETROS GEOMETRICOS DE TOBERAS Y ALABES

FIG. 8 TRIANGULO DE VELOCIDADES DEL FLUJO Y ROTACION DE RODETE Ya que

$$sen\alpha_1 = \frac{A_1^m}{t_1}$$

es constante y la integral del álabe desde la raíz hasta la punta es L_1 , se tiene;

$$A_{1} = Z_{1}A_{1}^{m}L_{1} = 2\Pi r_{1}L_{1}sen\alpha_{1} = \Pi D_{1}L_{1}sen\alpha_{1}$$
(3.9)

 D_1 , es el diámetro medio del diafragma de toberas, por tanto el área de flujo total en toberas es:

$$A_1 = \Pi(D_1 + L_1)L_1 sen \alpha_1 \tag{3.10}$$

y el árca del flujo total en el rodete es:

$$A_{2} = Z_{2}A_{2}^{m}L_{2} = \Pi(D_{2} + L_{2})L_{2}sen\beta_{2}$$
(3.11)

Una vez obtenidas las áreas se procede a calcular los flujos de vapor: El flujo a la salida del diafragma de toberas es;

$$G1 = \rho_1 A_1 C_1 \tag{3.12}$$

El flujo a la salida del rodete es;

$$G2 = \rho_2 A_2 W_2 \tag{3.13}$$

Una de las maneras prácticas para calcular las áreas A_1yA_2 es medir $A_1^myA_2^m$ en cada canal.

Ahora bién

$$C_1 = \phi C_1, \tag{3.14}$$

$$\phi = \sqrt{1-\xi_s} \tag{3.15}$$

 C_1 , es la velocidad teórica de salida del diafragma de toberas y C_1 es la velocidad real

$$W_2 = \psi W_2$$
, (3.16)

$$\psi = \sqrt{1 - \xi_R} \tag{3.17}$$

 W_2 , cs la velocidad teórica de salida del rodete y W_2 la velocidad real. C_1 , y W_2 , se obtienen del triángulo de velocidades de la figura 8. Los coeficientes de pérdidas se obtienen mediante

$$\xi_s = (\xi_p + \xi_w)_s \tag{3.18}$$

$$\xi_R = (\xi_p + \xi_w)_R \tag{3.19}$$

donde los coeficientes de pérdidas primarios y secundarios ξ_p y ξ_w son función de;

$$\xi_{p} = \xi_{p}(t/b, \delta/b, \Delta\alpha, R, M, Re, espesor \ del \ perfil) \tag{3.20}$$

$$\xi_w = \xi_w(b/L, \alpha_o, \alpha, M, Re, espesor \ del \ pcrfil) \tag{3.21}$$

y pueden obtenerse de gráficas como las mostradas en la figura 10. Otros parámetros geométricos de toberas y álabes se aprecian en la figura 9. La figura 11 muestra los perfiles de los coeficientes de pérdidas primarias y secundarias.

Para el cálculo de los flujos de fugas en sellos de diafragmas de toberas, agujeros de balance de presión y sellos en cinchos de rodete, es necesario mencionar lo siguiente. En general el cálculo de estas fugas es muy dificil de obtener, se han hecho esfuerzos mediante fórmulas empíricas [1], sin embargo, la mayoria de ellas son para casos específicos. Las fórmulas mayormente empleadas son las de; Martin, Newman y las de Troyanovski.

FIG. 9 PARAMETROS GEOMETRICOS ADICIONALES DE TOBERAS Y ALABES

FIG. 10 COEFICIENTES DE PERDIDAS EN FUNCION DEL ANGULO, t/b y b/L

Como se puede observar de la figura 6 existen cuatro flujos de fugas en el arregio de la etapa, y en ellos existen diferentes sentidos que puede seguir el flujo, los parámetros que influyen para lo anterior son, si la turbina es de impulso o reacción, el tipo de sello y el grado de reacción (ro), si es de impulso y el grado de reacción es grande, el sentido de las fugas puede invertirse.

El grado de reacción (ro) desde el punto de vista de las presiones significa que si es cero, la caida de presión de la etapa solo se lleva a cabo en toberas y si es mayor que cero, parte de la caida de presión ocurre en el rodete.

Analizando el caso que la turbina sea de impulso, si el rodete fuera puramente de inpulso el grado de reacción es cero, y como se dijo, una parte del vapor principal GO se va hacia los sellos de diafragma y el chorro de vapor que sale del diafragma succiona al vapor que se fue por los sellos y esto provoca que el vapor que sale del rodete una parte sea succionado y circule por el barreno de balance en sentido contrario al flujo de vapor principal, otro caso que se puede presentar es; si el grado de reacción es pequeño, del vapor que sale del diafragma de toberas, una parte se dirige hacia los sellos del cincho y otra parte hacia el barreno de balance, en donde se une con el de sello del diafragma y los dos flujos circulan en sentido del vapor principal. Otro caso es cuando una parte del flujo de sellos de diafragmas se va por el barreno y otra parte se succiona por el vapor principal.

De la figura 6, en términos generales se tiene;

GNO = GNW1 + GNW

(3.22)

У

y

GNZ = GNW

(3.23)

para

ro = 0; GNW1 = 0

GNO = GNW

para $ro \neq 0$; para este caso se emplea la expresión general y ecuaciones específicas (4-35) y (4-36) de [1], que con la nomenclatura aquí empleada y con los valores de algunas constantes quedan como:

$$\frac{GNW}{GO} = \frac{7.2X\,10^{-4}\,D_i^2}{(D_1 + L_1)L_1 sen\alpha_1 Z_o} \sqrt{\frac{1 - (ro)_r}{1 - (ro)_m}} \tag{3.24}$$

donde:

Di = diámetro de la flecha

 $Di = 1/3 D_1$ para turbinas de vapor pequeñas

Di = f(n, pel) para otras

n - revoluciones por minuto

pel - potencia eléctrica

Zo = número de dientes de sellos

$$Zo = f(\Delta p)$$

 $(ro)_r$ - grado de reacción en raíz de álabe

 $(ro)_m$ - grado de reacción a la mitad del álabe

у

$$\frac{GNW1}{GO} = \frac{7.2X10^{-4}D_i^2}{(D_1 + L_1)L_1sen\alpha_1}\sqrt{\frac{(ro)_t}{1 - (ro)_m}}$$
(3.25)

donde;

 $(ro)_t$ - grado de reacción en punta del álabe

De la anterior manera se calculan los flujos y sus fugas de la etapa.

Capítulo 4

Incremento de eficiencia a turbinas mediante el control de pérdidas de energía en trayectoria de flujo de vapor

En la parte 2 se han mencionado las pérdidas de energía mas importantes que aparecen en la trayectoria de flujo de vapor, inclusive se han indicado, en forma breve, sus causas.

En esta parte se presenta cómo incrementar la cficiencia a una turbina mediante el control (reducción) de sus pérdidas de energía en la trayectoria de flujo. Esta parte, es la base para los cambios que se puedan hacer a un diseño original. Se menciona que la mayoría de información de este capítulo está tomado de [7].

4.1 Control de las pérdidas por flujo no uniforme

En una turbina, normalmente el número de toberas no es el mismo que de álabes, el número de toberas siempre es menor. La relación del paso de toberas al paso de álabes t_1/t_2 varía de 1.2 a 1.4. Existe una
longitud (distancia) óptima "B" entre el borde de salida de tobera y el borde de entrada del álabe en el canal de flujo, la cual está determinada por la resistencia mecánica, la vibración de los álabes así como de la eficiencia de la etapa. La combinación de la relación t_1/t_2 y la longitud óptima "B" entre bordes conduce a obtener la menor pérdida por flujo no uniforme además se da especial atención al espesor del borde δ_1 de salida de tobera, ya que de otra forma, con la variación del espesor del borde las pérdidas varían.

Lo anterior se muestra en la figura 12, en donde al variar la relación t_1/t_2 y la longitud òptima, las pérdidas aumentan o disminuyen.

4.2 Control de las pérdidas de flujo secundario, de separación y por mezclado

Como se mencionó anteriormente las pérdidas por flujo secundario se deben a la diferencia de presiones entre el lado cóncavo y convexo del álabe de tobera y rodete, además esta misma diferencia de presiones provoca adicionalmente pérdidas por separación y pérdidas mezcladas.

Aprovechando la información anterior se ha encontrado que la relación; garganta de salida del álabe de tobera a paso A_1^m/t_1 es igual al paso del ángulo de descarga $A_1^m/t_1 =$ ángulo de descarga, valor que disminuye la diferencia de presión y el valor óptimo de esta relación oscila entre 0.2 a 0.3, lo que conduce a que el ángulo de salida (descarga) del vapor sea entre 12 y 18° y eso conduce a diseñar un perfil especial, diferente al convencional para reducir las pérdidas por flujo secundario, separación y de mezclado hasta en un 5%, lo que representa una reducción sustancial de las pérdidas totales. Lo anterior se muestra en la figura 13.

4.3 Control de vórtices.

Normalmente hay vórtices a la salida del álabe de tobera y si se controla este remolino hay menor pérdida y por tanto mayor eficiencia.

La tobera convencional es recta en la salida y el perfil especial está torcido de la parte media hacia la punta, el incremento de la eficiencia ha sido probado para toberas de 60 a 250 mm de altura [7] y este incremento de eficiencia varía de 0.5 a 1% en cada etapa y depende de la altura de la tobera.

Lo anterior puede observarse en la figura 14.

FIGURA 14. PERFIL ESPECIAL TORCIDO PARA CONTROL DE VORTICE [7]

38

4.4 Control o reducción de fuga de vapor en el rodete.

En cada rodete del rotor normalmente hay un block candado y un block de balance, el block candado es la base o raíz del álabe y sirve para dar el apriete necesario del total de álabes en el rodete. El block de balance tiene como objetivo balancear el rodete y normalmente consiste de base o raíz de álabe. Ambos bloques están incompletos lo que provoca que exista fuga de vapor en donde estan colocados, estos bloques. Como se ve, esta fuga de vapor no fue mencionada antes, ya que era dificil su interpretación. pero su valor es considerable.

Actualmente es posible usar en vez de block candado, un álabe candado, el cual hace la función de block de candado y ademas de álabe transmisor de energía. lo mismo puede hacerse con el block de balance utilizando un álabe de balance, el problema es la fuerza centrífuga, pero al utilizar un álabe de Titanio se puede reducir un 34% de la fuerza centrífuga, debido a que la densidad del Titanio, es menor a la del acero aleado, su resistencia es también menor y por ello no puede utilizarse en turbinas de alta presión.

Se han efectuado pruebas y se ha observado que una relación de velocidad periférica a velocidad de vapor w/c_o óptima relacionando block candado y álabe candado da un incremento de eficiencia (al utilizar este último) de 0.4 a 0.5% por etapa, además la relación de velocidad óptima oscila entre 0.48 y 0.65.

La figura 15 muestra el cambio antes mencionado.

FIGURA 15. SUSTITUCION DE BLOCK CANDADO Y DE BALANCE POR ALABE CANDADO Y DE BALANCE [7]

4.5 Control o reducción de fugas de vapor en cinchos de rodete.

Como se ha mencionado anteriormente en punta y en la raiz de salida de toberas se tienen pérdidas por flujo secundario, y por mezclado, estas pérdidas aunadas a las pérdidas por vórtices de salida de tobera y por ventilación entre diafragma y rodete, provocan que en la punta del rodete haya pérdidas de flujo de vapor. Para evitar lo anterior se procede a prolongar el diafragma de toberas y ahí se colocan dientes de sellos, para reducción de fuga óptima se requiere que el tetón del álabe sea plano y que el número de dientes sea grande, pueden tenerse otros arreglos pero su incremento en la eficiencia será menor.

De la misma manera en la raíz del álabe existen pérdidas por flujo secundario de separación, por vórtices y de ventilación, para reducir la fuga del vapor se recomienda utilizar una aleta radial en raíz de álabe móvil (de rodete).

Lo anterior se muestra en la figura 16. La reducción de fugas en la punta (cincho) del álabe móvil es de 25% y el incremento en la eficiencia de la turbina puede ser de hasta 3%.

4 I.

FIGURA 16. CONTROL DE FUGAS EN CINCHO Y REDUCCION DE FUGAS EN RAIZ DE ALABE [7]

4.6 Control o reducción de fugas de vapor en sellos de diafragma de tobera y de raíz de álabe.

Como se mencionó hay un flujo que se separa del principal y se va por la parte inferior del diafragma y ahí hay sellos de vapor del diafragma, siu embargo, el claro de estos sellos en ocasiones resulta grande y existe una fuga alta de vapor, para reducir esta fuga se recomienda poner empaquetaduras de sello flotante con ajuste de resorte para mantener un claro mínimo, al mismo tiempo se recomienda hacer barrenos de balance en los discos del rotor. Los barrenos tienen doble finalidad, la primera es ignalar o balancear las presiones de vapor en los discos antes y después de cada etapa, la segunda es la de permitir que por estos barrenos fluyan las fugas de vapor que provienen del diafragma y de la raíz del álabe.

Si hay un flujo de succión adecuado, la zona de flujo alterado se succionará hacia abajo. Para obtener el valor adecuado hay que ajustar el diámetro del orificio de balance, el diámetro es mayor que lo que había en la turbina original y con ello se obtiene el flujo de succión óptimo.

Lo anterior se muestra en la relación cantidad de fuga a pérdidas que indica la figura 17, se espera que el incremento en la eficiencia sea de 0.3%.

4.7 Control de pérdidas por salida del vapor de la turbina.

Después de la última etapa el vapor debe guiarse para salir en la brida de descarga, si no se lleva a cabo lo anterior, se provoca en la última etapa pérdida por fricción, vórtices, etc., por lo tanto, es ideal permitir que la presión estática del vapor baje controladamente, se ha observado que una relación de área de abertura de salida a área anular del álabe adecuado, utilizando un difusor en la carcaza contra una descarga convencional da en el primer caso una pérdida de presión estática menor.

Lo anterior se muestra en la figura 18, dependiendo del difusor se puede obtener hasta 0.5 de incremento en la eficiencia.

