24/50

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

POTENCIAL INTERIONICO DEL SODIO, POTASIO RUBIDIO Y CESIO A PARTIR DE PRIMEROS PRINCIPIOS

TESIS PROFESIONAL QUE PARA OBTENER EL TITULO DE: F S С 0 I. S E. R Ε N т RUIZ GREGORIO CHAVARRIA

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

En este trabajo se calculan los potenciales interiónicos del sodio, potasio, rubidio y cesio a partir de primeros principios, utilizando un pseudopotencial local. Para la realización del cálculo se determinan primero las densidades electrónicas en los metales en cuestión a través de la utilización del formalismo HKS. A continuación se eliminan las oscilaciones de las densidades cerca del origen para asegurar un pseudopotencial débil y se toma də transformada de Fourier esta densidad. una Con esta transformada y utilizando teoría de perturbaciones y teoría de respuesta lineal se determinan los potenciales interiónicos de los materiales mencionados.

INDICE

LISTA DE FIGURAS Y TABLAS.
INTRODUCCION.
CAPITULO 1. EL POTENCIAL INTERIÓNICO
1.1 El gas de electrones libresi
1.1.1 Nodelo de Drude-Lorentz
1.1.2 Modelo de Sommerfeld2
1.2 El gas de electrones bajo la acción de un potencial
electrostático
1.2.1 Modeio de Hartree4
1.2.2 Modelo de Hartree-Fock
1.2.3 Teoría del apantallamiento de Thomas-Fermi8
1.2.4 Teoría de Lindhard del apantallamiento14
1.3 Formulación pseudopotenciai
1.3.1 Electrones ligados y electrones de conducción15
1.3.2 Pseudopotencial de un sistema de iones. Factor
de forma y factor de estructura
1.3.3 Energía de estructura de banda. Interacción
directa e interacción indirecta
1.4 Sumario de la teoría del pseudopotencial
CAPITULO 2 . METODO DE CALCULO
2.1 Densidad electrónica
2.1.1 Modelo de un ion en una vacancia de gelatina31
2.1.2 Formalismo HKS

2.2 El potencial i	interiónico			37
CAPITULO 3. RESULT	TADOS Y CONCLUSIO	NESS	• • • • • • • • • • • •	
APENDICE				
	••••••	•••••	• • • • • • • • • • • •	
BIBLIOGRAFTA		. . 		

LISTA DE FIGURAS Y TABLAS.

FIGURAS

Fi gur a	1.	Gráfica de la pseudodensidad electrónica del	Página	38
		sodio.		
Figura	2.	Gráfica de la pseudodensidad electrónica del	Pági na	30
		potasio.		
Figura	З.	Gráfica de la pseudodensidad electrónica del.	Página	40
		rubidio.		
Figura	4.	Gráfica de la pseudodensidad electrónica del	Página	41
		cesio.		
Figur a	9.	Gráfica de pseudodensidad electrónica del		
		sodio, a la que se le han eliminado las	Página	45
		oscilaciones cerca del origen.		
Figura	8.	Gráfica de pseudodensidad electrónica del		
		potasio, a la que se le han eliminado las	Página	48
		oscilaciones cerca del origen.		
Figura	7.	Gráfica de pseudodensidad electrónica del		
		rubidio, a la que se le han eliminado las	Página	47
		cscilaciones cerca del origen.		
Figura	8.	Gráfica de pseudodensidad electrónica del		
		cesio , a la que se le han eliminado las	Página	48
		oscilaciones cerca del origen.		
Figura	9.	Gráfica de la transformada de Fourier de		
ya su		la pseudodensidad electrónica suavizada	Página	51
		del sodio		

Figura 10). Gráfica de la transformada de Fourier de	
	la pseudodensidad electrónica suavizada	Página 52
	del potasio.	

- Figura 11. Gráfica de la transformada de Fourier de la pseudodensidad electrónica suavizada Página 53 del rubidio.
- Pigura 12. Gráfica de la transformada de Fourier de la pseudodensidad electrónica suavizada Página 54 del cesio.
- Figura 13. Gráfica del potencial interiónico del Página 37 sodio.
- Figura 14. Gráfica del potencial interiónico del Página 58 potasio.
- Figura 15. Gráfica del potencial interiónico del Página 59 rubidio.
- Figura 16. Gráfica del potencial interiónico del Página 80 cesio.

TABLAS

 Tabla 1. Tabla de parámetros para el modelaje de la densidad electrónica en una región
 Pá cercana al origen.

Página 44

INTRODUCCION

Un punto de partida para poder estimar toda una serie de propiedades en los metales lo representa el conocimiento del potencial interiónico. Conociendo éste podemos predecir espectros fonónicos, calores específicos, resistividades, etc.

Para explicar el comportamiento observado en los metales se ha recurrido a toda una serie de modelos, de los cuales el más sencillo y que a su vez es capaz de explicar algunas propiedades de éstos , está representado por el modelo del gas de electrones libres, el cual considera que los electrones de conducción de un metal se comportan como un gas clásico. Posteriormente este modelo fue paulatinamente perfeccionado para considerar las diferentes contribuciones de interacción de los constituyentes del sistema, especialmente de los iones.

En este trabajo se realizó un cálculo a partir de primeros principios de los potenciales interiónicos del sodio, potasio, rubidio y cesio. En el CAPITULO I del presente escrito daremos un rápido repaso del modelo de gas de electrones libres, así como de las posteriores modificaciones a éste para pasar a exponer de manera más o menos detallada el formalismo de la teoría del pseudopotencial, formalismo mediante el cual calculamos el potencial interiónico. En esta parte planteamos una serie de expresiones a utilizar en la evaluación del potencial.

El CAPITULO II está dedicado a exponer el método utilizado para calcular el potencial interiónico. Comenzamos describiendo formalismo de Hohenberg, Khon y Sham⁽³⁾ para obtener la **6**1 densidad electrónica inducida airededor de un ion. En virtud de que esta densidad presenta oscilaciones en las cercanías del origen y que estas no estan en concordancia con la teoría del pseudopotencial, estas son eliminadas sustituyendo esta densidad por otra que es idéntica a la calculada originalmente xalvo en la región del grigen. Posteriormente se obtiene la transformada de Fourier de la densidad a la cual se le han eliminado las oscilaciones cerca del origen. para que a través de 1 a utilización de una expresión que relaciona a esta transformada con **n**] factor de forma y con la función dieléctrica correspondiente, pueda ser sustituída en la expresión para el potencial interiónico presentada en el CAPITULO I. Asimismo se muestran las gráficas de las densidades electrónicas obtenidas segun el formalismo HKS, las gráficas modificadas elíminando las oscilaciones COTCA døl origen Y 125 dráficas de 185 transformadas de Fourier de las densidades modificadas. Como complemento a este capítulo se incluye un apéndice en donde se detalla como estuvo dividido el cálculo de las mencionadas densi dades.

Finalmente, en el CAPITULO III presentamos los potenciales interiónicos obtenidos y comparamos éstos con los reportes existentes acerca de estos potenciales, haciendo algunos comentarios referentes a lo adecuado de los cálculos realizados.

CAPITULO I

EL POTENCIAL INTERIÓNICO

La determinación de las características de la interacción entre los iones que participan en la conformación de un material, específicamente de un metal, es de vital importancia para poder comprender todo un conjunto de propiedades.

La elaboración de un modelo que intente explicar algunas de las propiedades del metal conduce a especificar qué propiedades queremos estudiar, con el fin de tratar de establecer el camino a seguir en la resolución de nuestro problema.

1.1 EL GAS DE ELECTRONES LIBRES,

1.1.1 EL MODELO DE DRUDE-LORENTZ.

Un primer modelo para los electrones de conducción de un metal consiste en considerar a estos como un conjunto de partículas que puedan moverse libremente en el volumen ocupado por el metal. A pesar de que existe una gran diferencia entre un gas de electrones así considerado y un gas clásico. Drude $^{(1,2)}$ supuso que deberian de cumplirse para éste las aproximaciones hechas para un gas ideal.

