00362

AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

COEFICIENTES DE ABERRACION EN UN ESPECTROMETRO DE MASAS 130º, 56º, 17.5 cm

FALLA DE ORIGEN

T E S I S

MAESTRIA EN CIENCIAS (FISICA)

P R E S E N T A:

MARIA ISABEL CASAR ALDRETE

DIRECTOR DE TESIS:

M. EN C. PEDRO MORALES PUENTE

MEXICO, D. F.

NOVIEMBRE DE 1995

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A la memoria de mi padre

A mis hijos: Mónica, Jos, Pau, y Katy por cargar mi bateria diariamente con su amor .

A mi esposo por su amor, apoyo , comprensión y por suplirme a cada rato.

A mi mamá por enseñarme la alegría de vivir, amarme y apoyarme siempre.

Quiero agradecer al M. en C. Pedro Morales Puente la dirección de esta tesis y por ayudarme con sus conocimientos, su apoyo y su comprensión.

También agradezco a los sinodales: Dr. Eduardo Muñoz Picone, M. en C. Raúl Gómez González, Dr. L. Fernando Magaña Solís, Dr. Fernando Alba Andrade, Dr. Jorge Rickards Campbell, Dr. Gerardo

Fernando Alba Andrade, Dr. Jorge Rickards Campbell, Dr. Gerardo Vázquez Fonseca, por revisar este trabajo, por el tiempo que me brindaron y por sus sugerencias con las cuales se mejoro esta tesis.

Agradezco de una manora especial a la M. en C. Edith Cienfuegos por su excelente colaboración, su enorme paciencia, su tenacidad y su gran afecto.

Agradezco también al Fis. Francisco Fernández y al Fis. Francisco Pena por la construcción de la parte electrónica y a todo el grupo de electrónica por su apoyo constante.

Al Ing. Marco Veytia y a todos los miembros del taller del IFUNAM agradezco su excelente labor en la construcción del equipo y de una manera especial al Sr. Rafael Puente por su inapreciable labor en el mantenimiento de los equipos de vacio. INDICE CAPITULO I Introducción.

CAPITULO II **Optica** de Iones

2.1 Movimiento de partícula en campo magnético uniforme

2.1.1 Aproximación matricial de primer orden 2.1.2 Aproximación matricial de tercer orden

2.2 Aberraciones

2.3 Arreglos geométricos.

2.3.1 Enfoque 1er orden

2.3.2 Entrada normal.

2.3.3 Entrada oblicua

2.4 Campo magnético disperso.

CAPITULO III Cálculos

3.1 Cálculo de trayectorias.

3.1.1 Ecuaciones de movimiento

3.1.2 Sistema de coordenadas

3.2 Cálculo de Campo magnético disperso.

3.3 Programa de cómputo.

3.4 Cálculo de Aberraciones.

3.4.1 Correlación de aberraciones de Matsuda y de programa de cómputo desarrollado.

3.4.2 Aberraciones de geometrías estudiadas.

3.4.3 Reducción y significado de aberraciones.

CAPITULO IV Espectrómetro de masas 4.1 Optimización de características del Espectrómetro 4.2 Características de construcción 4.3 Operación 4.4 Aberraciones experimentales.

CAPITULO V Conclusiones.

INTRODUCCION

Por ser la masa una de las dos características básicas de la materia, la instrumentación que mide esta variable tiene características únicas como son:

- Su capacidad de detectar átomos aislados o moléculas en un intervalo de masas de 1 hasta 10000 daltons.

- Su capacidad de analizar todos los elementos de la tabla periódica, así como cuantificar los isótopos de cada elemento.

- Su respuesta lineal en concentraciones que pueden variar hasta doce órdenes de magnitud.

- Su relación directa entre la salida instrumental y la concentración del compuesto a analizar.

Los espectrómetros de masas son algunos de los instrumentos que separan y cuantifican los compuestos según su masa y por lo tanto representan una técnica analítica muy versátil y de gran aplicación.

Un caso particular de espectrómetros de masas son aquellos que realizan análisis isotópico, o sea, que separan y cuantifican los isótopos de los elementos.

El análisis de isótopos estables durante los últimos veinte años ha adquirido gran interés ya que permite reconstruir los procesos o eventos que han ocurrido en una matriz.

Al participar los elementos en los ciclos de la naturaleza y estar sujetos a distintos procesos físicoquímicos, las relaciones entre los isótopos de los elementos cambian de forma predecible, de tal manera que estas relaciones actúan como huellas o registros de estos procesos. Mas aún en algunos sistemas biológicos y geológicos se puede analizar la composición isotópica de dos o tres de los elementos que participan en el proceso, contando así con dos o tres registros independientes que permiten elaborar una síntesis informativa muy útil en la solución de problemas complejos.

Algunas disciplinas en las que se utiliza de manera exitosa el análisis isotópico son: la Bioquímica, la Química Analítica, la Fisicoquímica, Medicina, Farmacología, Geoquímica, Mineralogía Geocronología, Cosmoquímica, Biología y actualmente en Ecología.

En general un espectrómetro de masa se puede dividir en cinco partes, dependiendo de su función: introducción de muestras, formación, separación según su masa y detección de iones, y control instrumental y manejo de datos.

Las características de estos constituyentes varian dependiendo tanto del tipo de muestras que se quieren analizar como de la información que de ellas se requiera.

- Por ejemplo, la introducción de muestras, puede ser directa mediante el depósito de una solución sobre un filamento, como es el caso de la termoionización, en fase gaseosa por medio de flujo molecular a través de un orificio por medio de un cromatógrafo de gases, de equipo de electrofóresis, etc.

- La producción de iones puede llevarse a cabo mediante termoionización o por bombardeo de la muestra con: electrones, fotones (LD), átomos (FBA), iones (SIMS), fragmentos de fusión (PD) etc.

- La separación de iones según su masa se puede realizar mediante: campos eléctricos, campos magnéticos, cuadrupolos eléctricos o magnéticos o la combinación de todos ellos.

- La detección de iones se realiza en multiplicadores de electrones, placas fotográficas, cajas de faraday sencillas o de multicolección simultánea.

En particular en este trabajo se discutirá los espectrómetros de masas para análisis de isótopos estables en un intervalo de masas de l a 300 daltons, con fuente de ionización térmica.

El objetivo del presente trabajo es mostrar un novedoso método de cálculo de trayectorias de haces de iones en presencia de campos magnéticos para el diseño de un espectrómetro de masas donde se optimizan características de operación como son: la transmisión, resolución, sensibilidad de abundancia y dispersión de masas.

Para optimizar estas características se analizó en detalle el comportamiento de los haces de iones en campos magnéticos a partir de las ecuaciones fundamentales de movimiento tanto para la región del campo magnético uniforme como para la región del campo magnético disperso. De los resultados de las diferentes geometrías estudiadas se escogió el arreglo geométrico que optimiza las características de operación; con este arreglo se diseñó y construyó un espectrómetro de masas. Finalmente se evaluaron experimentalmente las características del espectrómetro de masas contruido en el IFUNAM y se comparan con las características de otros espectrómetros de masas comerciales.

II OPTICA DE IONES

La deflexión de partículas cargadas por campos magnéticos es el principio en el cual se basan los espectrómetros de masas de sectores magnéticos. Este principio no solo ha encontrado muchas aplicaciones técnicas en este siglo, sino que ha jugado un papel muy importante en el universo durante millones de años. La deflexión del viento solar por el campo magnético terrestre es uno de los prerreguisitos de la evolución biológica.

Al estudio de las trayectorias de iones en campos magnéticos y eléctricos se le llama Optica de Iones por su similitud con el estudio de haces de luz a través de priemas y lentes.

Los iones se dispersan de acuerdo a su momento y los rayos divergentes se enfocan mediante la acción de campos magnéticos de la misma manera que los rayos de luz se enfocan mediante prismas y lentes, y en ambos casos se tienen aberraciones y se manejan matrices para representar los medios a través de los que pasan los rayos.

Desde 1886 cuando E. Goldstein descubrió en un tubo de descarga la forma de producir un haz de partículas positivas, una gran cantidad de científicos realizaron experimentos relacionados con la interacción entre haces de partículas cargadas y campos magnéticos, desarrollándose los fundamentos de la espectrometría de masas moderna. Entre este grupo de científicos destacan 4 ganadores del premio Nobel: J.J. Thomson, K.F. Braun, W. Wien y F.W. Aston, quien construyó el primer espectrómetro de masas y con el demostró la existencia de los isótopos del Neón.

2.1 Movimiento de partículas en un Campo Magnético Uniforme.

El caso mas simple es el del movimiento de una partícula en un campo magnético uniforme ...Una partícula con masa " m ", carga " q ", energía cinética " qV" y velocidad " v " (v, v, v) que entra en un campo magnético uniforme de intensidad " B " y componente solo en la dirección Z, se deflectará describiendo una trayectoria circular de radio " R " debido a la fuerza de Lorentz donde:

 $\frac{m}{q} = \frac{K R^2 B^2}{2V}$

K es una constante dimensional 4.83*10⁻⁵ amu volts /cm² gauss²

n de la servicie de la companya de l

a la carre d'a la que a state par se se de dere e Anne la subder Caster d'

Si en lugar de una partícula tenemos un haz de partículas monoenergéticas y monocargadas con diferentes masas entrando a un campo magnético uniforme, estas girarán con un radio distinto generando una separación espacial entre ellas de tal manera que se puede realizar una medición cuantitativa de cada una de las masas. Esta separación y cuantificación de masas es el principio básico de operación de los espectrómetros de masas.

Fig.2.1 Separación de masas por un campo magnético

Cuando se trata de haces de iones que salen de la fuente de iones divergiendo espacialmente, los sectores magnéticos deberán posser ciertas características para enfocar estos haces.

El análisis del movimiento de un haz de iones en un campo magnético se ha realizado utilizando aproximaciones cada mas refinadas. Herzog^(1934,1930,1935) fue el primero en estudiar analíticamente la óptica de iones con aproximaciones de primer orden y tanto Enge ^(1936,1970) como Penner ⁽¹⁹³⁶⁾ lograron poner las bases para el cálculo matricial de las trayectorias de los iones en campos magnéticos y eléctricos hasta un segundo orden de aproximación.

Finalmente Matsuda y Wollnik ^(1965,1967,1971) durante la década de los 80 ^(1961,1984,1965,1967,1999) desarrollaron integrales complicadas para simular el campo magnético disperso en forma matricial y llevaron los cálculos hasta un tercer orden de aproximación.

El éxito del método matricial es que debido a las propiedades de las matrices, el producto de ellas podía incluir siempre una mas que simulara un efecto adicional sobre el haz de iones.

6

and a straight and the state

El método de cálculo para la optica de iones de un espectrómetro de masas propuesto en este trabajo, no es el método tradicional de cálculos matriciales. Sin embargo describiremos brevemente el método matricial con el propósito de compararlo con el nuestro y definir as los parámetros que utilizaremos.

2.1.1 Aproximación matricial de primer orden.

Para el análisis de las propiedades de un sector magnético "M" que enfoca, deflecta y dispersa un haz de iones que pasa por él, Enge ("M") seleccionó dos rayos de partículas, uno central con parámetros (m, v, r,) y otro arbitrario que diverge del central tanto espacialmente como en cuanto a su momento. El momento "p" del rayo arbitrario es tal que:

$$\mathbf{p} = \mathbf{p}_{\alpha} (1 + \delta).$$

El rayo central sale, con una energía $E = m v_a^2 / 2$, del punto Ss (rendija de definición que en realidad es tridimensional y se considera puntual por simplicidad) situado en un espacio (I) donde no hay fuerzas. Este punto se encuentra a una distancia L₁ de la frontera del imán. El otro rayo diverge volumétricamente de las coordenadas (X,Y,Y,Z) del rayo central con una pendiente horizontal y vertical de Y,' y Z, respectivamente. (Ver figura 2.2).

La dirección "X" coincide con la trayectoria del rayo central, "Y" es la dirección perpendicular a "X" y "2" es la dirección perpendicular al plano XY que coincide con el plano medio del sector megnético. Después de recorrer la distancia L₁ el rayo entra a una región III donde actúa un campo magnético uniforme con simetría de espejo con respecto al plano XY y con componente solo en la dirección Z que hace que el rayo central se deflecte girando con un radio "R". Después de la deflexión el rayo sale a otro espacio sin fuerzas (V) cuyo sistema de coordenadas (X₂,Y₂,Z₂) es tal que nuevamente el eje "X" coincide con el rayo central y el rayo arbitrario nuevamente diverge espacialmente con pendientes Y'₂ y Z'₂.

Fig.2.2 Sistema de coordenadas de trayectorias de haces de iones en espacios libres y en campo magnético uniforme.

La posición y dirección del rayo arbitrario al momento de salir del imán ($X_2 = 0$) se puede expresar como una serie de funciones de las condiciones iniciales del rayo al entrar al campo magnético donde.

 $\begin{array}{rcl} Y_2 &=& f_1 \left(\begin{array}{c} Y_1, & Y_1', & Z_1, & Z_1', & \delta \end{array} \right) \\ Y_2 & '=& f_2 \left(\begin{array}{c} Y_1, & Y_1', & Z_1, & Z_1', & \delta \end{array} \right) \\ Z_2 &=& f_3 \left(\begin{array}{c} Y_1, & Y_1', & Z_1, & Z_1', & \delta \end{array} \right) \\ Z_2' &=& f_4 \left(\begin{array}{c} Y_1, & Y_1', & Z_1, & Z_1', & \delta \end{array} \right) \end{array} \end{array}$

Las ecuaciones anteriores son lineales en tres parámetros (tamaño, ángulo y momento) ya que sus desviaciones con respecto al haz central son muy pequeñas ($Y_1, Z_1, < X_1 < X_1$, X_1 , $X_$

La expansión de las expresiones anteriores en series de Taylor a primer orden se encuentra en el apéndice 1 y aunque tiene una nomenclatura confusa se expresan para el movimiento en el plano horizontal como:

$$\begin{vmatrix} \frac{Y_3}{R} \\ \frac{Y_2}{R} \\ \frac{Y_2}{R} \\ \frac{Y_1}{\delta} \end{vmatrix} = \begin{vmatrix} \frac{Y}{T} & \frac{Y'}{Y'} & \frac{Y}{\delta} \\ \frac{Y'}{T} & \frac{Y'}{Y'} & \frac{Y'}{\delta} \\ \frac{Y'}{T} & \frac{Y'}{Y'} & \frac{Y'}{\delta} \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} \frac{Y_1}{R} \\ \frac{Y_1}{R} \\ \frac{Y_1}{R} \\ \frac{Y_1}{R} \end{vmatrix}$$

donde Y/Y = $\partial Y_2 / \partial Y_1$, Y/Y' = $(1/R)\partial Y_2 / \partial Y_1'$, Y/S = $(1/R)\partial Y_2 / se$ divide entre el radio de giro del rayo central R para tener cantidades adimensionalos que permiten comparaciones entre sistemas de distintos radios.

Para el sentido vertical la matriz es

elen geliktere

$\frac{Z_2}{R}$	$\frac{s}{z}$	2		$\frac{Z_1}{R}$
$\frac{Z_2'}{R}$	$\frac{z'}{z}$	8	Å	$\frac{g_1'}{R}$

donde nuevamente $Z/Z = \partial Z_2 / \partial Z_1 - Z/Z' = (1/R) \partial Z_2 / \partial Z_1$

Además como la matriz de un sistema complejo se puede expresar como el producto de las matrices individuales de cada componente del sistema, las trayectorias de los iones del sistema descrito anteriormente se pueden expresar como el producto de las matrices de transferencia del espacio libre I, del campo magnético III y del espacio libre V de tal manera que para el sentido horizontal

Y2		Y ₁	
Y2'	$= I_y III_y V_y $	¥í	
ĺδ		δ	

Ec. 2.3

EC.2.1

Ec. 2.2

y para el sentido vertical

$$\begin{vmatrix} \mathbf{z}_2 \\ \mathbf{z}_2' \end{vmatrix} = |\mathbf{I}_{\mathbf{z}}| |\mathbf{III}_{\mathbf{z}}| |\mathbf{V}_{\mathbf{z}}| \begin{vmatrix} \mathbf{z}_1 \\ \mathbf{z}_1' \\ \mathbf{z}_1' \end{vmatrix}$$

Para los espacios libres de campos I y V las trayectorias de los haces son lineas rectas y por lo tanto la relación entre las coordenadas en la entrada y la salida del haz de iones del sector magnético se expresa mediante las siguientes matrices: (ver apéndice II para el desarrollo).

$$I_{y} = \begin{vmatrix} 1 & \frac{L_{1}}{R} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \qquad \qquad V_{z} = \begin{vmatrix} 1 & \frac{L_{1}}{R} \\ 0 & 1 \end{vmatrix} \qquad \qquad \qquad EC$$

Ec. 2.4

De la misma manera las matrices de transferencia del sector magnético expresado en coordenadas polares (r, ϕ) y para casos de entrada perpendicular a la frontera del imán en el plano XY son:

el desarrollo de estas ecuaciones se encuentra en el apéndice III

1 R¢

III. =

Cuando la entrada al sector magnético es oblicua, se incluyen dos matrices adicionales II y IV asociadas a los espacios comprendidos entre las fronteras del imán y los espacios libres. El efecto neto de una entrada oblicua de las partículas al campo magnético es cambiar la pendiente del haz en la posición Y, a Y, tan e donde e es el ángulo entre la perpendicular a la frontera del imán y el haz central en el espacio de entrada de tal manera que las matrices de transferencia horizontal y vertical se expresan como:

 $II_{y} = \begin{vmatrix} 1 & 0 & 0 \\ \tan \frac{\varepsilon_{1}}{R} & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \qquad II_{z} = \begin{vmatrix} 1 & 0 \\ -\tan \frac{\varepsilon_{1}}{R} & 1 \end{vmatrix} \qquad Ec. 2.8$

Para los haces interiores al haz central, la trayectoria dentro del campo magnético aumenta produciendo un mayor ángulo de giro mientras que a los haces exteriores se les reduce la distancia que recorren en el campo magnético y su ángulo de giro disminuye. Esta característica de entrada oblicua puede utilizarse como propiedad enfocadora en el sentido vertical.

Tomando en cuenta la matriz de entrada oblicua el efecto total sobre un haz de iones en un campo magnético uniforme ae describe mediante el producto de las matrices I,II,III,IV,V, de la misma manera que lo describe Taya (1978). Fig 2,3

Fig 2.3 Trayectoria central de haz de iones en espectrómetro de masas

2.1.2 Aproximación matricial de tercer orden

Matsuda, Woolnik y Matsuo ⁽¹⁹⁶⁹⁾ desarrollaron las matrices de transferencia con aproximaciones de tercer orden. Estas matrices tienen dimensiones de 40 x 40 e incluyen además de efectos de tercer orden, entradas oblicuas, efectos de campo magnético disperso (extensión del campo magnético fuera de las fronteras del imán) etc.

El trabajo de Matsuda y Matsuo ⁽¹⁹⁶⁶⁾ ha llegado hasta el desarrollo de un programa comercial de computadora llamado TRIO (third order ion optics) con el cual se pueden calcular las aberraciones de la imagen y la posición del foco para cualquier sistema óptico que tenga espacios libres, campos magnéticos homogéneos o inhomogéneos, campos eléctricos cilíndricos o toroidales, lentes cuadrupolares magnéticas ó eléctricas y multipolos.