Capítulo 5

Modificaciones al diseño

Como se mencionó, con base en la información, un proceso de capacitación y desarrolle en turbinas de vapor de diferentes tecnologias, auxilio de un programa de cómputo y mediciones en campo, se realizó este trabajo.

El Instituto de Investigaciones Eléctricas (IIE) participó en un proyecto de asimilación y transferencia de tecnología de diseño y fabricación de turbogeneradores geotérmicos de 3 a 7 MW de capacidad, con la firma japonesa Toshiba. Debido a que en la operación del turbogenerador (producto del proyecto) no se cumplió con el consumo de vapor especificado, debido a esto, se busco el rediseño de la turbina, para ello, se revisaron tecnologias de Toshiba, Mitsubishi y Turbodyne. En esta revisión pudo apreciarse que los diseños de trayectoria de flujo eran diferentes y para tal efecto se efectuaron mediciones de consumo específico y pruebas de comportamiento a las unidades Toshiba [11] y Mitsubishi [12] instaladas en los Azufres, Michoacan, resultando la última de mayor eficiencia. Posteriormente se tomaron mediciones geométricas de trayectoria de flujo de la unidad Mitsubishi, se analizó la geometría de esta unidad así como de la información de una turbina Turbodyne. Se aplicaron al diseño tiginal Toshiba algunas modificaciones a la travectoria de flujo utilizando el programa de cálculo polaco "Turbina 88" y los resultados mostraron que la eficiencia interna de la turbina Toshiba se incrementaba. Por otra parte con la experiencia de inspección de otras turbinas se pudo llegar a proponer cerca de veinte modificaciones al diseño original Toshiba, sin embargo, no todas podian cuantificarse con el programa de cálculo.

Por lo tanto en este trabajo se mencionan solamente nueve modificaciones en trayectoria de flujo, que se consideraron que podian influir sustancialmente en el incremento de la eficiencia interna de la turbina de estudio. Las modificaciones sugeridas se enuncian a continuación:

- 1. Inclinar el anillo externo del diafragma de toberas, y la altura de álabe a la salida, hacerla mas grande que la entrada.
- Prolongar la saliente del anillo externo del diafragma y arriba del cincho colocar dientes de sello en la prolongación del diafragma.
- 3. Hacer el álabe móvil con una punta-aleta en la raíz.
- 4. Hacer cinco barrenos de balance en discos de cada rodete.
- 5. Hacer sellos de laberinto en flecha y colocar una empaquetadura de sellos con resorte en diafragma de toberas.
- 6. Hacer drenes de condensado en soporte de sellos del cíncho.
- 7. Colocar álabes candado y álabes de balance en lugar de bloques de candado y de balance.
- 8. Colocar un difusor de salida del vapor.
- Aumentar altura de álabe del rotor en la segunda, tercera y cuarta etapa.

Con las modificaciones anteriores se espera incrementar la eficiencia de la turbina de la siguiente manera;

- a) Al inclinar el anillo externo del diafragma el flujo de vapor será guiado y reducido el claro a la entrada del álabe móvil, de esta manera se reducen las fugas sobre el cincho y se espera que el incremento de eficiencia en turbina sea de 0.3%.
- b) El prolongar el anillo externo del diafragma y colocar sellos de vapor en él, sobre el cincho, reduce la fuga de vapor y de esta manera se espera que el incremento en la eficiencia sea de hasta 2%.

- c) Colocar una aleta en la raíz del álabe móvil y colocar barrenos de balance reduce las pérdidas de vapor y efectua el balance de presión a la entrada y salida de la etapa y de esta manera se espera que el incremento de la eficiencia sea del 0.5%.
- d) Hacer dientes de sello en flecha y sellos en diafragmas de toberas con resorte, reduce el claro y por tanto la pérdida por fuga de vapor, por lo que el incremento de la eficiencia será del orden de 1.5%.
- e) El número y tamaño de drenes de tobera debe ser óptimo de tal manera que se permita el drenado del condensado y esto produce un incremento de la eficiencia de la turbina del orden del 1%.
- f) La colocación de los álabes candado y álabes de balance en los puntos donde se colocaban bloques candado y de balance produce un incremento de la eficiencia de 1.5%, se dice que se incrementa la eficiencia de etapa entre 0.4 y 0.9%.
- g) La instalación de un difusor de salida del vapor, produce un incremento de eficiencia de turbina de 0.2%.
- h) El cambio de altura de álabes móviles en la 2a, 3a y 4a etapa, produce menos pérdidas por fuga del vapor ya que no hay el cambio brusco de altura y lo anterior produce un incremento de la eficiencia de la turbina del orden del 1.5%.

Al sumarse los valores anteriores la eficiencia interna de la turbina se incrementará por arriba del 8% y el valor mínimo que se espera incrementar la eficiencia es del 6%.

La justificación de las modificaciones propuestas se basa en el cálculo que se efectuó a seis de las nueve modificaciones. Con el auxilio del programa de cómputo "turbina 88" se efectuó el cálculo con la configuración de diseño original y con las seis modificaciones de diseño 1, 2, 3, 4, 5, y 9.

El programa "turbina 88" requiere datos geométricos de trayectoria de flujo y termodinámicos de entrada y salida y da como resultado parámetros termodinámicos, eficiencia y potencias de cada etapa entre otros. El incremento en eficiencia interna que se obtuvo entre el diseño original y sus modificaciones fue de 1.65%. Conviene aclarar que el programa "turbina 88" es un programa con limitaciones, que hace cálculos uni y bidimensionales y que respecto a valores reales esta alrededor de 6% arriba del valor real. En el apéndice se muestra mayor información sobre el programa y se muestran los resultados subrayándose las eficiencias y potencias.

Respecto a las tres modificaciones 6, 7 y 8 que no pudieron calcularse en el programa, se menciona que en esos casos se han tomado los valores de [7].

Tanto las modificaciones calculadas en el programa y las no calculadas, por experiencia se consideran las mas convenientes, entre otras modificaciones.

En las figuras 19 y 20 se muestran la configuración actual de la turbina y la configuración con las modificaciones recomendadas.

Los métodos actuales para calcular los incrementos de eficiencia se basan en el elemento finito en tres dimensiones y en mediciones experimentales. Para este caso se hicieron corridas de programas de cómputo de los parámetros de la trayectoria de flujo de vapor, unidimensionales comparados contra mediciones de consumo específico y prueba de comportamiento. Se menciona en el apéndice los programas y sus limitaciones.

FIGURA 19. CONFIGURACION DE DISEÑO TURBINA TOSHIBA [2]

. .

Second second

FIGURA 20. CONFIGURACION CON MODIFICACIONES AL DISEÑO TOSHIBA

52

Capítulo 6

Conclusiones

Como se indico, con las modificaciones de diseño se espera que el incremento de la eficiencia interna de la turbina sea de al menos 6% y si la eficiencia interna real de la turbina es alrededor de 77% por tanto la eficiencia interna llegará a 83%. Hitachi indica que es posible alcanzar en una turbina hasta 92%.

Como habrá podido notarse, en la configuración de diseño Toshiba, no estan implementados varios cambios de diseño que incrementen la eficiencia de la turbina.

En las modificaciones sugeridas, las pérdidas por fugas en cinchos, raíz del álabe y sellos de diafragma se estan minimizando. El diseño original no contempló estas pérdidas y la disposición de algunos componentes es incorrecta, los claros entre disco de rotor y diafragma han sido modificados, asi como la altura de los àlabes de rodete. Puede notarse que el incremento de eficiencia, obtenida mediante cálculo fue pequeño, sin embargo, se debe a la limitación del programa.

Para conocer el punto de vista del fabricante, se le envió la configuración del diseño modificada y se le indicó un incremento de eficiencia de 8% esperado.

El fabricante reconoció que se podia incrementar la cficiencia hasta un 6% e indicaba en que porcentaje se incrementaba cada modificación. Posteriormente en una conferencia de Hitachi [7], el expositor indicó en que porcentaje se incrementaba cada modificación y en general sus valores eran un poco mayores que los de Toshiba y parecidos a los valores que se han indicado en la parte 5.

Los incrementos de eficiencia que han tenido las turbinas en los últimos años son de 10 a 15%, por lo que un incremento de 6 a 8% es considerable.

En este trabajo se verifica que es posible incrementar la eficiencia a turbinas.

Referencias

1. A. V. Schegliaiev. Turbinas de vapor, Editorial Mir Moscú, 1978

2. Toshiba, Discño de la trayectoria del vapor y especificación para documentar tecnología de Toshiba para las turbinas pequeñas de vapor. Toshiba IIE 1985

3. A. Gardzilewics. Comentarios al discño de turbinas de vapor, reporte No. 161/84 (en polaco), Instituto de Maquinaria de Flujo de Fluidos, PAS, Gdansk, 1984.

4. E. Blazko; M. Lidke. Programa de cómputo para turbinas de vapor de un sistema de fluido de geometría dada, reporte de descripciones generales IFFM No. 58/86, Gdansk, 1986.

5. K. Kosouski. Optimización en las ctapas de la turbina, tesis doctoral, Gdausk, 1987.

6. R. Puzyrewski L. Bogdali. Analysis of efficiency of the turbine stage, report No. 69/82, 166/81 Institute of Fluid Flow Machinery (PAS), Gdansk, 1982

7. Haraguchi; et al, Preventive maintenance & advanced technology seminar for steam turbine & generator, Nov 28-Dec 1, 1989 Hitachi conference, México city.

8. A. Gardzilewics H. Sandoval. Prelimary Thermodynamic calculations of steam path flow for cylindrical and semicylindrical stages. Reporte interno IIE. IIE/34/3962/1/039/1 1987.

9. II. Sandoval O. Procedimiento de cálculo termodinámico de una turbina geotérmica de 5 MW a boca de pozo. Il Simposium Nacional de Ciencias Térmicas, México D.F. 1985. H. Sandoval. Cúlculo termodinámico de una turbina geotérmica, II Seminario IMP-IIE sobre especialidades tecnológicas, México D.F. 1985.

11. J. L. Gonzalez R. Informe de los resultados de la prueba de comportamiento de la unidad 6 (Toshiba) de los Azufres, Mich., reporte interno IIE. IIE/34/3962/1/045/1.

12. H. Sandoval O. Reporte de la prueba de comportamiento de la U-2 Mitsubishi de 5 MW de los Azufres, Mich., reporte interno IIE. IIE/34/3962/1/050/I.

13. Haraguchi; et al. Primer seminario latinoamericano de turbinas de vapor, 19, 23 de marzo 1990, Manzanillo México.

Apéndice

El programa de cómputo que se ha utilizado es el "turbina 88". Contiene un algoritmo que solicita los datos de flujo, presión y temperatura de entrada del vapor y la presión de salida de vapor, además toda la geometría de la trayectoria de flujo de vapor y calcula parámetros termodinámicos y de flujo de vapor en la trayectoria.

En la turbina, se efectuaron mediciones geométricas a la trayectoria de flujo del vapor, estas mediciones son diámetros, altura de álabes, claros, espesores de borde, etc., ademas a los perfiles de los álabes se les efectuan mediciones geométricas de radio de curvatura, ángulo mecánico de entrada y salida, espesores de bordes, ancho, espesor de álabe, paso, claros, etc. En cada etapa se efectuaron estas mediciones, que se pueden apreciar en la TABLA 1 DATOS AL PROGRAMA de datos geométricos. Cabe mencionar que en la medición algunos parámetros geométricos no se pueden cuantificar, lo que implica suponer un valor y por ende tener error en los resultados de cálculo.

Una vez que se han introducido los datos al programa, se corre y se obtiene una gama de parámetros geométricos, termodinámicos y de flujo, segun se aprecia en la TABLA 2 RESULTADOS DEL PROGRAMA. Lo importante de los resultados es su interpretación correcta.

El programa "turbina 88" se ha comparado contra pruebas de comportamiento y consumo específico y esta un poco arriba de los valores reales, sin embargo, con este programa se han obtenido mejores resultados.

Lo ideal seria tener, mejores programas de cómputo que avalaran cabal-

mente las mediciones experimentales. Para las mediciones se requiere implementar técnica e instrumentación adecuada ya que en las mediciones hay errores y alta incertidumbre.

Para entender el programa "turbina 88" se utilizarán la figura 6, 7, 8 y 9 y A1 para definir cada uno de los parámetros que alimentan al programa. Se hace la aclaración que los parámetros de la tabla 1 del apéndice no tienen exactamente la misma notación que la del trabajo, para tal efecto, a continuación de la notación del parámetro se anota su equivalente.

Los parámetros de la TABLA 1 DATOS AL PROGRAMA quedan de la siguiente forma:

Dw1- diámetro de la raíz de tobera en la parte de salida de vapor [mm].

Dw2- diámetro de la raíz del álabe de rodete [mm].

DwO- diámetro de la raíz de tobera en la parte de entrada de vapor [mm].

 L_1 - altura del álabe de tobera en la parte de salida de vapor [mm].

L2- altura del álabe del rodete (mm).

Lo- altura del álabe de tobera en la parte de entrada del vapor [mm].

tal- longitud axial del diafragma de toberas [mm].

ta2- longitud axial del rodete [mm].

z1- número de álabes de tobera de etapa [-].

z2- número de álabes de rodete de etapa [-].

Dz1- diámetro del rodete a la punta del tetón [mm].

delta Z1 - $\delta z1$ -claro radial entre punta de tetón y anillo externo de diafragma [mm].

Zz1- número de dientes de sello sobre el cincho [-].

Dz2- diámetro a la parte media de ctapa Bauman (mm).

deltaZ2 - $\delta z2$ -claro radial a parte media de etapa de Bauman (mm).

Zz2- número de dientes de sello a parte media de etapa de Bauman [mm]. Dw- diámetro del eje o flecha del rotor [mm].

deltaw - δw -claro radial entre punta de sello de diafragma y eje o flecha [mm].

Sw- distancia entre dientes de sello de diafragma [mm].

Zw- número de dientes de sello de diafragma [-].

Zwn- número de dientes de sello de diafragma incompletos [-].

dw1- diámetro a aleta axial en rodete [mm].

deltaw1- $\delta w1$ -claro radial entre aleta axial y diafragma de toberas [mm].

ro- radio de curvatura de bisel de barreno de balance [mm].