Con posterioridad, en 1909, Lorentz^(1,2) contribuyó al modelo de Drude del gas de electrones aplicando a éste la estadística de Maxwell-Boltzman, sin tomar en cuenta la repulsión entre los electrones. Con la utilización de este modelo se pudieron explicar bastante bien algunas propiedades de los metales, quedando otras sin una explicación satisfactoria. El modelo predijo correctamente la magnitud de la resistividad eléctrica en la mayoría de los metales a la temperatura ambiente, pero la predicción de la dependencia de ésta con la temperatura fue incorrecta ya que establecio que ésta iba como T^{1/2} en lugar de la dependencia lineal con T. El modelo pudo también explicar la ley de Wiedemann-Franz, en tanto que proporcionó magnitudes incorrectas para el calor específico electrónico y para la suceptibilidad magnética de algunos metales estudiados.

1.1.2 MODELO DE SOMMERFELD

Las carencias principales del modelo de Drude-Lorentz radican en que se ignoró el papel que juegan los iones en el comportamiento global del sistema y que por otro lado, la

г

estadística utilizada para los electrones no es la correcta.

Sommerfeld^(1,2) en 1928 realizó una modificación al modelo de Drude-Lorentz introduciendo la estadística de Fermi-Dirac para los electrones. Al tomar en cuenta que éstos obedecen al principio de exclusión de Pauli se pudieron explicar algunas propiedades que el modelo de Drude-Lorentz no pudo, en particular aquellas que dependen directamente de la distribución de velocidades de los electrones de conducción.

Sommerfeld consideró que en el interior del met.al ai. potencial . ອມອ sienten los electrones do conducción independiente de la posición. Si sólo interesa la distribución relativa de los niveles de energía del sistema respecto al estado base, puede considerarse el potencial como cero en el interior del petal e infinito fuera de éste. Con esta elección . suponiendo que el metal ocupa el volumen de un cubo cuya arísta es L, se resuelve la ecuación de Schrödinger correspondiente sin considerar el espin de los electrones de manera explicita¹.

De las soluciones obtenidas de la ecuación de Schrödinger se encuentra que se predice que la contribución de los electrones al calor específico a la temperatura ambiente es despreciable, y por otro lado tiene una dependencia lineal con la temperatura. Hace también una estimación correcta de la conductividad tórmica de un conjunto de metales.

Nay que hacer notar que el blen ecta dependencia no es explicita. esto incluida de una u otra manera en al setadística utilisada.

Э

1.2 GAS DE ELECTRONES BAJO LA ACCION DE UN POTENCIAL ESTATICO.

1. 2. 2 HODELO DE HARTREE

Tanto en el modelo de Drude-Lorentz, como en el de Sommerfeld se desprecia la interacción entre los electrones de conducción. Un modelo que intentó salvar esta deficiencia fue el propuesto por Hartree^(2,3), el cual para el caso de un átomo, se plantea tomar en cuenta a los demás electrones a través del promedio de la interacción de los demás electrones con la particula en cuestión, de tal manera que cada electrón en el átomo puede ser tratado como si estuviera moviéndose bajo la acción de un cierto potencial, que es el promedio del campo producido por todos los otros electrones del átomo.

En la aproximación de "un electrón" se supono que la función de onda de un sistema electrónico con N particulas, @Cr4,r2,r3,.....r_) puede ser escrita como

۲.۱ ۲.۱ (۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱ - ۲.۱

donde @,Cr,) es obtenida resolviendo, la ecuación de Schrödinger

de una partícula para cada electrón dada por:

$$\left\{-\nabla z^{2} - \frac{z}{r_{L}} + u_{L}(r_{L}^{2})\right\} = e_{L} \Phi(r_{L}^{2}) = e_{L} \Phi(r_{L}^{2})$$
 1.2

donde $\boldsymbol{\Theta}_i$ es la función de onda del *i-és*imo electrón, Z es la carga del núcleo, r_i el vector de posición del *i-es*imo electrón y u_i es la energía potencial promedio producida entre el *i-és*imo electrón y los restantes electrones.

Hartree propuso para u_iCr_i) la expresión

$$u_i(r_i) = u_i(r_i) = \sum_j \int \frac{1 \frac{m_j(r_j)}{r_{ij}}}{r_{ij}} dr_j$$
 (1.3)

El resultado es el siguiente sistema de ecuaciones

$$\left\{\begin{array}{ccc} -\frac{1}{2}\nabla z & -\frac{1}{r_{i}}Z_{+} & \sum_{i\neq j}\frac{|\Psi_{j}(r_{i})|^{2}}{f_{i}} d r_{j}\end{array}\right\}\Psi_{i}(r_{i}) = \varepsilon_{i}\Psi_{i}(r_{i}) \quad 1.4$$

sistema que debe ser resuelto de manera autoconsistente.

En este mismo esquema, cuando se tiene un metal, hay que considerar que, además de los electrones y el núcieo de un átomo particular, existen electrones y núcleos de los demás átomos que conforman el sistema. Siguiendo un camino análogo al planteado con anterioridad se encuentra un sistema de ecuaciones a resolver, que es

$$-\frac{1}{2}\nabla a = \int_{C} Cr dr = 2 \sum_{\mathbf{x}} \frac{|\mathbf{r} - \mathbf{r}|^{2}}{|\mathbf{r} - \mathbf{r}|^{2}} dr' = \int_{C} Cr dr' = e_{1} e_{1} Cr dr'$$

$$+ \left[\sum_{j=1}^{N} \int \frac{|\mathbf{r}_{j} - \mathbf{r}_{j}|^{2}}{|\mathbf{r}_{j} - \mathbf{r}_{j}|^{2}} dr' \right] \mathbf{v}_{1}(r) = e_{1} e_{1} e_{1}(r)$$

$$(a = 1, 2, \dots, N, dr)$$

donde R se refiere a las posiciones de los núcleos.

El principal defecto de esta formulación radica en el hecho de que no se considera que los electrones responden al principio de exclusión de Pauli.

1.2.2 HODELO DE HARTREE-FOCK

Fock, en 1930.^{12,30} realizó una corrección a estas ecuaciones. Consideró que 9 depende no sólo de las coordenadas de las partículas sino también del espin que poseen éstas. Se intentó

como en el caso anterior buscar una solución del tipo

 $(r_1, s_1; r_2, s_3; \ldots, ; r_N, s_N) = \oplus_1(r_1, s_1) \oplus_2(r_2, s_2) \ldots \oplus_N(r_N, s_N)$

donde las $\Phi_i(r_i, s_i)$ son funciones de onda unielectrónicas.

Una función de onda de la forma anterior no satisface el principio de exclusión de Pauli y dado que la función de onda debe tener una forma parecida. Fock utilizó los determinantes de Slater, con lo cual resulta que éstas funciones de onda son antisimétricas con respecto de las coordenadas de los electrones. Utilizó además el principio variacional para encontrar las soluciones minimizando $\langle H \rangle_{ep}$ y obtuvo el siguiente sistema de ecuaciones

$$= \sum_{i} \left[\int_{\Theta_{i}, B_{j}} \frac{\Phi_{j}^{H}(r') \Phi_{i}(r')}{|r - r'|} dr' \right] \Phi_{i}(r) = e_{i} \Phi_{i}(r) = 1.7$$

Con respecto a las ecuaciones de flartree originales, las obtenidas por Fock se diferencian por el hecho de que en éstas últimas aparece el término

$$\mathbf{E}_{j} \left[\int_{\mathcal{S}_{\mathbf{E}_{i}}^{\mathbf{G}}} \frac{\Phi_{i}^{\mathbf{G}}(\mathbf{r}')\Phi_{i}(\mathbf{r}')}{|\mathbf{F} - \mathbf{r}'|} d\mathbf{r}' \right] \Phi_{j}(\mathbf{r}) = e_{i}\Phi_{i}(\mathbf{r})$$
 1.8

que recibe el nombre de término de intercambio.

