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Introducción 

La incorporación de la teoría inflacionaria a la cosmología permite un mejor entendi-

miento de algunos aspectos enigmáticos del Universo temprano y proporciona las condi-

dones físicas que permiten sembrar la estructura a grán escala del Universo. Es un con-

cepto útil para el Universo primordial pero el escenario para su desarrollo no está aún 

bien establecido. Para construir un modelo inflacionario completamente satisfactorio se 

necesita cumplir con dos tipos de requisitos: lograr una solución efectiva a los problemas 

cosmológicos que la teoría inflacionaria tiene el potencial de resolver y ser consistente con 

una teoría realista de partículas elementales. Satisfacer simultáneamente estos requisitos 

no ha resultado ser una tarea fácil. 

Los modelos inflacionarios propuestos hasta la fecha se dividen en dos clases: los mode-

los inflacionarios estándar, que aportan modificaciones al sector de materia introduciendo 

un campo escalar con un potencial efectivo particular, y los que introducen modificaciones 

también en el sector gravitacional. Este es el caso del recientemente propuesto modelo de 

inflación extendida, basado en la teoría de la gravedad de Jordan-Brans-Dicke. 

Este trabajo vierte sobre los modelos inflacionarios que se desarrollan en el contexto de 

teorías de la gravedad del tipo escalar-tensorial. Atacamos el problema partiendo de los dos 

aspectos que abarca: modelos inflacionarios y teorías gravitacionales. Por un lado, estudi-

amos las teorías gravitacionales del tipo escalar-tensorial aplicándolas a la historia actual 

del Universo. Exponernos y delimitamos las variaciones al sector gravitacional permitidas 

por la confrontación con las observaciones. En particular, exploramos la posibilidad de 

introducir acoplamientos directos entre el campo escalar del sector gravitacional (campo 

de Jordan-Brans-Dicke) y algún tipo de materia oscura. El modelo consistente desarrol-

lado se aplica luego al Universo temprano. trat ando dc• construir un escritorio inflacionario 

exitoso en cada uno de sus pasos. 



El primer capítulo presenta un repaso de la teoría inflacionaria, sus ventajas y sus in-

convenientes, y contiene una muy breve presentación de los modelos inflacionarios estándar. 

El segundo capítulo es un repaso de la teoría de la gravedad de ,torcían-Brans-Dicke (JBD, 

de ahora en adelante) y del modelo de inflación extendida, recientemente propuesto. En el 

capítulo III se sistematizan y comparan los diferentes modelos propuestos en la litera, uva 

en el contexto de teorías escalar -tensoriales y su relación con teorías de más dimensiones. 

El trabajo original está, contenido principalmente en el capítulo IV, donde desarrollarnos 

el escenario generalizado con acoplamientos directos, generales, del campo de .113D con el 

sector invisible, y en el capítulo VI, donde establecemos cotas observacionales actuales 

sobre los acoplamientos generalizados. El capítulo V está dedicado al Universo resultante 

de estas teorías, en particular al problema de sembrar la estructura del Universo. Esta parte 

también contiene cierta cantidad de trabajo original. Se investiga que tan sensibles son 

los resultados obtenidos para las perturbaciones de densidad a los detalles de la estructura 

del modelo. Se discute el significado y las implicaciones del procedimiento empleado en los 

trabajos que abordan el problema de formación de estructura y se exploran ulteriormente 

algunas extensiones del modelo original de inflación extendida y sus consecuencias para el 

Universo post-inflacionario. 
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Descripción 

A continuación presentamos un breve resumen de la versión en inglés. Incluirá sólo 

los puntos y conceptos principales. Será particularmente breve en los capítulos de revisión 

y se extenderá un poco más en las partes originales. Las ecuaciones y definiciones de las 

cantidades involucradas, así como las referencias, se citarán de la versión íntegra en inglés. 