En el desarrollo del programa TRIO, Matsuda toma en cuenta las mismas consideraciones teóricas que Penner así como las mismas condiciones iniciales del haz de iones y estos difieren solo en nomenclatura.

Para Matsuda el tamaño del haz a la salida del sector magnético en la región de colección está dada por X_2 en el plano horizontal y Y_2 para el plano vertical. X_2 se expresa como:

$$\begin{split} \mathbf{X}_2 &= \mathbf{A}_{\mathbf{X}} \mathbf{X} + \mathbf{A}_{\alpha} \alpha + \mathbf{A}_{\delta} \delta + \mathbf{A}^{\mathsf{T}} \mathbf{r} + \mathbf{A}_{\mathbf{x}\mathbf{x}} \mathbf{X}^2 + \mathbf{A}_{\mathbf{x}\alpha} \mathbf{x} \alpha + \mathbf{A}_{\mathbf{x}\delta} \mathbf{X} \delta \\ &+ \mathbf{A}_{\alpha\alpha} \alpha_2 + \mathbf{A}_{\alpha\delta} \alpha \delta + \mathbf{A}_{\delta\delta} \delta^2 + \mathbf{A}_{\gamma\gamma} \mathbf{Y}^2 + \mathbf{A}_{\gamma\beta} \mathbf{Y} \mathbf{\beta} + \mathbf{A}_{503} \mathbf{\beta}^2 \\ &+ \mathbf{A}_{\alpha\alpha\alpha} \alpha^3 + \mathbf{A}_{\alpha\alpha\delta} \alpha^2 \delta + \mathbf{A}_{\alpha\delta\delta} \alpha \delta^2 + \mathbf{A}_{\alpha\gamma\gamma} \alpha \mathbf{Y}^2 + \mathbf{A}_{\alpha\gamma\beta} \alpha \mathbf{Y} \mathbf{\beta} \\ &+ \mathbf{A}_{\alpha\beta\beta} \alpha \beta^2 + \mathbf{A}_{\delta\delta\delta} \delta^3 + \mathbf{A}_{\delta\gamma\gamma} \delta \mathbf{Y}^2 + \mathbf{A}_{\delta\gamma\beta} \delta \mathbf{\beta}^2 \end{split}$$

Ec. 2.9

$Y_2 = A_2 Y + A_0 \beta + \dots$

En las ecuaciones anteriores el ángulo de divergencia del haz al salir de la fuente de iones es (α,β) , la dispersión del momento con respecto del haz central es δ y el haz tiene una desviación adicional de energía r.

Las matrices de Matsuda tienen un gran campo de aplicación en aceleradores de partículas con haces muy energéticos y de anchos considerables, sin embargo el programa TRIO no tiene gran precisión en el cálculo de la posición del punto focal ni en el análisis del tamaño y forma de la imagen de haces de pequeñas dimensiones y poco energéticos como los que se usan en espectrómetros de masas para isótopos estables.

2.2 Aberraciones.

Una de las características más importantes de un sistema óptico que maneja partículas cargadas es el poser una gran calidad de imagen. En óptica de fotones cuando la imagen producida no sufre ninguna distorsión respecto al objeto se dice que el sistema óptico no tiene aberraciones. Entendiendo por aberración la deformaciones que produce el sistema de transferencia al objeto.

En las matrices de transferencia desarrolladas por Enge ⁽¹⁹⁷⁰⁾, Penner ⁽¹⁹⁸³⁾, Matsuda y finalmente Sano ⁽¹⁹⁸⁹⁾ es posible asociarle a cada término de las matrices una aberración y de esta manera se pueden analizar diferentes arreglos geométricos o sistemas ópticos de una manera muy simple.

Utilizando la nomenclatura de Matsuda, expresada en la ecuación 2.9, y la de Penner en la ecuación 2.1, a continuación se analizan las aberraciones o términos de las matrices:

A o (Y/Y) es el primer término de la matriz, conocido como amplificación del sistema en la dirección XY y es la relación entre la dimensión lineal de la imagen y el objeto en el plano horizontal, determinada en la posición donde este término tiene un mínimo o sea en el punto de enfoque.

 A_{α} o (Y/Y') es la aberración de primer orden asociada a la dispersión angular del haz. El requisito mínimo que debe cumplir cualquier sistema óptico es que esta aberración tienda a cero, o sea que el haz divergente que sale de la fuente de iones sea un haz convergente hacia el punto de enfoque en la región del colector.

 A_δ es la aberración asociada a la dispersión de la energía de los iones.

A, 6 (Y/δ) es la dispersión de la masa. Este término está asociado a partículas con distinto momento que parten de un mismo punto en la fuente de iones y se enfocan en el plano de la imagen en puntos distintos.

Se llama dispersión "D" a la cantidad adimensional que cuantifica la capacidad de un sistema de separar los puntos focales de dos haces de diferente momento.

$$D = \frac{\Delta B m}{B \Delta m} \qquad \text{Ec. 2.10}$$

donde ▲B es la diferencia entre las intensidades de los campos magnéticos necesarios para enfocar a la masa m y m+∡m en el mismo punto. A, o (Z/Z') es la amplificación de la imagen en la dirección Z, y \dot{A}_{ijk} y A_{ij} son los coeficientes de aberración de segundo y tercer forden.

El análisis de estos tárminos o aberraciones en las matrices de transferencia de los sistemas ópticos se utiliza para optimizar las características de operación de estos.

2.3 Arreglos geométricos.

Haciendo nuevamente referencia a la óptica de fotones, los campos magnéticos actúan como prismas enfocadores de los haces de iones que divergen de la fuente de iones. Las propiedades de los sistemas ópticos dependen tanto de las características de los campos magnéticos como de los arreglos geométricos en los que se utilizan.

Como se mencionó anteriormente una manera muy simple de estudiar las propiedades de los diferentes arreglos geométricos que se pueden construir con sectores magnéticos es analizando los coeficientes de enfoque o aberraciones de las matrices de transferencia de dichos sistemas.

A continuación analizaremos de una manera breve, las propiedades de las geometrías mas utilizadas en la construcción de espectrómetros de masas como base de comparación a los cálculos desarrollados posteriormente en este trabajo.

2.3.1 Enfoque a primer orden.

El arreglo geométrico más sencillo, que se utilizó en la óptica de iones de las primeras décadas, fue el que utiliza la aproximación de Penner y que cumple con la Ley de Barber (1971);

$$tan\phi + tan\phi_{h} + tan\phi_{h} = \Pi$$
 Ec. 2.11

donde ϕ es el ángulo del sector magnético, ϕ_a es el ángulo entre la frontera del imán y la línea que va del vértice del imán a la fuente de iones y ϕ_b el ángulo entre la frontera del imán y la línea que une al vértice del imán con el punto de enfoque.(ver figura 2.4)

Este arreglo geométrico tiene enfoque de primer orden , el coeficiente Y/Y'(Penner) o A_a (Matsuda) es cero, esto significa que la posición a la cual llega el haz al plano de la imagen es independiente de su divergencia a salir del objeto en $X_1 = 0$. En apéndice IV se obtiene la ecuación 2.11 a partir de Y/Y'= 0.

Fig. 2.4 Ley de Barber

2.3.2 Entrada Mormal.

Consideremos ahora el caso para el cual $A = B = \cot \phi/2$ y donde la matriz de transferencia se convierte en:

$$H = \begin{vmatrix} -1 & 0 & 2 \\ -sen\phi & -1 & sen\phi \\ 0 & 0 & 1 \end{vmatrix}$$

al identificar en esta matriz las aberraciones podemos caracterizar a esta geometría como que tiene: una amplificación horizontal Y/Y de l, un enfoque de primer orden Y/Y'=0, y una dispersión de masas de 2 independiente del ángulo de deflexión ϕ .

2.3.3 Entrada oblicua.

Ahora consideramos un caso con entrada oblicua al sector magnético donde el sistema es simétrico y la distancia focal es L₁ $L_1 = L_2 = 2R$, el ángulo ϕ del sector magnético es 90° y el ángulo de incidencia $\epsilon_2 = \epsilon_1 = 26.5°$. En este caso las matrices de transferencia serán:

$$I = \begin{bmatrix} 1 & 0 & 4 \\ \frac{3}{4} & 1 & \frac{3}{2} \\ 0 & 0 & 1 \end{bmatrix} \quad V = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Se dice que esta geometría tiene doble enfoque o enfoque astigmático ya que tanto Y/Y' como Z/Z' son iguales a cero de tal manera que el sector magnético enfoca en ambas direcciones al haz divergente; además tiene doble dispersión de masa ya que la distancia entre los puntos focales de masas adyacentes es equivalente a la producida por un sector magnético del doble del radio del sector con entrada normal.

Para que ocurra este doble enfoque la geometria deberá de cumplir simultáneamente la condición de enfoque horizontal que ocurre para una distancia $L_{\rm re}$

$$L_{ty} = \frac{R}{1 - \tan \epsilon}$$
 Ec.2.12

Ec.2.14

y la condición de enfoque vertical en L_{fz}

a. 5.1

$$L_{ts} = \frac{R (1 + \frac{\pi}{2} - \pi \tan \epsilon)}{-\pi \tan^2 \epsilon + (3 + \pi/2) \tan \epsilon - 1}$$
 Ec.2.13

Por lo tanto todos los arreglos que cumplan las condiciones expresadas en las ecuaciones 2.12 y 2.13 simultáneamente tendrán enfoque astigmático.

$$\frac{1}{1-\tan\epsilon} = \frac{(1+\frac{\pi}{2}-\pi\tan\epsilon)}{-\pi\tan^{2}\epsilon+(3+\frac{\pi}{2})\tan\epsilon-1}$$

como en los casos de: $\phi = 130^{\circ}, \epsilon = 56^{\circ} y \phi = 90^{\circ}, \epsilon = 26.5^{\circ}$

2.4 Campo magnético disperso.

En los primeros cálculos de sectores magnéticos, (Enge ^{1965,1970)} las propiedades de enfoque de los sectores se calculaban considerando que el campo magnético decrecía abruptamente en la frontera del imán, en forma de escalón de un valor de intensidad constante B_o a un valor cero. A esta consideración se le conoce como aproximación de campo no-campo.

En realidad la intensidad del campo, disminuye de manera gradual del 100% al 10% de la intensidad total en una distancia equivalente a la distancia del entrehierro del imán, para después disminuir del 10% a un valor cercano a cero en una distancia comparable al tamaño total del imán (figura 2.8). A la extensión del campo magnético fuera de las fronteras del imán se le llama campo magnético disperso.

El campo magnético disperso se debe principalmente a la distorsión de las líneas de campo por la saturación del hierro en los bordes de los polos debido a que aquí la permeabilidad no es infinita. El grado de esta saturación depende de varios factores, como son: la composición química del hierro de los polos, la posición y extensión de las bobinas, el tamaño del entrehierro así como del campo máximo de operación.

Fig 2.6 Sonas de saturación de un electroisán.

Los efectos del campo magnético disperso sobre el haz de partículas cargadas son variados e incluyen desde cambios en las propiedades de enfoque del sector magnético debido a la presencia de componentes no normales del campo magnético (B_x y B_y), hasta el corrimiento de las distancias focales de los haces, ya que estos recorren una distancia adicional en un campo magnético no uniforme y por lo tanto tienen un mayor ángulo de giro.

19

and the second secon

Fig. 2.7 Componentes del campo magnético disperso

El cálculo y el efecto del campo efectivo sobre las propiedades enfocadoras de sectores magnéticos han sido estudiadas por varios autores. Desde 1933 Barber de una manera intuitiva recorrió las fronteras reales del imán una distancia de 0.6 unidades de entrehierro para corregir el efecto de campo disperso y así obtener el punto focal real.

Para hacer cálculos más precisos y aplicables a todo tipo de sectores magnéticos, H. Enge (1970), desarrolló el concepto de fronteras de campo efectivo, donde estas son fronteras imaginarias que se desplazan con respecto de las fronteras reales. Este desplazamientoes el necesario para que la deflexion adicional del haz producida por el campo disperso sea la misma que la producida por un campo magnético constante en la misma distancia.

La posición de las fronteras de campo efectivo las calculó integrando una función que describía el campo magnético disperso con respecto a la distancia "Y". Gráficamente la posición de este punto es el lugar donde el área de la integral de la función de campo magnético disperso desde este punto hasta el infinito es igual al área de la integral de la misma función desde este mismo punto hasta el interior del imán donde la intensidad de campo es constante. A este punto se le conoce como frontera de campo

Matsuda y Wollnik en sus matrices de tercer orden toman en cuenta el campo magnético disperso simulándolo mediante las funciones integrales de Enge.

$$I_4 = B_0^2 - \int_{\mu_b}^{\mu_b} B^2 \,\mu d\mu - \mu_b$$
 Ec.2.15

donde B_o es el campo magnético uniforme, B (μ) es el campo disperso y ($\mu_{\rm e}$, $\mu_{\rm b}$) es la región sobre la cual se extiende el campo disperso normalizado por el radio de giro del haz central.

En el cálculo de algunas sistemas ópticos es deseable eliminar el campo magnético disperso para lo cual ciertos autores como Brown (1985) y Braams (1986) han desarrollado distintos tipos de blindajes. Aún otros como Rokowski (1970) desarrollaron distintos tipos de fronteras curvas en los polos magnéticos para evitar la saturación del fierro en las esquinas de los polos y así disminuir el campo magnético disperso.

b) para B moderado E_{cc} =.5 a .9 D

c) B intenso y alta presición E_{rr} = .62 D sin escudo E_{rr} = .35 D con escudo

d) B intenso y alta presición $E_{tr} = 1.1 D$

Fig. 2.9 Perfiles de configuraciones de polos magnéticos y su distancia.

III. TRAYECTORIA

El objetivo del presente trabajo es mejorar el método matricial tradicional, con el que se obtienen las características ópticas de sistemas magnéticos, simulando el campo magnético disperso sólo con la integral de Enge.

El método propuesto consiste en obténer las soluciones analíticas a las ecuaciones de movimiento de los haces de iones en presencia de un campo magnético. Posteriormente, a partir de un mapeo espacial del campo magnético del espectrómetro, se realiza un ajuste utilizando una función exponencial cuadrática (ec.3.38)y de este modo se describe el campo magnético en tres dimensiones.

ajuste utilizando una funcion exponencial cualitatica (ec.s.so)y de este modo se describe el campo magnético en tres dimensiones. Con esta descripción y tomando regiones espaciales suficientemente pequeñas para poder considerar en ellas el campo magnético constante se aplican las soluciones de las ecuaciones de movimiento con las condiciones iniciales y de frontera adecuadas en cada región. Esto se hace mediante un programa de cálculo que utiliza un proceso iterativo para trazar las trayectorias de los haces punto a punto y obtener las imágenes de dichos haces en cualquier punto del espacio. De este modo se pueden optimizar las características ópticas de un espectrómetro de masas y diseñarlo.

3.1 Ecuaciones de movimiento.

De forma general las ecuación de movimiento de una partícula con masa " m " y carga " q " que entra a un campo magnético constante B = (B_x , B_y , B_z) con velocidad v = (v_x , v_y , v_z)

 $F = mr = q \begin{vmatrix} i & j & k \\ v_x & v_y & v_z \\ B_x & B_y & B_z \end{vmatrix}$ 3.1

 $|\mathbf{B}|^2 = (B_x^2 + B_y^2 + B_x^2) \qquad 3.2$

 $\mathbf{A} = \frac{\mathbf{q}}{\mathbf{m}} \mathbf{B}_{\mathbf{x}} \qquad \mathbf{B} = \frac{\mathbf{q}}{\mathbf{m}} \mathbf{B}_{\mathbf{x}}$

 $B_x = \omega = A^2 + B^2$

3.3

para los casos que trataremos B, = 0 y ω es la frecuencia ciclotrónica con la que gira la partícula dentro del campo magnético.

Utilizando transformadas de Laplace para resolver las ecuaciones de movimiento tenemos:

$$SL(v_x) - AL(v_y) + 0L(v_x) = (v_x)_0$$
 3.4

$$-A(v_{x}) - SL(v_{y}) - BL(v_{z}) = (v_{y})_{o} \qquad 3.5$$

$$0L(v_r) + BL(v_r) + SL(v_r) = (v_r)_0$$
 3.6

donde S y L son las transformadas.

