

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO FACULTAD DE CIENCIAS

Existencia y Estabilidad de Pulsos Viajeros en la Ecuación de FitzHugh-Nagumo

Tesis

Que para obtener el título de

Matemático

Presenta

Eugenio Heriberto Durand Carbajal

México, D. F. 1988

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Indice

	Introducción					•,				•			•	•		٠.	. 1
).1	La ecuación de FitzHugh-Nagumo .																
	Estabilidad del pulso viajero																
	Capítulo 1																
	Existencia																
.1	Bloques																
2	Comportamiento en el caso singular				•						•						13
	Existencia en el caso no singular																
	Capítulo 2																
	Estabilidad	,					•										28
2.1	Preliminares																28
2.2	Localización aproximada de los eigenv	al	loi	es				•									33
	Apéndice																
	Teoría de grado							. •	•.		•		•	•			41
	Referencias										 	24					45

INTRODUCCION

En este trabajo estudiaremos soluciones de la ecuación de FitzHugh-Nagumo de la forma de ondas viajeras. Mostraremos la existencia de un pulso viajero y de soluciones periódicas. Haremos también algunas consideraciones sobre la estabilidad del pulso viajero con respecto a perturbaciones en las condiciones iniciales.

0.1 La ecuación de FitzHugh-Nagumo

Describir la manera en que un impulso nervioso viaja a lo largo de una neurona ha sido de gran interés para los fisiólogos. Experimentalmente se sabe que estos impulsos son diferencias de potencial en las neuronas, que viajan con velocidad constante sin distorsión de la forma o de la amplitud. También se ha determinado la existencia de un umbral de excitación debajo del cual no se produce ningún impulso nervioso, es decir que si el estímulo inicial no alcanza cierta intensidad el nervio no transmite información, y en caso contrario el estímulo inicial rápidamente toma la forma del impulso característico.

La ecuación de Hodgkin-Huxley [10] es el primer modelo de trasmisión nerviosa. Esta es una ecuación de difusión no lineal, en la que la no linealidad es la responsable del comportamiento descrito anteriormente. Esta no linealidad representa la corriente de iones a través de la membrana del axón de la neurona y proporciona la energía necesaria para mantener la forma y velocidad del pulso; sin este término la señal se disipa.

Sea V la diferencia de potencial a través de la membrana, C la capacitancia y R la resistencia de la membrana respectivamente, y g la corriente de iones a través de la membrana que depende tanto del voltaje como del transporte de iones de sodio, representado por m y h, y de iones de potasio, representado por n. Tenemos entonces

que la ecuación de Hodgkin-Huxley es

$$\frac{1}{R} \frac{\partial^{2} V}{\partial x^{2}} = C \frac{\partial V}{\partial t} + g(V, m, n, h)$$

$$\frac{\partial m}{\partial t} = \delta^{-1} \gamma_{m}(V) (m_{\infty}(V) - m)$$

$$\frac{\partial n}{\partial t} = \epsilon \gamma_{n}(V) (n_{\infty}(V) - n)$$

$$\frac{\partial h}{\partial t} = \epsilon \gamma_{h}(V) (h_{\infty}(V) - h)$$
(0.1)

donde la primera ecuación es la ley de Kirchoff y las restantes representan el comportamiento de la membrana; γ_m , γ_n , γ_h , m_{∞} , n_{∞} , h_{∞} se obtienen experimentalmente.

La solución numérica de estas ecuaciones produce resultados cercanos a los observados experimentalmente [10]. FitzHugh [11] propuso una simplificación de la ecuación al observar el mismo comportamiento en cierta clase de osciladores de van der Pol. Siguiendo esta idea Nagumo simuló el axón de una neurona con un circuito eléctrico. La ecuación de FitzHugh-Nagumo es

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(u) - w$$

$$\frac{\partial w}{\partial t} = \varepsilon (u - \gamma w)$$
(0.2)

donde f(u) = u(u-a)(1-u), $a < \frac{1}{2}$, $0 < \varepsilon \ll 1$, $0 < \gamma \ll 1$, y $x, t \in \mathbb{R}$. La relación con la ecuación de Hodgkin-Huxley está dada por el hecho que el comportamiento de V y m en (0.1) es similar y son representadas en (0.2) por u; lo mismo sucede para n y h y son representadas por w en (0.2).

Una onda viajera de (0.2) corresponde a una solución de la forma $(u(\xi), w(\xi))$, con $\xi = x - ct$ y por lo tanto satisface

$$u'' = -cu' - f(u) + w$$

$$w' = -\frac{\varepsilon}{c}(u - \gamma w)$$
(0.3)

donde ' denota derivada con respecto a ξ .

In pulso viajero es una solución de (0.3) que satisface $(u,w) \to (0,0)$ cuando $\xi \to \pm \infty$. En el capítulo 1 se mostrará la existencia de pulsos viajeros y de soluciones periódicas de la ecuación (0.3). Esto lo haremos estudiando la geometría del flujo para $0 < \varepsilon \ll 1$, a partir de la ecuación correspondiente a $\varepsilon = 0$, siguiendo la técnica de bloques utilizada por Carpenter [1].

0.2 Estabilidad del Pulso Viajero

En términos de las variables ($\xi = x - ct, t$), la ecuación (0.2) se transforma en

$$u_t = u_{\xi\xi} + cu_{\xi} + f(u) - w$$

$$w_t = cw_{\xi} + \varepsilon(u - \gamma w).$$
(0.4)

Sea $U_{\varepsilon}(\xi) = (u_{\varepsilon}(\xi), w_{\varepsilon}(\xi))$ un pulso viajero, y por lo tanto una solución estacionaria de (0.4). Jones [2] demuestra la estabilidad de U_{ε} en la ecuación (0.4). Al definir la estabilidad hay que tener en cuenta que cualquier traslación de U_{ε} es también solución estacionaria de (0.4), pues (0.3) es un sistema autónomo.

Definición. [2,3] El pulso viajero $U_{\varepsilon}(\xi)$ es estable si existe $\delta > 0$ tal que si $U(\xi,t)$ es una solución de (0.4) para la cual existe k_1 tal que

$$||U(\xi+k_1,0)-U_{\varepsilon}(\xi)||_{\infty}<\delta$$

entonces existe k2 tal que

$$||U(\xi+k_2,t)-U_{\varepsilon}(\xi)||_{\infty}\to 0$$
 si $t\to +\infty$.

Esto quiere decir que si U comienza cercana a alguna traslación de U_{ε} , entonces se comportara asintóticamente como algúna otra traslación de U_{ε} , si U_{ε} es estable en el sentido de la definición; esto refleja el hecho experimental que la forma y amplitud finales de la solución son las del pulso viajero.

La parte lineal de (0.4) alrededor de U_{ε} , está dada por el operador

$$L\binom{p}{r} = \binom{p_{\xi\xi} + cp_{\xi} + f'(u_{\varepsilon})p - r}{cr_{\xi} + \varepsilon(p - \gamma r)}.$$
 (0.5)

Notese que $L(\partial U_{\varepsilon}/\partial \xi) = 0$; esto refleja el hecho de que traslaciones de U_{ε} sean soluciones de (0.4). Evans [3, 5] demuestra que U_{ε} es estable en (0.4) si y solo si existen soluciones acotadas de

 $(L - \lambda I) \binom{p}{r} = 0 \tag{0.6}$

solamente para $\lambda=0$ o Re $\lambda<0$, y $\partial U_{\varepsilon}/\partial \xi$ es la única solución acotada para $\lambda=0$. Jones utiliza los resultados de Evans [3,4,5,6] junto con los resultados de Fife y McLeod [13] que muestran la estabilidad de ciertas soluciones heteroclínicas de (0.4) cuando $\varepsilon=0$. En el capítulo 2 expondremos brevemente los resultados utilizados y presentaremos la demostración de Jones que consiste en analizar la ecuación (0.6) utilizando la información de la ecuación correspondiente a $\varepsilon=0$.

CAPITULO 1 EXISTENCIA

Una onda viajera de la ecuación de FitzHugh-Nagumo es una solución de la forma $(u(\xi), w(\xi))$, donde $\xi = x - ct$. La ecuación (0.3) para las ondas viajeras se puede escribir como el sistema de primer orden

$$u' = v$$

$$v' = -cv - f(u) + w$$

$$w' = -\frac{\varepsilon}{c}(u - \gamma w).$$
(1.1)

En este capítulo estableceremos la existencia de soluciones homoclínicas al origen de (1.1) para una velocidad $c = \bar{c}(\varepsilon) < 0$. También mostraremos la existencia de soluciones periódicas de (1.1) para $\bar{c}(0) < c < 0$. Supondremos que $\varepsilon \ll 1$.

En la primera sección definiremos la noción de bloque para un sistema autónomo, para llegar a dos resultados que garantizan la existencia de soluciones homoclínicas y periódicas de una familia de sistemas autónomos.

En la segunda sección analizaremos el comportamiento del sistema (1.1) para $\varepsilon = 0$, y con esta información demostraremos las hipótesis necesarias para utilizar los resultados de la primera sección, para $\varepsilon \ll 1$.

1.1 Bloques

En esta sección consideramos sistemas autónomos de la forma

$$x' = G(x) \tag{1.2}$$

con $\Omega \subseteq \mathbb{R}^n$ y $G \in C^1(\Omega)$. Si $\varphi(t)$ es la solución de (1.2) tal que $\varphi(0) = x$, denotamos por $x \circ t = \varphi(t)$ al flujo del sistema.

Definición. Si \bar{x} es un punto de equilibrio de (1.2) las variedades inestable y estable $U(\bar{x})$ y $S(\bar{x})$ son

$$U(\bar{x}) = \{x \in \Omega \mid x \circ t \to \bar{x} \text{ cuando } t \to -\infty\}$$

$$S(\bar{x}) = \{x \in \Omega \mid x \circ t \to \bar{x} \text{ cuando } t \to +\infty\}.$$

Si la matríz $DG(\bar{x}) = (\partial G_i/\partial x_j)$ tiene k valores propios con parte real positiva y n-k valores propios con parte real negativa, entonces $U(\bar{x})$ y $S(\bar{x})$ son variedades invariantes de dimensión k y n-k respectivamente. [8].

Definición. Sean \bar{x} y \bar{x} dos puntos de equilibrio de (1.2). Decimos que $x \circ \mathbb{R}$ es una colución heteroclínica de \bar{x} a \bar{x} si $x \in U(\bar{x}) \cap S(\bar{x})$, es decir

$$\lim_{t\to-\infty}x\circ t=\bar{\bar{x}}, \lim_{t\to+\infty}x\circ t=\bar{x}.$$

 $x \circ \mathbb{R}$ es una solución homoclínica a \bar{x} si $x \in U(\bar{x}) \cap S(\bar{x}) \setminus \{\bar{x}\}$, es decir

$$\lim_{t \to -\infty} x \circ t = \lim_{t \to +\infty} x \circ t = \bar{x}.$$

 $x \circ \mathbb{R}$ es una solución periódica si $x \circ t = x$ para alguna $t \neq 0$.

Ejemplo. Consideremos

$$x' = y$$

$$y' = x.$$
(1.3)

El punto (0,0) es un punto silla y (ver figura 1.1)

$$U(0,0) = \{(x,y) \mid x = y\}$$

$$S(0,0) = \{(x,y) \mid x = -y\}.$$

Los conceptos de llegada y salida que se definen a continuación se refieren al bloque B.

Definición. $B \subset \mathbb{R}^n$ es un bloque para (1.2) si existen funciones $f_1, \ldots, f_N : \mathbb{R}^n \to \mathbb{R}$ de clase C^1 tales que $B = \bigcap_{i=1}^N f_i^{-1}([0,\infty))$, B es homeomorfo a $[0,1]^n$, y $\nabla f_i \cdot G \neq 0$ en ∂B .

La condición $\nabla f_i \cdot G \neq 0$ garantiza que el flujo es transversal a ∂B . Esto será importante.

El conjunto de entrada b⁺ es

$$b^+ = \{x \in \partial B \mid f_i(x) = 0 \text{ y } \nabla f_i \cdot G > 0, \text{ para alguna } i\}.$$

El conjunto de salida b es

$$b^- = \{x \in \partial B \mid f_i(x) = 0 \text{ y } \nabla f_i \cdot G < 0, \text{ para alguna } i\}.$$

Ejemplo. Consideremos nuevamente el sistema (1.3) del ejemplo anterior. Sea

$$B = \{(x,y) \mid |x| + |y| \le 1\}.$$

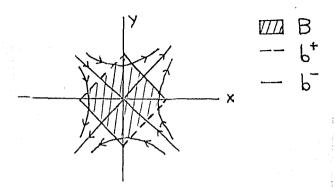


Figura 1.1

B es un bloque para (1.3). Los conjuntos de entrada y de salida son como en la figura 1.1.

Sea

$$C = \{(x,y) \mid |x-2| \le 1, |y| \le 1\}.$$

C no es un bloque para (1.3). Nótese que hay órbits que no son transversales a ∂C , y que las órbitas de puntos cercanos no siempre intersectan a ∂C en puntos cercanos, como se ve en la figura 1.2.

