

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES Z A R A G O Z A

FALLA DE ORIGEN

"DESARROLLO DE UN MODELO MATEMATICO PARA LA PREDICCION DEL COMPORTAMIENTO DE CATALIZADORES PARA EL HIDROTRATAMIENTO DE CORTES INTERMEDIOS DEL PETROLEO (DIESEL).

SEMINARIO DE TESIS

QUE PARA OBTENER EL TITULO DE: INGENIERO QUIMICO PRESENTAN: JUAN CARLOS HERNANDEZ SILVA

ASESOR EXTERNO: I.O. TOMAS ALBERTO BELTRAN OVIEDO ASESOR INTERNO: I.O. ESTEBAN MINOR PEREZ

MEXICO, D. F.

SEPTIEMBRE 1995

FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

VNIVERIDAD NACIONAL AVENMA DE MEXICO FACULTAD DE ESTUDIOS SUPERIORES *ZARAGOZA*

JEFATURA DE LA CARRERA DE INGENIERIA QUIMICA

OF/JU/082/027/95

C. JUAN CARLOS HERNANDEZ SILVA P R E S E N T E.

En respuesta a su solicitud de asignación de jurado para el Examen Profesional, le comunico que laJefatura a mi cargo ha propuesto la siguiente desginación:

PRESIDENTE:	ING.	JOSE LUIS MACIAS PEREZ
VOCAL:	ING.	TOMAS A. BELTRAN OVIEDO
SECRETARIO:	ING.	LORENZO ROJAS HERNANDEZ
SUPLENTE:	ING.	ANDRES AQUINO CANCHOLA
SUPLENTE:	ING.	ESTEBAN MINOR PEREZ

ATENTAMENTE

"POR MI RAZA HABLARA EL ESPIRITU" México, D.F., 28 de marzo de 1995

ING. JOBE BENJAMIN RANGEL GRANADOS JEFE DE LA CARRERA

Irm.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

SEMINARIO DE TITILACIÓN

Juan Carlos Hernández Silva

Número de cuenta: 8633799-3

Septiembre de 1995.

ÍNDICE

Resumen.	i
Introducción.	ü
Desarrollo.	
• Fundamentos del Proceso de Hidrodesulfuración (HDS).	1
Detalles de la Experimentación.	4
Estrategia Metodológica de la Investigación.	6
Estudio de Modelos Cinéticos.	8
Modelos Cinéticos de Hidrodesulfuración e Hidrodenitrogenación.	10
Desarrollo de Modelos por Medio de Diseños Experimentales.	10
Metodología de Preparación de los Catalizadores de Hidrodesulfuración.	15
Análisis de Resultados.	
Análisis de la Varianza para los Modelos Obtenidos en los Diseños Experimentales	. 17
Análisis del Efecto de los Factores.	21
Análisis del Tamaño del Soporte y Relaciones Atómicas.	22
Análisis de las Superficies de Respuesta.	24
Conclusiones.	27
Bibliografia.	28
Anexos.	
Anexo 1: Descripción de Modelos Cinéticos.	
Anexo 2: Estudio del Tamaño del Soporte y Relaciones Atómicas.	
Anexo 3: Gráficas de los Resultados Experimentales.	
Anexo 4: Superficies de Respuestas.	

Anexo 5: Evaluación de modelos cinéticos

RESUMEN

En el presente trabajo se realiza un estudio de la actividad catalítica en el Hidrotratamiento (HDT) de cortes intermedios del petróleo, especificamente gasóleo ligero primario para la obtención de diesel desulfurado, el estudio de la actividad se realiza mediante la evaluación de catalizadores comerciales a condiciones industriales de operación, a nivel planta piloto.

A través del estudio de diferentes modelos cinéticos aplicados a los datos experimentales en el proceso de Hidrotratamiento, se logra un conocimiento del orden de reacción para este tipo de reacciones y es por medio de diseños experimentales que se obtiene una región de operación que maximiza la remoción de contaminantes y muestran las distintas interacciones que existen entre las condiciones de operación, las propiedades del catalizador y del soporte.

El trabajo se dividió en tres partes: la primera de ellas fue el estudio bibliográfico de la cinética de las reacciones de Hidrotaratamiento; se trabajo con siete modelos de Hidrodesulfuración (HDS) y dos de Hidrodenitrogenación (HDN), el análisis de dichos modelos permitió establecer un orden de reacción apropiado, que explica la actividad de los catalizadores comerciales.

El análisis de los modelos cinéticos se realizo de la siguiente forma: los modelos se programaron en una hoja de cálculo, para que a diferentes condiciones de operación se encontrara la constante de actividad cinálitica; esta constante sirve para calcular la concentración de contaminantes a diferentes condiciones de operación. Con estos resultados se realizan ajustes por medio de mínimos cuadrados, en estos ajustes el coeficiente de regresión es muy importante, ya que en base a el se clasifican y se eligen los modelos que representam más ficiemente la Cinética de las reacciones estudiadas.

En la segunda parte se plantean una serie de Diseños Experimentales 2³, para encontrar una región que maximice la remoción de azuíre, nitrógeno total y nitrógeno básico; por medio del diseño de experimentos se obtienen una serie de modelos de segundo orden que explican el efecto de variables de operación como: temperatura, presión y espacio velocidad, al igual que sus interacciones; los diseños experimentales planteados, también relacionan el efecto que el tamaño del soporte y la relación atómica tienen sobre la actividad del catalizador en la HDS y HDN.

Mediante el estudio del Efecto de los Factores del modelo ajustado, se decide cuales son las interacciones que influyen en la variable de respuesta y por medio de este análisis se determina el tipo de diseño a emplear.

La tercera parte se enfoca a la preparación de catalizadores a nivel laboratorio, aquí se estudian algunas técnicas de impregnación y preparación de soluciones; por medio del estudio de preparación se fabrican dos catalizadores, evaluándolos a nivel planta piloto en las condiciones propuestas con los diseños y con ello comprobar la validez de los modelos. Cabe señalar que el diseño de experimentos es una técnica útil, mediante la cual se puede ahorrar tiempo, recursos y corridas innecesarias en un experimento y por lo tanto debe formar parte integral en la formación profesional de un ingeniero.

i

INTRODUCCIÓN

La Catálisis como rama de la Cinética Química, se encarga del fenómeno que se presenta en un sistema reaccionante al introducir una sustancia denominada catalizador, que da lugar a un camino alterno al proceso de transformación química; tal alternativa lleva consigo una modificación en la velocidad de reacción y en la selectividad del proceso a un producto determinado.

El concepto de velocidad de reacción traduce la rapidez con la que en un sistema se produce una transformación química. La reacción química global se lleva a cabo a través de etapas, las cuales en su conjunto constituyen el mecanismo general de la acción catalitica.

La Catálisis involucra una serie de interacciones químicas intermediarias entre los reactivos y el catalizador; de esta manera se obtiene un camino nuevo a la reacción, compuesta por una serie de reacciones elementales. Esta nueva trayectoria de reacción es a menudo más compleja sin embargo, la suma de energías de activación de los pasos elementales es inferior a la energía de activación que se requiere para efectuar la reacción no catalizada.

Actualmente entre los procesos catalíticos más importantes por su volumen de aplicación podemos citar;

La síntesis de amoniaco.

-La síntesis de ácido sulfúrico.

-La hidrogenación de aceites.

-La desintegración catalítica, la cual aumenta el rendimiento del petróleo en productos ligeros.

-La reformación de gasolinas.

-Los convertidores catalíticos.

-Los procesos de Hidrotratamiento (Hidrodesulfuración HDS, Hidrodenitrogenación HDN, Hidrodemetalización HDM, e Hidroaromatización HDA), empleados para disminuir impurezas del petróleo.

La necesidad de procesar fracciones pesadas derivadas del petróleo, motivada por el precio y la escasez progresiva de las fracciones ligeras empleadas habitualmente como materias primas, ha motivado que el Hidrotratamiento se convierta en uno de los procesos más importantes de la industria de refinación del petróleo.

La Hidrodesulfuración catalítica es el proceso mediante el cual se reduce el contenido de compuestos de azufre presentes en las diferentes fracciones del petróleo, por reacción con hidrógeno en presencia de un catalizador a condiciones de operación convenientes. Además de remover el azufre, se tienen importantes remociones de compuestos de nitrógeno y metales pesados

Por otra parte, dado que se efectúan reacciones de hidrogenación, se obtienen substanciales incrementos en la calidad de los productos hidrotratados debido a la disminución en el contenido de compuestos insaturados tales como: aromáticos y olefinas. En el proceso de Hidrodesulfuración, los compuestos orgánicos de azuíre se convicrten en ácido sulfhídrico e hidrocarburos saturados.

La Hidrodesulfunción de los compuestos orgánicos es una reacción exotérmica e irreversible bajo las condiciones de operación empleadas en la industria de la refinación, Temperaturas de 290 a 390 °C y Presiones de 56 a 70 kg/cm².

ü

Actualmente, se ha incrementado el interés por conocer los mecanismos a través de los cuales ocurren las reacciones de Hidrodesnitrogenación (HDN), debido a que compuestos de nitrógeno como: indol y carbazol, envenenan los sitios ácidos de los catalizadores de reformación, Hidrodesintegración y FCC. Así, la remoción del nitrógeno total adquiere importancia significativa.

El nitrógeno está presente en las cargas de alimentación a Hidrotratamiento en compuestos aromáticos heterociclicos (dificiles de remover) y en compuestos tales como: animas alifáticas y nitrilos (fáciles de remover). Para la remoción del nitrógeno de los compuestos órgano nitrogenados heterociclicos, se requiere la hidrogenación del anilo que contiene el átomo de nitrógeno, antes de que se realice la hidrogenólisis de la unión C-N, con la finalidad de disminuir la energía de activación, de esta manera, habrá mayor facilidad para la ruptora de la unión C-N.

Otra reacción importante, es la Hidrodearomatización (HDA) la cual empieza a tener auge debido a ciertas normas aplicadas en algunos países desarrollados como Suíza y EUA (California) quienes exigen valores menores a 20% volumen, sin embargo muchos refinadores aun no se ponen de acuerdo sobre el impacto real y/o necesidad de invertir esfuerzos en la reducción de estos conpuestos.

Los catalizadores de Hidrotratamiento basados en los sulfuros de los metales de transición de los grupos VIB y VIII, han sido anpliamente utilizados y sus aplicaciones incluyen la HDS y HDN de fracciones ligeras, intermedias y pesadas del petróleo; la creciente necesidad de una eficiente remoción de azufre en las diversas fracciones del petróleo, han hecho de los catalizadores de HDS uno de los grupos más importantes de catalizadores industriales. Estos catalizadores generalmente consisten de molibdeno, soportados en alúmina de alta área superficial, con adición de promotores tales como cobalto o níquel para mejorar la actividad catalítica.

La razón por la cual metales de transición como: fierro, níquel, platino, paladio, etc. sean buenos catalizadores en reacciones que incluyen hidrógeno e hidrocarburos (hidrogenación, deshidrogenación, hidrogenólisis), se debe a que esas moléculas interaccionan fácilmente con la superficie de estos metales.

Observándose entonces que existe cierta compatibilidad entre catalizador, reactivos y productos. Para que el fenómeno catalítico ocurra es necessaria una interacción química entre el catalizador y el sistema reactivos-productos. Esta interacción no debe modificar la naturaleza química del catalizador a excepción de su superficie. Esto significa que la interacción entre el catalizador y el sistema reaccionante se observa en la superficie del catalizador y no involucra el interior del sólido.

La Cinética permite interrelacionar concentraciones de componentes, temperaturas, presiones, propiedades del catalizador y con ello establecer la actividad catalitica. El estudio de la actividad estalitica ha sido abordado por investigadores de todo el nundo, la han estudiado en base a compuestos modelo y por medio de correlaciones de datos experimentales. A través de estos estudios se han logrado establecer ordenes de reacción para las reacciones de HDS, HDN y HDA. En este trabajo se parte de los intervalos de orden de reacción proprtados y por medio de experimentos diseñados se establecen una serie de modelos que relacionan propiedades de la alimentación, del soporte catalítico y condiciones de operación.

DESARROLLO

FUNDAMENTOS DEL PROCESO DE HIDRODESULFURACIÓN (HDS).

La mayoría de las cargas ligeras del petróleo han sido tratadas con hidrógeno en procesos catalíticos para remover azufre. El proceso de la desulfuración de las fracciones ligeras tiene varios objetivos, entre ellos el pretratamiento de las cargas que van al reformador catalítico, para prevenir el envenenamiento por azufre del catalizador de platino y el tratamiento de las gasolinas formadas en la desintegración catalítica, para dulcificar y estabilizar el producto.

La desulfuración de fracciones pesadas del petróleo, da productos que incluyen diesel, aceites para calentamiento y aceites combustibles. Existe un especial incentivo en la remoción de azufre de los combustibles ya que su combustión es la causa principal de contaminación atmosférica por SO₂. Las reacciones de Hárodesulfuración (HDS) son de la siguiente forma:

En las cargas de las fracciones ligeras del petróleo la tecnología de la desulfuración esta establecida y es rutinariamente aplicada, mientras que en cargas pesadas como los residuos y quizás aceites pesados, la tecnología de desulfuración es relativamente nueva, pero evoluciona rápidamente.

TABLA 1 Fracciones de Petróleo

Equilation fraction	Carga	Rango de Ebudheion - C	
	Gasolina ligera	C ₄ -80	
Ligeras	Nafta	80-160	
	Keroseno	150-230	
Pesados	Dicsel	170-370	
	Residuos	> 380	

La tabla [1] muestra que es posible hidrotratar una gran variedad de fracciones líquidas del petróleo, las cuales deben ser desulfuradas por razones tanto técnicas como ecológicas. Por ejemplo a partir de un cierto nivel de azufre en la gasolina se reduce la efectividad del tetraetilo de plomo, o bien si la nafta contiene azufre, éste envenena al catalizador de platino en el proceso de reformación; dichas tendencias se complementan con las normas de protección ambiental relacionadas con la contaminación por azufre.