Resolviendo para la primera componente tenemos que la transformada se puede escribir como:

$$L(V_x) = \frac{\begin{vmatrix} V_{x0} & -A & 0 \\ V_{y0} & +S & -B \\ V_{x0} & +B & S \end{vmatrix}}{\begin{vmatrix} S & -A & 0 \\ N & S & -B \\ 0 & B & S \end{vmatrix}} = \frac{S^2(V_x)_o + AB(V_x)_o + B^2(V_x)_o + A(V_y)_o S}{S(S^2 + B^2 + A^2)}$$

y su solución es:

 $V_x = (V_x)_o \text{COB}\omega t + \frac{A}{\omega} (V_y)_o \text{sen}\omega t + \frac{B}{\omega^2} [A(V_x)_o + B(V_x)_o] [1 - \text{COB}\omega t]$

3.8

3.7

Para V, la solución para las transformadas de Laplace es:

$$V_{x} = (V_{x}) \operatorname{COBM} + \frac{[B(V_{x})_{o} - A(V_{x})_{o}]\operatorname{sen}\omega t}{3.9}$$

3.11

3.12

y finalmente la solución para la componente v, es:

$$V_{x} = (V_{x})_{o} \cos \omega t - \frac{B(V_{y})_{o} \sin \omega t}{\omega} + \frac{A}{\omega^{2}} [B(V_{x})o + A(V_{x})_{o}][1 - \cos \omega t] 3.10$$

Ahora para obtener las ecuaciones para las coordenadas de las partículas integramos las componentes de la velocidad obtenidas en las ecuaciones 3.8, 3.9 y 3.10

$$\int_{x_{*,0}}^{x_{*}} dX = (V_{x})_{0} \int \cos\omega t dt + \frac{A}{\omega} (V_{y})_{0} \int \sin\omega t dt$$

$$+ \frac{B}{\omega^{2}} \left[A(V_{x})_{0} + B (V_{x})_{0} \left[\int (1 - \cos\omega t) dt \right] \right]$$

donde:

$$X = \frac{(V_x)_o}{\omega} \operatorname{senwt} |_0^b - \frac{A}{\omega^2} (V_y)_o \operatorname{coswt} |_0^b - \frac{B}{\omega^2} [A(V_x)_o + B(V_x)_o] \frac{\operatorname{senwt} |_0^b}{\omega} + \frac{B}{\omega^2} [A(V_x)_o + B(V_x)_o] t |_0^b + C_1$$

y la constante de integración es:

$$C_1 = \frac{A}{\omega^2} (V_y)_o$$

Resolviendo ahora para Y tenemos:

$$\int_{0}^{y} dY = (V_{y})_{o} \int_{0}^{t} \cos \omega t dt + \frac{B(V_{x})_{o} - A(V_{x})_{o}}{\omega} \int_{0}^{t} \sin \omega t dt$$

donde

$$\mathbf{Y} = \frac{(\mathbf{V}_{\mathbf{y}})_{o}}{\omega} \operatorname{sen}\omega \mathbf{t} \mid_{0}^{b} - \frac{B(\mathbf{V}_{\mathbf{x}})_{o} - A(\mathbf{V}_{\mathbf{x}})_{o}}{\omega^{2}} \operatorname{cos}\omega \mathbf{t} \mid_{0}^{b} + C_{2}$$

3.14

3.15

3.16

3.13

$$C_2 = \frac{B(V_x)_o - A(V_x)_o}{\omega^2}$$

De igual manera si ahora integramos la componente 2 de la velocidad tendremos:

$$\int_0^x dZ = (V_x)_0 \int_0^t \cos\omega t dt - \frac{B}{\omega} (V_y)_0 \int_0^t \sin\omega t dt + \frac{A}{\omega^2} \left[B(V_x)_0 + A (V_z)_0 \right] \left[\int_0^t dt - \int_0^t \cos\omega t \right]$$

de donde

$$\begin{split} \boldsymbol{Z} &= (\boldsymbol{V}_{\mathbf{x}})_{o} \; \boldsymbol{senut} \left|_{o}^{b} + \frac{\boldsymbol{B}}{\omega^{2}} (\boldsymbol{V}_{\mathbf{y}})_{o} \; \boldsymbol{cosut} \left|_{o}^{b} + \boldsymbol{C} \right. \\ & \frac{\boldsymbol{A}}{\omega^{2}} \left[\boldsymbol{B}(\boldsymbol{V}_{\mathbf{x}})_{o} + \boldsymbol{A} \; (\boldsymbol{V}_{\mathbf{y}})_{o} \right] \left[\boldsymbol{t} - \frac{\boldsymbol{senut}_{|t|}}{\omega} \right] \end{split}$$

siendo la constante de integración :

$$C_3 = - \frac{B(V_y)_o}{\omega^2}$$

Las expresiones que se obtuvieron para determinar la velocidad (v_x, v_y, v_z) (ecuaciones 3.6, 3.9, 3.10), así como la posición (x, Y, Z) (ecuaciones 3.12, 3.14, 3.16) de una partícula en un campo magnético se simplificaron mediante cálculos numéricos de tal manera que se pueden reescribir como:

$$V_{x} = (V_{x})_{o} [1 - \frac{\omega^{2} t^{2}}{2}] + A(V_{y})_{o} t + \frac{Bt^{2}}{2} (A(V_{z})_{o} + B(V_{x})_{o}) \qquad 3.17$$

$$V_{y} = (V_{y})_{o} [1 - \frac{\omega^{2} t^{2}}{2}] + [B(V_{x})_{o} - A(V_{x})_{o}] t \qquad 3.18$$

은 한동안에서 그렇게 있다. 은 일단에 있는 물건이다.

$$V_{x} = (V_{x})_{o} \left[1 - \frac{\omega^{2} t^{2}}{2}\right] - B(V_{y})_{o} t + A[B(V_{x})_{o} + A(V_{x})_{o}] \frac{\omega^{2} t^{2}}{2} \qquad 3.19$$

$$X = (V_x)_o t + (V_y)_o \frac{At^2}{2} - (V_x)_o \frac{AB}{\omega^2}$$

$$Y = (V_{y})_{0}t - \frac{[B(V_{z})_{o} - A(V_{z})_{o}]t^{2}}{2}$$

$$Z = (V_x)_0 t - \frac{B(V_y)_o t^2}{2}$$
 3.22

3.20

3.21

En las ecuaciones anteriores el tiempo es la variable independiente a partir de la cual se puede calcular la posición y velocidad de la partícula en movimiento. Sin embargo dado que nuestras necesidades de cálculo son hacer iteraciones de trayectorias utilizando incrementos constantes en la dirección X, vamos a substituir el tiempo "t" integrando la ecuación 3.20 en un intervalo que va de x a x + Δx (Δx es el tamaño del intervalo) y obtenemos:

 $X - X_o = \Delta X = (V_v)_o t +$

Este intervalo ΔX es una función de las condiciones iniciales y se resuelve numéricamente para cada t.

3.23

Con las ecuaciones de movimiento desarrolladas hasta el momento es posible obtener las trayectorias de los haces de iones haciendo una iteración numérica utilizando las condiciones finales de un intervalo anterior como condiciones iniciales del intervalo siguiente.

Ahora es necesario desarrollar un sistema de coordenadas adecuado para seguir las trayectorias de las partículas dentro y fuera del sector magnético y definir los espacios donde se hará la iteración numérica.

Debido principalmente a las características del campo magnético las iteraciones numéricas de las trayectorias de los haces de iones se realizaron en 5 regiones asignando en cada una valores distintos al intervalo de integración AX.

La primera región comprende desde la rejilla de la fuente de iones S, hasta 3 centímetros antes de la frontera de la imán, donde por ser la trayectoria una recta a primera aproximación las iteraciones se hacen cada milímetro.

La segunda región, caracterizada por el cambio de varios ordenes de magnitud en la intensidad del campo magnético, está comprendida entre 3 centímetros fuera de la frontera del imán y 3 centímetros dentro del imán. En esta región las iteraciones se hacen cada décima de milímetro.

La tercera región comprende de 3 centímetros dentro del imán en la entrada a 3 centímetros dentro de la imán a la salida, la trayectoria es circular y el radio de la trayectoria esta dado por las ecuaciones de una partícula cargada moviéndose en un campo magnético homogéneo.

La cuarta región es semejante a la segunda y la quinta a la primera respectivamente.

3.2 SISTENA DE COORDENADAS.

El sistema de coordenadas que utilizaremos es independiente de las trayectorias de las partículas, capaz de analizar diferentes geometrias y además de dar una continuidad en el trazo es congruente con el modelo teórico. Este sistema de coordenadas está definido por dos líneas perpendiculares a las fronteras del imán que se intersectan en un punto llamado " M " y que define al origen del sistema de coordenadas.

Llamamos "D" al ángulo del sector magnético donde entra la partícula, "Q" al punto de entrada de la partícula al imán, "R" al radio de giro de las partículas, "P" al ángulo total de giro de la partícula, "P" al punto de salida del imán y "alfa" y "beta" a los ángulos de entrada y salida de la partícula con respecto a los ejes del sistema de coordenadas. En la figura creada con los parámetros descritos anteriormente aparecen varios triángulos en los que podemos relacionar las características del mistema (a, β , ϕ , D) con las distancias sobre las cuales vamos a realizar las iteraciones numéricas de las trayectorias. (Fig.3.1)

Fig.3.1 Sistema de coordenadas para el cálculo de la trayectorias de iones.

Si llamamos a las coordenadas de la fuente de iones en el plano XY (X₀, Y₀), O, a la distancia de la fuente de iones a la frontera del imán y X₀ + 3 a la distancia de la frontera del imán al origen del sistema de coordenadas, mediante relaciones geométricas calculamos los valores X₀, X₀, Y₀ para cualquier arreglo geométrico:

$$X_{6} = \frac{2R * sen(\frac{F}{2}) * cos(\frac{F}{2} - \alpha) * tan(\frac{D}{2})}{sen(D)} - 3 - E_{tt}$$

3.26

 $\sigma = \phi + \alpha + \beta \qquad 3.27$

$$X_{\alpha} = 0_{f_{\alpha}} \cos(\alpha) - 3 + X_{\beta}$$
 3.28

$$Y_{\alpha} = O_{i_{\alpha}} \operatorname{sen} (\alpha) \qquad 3.29$$

para sistemas geométricos simétricos

$$X_{\alpha} = -X_{\alpha}$$
 $Y \alpha = \beta$

Es necesario ajustar la distancia X_0 a que sea un múltiplo entero de los intervalos sobre los cuales se va a realizar la iteración numérica de tal manera que la fuente de iones se recorre a una nueva distancia X_4 donde:

$$X_{13} = (X_0 - X_8) - PARTE ENTERA (X_0 - X_8)$$

 $X_{14} = X_0 - X_{13}$

Una vez que se han realizado las iteraciones desde la fuente de iones hasta 3 centimetros dentro del imán es necesario hacer un cambio de coordenadas del sistema de entrada (X₁, Y₁, Z₁) al sistema de coordenadas de salida (X₂, Y₂, Z₂) mediante las siguientes relaciones:

 $X_2 = X_1 \cos \sigma + Y_1 \sin \sigma$

$$Y_2 = Y_1 \cos \sigma - X_1 \sin \sigma$$

$$T_{2} = \tan(atn(T_{1}) - \sigma)$$

Considerando que dentro del imán actúa un campo magnético uniforme las trayectorias de las partículas serán círculos que, como ya mencionamos anteriormente, empezarán a trazarse 3 centímetros dentro del imán, o sea a partir de X_a .

La partícula que llega a X_8 con una pendiente T, y una ordenada al origen Y, se desplazará en un círculo con centro de giro (X_c, Y_c) y tendrá en el sistema de coordenadas de salida y en el punto simétrico X, una coordenada Y, y Z, después del giro, una pendiente T, y un ángulo " r " que es el ángulo en radianes que habrá girado la partícula al encontrarse en X, Se pueden escribir las siguientes relaciones.

$$X_{c} = R + \cos (atn (T^{-1})) + X_{0}$$

$$Y_{c} = R + sen(atn(T^{-1})) + Y_{0}$$

$$Y_{3} = Y_{c} - R + \cos(asn(\frac{X_{0} - X_{c}}{R}))$$

$$T_{3} = \frac{(X_{0} - X_{c})}{(Y_{c} - Y_{3})}$$

Para obtener valores comparables directamente a los reportados en la literatura citada, en el capítulo 2 se decidió tomar de manera explícita la extensión del campo magnético disperso dentro del sistema de coordenadas, utilizando el concepto de campo efectivo introducido por Enge. Llamamos E_i, a la distancia del campo efectivo y ésta se calculo por aproximaciones succesivas para cada arreglo geométrico, adicionando esta a las distancias X₈ y a X₀ y el efecto neto será aumentar o disminuir la distancia de la fuente de iones a la frontera del imán. ļ

3.2 Cálculo de Campo Magnético Disperso.

Como se mencionó en el capítulo anterior, el campo magnético actúa como una lente óptica y los efectos del campo magnético disperso tiene propiedades enfocadoras muy interesantes, ya que la presencia de la componente B_e en la intensidad de campo magnético disperso implica la existencia de una fuerza en la dirección Z (F₂) sobre las partículas con componentes de velocidad en la dirección Y (V₂). Esta fuerza, que cambia de dirección dependiendo de su posición con respecto del plano medio, puede utilizarse como fuerza enfocadora, especialmente en arreglos geométricos donde los haces de iones tienen grandes ángulos de incidencia con respecto al campo magnético disperso y es precisamente en esta región donde ocurre el enfoque o desenfoque de las partículas en el plano Otro factor a considerar es que las aberraciones producidas por el campo magnético disperso son de la misma magnitud que los términos de segundo orden de las ecuaciones de movimiento utilizadas en los cálculos de las trayectorias de partículas cargadas en campos magnéticos. Por lo tanto la capacidad de poder modelar el campo magnético disperso con gran exactitud es un factor muy importante en el cálculo de las trayectorias mencionadas.

En este trabajo se determinó experimentalmente la distribución del campo magnético disperso en el espacio que recorren las partículas cargadas desde la fuente de iones hasta el colector. La determinación experimental de la distribución espacial del campo magnético se realizó con un medidor Varian modelo FR-40 con pastilla detectora tipo Hall con regulador de temperatura, el cual fue calibrado contra un medidor de resonancia nuclear absoluto.

Primero se determinó el centro del área sensible del generador Hall mediante un campo magnético muy definido generado con un imán permanente y una lámina muy delgada (Henni ¹⁰⁰⁶). Sobre la lámina se movió el generador Hall en dos direcciones perpendiculares hasta encontrar el centro del área sensible con una precisión de 0.1 mm. Con esta determinación es posible garantizar que los valores del campo magnético medido tienen una referencia de posición real con respecto al sistema de coordenadas que se establece.

Luego la punta Hall se montó en un banco óptico figura 3.3 con movimientos tridimensional colocado en el campo magnético disperso. El movimiento tridimensional en los ejes X, Y, Z se hizo manualmente controlando la posición de la punta Hall con una precisión de 0.1mm. Para cada valor de X, desde 3 cm. dentro del imán hasta 40 cm. fuera de él, se tomaron valores de campo magnético con incrementos de 1 mm. para las posiciones (Y=0 Z=0), (Y=0 Z=0.5 cm), (Y=0.5 Z=0.5) (Y=0.5 Z=0) y nuevamente se repitió la posición Y=0 Z=0 para asegurar que el movimiento de la punta Hall no tiene corrimientos.

Se mapearon los valores del campo magnético para intensidades de 6, 8 y 10 kilogauss en 2 imanes distintos de 60' y 90° grados tanto para el centro del entrehierro Z=0 como para 0.5 cm arriba. A cada juego de medidas se les asignaron las siguientes claves.

Una vez obtenida la matriz de los valores se ajustaron los datos a una ecuación para utilizar esta para simular, en el cálculo de las trayectorias de partículas cargadas, la distribución del campo magnético en el espacio.

Fig. 3.2 Banco óptico para medir campos magnéticos

Mediante un ajuste por mínimos cuadrados no lineales a varios modelos se encontró que los datos mostraban un excelente ajuste a una ecuación exponencial cuadrática del tipo

$$B(x,z) = \frac{B_0}{1 + \exp(B + x)^2 + \sqrt{(B + x + E)^2 - 4C(A^2 + D + 1)}}$$
 3.38

donde

B (x,z) es la intensidad del campo magnético.

그는 가지 않는 것은 말을 알았는 것 같아요.

X es la distancia a la frontera del imán en cm. B_o es la intensidad máxima del campo dentro del entrehierro. A, B, C, D y E son parámetros de ajuste.

Los valores de las parámetros A,B,C,D,E dependen de z, de la intensidad del campo magnético máximo, del hierro y de la construcción del imán y se encuentran en la tabla 3.1

E,, es la distancia al campo efectivo y / es la integral de Enge de la ecuación 2.15

	IMAN IFUNAN	R=25 Cn.	Entrehier= 2Cm.	60
A B C D E K ∫ Ê,,	10 Kilogauss Central .5 arrit -0.071 -0.28399 -0.49382 -0.96705 -0.07749 -0.0775 -0.93854 -1.87707 -0.41952 -0.41992 9987.3 9990.2 4.666 2.332 2.15 1.1	8 Kilog -0.0671 -0.4780 -0.9755 -0.9785 -0.9486 -0.4133 7865.2 -0.423 -0.223 -0.433 -0.433 -0.433	auas .5 arriba 40.26857 20.95691 70.07557 51.0853 20.41532 3.7925.36 9.2.349 5.1.001	6 Kilogauss Central .5 a -0.06909 -0.2 -0.49697 -0.9 -0.94926 -1.8 -0.4127 -0. 5989.63 60 4.707 2 2.15 1
	INAN NBS	R = 30 Cm.	Entrehier=2.22 C	m. 90
A BCDER CDER Er	10 Kilogauaa Cantrel .5 arrib -0.07395 0.36446 -0.52024 -1.14452 -0.10385 -0.20395 -1.07251 -2.35953 -0.25008 -0.65002 9998.6 9999.99 4.546 2.045 2.05 0.92	8 Kiloga 6 Central -0.0684 -0.4984 -0.0984 -1.66985 -0.64272 7985.63 4.562 2.0501	UES -5 erribe -0.33712 -1.08647 -0.0939 -2.3361 -0.64272 8002.36 2.074 0.92	6 Kilogauss Central .5 a -0.06999 -0.3 -0.50255 -1.1 -0.09537 -0.0 -1.05506 -2.3 -0.63235 -0.6 5998.63 601 4.5467 2 2.0501

Tabla 3.1 Constantes de la ecuación cuadrática para Campo magnético.

La belleza de la ecuación obtenida es que además de que proporciona el valor del campo magnético en cada punto del espacio con gran precisión, al integrarse por métodos numéricos puede determinarse tanto el valor total del campo magnético disperso así como la distancia del campo efectivo y se puede utilizar en programas de cómputo donde se trazan punto a punto las trayectorias de las partículas cargadas por iteración numérica.

En la figura 3.2 se graficó la diferencia entre el campo magnético teórico calculado a partir de la ecuación 3.38 y el campo magnético real de un electroimán NBS a 8000 gauss. Como se puede observar la diferencia es mínima y el ajuste es bastante bueno.

Distancia del polo del imán (cm)

Fig. 3.2 Diferencia entre campo magnético teórico y el campo magnético real de un electroimán MBS a 8000 gauss Las ecuaciones de campo magnético disperso propuestas por otros autores solo describen la intensidad de campo magnético en el plano central mientras que la ecuación propuesta en este trabajo describe tanto la intensidad de campo magnético para el plano central como para los planos superiores o inferiores mediante las diferentes constantes de la ecuación 3.38 mostradas en la tabla 3.1 donde para cada imán y cada campo magnético existen dos juegos de constantes para z=0 y para z=0.5

En la figura 3.3 se muestra la diferencia entre la intensidad del campo magnético medido en el plano superior Z = 0.5 cm. con respecto a la intensidad de campo para ese mismo valor de X pero en el plano central Z=0. Esta diferencia obtenida de la ecuación 3.38 sigue la misma distribución que los valores experimentales y es importante porque ocurre en la región más crítica del enfoque fino de los haces de iones y no ha sido rebortado en la literatura.

Distancia del polo del imán

(Cm) Fig. 3.3 Diferencia entre campo magnético en el centro del entrehierro z = 0 y a 0.5 centímetros arriba z = 0.5 para un electroimán IFUMAM a 8000 gauss.

La ecuación de campo magnético disperso calculada anteriormente se utilizará directamente en los cálculos de las ecuaciones de movimiento de las partículas cargadas haciendo las siguientes consideraciones:

El campo magnético tiene simetría de espejo con respecto a su plano medio.

El campo magnético se comporta como un campo magnético ideal uniforme con valor de $B_{\rm o}$ a partir de 3 cm, dentro de la frontera real del imán.

La intensidad del campo magnético en líneas paralelas a las caras del imán es idéntico, o sea no existen componentes B, apreciables ya que los bordes del imán en la dirección XY están lejos de la región por donde pasan las particulas cargadas.

Primeramente para calcular el valor de B₂(x,z) desarrollamos la función en series de Taylor, donde por cuestión de simetría solo puede tener potencias pares de Z

$$B_{z}(x,z) = B_{z}(x,0) + \frac{z^{2}}{21} \frac{\partial^{2}B_{z}(x,z)}{\partial z^{2}}|_{z=0}$$
 3.39

ahora utilizando la ecuación 3.38 podemos calcular para cualquier valor de X el valor de $B_z(x,0)$ y B_z (x,.5) y substituyendo estos valores en el desarrollo de Taylor obtenemos la ecuación de una parábola con la cual se obtiene para esa X la B_z para cualquier z de tal manera que para X = X₂

$$B_{z}(x_{2},z) = B_{z}(x_{2},0) + 4z^{2}[B_{z}(x_{2},.5) - B_{z}(x_{2},0)]$$

3.40

y para X = X₃

$$B_{g}(x_{3},z) = B_{g}(x_{3},0) + 4(z + \Delta z)^{2}[B_{g}(x_{3},.5) - B_{g}(x_{3},0)] \qquad 3.41$$

en X_3 el valor de z es z+ P (X_3-X_2) donde P es la pendiente vertical del rayo.