Definición. El tiempo de llegada de x es

$$T^{+}(x) = \begin{cases} 0 & \text{si } x \in b^{+} \\ \sup\{t > 0 \mid x \circ (0, t) \cap b^{+} = \emptyset\} & \text{si } x \notin b^{+}. \end{cases}$$

El tiempo de salida de x es

$$T^{-}(x) = \begin{cases} 0 & \text{si } x \in b^{-} \\ \sup\{t > 0 \mid x \circ (0, t) \cap b^{-} = \emptyset\} & \text{si } x \notin b^{-}. \end{cases}$$

Sean

$$D^{+} = \{x \in \Omega \mid 0 < T^{+}(x) < +\infty, z \circ T^{+}(x) \notin b^{-}\},$$

$$D^{-} = \{x \in \Omega \mid 0 < T^{-}(x) < +\infty, z \circ T^{-}(x) \notin b^{+}\},$$

y definimos el punto de llegada de x a B como

$$\phi^{+}: D^{+} \to b^{+}, \quad \phi^{+}(x) = z \circ T^{+}(x),$$

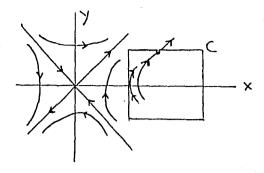


Figura 1.2

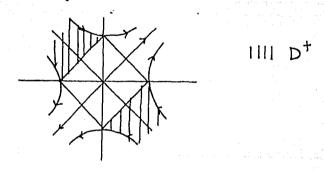


Figura 1.3

y el punto de salida de x de B como

$$\phi^-: D^- \to b^-, \quad \phi^-(x) = x \circ T^-(x).$$

Ejemplo. En el sistema (1.3) de los ejemplos anteriores, tenemos que D^+ es la región sembreada en la figura 1.3 y $D^- = (D^+ \cup B) \setminus (b^- \cup S(0,0))$.

Mostraremos ahora que el punto de llegada o salida de x a un bloque depende continuamente de x, como consecuencia de la transversalidad de las órbitas a ∂B .

Teorema 1.1 Para B un bloque de (1.2), T^{\pm} y ϕ^{\pm} son continuas en D^{\pm} . Demostración: Sean $x \in D^+$ y $\varepsilon > 0$. Tenemos que $x \circ (T^+(x) - \varepsilon, T^+(x) + \varepsilon) \cap b^+ \neq \emptyset$. Por la continuidad del flujo y la transversalidad de las órbitas a b^+ , podemos encontrar U vecindad de x tal que si $y \in U$ entonces $y \circ (T^+(x) - \varepsilon, T^+(x) + \varepsilon)$ intersecta a b^+ . Conce $x \circ [0, T^+(x) - \varepsilon] \cap B = \emptyset$, escogemos U de tal forma que $y \circ [0, T^+(x) - \varepsilon] = \emptyset$ si $y \in U$. De esto se sigue que

$$|T^+(y) - T^+(x)| < \varepsilon,$$

si $y \in U$. Como ε es arbitraria, T^+ es continua. Ver la figura 1.4. Por ser ϕ^+ composición de funciones continuas, es continua. El mismo argumento muestra que T^- y ϕ^- son continuas.

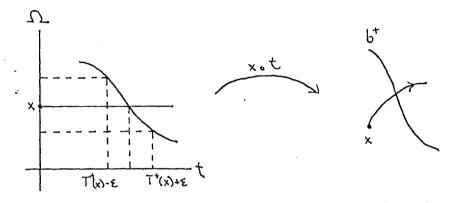


Figura 1.4

Extenderemos ahora estos conceptos a sistemas autónomos parametrizados continuamente por un parámetro $\sigma \in \mathbb{R}^k$

$$x' = G(x, \sigma), \tag{1.4}$$

donde G es continua en σ (y diferenciable en x). De la transversalidad del flujo, se tiene que si B es un bloque para (1.4) con $\sigma = \sigma^*$, entonces también lo es para (1.4) si $|\sigma - \sigma^*|$ es pequeño; tampoco b^+ y b^- varían.

 \mathbb{S}_{σ} a B un bloque para (1.4) con $\sigma \in \Sigma$. Consideremos

$$T^{\pm}(x,\sigma) \equiv T^{\pm}(x) \text{ en (1.4) con } \sigma \in \Sigma$$

 $\phi^{\pm}(x,\sigma) \equiv \phi^{\pm}(x) \text{ en (1.4) con } \sigma \in \Sigma$.

Entonces

Proposición 1.2. $T^{\pm}(x,\sigma)$ y $\phi^{\pm}(x,\sigma)$ son continuas en x y en σ . Demociación: Es consecuencia inmediata del teorema 1.1, considerando $T^{\pm}(x,\sigma)$ y $\phi^{\pm}(x,\sigma)$ en el sistema

$$x' = G(x, \sigma)$$
$$\sigma' = 0.$$

Los siguientes dos teoremas garantizan la existencia de soluciones homoclínicas o periódicas, bajo la hipótesis de la existencia de ciertos bloques. En estos teoremas si B_i es un bloque, llamaremos b_i^{\pm} a los conjuntos de entrada y salida de B_i , $T_i^{\pm}(x,\sigma)$ los tiempos de entrada y salida de B_i , y $\phi_i^{\pm}(x,\sigma)$ con sus respectivos dominios D_i^{\pm} los puntos de entrada y salida de B_i .

Teorema 1.3(Soluciones homoclínicas de $(1.4, \sigma)$). Si existen bloques B_1 y B_2 para (1.4) con $\sigma \in \Sigma$ tales que:

- A. \bar{x} es punto de equilibrio de $(1.4, \sigma)$ para toda $\sigma \in \Sigma$ y $x \circ [0, \infty) \subset B_1$ implica que $x \in S(\bar{x})$.
- B. Ninguna semiórbita positiva está contenida en B_2 .
- C. Existe $\Delta \subset b_2^-$ abierto relativo de b_2^- tal que
 - i. $\Delta \subseteq D_1^+$
 - ii. $b_2^- \setminus \Delta$ tiene dos componentes β_0 y β_1
 - iii. $\delta_0 \equiv \beta_0 \cap \overline{\Delta} \subset D_1^-, \ \delta_1 \equiv \beta_1 \cap \overline{\Delta} \subset D_1^-$
 - iv. $\phi_1^- \circ \phi_1^+(\delta_0)$ y $\phi_1^- \circ \phi_1^+(\delta_1)$ están en distintas componentes de b_1^- .
- **D.** Existe una trayectoria $\{(x_s, \sigma_s) \mid x_s \in D_2^+, \sigma_s \in \Sigma, 0 \le s \le 1\}$ tal que
 - i. $x_s \in U(\bar{x})$ en (1.4) con $\sigma = \sigma_s$
 - ii. $\phi_2^- \circ \phi_2^+(x_0, \sigma_0) \in \beta_0, \phi_2^- \circ \phi_2^+(x_1, \sigma_1) \in \beta_1.$

Entonces (1.4) admite una solución homoclínica a \bar{x} con $\sigma = \sigma_s$ para alguna s.

Antes de demostrar el teorema explicaremos el significado de cada una de las condiciones impuestas a los bloque B_1 y B_2 . La condición A nos garantiza que las únicas soluciones contenidas en B_1 pertenecen a la variedad estable de \bar{x} , lo que implica que si $x \in D_1^+$ pero $x \notin D_1^-$ entonces $\lambda \in S(\bar{x})$. Lo que dice la condición B es que todas las órbitas que entran a B_2 bajo el flujo, salen de B_2 . La condición C se entiende facilmente siguiendo la figura 1.5; lo que nos dice es que lo que sale de B_2 por $\Delta \subset b_2^-$ entra a B_1 , y que las componentes de la frontera de Δ salen de B_1 por distintas componentes de b_1^- . Por último, la condición D pide la existencia de una curva continua de puntos x_{δ} en la variedad inestable de \bar{x} para cada valor de σ_{δ} ; además los extremos de esta trayectoria salen de B_2 por distintas componentes de $b_2^- \setminus \Delta$. En la figura estos puntos de salida son γ_0 y γ_1 . La demostración consistirá en fijarse en la imagen de esta trayectoria bajo el flujo.

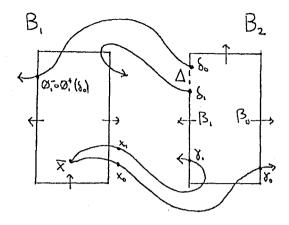


Figura 1.5

Demostración: Consideremos la trayectoria $\gamma_s = \phi_2^- \circ \phi_2^+(x_s, \sigma_s)$ en b_2^- , la imagen bajo $\phi_2^- \circ \phi_2^+$ de la trayectoria de la condición D. Por lo tanto $\gamma_0 \in \beta_0$ y $\gamma_1 \in \beta_1$. Por continuidad, γ_s intersecta a δ_0 y δ_1 ; scan s_0 , $s_1 \in (0,1)$ tales que $\gamma_{s_0} \in \delta_0$, $\gamma_{s_1} \in \delta_1$. Como $\phi_1^- \circ \phi_1^+(\gamma_{s_0})$ y $\phi_1^- \circ \phi_1^+(\gamma_{s_1})$ están en distintas componentes de b_1^- , existe $s^* \in (s_0, s_1)$ tal que $\gamma_{s^*} \in \Delta \subset D_1^+$ pero $\gamma_{s^*} \notin D_1^-$. De la condición A concluimos que $x_{s^*} \circ t \to \bar{x}$ cuando $t \to +\infty$ en $(1.4, \sigma_{s^*})$. Esta es la solución homoclínica.

Antes de enunciar y demostrar el teorema para órbitas periódicas mostraremos un lema que garantiza la existencia de puntos fijos de funciones continuas bajo las hipótesis que tendremos en la demostración del teorema. En la demostración de este lema utilizaremos teoría de grado. En el apéndice hacemos un breve desarrollo de esta.

Lema 1.4 Sea $f:[0,1]^{n-2}\times[0,1]\to(0,1)^{n-2}\times[-1,2]$ tal que $f(x,0)\in(0,1)^{n-2}\times[-1,0)$ y $f(x,1)\in(0,1)^{n-2}\times(1,2]$ para toda $x\in[0,1]^{n-2}$. Entonces existe (\bar{x},\bar{t}) tal que $f(\bar{x},\bar{t})=(\bar{x},\bar{t})$.

Demostración: Sea $X = (0,1)^{n-2} \times (0,1)$. Calculemos grad(f-I,X,0). Sea

$$f_1: \overline{X} \to (0,1)^{n-2} \times [-1,2]$$

 $f_1(x,t) = (\frac{1}{2}, \dots, \frac{1}{2}, 2t - \frac{1}{2}).$

Consideremos $F_s = (1-s)(f-I) + s(f_1-I) = (1-s)f + sf_1-I$; vamos a verificar que $0 \notin F_s(\partial X)$ en los distintos casos.

Sea $(x,t) \in \partial X$. Si $(x,t) \in [0,1]^{n-2} \times \{0\}$, entonces

$$f(x,t) \in (0,1)^{n-2} \times [-1,0)$$

$$f_1(x,t) = (\frac{1}{2}, \dots, \frac{1}{2}, -\frac{1}{2}) \in (0,1)^{n-2} \times [-1,0).$$

Entoness por convexidad $(1-s)f(x,t)+sf_1(x,t)\neq (x,t)$ para toda $s\in [0,1]$.

Si $(x,t) \in \partial([0,1]^{n-2}) \times [0,1]$ entonces $f(x,t) \in (0,1)^{n-2} \times [-1,2]$ y $(1-s)f(x,t) + sf_1(x,t) \neq (x,t)$ para toda $s \in [0,1]$. Los otros dos casos restantes son iguales a los anteriores.

 $(f_1 I)(x,t) = ((\frac{1}{2} \dots \frac{1}{2}) - x, t - \frac{1}{2})$ por lo que grad $(f_1 - I, X, 0) = (-1)^{n-2}$. Por lo tanto

$$\operatorname{grad}(f-I,X,0) = \operatorname{grad}(f_1-I,X,0) = (-1)^{n-2}$$

y por lo tanto existe (\bar{x}, \bar{t}) tal que $(f - I)(\bar{x}, \bar{t}) = 0$.

Demostraremos ahora el teorema que garantiza la existencia de soluciones periódicas

Teorema 1.5 (Soluciones Periódicas de (1.4)).

Si existen bloques disjuntos B_1 , B_2 para (1.4) con $\sigma \in \Sigma$ fija tales que:

- A. Ninguna semiórbita positiva está contenida en B_1 o B_2 .
- B. Existen $\Gamma \subset b_1^- \cap D_2^+$, $\Delta \subset b_2^- \cap D_1^+$ tales que
 - i. $(b_1^- \setminus \Gamma)$ tiene dos componentes α_0 y α_1 .
 - ii. $(b_2^- \setminus \Delta)$ tiene dos componentes β_0 y β_1 .
 - iii. Si $\gamma_i \equiv \alpha_i \cap \overline{\Gamma}$, $\delta_i \equiv \beta_i \cap \overline{\Delta}$, para i = 1 o 0 entonces

$$\phi_2^- \circ \phi_2^+(\gamma_i) \subset \operatorname{int}(\beta_i)$$

$$\phi_1^- \circ \phi_1^+(\delta_i) \subset \operatorname{int}(\alpha_i)$$

C. Existen homeomorfismos

$$h_j: b_j^- \to [0,1]^{n-2} \times [-1,2]$$

tales que

$$h_1(\Gamma) = [0,1]^{n-2} \times (0,1)$$

$$h_1(\gamma_i) = [0,1]^{n-2} \times \{i\}$$

$$h_2(\Delta) = [0,1]^{n-2} \times (0,1)$$

$$h_2(\delta_i) = [0,1]^{n-2} \times \{i\}.$$

Entonces (1.4) admite una solución periódica.

Como en el teorema anterior veremos lo que significan cada una de las condiciones. La condición A nos dice que todas las órbitas que entran a los bloques bajo el flujo, salen de los bloques. La condición B se entiende siguiendo las figuras 1.6 y 1.7. La condición C la requerimos para utilizar el lema anterior y poder mostrar la existencia de un punto fijo del flujo; lo que dice es que los conjuntos de salida de los bloques son como en la figura 1.7.

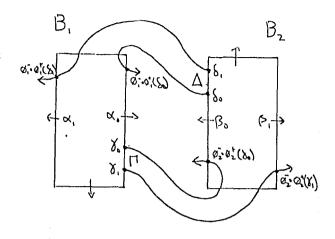


Figura 1.6

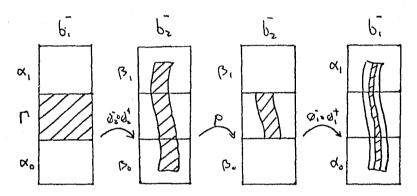


Figura 1.7. La función f de la demostración del teorema 1.5.