Las cargas del petróleo incluyen compuestos que contienen azufre, algunos de éstos se listan en la tabla [2]. Los compuestos están listados en orden decreciente de reactividad en reacciones de HDS; los tioles son muy reactivos, mientras que los tiofenos son menos reactivos. La siguiente es una lista preliminar de las reacciones más importantes que ocurren en el proceso de Hidrodesulfuración (HDS), incluyendo reacciones laterales que influyen en el diseño del proceso.

página l

TABLA 2

Computato	Estimatoria
Tioles(mercaptanos)	R-SH
Disulfuros	R-S-S-R'
Sulfuros	R-S-R'
Tiofenos	$\left(\begin{vmatrix} 1 \\ s \end{matrix} \right)$
Benzotiofenos	
Dibenzotiofenos	
Benzonaftotiofenos	

· Ejemplo de algunos compuestos que contienen azufre, en el petróleo.

R: Es un radical Orgánico.

En la red de reacciones de HDS, se incluyen reacciones de hidrogenólísis que resultan del rompimiento de enlaces C-S, por ejemplo:

$$R \rightarrow SH + H, \rightarrow RH + H, S$$

Bajo condiciones industriales también ocurren las reacciones de desintegración, que resultan en el rompimiento de enlaces C-S. Por ejemplo.

$$R - CH_1 - CH_2 - R' + H_2 \rightarrow R - CH_1 + R - CH_2$$

La hidrogenación de compuestos insaturados también ocurre:

$R - CH = CH - R' + H_2 \rightarrow R - CH_2 - CH_2 - R$

Otro tipo de reacciones de hidrogenólisis, es la Hidrodenitrogenación;

$R - NH_1 + H_2 \rightarrow RH + NH_1$

Reacciones de desintegración pueden iener lugar y producen la reducción de peso molecular. Las reacciones de demetalización son importantes en HDS de cargas residuales. Las reacciones de HDS son virtualmente irreversibles bajo condiciones industriales de reacción, 290 a 390 °C y presiones arriba de 56 kg./cm². Las reacciones son exotérmicas, con calores de reacción del orden de 10 a 20 Kcal por mol de H₂ consumido.

Los catalizadores más aplicados en Hidrodesulfuración son óxidos de cobalto-molibdeno, soportados en alúmina, los cuales son sulfnidrados antes de iniciar la operación. La etapa de sulfnidrado tiene como objetivo básico logara la actividad óptima en el catalizador de tal forma que se alcancen altos niveles de Hidrotratamiento y se tengan ciclos de operación prolongados. Para lograr esto se requiere convertir los óxidos metálicos de Mo, Ni o Co (estado inactivo) contenidos en el catalizador, a sulfuros metálicos (estado activo).

Estos catalizadores llegan a contener de 10 a 20% peso de los metales totales, se pueden aplicar disternetes composiciones y algunos otros metales promotores como: el níquel o el cobalto. En contraste com los catalizadores de platino o platino-aleación usados en las reformadoras, cuya actividad disminuye en presencia de azufre, los catalizadores de HDS incrementan la actividad cuando la concentración de azufre es alta.

Las formas de los catalizadores son tipicamente de extrudados, teniendo dimensiones de 0.75 a 3.0x10³m. Los reactores y las condiciones del proceso empleadas suelen ser las siguientes: el hidrógeno y la fase líquida o gascosa de la fracción del petróleo son contactadas en un reactor de lecho fijo con catalizador, en donde la fase gascosa o líquida atraviesan el lecho catalítico. Un diagrama de proceso simplificado se muestra en la figura 2.

FIGURA 2

Diagrama Simplificado del Proceso de Hidrodesulfuración

En donde el Hidrógeno que se obtiene de los productos es recirculado y lavado, los flujos de hidrógeno oscilan entre 2000 a 3000 fl'/Barril de hidrocarburo. Los flujos de la fracción del petrófeo dan un paso simple a través del reactor a un determinado espacio velocidad y las condiciones de operación como: temperatura y presión, dependen del nivel deseado para la desulfuración.

El petróleo contiene diferentes compuestos susceptibles de sufrir reacciones de HDS. El azufre puede estar enlarado a un carbono, como en los tioles y disulfuros; o a dos carbones de grupos alkilos, como en los sufirros o a dos carbones de anillos aromáticos, como en el tiofeno y dibenzotiofeno.

El reactor de la figura 2 corresponde a uno de lecho fijo, en el cual la alimentación del hidrocarburo (gascoso o líquido) se mezcla con una corriente de hidrógeno, pasando la mezcla a través del lecho estalítico en forma descendente.

DETALLES DE LA EXPERIMENTACIÓN

La alimentación para el estudio de Hidrotratamiento fue gasóleo ligero primario, proveniente de la Refineria de Tula, Hidalgo. Con temperatura final de ebullición (TFE) de 367 °C, temperatura inicial de ebullición (TIE) de 189 °C; ci resumen de propiedades de la carga se presenta en la tabla [3]. Las propiedades de los catalizadores seleccionados por su utilidad industrial se reportan en la tabla [4], y las condiciones de operación para la ciapa de activación (sulfhidración) de los catalizadores en la tabla [5].

PROPIE DADES	DIESEI
Indice de Cetano	51
Índice de Refracción a 20 °C	1.4732
Viscosidad, cSt a 40 °C	3.53
Viscosidad . cSt a 100 °C	1.35
Peso Específico @ 20/4 °C	0.8457
Azufre total % peso	1.36
Nitrógeno total ppm	534
Nitrógeno básico ppm	148
TIE, °C	189
TFE, °C	367

TABLA 3 Propiedades de la Carga

Los catalizadores empleados en el estudio, son catalizadores de linea IMP, codificados como: Catalizador Comercial 1, Comercial 2 y Comercial 3.

El Catalizador Comercial 1 es un catalizador elaborado a base de molibdeno, níquel y otros promotores, soportado en ganuna alúmina de forma extruida trilobular: cuenta con una definida distribución porosa y un equilibrio perfecto entre el àtea superficial. volumen de poro y densidad, que lo caracterizan como uno de los más activos, se uniza en el tratamiento de fracciones ligeras, intermedias y/o pesadas, con selectividad excelente de desnutrogenación por el efecto que imparten sus promotores a las reacciones de hidrogenolisis

El Catalizador Comercial 2 es un catalizador preparado a base de molibdeno y niquel, soportado en gamna alumina de forma cilinadrica con población de poro uniforme. Catalizador que por sus propiedades esta considerado entre uno de los más adecuados para el Hidrotratamiento de destilados ligeros e intermedios, con alta selectividad en reacciones de desutirogenación

El Catalizador Comercial 3 es un catalizador elaborado en base a molibéreito, españto y otros promotores, soportado en gamma alúmina de forma extruída trilobular, utilizado en la Hidrodesulfuración (HDS) de diesel y gasóleos⁽²³⁾.

Las condiciones de operación durante las etapas de sulfhidración en la evaluación a nivel planta piloto, se listan en la tabla [5].

TABLA 4

Propiedades de los Catalizadores

31 Sr Catalizador - 33	Comercial 1 -	Asse Comercial 2	Comercial 3 #.
Forma	extruido trilobular	extruido cilíndrico	extruido trilobular
Tamaño, pulgadas	1/8	1/8	1/10

Propiedades Físicas

Propiedad -	Unidades	- Método	Comercial 1	Comercial 2	· · Comercial 3
Diámetro	nım	QA-700*	2,3	3	2.5
Longitud	mm	QA-700*	5,2	9	6.1
Área superficial	m²/g	D-3663**	204	180	176
Resistencia a la fractura	kg./part	D-4179**	1.71	3.5	7.7
Densidad	g/cm ³	D-4164**	0.69	0.68	0.75

* Método IMP ** Método ASTM

TABLA 5 Condiciones de Operación

		115	🔆 Etapa			۴.
Variable	Unidades	Sulfhidración		Evaluación		
Presión	kg./cm ²	56		56		
Temperatura	°C	230	320 330	340	350	360
LHSV	h	3	2.0	2.25		2.5
Relación	H ₂ /HC	2215	2500			
Flujo de Hidrógeno*	lt/hr	117	113	127		141
Flujo de Nafta*	mi/hr	226	•			
Flujo de Diesel*	ml/hr	-	200	225	Τ.	250

*Medidos a 20°C y 586 mmHg

En la activación del catalizador, los óxidos metálicos se transforman en sulfuros metálicos de acuerdo a las siguientes reacciones:

Estas reacciones se ven favorecidas con la presencia de ácido sulfhidraco o un agente sulfhidrante que proporcione el azufre necesario para concertir los óxidos metálicos a sulfuros metálicos. El sulfhidrado se debe efectuar en presencia de hidrógeno para favorecer el desplazamiento del oxigeno y formar agua, de

lo contrario la tendencia sería formar óxidos menores o metales puros, los que dificilmente son convertidos a sulfuros metálicos⁽¹³⁾.

Durante el sulfhidrado se genera agua y calor, los cuales crean un peligro potencial de daño al catalizador ya que pueden llegar a causar una distribución anómala de los sulfuros metálicos o propiciar una modificación de la estructura del soporte catalítico. La composición química del catalizador determina la cantidad de azufre a depositar. La etapa de sulfhidrado se efectúa a la presión y tipo de cargas típicas de la unidad hidrodesulfuradora. La temperatura en el reactor debe encontrarse en un rango de 260-290 °C; en este r.ngo se asegura la descomposición del agente sulfhidrante y evita el riesgo de desactivación del catalizador por reducción de metales. Para la mayoría de las sulfuraciones en los metales de transición, la energía libre de Gibbs estándar es negativa, lo que favorece la formación de los correspondientes sulfuros⁽⁵⁾

A continuación se presenta la estrategia metodologica de la investigación

FIGURA 3 Estrategia Metodologica de la Investigación

Parte 1: Estudio Cinético.

Objetivo: Seleccionar los catalizadores más activos para realizar los diseños experimentales y proponer un orden de reacción apropiado que explique las reacciones de Hidrodesulfuración e Hidrodenitrogenación.

FIGURA 4

Parte 2: Diseños Experimentales.

Objetivo: Determinación de las condiciones de operación, que maximicen la remoción de contaminantes y las interacciones entre las condiciones de operación y propiedades del catalizador tales como: la relación a tómica y tamaño del soporte.

FIGURA 5

Parte 3: Preparación de Prototipos.

Objetivo: Probar la validez de los modelos experimentales.

ESTUDIO DE MODELOS CINÉTICOS

Típicamente la combinación de los datos obtenidos por análisis y aplicados a la termodinámica y/o cinética, reciben tratamientos matemáticos mediante modelos, gracias a los cuates se logra el conocimiento del sistema estudiado y más aún su predictibilidad.

Un modelo debe reflejar en alguna forma los atributos esenciales del sistema que representa el cual puede ser real o hipotético. Los modelos se utilizan para predecir, medir, describir e interpretar el comportamiento de un sistema. Los datos generados en el proceso de Hidrotratamiento (HDT) de un lecho catalítico se analizan normalmente por una ecuación cinética del tipo:

$$\frac{dC}{dt} = -KC^{*} \quad (1)$$

Donde:

C- contenido de azufre o nitrógeno en ppm. te tiempo de residencia, en horas. K= constante de actividad a la temperatura Tabsoluta en K. n= orden de reacción.

Asumiendo flujo ideal, la solución a la ecuación (1) es:

$$Ln\frac{C_f}{C_p} = \frac{K}{LHSV} \quad \text{para } n = 1 \quad (2) \qquad y \qquad \frac{1}{C_f^{n-1}} - \frac{1}{C_f^{n-1}} = \frac{(n-1)^*K}{LHSV} \quad \text{para } n \neq 1 \quad (3)$$

Donde LHSV es el Espacio Velocidad con unidades de IA y los subindices f y p se refieren a la alimentación y al producto respectivamente. Normalmente, la relación de alimentación en unidades comerciales de HDT, se expresa como la velocidad espacial del líquido por hora (LHSV); y se define como el volumen de alimentación/hr /volumen del catalizador. A través de la heurística se ha establecido que las reacciones de Hidrodesulfuración (HDS) e Hidrodenitrogenación (HDN) de naflas pueden expresarse por una cinética de orden 1, mientras que la HDS y HDN de accite cíclico lígero (ACL), gasóleo ligero primario (GLP) y gasóleo pesado de vacio (GPV) pueden ser representados por un orden aparente igual a 1.5 y 1.0 respectivamente. Para n=1.5 la ecuación cinética integrada es:

$$\frac{1}{\sqrt{C_p}} - \frac{1}{\sqrt{C_f}} = \frac{K}{2 + LHSV} \quad \text{para n=1.5} \quad (4)$$

Las ecuaciones 5 y 6 describen el efecto de la temperatura, la presión y el LHSV en el nitrógeno y azufre producto respectivamente.

$$Ln\frac{C_f}{C_p} = \frac{K^*P^{\beta}}{LHSV^{\alpha}} \quad \text{para n=1} \quad (5) \qquad \text{y} \qquad \frac{1}{\sqrt{C_p}} - \frac{1}{\sqrt{C_f}} = \frac{K^*P^{\beta}}{2^*LHSV^{\alpha}} \quad \text{para n=1.5} \quad (6)$$

En las reacciones de Hidrotratamiento es frecuente expresar las conversiones de azufre y nitrógeno como un porcentaje de hidrodesulfuración y de hidrodenitrogenación, donde %HDS=(1-Sp/Sc)*100 y %HDN=(1-Np/Nc)*100. La constante de actividad aparente (K), que aparece en las ecuaciones, se describe en términos de Arrehenius de la siguiente forma:

$$K = K_0 \exp(-\frac{E}{RT}) \qquad (7)$$

Donde K₀ es el factor de frecuencia (con las mismas unidades de K). E es la energía de activación (J mol⁻¹), R es la constante de los gases (8.314 Jmol⁻¹K⁻¹) y T es la temperatura absoluta en (K). Los parámetros cinéticos (K₀ y E) y los términos (α y β) pueden determinarse simultáneamente usando técnicas lineales de regresión múltiple. Combinando las ecuaciones 5 y 6 con la ecuación 7 se tiene:

and a second second

2000 B 100 B

$$Ln(LnC_{f} - LnC_{\rho}) = LnK_{o} - \left[\frac{E}{R}\right]\frac{1}{T} - \alpha Ln(LHSV) + \beta LnP \quad \text{para n=1} \qquad (8)$$

$$In(\frac{1}{\sqrt{C_f}} - \frac{1}{\sqrt{C_f}}) = LnK_0 - Ln2 - \left[\frac{E}{R}\right] \frac{1}{R} - \alpha Ln(LHSV) + \beta LnP \quad \text{para n=1.5} \quad (9)$$

El exponente α al cual esta elevado el espacio velocidad, es una constante que ha sido determinado para un reactor de lecho escurrido y reportada por varios autores, por ejemplo Henry y Gibert⁽⁶⁾ sugieren un valor de 23 de líquido alimentado, Paraskos⁽¹¹⁾ setablece que para el Hidrottratamiento de crudo $\alpha = 0.532$ y 0.922 para HDS y HDN respectivamente; los valores empleados con mayor frecuencia son 0.700 para HDS y 0.639 para HDN. Para el exponente β se recomienda aplicar los siguientes valores 0.780 para HDS y 1.388 para HDN.