Existe un modelo estándar para la cosmología, basado en la teoría de Einstein y las 

observaciones de Hubble, que describe correctamente la historia del Universo por lo menos 

desde la época de la síntesis de los elementos ligeros. Ha superado hasta ahora todas las 

pruebas observacionales pero encuentra dificultades al enfrentarse con la historia temprana 

del Universo: deben imponerse condiciones iniciales muy particulares para obtener un Uni-

verso corno el que observamos actualmente. Las condiciones particulares que caracterizan 

al Universo temprano pueden resumirse de esta manera: existe un balance inicial preciso 

entre la densidad de energía y la tasa de expansión (Universo plano), con un inicio bien 

sincronizado en regiones aparentemente causalmente desconectadas del Universo (prob-

lema del horizonte). En este Universo uniforme a muy grán escala existen estructuras 

que requieren de perturbaciones de densidad que, en una época temprana, aculen como 

semillas para el crecimiento gravitacional. Estas fluctuaciones deben ser suficientemente 

grandes como para desarrollarse en las estructuras a grán escala que observamos (galaxias, 

cúmulos de galaxias y grandes regiones aparentemente vacías) y bastante pequeñas para. 

caber en una región causalmente conectada al momento de su formación. La amplitud de 

las perturbaciones de densidad está además severamente restringida por observaciones: una 

inhomogeneidad en la densidad de materia presente en el momento del desacoplamiento 

radiación-materia deja huella en la radiación de fondo de microondas. Sin embargo, la 

radiación de fondo ha resultado ser altamente homogenea e isótropa: la detección de sus 

anisotropías por COBE ("Cosmic Background Explorer") entregó el siguiente resultado: 
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áTIT 6 x 10-6  [3]. 

Los desarrollos teóricos que se extienden más allá del modelo estándar son esencial-

mente un intento de comprender las bases físicas para condiciones iniciales t án específicas. 

Una de las posibilidades que han sido exploradas es la inclusión, en una época temprana, 

de una historia térmica que se desvía del modelo estándar, dejando inalterada la evolución 

posterior del Universo. La aplicación a la cosmología cíe las teorías de transición de fase 

en física de partículas nos ofrece esta posibilidad: un campo escalar que interact úa consigo 

mismo se puede comportar a altas energías como un fluido no-clásico y actuar corno fuente 

para una expansión acelerada -inflación- del Universo. Este particular comportamiento 

termina al concluirse la transición de fase. 

La idea básica de la teoría inflacionaria es que hubo una época en la que el Universo 

sufrió una expansión exponencial como resultado de la dominación de una densidad de 

energía constante (energía del vacío en Universo de de Sitter). Esta dominación debe ser 

temporal y la energía de vacío se tiene que transformar en energía de partículas. termalizada 

y uniformemente distribuida, para recobrar el Universo de Friedmann que observamos. En 

este sentido es útil trabajar con una configuración inetaestable de un campo escalar que 

llena el Universo en expansión, y no con una verdadera constante cosmológica que refleja 

la propiedad del vacío: un campo escalar homogeneo, clásico, puede jugar el papel de un 

estado de vacío inestable y su decaimiento puede recalentar el Universo. En teorías de 

grán unificación se requieren potenciales de rompimiento de simetría para que la simetría 

existente a altas energías entre las diferentes componentes de una misma fuerza no se 

manifieste a bajas energías. El campo escalar responsable por esta transición de fase 

puede dominar el comportamiento del Universo mientras que se encuentra en el mínimo 

local de su potencial a altas energías. La figura 1 del capítulo I ¡nuestra un ejemplo de 

potencial con rompimiento espontáneo de simetría. (1.2.1) da la densidad Lagrangiana de 

un campo escalar real cr y (1.2.2) su densidad de energía potencial para que presente una 

transición de fase. 
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Se propusieron inicialmente tres modelos (que llamamos modelos estándar de inflación): 

-Vieja inflación. Guth [81 construyó el primer modelo inflacionario, basándose en nu-

merosos trabajos previos (vease rlj y Linde [51 para una breve historia del desarrollo de 

las ideas inflacionarias y su bibliografía), con un potencial de transición de fase de primer 

orden. Una barrera de potencial alrededor del mínimo local (fig. 3 del cap. I) mantiene 

atrapado al campo durante un período de tiempo en una configuración de falso vacío con 

una densidad de energía constante. La transición de fase se lleva a cabo mediante tuneko 

cuántico y se forman burbujas de verdadero vacío en un medio de falso vacío. La termal-

ización de la energía (recalentamiento del Universo) se llevaría a cabo mediante choques 

de las paredes de las burbujas. Sin embargo, el escenario presentó un problema serio: las 

burbujas de verdadero vacío (que se expanden, al máximo, a la velocidad de la luz) no 

logran percolar puesto que el medio que las separa sigue expandiéndose exponencialmente. 