Demostración: consideremos $p: b_2^- \to \overline{\Delta}$ la función continua dada por

$$p(x) = \begin{cases} h_2^{-1} \circ p_0 \circ h_2(x) & \text{si } x \in \overline{\beta_0} \\ x & \text{si } x \in \overline{\Delta} \\ h_2^{-1} \circ p_1 \circ h_2(x) & \text{si } x \in \overline{\beta_1} \end{cases}$$

donde p_0 y p_1 son las proyecciones

$$p_0(x,t)=(x,0), \qquad p_1(x,t)=(x,1);$$

es decir, $p(x) \in \delta_i$ si $x \in \overline{\beta_i}$. Consideremos la función $f \equiv \phi_1^- \circ \phi_1^+ \circ p \circ \phi_2^- \circ \phi_2^+ : \overline{\Gamma} \to b_1^-$. Observamos que se satisface

$$\begin{array}{ccc} \phi_2^- \circ \phi_2^+(\gamma_i) & \subset \operatorname{int}(\beta_i) \\ \Rightarrow & p \circ \phi_2^- \circ \phi_2^+(\gamma_i) & \subset \delta_i \\ \Rightarrow & \phi_1^- \circ \phi_1^+ \circ p \circ \phi_2^- \circ \phi_2^+(\gamma_i) & \subset \operatorname{int}(\alpha_i). \end{array}$$

Por lo tanto $h_1 \circ f \circ h_1^{-1}$ satisfacen las hipótesis del lema 1.4 ya que

$$h_1^{-1}([0,1]^{n-2} \times \{0\}) = \gamma_0$$

$$\Rightarrow f \circ h_1^{-1}([0,1]^{n-2} \times \{0\}) \subset \operatorname{int}(\alpha_0)$$

$$\Rightarrow h_1 \circ f \circ h_1^{-1}([0,1]^{n-2} \times \{0\}) \subset (0,1)^{n-2} \times [-1,0)$$

y de manera similar obtenemos

$$h_1 \circ f \circ h_1^{-1}([0,1]^{n-2} \times \{1\}) \subset (0,1)^{n-2} \times (1,2].$$

Por lo tanto, por ser h_1 homeomorfismo, f tiene un punto fijo \bar{x} . Vamos a mostrar que este punto fijo de f es punto fijo del flujo. Si $\bar{x} \in \overline{\Gamma}$ es tal que $\phi_2^- \circ \phi_2^+(\bar{x}) \notin \overline{\Delta}$ entonces $f(\bar{x}) \in \operatorname{int}(\alpha_0) \cup \operatorname{int}(\alpha_1)$; como $\overline{\Gamma} \cap \operatorname{int}(\alpha_i) = \emptyset$ entonces \bar{x} no puede ser un punto fijo. Por lo tanto $\phi_2^- \circ \phi_2^+(\bar{x}) \in \overline{\Delta}$ y en este caso $f(\bar{x}) = \phi_1^- \circ \phi_1^+ \circ \phi_2^- \circ \phi_2^+(\bar{x}) = \bar{x}$. Por lo tanto $\bar{x} \circ \mathbb{R}$ es la solución periódica.

1.2. Comportamiento en el caso singular

En esta sección consideraremos el sistema (1.1) para $\varepsilon = 0$

$$u' = v$$

 $v' = -cv - f(u) + w$ (1.5)
 $w' = 0$

Los planos w= cte son invariantes, por lo que en esta sección consideraremos el sistema

$$u' = v$$

 $v' = -cv - f(u) + w.$ (1.6)

Sean w_{\min} y w_{\max} tales que f(u) = w tiene tres raíces $u_1(w)$, $u_2(w)$, $u_3(w)$ si $w_{\min} < w < w_{\max}$ (figura 1.8).

Mostraremos que para cada $w_{\min} < w < w_{\max}$ existe una velocidad $\bar{c} = \bar{c}(w)$ para la cual el sistema (1.6) tiene una órbita heteroclínica. Despues estudiaremos el comportamiento de (1.6) para $c = \bar{c}(w)$ y c cercana a este valor.

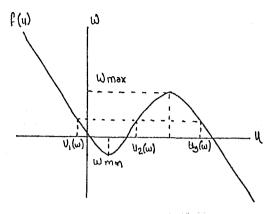


Figura 1.8

Proposición 1.6. Existe un w_0 , $w_{\min} < w_0 < w_{\max}$, tal que para cada $w_{\min} < w < w_{\max}$, $w \neq w_0$, el sistema (1.6) admite una solución heteroclínica de $u_1(w)$ a $u_3(w)$ si $w_{\min} < w < w_0$ y admite una solución heteroclínica de $u_3(w)$ a $u_1(w)$ si $w_0 < w < w_{\max}$, para cierta c = c(w) < 0.

Demostración: Una solución de (1.6) tal que $u' \neq 0$ debe satisfacer

$$v\frac{dv}{du} + cv = -f(u) + w, \tag{1.7}$$

recordando que $f(u) = u(u-a)(1-u) = -u^3 + (1+a)u^2 - au$. Una órbita heteroclínica de (1.6) corresponde a una solución de (1.7) tal que $v(u_1(w)) = 0$ y $v(u_3(w)) = 0$. Buscaremos soluciones de la forma

$$v = \alpha(u - u_1)(u - u_3).$$

Calculando tenemos

$$v\frac{dv}{du} + cv = \alpha(u - u_1)(u - u_3)(2\alpha u - \alpha(u_1 + u_3)) + c\alpha(u - u_1)(u - u_3)$$

= $2\alpha^2(u - u_1)(u - u_3)\left(u - \left(\frac{u_1 + u_3}{2} - \frac{c}{2\alpha}\right)\right).$

Como $-f(u) + w = (u - u_1)(u - u_2)(u - u_3)$, sustituyendo en (1.7) tenemos

$$2\alpha^{2}(u-u_{1})(u-u_{3})\left(u-\left(\frac{u_{1}+u_{3}}{2}-\frac{c}{2\alpha}\right)\right)=(u-u_{1})(u-u_{2})(u-u_{3}).$$

Despejando y utilizando que $u_1 + u_2 + u_3 = 1 + a$, ya que las u_i son las raíces de f(u) = w, obtenemos

$$\alpha = \pm \sqrt{\frac{1}{2}} \qquad \bar{c}(w) = \alpha(1+a-3u_2(w)).$$

Como
$$f'(u) = -3u^2 + 2(1+a)u - a$$
 y $f'(w_{\min}) = f'(w_{\max}) = 0$, tenemos que $u_1(w_{\min}) = u_2(w_{\min}) = \frac{1+a-\sqrt{a^2-a+1}}{3}$, $u_3(w_{\max}) = u_2(w_{\max}) = \frac{1+a+\sqrt{a^2-a+1}}{3}$.

Por lo tanto tenemos que $\bar{c}(w_{\min}) = -\alpha\sqrt{a^2 - a + 1}$, $\bar{c}(w_{\max}) = \alpha\sqrt{a^2 - a + 1}$. Sea w_0 tal que $\bar{c}(w_0) = 0$, que es único por ser $u_2(w)$ función monótona creciente de w.

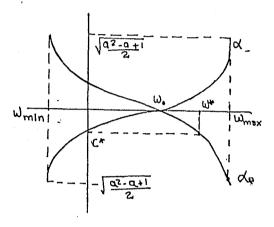


Figura 1.9

Entonces una solución de

$$u' = \alpha(u - u_1)(u - u_3),$$

que es integrable por cuadraturas, corresponde a una solución heteroclínica de (1.6) para $c=\bar{c}(w)$. Como queremos $\bar{c}(w)<0$, si $w_{\min}< w< w_0$ entonces tenemos que escoger $\alpha=\alpha_-=-\sqrt{1/2}$ lo que nos da una solución heteroclínica de u_1 a u_3 . Si $w_0< w< w_{\max}$ hay que escoger $\alpha=\alpha_+=+\sqrt{1/2}$, y tenemos una solución heteroclínica de u_3 a u_1 . La figura 1.10 muestra las gráficas de $\bar{c}=\bar{c}(w)$.

En particular para w=0 y $c^*=\bar{c}(0)=-\sqrt{2}(\frac{1}{2}-a)$ hay una solución heteroclínica de (0,0) a (1,0). Para esta misma c^* , y $w=w^*=f((2-a)/3)$ hay una solución heteroclínica de $(u_3,0)$ a $(u_1,0)$, donde w^* satisface $c^*=\bar{c}(w^*)$.

McKean [9] analiza el sistema (1.6) para $w_{\min} < w < w_0$, primero con $c = \bar{c}(w)$ y luego $|c - \bar{c}(w)| \ll 1$. El caso $w_0 < w < w_{\max}$ es completamente análogo. Hacemos este análisis a continuación.

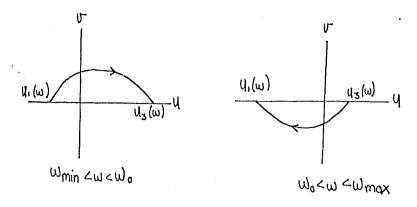


Figura 1.10

Los puntos críticos de (1.6) son $(u_i(w), 0)$ i = 1, 2, 3. La parte lineal del sistema en estos puntos está dada por

$$\begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -f'(u_i) & -c \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

Los eigenvalores están dados por

$$\lambda = \frac{-c \pm \sqrt{c^2 - 4f'(u_i)}}{2}$$

 $f'(u_1) < 0$, $f'(u_3) < 0$ por lo que $(u_1,0)$ y $(u_3,0)$ son puntos silla. $f'(u_2) > 0$ y por lo tanto $c^2 - 4f'(u_2) < c^2$ y Re $\lambda > 0$ (si c < 0). Por lo tanto $(u_2,0)$ cs un punto repulsor.

La divergencia del campo vectorial dado por (1.6) es -c, por lo que no hay soluciones periódicas.

Integrando (1.6) tenemos que una solución (u(t), v(t)) debe satisfacer

$$\frac{v^2}{2}\Big|_{t_0}^{t_1} = -\int_{u(t_0)}^{u(t_1)} (f(u) - w) du - c \int_{t_0}^{t_1} v^2 dt$$
 (1.7)

Por lo que si $v(t_0) = v(t_1) = 0$ entonces $u(t_0)$ y $u(t_1)$ deben satisfacer que $\int_{u(t_0)}^{u(t_1)} (f(u) - w) du > 0$.

Utilizando estos resultados y los de la proposición 1.6 tenemos que para $c = \bar{c}(w)$ el sistema se comporta como en el esquema de la figura 1.11.

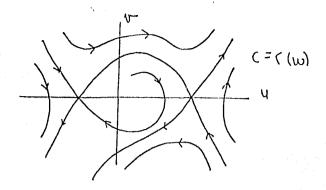


Figura 1.11

Analicemos ahora el caso $|c - \bar{c}(w)|$ pequeño. Si consideramos la curva $v = \sqrt{1/2}(u - u_1)(u - u_3)$, que es la órbita heteroclínica en el caso c = c(w), el campo vectorial del sistema (1.6) apunta hacia abajo o hacia arriba de esta curva para $u_1 < u < u_3$, según c(w) < c o c < c(w):

$$\begin{pmatrix} -\frac{dv}{du} \\ 1 \end{pmatrix} \cdot \begin{pmatrix} v \\ -f(u) + w - cv \end{pmatrix} = -v \frac{dv}{du} - cv - f(u) + w$$
$$= (c(w) - c)v.$$

La variedad inestable es tangente al eigenvector $(1, \lambda_+)$ correspondiente a λ_+ el eigenvector positivo. Observamos que λ_+ es función monótona decreciente de c. Utilizando esta información y analizando como en el caso anterior, tenemos que el sistema se comporta como en los esquemas de las figuras 1.12 y 1.13.

Llamaremos una solución homoclínica singular a

$$S_0 = J_F \cup E_R^* \cup J_B \cup E_L^*$$

donde

$$E_R^* = \{(u, v, w) \mid v = 0, 0 \le w \le w^*, u = u_3(w)\}$$

$$E_L^* = \{(u, v, w) \mid v = 0, 0 \le w \le w^*, u = u_1(w)\}$$

$$J_F = \{(u, v, w) \mid v = -\frac{1}{\sqrt{2}}u(u - 1), 0 \le u \le 1, w = 0\}$$

$$J_B = \{(u, v, w) \mid v = \frac{1}{\sqrt{2}}(u - u_1(w^*))(u - u_3(w^*)), u_1(w^*) \le u \le u_3(w^*), w = w^*\}$$

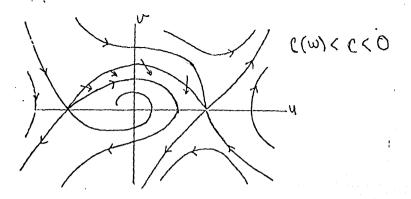


Figura 1.12

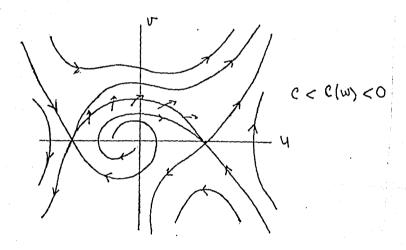


Figura 1.13

 J_F corresponde a la órbita de la solución heteroclínica de (0,0) a (1,0) de (1.6) para $c=c^*$, w=0. J_B corresponde a la órbita de la solución heteroclínica de $(u_3(w^*),0)$ a $(u_1(w^*),0)$ de (1.6) para $c=c^*$, $w=w^*$. Ver la figura 1.14. Utilizaremos esta notación en lo que resta de este capítulo y en el siguiente. S_0 nos permitirá construir los bloques necesarios para la demostración de la existencia de una órbita homoclínica, que es una perturbación de esta órbita singular.