El orden de reacción aparente para HDS igual a 1.5, es aceptado como el orden de reacción adecuado, sin embargo se ha demostrado experimentalmente que se llevan acabo varias reacciones de segundo grado. Curran⁽³⁾ trato de abarcar este problema, asumiendo que se llevan a cabo reacciones paralelas de primer orden, algunas rápidas y otras lentas, realiza su análisis aplicando las siguientes ecuaciones:

$$\frac{C_p}{C_f} = \gamma \exp\left[-\frac{K_1}{LHSV}\right] + (1-\gamma) \exp\left[-\frac{K_2}{LHSV}\right] \quad (10)$$

$$K_1 = K_{10} \exp\left[-\frac{E_1}{RT}\right] \cdot (11) \qquad y \qquad K_2 = K_{20} \exp\left[-\frac{E_2}{RT}\right] \quad (12)$$

El valor de gamma es hipotético, fisicamente representaria la fracción de una de las especies. La ecuación 10, puede modificarse de acuerdo a las condiciones de operación utilizadas, Sok M. Yui⁽²²⁾ modifico la ecuación 10 de la siguiente forma:

$$\frac{C_{P}}{C_{f}} = \gamma \exp\left[-\frac{K_{1}P^{0.780}}{LHSV^{0.700}}\right] + (1-\gamma)\exp\left[-\frac{K_{2}P^{0.780}}{LHSV^{0.700}}\right]$$
(13)

La modificación corresponde a las condiciones de operación empleadas, Yui analizó cuatro casos distintos a los que aplicó técnicas de regresión no lineales, en la tabla [6] se presentan sus resultados, mismos que sivren de base para el estudio.

TABLA 6

Parameters	Caso I	C pop 2	Caso A	£ 186-1
Υ	0.2	0.3	0.4	0.5
k ₁₀	1.215 x 10 ⁹	7.095x 10 ⁶	1.009 x 10 ⁶	6.666 x 10 ⁵
k ₁₀	2.920 x 10 ¹⁰	9.348 x 10 ¹⁰	1.699 x 1012	1.303 x 10 ⁵
E ₁ (kJ mol ⁻¹)	118.8	90.1	78.9	64.5
E2 (kJ mol ⁻¹)	125.6	131.3	146.0	67.5

Parámetros de la Ecuación 10 Modificada por Yui

Como Sok M. Yui muchos investigadores han estudiado la cinética de Hidrodesulfuración y han propuesto sus propias correlaciones para predecir concentraciones en los productos ; a continuación se presenta un análisis de siete modelos de HDS y dos para HDN. Con cada uno de los modelos se calcula la actividad de los catalizadores propuestos, posteriormente cada modelo se deja en función del azufre y nitrógeno con ello se realiza un ajuste por medio de mínimos cuadrados y se comparan con los datos originales, a cada modelo se le determina su coeficiente de regresión y en base a los mayores coeficientes, se eligen los modelos que reproducen con mayor fidelidad las reacciones estudiadas.

La tabla [7] muestra el resumen de los modelos cinéticos estudiados, en el anexo No.1 se presentan algunos comentarios sobre la aplicación de cada modelo y la descripción de los parámetros.

Class	Modely	Class	Modelo
MS-1	$A_{\rm S} = \frac{\left[\left(\frac{1}{0.93S_p}\right) - \left(\frac{1}{S_p}\right)\right]^* (LHSV)}{K^* P^* e^{\frac{\beta}{p_{\rm T}}}}$	MS-6	$K_{S} = LHSV \left[\left(\frac{1}{S_{0}} \right)^{0.5} - \left(\frac{1}{S_{f}} \right)^{0.5} \right]$
MS-2	$\frac{K}{WHSV} = \frac{S_{p}^{(1-n)} - S_{F}^{(1-n)}}{(n-1)}$	MS-7	$K_{0} = \frac{9835}{T} - \log \left\{ \frac{P_{h}}{V\left(\frac{1}{S_{p}} - \frac{1}{S_{p}}\right)} \right\} - 0.11D$
MS-3	$\frac{K}{2LHSV} = \frac{1}{C_{p}^{(0.5)}} - \frac{1}{C_{F}^{(0.5)}}$	MN-1	$A_{N} = \underbrace{Ln\left(\frac{N_{F}}{0.93N_{P}}\right)}_{K_{N}Pe^{\frac{-E}{RT}}} LHSV$
MS-4	$R = \frac{LHSV}{0.7} \left\{ \frac{1}{S_P^{0.7}} - \frac{1}{S_F^{0.7}} \right\}$	MN-2	$Ln\frac{C_F}{C_P} = \frac{K}{LHSV}$
MS-5	$\log \frac{C_{AQ}}{C_{AP}} = KL^{V3}LHNV^{-2V3}d^{-2/3}r^{V3}$	MA-1	$Ln\frac{C_F}{C_P} = \frac{K}{LHSV}$

TABLA 7 Resumen de Modelos Cinéticos

DESARROLLO DE MODELOS POR MEDIO DE DISEÑOS EXPERIMENTALES

Un experimento diseñado es una prueba o serie de pruebas en las cuales se inducen cambios deliberados en las variables de entrada de un proceso o sistema, de manera que sea posible observar e identificar las causas de los cambios en las respuestas de salida. Los métodos de diseño experimental tienen un cometido importante en el desarrollo de procesos y en la depuración de procesos para mejorar el rendimiento; el modelo general de un proceso o sistema, se muestra en la figura 6.

El diseño estadistico de experimentos es el proceso de plancar un experimento para obtener datos apropiados, que pueden analizarse mediante métodos estadísticos, con objeto de producir conclusiones válidas y objetivas, los principios básicos en el diseño de experimentos son: obtención de réplicas, aleatorización y análisis por bloques. La réplica se refiere a una repetición del experimento básico, este concepto tiene dos propiedades importantes, en primer lugar permite obtener una estimación del error experimental; en segundo lugar el uso de réplicas permite calcular una estimación más precisa del efecto de un factor del experimento.

La alcatorización es el lucho de que tanto la asignación del material experimental como el orden en que se realizan las pruebas individuales o ensayos se determinen "alcatoriamente". El análisis por bloques es una técnica que se usa para incrementar la precisión del experimento. Un bloque representa una porción del material experimental homogéneo⁽⁹⁾.

FIGURA 6 Factores Experimentales.

Muchos experimentos se llevan a cabo para estudiar los efectos producidos por dos o más factores y en general los diseños conocidos como factoriales son los más eficientes para este tipo de experimentos, en el diseño factorial se investigan todas las posibles combinaciones de los niveles de los factores en cada ensayo completo o réplica del experimento. El efecto de un factor es el cambio en la respuesta producida por un cambio en el nivel del factor, los diseños factoriales mayornente utilizados son los diseños $z^4 y el z^4$.

El diseño 2⁴ es particularmente útil en las primeras fases del trabajo experimental, cuando es probable que haya muchos factores por investigar. Conlleva al menor número de corridas con las cuales pueden estudiarse k factores en un diseño factorial completo. Debido a que sólo hay dos niveles para cada factor, debe suponerse que la respuesta es aproximadamente lineal en el intervalo de los niveles elegidos de los factores⁶⁹.

El disc⁰o J^* consta de *k* factores con tres niveles cada uno, los tres niveles de los factores pueden $\frac{1}{2}$ referirse como nivel inferior, internecio y superior. Cada combinación de tratamientos de un diseño J^* se presenta mediante *k* digitos, donde el primero indica el nivel *A*. el segundo el nivel *B*... y el *k* ésimo digito, el nivel del factor $k^{(0)}$. Es conveniente utilizar diseños J^* cuando se requiera modelar una relación multivariable, sin embargo el diseño J^* no es el medio más rápido o sencillo y los diseños de superficies de respuesta son mejores alternativas. Los diseños J^* aumentados en puntos centrales, permiten obtener una indicación de curvatura, además de mantener reducidos el tamaño y la complejidad del diseño.

El primer diseño de la serie z^4 es aquel que tiene sólo dos factores, A y B, cada uno con dos niveles. Este diseño se conoce como diseño factorial z^2 Arbitrariamente, los niveles del factor pueden llamarse inferior o superior y denotarse por "-1" y "+1" respectivamente. Los diseños factoriales planteados en el trabajo, contienen tres factores controlables y dos niveles en las variables de respuesta (diseño z^3), los diseños planteados se describen en la tabla [8].

Para cada uno de estos diseños se tiene una sola variable dependiente ($S_{productos}$, $N_{total} \circ N_{bdat(o)}$ que depende de tres variables, x_r , x_s , k_s , La relación entre estas variables se caracteriza por un modelo matemático conocido como ecuación de regresión El modelo de regresión se ajusta a un conjunto de datos muéstrales. En algunos casos se conoce la forma exacta de la relación funcional real $Y = f(x_t, x_s, \dots, x_s)$ entre

Y y $x_1, x_2,..., x_k$. Sin embargo, en la mayoría de los casos la verdadera relación funcional se desconoce y se debe elegir una función apropiada para aproximar *f*. Los modelos polinomiales se usan ampliamente para aproximar funciones y determinar que factores son importantes, cuando intervienen más de una variable de regresión. Por ejemplo en el diseño experimental No.2, la actividad de la reacción química puede depender de la temperatura, la relación atómica y el espacio velocidad. En este caso se requieren al menos tres variables de regresión. El problema general que consiste en ajustar el modelo:

$$Y = a_0 + a_1 x_1 + a_2 x_2 + \sum_k a_k x_k + e$$
 (14)

se conoce como problema de regresión múltiple. Usualmente, los parámetros desconocidos (4) se denominan coeficientes de regresión, el modelo de la ecuación 14 describe un hiperplano en el espacio de k dimensiones de las variables de regresión (4).

TABLA 8 Diseños Experimentales Los diseños pretenden definir el efecto de las variables estudiadas en la remoción de azuíre total, nitrógeno total y nitrógeno básico.

Diseno Nu	Olipetivo del diseño		Intervalos	
		"" Hivet (-1)"	711vel (0)* ***	
Diseño 1	Efecto de la presión, temperatura	320 °C	340 °C	360 °C
	y LHSV.	56 kg./cm ²	63 kg./cm ²	70 kg./cm ²
		2.0 hr ⁻¹	2.25 hr -1	2.5 hr ⁻¹
Diseño 2	Efecto de la relación atómica	320 °C	340 ° C	360 °C
	Co/Mo, temperatura y LHSV	Relación 0.4	Relación 0.5	Relación 0.6
		2.0 hr ⁻¹	2.25 hr ⁻¹	2.5 hr ⁻¹
Discho 3	Efecto de la relación atómica	320 °C	340 °C	360 °C
	Ni/Mo, temperatura y LHSV.	Relación 0.4	Relación 0.5	Relación 0.6
		2.0 hr ⁻¹	2.25 hr -1	2.5 hr ⁻¹
Discño 4	Efecto del tamaño de partícula,	320 °C	340 °C	360 °C
	temperatura y LHSV. En una	1/20 pulgadas	1/15 puigadas	1/10 pulgadas
	formulación Co/Mo.	2.0 hr	2.25 hr	2.5 hr -1
Diseño 5	Efecto del tamaño de partícula,	320 °C	340 °C	360 °C
	temperatura y LHSV, en una	1/20 pulgadas	1/15 pulgadas	1/10 pulgadas
	formulación Ni-Mo.	2.0 hr	2.25 hr	2.5 hr -1

•Nivel intermedio que permite eliminar la suposición de tendencia lineal entre los niveles bajo (-1) y alto (+1).

Se utiliza el método de mínimos cuadrados para estimar los coeficientes de regresión. Supongamos que n>k observaciones están disponibles. Sea x_{ij} la j-ésima observación o nível de la variable x_i . En términos de los datos el modelo es:

$$\mathbf{Y}_{i} = \mathbf{a}_{0} + \mathbf{a}_{1}\mathbf{x}_{1i} + \mathbf{a}_{2}\mathbf{x}_{2i} + \sum_{k}^{i} \mathbf{a}_{k}\mathbf{x}_{ki} + \mathbf{e}_{i}$$
 (15)

Hay p=k+1 ecuaciones normales, una para cada coeficiente de regresión desconocido. La solución para las ecuaciones normales serán los estimadores de mínimos cuadrados, ao, a₁ ...,a_k. Es más sencillo resolver las ecuaciones normales si primero se expresan en notación matricial. El modelo en términos de las observaciones expresado en notación matricial es:

 $Y = X a + e. \tag{16}$

página 12

.