Do- diámetro a la linea de centro del barreno de balance [mm].

do- diámetro del barreno de balance [mm].

no- número de barrenos de balance por rodete [-].

bo1- claro axial entre diafragma de toberas y disco de rodete [mm].

nd- número de cartabones (alambres) de álabes para evitar su vibración [-].

dzeta- pérdida de energía (%) debido a cartabones de álabe [-].

alfa20- α_o – ángulo de entrada de vapor al diafragma de toberas (grados).

Ra1- rugosidad relativa de la superficie de la tobera [mm].

Ra2- rugosidad relativa de la superficie del rotor [mm].

al- A_1^m -longitud de la garganta de flujo de tobera [mm].

a2- A_2^m -longitud de la garganta de flujo del rodete [mm].

b1- cuerda del álabe de diafragma de toberas [mm].

b2- cuerda del álabe de rodete (mm).

bet 10- β_1 -ángulo de entrada de vapor al paso de flujo del rodete [grados].

R1- radio de curvatura del alabe de diafragma de toberas [mm].

R2- radio de curvatura del álabe del rotor [mm].

delta1- δ_1 -espesor del borde de salida del álabe de toberas [mm].

delta2- δ_2 - espesor del borde de salida del álabe del rodete [mm].

L1- longitud de la curvatura central del álabe de diafragma de toberas [mm].

L2- longitud de la curvatura central del álabe del rodete [mm].

alw- $A_1^m min$ – longitud mínima de pasaje de flujo en la raíz de álabe de tobera [mm].

alz-A₂^mmin-longitud mínima de pasaje de flujo en la raíz del álabe del rodete [mm].

FIGURA A1. PARAMETROS GEOMETRICOS DE LA TRAYECTOPIA DE FLUJO [4]

 TABLA 1 DATOS AL PROGRAMA

 >RJ6RAN 10001

 SELICZENIA FRZELYWOWO-TERMCTINANICZNU ULAQU 0 ZADANEJ GEDMETRII

 OPRACDMALI: MALGORYTHI-E. BLAZHO . SROSRAMI-M. LIDKE 111MP. PAN. - EDANSK

 DANE OPISUJACE SCHEMAT OBLICZENIONY

		N (DBR/HIN	LE(-)	LG(-)						C. 2017.		
		6088	4	1					reference.			. به وش
		NE (-)	- SK (-)	TE (-)	HWP(-)	TK? (-)	NWK (-)	THK (-)	NR.51-	SIGNA	(-)	
		· 1	1	0	1	0	2	0	1		1	
		2	2	0	2	0	3	0	1		l .	
19		3	3	0	3	0	4	0	1		1000	
		4	4	0	4	0	5	4	1		9	
		DANE DLA	STOPNI	TYFU 0.	1.2.3		이 같이 같					
		NE (~)										

	1							
	DH1 (MN)	Dw2(MM)	Dw0(NH)	11(23)	12(08)	10(MH)	tal(MM)	ta2(MM)
	460.000	658,400	640.000	32.000	34.300	32.000	52.000	43.000
a u tau lur lainn an	21(-)	22(-)	Dz1(NA)	deltazi (MM)	121(-)	Di2(MM)	delta221MM	122(-)
en la seconda de la second Na seconda de la seconda de	B0.000	65.000	743.000	1.270	1.000	0.000	0.000	0.000
	Dw(MM)	deltaw(NM)	Sw(HN)	2+(-)	2wn(-)	dw1 (NH)	deltaw1(NS)	r0(88)
	210.000	Ú.Ŭ00	5.000	7.000	1.000	658.400	5.680	0.000
in an Aliza Aliza da Sanar	DO (NH)	d0 (MN)	n0(-)	601(KH)	nd(-)	dzetal-)	al fa20(5T)	Ra1(-)
مراجعة المراجع مراجعية معرفة الرو	0.000	0.000	0.000	14.000	0.000	0.000	90.000	0.2E-03
	Fa2(-)	at(NM)	a2(88)	h1 (NH)	52(NB)	het 10(ST)	R1 (MN)	RC(MM)
	0.2E-03	7.700	12.608	70.000	45.000	45.000	75.000	0,000
	deltai/MH	delta 7/88		1.3 (MM)		515/MH1		
	0.440	0.740	75.000	56.000	7.180	8.280		
an an an Ar				èn e				

NE1-) 2 Dw1(NM) Dw2(NM) Dw0(NM) 11(NM) 12(NM) 10(NM) ta1(NM) ta2(NM) 660.000 658.400 660.000 48.200 50.500 48.200 52.000 43.000 21(-) 22(-) D21(NM) delta21(NM) 22(-) D22(NM) delta22(NM, 122(-) 80.000 66.000 775.400 1.270 1.000 0.000 0.000 0.000 Dw(NM) deltaw(NM) Sw(NM) Zw(-) Zwn(-) dw1(NM) deltaw1(NM) r0(NM) 210 000 0.640 5.000 7.000 1.000 558.400 5.400 0.000		그는 것 같아.							
2 Dw1(HH) Dw2(HH) Dw0(HH) 11(HH) 12(HH) 10(HH) ta1(HH) ta2(HH) 660.000 658,400 660.000 48.200 50.500 48.200 52.000 43.000 21(-) 22(-) D21(HH) delta21(HH) 121(-) D22(HH) delta22(HH) 122(-) 80.000 66.000 775.400 1.270 1.000 0.000 0.000 Dw(HH) deltaw(HH) Sw(HH) Zw(-) Zwn(-) dw1(HH) deltaw1(HH) r0(HH) 210.000 0.640 5.000 7.000 1.000 558.400 558.400 0.000	e sale av i i i			a e se Biologianes					
Duithi Dw2(HH) Dw0(HH) 11(HH) 12(HH) 10(HH) tal(HH) tal(H) tal(H) <thtal(h)< th=""> tal(H) tal(H)</thtal(h)<>									
660.000 658.400 660.000 48.200 50.500 48.200 52.000 43.000 z1(-) z2(-) Dz1(XM) deltaZ1(MM) Zz1(-) Dz2(XM) deltaZ2(XM) Zz1(-) 80.000 66.000 775.400 1.270 1.000 0.000 0.000 0.000 Dw(MM) deltaw(MM) Sw(M) Zw(-) Zwn(-) dw1(MM) deltaw(XM) r0(M) 200 0.040 S00 7.000 1.000 s58.400 5.800 0.000		Dw1 (88)	Dw2(HM)	Dw0(KH)	110003	12(88)	10(88)	tal (88)	ta2(NB)
z1(-) z2(-) D21(XM) delta21(MM) Z21(-) D22(MM) delta22(MM) Z21(-) 80.000 66.000 775.400 1.270 1.000 0.000 0.000 Dw(MM) deltaw(MM) Sw(M) Zw(-) Zwn(-) dw((MM) deltaw(MM) r0(MM) 210.000 0.640 5.000 7.000 1.000 558.400 55.400 0.000		660.000	658,400	660.000	48.200	50.500	48.200	52.000	43.000
21(-) 22(-) D21(XK) delta21(MK) Z21(-) D22(KK) delta22(KK) Z21(-) 80,000 66.000 775,400 1.270 1.000 0.000 0.000 Dw(KK) deltaw(KK) Sw(KK) Zw(-) Zw(-) dw1(KK) deltaw1(XK) r0(KK) 210,000 0.440 5.000 7.000 1.000 458.400 5.400 0.000									
80.000 66.000 775.400 1.270 1.000 0.000 0.000 0.000 Dw(MM) deltaw(MM) Sw(MM) Zw(-) Zw(-) dw1(MM) deltaw1(MM) r0(MM) 210.000 0.440 5.000 7.000 1.000 558.400 5.450 0.000	de la segura da da d	21(-)	z21-)	Dz 1 (MM)	deltali(MM) lz1(-)	Dz 2 (117)	delta22(MM	1221-1
Dw(MM) deltaw(MM) Sw(NM) Zw(-) Zw(-) dw((MM) deltaw((MM) rů(NM) 210 000 0.440 5.000 7.000 1.000 558.400 5.400 0.000		80.000	66.000	775.400	1.270	1.000	0.000	0.000	0.000
716 000 0 440 5 000 7 000 1 000 459 406 5 480 0 000		Dw (MM)	deltaw(MM)	Sw (NH)	Zw(-)	Zwn (-)	dw1 (68)	deltawi(NM)	rů(MK)
210,000 0,010 3,000 1,000 0,000 3,000 0,000		210.000	0.640	5.000	7.000	1.000	658.400	5.680	0.006
				• · ·			· 		-
DO(MM) dO(MM) nO(-) bv](MM) nd(-) dzeta(-) alfa20(51) Ral(-)		DO (NH)	d0 (MM)	n0(-)	201 (MM)	nd (-)	dzeta(-)	alfa20(51)	Ral(+)
0.000 0.000 0.000 15.000 0.000 0.000 90.000 0.2E-03		0.000	0.000	0.000	15.000	0.000	0.000	90.000	0.2E-03
Ra2(-) al(MM) a2(MM) b1(MM) b2(MM) bet10(ST) R1(MM) R2(MM)		Ra2(-)	a!(##)	a2(MM)	61 (MM) .	b2 (NN)	bet10(ST)	R1 (MM)	R2(MM)
0.2E-03 7.860 13.028 70.000 45.000 45.006 75.000 0.000		U.2E-03	7.860	13.028	70.000	45.000	45.000	75.000	0.000
doltal/NM3 dolta2/NM3 ()(NH) (2/NX3 alwiNM3 ala/NM)		do1151(8%)	dolto7/MM		12/885	.1	a(a(MM)		
		0.440	0 740	75 666	54 000	7 970	0 746		

 an er un Gil som of St Del (NR) DH2(RM) DHQ(RM) 11(RM) 12(GM) 10(RM) tal(HN) ta7(88) 650.000 633.400 560.000 75.100 77.400 75.100 52.000 43.000 71(-) 22(-) Dri(HN) deltali(HN) lri(-) ur2(HN) deltal2(HH) lr2(-) B30.200 1.270 1.000 0.000 0.000 0.000 88,000 58,000 Dw(MM) deltaw(MM) Sw(MM) Zw(-) Zwn(-) dw1(MM) deltaw1(MM) r0(MM) 1.000 658.400 5.920 0.000 210.000 0.640 5.000 6.000 DO (MH) d0 (HH) n0(-) b01(MM) nd(-) dzeta(-) alfa20(ST) Ral(-) 0.000 0.000 0.000 12.000 0.000 0.000 90.000 0.2E-03 a1(KM) a2(MM) b1(MM) b2(MM) bet10(ST) R1(MM) R2(MM) Ra2(-) 15.568 70.000 53.360 45.000 75.000 0.000 0.78-03 7.650 deltai(NN) delta2(NN) L1(NN) L2(NN) aiw(NN) aiz(NN) 0.440 0.860 75.000 66.400 6.740 8.830 NE (-) 4 . DW1(NH) DW2(NN) DW0(NH) 11(MM) 12(MM) 10(MM) tal(MM) ta2(MM) 460.000 658.400 660.000 118.000 120.300 118.000 52.000 43.000 -- 21(-) 22(-) D:1(MM) delta11(MM) 7:1(-) D:2(MM) delta22(MM) 7:2(-) 88.000 58.000 917.000 1.270 1.000 0.000 0.000 0.000 dw1(HM) deltaw1(MH) r0(MH) Dw(HM) deltaw(NN) Sw(NN) Zw(~) Zwn (-) 210.000 0.640 5.000 6.000 1.000 658,400 8.920 0.000 b011MM) nd(-) dzeta(-) alfa20(ST) Pal(-) — 00 (BB) 40 (BB) n0(-) 0.000 0.000 0.000 12.000 0.000 0.000 90.000 0.2E-03 Ra2(-) a1(BH) a2(BH) b1(BH) b2(88) bet10(ST) R1(88) R2(88) 0.28-03 8.440 15.850 70.000 53.360 45,000 75,000 0,000

deltal(NM) delta2(NM) L1(NM) L2(NM) alw(NM) alz(NM) 0.440 0.980 75.000 65.400 6.820 10.570

DANE DLA WEZLOW NR 1 G(kg/s) DG(kg/s) T0(STOP C) Po(bar) EtaD(-) Porim(bar) 19.444 0.000 171.500 0.000 0.000 8.000 NR 5 P2(bar) 0.843 DANE DODATKOVE ELA STOPNI LICZONYCH Z PODZIALEM NA STRUGI

```
62
```

KYNIKI OBLICZEN

LICZBA STOPNI = 0

Para la interpretación de la tabla 2 de resultados del programa se da una notación correspondiente y con el auxilio de las figuras 4, 6, 7, 8 y 9 se tiene;

NOMENCLATURA DE DATOS DE SALIDA (RESULTADOS) DEL PROGRAMA

A1 - área total de salida de flujo (pasaje de flujo) de álabes de diafragma de toberas [m²]

A2 - área total de salida de flujo (pasaje de flujo) de álabes de rodete $[m^2]$

A2/A1 - Relación de área de flujo del vapor [adimensional]

U1 - velocidad periférica o circunferencial del rodete en la raíz del álabe y entrada (del vapor) del álabe [m/seg]

U2 - velocidad periférica o cincuneferencial del rodete en la salida (del vapor) del álabe en la raíz del álabe o solo considerando el disco [m/seg]

ALFA 1 - ángulo de salida del vapor del álabe (o de diafragmas de toberas) [grados]

BETA 1 - ángulo de entrada del vapor al pasaje de flujo del rodete en coordenadas absolutas (ángulo que forma la velocidad relativa w) [grados]

ALFA 2 - ángulo de salida del vapor del rodete en coordenadas absolutas [grados]

BETA 2 - ángulo de salida del vapor del rodete en coordenadas relativas [grados]

FI - coeficiente de velocidad del diafragma de toberas [adimensional]

PSI - coeficiente de velocidad del poso de flujo de álabes de rodete [adimensional]

G1 - flujo másico del vapor a la salida del diafragma de toberas [Kg/Seg]