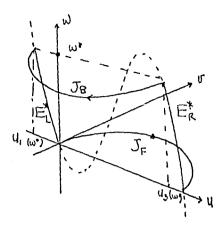


Figura 1.14

1.3 Existencia en el caso no singular

En esta sección mostraremos la existencia de una solución homoclínica al origen de la ecuación (1.1), asi como de soluciones periódicas. La técnica será utilizar los teoremas 1.3 y 1.5 respectivamente. Construiremos los bloques correspondientes y para verificar que se satisfacen las hipótesis necesarias utilizaremos la información del sistema para $\varepsilon = 0$ que se obtuvo en el caso anterior.

Mostraremos primero la dependencia continua de la variedad inestable del origen con respecto a los parámetros ε y c. Consideremos la ecuación (1.1)

$$u' = v$$

$$v' = -cv - f(u) + w$$

$$w' = -\frac{\varepsilon}{c}(u - \gamma w).$$
(1.8)

Si

$$B_{\varepsilon} = \begin{pmatrix} 0 & 1 & 0 \\ a & -c & 1 \\ -\varepsilon/c & 0 & \varepsilon\gamma/c \end{pmatrix}, \quad U(\xi) = \begin{pmatrix} u(\xi) \\ v(\xi) \\ w(\xi) \end{pmatrix}, \quad G(U) = \begin{pmatrix} 0 \\ -(1+a)u^2 + u^3 \\ 0 \end{pmatrix}$$

entonces escribimos (1.8) como

$$U' = B_{\varepsilon} U + G(U). \tag{1.9}$$

Los eigenvalores de la parte lineal B_{ε} de (1.8) estan dados por las raíces λ_1 , λ_2 , λ_3 de

$$|B_{\varepsilon} - \lambda I| = \left(\frac{\varepsilon \gamma}{c} - \lambda\right) (\lambda^2 + c\lambda - a) - \frac{\varepsilon}{c} = 0$$

que para $\varepsilon = 0$ se reduce a

$$|B_0 - \lambda I| = -\lambda(\lambda^2 + c\lambda - a) = 0.$$

Las raices son

$$\lambda_{1,2}=\frac{-c\pm\sqrt{c^2+4a}}{2}, \qquad \lambda_3=0.$$

Si c < 0 y $0 \le \varepsilon \le \varepsilon_0$, con ε_0 suficientemente pequeño, entonces

$$\lambda_2 < \lambda_3 < 0 < \lambda_1$$

ya que $|B_{\varepsilon}| = -\frac{\varepsilon}{c}(a\gamma + 1) \geq 0$.

Proposición 1.7. La variedad inestable del origen en la ecuación (1.8) con c < 0 y $0 \le \varepsilon \le \varepsilon_0$ depende continuamente de ε y c.

Demostración. Se dará un argumento similar al utilizado en [8, cap. 13] para mostrar la existencia de la variedad estable.

Sea P_{ε} tal que

$$P_{\epsilon}^{-1}B_{\epsilon}P_{\epsilon} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}.$$

Sean

$$ilde{E}_1(\xi) = egin{pmatrix} e^{\lambda_1 \xi} & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}, \qquad ilde{E}_2(\xi) = egin{pmatrix} 0 & 0 & 0 \ 0 & e^{\lambda_2 \xi} & 0 \ 0 & 0 & e^{\lambda_3 \xi} \end{pmatrix},$$

у

$$E_1(\xi) = P_{\varepsilon} \tilde{E}_1(\xi) P_{\varepsilon}^{-1},$$

$$E_2(\xi) = P_{\varepsilon} \tilde{E}_2(\xi) P_{\varepsilon}^{-1},$$

que satisfacen

$$E_i'(\xi) = B_e E_i.$$

Sea α tal que $0 < \alpha \le \lambda_1$ para $0 \le \varepsilon \le \varepsilon_0$. Existe K > 0 tal que

$$|E_1(\xi)| \le Ke^{\alpha \xi} \quad \text{si } \xi \le 0,$$

$$|E_2(\xi)| \le K \quad \text{si } \xi \ge 0.$$
(1.10)

Como G'(0) = 0, podemos encontrar $\delta > 0$ tal que

$$|\tilde{U}| < \delta, |U| < \delta \Rightarrow |G(\tilde{U}) - G(U)| \le \frac{\alpha}{8K} |\tilde{U} - U|. \tag{1.11}$$

Consideremos la ecuación integral

$$U(\xi) = E_1(\xi)V - \int_{\xi}^{0} E_1(\xi - s)G(U(s)) ds + \int_{-\infty}^{\xi} E_2(\xi - s)G(U(s)) ds,$$
(1.12)

de alo V es un vector constante tal que $|V| < \delta/(2K)$. Mostraremos por medio de aproximaciones sucesivas que (1.12) tiene una solución $U(\xi)$ para $\xi \le 0$, tal que

$$|U(\xi)| < \delta e^{\frac{1}{2}\alpha\xi}.$$

Se
à $U_0(\xi)=0$ y definimos $U_{k+1}(\xi)$ por inducción como

$$U_{k+1}(\xi) = E_1(\xi)V - \int_{\xi}^{0} E_1(\xi - s)G(U_k(s)) ds + \int_{-\infty}^{\xi} E_2(\xi - s)G(U_k(s)) ds.$$

Mostraremos que para $\xi \leq 0$

$$|U_k(\xi) - U_{k-1}(\xi)| \le \frac{\delta}{2^k} e^{\frac{1}{2}\alpha\xi}.$$
 (1.13)

Para k = 1 es inmediato que

$$|U_1(\xi)-U_0(\xi)|=|U_1(\xi)|\leq \frac{\delta}{2}e^{\frac{1}{2}\alpha\xi}.$$

Supongamos (1.13) y calculemos para k + 1.

$$|U_{k+1}(\xi) - U_k(\xi)| \le \int_{\xi}^{0} |E_1(\xi - s)| |G(U_k(s)) - G(U_{k-1}(s))| \, ds$$

$$+ \int_{-\infty}^{\xi} |E_2(\xi - s)| |G(U_k(s)) - G(U_{k-1}(s))| \, ds$$

Sustituyendo (1.10), (1.11) y (1.13) tenemos que

$$\begin{split} |U_{k+1}(\xi) - U_k \xi)| &\leq \frac{\delta}{2^k} \left[\int_{\xi}^0 K e^{\alpha(\xi - s)} \frac{\alpha}{8K} e^{\frac{1}{2}\alpha s} \, ds + \int_{-\infty}^{\xi} K \frac{\alpha}{8K} e^{\frac{1}{2}\alpha s} \, ds \right] \\ &= \frac{\delta}{2^k} \frac{\alpha}{8} \left[e^{\alpha \xi} \left(-\frac{2}{\alpha} \right) \left(1 - e^{-\frac{1}{2}\alpha \xi} \right) + \frac{2}{\alpha} e^{\frac{1}{2}\alpha \xi} \right] \\ &= \frac{\delta}{2^{k+1}} e^{\frac{1}{2}\alpha \xi} \left(\frac{2 - e^{\frac{1}{2}\alpha \xi} - 1}{2} \right) \\ &\leq \frac{\delta}{2^{k+1}} e^{\frac{1}{2}\alpha \xi}. \end{split}$$

Por lo tanto $(U_k(\xi))$ es una sucesión de funciones diferenciables que converge uniformemente para $\xi \leq 0$, $0 \leq \varepsilon \leq \varepsilon_0$ y c < 0 a una solución $U(\xi)$ de (1.12). Por (1.13) esta solución satisface

$$|U(\xi)| \leq \delta e^{\frac{1}{2}\alpha\xi}$$

y por lo tanto $U(\xi) \to 0$ cuando $\xi \to -\infty$.

Como la segunda integral de (1.12) converge como consecuencia de (1.13), derivando (1.12) obtenemos que $U(\xi)$ es solución de (1.9). Y por la convergencia uniforme tenemos que $U(\xi)$ depende continuamente de ε y c, que es lo que había que demostrar.

Ahora probaremos la existencia de órbitas homoclínicas. Para construir los bloques del teorema 1.3 usaremos la órbita homoclínica singular.

Proposición 1.8. El sistema (1.8) admite una solución homoclínica para cierta $c = c(\varepsilon)$ si $\varepsilon \ll 1$.

Demostración. La demostración consistirá en construir dos bloques que satisfagan las hipótesis del teorema 1.3. Sean w_{\sup} , w_{\inf} tales que

$$w_{\min} < w_{\inf} < 0 < w^* < w_{\sup} < w_{\max}$$

donde w^* está definido por la condición $\bar{c}(w^*) = c^* = -\sqrt{2}(1/2 - a) = \bar{c}(0)$. Consideremos

$$B_1 = \{(u, v, w) \mid w_{\inf} \le w \le w_{\sup}, |u - u_1(w)| + |v| \le \rho_1\}$$

$$B_2 = \{(u, v, w) \mid w_{\inf} \le w \le w_{\sup}, |u - u_3(w)| + |v| \le \rho_2\}.$$

Ver la figura 1.15.



Figura 1.15. Las partes sombreadas son los conjuntos de salida.

La afirmación es que B_1 y B_2 son bloques de (1.8) para $0 < \varepsilon \ll 1$, $|c - c^*|$, ρ_1 , ρ_2 pequeños. Verificaremos la transversalidad en una sola cara; el resto es completamente similar. La función $f_1 = (u - u_1(w)) + (v) - \rho_1$ determina una cara de B_1 . Tenemos que $\nabla f = (1, 1, -u_1'(w))$ y calculando el producto escalar para $\varepsilon = 0$ y $c = c^*$ resulta

$$(1,1,-u_1'(w))\cdot \left(-c^*v-f(u)+w\right)=(1-c^*)v+(-f(u)+w)$$

Como $(1-c^*)v > 0$ para v > 0, y -f(u) + w > 0 para $u_1(w) < u < u_1(w) + \rho_1$, tenemos que este producto es positivo en esta cara de ∂B_1 tomando ρ_1 suficientemente

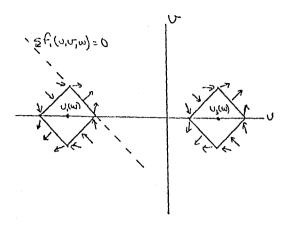


Figura 1.16. Los bloques B_1 y B_2 para $w_{\inf} \leq w \leq w_{\sup}$.

pequeño. Ver la figura 1.16. Por lo tanto, ésto sigue siendo cierto para $0 < \varepsilon \ll 1$ y $|c - c^*| \ll 1$.

En las tapas es mas sencillo, ya que el signo del producto escalar para $0 < \varepsilon$ está dado por $-\frac{\varepsilon}{c}(u - \gamma w)$, que es de un solo signo porque el plano $u - \gamma w = 0$ no intersecta a B_1 o B_2 cuando $w = w_{\inf}$ o $w = w_{\sup}$, si tomamos ρ_1 y ρ_2 suficientemente pequeños. Esto es cierto porque $\gamma \ll 1$ como se ve en la figura 1.17.

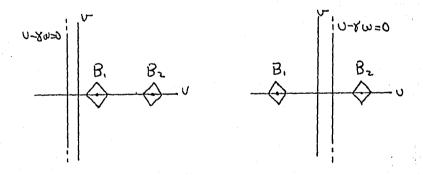


Figura 1.17. Los bloque para $w=w_{\inf}$ y $w=w_{\sup}$

Verifiquemos la condición A del teorema 1.3. El origen es punto de equilibrio de (1.8). En una vecindad del origen las únicas semiórbitas contenidas en esta vecindad pertenecen a la variedad estable del origen, ya que la parte lineal del flujo determina el comportamiento de éste en la vecindad; ésto se puede encontrar en Goddington y Levinson [8, cap 13]. Por lo tanto, escogiendo ρ_1 suficientemente pequeña las semiórbitas en B_1 cerca del origen pertenecen a la variedad estable, y fuera de esta vecindad se tiene que 0 < cte < |w'| para $\varepsilon > 0$, por lo que no hay ninguna semiórbita en B_1 que no pertenezea a la variedad estable.

La condición B se sigue de que escogiendo ρ_2 suficientemente pequeña, 0 < cte < w' en B_2 para $0 < \epsilon$.

Sea A de la condición C dada por

$$\Delta = \{(u, v, w) \in b_2^- | w^* - \omega < w < w^* + \omega, u - u_3(w) + v = -\rho_2\}.$$

Ver la figura 1.15. $\Delta \subset b_2^+$ es abierto relativo de b_2^+ . Si ω y ρ_2 son suficientemente pequeñas $\Delta \subset D_1^+$ para $\varepsilon = 0$, $c = c^*$ con ρ_1 fijo. Ver la figura 1.18. $b_2^+ \setminus \Delta$ tiene dos componentes β_0 y β_1 , para las cuales

$$\beta_0 \cap \overline{\Delta} \equiv \delta_0 = \{(u, v, w) \in b_2^- | w = w^* - \omega, u - u_3(w) + v = -\rho_2\}$$

$$\beta_1 \cap \overline{\Delta} \equiv \delta_1 = \{(u, v, w) \in b_2^- | w = w^* + \omega, u - u_3(w) + v = -\rho_2\}$$

Como consecuencia del análisis de la sección anterior, escogiendo ω y ρ_2 suficientemente pequeñas podemos afirmar que $\phi_1^- \circ \phi_1^+ (\delta_0)$ y $\phi_1^- \circ \phi_1^+ (\delta_1)$ están en distintas componentes de b_1^- ; esto es claro en la figura 1.18. Elegimos ε_0 suficientemente pequeña para que esto siga sucediendo si $0 < \varepsilon \le \varepsilon_0$.

Por último la hipótesis D se satisface si escogemos η suficientemente pequeño para que la solución $U_{\varepsilon}(\xi)$ que construimos en la proposición 1.7 satisfaga $U_0(0) \in D_2^+$ para toda c tal que $c^* - \eta \le c \le c^* + \eta$. Como vimos en la sección 1.2, $\phi_2^- \circ \phi_2^+(U_0(0)) \in \beta_0$ para $c = c^* - \eta$, y $\phi_2^- \circ \phi_2^+(U_0(0)) \in \beta_1$ para $c = c^* + \eta$; ver la figura 1.19. Escogemos ε_0 tal que cumpla lo ya pedido y además se siga manteniendo la propiedad anterior para $0 < \varepsilon \le \varepsilon_0$. Entonces tenemos el resultado como consecuencia del teorema 1.3.