En general Y es un vector de respuestas (nx1), X es una matriz (nxp) de los niveles de las variables de regresión, a es un vector de coeficientes de regresión (px1) y e es un vector de errores alcatorios (nx1), los datos para la regresión lineal múltiples es arreglan como la tabla [9].

1	N_1	N	Ν.
Y ₁	X ₁₁	X ₂₁	 X _{KI}
Y ₂	X ₁₂	X22	 X _{K2}
Y _n	Xin	X _{2n}	 XKn

TABLA 9 Arregio de los Datos para la Regresión Lineal Múltiple.

Para el diseño experimental No.1 se analiza la actividad catalítica en el proceso de Hidrotratamiento de Diesel, son tres las variables que se estudian: temperatura, presión y LHSV, cada variable se evalúa a dos niveles: bajo y alto, el diseño propuesto es 2³, para ejemplificar el arreglo de datos en forma matricial, se escriben los resultados de la respuesta de este diseño en particular, para el azufre en el producto.

En la tabla [10] se emplean las variables "codificadas" +1, -1, normalmente empleadas en los diseños factoriales 2⁴, para representar los niveles de los factores. Este arreglo permite resolver con relativa facilidad la ecuación 18, por medio de la cual se determinan los coeficientes del modelo.

$$y^{m}a_{0}+a_{1}x_{1}+a_{2}x_{3}+a_{3}x_{3}+a_{12}x_{1}x_{3}+a_{13}x_{1}x_{3}+a_{23}x_{2}x_{3}+a_{123}x_{1}x_{2}x_{3}$$
(17)
$$a = (X'X)^{-1}X'Y$$
(18)

El producto matricial de X'X ofrece la ventaja de ser ortogonal y debido a el arreglo en variables codificadas, garantiza que se obtendrá siempre una matriz identidad, cuyo orden es según los factores que se descen correlacionar. Como el modelo es la ecuación 17, entonces necesitamos las siguientes columnas:

 $X_0, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3$

Para evaluar el modelo de la ecuación 15 se necesitan realizar la siguiente multiplicación de matrices: X'X al igual que el producto X'Y para poder obtener el vector de resultados $a=(X'X)^{-1} X'Y$. Los resultados son los siguientes (X' es la matriz transpuesta de X):

TABLA 10

Resultados Experimentales del Azufre Producto para el Diseño 1

Corrida	Interaction	N.	1	Ν.	A Sec.
1	(1)	-1	-1	-1	0.2059
2	8	+1	-1	-1	0.0235
3	b	-1	+1	-1	0.1603
4	ab	+1	+1	-1	0.0129
5	c	-1	-1	+1	0.2672
6	ac	+1	-1	+1	0.0344
7	bc	-1	+1	+1	0.2124
8	abc	+1	+1	+1	0.0190

X' :es la matriz transpuesta de X.

Debido a que el producto matricial de X'X es una matriz identidad multiplicada por una constante, su inversa será:

$$(X'X)^{-1} = \frac{1}{8}I_{1}$$

Esta ventaja se obtiene al trabajar con diseños experimentales canónicos y con la ayuda de variables codificadas o reducidas, por último para obtener los coeficientes del modelo experimental se multiplican las siguientes matrices: $a_i = (X'X)^{-1} X'Y$

$$a = (X^{*}X)^{-1}X^{*}Y = \frac{1}{8} \begin{bmatrix} 0.9356\\ -0.756\\ -0.1264\\ 0.1304\\ -0.0944\\ -0.0944\\ -0.0964\\ -0.014\\ 0.0044 \end{bmatrix} = \begin{bmatrix} 0.1169\\ -0.0945\\ -0.0158\\ 0.0163\\ 0.0093\\ -0.0121\\ -0.0121\\ -0.0017\\ X_{1}X_{2}\\ X_{1}X_{3}\\ X_{1}X_{2}\\ X_{1}X_{3}\\ X_{1}X_{2}\\ X_{1}X_{3}\\ X_{1}X_{2}X_{3} \end{bmatrix}$$

Mediante este procedimiento se determinan los coeficientes para las interacciones de cada modelo, se puede evaluar cualquier tipo de interacción como: interacciones cuadradas, cúbicas.

and all and the state in the second state of the

-

. . .

METODOLOGÍA DE PREPARACIÓN DE LOS CATALIZADORES DE HIDRODESULFURACIÓN

Muchos catalizadores se pueden preparar con sólo ejecutar los pasos necesarios para producir una sustancia de gran purcza, los siguientes son los procesos más usados en la preparación de laboratorio de catalizadores sólidos:

 Catalizadores naturales: como arcillas, bauxitas y tierra de diatomaceás, sometidos a un tratamiento químico y físico para que sean adecuados como catalizadores.

2) Catalizadores calcinados: mediante la descomposición de un compuesto químico termoinestable.

 Catalizadores impregnados y calcinados: impregnando un portador con la solución concentrada de la sal del catalizador.

4) Catalizadores precipitados: por la precipitación de un material insoluble que después de lavarlo se convierte en un catalizador.

Los catalizadores sólidos soportados, son descritos en forma de tres componentes elementales: fase activa, soporte o portador y el promotor.

La fase activa es la directamente responsable de la actividad catalítica. Esta fase activa puede ser una sola fase química o un conjunto de ellas. Se caracteriza porque ella sola puede llevar a cabo la reacción en las condiciones establecidas, esta fase activa puede ser muy sensible a la temperatura, por lo cual se requiere un soporte para dispersarla, estabilizarla, incrementar el área superficial y proporcionarle buenas propiedades.

El soporte denota una sustancia que sirve de sostén al catalizador, es decir, el soporte es la matriz sobre la cual se deposita la fase activa y la que permite optimizar sus propiedades catalíticas. Este soporte puede ser porcos y por lo tanto presentar un área superficial por gramo clevada. Si la reacción química es suficientemente lenta, o se usan flujos muy rápidos el soporte debe tener resistencia mecánica elevada; si la reacción es llevada a elevadas temperaturas, debe tener resistencia térmica.

La forma física de este soporte también está definida por las condiciones de reacción y puede estar en forma de esferas, extruidos, anillos, mallas, los soportes más usados son: carbón activado, silicatos, aluminosilicatos, sulfato de magnesio y bario, zeolitas, magnesia, titenia y otros óxidos retroactivos.

El promotor es aquella sustancia que incorporada a la fase activa o al soporte en pequeñas proporciones, permite mejorar las características del catalizador en cualquiera de sus funciones de actividad, selectividad o estabilidad.

Se conocen dos tipos de promotores:

- 1. texturales, los que contribuyen a darle mayor estabilidad a la fase activa
- 2. electrónicos; los que aumentan la actividad.

Un catalizador de Hidrodesulfuración (HDS) se encuentra constituido generalmente por las siguientes partes:

- Metales activos
- Promotores catalíticos
- Aditivos
- Soporte

- All and a state of the second second

El procedimiento de preparación se realiza en etapas, la primera etapa es la preparación de la solución impregnante, en esta etapa se obtiene la solución con la concentración deseada. La segunda etapa consiste en la integración de los metales y se puede efectuar por medio de impregnación de una solución acuosa. La solución se prepara en medio ácido; a partir de heptamolibdato de amonio-nitrato de níquel (para el catalizador A) y heptamolibdato de amonio-nitrato de cobalto (para el catalizador B). Una vez realizada la solución, esta se impregna sobre el soporte y se somete a secado (100-200 °C), por último el material impregnado y seco se calcina en atmósfera oxidante. El siguiente es el diagrama de flujo de la preparación:

FIGURA 7

PREPARACIÓN DE CATALIZADORES.

ANÁLISIS DE RESULTADOS

ANÁLISIS DE LA VARIANZA PARA LOS MODELOS OBTENIDOS EN LOS DISEÑOS EXPERIMENTALES

La tabla [7] presenta los modelos cinéticos utilizados en la investigación, son siete modelos para evaluar la actividad catalítica a la HDS y dos modelos para la HDN de nitrógeno total, los intervalos de reacción para HDS son de 1.1 a 2.0 en Hidrodesulfuración y el orden de reacción para Hidrodenitrogenación es igual a la unidad; el análisis de cada modelo se realiza mediante la tabla [11], de la siguiente forma:

La tabla [11] (Anexo No.5) es una hoja de calculo constituida por las columnas de Temperatura °C, Sp % pçso, Nt ppm, Arom. % peso, viscosidad y LHSV (se encuentra en el anexo 2) en las cuales se suministran los resultados experimentales y en las columnas de K:HDS-1 hasta K:HDS-7 y K:HDN-1, K:HDN-2, se programaron las fórmulas de cada uno de los modelos de las tablas [7] y [8], en estas columnas se calcula el valor de las respectivas constantes de actividad catalitica(K); una vez que se calcula la K, cada uno de los modelos se deian en función del azufre producto y nitrógeno tala.

Con la temperatura y las respectivas constantes de actividad catalítica se realiza un ajuste por medio de mínimos cuadrados, se suministran las temperaturas a las que se desec calcular la concentración del azufre producto o del nitrógeno total, a través de los datos generados en esta predicción se obtienen la pendiente, ordenada al origen y el coeficiente de regresión de cada modelo.

La tabla [11] se utiliza para evaluar cada uno de los catalizadores estudiados, modificando en la hoja de trabajo las propiedades del catalizador, las condiciones de operación y el orden de reacción. El análisis del orden de reacción se hizo en el intervalo de 1.1 hasta 2.0 en incrementos de 0.1, con ello se observo la variación en los coeficientes de regresión, la tabla [11] nos muestra los coeficientes con mayor ajuste y el orden con que se obtuvieron; por ejempto el modelo K:HDS-4 presenta un ajuste del 99.923% con un orden de reacción de 1.7, mediante este modelo se efectúa el estudio del efecto del tamaño del soporte y la relación atómica sobre el azufre producto, nitrógeno total y nitrógeno básico, resultados que aparecen en el anexo No. 2.

Para el diseño de las superficies de respuesta, al desconocer la relación que existe entre las variables de respuesta y las condiciones de operación, o propiedades del soporte; se propone en una primera instancia un diseño 2³ con todas las interacciones posibles. las interacciones estudiadas son las siguientes: Efecto A, B, C, AB, AC, BC, AA, BB y el efecto CC. En la tabla [12] se presenta el análisis de varianza para cada modelo y sus respectivos efectos.

		Discuss	
Efecto	Sp	Nt	Nb
A: temperatura	0.0000	0.0000	0.0000
· B: presión	0.0188	0,000	0.0000
C: LHSV	0.0243	0 0000	0.0000
AB	0.2896	1.0000	0.6569
AC	0.1343	0.0208	0.0310
BC	0.6853	0.3901	0.3863
AA	0.0001	0.0000	0.0000
BB	0.6658	0.6964	0.6583
CC	0.5271	0.3435	0.3216
r*	0.9911	0.9994	0.9994

	TABLA	12	
Análisis de la	Varianza	para los	Modelos

		Disense		(Dis	eno 4
Efecto	Sp	Nt	Nb	Sp	Nt
A: temperatura	0.0075	0.0002	0.0000	0.0000	0.0000
B :relación	0.0619	0.0301	0.6932	0.0548	0.2737
C: LHSV	0.0874	0.0231	0.0001	0.0939	0.1717
AB	0.9338	0.0920	0.4826	0.3766	0.0134
AC	0.3315	0.0603	0.0286	0.5282	0.4598
BC	0.2071	0.0917	0.9565	0.8840	0.9872
AA	0.1273	0.4122	0.0001	0.0356	0.0411
BB	0.9837	0.5792	0.0132	0.8770	0.0433
CC	0.7476	0.6564	0.3611	0.5289	0.4851
r ¹	0.8396	0.9388	0.9982	0.9612	0.9754

tabla 12 continuación ..

(i) Setting of the set of the

		Dischol			Discus5	
Efecto	Sp	Nt	Nb	Sp	Nt	Nb
A: temperatura	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
B: tamaño	0.0000	0.0000	0,0000	0.0000	0.0000	0.6144
C: LHSV	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AB	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000
AC	0.0000	0.0000	0.0005	0.0000	0.0001	0.0001
BC	0.0184	0.0498	0.0312	0.0104	0.1079	0.4048
AA	0,9896	0.9935	0.8794	0.8380	0.8347	0.9339
BB	0.9864	0.9941	0.8794	0.8380	0.8347	0.9337
CC	0.9832	0.9931	0.8794	0.8380	0.8347	0.9337
r¹	0.9998	0,9999	0.9999	0.9999	0,9997	0.9997

Los valores reportados en la tabla [12] son los resultados del nivel de confianza, el nivel de confiabilidad es del 95%, por esta razón todos los valores de la tabla que sean menores a 0.05 serán representativos y aquellos que sobrepasen tal valor no representan un efecto significativo en la variable de respuesta. Las interacciones AA, BB y CC en todos los modelos excepto en la interacción AA (temperatura cuadrada), para los diseños 1 y 3; tienen valores mayores al nivel de confianza seleccionada por lo tanto no producen un efecto significativo, por lo tanto se eliminan dichas interacciones y se modifica el experimento; la modificación efectuada toma en cuenta las siguientes interacciones: Efecto A, B, AB, C, AC, BC, y ABC este modelo representa los vértues de un cubo.