-Nueva inflación j131. La inflación ocurre durante el proceso de caída lenta del inflatón 

hacia el mínimo del potencial (a0). La transición de fase es suave (de segundo orden) y 

una sola región, conectada, abarca nuestro Univerlo. Para asegurar un comportamiento 

inflacionario, el potencial efectivo tiene que ser plano cerca de a = O y, en una segunda 

fase, tiene que ser más escarpado para que la inflación termine y las oscilaciones del campo 

escalar alrededor del mínimo permitan volver a poblar el Universo con partículas producto 

de su decaimiento. 

-Inflación caótica. Este modelo, propuesto por Linde 1141, se basa en la suposición que 

la distribución inicial del campo escalar es caótica, i.e. toma diferentes valores en difer-

entes regiones del Universo. Esto se debería a que a altas energías (época de Planck) las 

fluctuaciones son tan grandes que el campo -no sabe" donde está el mínimo del potencial. 

En este caso, el potencial no es de rompimiento de simetría y tiene mínimo en a = O: 

V(a) = (\/n }a", con constantes de acoplamiento, A, pequeñas para que la evolución del 

campo sea lenta y lograr así una expansión quasi-exponencial. 

La inflación resuelve el problema del horizonte puesto que lo aleja hasta distancias aún 
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no observadas y predice un Universo plano puesto que el crecimiento exponencial del radio 

de curvatura del Universo en esa época asegura que sea hoy en día mucho más grande que el 

radio de Hubble. Resuelve además otro problema que se genera al introducir transiciones 

de fase: diluye los defectos topológicos. Su mayor logro es proporcionar un mecanismo 

de creación y amplificación de fluctuaciones de densidad. El hecho que la inflación estire 

exponencialmente las dimensiones espaciales hace posible que las fluctuaciones de densidad 

que crean la estructura a grán escala provengan de las fluctuaciones microscópicas de punto 

cero de los campos cuantizados. Las fluctuaciones del campo escalar se convierten, al final 

de la inflación, en perturbaciones de densidad de las partículas creadas en el decaimiento 

del inflatón. La teoría nos permite definir las fluctuaciones cuánticas en el momento en 

que cruzan el horizonte, es decir, cuando su longitud de onda es clec tamaño de una región 

causahnente conectada. La amplitud de las fluctuaciones es una cantidad dependiente 

del modelo escogido pero la forma del espectro es una predicción genérica de la teoría 

inflacionaria: un Universo de de Sitter nos proporciona un espectro invariante de escala 

(i.e. amplitudes independientes de la longitud de onda al cruce del horizonte). Esta 

predicción coincide razonablemente con las características de la estructura a grán escala 

del Universo. Desafortunadamente, la amplitud de las fluctuaciones resulta demasiado 

grande (por varios órdenes de magnitud) comparada con las fluctuaciones de la radiación 

de fondo. Para obtener perturbaciones de densidad observacionalmente aceptables, es 

necesario ajustar las constantes de autoacoplamiento que intervienen en el potencial a 

valores muy pequeños (A 10-12). Esto es lo que llamaremos el problema del ajuste fino. 

Puesto que los modelos inflacionarios estándar presentan, en mayor o menor medida, un 

problema de ajuste fino de alguna constante de la teoría, es necesario más trabajo para 

encontrar una representación concreta para el concepto de inflación. 