Probaremos a continuación la existencia de soluciones periódicas de (1.1). La construcción de los bloques será completamente similar a la hecha en la demostración anterior. Usaremos como en la proposición anterior las órbitas heteroclínicas del sistema singular.

Proposición 1.9. El sistema (1.1) admite soluciones periódicas para $\varepsilon \ll 1$ con $c^* < c < 0$.

Demostración. Construiremos dos bloques que satisfagan las hipótesis del teorema 1.5. La construcción sera como en el teorema anterior, con la única diferencia que el radio de B_1 será variable. Tomemos c fija tal que $c^* < c < 0$. Sean $w_{\rm ida}$ tal que $c = \bar{c}(w_{\rm ida})$ y $w_{\rm reg}$ tal que $c = \bar{c}(w_{\rm reg})$ y $w_{\rm inf}$, $w_{\rm sup}$ tales que

$$0 < w_{\text{inf}} < w_{\text{ida}} < w_0 < w_{\text{reg}} < w_{\text{sup}} < w_{\text{max}}$$

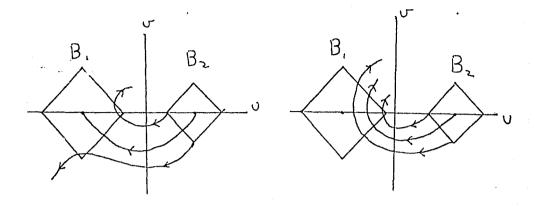


Figura 1.18a. $w = w^*$

Figura 1.18b. $w = w^* - \omega$

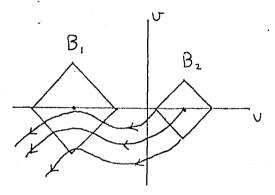


Figura 1.18c. $w = w^* + \omega$

En la figura 1.9 de la sección anterior se puede ver como se pueden estos valores de w. $w_{\rm ida}$ es tal que (1.1) admite una solución heteroclínica de $(u_1, 0, w_{\rm ida})$ a $(u_3, 0, w_{\rm ida})$ para $\varepsilon = 0$ y c la velocidad elegida anteriormente. Para $w_{\rm reg}$ el sistema admite una solución heteroclínica de $(u_3, 0, w_{\rm reg})$ a $(u_1, 0, w_{\rm reg})$. Consideremos

$$B_1 = \{(u, v, w) | w_{\inf} \le w \le w_{\sup}, |u - u_1(w)| + |v| \le \rho_1(w)\}$$

$$B_2 = \{(u, v, w) | w_{\inf} \le w \le w_{\sup}, |u - u_3(w)| + |v| \le \rho_2\}$$

donde $\rho_1(w)$ es una función diferenciable de w tal que $\rho_1(w) = \bar{\rho}_1$ para $|w - w_{\text{reg}}| < \omega_1$, $\rho_1(w) = \bar{\rho}_1$ para $|w - w_{\text{ida}}| < \omega_1$, y $\rho_1(w) \leq \bar{\rho}_1$ para $w_{\text{inf}} \leq w \leq w_{\text{sup}}$. La demostración

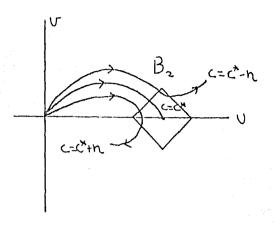


Figura 1.19. Flujo para $\varepsilon = 0$, w = 0.

de que B_1 y B_2 son bloques es la misma que la de la proposición anterior; el hecho que $\rho_1(w)$ cambie con w no es relevante para verificar ésto.

De manera similar a la proposición anterior tomamos

$$\Delta = \{(u, v, w) \in b_2^- | w_{\text{reg}} - \omega_2 < w < w_{\text{reg}} + \omega_2, u - u_3(w) + v = -\rho_2\}$$

$$\Gamma = \{(u, v, w) \in b_1^- | w_{\text{ida}} - \omega_1 < w < w_{\text{ida}} + \omega_1, u - u_1(w) - v = + \bar{\rho}_1\}$$

donde α_i , β_i , γ_i , δ_i quedan determinados de la manera correspondiente. Ver la figura 1.20.

Elegimos $\bar{\rho}_1$ para que B_1 sea bloque para $0 < \varepsilon \le \varepsilon_0$ con ε_0 pequeña. Para esta $\bar{\rho}_1$ encuentro ρ_2 y ω_2 tales que $\overline{\Delta}$ entre a B_1 , es decir $\overline{\Delta} \subset D_1^+$, y $\phi_1^- \circ \phi_1^+(\delta_i)$ estén en distintas componentes de $b_1^- \setminus \Gamma$; es el mismo caso que el de la figura 1.18.

Ahora escogemos $\bar{\rho_1}$ y ω_1 tales que $\bar{\Gamma} \subset D_2^+$ y $\phi_2^- \circ \phi_2^+(\gamma_i)$ estén en distintas componentes de $b_2^- \setminus \Delta$; este es completamente análogo al anterior.

Observamos de la figura 1.20 que b_i^- es la unión simplemente conexa de tres rectángulos (no necesariamente planos) a lo largo de dos de sus lados, por lo que b_i^- es homeomorfo a $[0,1] \times [-1,2]$, y podemos eligir los homeomorfismos de tal manera que se satisfagan la condición C. Por lo tanto el teorema 1.5 nos garantiza la existencia de una órbita periódica para c tal que $c^* < c < 0$.

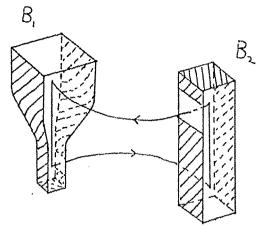


Figura 1.20. La parte sombreada son los conjuntos de salida

CAPITULO 2 ESTABILIDAD

En el presente capítulo expondremos brevemente la demostración dada por Jones [2] de la estabilidad del pulso viajero. En la primera sección daremos los resultados preliminares necesarios para el argumento. Primero se mostrara que la solución homoclínica tiende a la solución homoclínica singular cuando $\varepsilon \to 0$. Enunciaremos luego los resultados de Evans [3,4,5,6] sobre la estabilidad de soluciones estacionarias de ecuaciones de la clase que estudiamos, así como los resultados de Fife y McLeod [13] sobre la estabilidad de los sistemas reducidos. En la segunda sección haremos una estimación del espectro del operador dado por la parte lineal de la ecuación alrededor del pulso viajero.

Del capítulo anterior, $U_{\varepsilon} = (u_{\varepsilon}, v_{\varepsilon})$ es solución estacionaria de la ecuación (0.4):

$$u_t = u_{\xi\xi} + cu_{\xi} + f(u) - w$$

$$w_t = cw_{\xi} + \varepsilon(u - \gamma w).$$
(2.1)

La parte lineal de (2.1) alrededor de U_{ε} está dada por el operador

$$L\binom{p}{r} = \binom{p_{\xi\xi} + cp_{\xi} + f'(u_{\varepsilon})p - r}{cr_{\xi} + \varepsilon(p - \gamma r)}.$$
 (2.2)

2.1 Preliminares

Probaremos primero la continuidad de la órbita del pulso viajero U_{ε} cuando $\varepsilon \to 0$. Este resultado es consecuencia de la continuidad de la variedad inestable del origen demostrada en la proposición 1.7 y del hecho que los bloque utilizados en la demostración de la proposición 1.8 se pueden escoger tan pequeños como se quiera cuando $\varepsilon \to 0$. Denotaremos por S_{ε} a la órbita homoclínica del pulso viajero; recordemos que $S_0 = J_F \cup E_R^* \cup J_B \cup E_L^*$ es la órbita homoclínica singular de la sección 1.2.

Proposición 2.1. $S_{\varepsilon} \to S_0$ y $\bar{c}(\varepsilon) \to c^*$ cuado $\varepsilon \to +0$. Demostración. Sea $\rho > 0$. Vamos a mostrar que existe $\varepsilon_0 > 0$ tal que

$$S_{\varepsilon} \subset B_{\rho}(S_0) \equiv \{x \in \mathbb{R}^3 \mid |x - \tilde{x}| < \rho \text{ para algún } \tilde{x} \in S_0\}$$

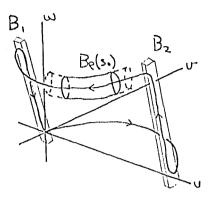


Figura 2.1

para toda $\varepsilon \in [0, \varepsilon_0]$. Ver la figura 2.1.

Elegimos ρ_2 el radio de B_2 tal que $B_2 \subset B_{\rho}(S_0)$. Encontramos ahora ρ_1 el radio de B_1 y ω el radio de $\Delta \subset b_2^-$ tales que Δ bajo el flujo entre a B_1 sin salirse de $B_{\rho}(S_0)$ cuando $\varepsilon = 0$; esto se sigue cumpliendo para $\varepsilon \in [0, \varepsilon_0]$ si ε_0 es suficientemente pequeño.

Por la continuidad de la variedad inestable existe η suficientemente pequeña tal que $U_c(0) \in D_2^+$ para $\varepsilon = 0$ y $c \in [c^* - \eta, c^* + \eta]$, ya que $U_0(0) \in D_2^+$ para $c = c^*$; elegimos ε_0 suficientemente pequeña para que esto se siga cumpliendo junto con lo anterior para $\varepsilon \in [0, \varepsilon_0]$. Por lo tanto $S_{\varepsilon} \to S_0$ cuando $\varepsilon \to 0$. Observese que para ρ más pequeña es necesario elegir η también mas pequeña, y por lo tanto como $\bar{c}(\varepsilon) \in [c^* - \eta, c^* + \eta]$ concluimos que $\bar{c}(\varepsilon) \to c^*$ cuando $\varepsilon \to 0$.

Consideremos ahora el espacio $B = \mathrm{BC}(\mathbb{R},\mathbb{R}^2)$ de las funciones continuas y acotadas de \mathbb{R} en \mathbb{R}^2 con norma $\| \|_{\infty}$, y el operador $L: B \to B$ dado por (2.2). Evans [3,5,6] muestra que (2.1) es estable si $\sigma(L)$ el espectro de L está en el semiplano $\{\lambda \in \mathbb{C} \mid \mathrm{Re}\,\lambda < a\}$ con a < 0, excepto por $\lambda = 0$ que debe ser un eigenvalor simple. Como se hizo notar en la intoducción $\partial U_{\varepsilon}/\partial \xi$ es eigenvector de L con eigenvalor 0. La demostración dada por Jones [2] consiste en verificar que esto sucede. Consideremos la ecuación

$$(L-\lambda I)\binom{p}{r}=0$$

que podemos escribir como el sistema

$$p' = q$$

$$q' = -cq + (\lambda - f'(u_{\varepsilon}))p + r$$

$$r' = -\frac{\varepsilon}{c}p + \frac{\lambda + \varepsilon\gamma}{c}r.$$
(2.3)

Las soluciones acotadas de (2.3) para algún $\lambda \in \mathbb{C}$ corresponden a eigenvectores de L con eigenvalor λ . Evans [5,6] construye una función $D(\lambda)$ analítica cuyos ceros son los eigenvalores de L. Construinos a continuación esta función.

 p^{α} ' ' ona (2.3) es de la forma z' = Az donde

$$A = A_0 + P = \begin{pmatrix} 0 & 1 & 0 \\ \lambda - f'(u_{\varepsilon}) & -c & 1 \\ -\frac{\varepsilon}{c} & 0 & \frac{\lambda + \varepsilon \gamma}{c} \end{pmatrix}$$
 (2.4)

con

$$\Lambda_0 := \begin{pmatrix} 0 & 1 & 0 \\ \lambda - f'(0) & -c & 1 \\ -\frac{\epsilon}{c} & 0 & \frac{\lambda + \epsilon \gamma}{c} \end{pmatrix}.$$

El sistema (2.3) es asintóticamente el sistema con coeficientes constantes

$$z' = A_0 z \tag{2.5}$$

Este sistema lineal de coeficientes constantes tiene soluciones acotadas siy solo si $\lambda \in \mathbb{C}$ es tal que A_0 tiene algún valor propio puramente imaginario y en ese caso esta solución es una solución periódica $z(\xi)$.