TABLA 13 Variables Reducidas de Cada Diseño Experimental

Variable	Discño I	Diseno 2	Discñu J	Diseño 4	Discho 5
	(T - 340)	(T - 340)	(T - 340)	(T - 340)	(T - 340)
Xi	20	20	20	20	20
X2	$\frac{(P-63)}{7}$	(<u>Re/ -0.5)</u> 0.1	<u>(Re10.5)</u> 0.1	$\frac{(Tam - \frac{1}{15})}{0.025}$	$\frac{(Tam - \frac{1}{15})}{0.025}$
X,	<u>(LHSV - 2 25)</u> 0.25	(<i>1.HSV</i> 2 25) 0 25	<u>(1.HSV - 2.25)</u> 0.25	<u>(<i>LHSV -</i> 2.25)</u> 0.25	<u>(LHSV - 2.25)</u> 0.25

165323742

Las variables son reducidas para forzar la ortogonalidad, esta reducción permite que el ajuste sea más exacto, dado que se eliminan posibles desviaciones que se presentan al aplicar mínimos cuadrados. Las siguientes son las variables reducidas para cada diseño experimental

Una vez que se hace la reducción de variables se aplica una regresión no lineal, y se obtienen una serie de polinomios de la forma:

$y=a_0+a_1x_1+a_2x_2+a_3x_3+a_{12}x_1x_2+a_{13}x_1x_3+a_{23}x_2x_3+a_{123}x_1x_2x_3$

En cada uno de los diseños se hacen tres regresiones, para el azúfre producto, nitrógeno total, y para el nitrógeno básico, los polinomios que se obtienen dependen de las variables en estudio, en seguida se presentan los coeficientes de cada uno de los diseños experimentales, obtenidos por regresión múltiple. Por ejemplo para el diseño I, se tiene el siguiente polinomio (para su uso, convertir las condiciones de operación en variables reducidas + 1 y -1, de acuerdo a la tabla [13]).

 $S_{p} = 0.1169 - 0.0945X_{1} - 0.0158X_{2} + 0.0093X_{3} + 0.0163X_{1}X_{2} - 0.0121X_{1}X_{3} - 0.0017X_{2}X_{3} + 0.0005X_{1}X_{2}X_{3}$

TABLA 14

Coeficientes para los Distintos Diseños Experimentales

Vari,	able Red	uc tila	Interaction	Discuol		
X 1	X ₁	X,		Sp	Nt	Nb
-1	-1	-1	1	0.1169	130.23	41.428
+1	+1	-1	a	-0.0945	-58.35	-17.838
-1	+1	-1	b	-0.0158	-9.1275	-2.7937
+1	+1	-1	ab	0.0093	0.0125	-0.0962
-1	-1	+1	c	0.0163	8.155	2.4762
+1	-1	+1	ac	-0.0121	-2.175	-0.5812
-1	+1	+1	bc	-0.0017	-0.6525	-0.1962
+1	+1	+1	abc	0.0005	-0.4625	-0.1487
			r	1.0000	1.0000	1.0000

V ari	Variable Reducida		Interacción	Dist	no2	Diseños		
X 1	X ₂	X,		Sp	Nt	Sp	Nt	Nb
-1	-1	-1	1	0.2376	384,85	0.3297	397.75	107.54
+1	-1	-1	2	-0.1402	-73.55	-0.1870	-65.35	-29.672
1	+1	-1	b	-0.0403	34.65	0.0055	-16.775	4.7675
+1	+1	-1	ab	0.0471	-2.55	-0.0029	-7.275	9.205
-1	-1	+1	c	0.0273	13.075	0.0327	12.375	3.2875
+1	-1	+1	_ac	-0.0115	5.475	-0.0114	5.075	2.14
-1	+1	+1	bc	-0.0016	-2.575	0.0002	1.15	-0.045
+1	+1	+1	abc	0.0025	0.925	7.5x10 ⁻³	0.25	-0.5025
			r ⁴	1.0000	1.0000	1.0000	1.0000	1.0000

Tabia 14	continuación
----------	--------------

V.itt.	the Ro	huender	laurnoon		Discussi			Dischos	
$\cdot \mathbf{X}_{1}$	X ₂	X,		Sp	Nt	Nb	Sp	Nb	Nt
-1	-1	-1	1	0.1138	153.63	45.516	0.3661	408.85	100.13
+1	-1	-1	8	-0.0874	-56.162	-20.638	-0.1767	-44.45	-22.071
-1	+!	-1	Ь	0.0189	-3.4875	1.5762	0.0501	-11.7	-0.0737
+1	+1	-1	ab	-0.0164	-2.5875	2.9412	-0.0142	-13.95	-6.1486
-1	-1	+1	c	0.0161	20.087	5,4012	0.0351	11.825	4.0587
+1	-1	+1	80	-0.0111	-1.7125	-0,5287	-0.0089	3.575	1.4737
-1	+1	+1	bc	0.0019	-0.2375	0.2162	0.0021	0.775	-0.1487
+1	+1	+1	abc	-0.0014	-0.2375	0.1862	0.0014	0.975	0.3963
			F ¹	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Puede observarse que el ajuste es exacto, dado que todos los coeficientes de los polinomios son igual a la unidad y por lo tanto no presentan variabilidad, una vez que los ajustes son satisfactorios, se analizan las superficies de respuesta. Las superficies de respuesta aparecen en el anexo No.4, en ellas se observan las diferentes interacciones entre las variables de respuesta (los compuestos contaminantes) y las variables que determinan la concentración de la variable respuesta.

La forma de establecer que parámetros afectan en mayor medida a la respuesta es realizando un estudio sobre los efectos de los factores: La tabla [15] muestra el resunen de dichos efectos. Este análisis se enfoca a determinar que variable o combinación de variables produce un efecto significativo en la respuesta, este aspecto se aprecia evaluando los coeficientes del polinomio mediante la tabla [16], estos efectos representan los siete grados de libertad entre las ocho combinaciones de tratamientos de un diseño 2³. Tres de esos grados de libertad se asocian con los principales efectos de A, B y C. Cuatro se asocian con interacciones (AB. AC, BC y ABC), uno para cada una.

El efecto A es el promedio de las cuatro corridas en que A se encuentra en el nivel alto menos el promedio de las cuatro corridas en que A está en el nivel bajo. En forma similar, el efecto de B es un contraste entre las cuatro combinaciones de tratamientos de la cara anterior del cubo y la cara posterior. El efecto de C es un contraste entre las cuatro combinaciones de tratamientos en la cara superior del cubo y las de la cara inferior.

Los efectos de la interacción de dos factores se calculan mediante la media entre ambos efectos, por ejemplo la interacción AB es la diferencia entre los efectos promedio de A en los dos niveles de B; por convención, la mitad de esta interacción es la diferencia de promedios entre corridas en planos diagonales de un cubo. La interacción ABC se define como la diferencia promedio entre la interacción AB para los dos niveles distintos de C, es decir son los vértices de los dos tetraedros que forman un cubo.

En la tabla [15] vemos que los mayores efectos, son los valores que se encuentran resultados, revisemes el Diseño 1: Efecto de la presión, Temperatura y Espacio Velocidad; los mayores efectos para el azufre en el producto son: Temperatura (A= -0.189), presión (B= -0.0316), LHSV (C $\approx +0.0326$) y para la interacción Temperatura-LHSV (AC = -0.0241), el efecto de las interacciones restantes, no se compara con los efectos principales, por lo tanto no influyen en la respuesta del experimento.

De forma análoga se obtienen los siguientes valores para el nitrógeno total, donde los efectos principales son para: Temperatura ($A^{=}$ -116.7), Presión ($B^{=}$ -18.255), Espacio Velocidad ($C^{=+16.31}$) y la interacción Temperatura-Presión ($AC^{=}$ -4.35). Para el nitrógeno Básico, el mayor efecto es Temperatura($A^{=}$ -35.6673), Presión ($B^{=}$ -5.5875) y Espacio Velocidad($C^{=}$ +4.9525).

ANÁLISIS DEL EFECTO DE LOS FACTORES

TABLA 15

Efecto de los Factores

	Obstant					
FACTOR	Sp	Nt	Nb			
Α	-0107	100111120	145 C			
B	4.4316	18 · · · · ·	Se 7			
С	S CONTRA					
AB	COLC.	0.025	-0.1925			
AC	-0.0241	9862 C 1604	-1.1625			
BC	-0.0035	-1.305	-0.3925			
ABC	0.0011	-0.925	-0.2975			

	Dis	aio 1		Dischest	
FACTOR	Sp	Nt	Sp	Nt	Nb
A		-147.1	2 Y	1.61.27	
B			SCO. N	A. 1. 6	
С	0.0547	36.15		Sec. St. Sec.	6.575
AB		-5,1	-0.00595	-14.55	S I I KI A
AC	-0.0231	10.95	-0.02275	10.15	4.28
BC	-0.0032	-5.15	0.00045	2.3	-0.09
ABC	0.0051	1.85	0.00015	0.5	-1.005

		Dischol			Dischus	
FACTOR	Sp	Nt	Nb	Sp	Nt	Nb
A	-C.176R	-112.325	-41.29	-0.3536		-44.1425
B	0.079	-6.975	3.165	6.10027	-21.4	-14.73
С		4.175	10.835	0.07032	21.65	8.1175
AB		-5.175	5. 	-0.02843	-27.9	1.51 1.2.1
AC	-0.0223	-3,425	-1.055	-0.01798	7.15	2.9475
BC	0.0038	-0.475	0.42	0.00427	1.55	-0.3975
ABC	-0.0029	-0.475	0.36	0.00277	1.95	-0.7925

Para el diseño experimental No.2 los mayores efectos en el nitrógeno total son: Temperatura (A= -147.1), Relación Atómica (B=+69.3) y LHSV (+26.15), las contribuciones son 61%, 29% y 10% respectivamente. Los diseños 3, 4 y 5 presentan la misma tendencia *el efecto que gobierna las respuestas de* los cinco diseños experimentales es el a temperatura, el signo negativo en el factor implica que un incremento en la variable temperatura traerá como consecuencia una disminución en la respuesta, es decir es una relación inversamente proporcional. Por lo tanto un incremento en temperatura desplaza hacia abajo la desviación promedio respecto a la concentración del contaminante; la forma de obtener el valor numérico de los efectos se proporciona en la tabla [16].

- actor	Determination det Eactor
۸	$\frac{1}{4n}[a-(1)+ab-b+ac-c+abc-bc]$
B	$\frac{1}{4n}[b+ab+bc+abc-(1)-a-c-ac]$
С	$\frac{1}{4n}[c+ac+bc+abc-(1)-a-b-ab]$
AB	$\frac{1}{4n}[ab-a-b+(1)+abc-bc-ac+c]$
AC	$\frac{1}{4n}[(1)-a+b-ab-c+ac-bc+abc]$
BC	$\frac{1}{4n}[(1)-a-b-ab-c-ac+bc+abc]$
ABC	$\frac{1}{4n}[abc-bc-ac+c-ab+b+a-(1)]$

TABLA 16 Fórmulas de Recurruncia para Determinar el Efecto de los Factores

ANÁLISIS DEL TAMAÑO DEL SOPORTE Y RELACIONES ATÓMICAS

Los resultados experimentales obtenidos del estudio de Relaciones Atómicas, para las formulaciones Ni/Mo y Co/Mo, se muestran en el ancxo No. 2; en base a ellos se determina la relación atómica óptima, así como el tamaño que asegura la reducción de los contaminantes, la siguiente gráfica corresponden a los diseños 2 y 3 para el azufre en el producto vs. temperatura, para la obtención de estos datos se trabajo en las siguientes condiciones de operación: La carga utilizada es diesel primario procedente de la refinería de Tula Hgo; presenta 13600 partes por millón de azufre total, 534 partes por millón de nitrógeno total y 148 partes por millón de nitrógeno total y 148 partes por millón de 56 kg/cm², espacio velocidad de 2.0 h⁻¹ y relación H₂/HC de 2500 R²/bl.

En esta gráfica se aprecia que la formulación con la cual se logra el minimo de azufre en el producto es con la formulación Co/Mo = 0.6, hasta una temperatura de 345 °C, temperatura a partir de la cual la relación atómica Co/Mo = 0.5 alcauza los valores minimos, es por ello que una formulación intermedia de 0.55 resulta apropiada en formulaciones Co/Mo. En formulaciones Ni/Mo la mejor relación atómica es la de 0.5.

Para el nitrógeno total en formulaciones Co/Mo las concentraciones bajas se obtienen cuando la relación atómica es de 0.4 y para formulaciones Ni/Mo cuando la relación es de 0.6 hasta una temperatura de 360°C, temperatura a la cual la relación Ni/Mo de 0.5 resulta mejor; una relación elevada en formulación Co/Mo no favorece la Hidrodenitrogenación. Para el nitrógeno básico las concentraciones bajas se obtienen con formulaciones Ni/Mo de 0.5; las formulaciones Co/Mo con relaciones atómicas altas no favorecen la HDN de nitrógeno básico. El efecto del tamaño del soporte, se aprecia a partir de la gráfica 10, se observa que las concentraciones mínimas para azufre en formulaciones Co/Mo es con un tamaño de 1/20 de pulgada, al igual que en formulación Ni/Mo.

En formulaciones Ni/Mo, para obtener menores concentraciones de nitrógeno total es trabajando con tamaños de 1/10 de pulgada al igual que en formulaciones Co/Mo. Para nitrógeno básico si trabajamos con catalizadores Ni/Mo, las concentraciones más bajas se obtienen con tamaños de 1/20 de pulgada hasta una temperatura de 345°C, después de esta temperatura el tamaño recomendable es de 1/10 de pulgada.

Es decir que si trabajamos con temperaturas bajas, se debe elegir un tamaño pequeño (1/20 de pulgada) y a elevadas temperaturas con 1/10 de pulgadas (gráficas 10-18). Al trabajar con LHSV bajos, contribuye a una reducción pequeña en los contaminantes (gráficas 19-33). En la tabla [17] se muestra el resumen de estos análisis.