La y Steinhardt [15J desarrollaron en 1989 un modelo inflacionario basado en la teoría 

de Jarcian-Brans-Dicke de la gravedad [161 en el que la extraordinaria expansión que 

caracteriza a la inflación sigue ahora una ley de potencia. Modelos de inflación de ley de 
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potencia habían sido obtenidos anteriormente con un potencial exponencial para el inflatón 

[18]. En este nuevo modelo, llamado inflación extendida, el mismo comportamiento es el 

resultado de la dinámica de dos campos: un inflatón, con un potencial del tipo de vieja 

inflación, y un campo escalar que juega el papel de un acoplamiento gravitacional variable 

en el tiempo (4} ------ G-1). La expansión más lenta puede explicarse por el hecho que la 

densidad de energía del vacío es ahora compartida entre la expansión del Universo y la 

evolución del campo JBD. Al proponer su teoría, Brans y Dicke [16] introducen en el 

Lagrangiano para el sector gravitacional y la materia un campo escalar ‹D acoplado con el 

escalar de curvatura, corno se ve en la densidad Lagrangiana (II.1.2). El parámetro u: que 

interviene en el término cinético es una medida de la influencia adquirida por el campo 

escalar sobre el campo gravitacional con respecto al efecto de la curvatura del espacio--

tiempo. De acuerdo con el principio de Mach, la fuente del campo <I) es la distribución 

espacial de la materia. La ecuación de onda para (1) y las ecuaciones de Einstein están 

dadas por (II.1.5) y (II.1.4) respectivamente. Para la inflación extendida se resuelven estas 

ecuaciones tomando corno fuente dominante la densidad de energía del inflatón (con métrica 

de Friedmatm-Robertson-Walker (FRW) y campos espacialmente homogéneos (13 = (I)(t), 

cr = a(t)). Se obtienen las soluciones (11.3.3) y (11.3.4) para la evolución del campo JBD 

y del factor de escala del Universo. 

Los dos esquemas de inflación de ley de potencia están relacionados por una transfor-

mación conforme (vense e.g. [10)): un sector gravitacional de JBD más un inflatón con 

energía potencial constante (esquema de Jordan) se convierte, mediante la transformación 

(111.1.2) de la métrica, en un modelo con acoplamiento gravitacional constante más un 

campo con potencial inflacionario exponencial (esquema. de Einstein). En este trabajo 

seguiremos la evolución del sistema en los dos esquemas: el de Jordan, que consideraremos 

como el sistema físico, y el de Einstein donde disponemos de una serie de resultados cono-

cidos que podremos utilizar, lo cual nos será particularmente útil para el estudio de las 

fluctuaciones de densidad. 
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En inflación extendida, como en el modelo de vieja inflación, la transición de fase es 

de primer orden pero la expansión más lenta facilita la percolación de las burbujas de ver-

dadero vacío y por lo tanto la formación de una región homogenea suficientemente grande 

corno para contener nuestro Universo. Sin embargo la termalización y homogeinización de 

la energía contenida en las paredes de las burbujas más grandes siguen siendo una fuente 

de problemas. Para que estos procesos se lleven a cabo en buena medida antes de la época 

de la recombinación, se requiere de un valor bajo del parámetro de Brans-Dicke [20], [21]: 

w S 25, el cual está, en conflicto con la cota observacional actual [22]: w < 500. Esta cota 

sobre w se obtiene de medidas del retardo de señales por la gravedad solar, comparándolas 

con el valor predicho por la relatividad general. 

Debido a estas discrepancias (que llamaremos el problema (le w), tenemos que renun-

ciar al modelo más simple de inflación extendida. Diferentes variantes han sido propuestas: 

introducir un potencial para el campo JBD [23] que mantenga anclado el campo a algún 

valor de manera que el límite de baja energía de la teoría JBD coincida con la gravedad de 

Einstein, introducir un campo JBD en modelos de inflación caótica [24], [25] o nueva [25], 

dejar variar en el tiempo el parámetro de Brans-Dicke [26], [27], o permitir acoplamientos 

no-estándar del campo JBD con el inflatón. Esta última posibilidad surge de un trabajo de 