Consideremos las funciones $p_m: \mathbb{R} \to \mathbb{R}$ diferenciables tales que $p_m(\xi) = 0$ en $\xi \in [-m,m]$, $p_m(\xi) = 1$ en $\xi \in \mathbb{R} \setminus (-m-1,m+1)$, y monótona en (-m-1,-m) y (m,m+1). Las funciones p_m como en la figura 2.2. Observamos entonces que $\|p_m z\|_{\infty} = \|z\|_{\infty}$ y ademas

$$\lim_{N\to\infty}(L-\lambda I)(p_m(\xi)z(\xi))=0.$$

Por lo tanto λ está en el espectro continuo de L. Consideremos el conjunto

$$S = \{\lambda \in \mathbb{C} \mid A_0(\lambda) \text{ tiene eigenvalor imaginario } \}$$

La componente de $\mathbb{C} \setminus S$ que contiene al 0 será el dominio de $D(\lambda)$; de hecho

Proposición 2.2. Si $\varepsilon > 0$ entonces $\mathbb{C} \setminus S$ tiene una componte G para la cual $\{\lambda \in \mathbb{C} \mid \operatorname{Re} \lambda > b_{\varepsilon}\} \subset G$ con $b_{\varepsilon} < 0$. Demostración. Sea

$$P(\alpha,\varepsilon,\lambda) = \det(A_0 - \alpha I) = (\alpha^2 + c\alpha + f'(0) - \lambda) \left(\frac{\lambda + \varepsilon\gamma}{c} - \alpha\right) - \frac{\varepsilon}{c}.$$
 (2.6)

Para $\varepsilon > 0$ fijo tenemos que

$$S = \{\lambda \in \mathbb{C} \mid P(i\tau, \varepsilon, \lambda) = 0 \text{ con } \tau \in \mathbb{R}\}$$

Cuando $\varepsilon = 0$ obtenemos de (2.6) que S es

$$S = \{ \lambda \in \mathbb{C} \mid \lambda = i\tau c \text{ con } \tau \in \mathbb{R} \}$$
$$\cup \{ \lambda \in \mathbb{C} \mid \operatorname{Re} \lambda = -(\operatorname{Im} \lambda)^2 / c^2 - a \}$$

el eje imaginario unión una parábola contenida en $\{\lambda | \text{Re } \lambda \leq -a < 0\}$; ver la figura 2.3. Esta parábola permanecerá en el semiplano negativo para $0 < \varepsilon \ll 1$. Veamos que le pasa a los puntos de S en el eje imaginario para $\varepsilon > 0$. Dejando τ fijo tenemos que para $\lambda = i\tau c$

$$\frac{\partial P}{\partial \lambda}(ir,0,\lambda) = -\frac{r^2 + a}{c} \neq 0$$

por lo que podemos expresar λ como función de ε para τ fija y $0 < \varepsilon \ll 1$ con $\lambda(0) \in i\mathbb{R}$. Calculando tenemos

$$\frac{d\lambda}{d\varepsilon} = -\frac{\frac{\partial P}{\partial \varepsilon}}{\frac{\partial P}{\partial Y}} = -\left(\gamma + \frac{1}{\tau^2 + a}\right) < 0$$

por lo que para $\varepsilon>0,\ S$ está en $\{\lambda|\mathrm{Re}\,\lambda<0\}$, y si $\gamma>0,\ S$ está uniformemente acotado lejos del eje imaginario.

Evans muestra en [5] que todos los puntos de $\sigma(L) \cap G$ son eigenvalores. Cuando $\lambda = 0$, $A_0(\lambda)$ se reduce al caso de la matriz B_{ε} de la sección 1.3. Por lo tanto, si $\varepsilon \ll 1$, $A_0(\lambda)$ tiene un único valor con parte real positiva y dos con parte real negativa. Por lo tanto lo mismo sigue sucediendo para toda $\lambda \in G$, ya que de lo contrario tendriamos, por la continuidad de los eigenvalores con respecto a λ , que para alguna $\lambda^* \in G$ la matriz $A_0(\lambda^*)$ tiene un eigenvalor puramente imaginario. Al eigenvalor con parte real positiva lo llamaremos

$$\alpha^+ = \alpha^+(\lambda, \varepsilon)$$

con su eigenvector asociado

$$X^{+} = \left(1, \alpha^{+}, -\frac{\varepsilon}{c\alpha^{+} - (\lambda + \varepsilon\gamma)}\right)$$

y que para $\varepsilon = 0$ se reduce a

$$\alpha^{+}(\lambda,0) = \frac{-c + \sqrt{c^2 + 4(\lambda + a)}}{2}$$
 $X^{+} = (1,\alpha^{+},0)$

Sea $\zeta(\lambda, \xi)$ la solución de (2.3) tal que

$$\varsigma(\lambda,\xi) - X^+ e^{\alpha^+ \xi} \to 0$$
 cuando $\xi \to -\infty$

Consideremos ahora el sistema adjunto de (2.3)

$$z' = Bz (2.7)$$

donde $B = -A^*$; asintóticamente B es la matriz $B_0 = -A_0^*$. Entonces para $\lambda \in G$, B tiene un único eigenvalor con parte real negativa

$$\beta^- = \beta^-(\lambda, \varepsilon) = -\bar{\alpha}^+$$

con eigenvector

$$Y^{-} = \left(1, \frac{1}{c - \beta^{-}}, \frac{1}{(\beta^{-} - c)(\beta^{-} + (\bar{\lambda} + \varepsilon \gamma/c))}\right).$$

Sea $\eta(\lambda, \varepsilon)$ la solución de (2.7) tal que

$$\eta(\lambda, \varepsilon) - Y^- e^{\beta^- \xi} \to 0$$
 cuando $\xi \to +\infty$.

Definimos ahora la función $D(\lambda)$ cuyos cero son los eigenvalores de L como

$$D: G \to \mathbb{C}, \ D(\lambda) = \zeta(\lambda, \xi) \cdot \eta(\lambda, \xi)$$

 $D(\lambda)$ es independiente de ξ ya que

$$\frac{\partial}{\partial \xi} D(\lambda) = \frac{\partial}{\partial \xi} \varsigma(\lambda, \xi) \cdot \eta(\lambda, \xi) + \varsigma(\lambda, \xi) \cdot \frac{\partial}{\partial \xi} \eta(\lambda, \xi) = A\xi \cdot \eta + \xi \cdot B\eta = A\xi \cdot \eta - \xi \cdot A^* \eta = 0.$$

Evans demuestra que $D(\lambda)$ así definida satisface ser analítica y sus ceros son los eigenvalores de L en G. Veamos porque sucede esto. Sean α_1^- y α_2^- los eigenvalores de $A_0(\lambda)$ con parte real negativa; sean X_1^- y X_2^- los eigenvectores correspondientes. $\zeta(\lambda,\xi)$ es la única solución de (2.3), salvo múltiplos escalares, que es acotada para $\xi \to -\infty$. Por lo tanto si λ es eigenvalor de L, entonces $\zeta(\lambda,\xi)$ es el eigenvector correspondiente y es acotada también para $\xi \to \infty$. Por lo tanto $\zeta(\lambda,\xi) \approx X_1^- e^{\alpha_1^-\xi} + X_2^- e^{\alpha_2^-\xi}$ para $\xi \to \infty$. Pero como

$$\alpha_{i}^{-}(X_{i}^{-} \cdot Y^{-}) - (A_{0}X_{i}^{-} \cdot Y^{-}) = -(X_{i}^{-} \cdot B_{0}Y^{-}) =$$

$$= -\overline{\beta^{-}}(X_{i}^{-} \cdot Y^{-}) = \alpha^{+}(X_{i}^{-} \cdot Y^{-}),$$

tenemos que $(X_i^- \cdot Y^-) = 0$, ya que $\alpha_i^- \neq \alpha^+$. Por lo tanto,

$$D(\lambda) = \varsigma(\lambda, \xi) \cdot \eta(\lambda, \xi) = 0$$

ya que $\eta(\lambda, \xi) \approx Y^{-}e^{\beta \xi}$ para ξ grande.

Evans demuestra además que la multiplicidad de los ceros de $D(\lambda)$ corresponde a la multiplicidad algebráica del eigenvalor correspondiente.

En la siguiente sección será necesaria una continuación analítica de $D(\lambda)$ en $\tilde{G}=\{\lambda|\mathrm{Rg}\,\lambda>b\}$ con b<0 independiente de ε . Observamos que α^+ continua siendo el eigenvalor de mayor parte real para $\lambda\in \tilde{G}$ con b suficientemente cercano a 0, aunque ya no es el único eigenvalor de A_0 con parte real positiva para $\varepsilon\ll 1$. De manera similar sucede para β^- , por lo que podemos definir a ζ y η para $\lambda\in \tilde{G}$ de la misma manera como antes. Jones demuestra que es posible hacer ésto. Se define entonces a $\tilde{D}(\lambda)=\varsigma(\lambda,\xi)\cdot\eta(\lambda,\xi)$ para $\lambda\in \tilde{G}$.

Recordemos de la sección 1.3 que para $\varepsilon = 0$ existen soluciones heteroclínicas del sistema (1.1). Llamamos $U_F(\xi)$ a la solución heteroclínica que va del origen al punto (1,0,0) y cuya órbita corresponde a J_F . Notemos que U_F está en la variedad inestable del origen. De manera correspondiente llamemos U_B a la solución correspondiente a la órbita heteroclínica J_B ; ver la figura 1.14 del capítulo anterior. Fife y McLeod [7] muestran que U_F y U_B son estables. Aplicando los resultados de Evans a U_F , si L_F es la parte lineal de (2.1) alrededor de U_F tenemos que la ecuación

$$(L_F - \lambda I)x = 0$$

solo tiene soluciones acotadas para Re $\lambda<0$, o $\lambda=0$ y 0 es simple. Escribiendo esta ecuación como sistema tenemos

$$p' = q$$

$$q' = -cq + (\lambda - f'(u_F))p + r$$

$$r' = \frac{\lambda}{c}r$$
(2.8)

que es asintoticamente constante. Definimos $\varsigma_F(\lambda,\xi)$ como la solución de (2.8) que satisface

$$\zeta_F(\lambda,\xi) = X^+ e^{\alpha^+ \xi} \to 0$$
 cuando $\xi \to -\infty$

donde X^+ y α^+ como antes. Como ς_F es el único candidato a eigenvector salvo por múltiplos escalares, tenemos que $\varsigma_F(\lambda,\xi)$ es acotada para $\xi \to +\infty$ si y solo si λ es eigenvalor de L_F .

2.2 Localización aproximada de los eigenvalores

En esta sección mostraremos que cualquier eigenvalor del operador L contenido en $G \subset \mathbb{C}$ debe estar cercano a algún eigenvalor de los operadores L_F y L_B de los sistemas reducido. Como estos sistemas son estables, los únicos eigenvalores peligrosos estaran cerca del 0.

Sea V_{δ} la unión de bolas de radio δ alrededor de cada eigenvalor de L_F o L_B que son

$$\Sigma=\{\lambda\in \tilde{G}\mid \lambda \text{ es eigenvalor de } L_F\text{ o }L_B\}$$

$$V_{\delta}=\bigcup_{\lambda\in \Sigma}B_{\delta}(\lambda).$$

donde $B_{\delta}(\lambda)$ es la bola abierta de radio δ alrededor de λ .

Esta sección está dedicada a probar

Teorema 2.3. Dada $\delta > 0$ existe $\varepsilon_0 > 0$ tal que para toda $\varepsilon \in (0, \varepsilon_0]$, se tiene que $D(\lambda) \neq 0$ para $\lambda \in G \setminus V_{\delta}$.

La idea de la demostración sera analizar el flujo de la ecuación (2.3) y seguir la solución $\xi(\lambda, \xi)$ para ξ grande y estimar $D(\lambda)$ utilizando que $\eta(\lambda, \xi)$ está determinada para ξ grande.

Acoplando (1.1) con (2.3) obtenemos

$$u' = v$$

$$v' = -cv - f(u) + w$$

$$w' = -\frac{\varepsilon}{c}(u - \gamma w)$$

$$p' = q$$

$$q' = -cq + (\lambda - f'(u))p + r$$

$$r' = -\frac{\varepsilon}{c}p + \frac{\lambda + \varepsilon\gamma}{c}r$$
(2.9)

para (u, v; w, p, q, r) en $\mathbb{R}^3 \times \mathbb{C}^3$. El sistema (2.9) depende continuamente de λ , c, ε . Claramente tenemos que $(U_{\varepsilon}(\xi), \zeta(\lambda, \xi))$ es solución de (2.9).

Para saber si $D(\lambda)$ se anula será suficiente con conocer la dirección de ζ . Por lo tanto consideraremos un sistema asociado al sistema (2.9) en \mathbb{CP}^2 el plano proyectivo complejo. Consideremos $\pi: \mathbb{C}^3 \to \mathbb{CP}^2$, dada por $\pi(z) = \hat{z}$ donde $\hat{z}_1 = \hat{z}_2$ si y solo si $z_1 = \alpha z_2$ para algún $\alpha \in \mathbb{C} \setminus \{0\}$. Extendemos la proyección π a $\mathbb{R}^3 \times \mathbb{C}^3$ con la identidad en \mathbb{R}^3 , $I \times \pi(u, z) = (u, \hat{z})$. Denotaremos esta extensión también por π .

Por ser (2.3) lineal, el sistema (2.9) induce bajo la diferencial de π un sistema en $\mathbb{R}^3 \times \mathbb{CP}^2$; esto se verificará en la demostración del lema 2.5. Llamaremos $F_{\varepsilon}^{\lambda}(\xi)$ el flujo dado por (2.9) a tiempo ξ y $\hat{F}_{\varepsilon}^{\lambda}(\xi)$ el flujo inducido en $\mathbb{R}^3 \times \mathbb{CP}^2$. Tenemos entonces que se satisface

$$\begin{array}{ccc} \mathbb{R}^3 \times \mathbb{C}^3 & \xrightarrow{F_{\epsilon}^{\lambda}(\xi)} & \mathbb{R}^3 \times \mathbb{C}^3 \\ \pi \downarrow & & \downarrow \pi \\ \mathbb{R}^3 \times \mathbb{C}P^2 & \xrightarrow{\hat{F}_{\epsilon}^{\lambda}(\xi)} & \mathbb{R}^3 \times \mathbb{C}P^2 \end{array}$$

Por ser U_{ε} solución de (1.1), $S_{\varepsilon} \times \mathbb{CP}^2$ es invariante bajo $\hat{F}_{\varepsilon}^{\lambda}$, por lo tanto estudiaremos el flujo restringido a $S_{\varepsilon} \times \mathbb{CP}^2$. S_{ε} homeomorfa S^1 por ser una órbita homoclínica; sea $h_{\varepsilon}: S_{\varepsilon} \to S^1$ homeomorfismo que depende continuamente de ε , lo cuál es posible por la dependencia continua de S_{ε} con respecto a ε . Al flujo inducido por h_{ε} en $S^1 \times \mathbb{CP}^2$ lo llamaremos $H_{\varepsilon}^{\lambda}(\xi)$. Este flujo depende continuamente de ε y λ . Tenemos que se satisface

$$\begin{array}{ccc} S_{\varepsilon} \times \mathbb{C}\mathrm{P}^2 & \xrightarrow{f_{\varepsilon}^{\lambda}(\xi)} & S_{\varepsilon} \times \mathbb{C}\mathrm{P}^2 \\ h_{\varepsilon} \downarrow & & \downarrow h_{\varepsilon} \\ S^1 \times \mathbb{C}\mathrm{P}^2 & \xrightarrow{H_{\varepsilon}^{\lambda}(\xi)} & S^1 \times \mathbb{C}\mathrm{P}^2 \end{array}$$

Veamos ahora una importante relación entre un flujo lineal en \mathbb{C}^3 y su versión inducida en $\mathbb{C}P^2$ bajo π . Consideramos en \mathbb{C}^3 la ecuación lineal z'-Az. Si α es un eigenvalor de A, llamaremos C_{α} a el subespacio generado por el eigenvector correspondiente. Entonces tenemos

Lema 2.5. Si Λ tiene eigenvalores α , α_1 , α_2 , y α es simple entonces $\pi(C_{\alpha})$ es un punto crítico del sistema inducido en $\mathbb{C}P^2$ y cuyos eigenvalores en este punto son $\alpha_1 - \alpha$, $\alpha_2 - \alpha$.