En ésta formulación (Hartree-Fock) ,tanto como en la de Hartree no se considera la energía de correlación de Coulomb.

1.2.3 TEORIA DEL APANTALLANIENTO DE THOMAS-PERMI.

En esta teoría se supone que el potencial total varía muy lentamente con la posición. Para encontrar la densidad de carga $\rho(r)$ en presencia de un potencial $\phi(r)$, como primer paso se resuelve la ecuación de Schrödinger

 $= \frac{1}{2} \nabla \overline{\sigma}_{i}(r) - \phi(r) \Theta(r) + \epsilon_{i} \Theta(r)$

1.9

Una vez hecho ésto se tiene que la densidad es calculada por medio de la expresión

$$\rho(\mathbf{r}) = -\sum_{i=1}^{n} |\Psi_i(\mathbf{r})|^2 \qquad 1.10$$

El potencial total está dado por dos términos; el primero originado por una impureza que se considera sumergida en un gas de electrones, ϕ^{exi} ; el segundo es originado por la densidad de carga inducida como resultado de la inmersión de la impureza, ϕ^{ind} .

Bajo la suposición de que el potencial total varía muy lentamente, lo cual significa que se pueda especificar la posición de muchos electrones en una región de extensión pequeña comparada con la distancia a lo largo de la cual apenas el potencial total varía, se plantea una relación entre la energía y el vector de onda k del electrón en la posición r

$$f(k) = (k^2/2) - d(r)$$

1.11

Para la determinación de la densidad de carga nCr) que producen los electrones caracterizados por la expresión anterior, se utiliza que

$$n(r) = \int \frac{f\{r(q)\}}{4\pi^2} dq$$

donde f{rCk)} ésta dada por

$$f\{a(k)\} = \left[\begin{array}{c} \left(\frac{a(k) - \mu}{k_{gT}} \right) \\ e \end{array} \right]^{-1}$$

La densidad de carga inducida es

$$\rho^{ind} = -n(r) + n_{d}$$

en donde n_o es la densidad de carga de la nube positiva uniforme Eque viene de los iones de la red cristalina). Después de algún manejo algebraico la expresión anterior puede escribirse como

10

1.13

1.14

ρ^{lnd}cr) = -[n_acμ + φcr) - n_acμ)]

de donde considerando a ϕ pequeña tenemos que

$$p^{\text{ind}}(r) = - \left(\frac{\partial n_0}{\partial \mu}\right) \phi(r)$$

Las transformadas de Fourier satisfacen por tanto una relación de la forma

de lo cual se tiene que

$$\chi(q) = -\frac{\partial n_o}{\partial \mu}$$

11

1.15

1.18

1.17

Por la definición de la función dieléctrica se obtiene para ésta la forma

$$s(q) = 1 + \frac{4\pi}{q^2} \frac{\sigma n_o}{\partial \mu}$$

Dado que el vector de onda de Thomas-Fermi, k_o, está definido por

$$k_{0}^{2} = 4\pi \frac{\partial n_{0}}{\partial u}$$

obtenemos para la función dielectrica

$$s(q) = 1 + \frac{k^2}{q^2}$$

Por stro lado, el potencial debido a la carga impureza, $\phi^{\rm sel}$ tiene la forma , en las unidades adecuadas

1.20

1.21

 $\phi^{\text{ext}} = \frac{Q}{r}$

1.22

1.23

1.24

1.25

donde Q es la carga de la impureza.

Dado que la función dielectrica cumple con la relación

$$\epsilon(q) = \frac{\phi^{1\times e}q}{(q)}$$

se tiene que

$$\phi(q) = \frac{4\pi Q}{q^2 + k^2}$$

de donde finalmente obtenemos

$$\phi(\mathbf{r}) = \frac{\mathbf{Q}}{\mathbf{r}} e^{-\mathbf{k}_{\mathbf{r}}\mathbf{r}}$$

1. 2. 4 TEORIA DE LINDHARD DEL APANTALLANIENTO.

En el enfoque propuesto por esta teoría se requiere que exista linealidad de ρ^{ind} con é. La ecuación 1.9 es resueita de manera autoconsistente, en tanto que para el cálculo de la densidad electrónica se utiliza la expresión 1.10 Para χ utilizamos la expressión⁶⁰

1.25

1.27

the constant and a set in the

$$\chi(q) = -\int \frac{dk}{4\pi^2} \frac{f_{k-\frac{1}{2}q} - f_{k+\frac{1}{2}q}}{k-q}$$

en donde

$$r_{k}^{*} \left[\exp \left(\beta (k^{*}/2 - \mu) + 1 \right) \right]^{-1}$$

Si la energía de los electrones es mucho menor que la energía de Fermi, $\frac{q}{k_0} < \langle 1 \rangle$, y se hace un desarrollo alrededor de q = 0,

se recupera el resultado de Thomas-Fermi (ecuación 1.18).

Si q x k y T=O obtenemos para χ (q) ia expresión

$$\chi(q) = -\frac{k_{p}}{\pi^{2}} \left[\frac{1}{2} + \frac{1 - \chi^{2}}{4\chi} \ln \left| \frac{1 + \chi}{1 - \chi} \right| \right], \quad \chi = \frac{q}{2k_{p}} = 1.20$$

A partir de éste resultado podemos calcular la función dieléctrica y el potencial ϕ (r). Al ser calculado ϕ (r) se encuentra que para r grande el comportamiento de ϕ es oscilatorio de acuerdo con la expresión

$$\phi(r) \approx \frac{1}{r} \cos (2k_{p}r)$$

Estas oscilaciones son conocidas como oscilaciones de Friedel y tienen su origen en una singularidad de χ para q = 2k

1.29

1.3 FORMALISMO DEL PSEUDOPOTENCIAL

1.3.1 ELECTRONES LIGADOS Y ELECTRONES DE CONDUCCION.

Los electrones de conducción de un metal presentan una

propiedad que los electrones ligados no poseen y es que pueden moverse más o menos libremente por todo el metal, salvo en la región ocupada por los iones de éste. Se tiene 251 que las funciones de onda de los electrones libres son ortogonales a las funciones de onda de los estados ligados.

Supengamos que $|k\rangle$ representa a la función de enda de electrón "libre" confinado al volumen Ω , $|k\rangle = \Omega^{-\frac{1}{2}} e^{ik_{\perp}\Gamma}$ y que $|\omega\rangle = \Phi c(r)$ representa a la función de enda de un estado ligado. Con ésta notación podemos definir a las funciones de enda χ_{u}

$$z_{\mu} = \frac{1}{2}c_{\mu} - \sum_{\mu} \langle \alpha | k \rangle \langle \alpha \rangle$$
 1.30

que son ortogonales por construcción a cualquier estado ligado bo.

Una vez definidos estos vectores podemos desarrollar a ias funciones de onda de los estados de conducción $\boldsymbol{9}_{k}$ como una combinación lineal de estos

 $\Phi_{L} = \sum_{q} a_{q} \chi_{k+q}$ = $\sum_{q} \sum_{q} \frac{1}{q} k + q = \sum_{q,\alpha} \sum_{q} \frac{1}{q} \langle \alpha | k + q \rangle | \alpha \rangle$

1.31

expresión que puede ser escrita como

$$\mathfrak{B}_{k} = \Sigma_{q} \mathfrak{L}_{1} - \mathfrak{P}(k + q) = \mathfrak{L}_{1} - \mathfrak{P} \mathfrak{O}_{k}$$

donde P y ϕ_k estan dados por

$$= \sum_{\alpha} [\alpha > \langle \alpha |$$
 1.33a
$$k^{\pm} \sum_{\alpha} [k + q \rangle$$
 1.33b

1.32

1.34

Sustituyendo las expresiones 1.33 en la ecuación de Schrödinger correspondiente, obtenenos una ecuación para ϕ_k que tiene la forma :

 $\left\{H + (E_{k}-H)P\right\}\phi_{k} = E_{k}\phi_{k}$

o bien de manera más explicita:

$$\left\{ T + (VCr) + (E_k - HDP) \right\} \phi_k = E_k \phi_k$$

que puede ser vista como una ecuación de Schrödinger en donde ahora tenemos un potencial W dado por

A Ψ se le conoce con el nombre de pseudopotencial y a ϕ_k como la pseudofunción.