Damour, Gibbons y Gundlach [28] quienes consideran una teoría escalar--tensorial gener-

alizada con acoplamientos directos del campo de JBD con el sector de materia oscura. Los 

efectos de un campo escalar del tipo JBD mezclado con la interacción tensorial usual están 

severamente restringidos por los experimentos. Sin embargo, puesto que las observaciones 

se llevan a cabo con materia visible, es posible construir una teoría en la cual el campo 

escalar está más fuertemente acoplado a una componente de materia que no esté involu-

crado en tests observacionales del principio de equivalencia. La restricción observacional 

se aplicaría entonces unicamente al acoplamiento con la materia visible. Damour. Gibbons 

y Gundlach encuentran un valor máximo para la variabilidad actual de la -constante" 

gravitacional compatible con -y no muy lejos de-- las cotas observacionales. 
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Holman et al. [40] aplican la misma técnica al campo inflatón del modelo extendido, 

considerándolo como una componente de materia invisible con acoplamientos no-estándar 

con el campo de JBD. En este modelo generalizado de inflación extendida, la intervención 

de dos parámetros permite satisfacer simultáneamente los requerimientos actuales (,) ob-

servacional) y primordiales (condiciones para una inflación exitosa). 

El modelo escalar-tensorial generalizado está descrito por el Lagrangiano IV.1.1), 

con acoplamientos generalizados ni y n arbitrarios. Derivamos las ecuaciones de Einstein 

(IV.1.3) y las ecuaciones de los campos (IV.1.4) y (IV.1.5). Trabajando con el campo re-

definido de JBD cp = (pa  ln(24I► ) que tiene un término cinético convencional, con una métrica 

FRW, espacio plano (k O) y campos espacialmente homogéneos, llegamos al sistema de 

ecuaciones (IV.1.8), (IV.1.9) y (IV.1.10). De aquí en adelante trabajamos basándonos en 

dos suposiciones que permiten simplificar el problema y que consideramos describen correc-

tamente nuestro Universo durante las épocas que nos interesan: la componente invisible se 

comporta como un fluido perfecto y representa la fuente dominante de energía para la ex-

pansión del Universo. Como fluido perfecto, se puede describir por su densidad de energía y 

de presión definidas a través de (IV.1.13) y cumple con la ecuación de estado pi = (11-1)pi. 

Al ser la componente dominante se puede despreciar la contribución de la materia visible. 

lo cual es una condición razonable tanto en la época inflacionaria, como en la época actual 

si suponemos un Universo plano con __Ob„;0„;,„ ti 0.1 y 11 1/1(1 feria oscuro ^ 0.9. 

Nuestro problema estará entonces descrito por el sistema de ecuaciones (IV.1.17), 

(1V.1.18) y (IV.1.19), en función de las variables I/ y y = (P/Lp. El estudio de su espacio fase 

muestra que el sistema tiene tres lineas invariantes que corresponden a soluciones de ley de 

potencia: una solución atractor dada por (IV.3.1) y dos soluciones repulsar (IV.3.la). El 

comportamiento del sistema dinámico puede verse en los diagramas de fase en las figuras 

(IV.1) y (IV.2). El punto crítico del sistema está en el origen del plano 1.1--y. La flecha 

externa indica la solución atractor (IV.3.1) y las flechas pequeñas sobre las trayectorias 

señalan la dirección del tiempo. En los diagramas se puede ver que una región importante 
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del espacio fase tiende azintóticamente a la línea atractor pero el punto crítico no es un 

atractor universal del sistema. Regiones separadas de la solución atractor por una línea 

repulsora no tienden a la solución (IV.3.1), es decir no todas las soluciones del sistema 

tienen un comportamiento de ley de potencia. La evolución del campo de JBD 'p y del 

factor de escala a a lo largo de la solución atractor está dada por (IV.3.2). 

Se puede encontrar el potencial para un campo escalar que actúa como un fluido per-

fecto dominante, resulta de la forma V(a) oc a-n (ec. (IV.3.13)). En la época inflacionaria, 

tenemos un potencial de tipo inflación caótica. La inflación de ley de potencia más general 

se obtiene pidiendo una potencia mayor que uno en la ley de evolución del factor de escala 

(expansión superlumínica): f(n,m,yi) > 1 en (IV.3.2). Si el potencial no se va a cero al 

final de la inflación, da lugar a un modelo con "constante" cosmológica que decae. En este 

contexto, el mismo campo que dominó durante la inflación puede volver a dominar en la 

época actual si su densidad de energía sufre un corrimiento al rojo menor que la densidad 

de energía de la radiación y la materia visibles. De esta manera, si existe una constante 

cosmológica no nula actualmente, este modelo permite relacionarla con la densidad de 

energía que sostuvo la inflación. 