Demostración. Sea $\varphi: \mathbb{C}^2 \to \mathbb{C}P^2$ la parametrización dada por $\varphi(q,r) = \pi(1,q,r)$. La expresión de π en estas coordenadas es $\varphi^{-1} \circ \pi(p,q,r) = (q/p,r/p)$. Derivando obtenemos que la diferencial esta dada por

$$D(\varphi^{-1}\circ\pi)\left((p,q,r),(z_1,z_2,z_3)\right)=\left(\left(\frac{q}{p},\frac{r}{p}\right),\left(\frac{z_2}{p}-\frac{q}{p}\frac{z_1}{p},\frac{z_3}{p}-\frac{r}{p}\frac{z_1}{p}\right)\right).$$

De aquí se sigue que si $\pi(Z_1) := \pi(Z_2)$ entonces $D(\varphi^{-1} \circ \pi)(Z_1, AZ_1) = D(\varphi^{-1} \circ \pi)(Z_2, AZ_2)$. Con esto se verifica que un campo lineal en \mathbb{C}^3 induce un campo bajo $D\pi$.

Supongamos primero que $\alpha_1 \neq \alpha_2$. En este caso podemos suponer que A está dada por

$$A = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha_1 & 0 \\ 0 & 0 & \alpha_2 \end{pmatrix}$$

y consideramos entonces el campo $((p,q,r),(\alpha p,\alpha_1 q,\alpha_2 r))$. Aplicando lo calculado arriba tenemos

$$D(\varphi^{-1} \circ \pi) ((p,q,r), (\alpha p, \alpha_1 q, \alpha_2 r)) = \left(\left(\frac{q}{p}, \frac{r}{p} \right), \left((\alpha_1 - \alpha) \frac{q}{p}, (\alpha_2 - \alpha) \frac{r}{p} \right) \right),$$

de lo que se sigue el resultado.

Si $\alpha_1 = \alpha_2$ y A está dada por

$$A = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha_1 & 0 \\ 0 & 1 & \alpha_1 \end{pmatrix},$$

calculando tenemos que campo inducido es

$$\left(\left(\frac{q}{p},\frac{r}{p}\right),\left((\alpha_1-\alpha)\frac{q}{p},\frac{q}{p}+(\alpha_1-\alpha)\frac{r}{p}\right)\right)$$

y el resultado también es válido.

El siguiente lema nos dice como estimar $D(\lambda)$ a partir de la información en \mathbb{CP}^2 .

Lema 2.6. Si $\pi(\zeta) = \pi(\zeta_1)$, $\pi(\eta = \pi(\eta_1), y \zeta_1 \cdot \eta_1 \neq 0$ entonces $D(\lambda) = \zeta \cdot \eta \neq 0$. Demostración. Se sigue innediatamente de que $\zeta = h\zeta_1 \ \eta = k\eta_1 \ \text{con } h, k \in \mathbb{C} \setminus \{0\}$. Analizaremos ahora la estructura del flujo en $S^1 \times \mathbb{CP}^2$ para $\varepsilon = 0$, $c = c^* \ y \ \lambda \in \tilde{G} \setminus V_{\delta}$. Con esta información se demostrará el teorema 2.3. El sistema en este caso es

$$p' = q$$

$$q' = -c^*q + (\lambda - f'(u))p + r$$

$$r' = \frac{\lambda}{c^*}r$$
(2.10)

Sean b_0 , $b_1 \in J_F$ y b_2 , $b_3 \in J_B$ puntos de S_0 . Eligiremos estos puntos cercanos a las esquinas de S_0 de tal manera que los siguientes resultados sean válidos; ver la figura 2.4. Sean θ_0 , θ_1 , θ_2 y $\theta_3 \in S^1$ tales que $h_0(\theta_i) = b_i$. Para $\theta \in [\theta_1, \theta_2]$ sea $(u_\theta, v_\theta, w_\theta) = h_0(\theta) \in S_0$. El sistema (2.10) tiene los eigenvalores

$$\alpha_{1,2} = \frac{-c^* \pm \sqrt{c^2 + 4(\lambda - f'(u_\theta))}}{2}, \quad \alpha_3 = \frac{\lambda}{c^*}.$$

Entonces $\alpha_0^+(\theta, \lambda) = \alpha_1$ és el eigenvalor con mayor parte real positiva par $\lambda \in \tilde{G}$. Si escogemos b_1 y b_2 suficientemente cerca de las esquinas de tal manera que $f'(u_{\theta_1}) < 0$, $f'(u_{\theta_2}) < 0$; esto último se debe a que podemos escojer $\tilde{G} = \{\lambda \mid b < \operatorname{Re} \lambda\}$ tal que se cumpla

$$\operatorname{Re} \alpha_3 = \frac{\operatorname{Re} \lambda}{c^*} < \frac{b}{c^*} \le \operatorname{Re} \alpha_0^+.$$

Llameinos $X_0^+(\theta,\lambda)$ al eigenvector asociado a α_0^+ .

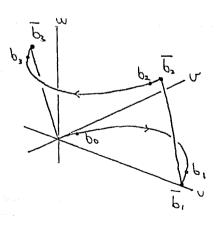


Figura 2.4

Recordemos que $E_R^* \subset S_0$ consiste solamente de puntos críticos del sistema (1.1) para $\varepsilon = 0$. Por lo tanto si $h_0(\theta) \in E_R^*$, el flujo H_0^{λ} deja invariante a $\{\theta\} \times \mathbb{CP}^2$ el flujo en este conjunto invariante está dado por la versión proyectivizada de (2.10). Por lo anto como consecuencia del lema 2.5, $\hat{X}_0^+(\theta,\lambda) = \pi(X_0^+(\theta,\lambda))$ es un punto crítico y sus eigenvalores tienen parte real negativa para $\lambda \in \tilde{G}$. Para $\theta \in [\theta_1,\theta_2]$ pero que $h_0(\theta) \notin E_R^*$, $\hat{X}_0^+(\theta,\lambda) = \pi(X_0^+(\theta,\lambda))$ no es punto crítico del flujo ya que su componente en S^1 no se anula, sin embargo esta componente en S^1 es arbitrariamente pequeña si h_1 y h_2 están suficientemente cerca de las esquinas, ya que en este caso $h_0(\theta)$ estará cerca de las esquinas, que son puntos críticos para $\varepsilon = 0$

Consideremos $\varphi: \mathbb{C}^2 \to \mathbb{C}P^2$ la parametrización utilizada en la demostración del lema 2.5. $\tilde{X}_0^+(\theta,\lambda) = \varphi^{-1}(\hat{X}_0^+)$ tiene una vecindad $V_\rho(\theta,\lambda) \in \mathbb{C}^2$, donde $V_\rho(\theta,\lambda)$ es una bola de radio ρ centrada en \tilde{X}_0^+ , tal que las soluciones de (2.10) entran a V_ρ . Consideremos la unión de estas vecindades

$$B_1 = \bigcup_{\theta_1 < \theta < \theta_2} \{\theta\} \times \varphi(V_{\rho}(\tilde{X}_0^+(\theta, \lambda));$$

por la continuidad-de \hat{X}_0^+ con respecto a θ , B_1 es homeomorfo a $[0,1] \times D^2$, es decir un tubo alrededor de \hat{X}_0^+ . Por lo tanto eligiendo ρ suficientemente pequeño, las soluciones de (2.9) que entran a B_1 solo pueden salir en $\theta = \theta_2$, para $\varepsilon \ll 1$. Ver la figura 2.5.

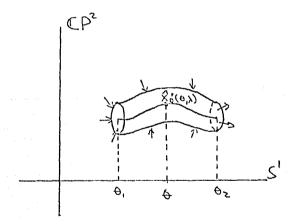


Figura 2.5

De manera completamente semejante construimos B_2 con radio ρ_2 , para $\theta \in [\theta_3, 2\pi]$ y que va tener la propiedad de que las soluciones de (2.9) que entran a B_2 permanecen ahí para $\varepsilon \ll 1$.

Par último observamos el comportamiento de las soluciones del problema de eigenfunciones para el caso reducido. Sean $\bar{\theta}_i \in S^1$ tales que $h_0(\bar{\theta}_i)$ corresponden a las esquinas de S_0 ; ver la figura 2.4. Entonces:

Lema 2.7. Para $\epsilon = 0$, sean $\hat{\varsigma}_F(\lambda, \xi) = \pi(\varsigma_R(\lambda, \xi))$ y $\hat{\varsigma}_B(\lambda, \xi) = \pi(\varsigma_B(\lambda, \xi))$ Entonces $\lambda \in \tilde{G} \setminus V_{\delta}$ se satisface

$$\lim_{\xi \to +\infty} \hat{\varsigma}_F(\lambda, \xi) = \hat{X}_0^+(\bar{\theta}_1, \lambda)$$

$$\lim_{\xi \to +\infty} \hat{\varsigma}_B(\lambda, \xi) = \hat{X}_0^+(\bar{\theta}_2, \lambda)$$

$$\lim_{\xi \to +\infty} \hat{\varsigma}_B(\lambda, \xi) = \hat{X}_0^+(\bar{\theta}_3, \lambda)$$

Demostración. Se sigue immediatamente del comportamiento asintótico de ζ_F y ζ_B , y que λ no es eigenvalor de los sistemas reducidos, y por lo tanto no son acotadas para $\xi \to +\infty$.

Evans [5] muestra que si $|\lambda|$ es grande entonces λ no es eigenvalor de L. Sea K tal que si $|\lambda| > K$ entonces λ no es eigenvalor de L. Consideremos entonces a λ en

$$\Omega = \{ \lambda \in \mathbb{C} \mid \lambda \in \overline{(\widehat{G})}, \ \lambda \notin V_{\delta}, \ |\lambda| \leq K \}$$

que es un conjunto compacto.

El siguiente lema da una estimación del comportamiento de $\zeta(\lambda, \xi)$ para ξ grande.

Lema 2.8. Dadas $\bar{\lambda} \in \Omega$ y ρ_2 existen ε_0 , η_0 tales que si $0 < \varepsilon \le \varepsilon_0$ y $|\lambda - \bar{\lambda}| < \eta_0$, entonces $\hat{\zeta} = \pi(\zeta)$ entra a B_2 bajo $H_{\varepsilon}^{\lambda}$.

Demostración. Ver figura 2.6. $\hat{\zeta}(\lambda)$ y $\hat{\zeta}_F(\bar{\lambda})$ son cercanes en $\{\theta_0\} \times \mathbb{C} P^2$ si ε_0 y η_0 son suficientemente cercanas. Como $H_{\varepsilon}^{\lambda}$ depende continuamente de ε y λ , y $\hat{\zeta}_F(\bar{\lambda})$ entra a B_1 bajo $H_0^{\bar{\lambda}}$, entonces $\hat{\zeta}(\lambda)$ también lo hará bajo $H_{\varepsilon}^{\lambda}$ si ε_0 y η_0 son suficientemente pequeñas.

Escogiendo ρ el radio de B_1 suficientemente pequeño, $\hat{\varsigma}(\lambda)$ sale de B_1 en $\{\theta_2\} \times \mathbb{CP}^2$ cercana a $\varsigma_B(\bar{\lambda})$. Como $\varsigma_B(\bar{\lambda})$ entra a B_2 bajo $H_0^{\bar{\lambda}}$, entonces también $\hat{\varsigma}(\lambda)$ entra a B_2 bajo $H_{\varepsilon}^{\lambda}$ si ε_0 y η_0 son suficientemente pequeños, que es lo que queríamos mostrar.

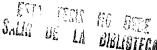
Conosiendo el comportamiento de $\zeta(\lambda, \xi)$, en el siguiente lema estimamos $D(\lambda)$.

Lema 2.9. Dada $\bar{\lambda} \in \Omega$, existen ε_0 y η_0 tales que si $0 < \varepsilon \le \varepsilon_0$ y $|\lambda - \bar{\lambda}| < \eta_0$ entonces $D(\bar{\lambda}) \ne 0$.

Demostración. Tenemos que $\eta(\lambda, \xi) \approx Y^-(\varepsilon, \lambda)e^{\beta^-\xi}$ para ξ grande. Por otra parte, por el lema anterior $\hat{\varsigma}$ entra a B_2 bajo $H_{\varepsilon}^{\lambda}$. Por lo tanto $\hat{\varsigma}$ está cercano a $X^+(\varepsilon, \lambda)$, ya que $\hat{\varsigma}$ es cercana a $X_0^+(0, \lambda) = X^+(\varepsilon, \lambda)$ cuando $h_{\varepsilon}(\theta) = (0, 0, 0)$.