G2 - flujo másico del vapor a la salida del (álabe de) rodete [Kg/Seg]

GNW - flujo másico del vapor a través de sellos de diafragma de toberas y flecha del rotor (fugas) [kg/seg]

GNW1 - flujo másico de vapor a través del claro entre el diafragma de toberas y aleta axial del rotor hacia el rotor o flecha del rodete (fugas) [Kg/Seg]

GN0 - flujo másico del vapor a través de los agujeros de balance (Kg/seg)

GNZ - flujo másico de vapor a través del claro entre sello de rodete y cincho (fugas) [Kg/seg]

MI 1W - coeficiente de flujo de vapor a través del claro de flujo GNW1 hacia la flecha [adimensional]

MI 0 - coeficiente de flujo de vapor a través de los agujeros de balance [adimensional]

MI 1 - coeficiente de flujo de vapor a través de las fugas entre diafragma de toberas y flecha de rotor [adimensional]

MI 2 - coeficiente de flujo de vapor a través del anillo del rodete (entre cincho y diafragma) [adimensional]

P0 - presión de entrada del vapor a la etapa en diafragma de toberas [bar]

T0 - temperatura de entrada del vapor a la etapa de diafragma de toberas $[^{\circ}C]$

IO-lio - entalpía de entrada del vapor a la etapa [Kj/Kg]

X0 - calidad del vapor de entrada a la etapa [adimensional]

V0 - volumen específico del vapor de entrada a la etapa (m³/Kg)

ALFA 1G - ángulo geométrico de salida del vapor del diafragma de toberas [grados]

P1 - presión de salida del vapor del diafragina de toberas en la etapa [bar]

11-h1 - entalpía de salida del vapor de tobera de etapa correspondiente [Kj/Kg]

SIG1 - consumo de energía de entrada efectivo (adimensional)

K1 - energía de entrada al rodete (ganancia por velocidad) [Kj/Kg]

P2 - presión de salida del vapor del rodete en la etapa correspondiente (1, 2 ... etc.) [bar] T2 - temperatura de salida del vapor del rodete en la etapa correspondiente (1, 2, ... etc.) [°C]

12-h2 - entalpía de salida del vapor del rodete en la etapa correspondiente (1, 2, ... etc.) [Kj/Kg]

X2 - calidad del vapor de salida del rodete en la etapa correspondiente (1, 2 ... etc.) [adimensional]

V2 - volumen específico de salida del vapor del rodete en la etapa correspondiente (1, 2 ... etc. $[\mathrm{m}^3/\mathrm{Kg}]$

BETA2G - ángulo geométrico de salida del vapor del rodete [grados]

U2/C0 - relación de velocidades o carga de la etapa [adimensional]

G V2T - flujo volumétrico del vapor a través de una etapa [m³/seg]

SIG 2 - consumo de energía de salida (de rodete efectivo) [adimensional]

K2 - energía de (entrada) salida del rodete [Kj/Kg]

HS - caida de entalpía isentrópica después de pérdida de energía por entrada de vapor a la turbina de la etapa [Kj/Kg]

HC - caida de entalpía total (antes de pérdidas de energía por entrada de vapor a turbina) de la etapa [Kj/Kg]

HIS - caida de entalpía de la estapa sin considerar pérdidas de salida de vapor [Kj/Kg]

HI - caida de entalpía real de la etapa considerando pérdidas de salida del vapor de la etapa [Kj/Kg]

ETAI - ηi - eficiencia interna de la etapa [adimensional]

ETAIS - eficiencia interna de la etapa sin considerar pérdida de salida de vapor [adimensional]

RO - grado de reacción de la etapa [adimensional]

HC/U² - cociente de energías [adimensional]

NI - potencia interna de la etapa [kw]

MI - número de Mach del vapor a la salida del diafragma de toberas [adimensional]

M2 - número de Mach del vapor a la salida del rodete [adimensional]

M1W - número de Mach del flujo de fuga que va hacia la flecha [-]

DH1 - pérdidas de energía en toberas [Kj/KG]

DH2 - pérdidas de energía en álabes de rodete [Kj/Kg]

DHN - pérdidas de energía debido a las fugas de sellos en la etapa [Kj/Kg]

DHT - pérdida de energía debido a fricción [Kj/Kg]

DHW - pérdidas de energía por ventilación [Kj/Kg]

DHX - pérdidas de energía debido al flujo de vapor húmedo [KJ/Kg]

DHD - pérdidas de energía debido a los alambres de rigidez que unen a los álabes $[\rm Kj/\rm Kg]$

RE 1 - número de Reynolds del vapor a la salida del diafragma de toberas [adimensional]

RE 2 - número de Reynolds del vapor a la salida del álabe [-]

RE W1 - número de Reynolds del flujo de vapor hacia la flecha [-]

PL - fuerza axial actuando en el cincho (álabes) del rotor [newtons]

PT - fuerza axial actuando en el disco del rotor [newtons]

P - fuerza radial [newtons]

QA - fuerza axial debido al vapor actuando en un álabe individual [newtons]

QU - fuerza circunferencial debido al vapor actuando en un solo álabe [newtons]

	an a	un de la gran de la composition géneral de la composition de la composit	a ay an an an an an an Sangar an an Araman Sangar an Araman		
n de ser la construir de la co La construir de la construir de		양한 방송 가장 전 산 1997년 1987년			
C <u>TABLA 2</u>	RESULTADOS DEL PI	<u>NGRAMA</u>		يەربىيە ئەرتى مەربىيە مەرتى	an a
S R AL LICIDA STOPNI GRUPY= 4 HS = 141 APRE FILME	P.A. S.T.D.P.H.L. MS. = 1 6 BR.= 19.4440 MS/S A.ZASI 46 - 141 6205 41746 514	.= 0.0454 MIN			
H5/UID= 1.4365 P =0.28294785+05 N	S= 1.0119 EIA.1 NI =0.5805619E+04 KM	= 0.927			
NUC UKLADU≒:51	305614E+C4 KW				
NR.STOPNIA A 1 A	2 A 2/A 1 U 1 U 2	ALFA 1 SETA 1	ALFA 2 BETH 2	FI PSI	