1997년 1847년 1847년 1848년 1847년 1848년 184 1947년 1947년 1847년 1847년 1847년 1847년 1847년 1848년 184 1947년 1847년 1847년 1847년 1847년 1848년 184 La componente 2 del campo magnético en el intervalo $(X_3 - X_2)$ la definimos como el promedio de B₂ (X_3, z) y B₂ (X_2, z) donde substituyendo B₄ $(X, 0)=C_{1,x}$ y B₂ $(X, 5)=D_{fx}$ tenemos

$$B_{z}(x,z) = \frac{B_{z}(X_{2},z) + B_{z}(X_{3},z)}{2} \qquad 3.42$$

Con respecto a la componente B_{μ} esta se puede expresar en serie de Taylor como:

$$B_{x}(x,z) = B_{x}(0,z) + z \frac{\partial B_{x}(x,z)}{\partial z} |_{z=0}$$
 3.43

por ser el campo magnético un campo conservativo su rotacional es cero y

por lo tanto B, para el intervalo $\Delta X = (X_3 - X_2)$ puede calcularse como una derivada numérica ya que el intervalo es suficientemente pequeño

$$B_{x}(X_{2},z) = B_{x}(0,z) - z \frac{\partial B_{x}(X_{2}z)}{\partial x}|_{z=0} = -z \frac{\partial B_{x}(X_{2}z)}{\partial x}|_{z=0}$$

= $-z \frac{(B_{x}(X_{2},0) - B_{x}(X_{2},0))}{(X_{2} - X_{2})}$ 3.44

Utilizando las ecuaciones 3.40 y 3.44 para determinar las componentes del campo magnético se puede generar en el espacio la distribución vectorial total de él.

3.3 PROGRAMA DE COMPUTO.

Con las ecuaciones de movimiento resueltas y los parámetros del sistema de coordenadas definidos y simulada la distribución espacial del campo magnético se desarrolló un programa de cómputo con el cual es posible calcular las trayectorias de partículas con distintos parámetros de movimiento.

Estos parámetros toman en cuenta las características de un haz de iones que sale de la rendija de la fuente de iones cuya altura es Z, con un ángulo de salida horizontal ATN(P_{hin}) y un ángulo de salida vertical ATN(P_{min}). Con estos tres parámetros podemos generar 27 combinaciones o haces distintos y analizar con ellos las aberraciones de distintos arreglos geométricos. Entre los parámetros estudiados no se toman en cuenta las dimensiones horizontales del haz de lones ya que los arreglos arreglos

geométricos tienen enfoque direccional de primer orden.

El programa de cómputo comprende varias etapas:

a) Definición de las características del sistema a estudiar: campo magnético, campo eléctrico y características geométricas como son : e, α , β , ángulo del imán, P_{Mein} , P_{win} , γ , Z.

b) Cálculo de los parámetros geométricos del sistemas de coordenadas o sea el cálculo de las distancias O_{42} , D_{41} , X_{32} , X_{10} , Y_{10} descritas en la sección 3.2 y su ajuste mediante X_{14} a los intervalos que se utilizan en la iteración numérica de las trayectorias.

c) Generación de los 27 haces tomando en cuenta la altura, pendiente horizontal y pendiente vertical de la rejilla de definición de la fuente de iones mediante 3 contadores I, J, K que valen 0, 1, 2 como aparecen el la tabla 3.2

1	D.	=.	- α	- A	TN (Phai	,) +	IJ	1TN	(Ph	nin)	۱.
	Ρ,	S = 2	Pvat	, + I	C) ()	Pvain) 🖓				1-52	2
ł	2	Z =	Zair	(†) -	I (1	Z _{∎in})	编 合系			<u>.</u>	22	ę

Tabla 3.2

			그 씨고 공영		1252,672	2 김희준은 영화				1			100
1		- 1. 	P _h -	z F	- 1	0 🦟 (0	<u>्रि</u> स् - ।	v , ≈19	9 P	-2	C 🗧	P., .
2		<u> </u>	P _h -	•z () - 1	1 🖉 (D – s	: C) 20) P	-2	1.1	0
3	5	- 13 -	P	z +P	, 1	2 👋 (0 - 2	: +1	2.	l P		+	Р.
4		÷	P	0 -P	1	3 22 (0 () – I	ີ 2:	2 Р) 🔆 🛏	P
5	15,		P.	0 0	14	1 () () (2.	3 P) (j. 192) (j. 192)	0
6	. 2	<u></u>	P.	0 +P	. I	5 6 6) () +F	2.	P	• • •) +	Ρ.
7		<u>-</u>	P. +	7 -P	1	5 () +;	F	, <u> </u>	Ъ	+2	- B	P ^V .
Ŕ		<u>.</u>	Р +		` ī	, (· +		20	б р	÷	1.17	ō.
ă		1.1	5" 1	- -	ាំរ		· ·	100 L L	5	7 5		864 a S	5
~											. · · · · · · · · · · · · · · · · · · ·		E

d) Para efectos de comparación con las aberraciones de Matsuda

$P_{buin} = \alpha \quad y \quad P_{votin} = \beta$

e) Cálculo de los valores iniciales de la parámetros de movimiento (V, V, V, la partir de la posición, energía y masa de la partícula:

f) Iteración de trayectorias de los haces con mayor dispersión y cálculo en el punto focal de la imagen de ellos. Esta imagen se optimiza por aproximaciones sucesivas de las distancias E_{rf} de las fronteras del campo efectivo así como de D_{ef} simetrizando el sistema.

g) Iteración de trayectorias en las cinco regiones descritas en la sección 3.1 de cada uno de los 27 haces. Se calculan a partir de las condiciones iniciales los valores de las variables del movimiento (B₂, B₂, A₂, B₃, W, Y, Z, V_x, V_y, V_y, α , r) para cada punto y luego se transforman las condiciones finales del intervalo en las condiciones iniciales del siguiente.

h) Cálculo del punto focal: Clásicamente el punto focal es el lugar donde el tamaño de la imagen es mínima. En nuestro caso definimos el foco horizontal como el promedio de las distancias definidas por el punto de intersección entre el haz central y los dos haces que forman la envolvente horizontal central máxima (X _{bfo}, X _{bfi}, X _{bfi}) de tal manera que el plano focal esta definido por las coordenadas:

 $X_{focoh} = \langle X_{hfo} + X_{hfi} + X_{hfi} \rangle / 3$

$$\mathbf{Y}_{\text{face h}} = (\mathbf{Y}_{\text{hfe}} + \mathbf{Y}_{\text{hfe}} + \mathbf{Y}_{\text{hfe}}) / 3$$

de igual manera se calcula el foco de los haces que salen de la fuente de iones a una altura Z_{\min} y el punto focal final es el promedio de los dos.

i) Generación de la imagen en el punto focal de los 27 haces que salieron divergiendo de la fuente de iones.

j) Correspondencia entre la imagen de los haces y las aberraciones descritas por Matsuda.

Esta imagen proporciona los parámetros que definen a las aberraciones del sistema óptico estudiado.

A continuación se lista el programa desarrollado con los parámetros y consideraciones descritas anteriormente.

10 ' NAME OF THIS program is grafica 22-nov -1995 for IBM AT 20 'will generate the points for the trajectories in the central plane 30 OPTION BASE 1 60 DIH Y7(27), Z7(27), T7(27), P7(27), YZ(2, 27), Y70(27), X7(27), Z70(27), X(27 65 CLS 70 INPUT "input angle, alfa in degrees ="; Al 'INPUT "input angle, alfa in degrees =";A1\$ 71 INPUT "sector angle, fi in degrees ="; Fl 80 'INPUT "sector angle, fi in degrees =";FI\$ INPUT "output angle, beta in degrees ="; B1 81 ۹N 'INPUT "input angle, beta in degrees =";B1\$ 91 92 INPUT "radius of central beam in centimeters "; RO 'INPUT "radius of central beam in centimeters ";ROS 91 INPUT "NAME OF OUTPUT FILE "; AS 04 A1\$ = "c:\ionoptic\" A2\$ = A1\$ + A\$ PRINT A2\$ 95 97 98 99 OPEN A2\$ FOR OUTPUT AS #1 100 D1 = F1 - A1 - B1101 A = A1 + 3.141593 / 180102 F = F1 * 3.141593 / 180 103 B = B1 * 3.141593 / 180 104 D = D1 + 3.141593 / 180 105 PRINT NBS; MAGNET 105 fathi nest shows in a source to effective aggnetic field in centimeters " DF 110 NPUT "distance from source to effective aggnetic field in centimeters " DF 110 JAPUT "distance from source to effective magnetic field in centimeters="] DF 111 WRITE 41, "distance from source to effective magnetic field in centimeters=" 120 INPUT "size of magnetic fringing field in centimeters =", EFF 130 OPE = DPE + EFF / COS(A) 140 ' INPUT "energy dispersion of the ions in Ev=";EV 141 EV = .2 142 ZMIN = .6 150 ' INPUT "z minima="; ZMIN 161 WRITE #1, "radius of central beam in centimeters ", RO 170 / INPUT " the mass of the main beam in atomic mass units";N 172 M = 235 180 PRINT "sector angle, fi="; F1 181 WRITE #1, "sector angle, fi=", F1
190 PRINT "input angle, alfa="; A1 190 FRINT "input angle, alfa"; Al 191 MRITE #1, "input angle, beta="; Bl 200 FRINT "output angle, beta="; Bl 201 MRITE #1, "output angle, beta=", Bl 210 FRINT "distance from source to effective magnetic field="; DFE 210 FRINT "size of magnetic fringfild="; EFF 230 FRINT "energy dispersion of the ions in Ev="; EV 740 FRINT "z minima="; ZNIN 250 PRINT "radius of central beam"; RO 260 PRINT "the mass of the main beam in atomic mass units"; M 270 PRINT "pole angle="; D1 280 PRINT "distance from source to the iron "; OFE 290 INPUT "6 Kgauss=6000, 8 Kgauss=8000, 10 Kgauss=10000"; BM 300 PRINT 310 IF BN = 6 THEN 340 320 IF BN = 8 THEN 520 330 IF BM = 10 THEN 700 335 PRINT "Please enter 6, 8 or 10 for the Kgauss setting" 336 GOTO 290 340 PRINT "WE ARE USING 6 Kgauss NBS 2.2 GAP DATA "