Calculando tenemos que

$$X^{+}(\varepsilon,\lambda)\cdot Y^{-}(\varepsilon,\lambda)=1+\frac{\alpha^{+}}{c-\beta^{-}}-\frac{\varepsilon}{(c\alpha^{+}-(\lambda+\varepsilon\gamma))(\beta^{-}-c)(\beta^{-}+(\lambda+\varepsilon\gamma)/c)}$$



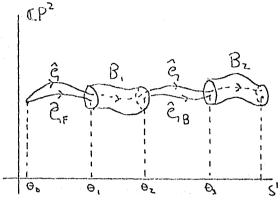


Figura 2.6

Por lo tanto

$$X^+(0,\lambda)\cdot Y^-(0,\lambda)=1+\frac{\alpha^+}{c+\alpha^+}.$$

Calculando tenemos que

$$\operatorname{Re}\left(\frac{\alpha^{+}}{c+\alpha^{+}}\right) = \frac{\operatorname{Re}\left(\alpha^{+}\left(c+\overline{\alpha^{+}}\right)\right)}{|c+\alpha^{+}|^{2}}$$
$$= \frac{|c^{2}+4(\lambda+a)|-c^{2}}{4|c+\alpha^{+}|^{2}}$$

que es positivo para $\lambda \in \tilde{G}$. Por lo tanto $\operatorname{Re}(X^+ \cdot Y^-) > 1$, para $0 < \varepsilon \le \varepsilon_0$ si ε_0 es pequeño. Tomando ρ_2 suficientemente pequeña y ξ grande

$$\tilde{\zeta}(\lambda,\xi)\cdot\tilde{\eta}(\lambda,\xi)\approx X^+\cdot Y^-\neq 0$$

y por lo tanto $D(\lambda) \neq 0$ como consecuencia del lema 2.6. Esto último prueba el teorema 2.3.

Jones continúa la demostración mostrando que en una vecindad de 0 hay solo dos eigenvalores, uno de los cuales es el 0; esto lo hace calculando el número de rotación de $D(\lambda)$ alrededor del 0. Observamos que si $\lambda \in \mathbb{R}$ entonces $D(\lambda) \in \mathbb{R}$, ya que en este caso $\zeta(\lambda, \xi)$ y $\eta(\lambda, \xi)$ y solo toman valores en \mathbb{R} ; por lo tanto $D(\lambda)$ es simétrica con respecto al eje real, y el otro eigenvalor en la vecindad de 0 es real. Jones concluye mostrando que $\partial D(0)/\partial \lambda > 0$. Evans [5] muestra que si $\mathrm{Re}\,\lambda$ es suficientemente grande entonces $D(\lambda) \neq 0$. Concluimos entonces que 0 es eigenvalor simple y el otro eigenvalor en la vecindad de 0 es negativo. Para calcular esta derivada es necesario calcular $\partial \zeta/\partial \lambda$; estó

lo bace Jones estimando el ángulo de intersección entre la variedad estable e inextable. No incluyo esta parte de la demostración de Jones por ser demasiado técnica.

El argumento presentado solamente muestra la estabilidad de el pulso viajero en una vecindad de esté en el espacio de funciones $B = \mathrm{BC}(\mathbb{R},\mathbb{R}^2)$, y no se da ninguna estimación del tamaño de esta vecindad.

APENDICE

TEORIA DE GRADO

En este apéndice desarrollaremos los elementos de teoría de grado necesarios en la demostración del lema 1.4. El desarrollo es el mismo que se puede encontrar en las notas de Nirenberg [12]. Utilizaremos formas diferenciales; una bonita presentación de este concepto la hace Arnold [13].

Sean X_0 y Y variedades C^∞ orientadas de dimención n y X subconjunto abierto de X_0 con $\overline{X} = X \cup \partial X$ compacto. Sean $\phi: \overline{X} \to Y$ diferenciable en X y $y_0 \in Y \setminus \phi(\partial X)$. En la aplicación en el lema 1.4 $X_0 = Y = \mathbb{R}^{n-1}$, $X_0 = [0,1]^{n-1}$. Entonces:

Definición. $\Omega \subset Y$ abierto es una vecindad coordenada simple de y_0 si $y_0 \in \Omega$ y existe carta coordenada $\bar{x}: \Omega \to \mathbb{R}^n$ tal que $\bar{x}(\Omega)$ es un n-cubo.

 μ es una n-forma diferenciable admisible para y_0 y ϕ , si el soporte de μ está contenido en Ω una vecindad coordenada simple de y_0 , que a su vez esta contenida en $Y \setminus \{\phi(\partial X)\}$ y tal que $\int_Y \mu = 1$.

Definición. Sea μ una n-forma diferenciable admisible. Definimos el grado de ϕ en y_0 como

 $\operatorname{grad}(\phi, X, y_0) = \int_X \phi^* \mu.$

Para mostrar que el grado está bien definido demostraremos antes el siguiente lema.

Lema A.1. Sea μ una n-forma diferenciable en Y tal que $\int_Y \mu = 0$ y sop $\mu \in \Omega$ vecindad coordenada simple. Entonces existe una (n-1)-forma diferenciable ω tal que sop $\omega \in \Omega$ y $\mu = d\omega$.

Demostración. Podemos suponer sin pérdida de generalidad que sop $\mu \subset (0,1)^n$. Entonces $\mu = f(x_1, \ldots, x_n) dx_1 \wedge \cdots \wedge dx_n$ dende x_1, \ldots, x_n son las coordenadas usuales en \mathbb{R}^n . Lo que tenemos que demostrar es que existe $g = (g_1, \ldots, g_n)$ tal que f = div g con sop $g \subset C$. Lo haremos por inducción en n.

Para n = 1, tomando $g(x) = \int_{-\infty}^{x} f(s) ds$ tenemos que dg(x)/dx = f(x).

Suponemos cierto para n-1. Sea

$$m(x_1,\ldots,x_{n-1}) = \int_{-\infty}^{\infty} f(x_1,\ldots,x_{n-1},t) dt.$$

Por hipótesis del lema tenemos

$$\int_{\mathbb{R}^{n-1}} m(x_1, \ldots, x_{n-1}) \, dx_1 \cdots dx_{n-1} = 0$$

y por lo tanto

$$m(x_1,\ldots,x_{n-1})=\sum_{i=1}^{n-1}\frac{\partial g_i}{\partial x_i}(x_1,\ldots,x_{n-1})$$

con sop $g_i \subset (0,1)^{n-1}$. Sea $\tau(x_n)$ función C^{∞} con sop $\tau \subset (0,1)$ y tal que $\int_{\mathbb{R}} \tau(t) dt = 1$. Consideremos $f(x_1,\ldots,x_n) - \tau(x_n) m(x_1,\ldots,x_{n-1})$. Tenemos que satisface que

$$\int_{\mathbb{R}} (f(x_1,\ldots,x_{n-1},t) - \tau(t)m(x_1,\ldots,x_{n-1})) dt = 0.$$

Entonces

$$g_n(x_1,\ldots,x_n) = \int_{-\infty}^{x_n} (f(x_1,\ldots,x_{n-1},t) - \tau(t)m(x_1,\ldots,x_{n-1})) dt$$

que satisface

$$\frac{\partial g_n}{\partial x_n}(x_1,\ldots,x_n)=f(x_1,\ldots,x_n)-\tau(x_n)m(x_1,\ldots,x_{n-1})$$

 $y \text{ sop } g_n \subset C y \text{ por lo tanto}$

$$f(x_1,\ldots,x_n)=\sum_{i=1}^{n-1}\tau(x_n)\frac{\partial g_i}{\partial x_i}(x_1,\ldots,x_{n-1})+\frac{\partial g_n}{\partial x_n}.$$

Mostraremos ahora que el grado esta bien definido.

Proposición A.2. El grado no depende de μ .

Demostración. Si ν y μ son admisibles para y_0 y ϕ entonces $\nu - \mu$ satisface las condiciones del lema anterior y por lo tanto $\nu - \mu = d\omega$ con sop $\omega \subset \Omega$ y por lo tanto

$$\int_{X} \phi^* \nu - \int_{X} \phi^* \mu = \int_{X} \phi^* (\nu - \mu) = \int_{X} \phi^* d\omega =$$

$$\int_{Y} d(\phi^* \omega) = \int_{\partial Y} \phi^* \omega = 0$$

por el teorema de Stokes y que $\phi^*\omega = 0$ en ∂X .

Demostraremos ahora la primera propiedad del grado que utilizamos en la demostración del lema 1.4.

Proposición A.3. Si grad $(\phi, X, y_0) \neq 0$ entonces $y_0 \in \phi(X)$.

Demostración. Supongamos que grad $(\phi, X, y_0) \neq 0$ y que $y_0 \notin \phi(X)$. Como $\phi(\overline{X})$ es cerrado existe $\Omega \subset Y \setminus \phi(\overline{X})$ vecindad coordenada simple de $y_0 \neq \mu$ una *n*-forma

diferenciable admisible para
$$y_0$$
 y ϕ tal que sop $\mu \subset \Omega$. Entonces

 $\operatorname{grad}(\phi, X, y_0) = \int_Y \phi^* \mu = 0$

ya que $\mu = 0$ en $\phi(\overline{X})$.

Las siguientes dos propiedades del grado permitirán demostrar la invarianza homotópica del grado.

Proposición A.4. Si y_1 es suficientemente cercano a y_0 entonces grad $(\phi, X, y_1) = \text{grad}(\phi, X, y_0)$.

Demostración. Sea μ admisible para y_0 y ϕ . Si y_1 es suficientemente cercano a y_0 entonces μ también es admisible para y y grad $(\phi, X, y_1) = \text{grad}(\phi, X, y_0)$.

Como consecuencia inmediata de esta proposición es que el grado de ϕ es el mismo en cualquier punto de cada componente conexa por trayectorias de $Y \setminus \phi(\partial X)$.

Proposición A.5. El grado de ϕ en y_0 es un entero.

Demostración. Podemos suponer que y_0 es valor regular de ϕ . De lo contrario por el teorema de Sard [12, 14] encuentro y_1 valor regular de ϕ y suficientemente cercano a y_0 tal que grad $(\phi, X, y_0) = \text{grad}(\phi, X, y_1)$ con y_1 valor regular de ϕ . Sea $\phi^{-1}(y_0) = \{x_1, \ldots, x_k\}$, que es finito por ser X compacto y y_0 valor regular, y vecindades N_i de x_i tales que $\phi|_{N_i}$ es difeomorfismo. Sea $N = \bigcap_{i=1}^k \phi(N_i)$ vecindad de y_0 . Sea μ admisible con sop $\mu \subset N$. Entonces

$$\operatorname{grad}(\phi,X,y_0) = \int_X \phi^*\mu = \sum_{i=1}^k \int_{N_i} \phi^*\mu = \sum_{i=1}^k s_j \int_Y \mu$$

donde

$$s_j = \begin{cases} 1 & \text{si } \phi|_{N_i} \text{ preserva la orientación,} \\ -1 & \text{si } \phi|_{N_i} \text{ no preserva la orientación.} \end{cases}$$

Por lo tanto el grado es un entero.

En el lema 1.4 calculamos el grado como lo calculamos en el lema anterior.

Proposición A.6. (Invarianza homotópica). Sea $\phi_t(x): \overline{X} \times [0,1] \to Y$ continua en $\overline{X} \times [0,1]$ y $C^1(X)$ para t fija. Si $y_0 \notin \phi_t(\partial X)$ para toda $t \in [0,1]$, entonces $\operatorname{grad}(\phi_t, X, y_0)$ no depende de t.

Demostración. Sea $\tilde{Y} = \{\phi_t(x) \mid x \in \partial X, t \in [0,1]\}$. \tilde{Y} es cerrado y $y_0 \notin \tilde{Y}$. Sea Ω vecindad coordenada simple de y_0 tal que $\Omega \subset Y \setminus \tilde{Y}$ y μ n-forma admisible con sop $\mu \subset \Omega$. Entonces

 $\operatorname{grad}(\phi_t, X, y_0) = \int_X \phi_t^* \mu$

que es continua en t y por ser entero, es constante en t.

Para definir el grado de $\phi: \overline{X} \to Y$ con ϕ unicamente continua, aproximamos a ϕ por funciones diferenciables (ϕ_n) tales que $\phi_n \to \phi$ uniformemente, y definimos

$$\operatorname{grad}(\phi,X,y_0)=\lim_{n\to\infty}\operatorname{grad}(\phi_n,X,y_0)$$

que existe y está bién definido (no depende de (ϕ_n)) por la invarianza homotópica del grado, ya que para n suficientemente grande grad (ϕ_n, X, y_0) es constante.

Referencias

- [1] Carpenter G. A., A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Diff. Eq. 23 (1977), 335-367.
- [2] Jones K.R.T., Stability of the travelling wave solution of the FitzHugh-Nagumo system, Trans. A.M.S. 286 No.2 (1984), 431-469.
- [3] Evans J.W., Nerve axon equations I: linear approximations, Indiana Univ. Math. J. 21 (1972), 877-885.
- [4] Evans J.W., Nerve axon equations II: stability at rest, Indiana Univ. Math. J. 22 (1972), 75-90.
- [5] Evans J.W., Nerve axon equations III: stability of the nerve impulse, Indiana Univ. Math. J. 22 (1972), 577-594.
- [6] Evans J.W., Nerve axon equations IV: the stable and the unstable impulse, Indiana Univ. Math. J. 24 (1975), 1169-1190.
- [7] Fife P. y McLeod J.B., The approach of solutions of non linear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal. 65(1977), 335-361.
- [8] Coddington E.A. y Levinson N., Theory of ordinary differential equations, New York, McGraw-Hill 1955.
- [9] McKean H., Nagumo's equation, Adv. in Math. 4 (1970), 209-223.
- [10] Cohen H., Mathematical developments in Hodgkin-Huxley theory and its approximations, Lec. on Math. in Life Sciences 8 (1976), 89-124.
- [11] FitzHugh R., Impulses and physiological states in theoretical models of nerve membrane, Biophysical J. 1 (1961), 445-466.
- [12] Nirenberg L., Topics in nonlinear analysis, Courant Institute of Mathematicals Sciences, New York (1973-1974).
- [13] Arnold V.I., Mathematical methods of classical mechanics, New York, Springer-Verlag (1978).
- [14] Guillemin V. y Pollack A., Differential Topology, Pretince-Hall (1974).