<pre>KEUL, PROJ, / H12 / - / H15 / L40 / L</pre>	NR.SIOPN1	A A I	. :	A 2/A 1	U1 :	AL AL	FA 1 . 36	ETA 1 AL	FA 2. BE1+	-2 FI	PSI	
1 0.0417 0.0302 1.52 20.057 27.145 16.44 30.23 80.29 2.255 0.7337 0.9402 3 0.0306 0.0711 1.525 23.132 23.10 15.45 30.255 80.29 23.255 0.7539 0.7539 0.7539 4 0.0306 0.0711 1.525 23.4.33 23.171 17.45 57.99 97.74 23.21 0.5539 0.7541 6.01060410 61 62 6.0416 6.03 61 11 11 0.7529 0.7533 5.4686 0.7413 1 10.7326 0.0474 0.0000 0.2150 0.0443 0.4120 0.7222 0.5335 5.4686 6.971 2 14.112 16.7474 0.0000 0.2150 0.1450 0.3022 0.2722 0.4316 0.4975 3 15.4241 18.452 0.1450 0.3022 0.2722 0.4355 1.010 0.7257 1.451 1.41 0.011 0.0550 0.4450 0.4251 1.421 0.4255 1.41 1.11	NGL. PROJ	.7 – eri	2 /		B/B .	1. 160	1	SL		a pot at st	-	n in i sta
2 2 0.0000 0.0401 1.525 237.75 27.741 15.45 33.25 80.29 22.55 0.5433 0.4002 3 3 0.0506 0.0771 1.525 234.13 237.10 15.45 57.99 97.74 23.21 0.5459 0.5451 4 0.0506 0.0771 1.525 234.00 21.145 57.99 97.74 23.21 0.5459 0.5461 AKLERDALA 61.7722 0.0416 0.7722 0.0415 0.7722 0.4156 0.9758 3.3574 3 15.4241 18.4563 0.0157 0.2155 0.2443 0.4125 0.7722 0.4255 1.0160 0.9755 4 15.4247 18.458 0.0157 0.0550 0.443 0.4252 16.45 7.1067 1.0160 0.9755 4.510PHIA F6 10 10 10 0.0500 0.4222 16.45 1.5475 1.116 1.141 1.151 1.1 510PHIA F6 10 10 100 0.4222 16.42 1.541 1.6	1 1	0.0197	0.0302	1.532 2	29.59 22	1.45 16	.40 38	.24 89	.70 22.4	1. 0. \$529	0.9257	
3 3 0.0000 0.0711 1.525 234.33 237.10 16.45 43.67 81.47 1.237 0.4599 0.9542 4.4 0.0005 0.1724 1.452 248.00 251.73 17.43 57.39 97.74 23.21 0.5599 0.9433 46.51600116 6 7.722 0.01724 0.0174 0.0000 0.111 N1 N	2 2	0.0305	6.6473	1.250 2	25.75 223	7.41 14	42 38	9.25 99	.29 .22.5	6 0.9533	0.9402	
4 4 0.0885 0.1284 1.445 248.00 251.73 17.15 57.99 97.74 23.21 0.5455 0.9413 AK.SIDENIA 6 1 1 1.9752 17.752 0.0416 0.1721 0.1849 0.1222 0.15335 0.5468 0.4971 1 1 19.752 10.7722 0.0415 0.1450 0.3022 0.2722 0.4156 0.4975 3 15.4211 18.7545 0.0119 0.1251 0.1450 0.3022 0.2722 0.4255 1.0010 0.9775 4 15.4271 18.1645 0.0119 0.0500 0.1216 0.0302 0.2722 0.4255 1.0010 0.9775 4 10.077 10.071 171.15 177.466 1.0500 0.7255 16.46 1.041.1476 51 1.61 1.18 1.011 1.61 1.18 1.18 1.18 1.18 1.191 1.151 1.1 1.185 1.191 1.18 1.18 1.191 1.18 1.18 1.191 1.185 1.191 1.185 1.191 <t< td=""><td>5 5</td><td>6. 6505</td><td>0.0771</td><td>1:525 2</td><td>14. 17 . 21</td><td>7 16 14</td><td>95 41</td><td>K 87 - A1</td><td>97 . 73 7</td><td>1 . 4.6490</td><td>0.9562</td><td></td></t<>	5 5	6. 6505	0.0771	1:525 2	14. 17 . 21	7 16 14	95 41	K 87 - A1	97 . 73 7	1 . 4.6490	0.9562	
 M.S.BOPHIA 6 1 6 2 6 MI 6 MI 6 MO 6 MI 70 0.022 0.022 0.000 60 0.0000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.000000		0.0874	0.1294	1.445 7	UR 40 . 75/	171 1	49 59	9.94 97	74 73.2	1 0.5445	0.9643	
NR. SIDEMIA 6 1 6 N 6 NI			•••••		10100 10							
MALLERMA 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		6 61	6.2	C NN	C 1041	C MA	C N7	81.14	81.0		NT S	
1 1 19.342 17.772 0.0172 0.8199 0.8479 0.2722 0.5335 0.5808 6.4511 2 19.4132 16.7674 0.000 0.1215 0.2443 6.4125 0.1222 0.4255 1.0100 0.9755 3 3 15.4241 16.4554 0.6102 0.2215 0.4245 0.4100 0.9755 4 4 15.4217 19.1628 0.0115 0.0500 0.1613 0.2199 0.2050 0.3857 1.0218 1.0100 #LSIDPNIA FG 10 10 10 VD REFAIG P1 11 5154 A1 KOL, FROJ,7 868 7.557 1.751 279.466 1.642 2.551 539.5266 0.7081 1.422 1.642 2.551 539.5266 0.7081 1.611 1.755 1.1325 1.758 1.758 1.759 1.0241 1.855 1.758 1.612 1.759 1.0241 1.855 1.758 1.758 1.758 1.758 1.758 1.758 1.759 1.2417 1.759 1.759 <	LDI PERI				16/6	0 110	0 142					· ·
1 1 11 11 01	NULL PROV	10 7314	13 37.3	· 6 6430		0.0100	0 0170	, 6 172			7. 0171	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17.0701	10.7074	0.01/0	0.7741	0.0421	0.0473	6 275	C 1010303	0.7008	1 2074	
4 4 15.4227 15.4227 15.4227 15.4227 15.4227 15.4227 15.4227 15.4227 15.4227 15.4227 15.4227 15.4227 15.4217 15.4217 15.4217 15.4217 15.4217 15.4217 15.4217 15.4217 15.421 15.417 15		10 4741	10.70/4	0.0100	0.1251	0.1450	V. 9140 A. 7000	0.1/2	0.4010	1.0100	A 3075	
H. S. TOPNIA F. S. D. MIT, O. 0000 O. 213 O. 213 O. 213 O. 213 O. 213 D. 214 D. 213 D. 214 D. 213 D. 214 D. 214 <thd. 214<="" th=""> <thd. 214<="" th=""> <thd. 214<="" th=""> <thd.< td=""><td></td><td>10 4707</td><td>10,1100</td><td>0.0117</td><td>0.1231</td><td>0.1430</td><td>0.3922</td><td>0.2/14</td><td>0,4273</td><td>1 0215</td><td>1 0100</td><td></td></thd.<></thd.></thd.></thd.>		10 4707	10,1100	0.0117	0.1231	0.1430	0.3922	0.2/14	0,4273	1 0215	1 0100	
WE.SIDPNIA FG 10 10 10 10 V0 REFAILS FI FI </td <td></td> <td>17.4 311</td> <td>17.10.0</td> <td>0.011</td> <td>0.0300</td> <td>0.0013</td> <td>0.2113</td> <td>0.203</td> <td>V.3031</td> <td>1.0418</td> <td>1.0100</td> <td></td>		17.4 311	17.10.0	0.011	0.0300	0.0013	0.2113	0.203	V.3031	1.0418	1.0100	
ab. 2004Wink Pro 10	WE 510001											
RUL FRUL, F	as, STUPRI	A 10	10	10	40 -	VU	ALLA 16	PI	11	519-1	NI NI	e si si s
1 1 1.0.073 171.51 <t< td=""><td>XOL. FROJ</td><td>BAE</td><td>, 5C</td><td>7 KJ/KB</td><td>1</td><td>6113766</td><td>: 51</td><td>1 649</td><td>1 8,3786</td><td>/ /</td><td>KJ/86</td><td></td></t<>	XOL. FROJ	BAE	, 5C	7 KJ/KB	1	6113766	: 51	1 649	1 8,3786	/ /	KJ/86	
2 2 4.2861 146.10 2705.5332 0.784 0.4222 1c.42 3.631 2535.5362 0.786 14.716 3 2.4563 125.633 2624.0647 0.559 0.7003 1c.95 1.6728 1555.1556 1.(0) 11.352 4 1.3534 105.20 255.7746 0.755 1.1601 12.69 10.247 2490.0711 0.934 6.225 KS.510PNIA P2 12 12 12 V2 6E1A 15 0.7020 6477 1.692 1.6972 </td <td></td> <td>7.675?</td> <td>171.31</td> <td>2779,496</td> <td>8 1.000</td> <td>0.2750</td> <td>16.46</td> <td>1.75</td> <td>5 . 2711.99</td> <td>1 0.984</td> <td>14.183</td> <td></td>		7.675?	171.31	2779,496	8 1.000	0.2750	16.46	1.75	5 . 2711.99	1 0.984	14.183	
1 3 2.4555 12.83 2624.0647 0.959 0.7003 10.955 1.6728 2535.1456 1.1395 4 4 1.3353 109.20 2543.5746 0.935 1.1601 17.67 1.0247 2499.0911 0.934 6.275 K5.510PNIA P2 12 12 12 12 V2 PEIA 75 0.700 61471 516 7 7 7446 7.575 K0L PF00.7 687 7 5575 1.1601 17.67 1.0247 2499.0911 0.934 6.275 1 1 4.2661 145.10 27.55.532 0.784 0.4262 22.41 0.511 B.2367 0.900 4.189 2 2.4553 126.33 126.43 0.785 0.7785 0.732 0.532 22.4557 9.790 5.324 3 3.13754 194.013 1.8253 0.7185 0.7454 0.2054 1.9122 .1055070+04 2.990 1.9122 .1056370+04 1.912 .1054370+04 1.920 1.9154370+04 1.912 .1054370+04 </td <td>2 2</td> <td>4.2861</td> <td>146.10</td> <td>2705.523</td> <td>2 0.784</td> <td>0.4252</td> <td>1c. 42</td> <td>2.641</td> <td>1 2839.53</td> <td>16 0.936</td> <td>5 14.716</td> <td></td>	2 2	4.2861	146.10	2705.523	2 0.784	0.4252	1c. 42	2.641	1 2839.53	16 0.936	5 14.716	
4 4 1,3554 107,20 2543,7746 6,755 1,1601 17,67 1,0247 2499,0911 0,934 6,275 K5.510PNIA P2 12 12 12 V2 5E1A 25 0,700 64V21 516 2 7.7 K0L. FPGD.7 BAR 7 SC 7.17/5.532 0,7494 0,4722 22,41 0.41155 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15 7 7.11/15	<u>3</u>	2.4563	125.83	2624.064	7 0.959	0.7003	10.95	1.67.	8 - 2535, 145	is 1.00	11.355	
KS. STOPNIA P2 12 12 12 12 V2 BETA 25 US CO GUV21 STO 2 KZ KRL, PFDU,/ BER SEC / KJ/K5 - / MIXJ/K5 ST - / MIXJ/K5 / MIXJ/K5<	. NY 14 15914	1.3954	107.20	2543.974	6 6.935	1.1601	17.69	1.024	2499.09	1 0.934	6.275	
HS. 510PPNIA P2 13 13 13 14 15 14 14 14 14 14 15 14 14 14 14 14 14 14 14 14 14 12 14 12 14 <th14< th=""> 14 14</th14<>	an a	and a second	an the second	in a tra								
KBUL, FPDJ./ EXC FUTTS F <td>NS.STOPNI</td> <td>A P2</td> <td>12</td> <td>12</td> <td>12</td> <td>¥2</td> <td>BETA 26</td> <td>02700</td> <td>6#V21</td> <td>516.2</td> <td>K.</td> <td></td>	NS.STOPNI	A P2	12	12	12	¥2	BETA 26	02700	6#V21	516.2	K.	
1 1 4.2641 145.10 275.5232 0.784 0.4762 22.41 0.511 8.2367 1.000 4.189 2 2.4563 126.63 224.0647 9.950 0.7603 22.55 0.502 11.5547 0.972 5.324 3 3 1.3554 0.9702 254.3746 0.935 1.1601 27.73 0.532 22.455 0.960 5.324 4 0.8410 94.91 2459.5153 0.918 1.8253 23.21 0.611 5.2874 0.000 5.300 NE,S10FNIA H H H K H ETA 1 ETA 15 RD H C/U412 NI YM 1 1 93.6230 73.5123 6.7843 0.7785 0.7454 0.2054 1.9132 0.15643736++44 3 3 94.0163 99.1685 82.034 79.7633 0.8515 9.3274 7.3737 1.7844 6.1543986+++4 4 4 79.2132 84.7865 71.4075 68.4325 0.9015 9.3004 1.3360 0.134496+++44 <	KOL. PFOJ	/ BAR	7 SC	7 KB786	1 - 1	8413/18	/ SI	/ -	/ ##13/5 /	- 7	¥3/¥8 z	
2 2 2,453 126.63 224.0647 9,759 0.765 22.55 0.562 13.5547 0.722 5.324 3 3 1.3554 109.20 2543,9746 0.935 1.1601 22.73 0.532 22.4657 0.960 5.684 4 0.0430 94.91 2450.9153 0.918 1.8253 23.21 0.411 5.2874 0.000 5.300 NE.510PKIA H 5 H C H IS H I ETA I ETA IS R0 H C/UI42 NI KDU. PRDJ./ KJK6 / 10.7055 0.0233 70.755 0.7765 0.7765 0.7265 0.2552 1.9812 0.15643736+04 2 2 90.2667 102.4557 01.7744 00.4553 0.08270 0.08322 0.2552 1.9812 0.15643736+04 3 3 94.0163 99.1685 20.233 77.0713 0.0815 0.08274 0.2054 1.9132 0.15543736+04 4 4 79.2132 04.7865 71.4095 68.6325 0.0975 0.9015 0.3804 1.3336 0.15344706+04 NK.SIDENIA H1 H2 HIN D HI D H2 D HN D H7 0.4174 0.1664 0.0000 1 1 0.6871 0.5723 0.3855 3.8559 4.7643 5.6911 0.9031 0.0000 0.3129 0.21344706+04 NK.SIDENIA H1 H2 HIN D HI D H2 D HN D H7 0.4174 0.0000 2.3141 0.7090 2 0.3874 0.5473 0.3455 3.6559 4.7643 5.2527 1.900 2 0.3874 0.5404 0.1845 5.2574 3.7611 2.5272 1.9544 0.0000 2.3141 0.0000 3 3 0.6217 0.5495 0.3502 5.6413 7.5037 1.9410 0.4174 0.0000 2.3141 0.0000 3 4 0.7865 0.5455 0.3502 5.6413 7.5037 1.9410 0.4174 0.0000 2.3141 0.7000 4 4 0.7865 0.5455 0.3502 5.6413 7.5037 1.9410 0.4174 0.0000 2.3141 0.7000 4 4 0.7865 0.5455 0.3502 5.6413 7.5037 1.9410 0.0113 0.0000 3 3 0.6217 0.5455 0.3502 5.6413 7.5037 1.9410 0.4174 0.0000 2.3141 0.7000 4 4 0.7865 0.5455 0.2574 3.7616 2.5272 1.0554 0.2943 0.0000 2.110 0.0000 3 3 0.6217 0.6455 0.3502 5.6413 7.5037 1.9410 0.4174 0.0000 2.3141 0.7000 4 4 0.7865 0.5455 0.2574 3.7616 2.5272 1.0554 0.2943 0.0000 2.110 0.0000 3 3 0.6217 0.6455 0.3502 5.6413 7.5037 1.7410 0.4174 0.0000 2.3141 0.7000 4 1 0.47969640 0.1845 0.30006405 4901.7 39614 0.6000 2.114 0.7000 4 3 0.78650 0.0130305407 0.320006405 4901.7 39614 0.6000 2.114 0.7000 4 4 0.78650407 0.1800206405 0.920306405 4901.7 3961.9 6804.6 74.3 55.2 2 0.31773540 0.1003736407 0.320006405 605.7 512.3 50090 105.1 17.1 4 4 0.120704E+07 0.356706405 0.224316405 6252.5 177.3 6429.8 107.5 76.7 6 7	1.1	4.2861	145.10	2795, 523	2 0.984	0.4262	22.4	1 0.511	8.2367	1.000	4.199	
3 1,954 109.20 2543,5746 0.935 1.1601 22.73 0.532 22.4657 0.960 5.464 4 0.0430 94.91 2409.5153 0.918 1.8253 23.21 0.211 75.2874 0.000 5.300 NE_SIDPKIA H 5 H C H 15 H 1 ETA 1 ETA 15 R0 H C/U142 N1 1 1 93.6230 70.2163 69.7843 0.7785 0.7454 0.2054 1.9132 0.13564373E+04 2 98.2667 102.4557 81.7744 80.4553 0.8270 0.8322 0.2552 1.9812 0.1564373E+04 3 94.0163 99.1865 82.0234 79.013 0.8315 0.3274 9.3304 1.1330 0.1344964+04 4 4 79.2132 84.7865 71.4075 68.525 0.8075 0.3004 1.1330 0.1344964+04 NS.50FNIA H1 H2 H1 D H2 D H1 D H2 0.9015 0.4127 0.900 2 0.3814 0.4404 0.1865 0.5573 <td>2 2</td> <td>2,4563</td> <td>126.83</td> <td>2524.084</td> <td>7 4.959</td> <td>0.70%3</td> <td>22.5</td> <td>o 0.502</td> <td>13,5547</td> <td>0.972</td> <td>5.324</td> <td></td>	2 2	2,4563	126.83	2524.084	7 4.959	0.70%3	22.5	o 0.502	13,5547	0.972	5.324	
4 4 0.0430 94.91 2459.5153 0.918 1.8253 23.21 0.611 75.2874 0.000 5.300 NE,SIDFNIA H S H C H IS H I ETA I ETA IS R0 H C/U442 NI XDL. PR0J.7 KJ/K6 70.2163 69.7843 0.7785 0.7454 0.2054 1.9132 0.156437587 1.744 60.4525 0.8270 0.2552 1.5812 0.156437587 1.744 60.4525 0.8270 0.2552 1.5812 0.156437587 1.744 60.4525 0.8075 0.915 9.3004 1.3380 0.134495844 4 4 79.2132 64.7855 9.744 0.605 0.6915 9.3044 1.3380 0.134495844 KS.SICFNIA N1 M2 H N D H2 H N 6.411 0.4069 0.4122 0.909 1 0.6871 0.5723 0.1355 5.8554 4.7673 5.611 0.76931 0.6609 0.4122 0.9099 2 0.6874 0.5404 9.1865 7.0543 5.0514 1.	33	1.3954	109.20	2543, 9/4/	6 0.935	1.1601	22.7	3 0.532	22.4657	0.980	5.684	
NF.510PKIA H S H C H IS H I ETA I ETA I ETA IS R0 H C/U412 NI XDC. FRDJ./ K3/K6 / / NI FM / NI 1 1 93.6220 33.6320 70.753 69.7643 0.7765 0.7454 0.2054 1.9132 135.6916+04 2 2 98.2667 102.4557 B1.7744 80.4552 0.8270 0.2322 0.7253 1.5443735+04 3 3 94.0163 99.1685 80.233 79.0733 0.8315 0.3724 9.2132 1.5443735+04 4 4 79.2132 84.7865 71.4075 68.6325 0.8075 0.3724 9.2132 1.7844 0.1534470E+04 NS.SIDENIA N1 M1 D H1 D H2 P NH D H2 P NH D H2 P NH D H2 P H4 D H0 H4 D H4 D H4 H4 H4 H4 H4 H4	4 4	0.8410	94.91	2489.915	3 0.918	1.8253	23.2	1 0.611	15, 2874	0.000	5.300	
ME.SIGPRIA H S H C H IS H I ETA I ETA I ETA IS R0 H C/UI12 NI 1 1 91.5270 83.030 70.233 49.7843 0.7765 0.7454 0.2054 1.9132 0.15543735+04 2 2 98.2667 102.4557 81.7744 80.4553 0.8270 0.2522 0.2552 1.9812 0.15543735+04 3 3 94.0163 99.1885 82.0234 79.763 0.8315 0.3274 9.2133 1.7844 6.1543865+04 4 4 79.2132 84.7865 71.4095 68.6325 0.8095 0.9015 9.3804 1.3380 0.133490E404 NS.SIDFNIA N1 N2 N1 D H1 D H2 D H1 D H0 D H2 1 0.6871 0.5723 0.1595 5.6594 4.7673 5.6911 0.7031 1.6000 0.4122 2.9099 2 0.3834 0.4404 9.3865 7.9533 5.6911 0.7031 1.6000 0.4122 2.9099 3 0.2605 <												
KDL. PR0J.7 KJ/K6 f	NE. STOPKI	н 5	H C	H 15	Н 1	ETA I	ETA IS	RD	H.C/U112	NI		
1 1 93,6220 93,6220 70,2163 69,7643 0,7765 0,7454 0,2054 1,9132 1,1561375+04 2 98,2667 102,4557 81,7744 60,4503 0,8270 0,8222 0,2552 1,9812 0,15643735+04 3 94,2667 102,4557 81,7744 60,4503 0,8270 0,8222 0,2552 1,9812 0,15643735+04 4 4 79,2132 84,7865 71,4095 68,6325 0,8075 0,3724 0,3713 1,7844 6,1543866+04 4 4 79,2132 84,7865 71,4095 68,6325 0,8075 0,3724 0,373 1,3344906+04 NS,STOFNIA N1 N2 N3 0,404 0,1865 2,0647 0,405 1,873 6,6911 0,9031 1,0603 0,4120 1,900 2 0,3874 0,404 0,1865 2,0547 3,0337 1,9410 9,4174 0,0609 2,3141 6,9009 3 0,6219 0,4455 0,2544 3,0337 1,9410 9,4174 0,0609 2,3141 <td< td=""><td>KOL. PROJ.</td><td>1</td><td>S</td><td>.37K6</td><td>1</td><td></td><td>-</td><td></td><td>. 7</td><td>104</td><td>. 1</td><td></td></td<>	KOL. PROJ.	1	S	.37K6	1		-		. 7	104	. 1	
2 2 98.2667. 102.4557 81.7744 80.4553 0.8270 0.8222 0.7552 1.9812 0.1564373E+**4 3 3 94.0163 99.1885 82.0234 79.7533 0.8515 0.3274 9.3733 1.7844 6.154373E+**4 4 4 79.2132 84.7865 71.4095 68.5325 0.9095 0.9015 9.3604 1.13360 0.1334490E+**4 NS.SIDENIA N1 N2 N1 D H1 D H2 D NN D H1 D H0 0.1534470E+**4 NS.SIDENIA N1 N2 N1 D H1 D H2 D NN D H1 D H0 0.1334490E+**4 1 0.6871 0.5723 0.1595 5.8599 4.7673 5.6911 0.9031 1.0600 0.4327 0.9090 2 0.3834 0.4404 0.1865 0.3502 5.643 7.50337 1.9410 0.4124 0.0600 2.1710 6.9999 3 0.2817 0.4645 0.2843 7.2537 1.9410 0.4124 0.0600 2.170 6.9999 <t< td=""><td>. 1 . 1</td><td>93,6230</td><td>73.8230</td><td>70.2163</td><td>69.7843</td><td>0.7785</td><td>0,7454</td><td>0.2054</td><td>1.9132</td><td>9.105-697</td><td>E+04</td><td></td></t<>	. 1 . 1	93,6230	73.8230	70.2163	69.7843	0.7785	0,7454	0.2054	1.9132	9.105-697	E+04	
3 3 94.0163 99.1685 82.0234 79.7633 0.8515 9.2724 9.7100 1.7844 0.15439666494 4 4 79.2132 64.7865 71.4053 68.6325 0.8075 0.9915 9.3804 1.3380 0.1334496494 NK.SICFNIA N1 M2 N1N D H1 D H2 0.807 0.9915 9.3804 1.3380 0.1334496494 NK.SICFNIA N1 M2 N1N D H1 D H2 0.817 0.4070 0.4127 0.9091 1 0.6471 0.5723 0.1345 0.8559 4.7673 0.6471 0.4227 0.9091 2 0.8814 0.404 9.1866 7.0543 4.605 2.6855 0.6125 0.0609 0.4127 0.9099 3 0.6279 0.6495 0.3502 5.6141 7.9031 1.7410 9.4114 0.0609 2.114 6.70999 3 0.6279 0.6495 0.3502 5.6141 7.9041 0.0609 2.114 6.70999 NR.SIDPNIA RE 1 RE 2 FE N1	2 2	98.2667	102,4557	81.7744	80,4353	0.8270	0.8322	0.7552	1.9812	0.1564373	E+114	
4 4 79,2132 84,7865 71,4055 68,6325 0,8075 0,9015 9,3804 1,3380 0,13344906+04 NS,STGFNIA N1 H2 N1 D H1 D H2 D NN D H1 D H0 0.13344906+04 KEL, FROJ.7 - - - - - - 0.13344906+04 1 0.6874 0.5723 0.1595 0.8559 4.7673 5.6911 0.9031 1.0600 0.4327 0.9090 2 2 0.3840 0.1866 0.905 5.6911 0.9031 1.0600 0.4327 0.9090 3 0.6279 0.4695 0.3502 5.6143 7.9337 1.9410 9.4174 0.0609 2.1341 6.9099 4 0.7825 0.8455 .2574 3.7612 2.5272 1.0554 0.2943 0.0009 2.170 6.9099 NR.SIDEMIA RE : RE 2 RE N1 P L P T P 6.4 200 NR.SIDEMIA RE : RE 2 AE N1 P L P T N 5.2	3 3	94.0163	99.1885	82.0234	79,7673	0.8515	9.8724	0.3133	1.7544	0.1547868	E+04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4	79.2132	84.7865	71.4095	68.6325	0.9095	6.9915	9.3804	1.3380	0.1334490	E+04	
NK, STOPNIA NI NI D HI HI D HI D HI D HI HI <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
KELL PR03.7 - <t< td=""><td>NS. STOPNIA</td><td>i at -</td><td>82</td><td>Stw.</td><td>P 81</td><td>D H2</td><td>Ð SN</td><td>10 HT</td><td>9 KW</td><td>6 40</td><td>0.82</td><td></td></t<>	NS. STOPNIA	i at -	82	Stw.	P 81	D H2	Ð SN	10 HT	9 KW	6 40	0.82	
1 1 0.8471 0.572 0.3495 s.8556 4.7673 s.6911 0.9031 c.6003 0.4120 c.9099 2 2 0.8314 0.404 0.1865 r.0434 4.0005 2.6855 c.6105 0.0009 1.3191 0.0009 3 0.6217 0.4495 0.3502 5.6141 7.5037 1.9410 0.4174 0.0009 2.1141 6.0009 4 0.7825 0.6465 r.2574 7.7616 2.5222 1.0554 0.2943 0.0010 2.1170 6.9099 KR,S10PNIA RE I RE Z PL PT P 64 20 KD_FFROJ 1 0.47995 ± 07 0.369906 ± 05 4901.7 3961.9 5694.6 74.3 95.2 2 0.313755 ± 07 0.163905 ± 07 0.369906 ± 05 5582.7 3861.4 84.4 107.6 3 0.204471 ± 07 0.1069705 ± 007 0.369906 ± 05 5952.7 127.3 597.0 157.1 177.3 6429.8 107.5 107.6 3 0.2044715 ± 07 0.1059705 ±	KOL. PROJ.	1	-					\$3/8G		1.1		
2 0.387 0.5404 0.3856 7.0547 4.6005 2.2855 0.6125 0.0000 1.3191 0.0000 3 3 0.2617 0.2695 0.3502 5.613 3.5037 1.7410 0.4174 0.0000 2.3141 6.7900 4 4 0.7865 0.5405 0.2574 3.7612 2.5272 1.0554 0.2943 0.0000 2.3141 6.7900 4 0.7865 0.5455 0.2574 3.7612 2.5272 1.0554 0.2943 0.0000 2.3141 6.7900 MR.510PMIA RE RE RE PE P P 0.4 00 NR.510PMIA RE RE RE 2 PE N N N 1 1 0.47969(2407 0.380906405 5952.5 3961.9 5851.4 84.6 107.6 3 0.2044716407 0.1009054405 0.5407645 567.7 512.2 509.6 105.1 117.3 4	1 1	0.8471	0.5721	0.3595	a.85%	4.7673	5.6911	0.9631	0.0001	0.4120	0.0000	
3 0.6279 0.6495 0.1300 5.0131 7.0317 1.7410 0.4174 0.4060 2.3141 6.7900 4 0.7863 0.6465 x.2574 3.761E 2.5221 1.0554 0.2943 0.0000 2.3141 6.7900 KR,SIDPMIA RE : RE 2 RE NI P.L P.T P 6.4 0.0000 XDL PROJ. N N N 1 1.4770506400 0.1130026407 0.360006405 5582.5 868.5 6451.4 54.4 55.2 2 2 0.1397556407 0.1239056407 0.360006405 5582.5 868.5 6451.4 54.4 54.4 55.2 3 0.2004716407 0.360006405 5050.7 512.3 509.0 105.4 117.3 4 4 0.12070464407 0.360706465 6252.5 177.3 6429.8 107.6 56.7 67 67 67 67 67 67 67 67 67		0.387	0.4404	0.1946	7.0542	4.5005	2.8855	0.6105	0.0000	1.3191	0.0000	
4 4 0.7825 0.6445 2574 3.761E 2.5272 1.0554 0.2943 0.0010 2.1770 0.9019 NR,SIDPWIA RE i RE 2 REW P L P I P 64 0U XDL. FROJ. 1 0.47959:E+07 0.181020E+05 4902.7 3961.9 6804.6 74.3 95.2 2 2 0.313765E+07 0.113905E+07 0.36090E+05 5582.9 888.5 681.4 84.6 107.6 3 3 0.204471E=07 0.100573E+07 0.36090E+05 656.7 512.3 5092.9 105.1 117.1 4 4 0.120704E+07 0.524316E+05 6252.3 177.3 6429.8 107.6 96.4	1 . 3	U. F. 19	0. 4695	0.3500	5.8140	1.5432	1.9418	0.4174	0.6666	4.1141	6,9491	
NR.SIDPWIA RE: RE: RE: PE: PL PI P CA DU XDL. PROJ. . N . N Size N Size N Size N Size N Size Size <td></td> <td>0.7894</td> <td>1. 6445</td> <td>0.0574</td> <td>3.7619</td> <td>7.5212</td> <td>1.0584</td> <td>0.2943</td> <td>0.0010</td> <td>2.1.70</td> <td>6. 9000</td> <td></td>		0.7894	1. 6445	0.0574	3.7619	7.5212	1.0584	0.2943	0.0010	2.1.70	6. 9000	
NR.51DPNIA RE 1 RE 2 PE N1 P L P I P CA DU 1 1 0.479596407 0.181020447 0.360906405 4902.7 3901.7 804.6 74.3 55.2 2 2 0.313765407 0.1239056407 0.360906405 5582.9 868.5 6451.4 84.6 107.6 3 3 0.2004716407 0.360906405 5050.7 512.3 209.0 105.1 117.3 4 4 6.1207046407 0.366706465 6252.5 177.3 6429.8 107.6 67		******					110001	******				
XD PR0J. N N N 1 0.47999(E+07) 0.18102(E+07) 0.360906+05 4902.7 3961.9 6643.6 74.3 95.2 2 2 0.313765E+07 0.123905E+07 0.360906+05 5582.9 3688.5 6451.4 84.6 107.6 3 3 0.200471E+07 0.360906+05 6056.7 512.3 5092.0 105.1 117.1 4 4 0.120704E+07 0.36670E+05 6252.5 177.3 6429.8 107.5 96.4	NR.SIDPHIS		0F	2	AF NI	P 1	F	1	P	64	DЦ	
1 1 0.47/95/2+07 0.18102(2+07 0.360906+05 4902.7 3901.9 6804.6 74.3 55.2 2 0.3137555+07 0.123905+07 0.360906+05 5582.9 868.5 6451.4 84.6 107.6 3 3 0.200471E+07 0.100573E+07 0.360906+05 6056.7 512.3 5699.0 105.1 117.3 4 4 0.120704E+07 0.55670E+05 0.224316E+05 6252.5 177.3 6429.8 107.5 76.7 67	YO PROJ		n=	<u>.</u>		, · · • •		•	N			
2 2 0.3157-55-07 0.123905-07 0.254906-05 5582.9 868.5 6451.4 84.6 107.6 3 0.200471E+07 0.100573E+07 0.360000E+05 6050.7 512.3 2609.0 105.1 117.3 4 0.120704E+07 0.636670E+05 0.224316E+05 6252.5 177.3 6429.8 107.5 96.7 67	1 1	0 47-99-5	407 A 101	0712107 0	1400005405	100-	., .	901 9	5804 A	1. 12.7	CS 7	,
3 3 0.2004/1E+07 0.100573E+07 0.100573E+07 101.10 4 4 0.120704E+07 0.50570E+05 0.0224316E+05 6252.5 177.3 6429.8 107.5 16.1	· · ·	0 1127-55	102 0 105	0055107 0	7600002105	550		969 5	6451 4	5 5	107 4	
4 4 6.120704E+07 0.636670E+05 0.224316E+05 6252.5 177.3 6429.8 167.5 i6.	1 1	0.0004040	107 0.123	7035707 C.	TANANEAGE	330.		512 7		105 1	107.0	
67	1 1	0.170704E	167 0.100	1765161 B	1217105-05	0070		177 7	1001.0	167.4	1117-12 22-7	
67	7 9	0.110/046	-01 0.030	erverva V.	+3102+03	0234	• 3	11/13	0127+0	10715	10.	
67												
						67						
Se anexan los programas de cálculo del diseño original y el de las seis modificaciones propuestas, se subrayan las modificaciones incluidas en los datos y las eficiencias internas y potencias del diseño original y del modificado.