341 WRITE /1, "WE ARE USING 6 Kgauss NBS 2.2 GAP DATA " 350 vg = (5991.7 * R0) ^ 2 / (143.975 ^ 2 * M) 360 vE = 1189133.24 * SQR(va / M) 370 PRINT " velocity of ion="; VE * .000001; "aceleration voltage="; INT(va) 370 PRINT Velocity 380 g = 6000 381 WRITE /1, g, va 390 KC = 5991.7 400 BC = -.502553 410 EC = -.632346 420 CC = -.0953685 430 AC = -.0697966 440 DC = -1.05506 450 KU = 5991.78 460 BU = -.544453 470 EU = -.66645 480 CU = -.0260255 490 AU = -.0795943 500 DU = -1.16408 510 GOTO 850 510 GOTO 650 520 PRINT "WE ARE USING 8 Kgauss NBS 2.2 GAP DATA" 521 WRITE #1, "WE ARE USING 8 Kgauss NBS 2.2 GAP DATA" 530 va = (7987.68 RO) ^ 2 / (143.975 ^ 2 * M) 540 VE = 1389133.2# * SQR(va / M) 550 PRINT "VELOCITY OF THE 10N="; VE * .000001; "ACCELERATION VOLTAGE="; INT(va) 560 g = 8000 561 WRITE #1. "intensity of the magnetic field =", g, "ACELERATION VOLTAGE =", V 570 KC = 7987.68 . 580 BC = -.498397 590 EC = -.642715 600 CC = -.093898 610 AC = -.0684042 620 DC = -1.06185 630 KU = 7988.07 640 BU = -.544479 650 EU = -.684516 660 CU = -.024564 670 AU = -.0791192 680 DU = -1.17736 690 GOTO 850 700 PRINT "WE ARE USING 10 Kgauss NBS 2.2 GAP DATA" 700 YALTY "WE ARE USING 10 Ayadas RDS 2.2 OF DATA" 701 YA = (5991.7 * RO) ^ 2 / (X43.975 ~ 2 * N) 702 VE = 1389133.24 * SOR(YA / N) 703 WRITE #1, "WE ARE USING 10 Kgauss NBS 2.2 GAP DATA" 710 FRINT "VELOCITY OF THE ION"; VE = VE * .000001; "ACCELERATION VOLTAGE"; INT(720 g = 10000 721 WRITE #1, "intensity of the magnetic field =", g, "ACCLERATION VOLTAGE =" 730 KC = 9981.03 740 BC = -.520235 750 EC = -.65008 760 CC = ~.103846 770 AC = -.0739509 780 DC = -1.07251 790 KU = 9977.599 800 BU - -.578733 810 EU = -.694948 820 CU = -.0364021 830 AU = -.0870307 840 DU = -1.20225 841 ESC = 0 850 PU = COS(D)

```
860 E = SIN(D)
  861 FU1 = COS(-D / 2)

862 FU1 = SIN(-D / 2)

870 X9 = (2 * R0 * SIN(F / 2) * COS(F / 2 - B) * TAN(D / 2)) / SIN(D) - 31 -

880 X8 = -X9
   890 \ X0 = -(DFE \neq COS(A)) + X8 - 3 - EFP
   900 X10 = X0
910 Y9 = DFE * SIN(A)
  910 Y9 = DFE # SIM(A)

920 Y10 = Y9

930 PRIMT "the source coordinates are X="; X10; "y="; Y10

931 WRINE #1, "the source coordinates are x=", X10, "y=", Y10

940 PRIMT "distance source to iron core OFE=", OFE, "X8=", X8

941 WRINE #1, "distance source to iron core OFE=", OFE, "X8=", X8

950 PRMIN = -.01
   960 PVMIN = -.01
   970 N = 1
   980 DELPH = -PHMIN
   990 DELPV = -PVMIN
   1000 DELZ - -ZMIN
   1010 PRINT
  1010 PRINT

1020 PRINT = 0 TO 2

1040 R = 1

1050 PRINT "next beam"

1051 AAS = "next beam"

1052 WRITE #1, AAS, N

1052 DI = -A - ATN(DELPH) + I * ATN(DELPH).
   1070 Z = 0
   1080 PE = PVNIN + K * DELPV
   1090 P = 0
   1101 DII = DI + 180 / 3.141593
   1110 PRINT "ion beam output angle"; DII; "ion beam number"; N
  \begin{array}{c} 1110 \quad \forall YO = \forall E = 2 \text{ arr}_{1-1}, \\ 1140 \quad \forall ZO = \forall E \neq p \\ 1150 \quad K = (XIO - (XE = 3)) \\ 1160 \quad DM = (K + 10 - PIX(K + 10)) + 1 \\ 1161 \quad KI = (K + 10 - DM) \neq 10 \\ 1170 \quad XO = XIO + (KI - K) \\ 1180 \quad YO = Y + TAN(DI) * (XO - XIO) \\ 1180 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1190 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (XO - XIO) \\ 1100 \quad ZO = Z - P + (X
  1201 L = -K1
  1202 X = X0
 1203 PRINT " VI= "; VI; "w1="; VI; "source coordinates"
1210 PRINT #1, USING "+##.###"; VI; TAB(10); w1
1211 XI = X0
                                                                                                                                                            1212 XII = X8 - 6
 1212 XII = X8 - 6
1213 CF3 = KC / (1 + EXP((BC * L + EC + SQR((BC * L + EC) ^ 2 - 4 * CC * (AC * L
  1215 CP2 = CF3
 1216 DF3 = CF3
 1217 2C = 0
  1220 FOR XII = XI TO XII STEP .1.
 \begin{array}{c} 1230 \ L = L - .1 \\ 1231 \ X = X + .1 \end{array}
                                                                                                                                                               1250 CF2 = CF3
 1260 CP3 = KC / (1 + EXP((BC * L + EC + SQR((BC * L + EC) ^ 2 - 4 * CC * (AC * L
  1280 DF2 = DF3
 1290 DP3 = KU / (1 + EXP((BU * L + EU + SQR((BU * L + EU) ^ 2 - 4 * CU * (AU * L
```

```
\begin{array}{l} 1340 \text{ MZ} = .5 & (122 + 13) \\ 1350 \text{ AM} = -9648.6531 + 182 / \text{M} \\ 1360 \text{ BM} = -9646.5531 + 182 / \text{M} \\ 1370 \text{ VM} = SQR(\text{AM}^{-2} + 18\text{ M}^{-2}) \\ 1380 \text{ IF } \text{VI} = 0 \text{ THEN } 1412 \\ 1410 \text{ GTM} = 1 / (\text{AM}^{-1} \text{ VVO}) + (-\text{VXO}^{-1} \text{ SQR}(\text{VXO}^{-2} + \text{AM}^{-2} \text{ VVO}^{-2} \text{ 2}^{-1}.1) \\ 1411 \text{ GOTD } 1420 \\ 1422 \text{ CM} = .1 / \text{VXO} + 100 + 100 + 100 + 100 + 50 \text{ MM}^{-1} \text{ MM}^{-1} \text{ A}^{-1}.1 \\ 1422 \text{ CM} = .1 / \text{VXO}^{-1} \text{ A}^{-1} \text{
1412 TN = .1 / VKO.

1420 VX = VXO - .VXO * .5 * (INN * TH) ^ 2 + AN * TM * VVO + .5 * BM * TM ^ 2 * (A

1430 VY - VYO - VYO * .5 * (INN * TH) ^ 2 + BM * VZO * TH - AM * TM * VKO

1440 VZ = VZO * .5 * (INN * TM) ^ 2 + BM * VYO * TN + .5 * AM * TM ^ 2 * (B

1450 VZ = VZO * .5 * (INN * TM) ^ 2 - BM * VYO * TN + .5 * AM * TM ^ 2 * (B

1450 Z = ZO + VZO * .TM - .5 * TM ^ 2 * (BM * VXO - AM * VXO)

1560 ALPA - ATN((Y - YO) / .1)

1560 GAMA - ATN((Z - 20) / .1)

1580 YO = Y

1580 YO = X
   1600 V = X
  1610 W = Y
1611 V1 = V * FU1 - W * E1
1612 W1 = W * FU1 + V * E1
   1620 VXO - VX
   1630 VYO = VY
   1640 VZO = VZ
   1641 ZC = ZC + 1
   1642 2C1 = ABS(2C / 10)
1644 IF ABS(2C1) = CINT(2C1) THEN PRINT $1, USING "+$$.$$$"; V1; TAB(10); V1
   1650 NEXT XII
   1651 PRINT "VI="; V1; "WI="; W1; "Z="; Z0; "1="; L
1660 XA1 = X8 ~ 6 + .01
   1000 XA1 = X8 ~ 6 + .01
1670 FOR XA = XA1 TO X8 STEP .01
   \begin{array}{l} 1680 \ L = L - .01 \\ 1681 \ X = X + .01 \end{array}
   1690 CP2 = CF3
   1700 CP3 = KC / (1 + EXP((BC * L + EC + SQR((BC * L + EC) * 2 - 4 * CC * (AC * L
1710 DP2 = DP3
 1780 AM = -9648.4553# * BZ / H
1790 BM = -9646.4553# * BX / M
1800 WN = SQR(AM ^ 2 + BM ^ 2)
  1810 IF VY = 0 THEN 1842
1810 IF VY = 0 THEN 1842
1840 TH = 1 / (AM * VYO) * (-VXO + SQR(VXO ^ 2 + AM * VYO * 2 * .01})
1841 GOTO 1850
 1841 GOTO 1850

1842 TH = .01 / VXO

1850 VX = .01 / VXO

1850 VX = .01 / VXO

1850 VX = VXO - VXO * .5 * (WN * TH) ^ 2 + BN * TW * VYO + .5 * BN * TN ^ 2 * (A

1860 VX = VYO - VYO * .5 * (WN * TH) ^ 2 + BN * VYO * TN - AN * TN * VXO

1870 VZ = VZO - VZO * .5 * (WN * TH) ^ 2 - BN * VYO * TN + .5 * AN * TN ^ 2 * (B

1880 Y = V0 + VYO * TN + .5 * TN ^ 2 * (BN * VZO - AN * VXO)

1890 Z = ZO + VZO * TN - .5 * TN ^ 2 * BN * VYO

1890 Z = <math>.01 + VZO + TN + .5 * TN ^ 2 * BN * VYO
   1980 ALPA = ATN((y - YO) / .01)
```

```
1990 GAMA = ATN((Z - ZO) / .01)
2000 X0 = X
2010 YO = Y
2020 ZO = Z
                                                                        10.00
 2030 V = X
 2040 W = Y
 2040 W = Y
2041 V1 = V * FU1 - W * E1
2042 W1 = W * FU1 + V * E1
 2050 VXO = VX
 2060 VYO = VY
 2070 V20 = VZ
 2072 2C1 = ABS(2C / 10)
2073 IF APS(2C / 10)
 2073 IF ABS(2C1) - CINT(2C1) THEN PRINT #1, USING "+##.###"; V1; TAB(10); W1
 2080 NEXT XA
 2081 PRINT
 2082 PRINT "VII="; V1; "WII="; W1; "L="; L
2160 X0 = X3
2170 Y0 = Y3
 2180 ZO = Z
 2181 XB1 = X8 + .01
2182 XB2 = X9
                                                                                                                    2183 X = X3

2205 FOR X = (X3 + .01) TO X9 STEP .01

2205 IF VY = 0 THEN 2212

2210 TM = 1 / (AM * VYO) * (-VXO + SQR(VXO ^ 2 + AM * VYO'* 2 * .01))

2211 GOTO 2220
 2211 GOTO 2220
2211 GOTO 2220
2212 TM = .01 / VXO
2220 VX = VXO - VXO * .5 * (AM * TM) ^ 2 + AM * VYO * TM
2230 VY = VYO - VYO * .5 * (AM * TM) ^ 2 - AM * VXO * TM
2230 VY = VYO - VYO * .5 * (AM * TM) ^ 2 - AM * VAO * TM

2240 VZ = VZO

2250 y = YO + VYO * TM - .5 * AM * VXO * TM ^ 2

2260 Z = ZO + VZO * TM

2270 ALFA = ATM((Y - YO) / .01)

2280 T = (Y - YO) / .01

2390 ANDEA = ATM((Z - ZO) / .01)

2300 YO = X
2310 Y0 = Y
2320 Z0 = Z
 2330 VXO - VX
 2340 VYO = VY
 2350 VZO = VZ
\begin{array}{l} 2350 \ V = 0 \\ 2360 \ V = X \\ * \ FU \\ = y \\ * \ FU \\ = Y \\ * \ FU \\ = V \\
 2500 ZC = ZC + 1
2501 ZC1 = ABS(ZC / 10)
2502 IF ABS(ZC1) = CINT(ZC1) THEN PRINT #1, USING "+##.###"; V1; TAB(10); W1
2510 NEXT X
2520 PRINT
2521 PRINT "VIII="; V1; "WIII="; W1; "L."; L
2530 X5 = X0 + .01
```

```
2540 L = -3
2560 FOR X = X5 TO X9 + 6 STEP
 \begin{array}{l} 25/U \ L = L + .01 \\ 2580 \ CF3 = KC \ / \ (1 + EXP((BC * L + EC + SQR((BC * L + EC) ^ 2 - 4 * CC * (AC * L \\ 2590 \ DF3 = KU \ / \ (1 + EXP((BU * L + EU + SQR((BU * L + EU) ^ 2 - 4 * CC * (AC * L \\ 2600 \ P = -(VZ0 \ / \ SQR(VX0 ^ 2 + VY0 ^ 2)) \\ 2610 \ B2 = CF2 + Z & 2 * 4 * (DF2 - CF2) \\ 2620 \ B3 = CF3 + (Z + P * .01) ^ 2 * (DF3 - CF3) * 4 \\ 2630 \ BX = -(Z0 \ * (CF2 - CF3) * (1 \ / \ .01)) \\ 2649 \ B2 = .5 * (B2 - B3) \\ \end{array} 
2650 AM = -9648.4553# * BZ / M
2660 BM = -9646.4553# * BX / M
2670 WM = SQR(AM ^ 2 + BM ^ 2)
 2680 CF2 = CF3
 2681 DF2 = DF3
2683 IF VY = 0 THEN 2687
2685 TW = 1 / (AM * VYO) * (-VXO + SQR(VXO ^ 2 + AM * VYO * 2 * .01))
 2686 GOTO 2700
2686 GOYO 2700
2700 VX = .01 / VXO
2700 VX = VXO - VXO * .5 * (WH * TH) ^ 2 + AM * TM * VYO + .5 * BM * TH ^ 2 * (A
2710 VY = VYO - VYO * .5 * (WH * TH) ^ 2 + BM * VXO * TH - AM * TH * VXO
2720 VZ = VZO - VZO * .5 * (WH * TH) ^ 2 - BM * VYO * TH + .5 * AM * TH ^ 2 * (B
2730 Y = V0 + VYO * TH + .5 * TM ^ 2 * (BM * VYO - AM * VXO)
2740 Z = 20 + VZO * TH + .5 * TM ^ 2 * (BM * VYO - AM * VXO)
2830 ALFA = ATM((Y - YO) / .01)
2840 GATA = ATM((Z - ZO) / .01)
 2850 X0 = X
2860 YO = y
2870 ZO = Z
2880 V = X * FU - y * E
2890 W = y * FU + X * E
2891 V1 = V * FU1 - W * E1
2892 W1 = W * FU1 + V * E1
 2900 VXO = VX
 2910 VYO = VY
 2920
           VZO = VZ
          ' PRINT "V1=";V1;"W1=";W1;"z=";Z0;"1=";L
 2921
 2922 ZC = ZC + 1
2923 ZC1 = ABS(ZC / 10)
 2924 IF ABS(ZC1) = CINT(ZC1) THEN PRINT #1, USING "+##.##### v1; TAB(10); w1
 2930 NEXT X
 2931 PRINT
             PRINT "VIV="; V1; "WIV="; W1; "1="; L
 2932
 2940 X5 = X0 + .1
 2950 FOR X = X5 TO -X10 + 2.5 STEP .1
2950 FUK X = X5 U -ALV 7 2.5 SLF 1.

2970 L = L + .1

2970 CF3 = KC / (1 + EXP((BC * L + EC + SQR((BC * L + EC) ^ 2 - 4 * CC * (AC * L

2980 DF3 = KU / (1 + EXP((BU * L + EU + SQR((BU * L + EU) ^ 2 - 4 * CU * (AU * L

2980 P = -(VZ0 / SQR(VX0 ^ 2 + VY0 ^ 2))

3000 B2 = CF2 + Z ^ 2 * 4 * (DF2 - CF2)

3010 B3 = CF3 + (Z + P * .1) ^ 2 * (DF3 - CF3) * 4

= (VZ0 - CF3) + (Z + P * .1) ^ 2 * (DF3 - CF3) * 4
                                                                                                                                             3020 BX = -(20 * (CF2 - CF3) * (1 / .1))
3030 BZ = .5 * (B2 + B3)
3040 AM = -9648.4553/ * BZ / M
3050 BM = -9646.4553/ * BX / M
3060 WM = SQR(AM ^ 2 + BM ^ 2)
 3070 CF2 = CF3
 3080 DF2 = DF3
 3081 IF VY = 0 THEN 3084
3082 TH = 1 / (AM * VYO) * (-VXO + SQR(VXO ^ 2 + AM * VYO * 2 * .1))
```

```
3083 GOTO 3110
      3064 TM = .01 / VXO
     \begin{array}{l} 3_{140} y = y_{20} - y_{20} - y_{20} = (3 + 1) + (3 + 1) + (2 + 3) + (3 + 1) + (2 + 3) + (3 + 1) + (2 + 3) + (3 + 1) + (2 + 3) + (3 + 1) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + (3 + 3) + 
3241 T = (y -
                                                                - YO) / .1
    3270 Y0 = y
3280 20 = 2
 3290 V = X * FU - Y * E

3300 W = Y * FU + X * E

3301 V1 = V * FU1 + W * E1

3302 W1 = W * FU1 + V * E1
     3310 VXO - VX
     3320 VYO - VY
    3330 VZO = VZ
3331 ' PRINT "V=";V; "W=";W; "Z=";ZO;"1=";L
     3332 'PRINT "xm";X;"ym";Y ;"zm";Z; "lm";L
    3333-2C = 2C + 1
    3335 ZC1 = ABS(ZC / 10)
    3336 IF ABS(ZC1) = CINT(ZC1) THEN PRINT #1, USING "+##.####: v1: TAB(10): w1
    3340 NEXT X
    3341 ALFA1 = ALFA * 180 / 3.141593
3342 PRINT "vV ="; v1; "wV ="; w1
   3342 PRINT "4V ="; V1; "4V ="; 41
3350 PRINT "4"; X; "y="; y; "n="; N
3360 PRINT "alfa="; ALFA1; "gama="; GAMA
    3380 X7(N) # X
   3390 ¥7(N) = ¥
3400 Z7(N) = Z
    3410 T7(N) = T
   3430 P7(N) = P
   3450 N = N + 1
    3480 NEXT I
  \begin{array}{l} 3400 \text{ KHO} = (X7(1) * (T7(2) - T7(1)) - Y7(2) + Y7(1)) / (T7(2) - T7(1)) \\ 3500 \text{ KHO} = T7(1) * (XHFO - X7(1)) + Y7(1) \\ 3510 \text{ KHFT} = (X7(2) * (T7(3) - T7(1)) - Y7(3) + Y7(1)) / (T7(3) - T7(1)) \\ 3520 \text{ YHFI } = T7(1) * (XHFI - X7(1)) + Y7(1) \\ \end{array}
 Sign Anti- 1(11) (TTT (11) (TTT) (7)

Sign Anti- (7)(2) (TT(3) (TT(2)) (TT(3)) (TT(3)) (TT(3))

Sign Anti- (7)(2) (KHFJ (TT(3)) (TT(2)) (TT(3)) (TT(3)) (TT(2))

Sign Anti- (7)(2) (KHFJ (TTT)) (TT(2)) (TT(3)) (TT(3)) (TT(2))

Sign Anti- (TT(2)) (T
  3572 WHFOI - YHFOI + FU + XHFOI + E
 3573 VH1 = VHPIO * FU1 - WHPOI * E1
3574 WH1 = WHPOI * FU1 + VHPOI * E1
                                                                                                                                                                                                                                                                                                                                            يشقه والمسترين
  3560 PRINT "COORDINATES OF THE HORIZONTAL FOCAL PLANE FOR THE CENTRAL BEAMS"
  3590 PRINT
 3500 PRINT "XHFO="; XHFO; TAB(22); "YHFO"; YHFO
3610 PRINT "XHFI="; XHFI; TAB(22); "YHFI"; YHFI
3620 PRINT "XHFJ="; XHFJ; TAB(22); "YHFJ"; YHFJ
 3630 PRINT "XHFOI-"; XHPOI; TAB(22); "YHFOI"; YHFOI
 3810 PRINT "FINAL FOCAL PLANE "
 3820 PRINT "VhPOI="; VHPOI; TAB(22); "WhFOI="; WHFOI
 3821 PRINT "VH1="; VH1; "wh1="; WH1
 3830 PRINT
```

3940 PRINT "the source coordinates are X="; X10; "y="; Y10; "eff="; EFF 3950 PRINT "distance source to iron core"; "OFE="; OFE; "X8="; X8; "DFE="; DFE 3960 PRINT "FINAL PCCAL PLANE" 3970 PRINT "XNFOI="; XHFOI; "YNFOI="; YHFOI; "zc="; ZC 3971 CLOSE /1 3940 END

3.4 Cálculo de aberraciones

3.4.1 Correlación entre aberraciones de Matsuda y aberraciones obtenidas por el programa 116-IFUNAM.

Es conveniente validar la metodología desarrollada comparando los valores obtenidos en este trabajo con los reportados en la literatura. En particular se analizaron tres de las geometrías cuyas características están ampliamente documentadas.

Las geometrías analizadas poseen las características necesarias para el funcionamiento óptimo de un espectrómetro de masas para análisis de isótopos estables. Estas características son un alto poder de resolución y una alta sensibilidad.

El poder de resolución está asociado a la dispersión o al coeficiente de aberración A_r. Este poder de resolución se define como la capacidad de un sistema para resolver ó separar dos masas adyacentes y la definición teórica es:

3.45

$$P.R. = \frac{A_{v}}{S_{s}A_{x} + \Delta + S_{s}}$$

donde S, y S, son las dimensiones de las rejillas de definición de la fuente de iones y del colector respectivamente y Δ es la aberración total del sistema.

Para lograr un alto poder de resolución, de la ecuación 3.45 se ve que se requiere un numerador A_c grande y un denominador pequeño. De los parámetros del denominador solo se puede disminuir la aberración total Δ ya que si se disminuye el tamaño de las rejillas del colector 6 de la fuente de iones (S_c, S_s) se disminuye la sensibilidad del sistema.

En general los sistemas que tienen enfoque astigmático, o sea enfoque en las dos direcciones, tienen un ángulo de incidencia $\epsilon > 0$ con las fronteras del imán , una dispersión $\lambda_i > 1$ y una aberración total Δ mínima. A medida que ϵ aumenta crece la interacción entre el haz de iones y el campo magnético disperso produciendose un mayor enfoque angular y una mayor separación entre las masas. Por lo tanto se estudiaron tres sistemas con estas características: $\epsilon>0$, $\lambda_m=0$, $\lambda_m=1$, $\lambda_m>2$, y una dispersión energética (1 volt/20000 volts) y angular (4mm/1000mm) muy pequeña.

El tamaño total del haz tomando en cuenta solo coeficientes de segundo orden (ec. 2.9 y ec. 2.10) se puede reescribir como:

3.46

$X_2 = S_1 + A_{aa}\alpha^2 + A_{aa}Z^2 + A_{aa}ZB + A_{aa}B^2$

donde la aberración total Δ es X₂ - S₂.

Como se puede observar de la ecuación 3.46 los coeficientes de aberración de Matsuda salieron de una aproximación matricial donde las aberraciones son variables linealmente independientes que se pueden sumar para dar el tamaño total del haz. Sin embargo en el caso de programa 116-IFUNAM lo que se obtiene es la distancia física entre dos haces, el central y el que produce la abernación de tal manera que cuando esta distancia es cero y los dos haces tienen la misma coordenada entonces suponemos que la abernación no existe . Otra diferencia que existe entre los dos métodos que el tamaño total del haz para nosotros no es una suma lineal sino la distancia entre los haces que tienen la máxima dispersión.

Aunque claramente estos dos conceptos no son comparables directamente suponemos que para algunos casos existe una constante de proporcionalidad entre ellos y trataremos de probar que existe esa constante K de tal manera que los coeficientes de aberración A (TRIO) y las distancias D, (116-IFUNAM) se pueden escribir como D, = K A₁₁ utilizando valores normalizados tanto para las distancias como para las aberraciones.

La aberración asociada al coeficiente A del programa TRIO corresponde a la distancia en X foco entre el haz central (14) corresponde a la discancia en a loco entre el naz central (14) (z=0, $\alpha=0$, $\beta=0$) y los haces que salieron de la fuente de iones con un ángulo de divergencia " α ", o sea el haz (5)(z=0, $\alpha=-\alpha,\beta=0$) y el haz (23) (z=0, $\alpha=-\alpha,\beta=0$) D₍₅₋₂₃₎. Teóricamente si en X_i, y del haz (14), Y₂ del haz (5) y Y₂ del haz (23) no son iguales enconces no hay enfoque direccional de segundo

orden o sea A, es distinta de cero.

D_{zz} corresponde a la aberración generada por el parámetro Z y es la distancia Y_{70} entre el haz(11) ($\alpha=0$ z=z₀ $\beta=0$)y el haz(17) (a=0 z=-z, B=0).

D_{zf} corresponde a la aberración generada por el parámetro z y β y es la distancia X_{7D} entre el haz(10) (α =0 z=z_o β = β) y el haz(18) ($\alpha=0$ $z=z_0$ $\beta=-\beta$).

 $D_{\rm MR}$ corresponde a la aberración generada por el doble parámetro ß y corresponde a la distancia Y_{70} entre el haz(13) (α =0 z=0 B=B) y el haz(15) (α =0 z=0 B=B)

 $D_{\rm eff2}$ corresponde a la aberración generado por los tres parámetros considerados y corresponde a la distancia Y₇₀ de varias parejas de haces dependiendo de la combinación de ellas. Así puede asociarsele esta aberración a las parejas de haces 1 y 9

3 y 7 21 y 25 19 y 27

 D_{eff} corresponde de la misma manera que en el caso anterior a la aberración producida por la combinación de los parámetros ß y α y es por lo tanto la distancia Y_{70} entre varias parejas de haces dependiendo de estas combinaciónes: 4 y 6

o 22 y 24

D, corresponde a la distancia X_{70} entre las parejas de haces 2 y 8 o 20 y 26

De la misma manera que se les asocia la distancia Y_{TP} a las aberraciones en el plano horizontal para el plano vertical a las distancias Z_{TP} de los diferentes haces se les asociaran las mismas aberraciones con excepción de D_g que no tiene su correspondiente en el plano horizontal.

 D_{β} corresponde a la aberración producida por la pendiente vertical β y es la distancia $Z_{\gamma 0}$ del haz (13) con $\alpha=0$ z=0 $\beta=+\beta$

3.4.2 Aberraciones de geometrías 90°,26.5° y 130°,56°

Las dos geometrías con enfoque astigmático que se escogieron fueron de $\phi = 90^{\circ}$ y $\phi = 130^{\circ}$. Para la geometría de $\phi = 90^{\circ}$ y $\epsilon = 26^{\circ}$ se variaron los valores de ϵ entre 24^o y 31° para analizar los efectos de enfoque horizontal y vertical con respecto a este parámetro.

Después de varias pruebas se encontró que uno de los parámetros que influye más sobre el tamaño de las aberraciones es A, o sea la simetría del sistema. Este hecho ha sido reportado por Matsuda y la simetría de los sistemas se escogió como una condición indispensable ya que una asimetría de milímetro entre la fuente de iones (X₁₀, Y₁₀) y el colector (X₇₀, Y₇₀) duplica el tamaño de la aberración.