Dado que en la conformación de W entran H y P, éste es en general un opérador, el cual para muchos casos puede ser adecuadamente aproximado por un termino de tipo no operador, es decir, definiendo a W de la siguiente manera:

 $\Psi = \forall Cr \rangle = \forall Cr \rangle + V_{n}$

1.37

1.35

donde V_n depende solo de la posición. Cuando se hace ésta

aproximación se dice que tenemos un pseudopotencial local, el cual evidentemente al depender V de la posición, dependerá solamente de la posición.

1, 3, 2 PSEUDOPOTENCIAL DE UN SISTEMA DE IONES. FACTOR DE FORMA Y FACTOR DE ESTRUCTURA.

Consideremos ahora un sistema de N iones y tomemos la expresión 1.30. En éste caso V(r) puede ser escrito como la suma de las contribuciones individuales de cada ion. Si el término (E_k-H) depende solamente de los valores propios de la energía y del momento angular y si además los estados ligados dependen de la posición del ion^(5, d), será posible escribir el pseudopotencial total como la suma de los pseudopotenciales de cada ion, de la forma:

$$W(r) = \sum_{i} W_{i}(r-r_{i})$$

1.38

Utilizando la aproximación local , tomando la transformada de Fourier de WrD tenemos que

$$W(q) = \frac{1}{q} \int W(r) e^{-(q-r)} dr$$
 1.39

donde Q az el volumen del sistema.

"iq.r
iq.r
iiq.r<br/iq.r<br/iq.r<br/iq.r<br/iq.r<br/iq.r<br/iq.r<br/iq.r
yMultiplicando dentro de la integral por \bullet yhaciendo una agrupación adecuada, la ecuación 1.39puede
escribirse como:

$$\mathbb{K}(q) = -\frac{1}{h} \sum_{i} e^{-iq_{i}r_{i}} \Re(r - r_{i}) e^{-iq_{i}(r - r_{i})} dr \qquad 1.40$$

que finalmente lleva a

en donde

$$S(q) = \frac{1}{N} \sum_{i=1}^{-iq} e^{-iq}$$

1.42

1.41

 $w(q) = \frac{N}{\Omega} \int W(r) e^{-iq_* r} dr = \frac{1}{\Omega} \int W(r) e^{-iq_* r} dr \quad 1.43$

$con \Omega = \Omega/N.$

A S(q) se le conoce como el factor de estructura del sistema y como puede observarse depende de las posiciones que ocupan los iones en el metal. El otro término, w(q) es llamado factor de forma, es independiente de las posiciones de los iones y es la transformada de Fourièr del pseudopotencial producido por un solo ion.

De la formulación anterior y suponiendo que el pseudopotencial es débil, se puede utilizar teoría de perturbaciones para determinar el potencial que sienten los icnes del sistema.

1.3.3 ENERGIA DE ESTRUCTURA DE BANDA, INTERACCION DIRECTA

E INTERACCION INDIRECTA.

Si desprecianos la interacción electrón-electrón, tenemos que la energía del sistema está conformada por dos términos. El primero está representado por la interacción entre los iones del metal y nos referirezos a el como la interacción

directa y será denotado por V_d , en tanto que el segundo está representado por la energía de los electrones en el campo de los lones y será denotado por E_{el} y cuya expresión es:

$$E_{\phi l} = \frac{1}{N} \sum_{k \in k} E_{k}(k) = \frac{2n}{(2\pi)^{d}} \int E(k) dk \qquad 1.44$$

en donde ECk) es

$$2(k) = \frac{n^2 k^2}{2m} + \langle k | w | k \rangle + .$$

+
$$E_q = \frac{\sum_{k=0}^{\infty} (k^2 - k + q k)}{\sum_{k=0}^{\infty} (k^2 - k + q k)}$$

$$= \frac{3}{3} \frac{2\hbar^2 k_p^2}{2m} + 2\overline{\langle k | w | k \rangle} + \sum_q S^R(q) S(q)F(q) \qquad 1.45$$

donde

$$F(q) = \frac{20}{(2\pi)^3} \int \frac{(k | w | k + q) \langle k + q | w | k \rangle}{\frac{h^2}{2m} (k^2 - k + q | z)} dk \qquad 1.40$$

Al último término de la ecuación (1.43) se le conoce como energía de estructura de banda 50

Consideremos ahora a los iones y preguntémonos por el tipo de interacción que entre ellos se da. Por un lado tenemos la repulsión de Coulomb y que corresponde a lo que hemos llamado interacción directa. Por otro lado tenemos a la nube de electrones en que están sumergidos los iones y que tienen el efecto de apantallar el campo generado por los iones. La distribución de los electrones de valencia de este sistema está determinada por un lado, por la fuerte atracción de Coulomb de los iones y por otro por la repuisión entre los electrones de valencia y entre éstos y los electrones de las capas cerradas, debido al principio de exclusión de Pauli, Así, para la determinación de la interacción entre los iones juega un papel importante conocer el efecto de apantallamiento que producen los electrones de valencia sobre los iones del arregio . Por ésta razón el término que involucra a los electrones que nos interesa es la energía de banda, puesto que los otros dos términos de la energía electrónica tienen que ver más bien con la interacción entre electrones.

La energía de estructura de banda⁽⁵⁾ puede ser escrita como:

 $\mathbb{E}_{\mathbf{x}} \mathbb{E}_{\mathbf{y}} \mathbb{S}^{\mathsf{M}}(q) \mathbb{S}(q) \mathbb{F}(q) = \mathbb{E}_{\mathbf{y}} \mathbb{E}_{\mathbf{y}} \mathbb{F}(q) \exp(-(q_{1}(r_{1}-r_{1}))) = 1.47$

Separando en la suma anterior los términos donde (=; .obtenemos

$$B_{ba} = \frac{1}{2N} \sum_{ij} \frac{2}{N} \sum_{q} F(q) e^{-iq_i (r_i - r_j)} + \frac{1}{N} F(q) \qquad 1.48$$

EL término
$$V_{ind} = \frac{2}{N} = \sum_{q} F(q) =$$

de la expresión anterior contiene los efectos producidos por el apantallamiento electrónico en la interacción interiónica. La suma utilizada en V_{ind} ouede ser transformada en una integral utilizando la relación:

$$\Sigma_{k} = \frac{2\Omega}{(2\pi)^{2}} \int dk$$

De lo cual , V queda

$$V_{ind} = \frac{2n}{(2\pi)^3} \int F(q) = \frac{-4qr}{c} \cos(\theta) = 2\pi q^2 dq \sin\theta d\theta =$$
$$= \frac{n}{\pi^2} - \int_0^\infty F(q) \frac{\sin qr}{qr} q^2 dq$$

Sumando la interacción directa con la interacción indirecta obtenemos la interacción efectiva entre los iones. De esta manera, si conocemos F(q) que involucre la mayor cantidad de características del sistema, podremos calcular el potencial

1.49

interiónico.

Si no se considera la energía de intercambio, la forma de FCGJ es

$$F(q) = \frac{\langle k + q | w^{\circ} | k \rangle}{2\epsilon(q)}$$
 1.50

en donde $\langle k+q[w^0]k \rangle$ es el factor de forma del pseudopotencial no apantaliado y $\mathcal{L}(q)$ es

$$\mathcal{L}(q) = 1 + \frac{\mathbf{n} \cdot \mathbf{q}^2}{2\pi k_p n^2 \eta^2} \left[\frac{1 - \eta^2}{2\eta} \ln \left| \frac{1 + \eta}{1 - \eta} \right| + 1 \right] \qquad 1.51$$

donde

La función s(q) aquí mostrada es conocida como la función dieléctrica de Hartree para electrones libres y que coincide con la función dieléctrica de Lindhard.