Análisis de resultados

Para este análisis se requiere el auxilio de las figuras 19, 20 y A1 asi como de las tablas 1 y 2 del programa y los listados de DATOS Y RESULTADOS DEL DISEÑO ORIGINAL Y MODIFICADO. En esta parte se describen y analizan las modificaciones efectuadas al diseño original Toshiba, el listado DATOS DISEÑO ORIGINAL TOSHIBA muestra los datos que requiere el programa. Para cada etapa se requieren seis renglones y ocho columnas o sea exactamente cuarenta y seis datos geométricos, ya que la turbina Toshiba tiene cuatro etapas (los datos en cada etapa estan separados en renglones en el listado) requiriendo ciento ochenta y cuatro datos geométricos y siete datos termodinámicos (al pie del listado). Las modificaciones que se han efectuado estan subrayadas y son once por cada etapa y en total son cuarenta y cuatro parámetros geométricos modificados, no se hace ninguna modificación de parámetros termodinámicos.

Dentro del listado RESULTADOS DEL DISEÑO ORIGINAL hay sesenta y ocho parámetros principales, para cada etapa, entonces para las cuatro etapas hay doscientos setenta y dos resultados totales, siendo todos ellos importantes, sin embargo, para este análisis solo se tomarán la eficiencia interna de la etapa (ETA 1) y la potencia interna de la etapa (NI) como los mas importantes y los cuales han sido encerrados en un cuadro.