Se modificó el programa 116-IFUNAM para analizar primeramente solo los 6 haces de las máximas envolventes y con este programa se optimizaron los valores D_{ef} y E_{eff} simetrizando cada uno de los casos. Una vez simetrizada la geometría se corrió con el programa 116 y se obtuvieron las coordenadas de los 27 haces que definen las aberraciones del sistema.

Para la geometría de 90' además de variar ϵ , se variaron los parámetros de α , Z para analizar sus efectos sobre el enfoque del sistema. De la misma manera se analizó un juego completo de la misma geometría con un radio distinto.

La segunda geometría que se estudio fue la que tiene un ánquio de giro ϕ de 130° y un ángulo de incidencia a los polos del imán ϵ de 55°. Nuevamente se variaron los parámetros a, 2 y ϵ de 54° a 58° para buscar la óptima combinación de parámetros para esta geometría.

En las Tabla 3.3, 3.4 y 3.5 se encuentran las coordenadas (Y_{70}, Z_{70}) de cada haz en el punto focal para los 15 casos estudiados.

TABLA 3.3. Distancia \mathbf{X}_{70} entre haces de iones en el punto focal

÷. *				φ =	= 9()•		R=	15.	24	сm		0	e =	ß	= 2	.00	8	i di .	Z	- =	. 6	СП	ι.
1									영습									. ierie	24				di e	
٩,			D, 10.18	D.	27	5	្រុះ)	D,		D,	35	D	199	D		D,		AX.		ovne	lvent	• Z	
			ર ુવારે	9.73		e.5/5/0) Galer			1.00						1
៍			0.0013	÷eyes	0023	0.005	5 0	-0106		0000	-0	.0160	0.0	027	-0.	0051	+0.	0052	0.0	0297	16	y23	0.6	
28	197		-0.0240) -0.	0205	0.008	15 🔆 (25.66 c	0.012	1 / O.	0061	0.	0062	0.0	037	-0.	0064	-0.	0160	0.0	0371	18	y23	0.6	è.,
29	4		-0.0290) -0.	0251	0.010	4	.015	6 O.	0671	0.1	0072	0.0	046	-0.	0076	-0.	0195	0.0	0445	10	y23	0.6	
30	i der		-0.0212	-0.	0195	0.012	4	0.014	ί.	0035	0.0	0035	0.0	097	-0.	0073	-0.	0234	0.0	0361	10	y23	0.6	e f
30			-0.0224	0.	0180	0.004	2	3.014	5 0 0.	0056	. 0.1	0057	-0.	0021	-0.	0046	-0.	0187	0.0	0316	10	¥23	0.4	
•		1	-0.037		90-0) 0141	- AN		.009	8 E),	2746) 0045		lpac el		0.053	2.005	시는, '주'	-0.	0169				(ana)		17
				25		0.002	968	.007	(ji)deg		$l \approx i$	wWA.			德袖	6965 (f	-0.	0154		200	10	¥23	0.3	
31			-0.0365	-0.	0323	0.013		3.018		0089	् ० - । ८,८३२	0090	+0.	0061	-0.	0094	-0.	0255	0.0	9561	10	A53	0.6	ġ,
31	.5		-0.0404	I.,-0.	0356	0.014	7	0.019	0.	0097	0.	0098	+0.	0067	-n.	0101	-0.	0283	0.0	0611	10	y23	0.6	ų į

Distancia Z₇₀ entre haces de iones en el punto focal

 $\phi = 90$ • R=15.24 cm = = .008 z = .6 cm.

•	D.	D.	C, D D, D, D D, AZ envolvente La 5.23 3.7 21.25 13.15 11.17 1.9	z jesti
				(M_{1},M_{2})
26	0.04573	++4474	2.0240 0 0.1581 -0.0974 -0.1718 0.2898 -0.5024 0.9703 1 Y 9	0.6
	0.4579		+0.4679	
28	0.3399 0.3407	+.3065	2.2140 0 0.5361 0.5169 0.1006 0.4297 +0.3892 1.0722 3 ¥ 7 -0.3742	0.6
29.4	0.5234	+.4867	2.3750 0 0.5868 0.5683 0.0334 0.5462 +0.5631 1.1736 3 y 7 -0.5609	0.6
30	0.6048	+.5831	2.4521 0 0.6073 0.5889 0.0024 0.5995 +0.6238 1.2464 1 y 9	0.6
30	0.4007	+.3703	0 0.4006 0.3984 0.0034 0.3971 +0.4291 0.8609 1 y 9	0.4
	0.4007			
31	0.4189	+.3888	0. 0.2023 0.2900 0.0030 0.3300 40.4368	
31	0.7848	+.7432	2.5950 0 0.6458 0.6287 0.0639 0.7055 +0.8030 1.6300 1 y 9	0.6
	0.7845			
31.5	0.8742	+.0309	2.6740 0 0.6610 0.6445 0.1003 0.7575 +0.8841 1.800 1 y 9	0.0

TABLA 3.4 Distancia Y70 de haces de iones en el punto focal

R=30.48cm = .004 cm.

•	1	0,10	D. 19,27	с. 14	D 5,23	D. 3,7	D. 21,25	D 13,15	D 11,17	D. 1,9	AX AX	envolvente	1 2 -
•	0	.00005	0.0060	0.00067	0.00120	-0.00530	0-0.00540	-0.00160	-0.0060	+0.00059	0.0235	18 y 23	
26	-	.01580	-0.0151	.00750	0.00820	0.00320	0.00320	0.00510	-0.0042	-0.01280	0.0242	5 y 23	0.
27	-	.01720	-0.0164	.00810	0.00890	0.00360	0.00320	0.00540	-0.0045	-0.01380	0.0262	2 10 y 23	0.4
28	-	0.0189	-0.0180	.00870	0.00960	0.00420	0.00420	0.00570	-0.0049	-0.01520	0.0286	5 10 y 23	0.
29	-	0.0211	-0.0203	.00950	0.01030	0.00460	0.00960	0.00590	-0.0053	-0.01690	0.0315	10 y 23	0.
30	-	0.0238	-0.0227	.01050	0.01140	0.00540	0.00530	0.00640	-0.0056	-0.01860	0.0352	2 10 y 23	0.4
31		0.0267	-0.0256	.01130	0.01240	0.00670	0.00630	0.00670	-0.0063	-0.02150	0.039	4 10 y 23	0.

Distancia \mathbf{Z}_{70} de haces de iones en el punto focal

R=30.48cm = .004 CI.

envolvente . D. D. c, D D. AT CO 10.18 19,27 5,23 3,7 21,25 13,15 11,17 1,9 14 0.6315 0.1862 4 -0.2649 -0.2748 . 0 a 0.6432 0.4517 -0.2748 1.28 21 9 25 0.2 +0:2656 +0.2654 +0.2652 +.338 26 -0.2085 +0.2281 ۵ 0.3332 -0.0645 0.2717 +0.2281 0.676 3 y 7 0.4 0 -0.2154 +0.2086 +0.2017 27 -0.2821 +0.2979 +.3642 0.3594 +.0408 0.3215 +0.2979 0.7284 3 9.7 0.4 Ô п -0.2894 +0.2821 -0.2749 0.3782 0.4 28 +0.3676 -0.3599 0 0.3923 0.3874 +.0122 +0.3774 0.7846 3 y 7 -0.3676 +0.3598 -0.3755 +.0192 0.4347 +0.4579 0.922 0.4 +0.4557 -0.4473 0 o 0.4173 0.4125 1 y 9 29 -0.4641 -0.4557 0.4 30 +0.5664 +0.5573 0 0 0.4469 0.4422 +.0596 0.5048 +0.557 1.1421 9 y 10 -0.5756 -0.5664 +0.6655 103909 9 y 10 0.4 +0.6903 +0.6803 0 0.4698 0.1077 0.6905 31 0.4744 -0.7004 -0.6903

TABLA 3.5 Distancia Y₇₀ entre haces de iones en el punto focal

e

 $\phi = 130^{\circ}$ R = 17.5 cm= .004 2 = CM.

envolvente ΔX D., D. D D. D, D D D. 10.18 5.23 21,25 1,9 19.27 14 3.7 13.15 11.17 AX 54 +0.0014 0.0032 0.0014 0.0010 +0.0003 +0.0003 -0.0014 -0.0004 -0.0089 0.0121 1 v 27 +0.0039 +0.0013 0.0032 0.0005 -0.0010 -0.0010 -0.0010 -0.0007 -0.0179 0.0219 +0.0015 0.0034 0.0000 0.0017 55 +0.0042 0.0010 +0.0013 0.0033 0.0002 0.0025 -0.0001 -0.0040 0.0003 -0.0014 -0.0242 0.0270 56 +0.0005 0.0026 1 7 9 +0.0035 +0.0003 0.0025 0.0032 57 -0.0019 0.0005 0.0026 0.0051 +0.0004 +0.0050 0.0026 -0.0028 -0.0328 0.0387 0.0059 +0.0014 -0.0021 0.0003 -0.0070 -0.0041 0.0070 0.0100 -0.0001 -0.0003 0.0068 -0.0052 -0.0445 0.0551 1 v 23 0.0106 +0.0035 -0.0072 -0.0043

Distancia Z₇₀ entre haces de iones en el punto focal 130 R = 17.5 cm $\alpha = \beta = .004$.6 cm.

•	D,	D,	С,	D	De:	D,	D	D	∆z	envolventez
	10,18	19.27	14	5.23	3.7	21.25	13.15	11.17	1.9	
54	+.8021	+0.7889	0.0000	0.0000	+0.6457	+0.6348	0.0786	0.7202	0.6425 1.5221	19 y 27
55	+1.0799	+1.0635	0.0000	0.0000	+0.8629	0.8476	0.1085	0.9661 -	-0.8146	9 V 10
	1.0784	-1.0621					a de la composition de	den de la comp	-1.0952	
36	+1.2367	+1.2187	0.0000	0.0000	+0.9339	0.9817	0.1507	1.0796 4	0.8461 2.4801	9 y 10
57	+1.4698	+1.4493	0.0000	0.0000	+1.0231	1.0085	0.2214	1.2402	0.9112 2.9581	9 Y 10
58	+1.7252	+1.7021	0.0000	0.0000	+1.1190	1.1049	0.3003	1.4152	-1.4881	9 V 10
	-1.7221	-1.6992	100-00.	an againd	9.000	主義の特別的	an a		-1.7458	

En las figuras 3.6 a 3.12 se muestra las imágenes de los haces para los diferentes parámetros de la geometría 90°, 26°, 15.24 cm.

NBS MAGNET

INTENSITY OF THE MAGNETIC FIELD = 7987.698 MASA DEL ION = 235.000 ACELERATION VOLTAGE = 12168.280 VELOCITY OF THE ION = 9.996 FI= 90.000 ALFA= 4.000 FI= 90.000 EETA= 4.000 POLE ANGLE= 92.000 Ofe= 34.943 RADIUS= 30.480 Efective FIELD = 1.789 Phain=-.004 Pvmin=-.004 2min= .200 X16=-61.627 Y10= X8=-23.769 Def= 33.150 ¥10= 2.312 X10=-61.627 Y10= 2.312 Ypfoi= 2.336 Xpfo1= 61.636

Fig.3.6 Imagen en del plano focal de geometria 90°, 4°, 30.48 cm

NBS MAGHET .

INTERSITY OF THE HAGHETIC FIELD = 7997.680 MASA DEL ION = 235.000 ACELERATION VOLTAGE = 3042.070 VELOCITY OF THE ION = 4.998 ENERGY DISPERTION OF THE IONS IN Eu= .200 FI= 90.080 ALEAN ELEAN ELEAN ELEAN ELEAN ELEAN ELEAN ELEAN Phain=-.085 Phain=-.085 VBIO=.39.132 VIO= 13.527 X0=-6.577 Defr 30.858

X10=-39.132 Y10= 13.527 Xpfoi= 39.103 Ypfoi= 13.429

Fig.3.7 Imagen en del plano focal de geometría 90°, 26°, 30.48 cm

.WBS MAGNET

INTENSITY OF THE MACHETIC FIELD = 7997.600 MASA DEL ION = 235.000 ACELERATION VOLTAGE = 3042.070 VELOCITY OF THE ION = 4.990 ENERGY DISPERTION OF THE IONS IN Eve 200 FI= 90.000 ALFA 28.000 ETA= 28.000 POLE ANGLE= '34.000 Ofe= 35.780 RADIUS = 15.240 Erective FIELD = 1.800 Phain=-.080 Puin=-.008 Zmin=-.600 X10=-41.050 YIO= 15.840

X10=-41.060 Y10= 13.840 Xpfoi= 40.962 Ypfoi= 15.800

Fig.3.8 Imagen en del plano focal de geometría 90°, 28°, 30.48 cm

Y AXIS (CM)

NES MAGNET

INTENSITY OF THE MAGHETIC FIELD = 7997,680 MASA BEL ION = 255,000 AGELERATION VOLTAGE = 3042.070 VELOCITY OF THE ION = 4,998 ENERGY DISPERTION OF THE IONS IN Eve .200 FI= 90,000 ALFA= 25.400 BETH= 25.400 POLE ANGLE= 31,200 Ofe= 32,288 FRDIUS= 15.240 Effective FIELD = 1.820 Phain=.088 Phain=.008 Zmin=.600 X10=-42,728 Y10=17.770 X8=-53.68 Defe 36.199

X10=-42.726 Y10= 17.770 Xpfo1= 42.623 Ypfo1= 17.692

Fig.3.9 Imagen en del plano focal de geometría 90°, 29.5°, 30.48 c

NBS MACHET

INTENSITY OF THE MAGNETIC FIELD = 7987.600 MASA DEL ION = 235.000 ACELERATION VOLTAGE = 3042.070 VELOCITY OF THE ION = 4.998 ENERGY DISPERTION OF THE IONS IN EV= . 200 FI= 90.000 ALFA= 30.000 BETR= 30.000 POLE ANGLE= 30.000 RADIUS= 15.240 Efective FIELD = 1 Ofe= 39,499 . 840 Phain=-.008 Pumin=-,008 2min=-.600 X10=-43.522 110= 18.687 X8=-6.316 Def= 37.373

X10=-43.522 Xpfo1= 43.507 Ypfo1= 13.571

> Fig.3.10 Imagen en del plano focal de geometría 90°, 30°, 30.48 cm, E=:6

NBS MAGNET

INTENSITY OF THE MACHETIC FIELD = 7987.680 MASA DEL ION = 235.000 ACELERATION VOLTAGE = 3042.070 VELOCITY OF THE ION = 4.998 ENERGY JISPERTION OF THE IONS IN 500 FI= 90.000 ALFA= 30.000 EETA= 20.000 POLE ANGLE= 30.000 Off= 39.498 RADIUS= 15.240 Frective FIELD = 1.240 Phain=-.008 Pwin=-.008 Canin=-.400 X10=-43.522 Y10= 13.687 X0=-63.15 Def= 37.373

X10=-43.522 Y10= 18.687 Xpfoi= 43.535 Ypfoi= 18.595

Fig.3.11 Imagen en del plano focal de geometría 90°, 30°, 30.48 cm, x=0.4

NBS MAGHET

INTENSITY OF THE MAGHETIC FIELD - 7997.680 MASA DEL ION - 235.000 ACELERATION VOLTAGE = 3042.070 VELOCITY OF THE ION - 4.998 ENERGY DISPERTION OF THE IONS IN E 200 FI= 90.000 ALFA= 31.000 BETA= 31.000 FOLE ANGLE= 28.000 Ofe= 41.692 RADIUS= 15.240 Efective FIELD = 1.830 Phain=-.009 Pvain=-.000 Zmin=-.600 X10=-45.013 Y10= 20.373 X20=-6.276 Defe 33:537

X10=-45.013 Y10= 20.373 Spro1= 44.862 Spro1= 20.311

Fig.3.12 Imagen en del plano focal de geometría 90°, 31°, 30.48 cm

Las figuras 3.13 y 3.14 son una síntesis de 4 casos de las geometrías 90°,26°, 30 cm. y 130°,56°, 17.5 cm. En ambos casos se ve claramente el efecto del enfoque vertical a 26° y el desenfoque horizontal que ocurre a medida que se aumenta el ángulo ϵ . Este efecto de cambio de forma del haz de iones al aumentar el ángulo esta reportado experimentalmente por Taya en 1988.

Fig.3.14 Síntesis de imágenes en punto focal de un espectrómetro de masas de 130° con distintos ángulos de entrada.

Fig.3.14 Síntesis de imágenes en punto focal de un espectrómetro de masas de 130° con distintos ángulos de entrada.

Las aberraciones obtenidas para el caso 130°, 55°, 17.5 cm se graficaron en la figura 3.16 con el fin de entender el comportamiento de cada una de ellas y en esta región se comportan de la misma manera que las aberraciones reportadas por Matsuda (1986) figura 3.15.

Fig 3.16 Coeficientes de aberración calculados con 116_IFUNAM para distintos ángulos de incidencia al polo del imán ϵ

3.4.3 Reducción e interpretación de las aberraciones.

De las tablas y figuras del inciso anterior se pueden hacer varias comentarios.

Geometría 90°, 26°, 30 cm

- el enfoque astigmático que se ha reportado en la literatura con la geometría de ϕ = 90° y ϵ = 26° se observa claramente en los resultados obtenidos en este trabajo para las dos geometrías con distintos radios que se analizaron en el inciso anterior.

El enfoque en la dirección z que se ve claramente para el ángulo ϵ = 26 y el desenfoque que aparece a partir de 26° tanto en z como en XY lo mostró experimentalmente tanto Taya como Matsuda.

- los coeficientes D_{afle} son indicadores muy sensibles de la asimetría del sistema y los que definen una de las envolventes máximas del haz. De las tres parejas de D_{afiz} los más importantes por su tamaño son el 9 (α, z, β) y el 27 ($-\alpha, -z, -\beta$) En las aproximaciones de Matsuda el considera este término como de

tercer orden sin embargo para nosotros probablemente debido al tamaño considerable de z = 0.6 (Matsuda z = 0.05) el término no puede despreciarse.

- el coeficiente D_{en} es el más pequeño o el más cercano al haz central

- el coeficiente D_{AB} también es considerablemente pequeño e insensible a cambios de simetría o altura del haz.

- con respecto a la dirección XY todos los coeficientes aumentan al aumentar ϵ de 26° a 31° o sea aumenta el tamaño del haz, sin embargo con respecto a la dirección Z diferentes coeficientes tienen su mínimo a diferentes valores de ϵ . Por ejemplo 26° es un mínimo para D_{B2} (10,18) y D_{eB2} (3,7 y 21,25). 31° es un mínimo para D_{B3} (13,15) 30° es un mínimo para D_{eB2} (1,9)

.- la altura del objeto z es un factor determinante es el tamaño de las aberraciones.