व इ.स._

Se encuentra además que la relación entre el factor de forma del pseudopotencial no apantatallado y el apantallado es⁶⁰

$$\langle k + q | w | k \rangle = \frac{\langle k + q | w | k \rangle}{\epsilon(q)}$$
 1.52

Si ahora consideramos en nuestro tratamiento a las energias de correlación e intercambio para los electrones, se encuentra que F(q) toma la forma

$$P(q) = -\frac{\Omega_0 q^2}{8\pi^2} | \langle k + q |_W |_k \rangle |_k^2 \frac{\epsilon(q) - 1}{\epsilon(q)}$$
 1.53

en donde la función dieléctrica involucrada debe considerar también a las energías: de intercambio y correlación. De esta manera, el potencial que siente un ion en presencia de otro dentro del gas de electrones resultaCen unidades atómicas):

$$\int (r) = \frac{Z^2}{r} \left\{ 1 + \frac{2}{\pi Z^2} \int_0^\infty \frac{\sin(qr) f(q)[5n(qr)]^2}{q(1 - f(qr))} dq \right\} = 1.5$$

1.4 SUMARIO DE LA TEORIA DEL PSEUDOPOTENCIAL.

A manera de sumario de las hipótesis de la teoría pseudopotencial, tenemos:¹

a). - Campo autoconsistente: Estamos sustituyendo 1 a interacción electrónica instantánea por un potencial que incluve la interacción mencionada a través de un propedio. En virtud de que el potencial depende de los estados ocupados por 1.05 electrones y de que los estados que éstos ocupen depende a su del potencial . éste debe ser calculado de manera V02 autoconsistente. Hay que acalarar que no trabalamos directamente con los electrones sino que a traves de un cierto potencial que genera una cierta distribución de carga, la que a su vez altera el potencial.

b).- La segunda hipótesis fundamental consiste en poder separar a los electrones que forman parte del sistema en electrones de conducción y electrones ligados. De ésta manera podemos caracterizar al sistema como formado por un conjunto de iones y por los electrones de valencia o de conducción. En el interior del ion la atracción que sienten los electrones es intensa, en tanto que los electrones de conducción sienten una

interacción debil con los lones del sistema. l'ara obtener mayor información eobre sele tema se pueden consultar los referencias 3 y 16.
c).-La tercera aproximación fundamental consiste en considerar que la interacción entre los iones del arregio metalico y los electrones de valencia es débil, de tal manera que quede justificada la utilización de la teoría de perturbaciones.

CAPITULO 2

METODO DE CÁLCULO

Para calcular el potencial interiónico se pueden seguir varios caminos. Puede elegirse un potencial fenomenológico, tipo Morse o Lennard-Jones en el cual se ajustan algunos parámetros de manera que estos potenciales reproduzcan alguna o algunas propiedades que puedan ser verificadas en forma experimental, como el tamaño de la celda unidad, constantes elásticas, energias de formación de vacancias, etc.. Los potenciales así construidos son de corto alcance y no contienen oscilaciones de Friedel.

Otra manera consiste en la utilización de pseudopotenciales empíricamente determinados como punto de partida para el cálculo del potencial interiónico. Entre éste tipo de pseudopotenciales tenemos el propuesto por Ashcroft^(d)o por Heine-Abarenkov, ^(d)Los parámetros de los pseudopotenciales se ajustan de manera que reproduzcan lo mejor posible ciertas propiedades electrónicas, tales como la superficie de Fermi, la resistividad eléctrica del motal ifquido o bien datos espectroscópicos. Una de las grandem deficiencias de este camino es que los parámetros determinados

utilizando una propiedad, en general no predicen correctamente otras propiedades.

Un tercer camino a seguir es la utilización de pseudopotenciales a partir de primeros principios.

Para metales simples el potencial interiónico puede ser construído formalmente a partir de primeros principios utilizando la teoría de los pseudopotenciales. En este trabajo calculamos el potencial interiónico siguiendo el formalismo de los pseudopotenciales a través de un método propuesto por Manninen el $at_{i}^{(T)}$, quienes siguieron a su vez, el trabajo de Rasolt y Taylor

Dagens⁶⁰ calculó la densidad electrónica desplazada alrededor de un ion inmerso en un gas de electrones a través de la utilización del formalismo HKS de apantallamiento no lineal y la teoría del potencial electrón-ion completa. Hecho lo anterior, Rasolt y Taylor⁶⁰ seleccionaron un pseudopotencial no-local con el fin de que reprodujera lo más cercanamente posible la densidad electrónica calculada, excepto posiblemente en la vecindad del ion, donde la densidad obtenida con el pseudopotencial pudiera ser muy diferente de la calculada originalmente. Do ésta manera los efectos no lineales son parcialmente incluídos en el pseudopotencial.

En el método propuesto por Manninen el 4ℓ .⁽⁷⁾ se toma la transformada de Fourier de la densidad electrónica; utilizando ésta y la relación obtenida (de teoría de respuesta lineal y

teoría de perturbaciones a primer orden) entre el factor de forma no apantallado y la densidad electrónica para un pseudopotencial local, es posible determinar el potencial interiónico.

En éste trabajo seguimos este enfoque utilizado ya con bastante éxito para calcular las propiedades del Aluminio y Litio^{40,11,122}.

2.1 DENSIDAD ELECTRONICA.

Como ya se había mencionado anteriormente, el primer paso en el cálculo del potencial interiónico a través del formalismo del pseudopotencial es calcular la densidad electrónica alrededor de un ion en el metal.

2.1.1 MODELO DE UN ION EN UNA VACANCIA DE GELATINA.

Para calcular la densidad de carga utilizamos el modelo de vacancia de gelatina⁷⁷. En éste modelo se introduce um ion en un gas homogéneu de electrones con un fondo de carga positiva que toma en cuenta la presencia de los iones del arregio cristalino. Guando el ion es introducido en esta gelatina se produce un incremento local en la cantidad de carga positiva. Con el fin de mantener la cantidad correcta de carga , se remueve una cantidad de carga positiva de fondo: la contenida en una esfera de radio

igual al radio de Wigner-Seitz.

Con el fin de considerar en forma mas adecuada la distribución de carga en el sistema se calculó tambien la densidad que induciria la sola eliminación de un volumen de carga de fondo positiva igual al de una esfera cuyo radio es el de Wigner-Seitz, sin considerar la introducción de un ion.

Finalmente la densidad a utilizar se calculó restando a la densidad inducida por un ion en una vacancia la inducida por la sola vacancia⁽⁷⁾.

2.1.2 FORMALISMO HKS

El modelo de un ion en una vacancia de gelatina se utilizó conjuntamente con el formalismo de Hohenberg. Khon y Sham^(1,10) para determinar la denzidad de carga buscada,

El resultado central del formalismo HKS establece la existencia de un potencial local efectivo de un cuerpo, Y_{eff} (r) para los electrones, de tal munera que podemos establecer la siguiente ecuación de Schrödinger ^{61,72}

 $\int -\frac{1}{2} \nabla t + V_{\text{eff}}(r) = t_i \Phi_i(r)$

2.1

El potencial efectivo ésta dado por la expresión

$$V_{off}(r) = -\phi(r) + \frac{\delta E_{x_0}(r)}{\delta n(r)}$$

en donde $\phi(r)$ es el potencial electrostático total y $E_{xc}[n(r)]$ es la energía de intercambio-correlación de éste sistema. En el cálculo para la contribución de intercambio-correlación, utilizaremos la expresión dada por Gunnarson y Lundsquist⁴⁰, la cual en unidades atómicas tiene la forma

2.2

2.3

$$V_{HO}(r) = \frac{\delta E_{HO}(n(r))}{\delta n(r)} =$$
$$= -0.6109 \left\{ \frac{1}{r_{H}} + 0.0848 \ln \left(1 + \frac{11.4}{r_{H}} \right) \right\}$$

en donde
$$\frac{4\pi^{\frac{5}{2}}}{3} = \frac{1}{D}$$

Con la finalidad de que V_{eff} se anule para r grande, la contribución de intercambio-correlación debe ser reescalada⁴⁰⁰ a

$$V_{n}(r) \xrightarrow{} V_{n}(n(r)) - V_{n}(n_{n}) = 2.$$

donde n_o es la densidad positiva de fondo mencionada anteriormente.