TABLA 17

Continuante	Locatolación	Relation	Laman
SPRODUCTO	Ni/Mo	0,5	1/20
	Co/Mo	0.55	1/20
NTOTAL	Ni/Mo	0.5	1/10
	Co/Mo	8.4	1/10
NBASICO	Ni/Mo	0.5	1/15
	Co/Mo	0.4	1/24
			1 · g · · · · · ·

Resumen del Análisis en la Relación Atómica y Tamaño del Soporte

Los valores sombreados en la tabla representan las relaciones y tamaños en los cuales la concentración de los contaminantes es la mínima. El análisis realizado en el efecto del espacio velocidad es generalizado, es decir trabajando con las dos formulaciones NV/Mo y Co/Mo, con las relaciones atómicas de 0.4, 0.5 y 0.6 existe una contribución en la disminución de los tres contaminantes al trabajar con LHSV bajos. Si se trabaja con tamaños diferentes es la misma tendencia.

1.21

ANÁLISIS DE SUPERFICIES DE RESPUESTA

En la tabla que describe los diseños experimentales tabla [8], se plantean los objetivos de cada diseño, el objetivo en el diseño 1 es estudiar el efecto de la presión, temperatura y LHSV sobre azufre producto, nitrógeno total y nitrógeno básico en una formulación Ni/Mo en los intervalos siguientes.

Navel (11)	Nivel (0)	Nivelanta
T 320°C	T 340°C	T 360 °C
P 56 kg./cm ²	P 63 kg./cm ²	P 70 kg/cm ²
LHSV 2.0 h	LHSV 2.25 h	LHSV 2.5 h

En base al planteamiento de un diseño 2^3 más puntos centrales, se obtienen las tres superficies de respuesta para cada contaminante y sus respectivas combinaciones, para el azufre yo tempto las combinaciones son: 1) azufre ys temperatura y presión, 2) azufre ys temperatura y buly y 3) azufre ys presión y LHSV. Se analiza cada superficie para determinar la región en la cual se pueden alcanzar las minimas concentración de factores la que determina respuesta de la superficie.

Como ejemploe se muestra una gráfica del diseño 1, en esta gráfica se presenta la respuesta a un LHSV constante y se aprecia que el contaminante depende sólo de la Temperatura ya que a presiones bajas o altas se alcanzan concentraciones iguales de azufre. La superficie mostrada corresponde al polinomio obtenido en el diseño, con dicho polinomio se pueden hacer predicciones sobre las concentraciones de los contaminantes, en los intervalos propuestos con la seguridad de obtener un resultado confiable.

Todas las superficies de respuesta del anexo No.4 son las curvas de cada uno de los diseños ajustados. Revisemos el diseño 1: en la superficie de Sp vs. T y P, al igual que en la de Sp vs T y LHSV gobierna la temperatura, en la superficie Se vs. P v LHSV la repuesta la rige una combinación de ambas variables de tal forma que se reduce el azufre cuando aumentamos presión y disminuimos espacio velocidad. Se presenta una tendencia idéntica en el nitrogeno total y nitrógeno básico. Las superficies del diseño 2 se comportan de la siguiente forma; El SP vs. T y P al igual que SP vs. T v LHSV son gobernadas por la temperatura, sin embargo existe una pequeñisima contribución at

incrementar la relación y reducir el LHSV; la superficie de S_P vs. Relación y LHSV es una combinación de ambas, ya que las menores concentraciones se alcanzan si aumentamos la relación y disminuimos el LHSV, sin embargo la superficie muestra que existe un máximo en la relación, valor que al sobrepasarlo resulta contraproducente por que en vez de reducir la concentración esta aumenta; por lo tanto no se debe sobrepasar una relación de 0.55 (en variables reducidas este valor equivale a +0.5).

En la superficie de nitrógeno total vs. temperatura y relación, la variable que gobierna es la temperatura; en N_T vs. T y LHSV existe una combinación de ambas, es decir al trabajar con temperaturas altas y espacios bajos se minimiza la concentración de nitrógeno total. La superficie de N_T vs. relación y LHSV se gobierna por una combinación, es decir relaciones bajas y LHSV también bajos. En las tablas [18] a la [22] se proporciona el resumen de las variables que gobiernan en las superficies a las respuestas.

TABLA 18

Responser	Combinale Enloyeraat	A realde que stacina
	Temperatura, Presión	Temperatura
SPRODUCTO	Temperatura, LHSV	Temperatura
	Presión, LHSV	Combinación
	Temperatura, Presión	Temperatura
N _{TOTAL}	Temperatura, LHSV	Temperatura
	Presión, LHSV	Combinación
	Temperatura, Presión	Temperatura
NRÁSICO	Temperatura, LHSV	Temperatura
	Presión, LHSV	Combinación

Variables que Gobiernan la Respuesta del Diseño Experimental No. 1

TABLA 19

Variables que Gobiernan la Respuesta del Diseño Experimental No. 2

Responsta	Grados de Libertad	A greatile que sobre ruit	
	Temperatura, Relación	Temperatura	
SPRODUCTO	Temperatura, LHSV	Combinación	
	Relación, LHSV	Combinación	
	Temperatura, Relación	Temperatura	
NTOTAL	Temperatura, LHSV	Combinación	
	Relación, LHSV	Combinación	

Variables que Gobiernan la Respuesta del Diseño Experimental No. 3

Respuesta	Crudos de Libertad	Variable que gobierna
	Temperatura, Relación	Temperatura
SPRODUCTO	Temperatura, LHSV	Temperatura
	Relación, LHSV	LHSV
	Temperatura, Relación	Temperatura
NTOTAL	Temperatura, LHSV	Temperatura
-	Relación, LHSV	Combinación
	Temperatura, Relación	Combinación
Naásico	Temperatura, LHSV	Temperatura
	Relación, LHSV	LHSV

Las variables que gobiernan la respuesta dei diseño experimental No.1 se resumen en la tabla [18], en dicha tabla se puede apreciar que para los tres contaminantes, es decir azufre producto, nitrógeno total y nitrógeno básico; cuando los grados de libertad son: temperatura-presión-y temperatura-LHSV, la variable que gobierna es la temperatura y cuando los grados de libertad son presión-LHSV, ninguna de las variables domina ala otra si no que se produce una combinación de ambas.

TABLA 21

Variables que Gobiernan la Respuesta del Diseño Experimental No. 4

Respuesta	Gradus de Luberrad	Variable que soluciona
	Temperatura, Tamaño	Temperatura
SPRODUCTO	Temperatura, LHSV	Temperatura
	Tamaño, LHSV	Combinación
	Temperatura, Tamaño	Temperatura
NTOTAL	Temperatura, LHSV	Temperatura
	Tamaño, LHSV	LHSV
	Temperatura, Tamaño	Temperatura
NBÁSICO	Temperatura, LHSV	Temperatura
	Tamaño, LHSV	LHSV

TABLA 22

Variables que Gobierna n la Respuesta del Diseño Experimental No. 5

Responses	Spannis de Enherrad	Variable que jobiceux	
	Temperatura, Tamaño	Temperatura	
SPRODUCTO	Temperatura, LHSV	Temperatura	
i i	Tamaño, LHSV	Combinación	
	Temperatura, Tamaño	Temperatura	
NTOTAL	Temperatura, LHSV	Temperatura	
	Tamaño, LHSV	LHSV	
	Temperatura, Tamaño	combinación	
NBASICO	Temperatura, LHSV	Temperatura	
	Tamaño, LHSV	LHSV	

En la tabla [19] se muestran las variables que gobiernan la respuesta del diseño experimental No.2, en dicha tabla se aprecia que para el azufre producto cuando se tienen como grados de libertad a la temperatura y a la presión, la variable que gobierna es la temperatura; cuando los grados de libertad son temperatura-LHSV y relación atómica-LHSV, ninguna variable se impone sino que se produce una combinación la cual determina la concentración del azufre en el producto. El nitrógeno total observa exactamente el mismo comportamiento.

En las tablas [20], [21]y [22] cuando en los grados de libertad se tiene a la temperatura, esta variable es la que gobierna a la respuesta ya sea azufre producto, nitrógeno total o nitrógeno básico: a exención del nitrógeno básico en el diseño experimental No.3 y No.5 para el cual la temperatura y la relación atómica se combinan para determinar la respuesta

CONCLUSIONES

De el estudio de los modelos cinéticos (abla [11] (anexo No.5) se concluye que el modelo codificado como MS-4 representa con mayor fidelidad a las reacciones de Hidrodesulfuración, ya que presenta el mayor coeficiente de regresión para un orden de reacción igual a 1.7, con dicho modelo se pueden hacer pródicciones sobre la concentración de azufre a diferentes temperaturas y espacios velocidad.

De el mismo estudio se concluye que el modelo codificado como MN-1 representa apropiadamente la cinética de Hidrodenitrogenación; empleando un orden de reacción igual a la unidad, dicho modelo permite hacer predicciones sobre la concentración de nitrógeno a distintas temperaturas y espacios velocidad.

El estudio de la relación atómica y tamaño del soporte arrojo las siguientes conclusiones:

- Para obtener concentraciones mínimas de azufre producto se debe emplear un catalizador con formulación Co/Mo, elaborado con una relación atómica de 0.55 e impregnando en un soporte de 1/20 de diámetro de pulgada.
- Para reducir al máximo las concentraciones de nitrógeno total se debe trabajar con un catalizador Co/Mo elaborado con una relación atómica de 0.4 e impregnado en un soporte de tamaño 1/10 de pulgada.
- Las mínimas concentraciones de nitrógeno básico se obtienen mediante un catalizador de formulación NUMo elaborado con una relación atómica de 0.5 e impreganado en un soporte de 1/15 de pulgada.
- · Las formulaciones Ni/Mo son superiores a las formulaciones Co/Mo en HDN de nitrógeno básico.
- Las formulaciones Co/Mo son superiores a las formulaciones Ni/Mo en HDN de nitrógeno total y en la Hidrodesulfuración.

En cuanto a la preparación de catalizadores se observo el siguiente comportamiento.

 La preparación de un catalizador Ni/Mo requiere de una sola impregnación, en tanto que las formulaciones de Co/Mo deben elaborarse por medio de una doble impregnación cuando se requierem relaciones atómicas superiores a 0.3, ya que si se realiza una sola impregnación, la solución precipita.

De el análisis en las superficies de respuesta se concluye que:

- · La variable que gobierna el proceso de Hidrotratamiento es la Temperatura.
- La presión entre 56 y 70 kg/cm² influyen significativamente en la disminución de las concentraciones de los contaminantes.
- El espacio velocidad tiene una influencia en la disminución de los contaminantes, si se trabaja a LHSV bajos, ayuda en la reducción de las concentraciones.
- Un incremento en la relación atómica no disminuye de manera significativa, ni el azufre producto, ni el nitrógeno total o básico, por lo tanto no es recomendable trabajar con relaciones diferentes a 0.55 para formulaciones Ce/Mo y 0.5 para formulaciones Ni/Mo.
- Al disminuir el espacio velocidad y manteniendo las demás variables constantes, el grado de Hidrotratamiento se incrementa, debido al aumento del tiempo de residencia en el reactor, sin embargo al operar a un espacio velocidad bajo se dificulta el control de la temperatura de reacción, debido a la exotermicidad de las reacciones.
- Los modelos obtenidos por los diseños experimentales nos permiten hacer interpolaciones dentro de los rangos de operación trabajados, con una excelente aproximación, de los datos experimentales

BIBLIOGRAFÍA

(1)Barboutcau G; Laguerie C; Cassimatis D. y Chavarie C; "Recherche experimentale desconditions optimales de mise en œuvre de L'anmoxydation du propéne en acrylonitrile en lit fluidisé". Bulletin de la Société Chimique de France; p. p1203-1210, 1982.

(2)Bermúdez M. O. y Moreno L. O. "Mejoramiento en la actividad catalítica en el proceso de hidrotratamiento de destilados intermedios por la adición de fósforo al catalizador". XX Convención Nacional del IMIQ Acapuelos Gro. 1980.

(3)Curran G.P. Struck R.T y Gorin E. "Mechanism of the hydrogen-transfer process to coal and coal extract". Ind. Eng. Chem. Proc. Des. vol. 6, No. 166, 1967.

(4)Fisher D. A; Barker G. P; Lilburne G. M. y Gormley K. P. "Diesel hydrodesulphurisation- a practical correlation for catalysts activity". Catalysts in Petroleum Refining, p.p 473-496, 1989.

(5)Hanika J. y Sporka K. * Catalysts particle shape and dimension effects on gas oil hydrodesulphurization*. Chemical Engeneering Science. vol. 47, No. 9-11, p.p 2739-2744, 1992.

(6)Henry H. C.y Gilbert J. B. Scale up of pilot plant for catalytic hydroprocessing ". Ind. Eng. Chem. Proc. Des. Dev. vol. 12, No. 328, 1973.

(7)Kedy W, M; Jerus P, D; Denis E, K, y Hausberger A. L. "Preparation Techniques for Hydrotreating Catalys and Their influence on the Location of the Metal Oxides and Performance". United Catalysts Incorporate; Lousville, K.Y. USA, p., IV 403-IV 411.

(8)Krasuk J. H; Andreu P. y Barreta N. "Desulfuración y demetalización de crudos pesados y residuos". Acta Científica Venezolana. vol. 25, p.p. 49-74, 1974.

(9)Marvin J.F. Andrew V.P. Bayer S.H. y Chiu N.S. "Co/Mo Alumina Catalyst Structure Determination by EXAFS. III The Catalysts: Their Preparation, Characterization and HDS Activities", Journal of Catalysis, vol. 98, pp. 51-63, 1986.

(10)Mclean D. D; Sambi I. S; y Mann R. S. "Statical design and analysis catalysts". AIChE Symposium cn Hydroprocessing Kinetics. p.p 1-46, 1985.

(11)Montgomery C.D. "Diseño y análisis de experimentos". Grupoo Editorial Iberoamérica. México.1993.

(12)Nace M. D, Voltz S. E. y Weekman V. "Aplication of a kinetic model for catalytic cracking". Ind. Eng. Chem. Proc. Des. Dev. vol. 10, No. 4, p.p 530-547, 1971.