Si comparamos los ángulo sólidos que se tiene saliendo de dos filamentos uno con altura z = 0.6 y $\alpha = \beta = 0.008$ y otro con altura z = 0.3 y $\alpha = \beta = 0.008$ y otro con altura z = 0.3 y $\alpha = \beta = 0.008$ tenemos que el primer ángulo sólidos es 0.0048 y el segundo 0.0024. Los tamaños del haz, asociados a estos ángulos sólidos, tanto en la dirección XY como en la dirección Z se duplican. (ΔY va de 0.0282 a 0.056 y ΔZ va de 0.8551 a 1.63). Sin embargo si aumentamos el ángulo sólido aumenta de 0.0030 a 0.0048 un aumento de 60% sin embargo el tamaño del haz en la dirección XY va de 0.316 a 0.0361 solo un aumento del 14% y para la dirección z umenta que es muy importante limitar el tamaño de z en el espectrómetro de masas poniendo baffles o placas limitadoras tanto a la centrada como a la salida del imán.

Geometría 130°, 56°, 17.5 cm.

- En esta geometría se observaron las mismas tendencias de $D_{\alpha\alpha}$, $D_{\beta\alpha}$, $D_{\alpha\betaz}$ que para el caso de 90°, 26°. - 1a dimensiones de las aberraciones son menores que para el

-la dimensiones de las aberraciones son menores que para el caso de 90°, demostrando el efecto enfocador del campo magnético disperso.

- las aberraciones D_{qr} , D_{M} y D, obtenidas con el programa 116-IFUNAM son comparables (del mismo orden de magnitud) e inclusive iguales que los reportados en la literatura.

- para el enfoque en Z se observa una clara coincidencia entre que A_{na} sea mínima y que el enfoque sea puntual.

- D_ aumenta a medida que e va de 54° a 58°.

- D₁₇, D₁₈ y D₁₈ tienen un mínimo en 56° mostrando claramente que los parámetros con los que se optimiza esta geometría son los que corresponden a 56°. En la gráfica 3.14 se ve claramente el efecto enfocador que tiene el ángulo ϵ . Para $\epsilon = 54^{\circ}$ el haz tiene una curvatura hacia la derecha en $\epsilon = 56^{\circ}$ y $\epsilon = 57^{\circ}$ el haz tiene de altura, se endereza y disminuye su anchura "Y" para $\epsilon = 58^{\circ}$ disminuye su altura y vuelve a curvearse hacia la izquierda.

De los cinco casos estudiados para esta geometría tomando en cuenta el tamaño de la imagen del haz el óptimo se encuentra entre 56° y 57° pero si se toma en cuenta la dispersión entre masas adyacentes el caso de 55° tiene una dispersión mayor (A.= 3.2 y la aberración total de 0.0216). Después del minucioso análisis de los resultados obtenidos y en especial del comportamiento de las aberraciones obtenidas por ambos métodos (figura 3.15 y 3.16) se puede concluir que los resultados obtenidos por el programa 116-FEUNAM resultaron ser muy satisfactorios y por lo tanto la metodología es suficientemente buena como para utilizarla en el diseño de un espectrómetro de masas de alta poder de resolución y alta sensibilidad.

IV ESPECTROMETRO DE MASAS

4.1 Optimización de características del Espectrómetro de Nasas.

La validez de los resultados obtenidos en la sección anterior se hizo evidente al poder diseñar y optimizar fácilmente una geometría deseada para construir un espectrómetro de masa para realizar investigación sobre isótopos estables de elementos pesados.

Las características del espectrómetro debían ser: un alto poder de resolución (PR > 500), para lo cual como ya se discutió en el capítulo I se requiere de una dispersión grande Ay y una aberración total mínima ΔA .

Una alta sensibilidad que permita medir concentraciones de alementos en el intervalo de nanogramos/gramo, manejando corrientes de iones menores de 10⁻¹² ampers) para lo cual, la transmisión debe de ser máxima.

De entre las geometrías estudiadas, se escogió la de mayor dispersión entre masas adyacentes o sea aquella cuyo ángulo total de giro es de 130° y 56° de ángulo de incidencia. Sin embargo las características del espectrómetro estaban restringidos ya que debían ajustarse a un electroimán que ya se tenía y cuya distribución espacial de campo magnético se había determinado. El electroimán estaba construido con hierro de bajo carbón tipo ARMCO y tenía 25 centímetros de radio y 60° de sector. La geometría que se construyó a partir del electroimán existente tiene 17.5 centímetros de radio.

La geometría optimizada en el capítulo anterior de 56° de ángulo de entrada, 130° de giro total y 17.5 cm. mostró tener una dispersión de 3.2 y una aberración total de 0.0216. Las dimensiones de este arreglo son $O_{t_0} = 33.65$ cm. (distancia entre la fuente de iones y la frontera del imán), E_{tt} = 1.648 (extensión del campo disperso), X₁₀=-33.22 cm. Y₁₀=25.45 cm. X₈ = -11.41cm.

4.2 Características de Construcción

La construcción de la envolvente mecánica del Espectrómetro se llevó a cabo en los talleres del IFUNAM utilizando acero inoxidable tipo 304.

Esta envolvente consiste principalmente de un tubo de vuelo de sección rectangular de 5 X 2 centímetros con 130 grados de giro y 17.5 centímetros de radio central que se acopla con precisión dentro del entrehierro del imán y que, como muestra la figura 4.1, se une a dos tubos de extensión y dos cámaras de acero inoxidable que albergan la fuente de iones y el colector. Las dimensiones de los tubos de extensión, tubo de vuelo, cámaras de vacío y acoplamiento a las bombas de vacío se muestran en la figura 4.1, estas se obtuvieron directamente del sistema de coordenadas utilizado en el programa 116-IFUNAMN trasladando el origen del sistema de coordenadas de programa al punto de intersección entre la distancia fuente de iones y colector y la bisectriz del sector magnético con una precisión mejor de 0.001°, y con el sistema de coordenadas se trazo el triángulo ABC de la figura 4.2 y calcularon las distancias de los tubos y cámaras.

Con estas medidas se construyeron los tubos de acero inoxidable y las bases de la fuente de iones y colector se ajustaron para que las rejillas de definición coincidieran con el diseño con una precisión de 0.1 mm.

Las principales especificaciones de diseño durante la construcción del espectrómetro fueron: mantener el centro horizontal de las piezas que forman la envolvente dentro de la cual viajan los iones, desde la fuente de iones hasta el colector con un desviación no mayor de 0.001°, asegurar en el momento de armar el espectrómetro el paralelismo entre las bridas de los tubos rectos de extensión utilizando sellos tipo escalón con anillos de oro, así como pernos de alineamiento, usar como centro de alineamiento el tubo de vuelo, de tal manera que el ángulo entre sus bridas (130°) se traslade paralelamente hacia las bridas de las cámaras donde se montan el colector y la fuente de iones sin ningún giro en el sentido vertical ni horizontal.

El tubo de vuelo de sección rectangular y con radio central de 17.5 centímetros se construyó a partir de una placa de acero inoxidable 304 de 0.5° de espesor maguinando una dona de 20 centímetros de diámetro externo y 15 cm. de diámetro interno con fondo plano de 0.8 cm y dejando una preparación para el ensamble y alineación. La dona se partió en 2 sectores de 130° cada uno y se soldaron uno arriba del otro con un alma de cobre para uniformizar la penetración de la soldadura.

El sistema de vacío del espectrómetro de masas opera con bombeo diferencial entre la cámara de ionización cuya presión es del orden de 10^{-6} torrs, y el tubo de vuelo y la cámara del colector cuya presión es de 10^{-8} torrs. Estas secciones se mantienen aisladas mediante una válvula neumática de 2" tipo Granville Phillips.

Fig. 4.1 Envolvente metálica del Espectrómetro de Masas 130-56

Fig. 4.2 Geometría de la envolvente del Espectrómetro de Masas 130º-56º

6B

La cámara de ionización se evacua mediante una bomba mecánica Leybold D4A y una bomba turbomolecular Leybold de 150 1/s y el tubo de vuelo y la cámara de ionización mediante una bomba iónica marca Varian de 100 1/s.

La fuente de iones se muestra en la figura 4.3 y está formada de cinco placas que actúan como lentes electrostáticas extrayendo y definiendo el haz de iones eléctricamente y otras 3 placas de definición movibles, una limita al haz en la dirección 2 y las otras dos lo definen en la dirección XY.

La fuente ioniza mediante termoionización y la probabilidad de que un átomo al evaporarse del filamento caliente se ionice es:

$$\frac{n}{n_o} = k e^{\frac{(\phi-T)}{T}}$$

donde k es la constante de Boltzman, ϕ es la función de trabajo del filamento, I es el potencial de ionización del elemento que se evapora y T es la temperatura en grados Kelvin del filamento ionizante. Para esta fuente de ionización la probabilidad es de 10-5 iones/molécula.

La ionización es selectiva produciendo mínima ionización de fondo y un haz intenso de iones para elementos pesados como el plomo, uranio, rubidio, estroncio, tierras raras etc. La probabilidad de producir iones doblemente cargados es mínima;

La probabilidad de producir iones doblemente cargados es mínima; los efectos de memoria no son apreciables y finalmente la dispersión en la energía de los iones formados ($\Delta V/V$) es de lvolt/40 000 volts.

El diagrama del colector se muestra en la figura 4.4 y esta constituido por una caja de Faraday de 3 cm de profundidad con superficie reflectora para evitar la salida de los iones incidentes, 6 placas con potenciales negativos para suprimir volumétrica de los electrones secundarios que se generan al incidir el haz de iones con cualquier superficie metálica y finalmente una rejilla de definición ajustable.

Cuando los análisis isotópicos requieren una precisión externa de 1% un solo colector es suficiente y las diferentes masas se enfocan en él al variar el campo magnético. Sin embargo para realizar análisis isotópicos de mayor precisión se requiere de un colector múltiple para que puede realizarse una colección simultanea de masas.

Fig. 4.3 Fuente de iones

Fig. 4.4 Colector de una caja de Faraday

ł

El diseño del colector miltiple se realizó como en el caso de la envolvente del espectrómetro a partir de los datos obtenidos con el programa 116-IFUNAM. Al programa se le hizo una pequeña modificación para poder variar la maza de los iones y de esta manera obtener las coordenadas de los puntos focales de distintas masas. En particular se analizó para el caso de $\phi = 130$, y c = 56 las coordenadas de los mass 144, 145, 146.

Con las coordenadas de los puntos focales de las tres masas se definió el plano focal y en él se calculó la dispersión experimental del espectrómetro. La definición de la posición del plano focal y de los puntos de enfoque permite diseñar un colector múltiple con gran facilidad. (figura 4.5)

Las placas tanto de la fuente de iones como del colector están hechas de nicromel V ya que este material no es magnético, es de baja actividad catalítica, es resistente a la corrosión y de baja adsorción de gases. Los aisladores que están colocados entre las placas de la fuente de iones y el colector se maguínaron de Alúmina Coors AD-94 con una precisión de .001° para asegurar el paralelismo entre las placas. Esta alúmina tiene baja adsorción de gases y baja conductividad eléctrica.

La fuente de iones y el colector son abiertos para aumentar la velocidad de bombeo y están ensamblados de tal manera que se facilite la limpieza y autoalineación.

La rejilla de definición del colector así como la de la fuente de iones se ajustaron a S_a = 0.010" y a S_c = 0.020" para obtener un poder de resolución mayor de 500, que es suficiente para resolver las masas 235 y 236 del URANIO.

La electrónica utilizada para operar el espectrómetro de masas se describe brevemente haciendo hincapié solo en los aspectos de la regulación ó dispersión de energía asociada a cada componente.

Los filamentos de ionización de la fuente de iones están alimentados por tres fuente de corriente directa de 10 V, 10 A, aislados del potencial de tierra y con una estabilidad mayor de 1/30 000.

La fuente de alto voltaje (10 kV) marca Fluke y el divisor de voltaje para la alimentación de las lentes electrostáticas tienen una regulación mayor de 1/20~000 y la fuente de corriente del electroimán (0-40 ampers) HP-6268B tiene una regulación mayor de 1/40~000.

Hasta el momento el método de colección es en un solo colector en el cual se enfoca alternadamente los distintos isótopos variando el campo magnético. La señal generada por el impacto de los iones de una masa dada en la caja de faraday es amplificada mediante un electrómetro de condensador vibrante Cary 401, cuya sensibilidad en corriente es de 10^{-12} A y nivel de ruido menor de 10^{-15} A. Esta señal se manda a un vóltmetro digital de 6.5 cifras HP3456A para que la digitalice, la envíe a la computadora para que la procese estadísticamente.

El control del espectrómetro así como el sistema de adquisición de datos es automático y se maneja con una computadora HP-9826.

Espectrómetro de Masas 130º -56º -56º construido en el IFUNAM

4.3 Aberraciones Experimentales.

Se calcularon teóricamente los parámetros de operación del espectrómetro de masas construido, los cuales en algunos casos se pueden asociar directamente a las aberraciones descritas en el capítulo anterior y comparar con los parámetros experimentales medidos.

LINEARIDAD

La linearidad es una característica de operación muy importante en un espectrómetro de masas y aunque no se asocia directamente al sistema de enfoque es una medida del funcionamiento general del equipo. En un espectrómetro bien enfocado la linearidad se debe principalmente aque en el sistema de medición aparece una respuesta RC al medir alternadamente corriente cuyas magnitudes varian en tres o más ordenes. (10⁻¹⁰ A para el haz de iones de uranio 238 y 10⁻¹⁵ A para el haz de iones de uranio-234).

Para determinar experimentalmente este parámetro se analizaron una serie de patrones internacionales de referencia SRM (Standard Reference Material) de uranio cuyas relaciones U²³⁵/U²³⁶ varian desde 0.05 hasta 20 (3 ordenes de magnitud).

Los resultados se muestran en la tabla 4.1 y figura 4.6 donde la linearidad para el sistema de medición del espectrómetro es de .996799

Patron de Referencia	(U ₂₃₅ /U ₂₃₈) _{teorico}	(U ₂₃₅ /U ₂₃₈) experimental	Linearidad
SRM U-930	17.34867	17.35461	.999658
SRM U-850	6.14796	6,15052	.999583
SRM U-800	4.2656	4.2797	.996688
SRM U-750	3.16612	3.17586	.996933
SRM U-500	.99969	1.00327	.996439
SRM U-100	.113595	.114102	.995550
SRM U- 50	.05278	.053097	.994017
		Promedio	.996799

Tabla	4.1	Valores	experimentales	Y	teoricos	de	patrones	de
referen	ncia.			-			-	

Fig. 4.6 Linearidad del sistema de medición del Espectrómetro de Masas

SENSIBILIDAD DE ABUNDANCIA.

Se define como sensibilidad de abundancia a la contribución de un haz de iones de masa "m" muy intenso, sobre la posición de otro haz de iones de masa m4 m cuya intensidad es varios órdenes de magnitud menor. En nuestro caso determinamos la sensibilidad de abundancia con la contribución de la masa 235 en la posición de la masa 234, cuya intensidad es 4 ordenes de magnitud menor. Como se muestra en la figura 4.7 este parámetro es igual a 10 ppm.

Aunque este parámetro no es comparable directamente a ninguna de las aberraciones estudiadas; una aberración total pequeña y una dispersión máxima dará una sensibilidad de abundancia muy pequeña.

Para medir la sensibilidad de abundancia se analizó en el espectrómetro de masas, el patrón de referencia de Uranio SRM-U-900 con un voltaje de aceleración de 3480 volts. Se barrió el campo magnético aumentándolo linealmente para enfocar las masas, y se cambio la sensibilidad del sistema de medición según fueron apareciendo los haces de las diferentes masas.

Masa Sens:	ibilidad	Intensidad del haz
²³⁴ U	0.3 volts	4.4
235 _U	10 volts	6.8

Se extrapoló gráficamente y se cálculo la contribución del haz de 235 U sobre el centro del haz de 234 U.

Sensibilidad abundanc.	ia =	U ²³⁵ sobreU ²³⁴	×	1 .	=	
		U ²³⁵	-	68000	2	The

RESOLUCION.

Teóricamente asociado al término de dispersión de masas Ar está el poder de la resolución del sistema. Este poder de resolución como se mencionó anteriormente se expresa como la capacidad del sistema para separar haces de diferente masa.

El poder de resolución de un espectrómetro de masas, que tiene una dispersión de 3.2. radio de 17.5 cm, rejilla de definición de 0.01" y 0.02" y aberración total de 0.021 cm se puede calcular como:

$$P.R. = \frac{A_{\Gamma} * R}{(S_{\sigma} + S_{\sigma} + \Delta)} = \frac{3.2 * 17.5}{.025 + .050 + .0216} = 580$$

Experimentalmente no es posible medir directamente ni la aberración total ni el coeficiente A_r por lo tanto se mide la resolución a partir de la diferencia que hay entre el campo magnético necesario para enfocar dos haces cuya diferencia de masas es Δm (ec 2.10).

En la figura 4.8 se muestra el espectro del renio donde la diferencia entre el centro del pico de renio 185 y el de renio 187 es de 34 gauss (d) así mismo el ancho del pico del renio 187 a 10% de intensidad es de 6 gauss (b) de tal manera que la resolución experimental la podemos calcular con la fórmula.

$$P.R. = \frac{M}{\Delta m} \frac{\Delta B}{B} = \frac{187 + 34}{2 + 6} = 523$$

REPETIBILIDAD.

La repetibilidad interna del espectrómetro está dada por la desviación standard de una serie sucesiva de determinaciones de las relaciones isotópicas en una muestra dada. Mientras que la repetibilidad externa está dada por la desviación standard del promedio de las relaciones isotópicas de varias muestras preparadas y analizada varias veces.

La desviación standard de promedio de diez patrones de referencia de estroncio (SRM-987) y uranio (SRM U-500) analizadas cada una bajo las mismas condiciones experimentales así como la desviación standard de cada determinación se muestran en la tabla 4.2

TABLA 4.2

SRM-U-500

A	235	238		
augitere		/u n	Kepetin	illaad intern
			그는 말한 옷을 줄	영화한 성격 관계하는 것
1038	0.9	9874 20	 	.0005
1039	0.0	0843 20		0003
10.00	0.9	2043 20		
1040	0.9	3983 20	1998 - T U	.0004
1041	0.99	9942 🤍 18	rei († 689 († 6 + 0	.0003
1042	0.9	9745 20	+0	.0006
1043	0 01	0000 00		0004
1045		2032 20	いたけ あいける 「日	.0004
1044	0.9	9934 19	S 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0005
1045	0.99	9729 20	+0	.0003
1046	0.90	9853 20	1000 C (+ 1	0002
1047	0.00	200 20	중 소개한 성격 위험이 있다.	0004
104/	0.93	2/92 20	17 N. N. P. A. S. T. P.	.0004

Promedio = 0.99890 n=10 σ = 0.00052 Repetibilidad externa

El valor certificado de la relación del Uranio-235 al Uranio-238 del patrón de referencia SRM U-500.es 0.9996 por lo tanto la diferencia entre el valor experimental obtenido en nuestro laboratorio y el certificado es de:

235U/²³⁸U certificado - ²³⁵U/²³⁹U experimental= 0.9996 - 0.9989 - 0.0007 Para el caso del patrón de referencia de estroncio SRM - 987 cuyo valor certificado es de 0.7104, el valor ⁸⁷Sr/⁶⁶Sr promedio obtenido en el espectrómetro de masas es de 0.71022; siendo la diferencia de 0.0002 del mismo orden de la repetibilidad externa ($\sigma = 0.00025$). Los valores de Sr⁸⁷ / Sr⁶⁶ están normalizados con los valores de Sr⁸⁶/Sr⁸⁶ según el método descrito por Faure ⁽¹⁹⁸⁵⁾. FORMA DE PICO.