Podemos derivar la evolución del acoplamiento gravitacional y del parámetro de Hub-

ble a lo largo de la solución atractor y compararlos con las cotas observacionales. La 

constante gravitacional medida en experimentos de retardo del tiempo es G = [(2w + 

4)/(2w + 3)1(1/16714). La variabilidad de G en función de la evolución de iD está dada 

por (IV.3.3). Un resultado interesante es que el acoplamiento gravitacional calculado a lo 

largo de la solución atractor varía con el tiempo aún cuando el tensor de energía-momento 

de la componente invisible tiene traza cero, i.e. cuando el Universo está dominado por la 

radiación de la componente invisible (y/ = 4/3), corno lo indica la expresión (11-.3.4). No 

es así en el modelo original de JBD, ni en las subsecuentes generalizaciones. 

Considerando en cada era sólo el efecto de la componente dominante. se  investigó, en 

el último capítulo, la posibilidad de establecer Cotas sobre los acoplamientos generalizados 
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del campo JBD. Suponiendo que el Universo está dominado hoy en día por la componente 

de materia oscura con ecuación de estado pi = O (y/ = 1), la variabilidad actual de 

G está dada por (IV.3.5) y el parámetro de Hubble por (IV.3.G). Para restringir los 

acoplamientos del dilatón con la materia oscura consideramos límites post-Newtonianos 

sobre el parámetro de Brans-Dicke w, cotas observaclonales sobre la edad del Universo, 

el parámetro de Hubble y la variabilidad de la "constante" de Newton hoy en día, así 

corno sobre su valor durante la nucleosíntesis primordial. Queda un amplio intervalo para 

los parámetros rn y n: —7.7 	n 	4.5. El límite superior resulta de incorporar 

consideraciones de la nucleosíntesis directamente en los modelos generalizados y el inferior 

proviene de la comparación de la variación de G predicha por nuestro modelo con el valor 

permitido observacionalmente. 

Si nos remontamos a la época de la inflación, los límites más estrictos provienen de la 

radiación de fondo, traduciéndose en restricciones sobre las burbujas y sobre la amplitud 

y el espectro de las perturbaciones de densidad creadas por las fluctuaciones cuánticas 

de los campos escalares. El capítulo V está dedicado al estudio de estas cantidades: se 

exponen y comparan los resultados obtenidos en artículos recientes para los modelos de 

inflación extendida y se exploran ulteriormente los modelos generalizados y el escenario 

con un término de masa para el campo de JBD, durante y después de la inflación. 

Al trabajar con modelos inflacionarios del tipo escalar-tensorial, disponemos de los 

siguientes ingredientes para sembrar la estructura del Universo: las fluctuaciones cuánticas 

de dos campos escalares -el infiatón y el campo de JBD- y tres tipos de perturbaciones 

de densidad: perturbaciones adiabáticas producidas por el campo con energía dominante, 

perturbaciones isotérmicas asociadas con las fluctuaciones del campo subdominante, e in-

homogeneidades formadas por la estructura de burbujas del Universo emergente de la 

transición de fase. Surgen entonces diferentes posibilidades para la subsecuente evolución 

del Universo, dependiendo de cuál campo tiene las fluctuaciones dominantes y cuál campo 

es el principal responsable de recalentar el Universo. Como ya se sabía [18], la inflación de 
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ley de potencia crea un espectro de fluctuaciones que se desvía ligeramente de la invariancia 

de escala, introduciendo más potencia a grandes escalas. Este es un resultado interesante 

puesto que, según algunos observadores (vense e.g. el estudio A.P.M. de Maddox el (11. 