El listado DATOS DE MODIFICACIONES AL DISEÑO muestra los mismos parámetros subrayados que en DATOS DISEÑO ORIGINAL, con la diferencia de que los valores numéricos son diferentes, esto es, la altura del álabe de rodete (L₂) ha sido aumentada, la altura del álabe de tobera a la entrada (L₀) ha sido reducida, el diámetro del rodete a la punta del tetón (Dz1) se incrementó, el número de dientes de sellos sobre cincho (Zz1) incrementado, el claro radial entre punta de sellos de diafragma y flecha (deltaw) reducido, el diámetro a aleta axial en rodete (dw1) modificado y mejor definido como aleta para reducción de fuga de vapor hacia barreno de balance, el claro radial entre aleta axial y diafragma de toberas (deltaw1) reducido, el radio de curvatura de bisel de barreno de balance (ro), el diámetro a la línea de centro del barreno de balance (Do), el diámetro del barreno de balance (do) y el número de barrenos de balance por rodete (no) existen, pero en el diseño original no existian.

Todas las modificaciones anteriores se han indicado en el capítulo 5 en los incisos "a" hasta "h" y se dice como se espera que se incremente la eficiencia interna de la turbina.

Respecto a los resultados, en RESULTADOS DEL DISEÑO ORIGI-NAL y en RESULTADOS DE MODIFICACIONES AL DISEÑO los cuadros de la eficiencia interna (ETA I) y potencia interna (NI) muestran que los valores de las MODIFICACIONES son mayores que los del DISEÑO ORIGINAL, excepto el valor de la potencia interna de la última etapa que es menor que el diseño original, sin embargo, la eficiencia en la última etapa es mayor que el diseño original. En la figura A2 se muestran las líneas de comportamiento con y sin incremento de eficiencia, que de hecho es un resumen de lo antes expuesto.

	化离子 化丁基苯基乙基丁基苯乙基丁基丁基丁基丁基丁基丁基丁基丁基
	DATOS DISENO ORIGINAL TOSHIBA
	PROESAM TURBEINA - 1988 - London
OBL	CZENIA PRZEPLYNOWO-TERNODYNAMICINE UKLADU O ZADANET BEDNETRII
DPR	ICUWALI: #ALGORYTM:-E.BLAZKO .PROBRAMI-M.LIDKE ##IMP.PANGDANSK
an service of	IANE DPISUJACE SCHEMAT OULICZENIOWY
	이 가지 않는 것 같은 것 같
1	I(OBR/MIN) LE(-) L6(-)
and the second sec	- 6098 4,
	NE(-) NK(-) TE(-) NWP(-) TWP(-) NWK(-) TWK(-) SIGNA(-)
	un al a sub a s
	2 1 2 0 2 0 2 0 3 2 0 3 2 1 0 3 2 1 0 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3 3 0 3 0 4 0 1 i
	4 4 0 4 0 5 4 1 0
1	IANE DLA STOPNI TYPU 0,1,2,3
	NE(-)

	1							
	Dw1 (88)	Dw2(MM)	Dw0(NN)	11(88)	12(68)	10 (MM)	tal(MM)	ta2(NH)
	660,000	65B,400	660.000	32.000	34.300	32.000	52.000	43.000
· •	z1(-)	z2(-)	Dz 1 (KH)	deltaZliMM) Zz1(-)	022(MM)	delta22(MM)	122(-)
	80.000	66.000	743.000	1.270	1.000	0.000	0.000	0.000
	Dw (HN)	deltaw(MM)	Sw(HH)	2m(-)	Zwn (-)	dwl (MM)	deltawl(MM)	r0(88)
	210.000	0.000	5.000	7.000	1.000	658.400	5.680	0.000
	D0 (MM)	40(MN)	n0(-)	501 (KR)	nd (~)	dzetai-1	alfa20(ST)	Rat(-)
	0.000	0.000	0.000	14.000	0.000	0.000	90.000	0.2E-03
	Ra2(-)	a1(88)	a2(88)	61 (NR)	62 (HH)	bet10(51)	R1 (68)	R2(HM)
	0.2E-03	7.700	12.608	70.000	45.000	45. <i>ù</i> 00	75.000	0,000
	delta:(MN)	delta2(MM)	E1 (88)	L2(88)	alm(MM)	a1z (88)		
	0.440	0,740	75.000	56.000	7.180	8.280		

NE (-) 2

D#1 (KN)	Dw2(88)	DHO(NN)	11(00)	12(00)	10(MN)	ta1(KA)	ta2(NR)
660.000	659.400	660.000	48.200	50.500	48.200	52.000	43.000
z1(-)	22(-)	Dz 1 (88)	deltaZi(MM) Iz1(-)	Dz2(NH)	delta22(MM	122(-)
80.000	66.000	775.400	1.270	1.000	0.000	0.000	0.000
Dw (MM)	deltaw(NM)	Sir (NN)	Zw (-)	2wn (-)	dw1 (MM)	deltawl(MM)	r0(NN)
210.000	0.540	5.000	7.000	1.000	658.400	5.680	0.000
DO (NH)	d0(MH)	n0(-)	601 (MM)	nd (-)	dzeta(-)	a1fa20(ST)	Rai(-)
0.000	0.000	0.000	15.000	0.000	0.000	90.000	0.2E-03
Ra2(-)	a1 (#M)	a2(MM)	61 (MM)	62 (NN)	bet10(ST)	R1 (MH)	R2(NN)
0.2E-03	7.860	13.028	70.000	45.000	45.000	75.000	0.000
deltai(MM)	delta2(MM)	LI (MM)	L2 (HM)	alw(KM)	alz (RA)		
0.440	0.740	75.000	56.000	7.230	8.760		

21(-) z2(-) Dz1(MM) deltaZ1(MM) Zz1(-) Dz2(MM) deltaZ2(MM) Zz2(-) 86.000 58.000 830.200 1.270 1.000 0.000 0.000 0.000 Dw(MM) deltaw(MM) Sw(MM) Zw(-) Zwn(-) dw1(MM) deltaw1(MM) r0(MM) 210,000 0.640 5.000 6.000 1.000 658.400 5.920 0.000 D0(HM) 40 (85) b01(MH) nd(-) dzeta(-) alfa20(SI) Ral(-) n0(-) 0.000 0.000 0.000 12.000 0.000 0.000 90.000 0.2E-03 Ra2(-) a1(MM) a2(MM) b1(MM) b2(MM) bet10(ST) R1(MM) R2(MM) 0.22-03 7.650 15.568 70.000 53.360 45.000 75.000 0.000 deltal(MM) delta2(MM) L1(MM) L2(MM) alw(MM) a1z(HH) 0.440 0.880 75.000 66.400 6.740 8.830 NE (-) 4 Dw1 (MM) Dw2(HM) Dw0(MK) 11(80) 12(80) 10(MM) ta1(MM) ta2(MM) 550,000 558,400 550,000 118,000 120,300 118,000 52,000 43,000 21(-) z2(-) Dz1(MM) delta21(MM) Iz1(-) Dz2(MM) delta22(MM) Iz2(-) 88.000 58.000 917.000 1.270 1.000 0.000 0.000 0.000 Bw(NN) deltaw(NN) Sw(NN) 2w(-) Zwn(-) dw1(HH) deltaw1(HH) r0(HH) 210.000 0.640 5.000 5.000 1.000 558.400 8.920 0.000 D0 (MM) d0(MH) n0(-) b01(MM) ad(-) dzeta(-) alfa20(ST) Ral(-) 12.000 0.000 0.000 90.000 0.2E-03 0.000 0.000 0.000 Ra2(-) a1(HH) a2(MM) b1(MM) b2(MM) bet10(ST) R1(MM) R2(MM) 0.2E-03 8.440 16.850 70.000 53.360 45.000 75.000 0.000 deltal(MM) delta2(MM) E1(MM) E2(MM) aiw(MM) aiz(MM) 0.440 0.880 75.000 66.400 6.870 10.570 DANE DLA WEZLOW

NR ł 6(kg/s) D6(kg/s) T0(STOP C) Po(bar) EtaD(-) Poris(bar) 19.444 0.000 171.500 0.000 0.000 8.000 NR 5 P2(bar) 0.843 DANE DODATHONE DLA STOPNI LICZONYCH Z PODZIALEM NA STRUGI LICZBA STOPNI = 0 70

WYNIKI OBLICZEN

t E E <u>RESULTADOS DEL UISENO ORIGINAL TOSHIBA</u>

			RUFA	51.08	N J NR.= 1							
	LICZEA STO	FNI GRUPY=	4 6	5R.= 19.4	440 KC/S A.2	AST. =	.0709 843					
	85 = 362	2398 11/1	6	HC =147.7	198 ¥ 1/¥6 F	10 10=	0.8795	1.00				1.
	HS/HARE 1	1716	•	S= 1.61	74 FT	A 1 = 1	\$105					
	P =0 t	AFG I TAC 1A5	10 C	NT -A 570	SLOCION PH				1997 - 1997 1997 - 1997			
	F -0.4	457/302703	#	MI =9.370	83886704 N.K							
									er (
		K L A D U	=.5708368	12+04 K.W								
	1.1.1		1.1	1. A.	2.5.5	1.1					1990 - 1997 A	
	NR.STOPNIA	A 1	4.2	A 27A11.	111 0	AL AL	FALLEE	TA L ALF	A 2 BETA	2 F1	PSI	
	KOL. PROJ.	/	1	· - 1	8/5	1997 C		51		1.	•	
	5 I E	0.0197	0.0285	1.448	220.59 220	.81. 14	. 45 39	.93 34.	ið 🖉 22.46	0.9558	0.9418	
\$	2 . 2	0.0303	0.0434	1.433	225.75 225	.97 10	.42 40	.73 72.	42 22.71	0.9545	0.9475	
	3 3	0.0505	0.0679	1.382	234.33 234	.55 18	.95 .47	.75 72.3	23 22.95	0.9570	6.9504	
ċ	4 4	0.0876	0.1176	1.342	248.00 248	1.22. 17	. 69 54	36 86.	19 23.50	0.9450	0.9531	
									la de la composition de la composition Composition de la composition de la comp			and the second second
	SP. STOPHIC	6.1	6.7	6 84	C NH1	6 KO	S N7	el ta	BC II	· M3 6 ·	81.2	
	LOI PRO1	, •••			NC/2	0 140		1.1.1.				
	1 1	10 2420	12 1622	. 6 604	1073 1 6 6660	A 8664	3 6417	6 6066	6 11000	A COAL	A SLID	
		17.9990	17.4947	0.000	0.0000	0.0000	210413	0.0000	0.0000	0.1805	0.1000	
	·	14.2441	18,41/4	9.094	5 -0.0945	0.0000	1.0255	0.0612	0.0000	0.7740	J. 1511	det e des
	5 5	14.3819	18.7012	0.062	-0.0521	0.0000	0.7428	0.5/77	1.0000	1.0082	0.7768	a, bender i sta
	, · • • • •	17.4087	19.9199	0.035	5 -0.0353	0.0000	0.5241	0.0561	0.0000	1.0202	1.0093	
	S	·					·			1.000	n si shki	
	NR.STOPNIA	PO	10	10	10	VD	ALFA 10	FI	11	SI6 1	, NI .	
	KOL. PROJ.	/ BAR .	/ 50	7 KJ/KG	1 - 1	H113/KG	i 51	/ EAR -	/ KJ/KG	1 - 1	£3/K6 7	1. N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	1 1	7.1367	- 171.51	2779.0	122 1.000	0.2726	16.45	4.6704	1 2713.400	1 0.739	13.369	a ser a ser a
	2 2.	4.3235	146.42	2705.3	ABE 0.984	0.4225	15.42	2.996	0 2640.141	4 0.994	12.011	
	3 - 3	2.4835	127.19	2626.13	729 U.960	0.5937	16.95	1.7844	2575.276	9 0.996	8.875	
	4 4	1.4124	107.56	2547.9	083 0.937	1.1488	17.69	1.071	5 2507.897	2 0.890	5.366	
	NR. STOPNIA	P2	12	12	. 12	¥2	SETA 26	02700	54V2T	516.2	12	
	KOL. FROJ.	/ BAR	/ 50	7 83/86	1 - 1	HELLYKE	1 51	/	8113/5 /		61/66-1	Sec. 1
	5 1 5 1	4. 3235	145.47	7705 3	104 0.001	0 4274		8 0.510	8 1479	0.205	4.465	
		7 4975	127 10	2426 1	720 0.010	0 1577	22.7	1 0.310	13 4073	A 666	4.540	
		1 4174	100 54	7547 0	770 6 60	1 1/100	22.7	1 0.1777 5 6 676	33.9072	0.007	7 714	
		0 9470	21 01	140E 41	100 0.137	1.1900	22.7	7 0.21J	2212210	0.701	1.310	
	• •	0.0430	1-11	2403.43		1.3.7.		D 0.172	2212110	0.000	9.242	
	PR PTCOULS			0.10								1997 - 1997 -
	as.biurala		нL	H 15	. нт	EIA I	218 15	HU 1	1 L/U412	· #1		
	KUL. FRUJ.			K27K6	1		-		4			
	1 1	73.6973	93.6973	69.557	7 E9.1071	0.7753	0.7424	0.2317	1.9217	0.134371BE	+04	
	2 2	97.2960	102.4525	79.120	3 77,7974	0.8060	0.8082	0.3363	2.0063	0.15124998	+04	
	3 3	93.9727	99.9177	79.857	5 77.5751	0.8316	0.6499	9.4061	1.8163	0.15083209	+94 -	
	4 4	B1.2470	87.8815	71.926	69.120a	0.7855	0.6653	0.4573	1.4263	0,13439816	+04	م جمعون م منه
-	de la deserver			,								
	NR.STOPNIA	- H1	M2	R1¥	D H1	D H2	0 AN	9 HT	0 HW	ŪΗI	DHD	
	KOL. FRUJ.	11 .	1 1 - -		1			KJ716			. <i>t</i>	
	1 1	0.8316	0.5942	0.358	5.2291	3.9546	8.2842	0.9174	6.0000	0.4506	0.0000	
	2 2	0.8424	0.6770	0.348	5 6.2339	4.5311	5.3217	0.6365	0.0000	1.7329	0.0400	
	3 3	0.8163	0.7193	0.3083	4.8919	3.6593	3.7475	0.4249	0.0000	2.2824	0.0000	
	4 4	0.7567	9.6975	0.246	3,4905	3.0426	2.2966	0.2913	6.6000	2.8975	0.0000	
	NR. STOPNIA	RE 1	21	E 2	RE W1	P 1	1	PT	р. 1	0A	00	
	KEL. PRD1			- -		,		•	h i	L O		1
	1 1	0 4729045	1.7 4 10	C10CC107	6 636000E-30	, EJ1	L 7	6.6	5314 7	70 6	54 7	
	7 7	0. T1754-F	107 0118	- 3032 FU/	0.1007105-05	321	5.1 7 7 . 1	0.0	11010 0	17.0	74.3	
	4 4	0.31/3412	-17 U.13	01086407	V. 172312E4V3	050		CE49 7	102/0.0	100.0	103.4	
	د د • •	0.177222E1	107 U.10	13315+0/	v.45485/E+05	/16	v.8	JU47.3	12/04.1-	123.3	116.4	
	÷ 4	v.120225E	+v/ 0.68	+06/2+06	012143545+02	696	4.7	(877.0	1804.3	120.1	47.7	