El potencial electrostático obedece a la ecuación de Poisson

V2 6 = -4n DCr)

en donde D(r) es la densidad total de carga. Con la utilización del modelo de un ion en vacancia de gelatina, esta densidad tiene la forma

 $D(r) = Z \delta(r) + n_0 \delta(r - R_0) - n(r)$

en donde O es la función escalón y R_{ys} es el radio de Wigner-Seitz. La densidad inducida es calculada tomando la diferencia⁷⁷⁷

2. 5

2.0

$$5 n(r) = n(r) - n(r) - 2\Gamma |\Phi_1|^2 \qquad 2.$$

donde n(r) está dada por la ecuación de Poisson correspondiente. (2.50, y n_y es la densidad electrónica alrededor de la vacancia y que corresponde a la densidad de carga positiva de fondo dada por la expresión

$$D^{\dagger}(r) = n_{1} \Theta(r - R_{1})$$
 2.8

El subíndice b en la expresión (2.7) se refiere a estados electrónicos ligados.

En virtud de que el sistema es neutro se deberá satisfacer la siguiente ecuación

2.9

$$\int \delta n(r) dr = Z$$

en donde Z es la valencia del ion metálico.

2.1.3 EL CALCULO DE LAS DENSIDADES

El cálculo de las densidades electrónicas se realizó numéricamente de manera autoconsistente utilizando la máquina Burroughs B7800 de la U.N.A.M..

Los parámetros proporcionados para la realización del cálculo⁽¹⁾ fueron: r_{g} ,NPTS,NBLKS, DRI,Z, donde r_{g} es el radio de una esfera que contiene un electrón de valencia (radio de Wigner- Seitz), NPTS es el número de puntos en la red de cálculo numérico, NBLKS es el número de bloques utilizados para el cálculo, DRI es la separación entre los puntos donde se cálcula la densidad y Z es la carga del ion del metal. RMAX es un parámetro que se obtiene a partir de las anteriores cantidades y representa la distancia máxima hasta donde se calculan las densidades.Dado que se requerirá esta densidad hasta el infinito, despues de RMAX será tomada la forma asintótica

$$\delta n(r > RHAX) = A \frac{\cos(2k_{p}r + \theta)}{r^{2}}$$

2.10

Los parámetros $r_{\rm g}$ son 3.93, 4.80, 5.20 y 5.62 en unidades atómicas (1 u.a.= 0.529 A) para el sodio, potasio, rubidio y

cesio respectivamente. Para todos ellos se utilizo NPTS = 1500 y NBLKS=1. DRI fue igual a 0.01 para el sodio y el potasio, en tanto que para el rubidio y el cesio fue de 0.015. RMAX para el sodio y el potasio fue igual a 15 u.a., en tanto que para el rubidio y cesio fue de 22.5 u.a. La valencia Z evidentemente fue igual a 1 para todos los casos. A las densidades anteriormente calculadas nos referiremos como las pseudodensidades.

Las pseudodensidades correspondientes aparecen graficadas en las figuras 1-4. La convergencia obtenida entre dos iteraciones sucesivas fue tai que la diferencia entre las densidades correspondientes fue de 1 $\times 10^{-9}$ u.a.,

2.2 EL POTENCIAL INTERIÓNICO

Las pseudodensidades electrónicas inducidas del sodio , potasio, rubidio y cesio que fueron calculadas mediante el formalismo HKS presentan omcilacionem cerca del origen. En virtud de que las oscilacionem de este tipo están asociadas a estadom ligados y de que éstos no deben aparecer en la densidad electrónica si queremos tener un pseudopotencial débil , debemos eliminarlas. En esta eliminación seguimos el método propuesto por Manninen el al.⁽⁷⁷, sin la introducción de parámetros experimentablem ajustablem en el proceso de ésta eliminación. Con el fin de lograr esto se utiliza para la densidad electrónica

W

cerca del origen una expressión polinomial del tipo:

Las constantes A. B y Ro se determinan a partir de las condiciones de que $\delta n(r)$ y $\frac{\partial (\delta n(r))}{\partial r}$ son continuas en r= Ro y que la carga electrónica se conserve. Las constantes A. B y Ro para cada material aparecen en la tabla 1, en tanto que las pseudodensidades suavizadas están graficadas en las figuras 5-8.

El siguiente paso consistió en obtener la transformada de Fourier de la densidad suavizada. Como la integral debe ser tomada sobre todo el espacio, debemos utilizar la forma asintótica de la densidad para r > RMAX (expresión 2.10) para lo cual debemos específicar Λ y θ para cada material, las cuales se obtienen de las igualdades

42

$$\tan \theta = \frac{A_d \cos 2k_p r_2 - \cos 2k_p r_1}{A_d \sin 2k_p r_2 - \sin 2k_p r_1}$$

$$\delta n(r_{1}) = A \frac{\cos(2k_{1}r_{2} + \theta)}{r_{1}}$$

2.13

2.12

2.11

en donde r_i es la distancia del origen al punto donde se calcula el penúltimo valor de la densidad ;si RMAX es 15.0 u.a., r_i es igual a 14.99 u.a. y r_2 es igual a RMAX=15.0 u.a. CNa y K), en tanto que si RMAX es 22.5 u.a., r_i es 22.485 u.a. y r_2 es RMAX= 22.5 u.a.

2.14

Obtenida la transformada de Fourier de la pseudodensidad de carga, tenemos que en teoría de respuesta lineal y teoría de perturbaciones a primer orden, la relación que guarda dicha transformada de Fourier y la función dieléctricaesta dada por

$$\frac{4\pi \, \delta n(q) \kappa(q)}{q^2 \left(1 - \kappa(q)\right)}$$

en donde <k+q{w⁰}k> es el conocido factor de forma no apantaliado.

La función dieléctrica que se utilizó fue la de Gunnarson y Lundqvist $^{(7,10)}$, y satisface, por construcción, el teorema de compresibilidad, que es importante con respecto al

TABLA 1

PARÂMETROS UTILIZADOS DURANTE EL MODELAJE DE LA PSEUDODENSIDAD ELECTRONICA EN LA VECINDAD DEL ORIGEN, PARA LOS DIFERENTES NATERIALES ESTUDIADOS, EXPRESADOS EN LAS UNIDADES ATOMICAS CORRESPONDIENTES.

	A	В	Ro
SODIO	4.2433404 x 10 ⁻³	-3.4025570 × 10 ⁻⁵	2.020
POTASIO	2.7106991 × 10 ⁻³	-7.7274323 x 10 ⁻⁶	2. 930
RUBIDIO	2.2118299 × 10 ⁻⁵	-4.555526 x 10-4	3. 31 5
CESIO	1.6549429 x 10 ⁻³	-1.8131440 x 10 ⁻⁶	3.120

potencial interiónico, y que está dada por

$$e(q) = 1 + \frac{+\pi}{q^2} G(q)$$

en donde

$$G(q) = \frac{G_{0}(q)}{1 - \left(\frac{4\pi}{k_{p}^{2}}\right) G_{0}(q)(1 - L)}$$
 2.1

2.15

2.17

siendo $G_{c}(q)$ la polarizabilidad usual de Lindhard; k_{TF} es la constante de apantallamiento de Thomas-Fermi y L esta dada por

donde μ es el potencial químico y $\varepsilon_{\rm p}$ es la energía de Fermi. Tenemos que

$$\mu(r_{2}) = c_{1}(r_{2}) + \mu_{1}(r_{2})$$
 2.18

donde μ_{xc} es la contribución de intercambio-correlación al potencial químico.