La representación gráfica de un haz de iones se conoce como pico y la forma del pico depende tanto de la releción entre el ancho del haz y la rejilla de definición como de la dispersión del sistema.

La rejación entre la dimensión de la plataforma o área de intensidad constante (3.2 gauss) y la dimensión del ancho total del pico (6.2 gauss) se muestra en la figura 4.8, una relación de 52% es excelente.

TRANSMISION.

Aunque experimentalmente no se determinó esta característica debido al enfoque astigmático que este arreglo geométrico mostró al analizarlo con el programa 116-IFUNAM, se estima que la transmisión es mayor del 508.

Un indicador indirecto de la transmisión es el obtener en algún punto del espectro una línea base negativa. La línea base negativa en general se asocia a la presencia de electrones secundarios producidos por el choque de los iones no transmitidos contra la envolvente mecánica. Estos electrones secundarios son más abundantes en la vecindad de haces mas intensos y neutralizan a los iones haciendo la línea base negativa. En los análisis realizados nunca se observo una línea base negativa.

A continuación se comparan las características de operación de un espectrómetro comercial marca FINNIGAN-MAT 262 con valor de 600 000 dólares y las característica de operación del espectrómetro construido en el IFUNAM.

MAT	. 2	61	÷.		IF	UNAM
		-				~

Reproducibilidad Interna <.01%	.0004
Resolución M/Am	527
(valle al 10%)	525

Forma Pico

2 * 104

Sensibilidad de abundancia < 2 ppm 238/237

> 45 %

50%

1ppm 234/235

Transmisión

Conclusiones:

- Con la metodología desarrollada en este trabajo para el análisis de la óptica de iones en un espectrómetro de masas ha sido posible reproducir los resultados reportados en la literatura inclusive mejorarlos, ya que se obtuvo mayor precisión en el enfoque fino de los haces de iones de energías de 10 kllovots, que no son comunes comercialmente.

- El programa de computo desarrollado resultó ser muy sencillo para calcular los puntos focales de diferentes isótopos de un elemento, lo cual es de suma utilidad en el diseño de colectores múltiples para análisis isotópicos de gran precisión.

- El espectrómetro de masas construido cumplió con las expectativas de diseño y superó las características de los espectrómetros comerciales .

APENDICE I

MATRICES DE TRANFERENCIA

La transformación de las coordenadas de un rayo arbitrario con partículas de momento "p" al pasar por una región donde actua un campo magnético constante puede describirse mediante una serie de funciones de las condiciones iniciales del rayo antes de entrar a la región donde actua el campo magnético de intensidad constante cuya componente actua solo en la dirección 2.

Para calcular esta transformación consideramos dos rayos, uno central con momento po que gira en el campo magnético con un radio R y cuya trayectoria es tal que la direccion "X" coincide con ella. El otro rayo arbitrario de momento $p = p_0 (1 + \delta)$ entra al espacio donde actua el campo magnético con cordenadas de entrada (x_1, y^1, z_1) y pendientes $y_1 = \delta y_1/dx_1$, $z_1 = dz_1/dx_1$. Para calcular las coordenadas en el espacio de salida de este rayo arbitrario debemos calcular en $x_2 = 0$ las siguientes funciones:

 $y_{2} = f_{1}(y_{1}, y_{1}', z_{1}, z_{1}', \delta)$ $y_{2}' = f_{2}(y_{1}, y_{1}', z_{1}, z_{1}', \delta)$ $z_{2} : f_{3}(y_{1}, y_{1}', z_{1}, z_{1}', \delta)$ $z_{2}' = f_{4}(y_{1}, y_{1}', z_{1}', z_{1}', \delta)$

Supongamos que los parámetros de entrada y, y, z, z, estan definidos en un punto x, =0 por donde pasa el rayo y que el parametro δ =Ap/p es una constante de movimiento en el espacio donde actua el campo magnético ya que v es perpendicular a B. Más aún las desviaciones del rayo arbitrario con respecto al rayo central son pequeñas (y, z, ' δ <<< 1) y que y, y z, son pequeñas con respecto al radio del rayo central " R ". En este caso podemos expander en series de Taylor las ecuaciones anteriores hasta un 2° orden y substituyendo

$$\frac{y}{y} = \frac{\partial y_2}{\partial y_1} \qquad \frac{y}{y'} \qquad \frac{\partial y_2}{\partial y_1'} \qquad \frac{y'}{y'} \qquad \frac{R^2 \partial^2 y_2}{R \partial y_1'}$$

podemos escribir las ecuaciones como:

$$\begin{split} \frac{Y_2}{R} &= (\frac{y}{y})\frac{y_1}{R} + (\frac{y}{y'})y_1' + (\frac{y}{\delta})\delta + (\frac{y}{y'})(\frac{y_1}{R})^2 + (\frac{y}{yy'})(\frac{y_1}{R}y_1' + (\frac{y}{y\delta})\frac{y_1}{R}\delta \\ &+ (\frac{y}{y'})y_1^2 + (\frac{y}{y'\delta})y_1'\delta + (\frac{y}{\delta^2})\delta^2 + (\frac{y}{z'})(\frac{z_1}{R})^2 + (\frac{y}{zz'})(\frac{z_1}{R}z_1' + (\frac{y}{z^2})z_1^2 \\ y_2' &= (\frac{y'}{y})\frac{y_1}{R} + (\frac{y'}{y'})y_1' + (\frac{y'}{\delta})\delta + (\frac{y'}{y'})(\frac{y_1}{R})^2 + (\frac{y'}{yy'})\frac{y_1}{R}y_1' + (\frac{y'}{y\delta})\frac{y_1}{R}\delta \\ &+ (\frac{y'}{y'})y_1^2 + (\frac{y'}{y'\delta})y_1'\delta + (\frac{y'}{\delta^2})\delta^2 + (\frac{y'}{z'})(\frac{z_1}{R})^2 + (\frac{y'}{zz'})\frac{z_1}{R}z_1' + (\frac{y'}{z'})z_1^2 \end{split}$$

$\frac{z_2}{R} = \left(\frac{z}{z}\right)\frac{z_1}{R} + \left(\frac{z}{z'}\right)z_1' + \left(\frac{z}{y_z}\right)\frac{y_1}{R}\frac{z_1}{R} + \left(\frac{z}{y'z}\right)y_1'\frac{z_1}{R} + \left(\frac{z}{\delta z}\right)\delta\frac{z_1}{R} + \left(\frac{z}{y_z'}\frac{y_1}{Y}z_1'\right) + \left(\frac{z}{z'}\frac{y_1}{Y'z}\right)y_1'z_1' + \left(\frac{z}{\delta z'}\right)\delta z_1$

$z'_{2} = \left(\frac{z'}{z}\right) \frac{z_{1}}{R} + \left(\frac{z'}{z'}\right) z'_{1} + \left(\frac{z'}{yz}\right) \frac{y_{1}}{R} \frac{z_{1}}{R} + \left(\frac{z'}{y'z}\right) y'_{1} \frac{z_{1}}{R} + \left(\frac{z'}{\delta z}\right) \delta \frac{z_{1}}{R} + \left(\frac{z'}{yz'}\right) \frac{y_{1}}{R} z'_{1} + \left(\frac{z'}{y'z'}\right) y'_{1} z'_{1} + \left(\frac{z'}{\delta z}\right) \delta z'_{1}$

En las ecuaciones anteriores por cuestiones de simetría algunos de los coeficientes de enfoque son cero ((y/yz = 0)).

En el caso más simple donde tomamos solo los coeficientes de primer orden ,podemos reordenar las ecuaciones y escribirlas en forma de matriz. Para el plano XY las ecuaciones se simplifican de la siguiente manera:

$$\begin{vmatrix} \frac{y_2}{R} \\ y' \\ \delta \end{vmatrix} = \begin{vmatrix} (\frac{y}{y}) & (\frac{y}{y}) & (\frac{y}{\delta}) \\ (\frac{y'}{y}) & (\frac{y'}{y}) & (\frac{y}{\delta}) \\ (\frac{y'}{y}) & (\frac{y'}{y'}) & (\frac{y'}{\delta}) \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} \frac{y_1}{R} \\ y'_1 \\ \delta \end{vmatrix}$$

y para el plano Z

$$\begin{vmatrix} \frac{z_2}{R} \\ z_2' \end{vmatrix} = \begin{vmatrix} (\frac{z'}{z}) & (\frac{z'}{z}) \\ (\frac{z'}{z}) & (\frac{z'}{z'}) \end{vmatrix} \begin{vmatrix} \frac{y_1}{R} \\ z_1' \end{vmatrix}$$

Cabe hacer notar que a primer orden el movimiento en el plano horizontal y vertical son independientes uno de otro. Además de su simplicidad, la formulación matricial permite que las matrices de transferencia para un sistema magnético se puedan calcular como el producto de matrices individuales de cada componente incluyendo los espacios entre imanes.

APENDICE II

MATRICES DE TRANSFERENCIA PARA ESPACIO LIBRE DE CARGAS

En un espacio libre de fuerzas eléctricas y magnéticas, las trayectorias de las partículas cargadas son lineas rectas y la relación entre las coordenadas de la entrada y las de salida de este espacio libre cuya longitud es L'so pueden escribir como:

de tal manera que las matrices de transferencia horizontal y vertical correspondientes seran:

$$H = \begin{vmatrix} 1 & \frac{L}{R} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \qquad V = \begin{vmatrix} 1 & \frac{L}{R} \\ 0 & 1 \end{vmatrix}$$

APENDICE III

MATRICES DE TRANSFERENCIA DE UN SECTOR MAGNETICO CON CAMPO UNIFORME

Consideremos el movimiento de una partícula de masa "m" y carga "q" que pasa através de un campo magnético de intensidad constante B_o con componente solo en la dirección Z y cuyas fronteras de entrada y de salida son perpendiculares a la dirección de la trayectoria central de radio R del haz de partículas (ver fig

Utilizando un sistema de coordenadas cilíndricas (r, ..., z) el movimiento de esta partícula está gobernada por la componente B, del campo y podemos escribir la segunda Ley de Newton.

 $m\bar{a} = q \, \bar{v} \, X \, \bar{B} = q \, \bar{v} \, X \, \hat{z} \, B_x$

 $\tilde{a} = (\tilde{r} - r\theta^2)\hat{\lambda}_r + (2\dot{r}\theta + r\theta)\hat{\lambda}_{\theta}$

substituyendo

Rea

$$m(\vec{r}-r\theta^2)\hat{\lambda}_r + m(2\dot{r}\theta + r\dot{\theta})\hat{\lambda}_\theta = q(\dot{r}\hat{\lambda}_r + r\dot{\theta}\hat{\lambda}_\theta)X\hat{z}B_z$$

igualando los términos de los vectores unitarios

$$\frac{d}{dt}(mr^{2}\theta) = -qrtB_{z}$$
$$\frac{d}{dt}(mr) = mr\theta^{2} + qr\theta B$$

como la masa de la partícula no cambia al pasar por el campo magnético estacionario podemos reescribir las ecuaciones anteriores como:

 $\dot{r} = r\dot{\theta}^2 + \omega \dot{\theta}r$

$\frac{d}{dt}(r^2\dot{\theta}) = -\omega r\dot{r}$

Donde $\omega = q B_o / m$ es la frecuencia de oscilación de la partícula de la orbitra central. Para =- ω y r = R podemos intregar directamente y obtener:

$\theta = -\omega \left[1 - \left(\frac{Y}{p}\right)\right]$

utilizando esta expresión y términos de primer orden, ya que las cantidades Y/R son pequeñas tenemos

$\dot{y} + \omega^2 y = 0$

cuya solución nos describe el movimiento en el plano horizontal.

Por otro lado el movimiento vertical de las particulas esta gobernado por la componente z del campo donde.

$B_{(z,0)} = B_0(\frac{r}{R})^{-n}$

pero en este caso el campo es homogeneo n=0 y la ecuación que describe el movimiento vertical es:

$$\frac{d}{dt}(mz) = -qr\theta B_r$$

Podemos calcular B, en función de B, ya que el campo es conservativo y por lo tanto su rotacional es cero V X B=0

$$\frac{\delta B_r}{\delta z} = \frac{\delta B_x}{\delta r}$$

ademas por simetría con respecto al plano medio el campo radial $B_{=}0$ para z=0 y fuera del plano medio podemos obtener B, integrando B, sobre z de tal manera que

$$B_r = -\frac{B_o z}{R}$$

Substituyendo el valor de B, y r = R, = ω tenemos

$z + \omega^2 n z = 0$

que es la ecuación del movimiento vertical.

Introduciendo una nueva variable "X" o sea la distancia sobre el rayo central desde la frontera del imán podemos decir que X = Røt y sustituyendo tenemos:

$$\dot{y} + k_{H}^{2} y = 0$$
$$\dot{z} + k_{v}^{2} z = 0$$

donde $k_h^2 = (1-n)/R^2$ y $k_v^2 = n/R^2$.

Las solución de la primera de las ecuaciones anteriores es:

 $y=y_A \sin(k_H X + \gamma_H)$

y su derivada, o sea la pendiente con respecto al rayo central será:

 $\dot{y} = Y_A k_B \cos(k_H X + \gamma_H)$

Para X=0 o sea a la entrada del imán

 $y_1 = y(0) = y_A \sin \gamma_h$ $y_1' = y'(0) = y_A k_H \cos \gamma_H$

Para $X = \varphi R$ o sea a la salida del imán

 $y_{2} = y_{A} \sin \gamma_{H} \cos k_{H} \phi R + y_{A} \cos \gamma_{H} \sin k_{H} \phi R$ $y_{2} = y_{1} \cos k_{H} \phi R + \frac{y_{1}}{k_{H}} \sin k_{H} \phi R$

 $y'_2 = -y_1 k_H senk_H \phi R + y'_1 senk_H \phi R$

Estas dos ecuaciones dan las relaciones a primer orden de la posición y la pendiente del haz de partículas a la salida del imán de tal manera que podemos poner estas ecuaciones en forma matricial de la siguiente manera:

 $\begin{vmatrix} \frac{y_2}{R} \\ \frac{y_2}{R} \end{vmatrix} = \begin{vmatrix} \cos \epsilon_H \varphi & \epsilon_H^{-1} \sin \epsilon_H \varphi \\ -\epsilon_H \sin \epsilon_H \varphi & \cos \epsilon_H \varphi \end{vmatrix} \begin{vmatrix} \frac{y_1}{R} \\ \frac{y_2}{R} \end{vmatrix}$

Y para el movimiento vertical haciendo las mismas consideraciones tenemos

 $\begin{vmatrix} \frac{Z_2}{R} \\ \frac{Z_2}{Z_1} \end{vmatrix} = \begin{vmatrix} \cos \varepsilon_v \phi & \varepsilon_v^{-1} \sin \varepsilon_v \phi \\ -\varepsilon_v \sin \varepsilon_v \phi & \cos \varepsilon_v \phi \end{vmatrix} \begin{vmatrix} \frac{Z_1}{R} \\ \frac{Z_1}{Z_1} \end{vmatrix}$

donde $\epsilon_v = n^{1/2}$ y $\epsilon_{\mu} = (1-n)^{1/2}$

- R. Barber , R.1. Bishop, Rev. Sci. Instr. 42 (1971) 1. - B. Berkes, Nucl. Instr. & Meth. 14 (1962) 321. - C. Braams, Nucl. Instr. & Meth. 26 (1964) 83. - K.L. Brown , Rev. Sci. Instr. 35,4 (1964) 481. - K.L. Brown , Rev. Sci. Instr. 36,3 (1965) 271. - H. Enge, Nucl. Instr. & Meth. 35 (1965) 278. - H. Enge. Focusing of charged particles 2,ed., A. Septier (Academic Press, New York ,1967) p.203 - M. Henni, T. Karasawa, Nucl. Instr. & Meth. 6 (1966) 105. - R. Herzog, Z. Phys. 89 (1934) 447. - R. Herzog, Acta Phys Aust., 4 (1950) 431. - R. Herzog, 2. Naturforschg. 8a(1953) 191. - R. Herzog, Z. Naturforschg. 10a(1955) 887. - H. Hintenberg , L.A. Koning, Z. Naturforschg. 12a (1957) 541 - S. Kowalski, H.A. Curge, Tesis doctoral MIT ,Julio 1987 - H. Matsuda, H. Woolnik, Nucl. Instr. & Meth. 77 (1970) 40 y 283. - H. Matsuda, Nucl. Instr. & Meth. 91 (1971) 637. - H. Matsuda, Int. J. Mass Spectrom. Ion Phys. 14 (1974) 219 - H. Matsuda, T. Matsuo, Int. J. Mass Spectrom, Ion Phys. 26 (1978) 77. - H. Matsuda, Nucl. Instr. & Meth. 187 (1981) 127. - H. Matsuda, Nucl. Instr. & Meth. 187 (1981) 127. - H. Matsuda, Japan J. Appl. Phys., (1984) 854. - H. Matsuda, Mass Spectroscopy (Japan), 29 (1985) 161. - H. Matsuda, Nucl. Instr. & Meth. 258 (1987) 310. - H. Matsuda, T. Matsuo, Int. J. Mass Spectrom. Ion Phys. 91 (1989) 1.

- H. Matsuda, Int. J. Mass Spectrom. Ion Phys. 91 (1989) 11.

- H. Matsuda, Int. J. Mass Spectrom. Ion Phys. 91 (1989) 5111.
- H. Matsuda, H. Wollnik, Int. J. Mass Spectrom. Ion Phys. 91 (1989) 19.
- T. Matsuo, H. Matsuda, Int. J. Mass Spectrom. Ion Phys. 91 (1989) 27.
- T. Matsuo, H. Matsuda, Mass Spectros. 24 (1986) 19.
- T. Matsuo, Mass Spectros. 32 (1986) 319.
- R.S. Prahallada, J. Appl. Phys. (Brit),2 ,(1968), 99 y 1801.
- S. Penner , Rev. Sci. Instr. 32 (1963) 150.
- Rokowski
- T. Sakuri, Int. J. Mass Spectrom. Ion Phys. 91 (1989) 69.
- Y. Sano , H. Matsuda, Int. J. Mass Spectrom. Ion Phys. 91 (1989) 41.
- J. Stoffel, Int. J. Mass Spectrom. Ion Phys. 114 (1992) 41.
- S. Taya, I. Kanomata, Int. J. Mass Spectrom. Ion Phys. 26, (1978) 77.
- S. Taya, Nucl. Instr. & Meth. 152 (1978) 399.
- H. Wollnik, H. Ewald, Nucl. Instr. & Meth. 36 (1965) 93.
- H. Wollnik. Nucl. Instr. & Meth. 52 (1967) 250.
- H. Wollnik, T. Matsuo, H. Matsuda, Nucl. Instr. & Meth. 102 (1972) 13.
- H. Wollnik. Mass Spectrographs and Isotope separators: Applied charged particle optics, A. Septier. (Academic Press, New York, 1987) 133.
- Z. Wu , H. Matsuda, Mass Spectroscopy (Japan) 30, (1986),129.
- H. Zhao, H. Matsuda, Mass Spectroscopy (Japan) 19, (1982),31.