				an the		ymäly	and the state of the		e salen -e		ng fa kha aj
e el que	<u>D7</u>	TOS DE	MODIE	ICACIO	ONES A	J. DISE	NO TOSI	IIBA			ngin dan Na
	P Obliczenta Fr	R O G R A N Rzeplywowo-te	T. U. E. Eriodinan	B. I. N. 4 - Icene urla	1988 DU O ZADAM	IEJ GEOMETH	11				
	OPRACOWALI: ## DANE OPIS	NLGORYTHI-E.S Sujace Schem	LAZKU .PI	POGRAMI-N.I Czeniowy	LIGKE FFIR	IF.FANGDA	INSK	다. 299 같아야구			
	NCOBE/NIN	LE(-) (6(-)								
	6968 NF(-)	4 HX (-)	1 1F(-)	NWP(-) T	4P(-) N	1 (-) THE	(-) NR.6(-) 5161	(4(-)	k de la	
	1	1	0		0	2	0 1				
	2	2	0	2	0	3	0 1		1		
	3	3	0	3	0	4	ð 1		1		
	4 Dane dla	4 Stopni tyr	0 20 0,1.2	,3	9	s 5 1999 - 1997 - 1			0		
	NE (-)										
	Dw1 (NM)	Dw21MM) 658,400	Ew0(MM) 660.000	11(MM) 32.000	12(MH) 36.300	10(MM) 26.640	tal(NM) 52.000	ta2(MH) 43,000			
	z1(-) B0.000	z2(-) 66.000	D:1(MH) 747.000	deit:211M 1.270	N): Zz1(-) 5.000	Dz2(HK) 0.000	delta221HH 0.000	1:2(-) 0.000		an a	
	5. (MN)	dolfsui#W)	C. (NN)	Jut-1	7-1-1		dollow1/MH1	FOCHMI		en ann a Charlinna	ala da sera da General da sera
	210.000	0.200	5.000	7.000	1.000	642.180	2.030	5.000			
	DO (MH)	d0(KA)	n0(-)	501 (MR)	nd (-)	dzela(-)	alfa20(ST)	Rat (-)			
		40.000	3.000	141000	0.000	0.000	10.000	V.2E-03	andra an aidean Aidean an Aidean	andalaan oo oo Chidoo ah	
	Ra21-1 0.2E-03	al(MH) 7.700	a2(MM) 12.508	b1(NN) 70.000	62(MM) 45.000	bet10(ST) 45.000	R1 (MM) 75.000	R2(MM) 0.000		er a dipere Alta di peresente Alta di peresente di	
	delta1(MM) delta2(MM)	LIGH	L2(MK)	ale(HH)	alz(HH)					
	0.440	0.740	75.000	56.000	7.180	8.280					
	NF (-)										
	2					a statisti Tabli					
	Dw1(MM) 660.000	Dw2(NA) 656,400	Dw0(M:1) 860.000	11(HH) 48.200	12(MH) 55.000	10(MM) 40.160	tal(HH) 51.000	ta2(MM) 46.000			
	-11-1	• 21-1	571(88)	delta711M	81 7-11-1	8-7(MH)	do1+a77(KM	7-21-1			
· .	80.000	66.000	784.450	1.270	5.000	0.00)	0.000	6.000			
	Dw (MM)	deltaw(MN)	Sa (MM)	l=(-)	2wn (-)	dw1 (MM)	deltaml(MM)	rðimni		er de la composition de la composition La composition de la c	den de person
	210,000	0.200	5.000	7.000	1.000	642.180	2.030	5,000			
	DQ (MM)	40 (MM)	n0(-)	b01(NN)	nd(-)	dzetat-)	alfa20(ST)	Ral(-)			
	340.000	40.000	5.000	15.000	0.000	0.000	90.000	0.2E-03			
	Ra2(-)	a1 (88)	a2(88)	61 (MM)	52 (MD)	bet10(ST)	R1 (HN)	R2 (MM)			
	0.2E-03	7.860	13.028	70.000	45.000	45.000	75.000	0.000			
	deltal(MM)	delta2.NM	LIUMA	L2 (85)	alw(MM)	a (z (195)					
	0.440	0.740	75.000	54.000	7.230	8.760					

NE (-) 3

Dwt (nH)

Dw2(MM)

DWOINNY

11(BN) 12(BN) 10(EN)

tal(HH) ta2(65)

650.000 658.400 650.000 75.100 85.400 64.910 51.000 54.000 21(-) 22(-) Dz1(MM) deltaZ1(MM) Zz1(-) Dz2(MM) delfaZ2(MM) Zz2(-) 845,200 1,270 5,000 0,000 0,000 0,000 88.000 58.000 7+(-) - Dw(MM) deltaw(MM) Sw(MM) 7wn (-) dw1(NN) deltaw1(NN) r0(NN) 210.000 0.200 5.000 6.000 1.000 642.180 2.030 5.000 DO (HH) (68) Ob n0(-) : P01 (NR) nd(-) dzeta(-) alfa20(57) Ral(-) 340.000 40.000 5.000 16.000 0.000 0.000 90.000 0.2E-03 b2(MM) bet10(ST) R1(MM) R2(MM) Ra2(-) a1 (88) a2(MH) b1(HH) 0.2E-03 7.650 15.549 70.000 53.360 45.000 75.000 0.000 deltal(NN) delta2(NN) L1(NN) L2(NN) alw(NH) alz(NN) 0.440 0.880 75.000 66.400 6.740 8.830

NF (-) 4

Dw1 (MM) 560.000	Dw2 (NN) 658.400	DH0(MM) 660.000	11(HM) 118.000	12(MH) 131.300	10(MM) 113.780	tal(NM) 51.000	ta2(MM) 54.000
	-2(-1	D 1 (1/41)	4-11-11-11	u	D-7(HH)	3-11-23 (44	. 7- 74 . 1
38.000	58.000	937.300	1.270	, 5,000	0.000	0.000	0.000
DH (MM)	del taw (MH)	SH (MA)	2w(-)	Zwn (-)	dw1 (KH)	deitawi(MM)	r0(88)
210.000	0.200	5.000	6.000	1.000	542,180	2.030	5.000
DO (MM)	d0 (MM)	n0(-)	601 (MM)	nd (-)	dzeta(-)	alfa20(5T)	Ra1(-)
340.000	40.000	5.000	18,000	0.000	0.000	90.000	0.2E-03
Ra2(-)	a1 (88)	a2(NN)	61 (MM)	62 (MK)	bet10(ST)	R1 (111)	R2 (MM)
0.2E-03	8.440	15.860	70.000	53.360	45.000	75.000	0.000
eltal(MM)) delta2(MM)	L1 (HH)	L2(MM)	alw(MM)	alz(MH)		
0.440	0.880	75.000	65.400	6.820	10.579		

EtaDI-F

Porim(bar)

DANE DLA WEZLOW NR 1 Sika/s) DB(kg/s) TO (STOP C) Po(bar) 19.444 0.000 171.500 0.000 0.000 8.000 NR 5 P2(bar) 0.843

DANE DOCATIONE DLA STOPNI LICZONYCH Z POLZIALEM NA STRUGI LICZBA STOPNI = 0 72

Services a march a race

WYNIKE OBLICZEN

				in an fair Agus anns an							en navne sterneg. Teorie	engensele austr Station	Robert Constants Alternation
0		ji ka							가는 위한 11 2011년 20				
3		DFC	מ גידו דו	00 00	NODT DT	A A T A Y			an a				
5		<u>NDO</u>	ULIAD		MODIFI	CACION	ES AL	DISEN	<u>o ros</u> i	IIBA			
۰.			6	RUFA	STOFN	1 NR.= 1				lan saran i			
	L10284 45	- 510PH =341 /	11 689PY= 1795 11/1	4 66 6 4	R.= 19,444/ C =341 0099	1 MG/S A.1 5 M1426 - 5	AST.= 0	.0454 MIN					
	HS7011	= 1.63	85		5= 1.0119	El	A.I = 0	.9270					
I	PÜ. j	=0.282	9475E+05	N N	=0.58056	9E+04 1 M							
	: ต่อ ก	11 8	1.58.0	- 55054198	104 KW					n da entre Sectores			
							e Medical	an a		n de la composition d Composition de la composition de la comp			
24	NE, STO	PNIA	A 1	A 2	A 2/A 1	V I U	2 . AU	FA I BET	A 1 ALFA	2 BETA	2 F1	PSI	
1	KOL. F	SOJ.	0 D157	6 6362	- 1	N/S	25. 11	τ <u>α</u>	51. 51. 35.3	0 27 41	6570	- /	
	. 2	2	0.0303	0.0301	1.560 2	25.75 227	.41 16	42 3E.	25 90.2	7 22.56	0.9533	0.9402	
	3	3	0.0506	0.0771	1.525 2	34.33 237	.10 16	95 43.	87 51.9	7 22.73	0.9589	0.9562	
	. 4	4.	0.0876	0.1284	1.465 2	4B. 00 251	.73 17	. 69 59.	88 97,1	4 23.21	0.7645	0.9543	
	NR.STO	PNIA	61	6 2	6 N¥	SNU	6 N0	G N.	HI IN	81.0	MI 1	MI 2	
	YOL. P	EDJ./		· · · ·		K6/S		• ••	1		•		
	- 1	-1	19.3962	17,7762	0.0478	0.7721	0.8199	0.8479	0.2722	0.5335	6.9803	C.9571	
	. 2	2	19.4132	18,7874	0.0398	0.2135	0.2443	0,4123	0.2722	0.4318	0.9959	0.7854	
	ţ	4	19.4327	19.1528	0.0113	0.0500	0.0513	0.2199	0.2050	0.3867	1.0219	1.0100	
								é et po					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	NR.ST(IPNIA	PO	10	10	10	V0	ALFA 16	P1	11	SIG 1		
	1	1	7.0797	171.51	2779.496	5 1.000	0.2750	/ 3/ / 15.46	4.7545	2711.997	0.986	14,123	
	2	2	4.2961	145.10	2705.523	2 0.994	0.4262	15.42	2.6418	2639.590	6 6.986	14.715	
	2	3	2.4563	126.83	2624.084	7 0.759	0.7003	16.95	1.2728	2565.145	8 1.000	11.382	
	•	1	1.3734	104.20	10421414	5 V. 732	1.1001	17.07	1.024	1477.071	1 0.134	0+170	
	NR.570	PNIA	P2	12	12	12	₹2	BETA 26	03120	S1V21	516 2	N2 11 11	the track of the
	KOL. 1	PROJ./	BAR	/ 50	/ KJ/KG	/ - /	M#13/KG	/ 51 /	- 1	H11375 /		0.378.E 7 -	na hini na ku
	2	- 2	2.4563	126.83	2624.084	7 0.959	0.7003	22.55	0.511	13.5547	0.972	5.334	
	3	5	1.3954	109.20	2543.974	6 0.935	1.1601	22.73	0.532	22,4557	0.950	5.684	
	4	4	0.8430	94.91	2480.915	3 0.918	1.8253	23.21	0.511	35.2974	0.000	5.300	
	NE STI	NFN1A	нс	нč	H 15	н	FIA I	F16 15	80 ¥	cours 1	NI		
	KOL.	PREJ./			3786	/		-			£#	-] <i>r</i>	
	1	1	93.8230	92.8230	70.2163	69.7843	0.7765	0,7484	0.2054	1.9132	0.135c987E	+04	
	2	2	98.2667	102.4557	81.7744	80,4553	0.8270	0.8322	0,2552	1.9512	0.1564373E	+04	
	4	4	79.2132	84,7865	71.4095	19.6325	0.8095	0.9015	0.3135	1.3380	0.1334490E	+04	
							۱۱			(
	NR.ST	OPNIA Doola	H1	n 2	M1W	0 HI	0 H2	₽ HN	D HI	DHW	D H1	D HD	
	RUE.	PRU3.1	0.8471	0.5723	0.3495	/ 	4.7675	A1.6911	0.9031	6.0000	0.4320	0.0000	
	2	2	0.8876	0.6404	0.3868	7.0847	4.6005	2.8955	0.8125	0.0000	1.3191	0.0000	
	3	3	0.8679	0.6695	0.3502	5.5143	3.5037	1.9410	0.4174	0.0000	2.3141	0.0000	
	÷	4	0.7886	0.6465	0.2674	3.7818	2,52.72	1.0584	0.2943	0.0000	2.7770	0.0000	
	NR.51	OPNIA	RE 1	R	2	RE W1	PL	P	T	P	94	00	•
	KOL.	PRDJ./			•		1		et al p	N			<i>i</i>
	1	1	0.4709908	+07 0.19	U20E+07 0	.360000E+0	5 490	2.7 3	901.9	BE04.6	74.3	95.2	
	ĩ	7	0.3197650	:+97 0.12i	1905E+07 0	380000E+0	5 559 5 400	2.9	868.5	6451.4 6607 0	84.6	107.5	
	4	4	0.120704	E+07 0.63	670E+05 0	,224315E+0	5 525	2.5	177.3	6429.B	107.8	.95.0	

a second a s