(13)Paraskos J.A; Frayer y Shah Y.T. "Effect of holdup incomplete catalytic wetting and backmixing during hydroprocessing in trickle bed reactors". Ind. Eng. Chem. Proc. Des. Dev. vol 14, No. 315, 1975.

(14)Prins R. y De Beer H. J. "Structure and funtion of the catalyst and the prometer in Co-Mohydrodesulfurization catalysts". Catal. Rev.-Sci. Eng. vol. 31, No. 1 y 2, p p 1-41, 1989.

(15)Rosal R; Diez F. V. y Sastre H. "Catalizadores de hidrotratamiento". Ingeniería Química, vol. 25, No. 291, p.p 175-181, 1993.

(16)Simson H. D. "Application of Sanderson's principles to catalysis: a model reaction system for hydrodenitrogenation". Catalysis, p.p. 399-413, 1986.

página 28

į
ESTA TESIS NO DEBE Salir de la biblioteca

(17)Stangelan E. B. "A kynetic model for the prediction of hydrocracker yields". Symposium on Advances in Distillate and Residual Oil Technology Presented Before the Division of the Petroleum Chemistry INC. American Chemical Society; New York Meeting, p.p G16-G32, 1972.

(18)USA Patent 5,215,954 jun. 1, 1993.

(19)USA Patent 5.221,656 jun. 22, 1993.

(20)Yen C. L. y Wrench E. R. "Reaction kinetic correlation equation predicts fluid catalytic cracking coke yields". Oil and Gas Journal, 1988.

(21)Yui S.M. y Sanford C.M. "Mild hydrocracking of bitumen-derived coker and hydrocracker heavy gas oils: kinetics, product yields, and product properties". Ind. Eng. Chem. Res. vol. 28, No.9, p.p. 1278-1284, 1989.

(22)Yui S.M. "Hydrotreating of Bitumen-Derived Coker Gas Oil: Kinetics of Hidrodesulfurization, Hidrodenitrogenacion and Mild Hydrocracking and Correlations to Predict Product Yields and Properties". AGSTRA Journal of Research, vol. 5; pp. 211-224; 1989.

(23)Zárate L.R. "Catalizadores para hidrotratamiento". Boletin Informativo del Instituto Mexicano Del Petróleo No.67, 1987.

TESIS SIN PAGINACION

COMPLETA LA INFORMACION

ANEXO 1

DESCRIPCIÓN DE MODELOS CINÉTICOS

TABLA 7

Resumen de Modelos Cinéticos

Clave	Modelo	Clave	Modelo
MS-1	$A_{\rm S} = \frac{\left[\left(\frac{1}{0.93S_p}\right) - \left(\frac{1}{S_F}\right)\right]^* (LHSV)}{K^* P^* e^{R_T^*}}$	MS-6	$K_{S} = LHSV \left[\left(\frac{1}{S_{0}}\right)^{0.5} - \left(\frac{1}{S_{1}}\right)^{0.5} \right]$
MS-2	$\frac{K}{WHSV} = \frac{S_{P}^{(l-n)} - S_{P}^{(l-n)}}{(n-1)}$	MS-7	$K_{0} = \frac{9835}{T} - \log \left\{ \frac{P_{H_{1}}}{\nu \left(\frac{1}{S_{P}} - \frac{1}{S_{P}} \right)} \right\} = 0.11D$
MS-3	$\frac{K}{2LHSV} = \frac{1}{C_p^{(0.5)}} - \frac{1}{C_F^{(0.5)}}$	MN-1	$A_{N} = \frac{\left[Ln\left(\frac{N_{F}}{0.93N_{P}}\right)\right](LHSV)}{K_{N}Pe^{\frac{-E}{RT}}}$
MS-4	$R = \frac{LHSV}{0.7} \left\{ \frac{1}{S_P^{0.7}} - \frac{1}{S_F^{0.7}} \right\}$	MN-2	$Ln\frac{C_F}{C_P} = \frac{K}{LHSV}$
MS-5	$\log \frac{C_{AO}}{C_{AP}} = KL^{V3} LHSV^{-2/3} d^{-2/3} r^{V3}$	MA-1	$Ln\frac{C_F}{C_P} = \frac{K}{LHSV}$

resumen de las tablas 23 y 24 del anexo No.1

TABLA 23

Modelos Cinéticos de Hidrodesulfuración

Clave	Modeto	Variables	Comentarios	Referencia
MS-1	$A_{S} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0005S_{P} \end{pmatrix} - \begin{pmatrix} 1 \\ S_{P} \end{bmatrix} * (LHSP) \\ K^* P^* e^{\frac{1}{2}T}$	As: Actividad a la desulfuración. Ss: Concentración de azufre en el producto, % peso. Ss: Concentración de azufre en la carga, % peso. LHSV: Espacio velocidad, hr ⁴ . K: Constante para la desulfuración. P: Presión total, psig. E: Energia de activación para la desulfuración, 83,300 Btu/lb-mol. T: Temperatura absoluta en R	Modelo que determina la actividad a la HDS, empleando un orden de reacción igual a 2.0	US PATENT 5,221,656. Junio 22 de 1993.
MS-2	$\frac{K}{WHSV} = \frac{S_p^{(1-a)} - S_p^{(1-a)}}{(n-1)}$	SF: Azufre en la carga, % peso. Sp: Azufre en el producto en % peso. n: Orden de reacción para intervalos de 330-340 °C usar 2.0 y para intervalo de 310-320 °C emplear 2.75. K: Constante de actividad catalítica. WHSV: gr. de alimentación/hr/gr. de catalizador.	Modelo para HDS, los autores proponen ordenes de reacción que dependen de la temperatura.	Journal of Catalysis, vol.98, pp 51-63, 1986
MS-3	$\frac{K}{2LHSV} = \frac{1}{C_P^{(0.5)}} - \frac{1}{C_F^{(0.5)}}$	C _P : Concentración de azufre en el producto, ppm. C _F : Concentración de azufre en la alimentación. ppm. LHSV: Espacio velocidad, hr ¹ . K: Constante de actividad aparente.	Modelo para calcular la actividad a la HDS, empleando un orden de reacción de 1.5	Aöstra Journal of Research, vol. 5, pp. 211-224, 1989.

Clave	Modelo	Variables	Comentarios	Referencia
MS-4	$R = \frac{LHSV}{0.7} \left\{ \frac{1}{S_{p}^{0.7}} - \frac{1}{S_{p}^{0.7}} \right\}$	R: Constante de actividad a la HDS, Sp: Concentración de azufre en el producto, ppm. Sp: Concentración de azufre en la carga, ppm. LHSV: Espacio velocidad, 1/t.	Modelo para la HDS, utiliza un orden de reacción igual a 1.7	US PATENT 5,215,954, Junio 1 de 1993.
MS-5	$\log \frac{C_{AO}}{C_{AP}} = k L^{Y3} LHSV^{-2/3} d^{-2/3} r^{V3}$	L: Longitud del lecho catalitico, fl. LHSV: Espacio velocidad, fl ³ /hr/fl ³ . d: Diàmetro de la partícula, fl. R: Viscosidad cinemática, fl ² /hr. C_{A0} : Contenido de azufre en la alimentación, % peso. C_{A7} : Contenido de azufre en el producto, % peso. K: Actividad catalítica a la HDS.	La actividad catalitica y el grado de reacción se incrementan si aumenta la longitud del lecho. Pero se reduce si el LHSV o el tamaño de la particula aumenta.	American Chemical Society. Manual de proceso.
MS-6	$K_{S} = LHSV \left[\begin{pmatrix} 1 \\ S_{0} \end{pmatrix}^{0S} - \begin{pmatrix} 1 \\ S_{l} \end{pmatrix}^{0S} \right]$	K ₆ : Constante de actividad para HDS. S ₀ : Concentración de azufre en el producto. S ₁ : Concentración de azufre en la alimentación. LHSV: Espacio velocidad, hr ¹ .	El modelo se aplica para un orden de reacción igual a 1.5.	United Catalyst Inc. Manual de Proceso.
MS-7	$K_{0} = \frac{9835}{T} - \log \left\{ \begin{array}{c} P_{H_{1}} \\ P_{H_{2}} \\ P_{H_{2}}$	K ₀ : Pseudo actividad del catalizador para HDS. T: Temperatura en °F. P _{HE} : Presión parcial de hidrógeno, psia. V: Volumen de carga en BPSD. S _P : Contenido de azufre en el producto, % peso. S _F : Contenido de azufre en la carga, % peso. D: Gravedad API de la alimentación.	El modelo toma en cuenta las condiciones de operación y propiedades de la carga.	Catalysts in Petroleum Refining, pp. 473-498, 1990.

TABLA 23 (Continusción) Modelos Cinéticos de Hidrodesulfuración

TABLA 24

Mocelos Cinéticos de Hidrodenitrogenación.

Clave	Modelo	Variables	Comentarios	Referencia
MN-I	$A_{N} = \frac{\left[Ln\left(\begin{array}{c}N_{F}\\0.93N_{F}\end{array}\right)\right](LHSV)}{K_{N}Pe^{KT}}$	A _N : Actividad a la HDN. N _F : Concentración de nitrógeno en la alimentación, ppm. N _F : Concentración de nitrógeno en el producto, ppm. N _K : Factor de HDN en la alimentación. E: Energia de activación a la HDN con un valor de 45,400 Btu/Lb-mol. T: Temperatura absoluta en R. LHSV: Espacio Velocidad. P: Presión parcial de H ₂ . R: Constante de los gases 8.314 Jmol ⁻¹ R ⁻¹ .	Modelo para determinar la HDN de destilados intermedios con un orden de reacción de 1.0.	US PATENT 5,221,656. Junio 22 de 1993.
MN-2	$Ln\frac{C_F}{C_P} = \frac{K}{LHSV}$	C ₈ : Concentración de nitrógeno en la carga, ppm. C ₈ : Concentración de nitrógeno en el producto, ppm. K. Constante de actividad a la HDN. LHSV: Espacio velocidad, hr ⁻¹ .	El modelo utiliza un orden de reacción igual a 1.0	US PATENT 5,215,954. Junio 1 de 1993.

ANEXO 2

ESTUDIO DEL TAMAÑO DEL SOPORTE Y RELACIONES ATÓMICAS

		4 - C 2 4				11 A.	an trì a		
Catalizador						HD-6		110 8	1111-12
Densidad g/ml	0.63	0.636	0.638	0.664	0.66	0.648	0.618	0.644	0.67
Peso Esp. 20/4	0.8621	0.8621	0.8621	0.8621	0.8621	0.8621	0.8621	0.8621	0.8621
°C		• 1							
Azufre % peso	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
N ₂ total ppm	534	534	534	534	534	534	534	534	534
N ₂ básico ppm	148	148	148	148	148	148	148	148	148
Rel. H ₂ /HC	2500	2500	2500	2500	2500	2500	2500	2500	2500
Presión Kg/cm ²	56	56	56	36	56	56	56	56	56
Temp. °C	320-360	320-360	320-360	320-360	320-360	320-360	320-360	320-360	320-360
LHSV	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
WHSV	2.737	2.711	2.703	2.597	2.612	2.661	2.790	2.667	2.667
vol. cat. ml.	100	100	100	100	100	100	100	100	100
Peso cat. g.	63	63.6	63.8	66.4	66	64.8	61.8	64.4	67
Mo:	10	10	10	10	10.71	9.76	10	10	10
Ni:	1.85	2.5	3	3.7	4.48	•	•	·	•
Co:	-	•	•	•	•	1.71	2.5	3	3.7
Relación	0.3	0.4	0.5	0.6	0.7				
Ni/Mo									
Relación						0.3	0.4	0.5	0.6
Co/Mo		·							
Diámetro	1/10	1/10	1/10	1/10	1/10	1/10	1/10	1/10	1/10
partícula									
inches									
Area	203	166	197	185	195	260	254	264	184
superficial									
m²/g									

Estudio de la Relación Atómica

Resultados de azufre en el producto para LHSV de 2.0

T\°C	HDS-1	HDS-2	HDS-3	HDS-4	HDS-5	HDS 6	1105-7	HDS 8	11DS 9
320	0.4845	0.4643	0.4431	0.4810	0.3336	0.2191	0.4223	0.4243	0.2557
330	0.3743	0.3480	0.3273	0.3615	0.2509	0.1784	0.2945	0.2822	0.1987
340	0.2799	0.2511	0.2324	0.2611	0.1843	0.1445	0.1949	0.1756	0.1525
350	0.2034	0.1753	0.1595	0.1822	0.1328	0.1165	0.1235	0.1034	0.1159
360	0.1443	0.1191	0.1065	0.1236	0.0942	0.0937	0.0757	0.0585	0.0875

Resultados de nitrógeno total para LHSV de 2.0

N ₂ tot.	HDS-11	HDS-2	HDS-3	HDS-4	sHDS-6	HDS-7	HDS-8	HDS-9
320	442.8	466.2	463.6	445.4	392.2	410.1	468.8	491.5
330	424.4	443.4	432.2	416.0	354.2	378.6	441.3	467.8
340	40.5	415.0	309.9	380.1	311.0	342.5	405.2	433.7
350	380 3	380 7	339.0	337.6	263.6	302.2	359.9	387.0
360	354.9	340.4	277.6	289.5	214.1	259.0	305.6	326.5

N: basico	11108-2	HDS-3	HDS-4	1105-5	HDS-9
320	140.96	132.33	131.17	124.02	133,66
330	133.12	120.70	123.85	112.49	124.55
340	118.25	102.82	114.17	97.29	111.09
350	93.04	78.15	101.86	78.59	92.55
360	57.92	49.27	86.96	57.66	69.46