Utilizando la expresión de Gunnarson-Lundqvist⁽¹⁰⁾para la contribución de intercambio-correlación, se tiene para L una expresión del tipo

$$L = 1 - \left[\frac{1}{9\pi^4}\right]^{L/3} r_g \left[1 + \frac{0.8213 r_g}{r_g + 11.4}\right]$$
 2.19

Un hecho importante respecto a la transformada de Fourier de la pseudodensidad electrónica inducida es que ésta debe tender a cero conforme q crece con el fin de asegurar la convergencia de la aproximación hecha al potencial interiónico. Para todos los cesos estudiados puede observarse que esto así sucede. Las gráficas de las transformadas de las pseduodensidades aparecen en las figuras 9-12.

Finalmente el potencial interiónico se obtuvo con la ecuación

FIGURA 10 - Gráfica de la transformada de Fourier de la peeudo densidad electrónica del potasio,

FIGURA 12 - Grdfica de la transformada de Fourier de la pseudo densidad electrónica del cesio. $\varphi(r) = \frac{Z^{2}}{r} \left(1 + \frac{2}{Z^{2}} \int_{0}^{\infty} \frac{sen(qr)s(q)[entrop]}{q[1 - s(q)]} \right)^{2} dq$

la cual está expresada en unidades atómicas (e=###m#1).

CAPITULO 3

RESULTADOS Y CONCLUSIONES

En el capítulo precedente ya se han calculado todas las componentes necesarias para poder determinar el potencial interiónico de los materiales investigados y estas componentes reunen todas las características adecuadas para su utilización; asi, a la pseudodensidad electrónica inducida calculada originalmente se le han eliminado las oscilaciones cerca del origen. Tambien cuando q se hace grande, la transformada de Fourier la pseudodensidad, δn(q) tiende a cero, hecho indispensable para la reslización de los cálculos.

Sustituyendo ahora en la expresión para el potencial interiónico obtenida en el capítulo 1 todas las cantidades previamente calculadas obtenemos el potencial para cada uno de los materiales en cuestión. Las gráficas de estos aparecen en las figuras 13-18, en donde pueden apreciarse sus características. Veamos caso por caso:

SODIO

El primer mínimo se encuentra en 7.2 u.a. en tanto que la profundidad es de 2.21 x 10^{-8} u.a., Los reportes existente nos dan, en el caso del potencial calculado por Pick^(d) un mínimo en 3.36 A, valor que representa 5.34 u.a., con una profundidad de ~0.156 eV lo cual es equivalente a ~ 5.73 x 10^{-8} u.a.

Utilizando el modelo de Shyu y Gaspari⁽⁶³⁾, el minimo se encuentra en 7.66 u.a. con una profundidad de -1.27 x 10^{-8} u.a.

Con el potencial calculado por Ho⁶⁰ el mínimo se encuentra en 7.72 u.a., con una profundidad de i.21 x 10⁻³ u.a.,

Finalmente cabe mencionar que el sodio tiene un parámetro de la red igual x 7.98 u.a.,

POTASIO

La localización del primer mínimo corresponde a una r igual a 9.1 u.a.y la profundidad de éste es igual a 2.16 x 10^{-9} u.a., En el potencial de Shyu y Gaspari ^(G) el primer mínimo se localiza en 9.35 u.a. con una profundidad igual a -0.83×10^{-6} u.a., Utilizando el potencial de Ho^(d) encontramos el mínimo en 9.52 u.a. y su profundidad es igual a -1.2×10^{-6} u.a., en tanto que con el potencial calculado por Dagens, Rasolt y Taylor⁽⁴⁵⁾ el mínimo se encuentra en 9.23 u.a. con una profundidad de -1.1×10^{-5} u.a., El parámetro de la red para el potasio es igual a 9.85 u.a.

RUBIDIO

El primer mínimo lo localizamos en 10.13 u.a. y presenta una profundidad de -0.77×10^{-6} u.a. En el potencial de Shyu y Gasparí⁶⁰ el mínimo se encuentra en 10.00 u.a. y tiene una profundidad de -0.78×10^{-6} u.a. Con el potencial de Ho⁶⁰ localizamos el mínimo en 10.20 u.a. y su profundidad es igual a -1.04×10^{-6} u.a. El parámetro de la red para éste material es igual a 10.54 u.a.

CESTO

En éste caso el primer mínimo ésta localizado en 12.10 u.a.; en éste potencial no podemos hablar de profundidad en el sentido que lo hicimos para los anteriores materiales, dada la forma que tiene éste, por lo cual no daremos ésta caracteristica para éste material. Con el potencial de Shyu y Gaspari⁽⁶⁰ el primer mínimo se encuentra en 10.90 u.a., en tanto que con el potencial de Ho⁽⁶⁰ se localiza en 11.41 u.a.,

Puede observarse claramente de lo expuesto anteriormente que los mínimos principales obtenidos en el presente trabajo concuerdan bastante bien con los resultados de otros métodos utilizados en la obtención del potencial interiónico.

Para poder hacer una evaluación más objetiva de qué tan correcto es el cálculo realizado habria que predecir algunas propiedades de los sistemas estudiados a partir de los potenciales obtenidos, trabajo que trasciende los alcances del presente cálculo. Estas propiedades son, por ejemplo: curvas de dispersión de fonones, calores específicos y propiedades de transporte.

APENDICE
APENDICE

Em potencial total que sienten los electrones está dado por la expresión

$$V(r) = v_{(\Delta n(r))} + v_{(n(r))} - (2Z/r) + v_{(r)}$$

donde $v_{ex}(\Delta n(r))$ es el potencial electrostático de los electrones, $v_{xc}(n(r))$ es el potencial de intercambiocorrelación, $\Delta n(r)$ es la densidad de carga de apantallamiento. Z es la carga del núcleo y $v_{ex}(r)$ está dado por la expresión:

$$v_{\text{ext}}(r) = -2 \int \frac{1}{n_{\text{ext}}(r, r)} dr,$$

y. es el potencial debido a una distribución de carga positiva n_{avi}(r).

La densidad de carga de apantallamiento está dividida en dos partes

donde $n_c(r)$ es la densidad de estados ligados y $n_c(r)$ es la densidad de electrones de valencia.

En el programa utilizado para calcular el potencial V se divide a este en dos contribuciones : VV el potencial de valencia y VCNEW el potencial de estados ligados, que estan dados por:

$$VV = v_{ab}(r_{v}(r)) - 2 \frac{(Z - QE)}{r} + v_{ab}(r)$$

en donde QE es el número de electrones ligados y v (n (r)) y $v_{ee}(n_{c}(r))$ son los potenciales $p=0 \lim_{z\to 0} e_{z}(r)$ son de los electrones de valencia y de los electrones ligados.

Cálculo de VCNEW.

$$VONEW* = -2 \left(\frac{r}{OE} - Q(r) + f(r) \right)$$

Dionde Q(r) y f(r) estan dadas por las expresiones

$$Q(r) = \int_{a}^{r} 4\pi r' = n_{c}(r') dr'$$

$$f(r) = \int_{-2}^{r} 4\pi n_{e}(r') dr$$

Finalmente VCNEW es obtenido agregando a VCNEW^{*} la energía de intercambio-correlación debida a los electrones ligados y de valencia. Cálculo de VV

El método para la conmvergencia de VV fue sugerido por J.Arponen, N.Manninen, R.Nieminen y P.Hautojari CPhys.Rew. B12, 4012(1973) D.