Resultados de nitrógeno básico para LHSV de 2.0

Resultados de azufre en el producto para LHSV de 2.25

Azofre	HDS-1	HDS-2	HDS 3	HDS 4	HDS 5	HDS-6	HDS. 7	11D5-8	HDS 9
320	0.5310	0.5103	0.4846	0.5274	0.3744	0.2515	0.4672	0.4692	0.2912
330	0.4172	0.3987	0.3677	0.4038	0.2860	0.2067	0.3329	0.3197	0.2290
340	0.3173	0.2863	0.2659	0.2971	0.2131	0.1688	0.2249	0.2035	0.1778
350	0.2342	0.2032	0.1856	0.2109	0.1556	0.1372	0.1452	0.1223	0.1366
360	0.1686	0.1401	0.1259	0.1453	0.1118	0.1112	0.0904	0.0703	0.1041

Resultados de nitrógeno total para LHSV de 2.25

N2 FOLM	HDS-1	HDS-2	1108-3	HDS-4	1105-6	HDS-7	11105-8	HDS-9
320	452.2	473.3	470.9	454.4	405.8	422.3	475.7	496.0
330	435.4	452.6	442.5	427.7	370.8	393.3	450.7	474.7
340	416.3	426.8	404.7	394.7	330.2	359.8	417.8	443.9
350	394.9	395.3	356.5	355.3	285.1	322.0	376.0	401.1
360	371.3	357.9	298.5	309.9	237.0	280.7	325.2	344.9

Resultados de nitrógeno básico para LHSV de 2.25

Nº RASIL OF	HDS-2	HDS-3	HDS-4	ĤDN-5	HDS.9
320	141.72	133.98	132.95	126.48	135.18
330	134.70	123.47	126 33	115.98	126.96
340	121.23	107.07	117.51	101.93	114.69
350	97.97	83.90	106.18	84 32	97.51
360	64.28	55.68	92.25	64 03	75.56

Azufre	HDS-1	HDS-2	HDS-3	HDS-4	HDS-5	1105-6	HDS-7	IIDS-8	1105-9
320	0.5732	0.5523	0.5302	0.5696	0.4127	0.2828	0.5084	0.5104	0.3252
330	0.4570	0.4286	0.4058	0.4432	0.3196	0.2344	0.3693	0.3554	0.2586
340	0.3528	0.3200	0.2983	0.3314	0.2414	0.1930	0.2542	0.2310	0.2029
350	0.2643	0.2306	0.2115	0.2390	0.1785	0.1581	0.1669	0.1414	0.1574
360	0.1928	0.1613	0.1454	0.1670	0.1296	0.1289	0.1054	0.0826	0.1210

Resultados de azufre en el producto para LHSV de 2.5

Resultados de nitrógeno total para LHSV de 2.5

N2101 M	HDS-1	HDS-2	IIDS-3	HDS-4	HDS-6	HDS-7	IIDS-8	HDS-9
320	459.7	479.0	476.9	461.8	417.1	432.3	481.2	499.7
330	444.3	460.2	450.9	437.3	384.5	405.5	458.4	480.4
340	426.3	436.5	416.1	406.8	346.5	374.3	428.2	452.2
350	407.0	407.3	371.2	370.0	303.6	338.7	389.4	412.7
360	385.1	372.5	316.4	327.2	257.1	299.4	341.7	360.3

Resultados de nitrógeno básico para LIISV de 2.5

N2 BASICO	h HDS-2	*S ³ HDS-3	a's HDS-4	₩ HDS-5 g	HDS-9
320	142.34	135.32	134.38	128.48	136.41
330	135.97	125.72	128.35	118.84	128.92
340	123.68	110.59	120.25	105.80	117.65
350	102.09	88.80	109.76	89.20	101.66
360	69.87	61.39	96.72	69.93	80.81

Catabzadur	HDS-A	HDS-B	HDS C	HDS D
Densidad g/ml	0.7	0.7	0.6405	0.6895
Peso Esp. 20/4 °C	0.8621	0.8621	0.8621	0.8621
Azufre % peso	1.36	1.36	1.36	1 36
N ₂ total ppm	534	534	534	534
N ₂ básico ppm	148	148	148	148
Rel. H ₂ /HC	2500	2500	2500	2500
Presion Kg/cm ²	56	56	56	56
Temp. °C	320-360	320-360	320-360	320-360
LHSV	2.0	2.0	2.0	2.0
WHSV	2.463	2.463	2.692	2.501
vol, cat. ml.	100	100	100	100
Peso cat. g.	70	70	64.05	68.95
Mo:	10.5	10.5	13	13
Ni:	0	0	3.5	3.5
Co:	2.35	2.35	0	0
Relación Ni/Mo				
Relación Co/Mo	0.5	0.5		
Diámetro partícula(inches)	1/20	1/10	1/20	1/10
Forma	CDS	CDS	CDS	CDS

Estudio del Tamaño del Soporte

CDS: Computers Desing Shape

Resultados de azufre en el producto para LHSV de 2.0

Azufre	HDS2A	HDS-B	HDS-C	HDS D
320	0.1419	0.2059	0.4352	0.5624
330	0.0886	01256	0.3350	0.4506
340	0.0540	0.0736	0.2506	0.3504
350	0.0324	0.0419	0.1829	0.2650
360	0.0193	0.0235	0.1308	0.1659

Resultados de nitrógeno total para LHSV de 2.0

N. C. C.	HDS A	HDS B	HDS C	1105/0
320	188.9	187.1	442.6	447.5
330	159.6	154.6	428.1	423.0
340	132.2	124.3	412.2	393.8
350	107.1	97.1	395.0	359.9
360	84.7	73.5	376.4	321.6

N. Basher	HDS-A	HDS B	HDS (HDS D
320	61,62	58.83	113.00	126.24
330	48.3	49,18	105.68	116.01
340	35.78	40.01	97.51	102.46
350	24.80	31.58	88.57	85.55
360	15.89	24.12	79.00	66.06

Resultados de nitrógeno básico para LHSV de 2.0

Resultados de azufre en el producto para LHSV de 2.25

Azufre	' RDS-A	11DS-B	HDS-C	
320	0.1659	0.2369	0.4805	0.6098
330	0.1053	0.1476	0.3759	0.4963
340	0.0650	0.0879	0.2857	0.3921
350	0.0394	0.0508	0.2116	0.3012
360	0.0237	0.0287	0.1534	0.2256

Resultados de nitrógeno total para LHSV de 2.25

N2 LOT M	HOS-A .	HDS-B	HDS-C	st ∝ nDS-D
320	212.0	210.2	451.9	456.4
330	182.5	177.4	438.8	434.1
340	154.3	146.2	424.2	407,4
350	128.0	117.4	408.4	376.0
360	103.9	91.6	391.3	340.2

Resultados de nitrógeno básico para LHSV de 2.25

No wish of the	HDS-A	a h HDS-B Kat	HDS-C. W	St. HDS-D 4
320	67.92	65.18	116.44	128.49
330	54.70	55.59	109.71	119.20
340	41.90	46.27	102.14	106.73
350	30.25	37.50	93.76	90.92
360	20.37	29.50	84.71	72.25

11455 45
1105-12
0.6522
0.5381
0.4311
0.3358
0.2550

Resultados de azufre en el producto para LHSV de 2.5

Resultados de nitrógeno total para LHSV de 2.5

N: IOTAL ST	-n HDS-A	L HDS-B	HDS-C	* HDS-D
320	232.5	230,7	459.5	463.6
330	203.2	198.1	447.5	443.2
340	174.7	166.4	434.1	418.5
350	147.6	136.6	419.5	389.4
360	122.4	109.3	403.7	355,3

Resultados de nitrógeno básico para LHSV de 2.5

N2 BASICO	HDS-A	HDS-B	HDS-C	HDS-D
320	73.42	70.75	119.26	130.32
330	60.42	61.31	113.05	121.80
340	47.53	51.97	106.00	110.28
350	35.45	43.02	98.14	95.46
360	24.83	34.67	89.57	77 62

ANEXO 3

GRÁFICAS DE LOS RESULTADOS EXPERIMENTALES

FES ZARAGOZA

EJE KJESTRA REFLEXK

UNAM FES ZARAGOZA LOH ×

ELE DE NUESTRA REFLEXION

ś

UNAM FES ZARAGOZA

ιO

LO HUMANO EJE DE NUESTRA REFLEXION

FES ZARAGOZA

EJE DE NUESTRA REFLEXION

UNAM

FES

LOHUMA

E.E.

ANEXO 4

SUPERFICIES DE RESPUESTA

DE NUESTRA REFLEXION

/

UNAM

ZARAGOZA

E XE

S.AL LESTIA MED EXIL

ANEXO 5

EVALUACIÓN DE MODELOS CINÉTICOS

		-			0 den =		101	101	101		101					V CAT, m	8
Ternper *	Sp. %per	IN PPM	Amm %p	Veccesidad	LHSV	K HDS-1	K HDS-2	K HDS-3	K:HDS-4	K.HDS-S	K.HDS-6	K-HDS-7	K-HON-1	K:HDN-2	K:AROM.	P.OT. 9	52.83
339.0	0.11	0 145.0	0.06	0.228	1.861	7 03E +14	7.859	20.489	4097.790	0.152	40.978	17.630	2366053	1.747	6110	P.E.204 °C	0.8466
9 6 02	110	1730	301	0.226	1991	5 59E + 14	7.659	20 489	4097.790	0.152	40.978	17,496	1920021	1 415	0.173	PKg/cm 2	8
980	900	1 141 0	30.2	9220	1 829	6.64E+14	8658	26,330	5265.917	0.192	52.059	17,319	1711319	1.845	0.171	Sbt *pes	1.17
380	80	3 1330	30.3	0 226	1 976	7 BOE + 14	10.062	28 275	5654,938	0.205	56.549	17,302	1964636	2.006	0.160	Not ppm	282
3000	000	1 120.0	5.00	922 0	1.829	7.745+14	11,837	32.473	6494.673	0 237	64.947	17.260	1458092	2156	0.165	Ammilians	8
198	80	10801	* 0E	0 226	1 917	8 69E + 14	12422	33.865	6772 935	0 247	67 728	17,300	1527720	2 327	0.157	Ref. H2HC	2500
3696	10.0	0 86 8	30.5	0.226	1.893	7.906+14	13.647	36.739	7347,804	0,269	73.478	17 164	1272639	2 500	0.149	Carge mith	200
000	10.0	2 980	306	0.220	1 940	8436+14	13,838	34.178	7835.544	0.277	76.365	17.179	1311567	2,602	0.148	142 141	8
																TIE °C	8
						Determinaci	nd ed eb no	oductos (va	bres calcuta	dos); por m	edio de los i	nodelos ana	zados			TFE. °C	367
						i						abrea calcu	lactos			U-SV	8
																WHSV	321
			i			Sp HDS- 1	Sp.HDS-2	Sp HDS-3	Sp:HDS-4	S-SOH:dS	Sp. HOS-6	Sp:HDS-7	NH HON-1	NEHDN-2	AROM		8
		0 E	С П П П	с С		0 110003	0110001	0 00000	418294 8	0.110565	0.103656	110	145	145	8	8	o
L						0 110003	011000	0 00000	418294 8	0.110565	0.103856	0.11	6/1	624	ŝ	ÿ	ŝ
			_			0.061002	0 06100	0 00000	210704.1	0.061389	0 074982	190 0	141	1	202	4	0
				+	┦	0 053002	0.05300	0 00000	178940	0.053352	0.069754	0.053	133	133	30.3	×	٥
			_	Ť	~	0 031001	001000	0 00000	82968 75	0.031243	0.054301	160 0	120	8	8	ä	ő
-				/		0.026001	0 02600	0 00000	78242 03	0.028214	0.050327	0.036	100	8	ŝ	C.R.	0.3261
				ŀ		013001	0.01800	0 00000	51062 55	0 018163	0 043293	0.018	8	8	8	11	0.005300.0
			ł	_	_	0.017	0.01700	0,0000	47786.34	0.017155	0 0423322	0.017	8	8	30.6	V.BSPD	22000
	-			_	1											10	0.
lot		ł			_	Errores dete	Trunnados pa	Ina be respe	ictios mode	NOR						AP:	12
•^		ł				6200 0	5 QE - 16	8	3.65+08	0.51347	5 585432	1.85-17	1.96-17	0	ľ		
9	1	-		ſ	F	0 0029	5 0E - 16	8	3 6E + DB	0.51347	5.585432	1.75-16	1.05-17	•	Î		
	+				_	6200.0	0	81	3.55+06	0 837445	22 75672	125-16	9.8E - 18	9.6E-18	5.75-10		
. <u>1</u>	-					0 0029	2 OE-16	8	3.4E+08	10 663394	31.61081	2.05-16	0	0	•		
1	1	- 7 - 7	X d reis	3	3	0.0029	1.35-16	100	3.1E+08	0 784099	75.1054	2.2 - 17	5.86-18	1.22-17	•		
1	NODELO F	HDS AL MOD	ELO HDS.	A MODEL	9-SCH C	0.0029	51E-18	10	3.0E+08	0 823662	S0.56472	0.5E-10	6.E-18	6.4E-10	•	-	
Contractor inc						0 0020	2 9E-18	8	2.8E+08	0.906784	140.5182	1.05-16	7.1E-18	7.1E-18	5.76-18		
						0 00200	2 BE-16	100	2.6€+08	0.912967	149 0098	1.25-10	1 4 - 17	7.26-18	٥		
					MEDIAS	0.0029	3.0E-18	8	3.3€+06	0.718406	65.47456	1.0E-10	9.0E-16	5.2E-10	1.45-18		
						pendientes	de la cuna	4			: 						
						-2 5656	-7.83531	-8.02259	- 8 02259	-7,83611	- 8 02259	0 255255	6.79638	-631317	2,259003	_	
						ordenada a	or:gen: a										
						38,35276	14 83636	16.14049	21.43881	10.92506	16 83364	2.450689	3 490364	10 76914	-5.41028		

coeficiente de regresion: Y

- 0.65148 - 0.99727 - 0.99361 - 0.99361 - 0.99361 - 0.99569 - 0.99381 0.994573 0.9990738 - 0.99963 0.905579

Table 11