Escribimos la ecuación de Poisson en la forma

 $\nabla^2 \phi - Q^2 \phi = -4\pi \rho - Q^2 \phi$

ecuación que tiene la solución recursiva:

$$\phi^{(i)}(r) = \int \frac{e^{-Q[r-r']}}{4\pi[r-r']} \left(-4\pi n_{v}(r') + Q^{2}\phi^{(i-4)}(r') \right) dr' + \frac{Z - QE}{r} e^{-Qr}$$

En virtud de que la densidad n_uCr) es esféricamente simétrica necesitamos considerar solamente la componente de 0 de

para poder evaluar la integral. Por otro lado

$$g(r,r') = \frac{-Q[r-r']}{4\pi[r-r']}$$

solución de la ecuación: una

$$+ \int_{a}^{b} L_{1,2} \frac{\partial Q_{1}}{\partial Q_{1,2}} \left[-\frac{\partial Q_{1,2}}{\partial Q_{1,2}} - \frac{\partial Q_{1,2}}{\partial Q_{1,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{1,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{1,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} \right] \left[-\frac{\partial u u^{2}}{\partial Q_{2,2}} + \frac{\partial Q_{2,2}}{\partial Q_{2,2}} + \frac{\partial Q_{$$

• >

and deve and date

$$r_{\rm th}$$
 = -0 $r_{\rm tr}$ =

У

Q) G(r.r')

Escribiendo $\mathcal{C}(r,r') = \sum_{i} G_{i}(r,r') Y_{i}^{*}(r')Y_{i}(r)$

C 72

$$h^{(B)}(0r) = (a^{(D)})/(0r)$$

de lo cual obtenemos para
$$\phi^{(i)}$$
 la expressi

cual obtenemos para
$$\phi^{(i)}$$
 la expresión:

$$W_{n} = \frac{L}{e_{-}C_{L}} \int_{0}^{0} e_{-}C_{L} \left[\frac{4\pi L}{C} u^{-}(L, 2) + \frac{1}{2}C_{L} \cdot M_{n}(L, 2) \right] dL_{1} + \frac{1}{2}C_{L} \cdot M_{n}(L, 2) + \frac{1}{2}C_{L} \cdot M_{n}(L, 2) \right] dL_{1} - \frac{1}{2}C_{L} \cdot M_{n}(L, 2) + \frac{1}{2}C_{L} \cdot M_{n}(L, 2) + \frac{1}{2}C_{L} \cdot M_{n}(L, 2) \right] dL_{1} - \frac{1}{2}C_{L} \cdot M_{n}(L, 2) + \frac{1}{2}C_{L} \cdot M_{n}(L, 2)$$

POTENCI ALES EXTERNOS

Un potencial externo debido a una distribución de carga continua puede ser incluido en el cálculo:

$$\Lambda^{\text{ext}}(L) = -5 \int \frac{|L-L,|}{u^{\text{ext}}(L,j)} dL,$$

Por ejemplo, una vacancia en el metal puede ser modelada por un agujero esférico en la densidad positiva de fondo. Lo anterior es equivalente a una densidad positiva de fondo con un potencial externo debido a una esfera uniforme de carga negativa. El potencial debido a una esfera de carga negativa está dado por:

$$\phi(r) = \begin{cases} -\frac{Z_0}{2r_{VS}} \left(3 - \frac{r^2}{r_{VS}^2}\right) & r < r_{VS} \\ -\frac{Z_0}{r} & r > r_{VS} \end{cases}$$

donde $Z_0 = (4/3)n_0\pi r_{v_0}^s$ es la valencia del átomo, r_{v_0} es el radio de la esfera y n_0 la densidad de fondo positiva. El potencial que sienten los electrones es entonces:

reta tens no a.a. Skih da da a.c.letak

VEXT = -2¢(r)

Dado que el potencial externo total está incluido en el potencial de valencia, el potencial externo apantallado VEXTQ debe apantallarse debe calcularse evaluando

$$\operatorname{PEXTQ} = \frac{e^{-\mathbf{Q}\mathbf{r}}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{-\mathbf{Q}\mathbf{r}}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' - \frac{e^{-\mathbf{Q}\mathbf{r}}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' - \frac{e^{-\mathbf{Q}\mathbf{r}}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' - \frac{e^{-\mathbf{Q}\mathbf{r}}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' - \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' - \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' - \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' - \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \int_{0}^{t} e^{-\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac{e^{-\mathbf{Q}\mathbf{r}'}}{\mathbf{Q}\mathbf{r}'} \left\{ -4\pi\mathbf{r}' \mathbf{n}_{\mathsf{ext}}(\mathbf{r}') \right\} d\mathbf{r}' + \frac$$

Para el ejemplo anterior tenemos:

$$n_{excL}(r) = \begin{cases} -n_{o} & r < r_{ve} \\ 0 & r > r_{ve} \end{cases}$$

que al ser utilizado para evaluar VEXTO nos da por resultado: para r < r...

 $VEXTQ = \frac{1}{Q^2} \left[2 + \left[e^{-Qr} - e^{Qr} \right] \frac{e^{-Qr}ve}{r} \left[r_{ve} + \frac{1}{Q} \right] \right] 4\pi n_o$

ypara r≻r_{ua}

$$VEXTQ = \frac{\Phi^{-Qr}}{Q^2 r} \left[\Phi^{Qr} v^{a} \left[r_{va} + \frac{1}{Q} \right] + \Phi^{-Qr} v^{a} \left[r_{va} + \frac{1}{Q} \right] \right] 4\pi n_{a}$$

BIBLIOGRAFIA

- Areilano Peraza, Juan Salvador. Cálculo de la densidad electrónica en hidrogeno metálico con el formalismo H.K.S. Tesis profesional, Facultad de Ciencias, UNAM, 1981.
- 2 Ashcroft, N.W. y Mermin, N.D., Solid State Physics, Holt, Rinehart and Winston, New York, 1976.
- 3 Pilar, Frank L., Elementary Quantum Chemistry, McGraw-Hill, New York, 1969.
- 4 Madelung, Otfried. Solid-State Science 2. Introduction to Solid-State Theory, Springer-Verlag, New York, 1978.
- Barrison, Walter A., Pseudopotentials in theory of metals,
 W.A. Benjamin Inc. Publishers, 1988.

8 - Torrens, Ian M., Interatomic Potentials. Academic Press, 1972.

- 7 Manninon, H; Jona, P.; Hieminen R.H.; Lee J.K. Ad Initia calculation of interatomic potential and electronic properties of a simple metal Al. PHYSICAL REVIEW B 24, 7057(1981).
- 8 Rasolt, M. and Taylor, R. Physical Review B 11, 2717(1975).

- 9 Dagens,L., Rasolt, N. and Taylor, R., Physical Review B 11. 2720(1973)
- 10 MagaNa,L.F. and Vázquez,G.J.. #8 (nulls calculation of the specific heat of lithium. PHYSICAL REVIEW B 38,4700, (1987).
- 11 MagaNa,L.F. and Vázquez.G.J., A6 Inttle calculation of the phonon dispersion curve for lithium.JOURNAL DE PHYSIQUE,48, 2197(1983).
- 12 Vázquez, G. J. and Magaña, L.F. . st initis calculation of the pressure dependence of the phonons and elastic constants for Al and Li. JOURNAL DE PHYSIQUE, 49, 497 (1988).
- 13 Vázquez Fonseca, Gerardo Jorge. Un cálculo de primeros principios del calor especifico y de la temperatura de transición superconductora y su variación con la presión. Tesis doctoral, Facultad de Ciencias, UNAM, 1987.
- 14 Arellano Peraza, Juan Salvador. Cálculo de propiedades del hidrogeno metálico por medio de un pseudopotencial de primeros principios, Tesis doctoral, Facultad de Ciencias, UNAM, 1987.
- 15 Dagens, L., Rasolt, M. y Taylor, R. . Charge densisties and interionic potentials in simple metals: non-linear effects-II. no publicado, Oxfordshire, 1974.