[64]), un espectro invariante de escala carece de suficiente potencia a grantle=, escalas para 

ser consistente con la estructura observada (movimientos de corrientes a grandes escalas, 

correlaciones cúmulo-cúmulo, regiones vacías). Por otro lado, la presencia de dos campos 

abre otra posibilidad en el diseño de espectros de fluctuaciones: se puede asociar un inter-

valo de escalas de las estructuras cósmicas a las fluctuaciones de un campo y otra parte 

del espectro puede corresponder a las fluctuaciones del otro campo. 

El problema de las fluctuaciones puede ser atacado, en principio, en cualquiera de los 

dos sistemas conformes, pero el camino más directo es estudiarlo en el esquema de Einstein, 

donde el campo de JBD está minimamente acoplado, tiene un término cinético estándar 

y, bajo ciertas condiciones, juega el papel de un inflatón con potencial de caída lenta. 

El potencial inflacionario para el campo de JBD es el potencial (constante) del inflatón 

original multiplicado por un término exponencial en el campo de JBD. resultado de la 

transformación conforme. Este será el campo responsable de la estructura. En el esquema 

de Jordan tenemos la presencia de dos campos pero, mientras que el inflatón esté atrapado 

en el mínimo local de su potencial efectivo, el campo de JBD tendrá automaticainente las 

fluctuaciones dominantes [73], [781. Si uno quisiera dejar evolucionar también el inflatón, 

ya sea con un tundeo a través de la barrera del potencial (del tipo vieja inflación) o de caída 

lenta (inflación extendida nueva o caótica), tendría que tomar en cuenta las fluctuaciones de 

ambos campos y el acoplamiento del dilatón con el inflatón. Los resultados obtenidos serán 

facilmente transformados al marco original a tiempos grandes, donde ambos esquemas 

practicamente coinciden puesto que el factor conforme 21 	1 cuando G 	GN. La 

densidad de energía y sus fluctuaciones se transforman mediante p = 124))2 P y áplp 

0113+ 28(1)/(1), respectivamente. Puesto que el campo de JBD varía muy lentamente en un 

régimen no-inflacionario, se puede considerar que al terminar la inflación las fluctuaciones 
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ya coinciden en ambos esquemas. 

La aplicación a una inflación de ley de potencia (de hecho, a una métrica inflacionaria 

general) de la fórmula estándar [66] (o = H/27r para la fluctuación r.m.s de un campo 

escalar al cruzar el horizonte, derivada originalmente para el espacio de (le Sitter, fue 

comprobada por Ahbott y Vise [31]. Usando este resultado, Lucchin, Matarrese and 

Pollock [74] verificaron la validez de la relación 6p1p=oIl2 M para la inflación de ley de 

potencia y encontraron que la constante de proporcionalidad es a 2 x 10-2. Puesto que 

la amplitud de las perturbaciones de densidad es proporcional a H2  y H t-1  en inflación 

de ley de potencia, las perturbaciones que salen del horizonte a tiempos anteriores son 

más grandes. Metiendo en (V.1.25) la dependencia en el tiempo de H, la evolución del 

campo clásico q5 que se encuentra resolviendo la ecuación de onda (V.1.4) con un potencial 

exponencial V(cp) = Al"le-29'&°, y considerando que en este caso la longitud de onda, 

crece con una ley de potencia, se encuentra que la amplitud de la fluctuación crece con la 

escala ([70], [72], [73], [19]), como se ve en las expresiones (V.2.1) y (V.2.2), donde p' es la 

potencia de la expansión en el esquema de Einstein. 

De la expresión (V.2.2) se puede ver que la amplitud de las fluctuaciones está carac-

terizada por el cociente de la escala de unificación (Al) sobre la escala de Planck (rnpi) a 

una potencia a, donde aP..." 2 para w Z 10, y está solo ligeramente en exceso de la cota 

observacional. La amplitud diverge en el límite w --> oo dado que el potencial efectivo se va 

a una constante y 	0, pero disminuye si aumentamos w en un intervalo intermedio de 

valores. Por otro lado, una ligera disminución de Al puede resolver el problema puesto que 

la amplitud de las perturbaciones es muy sensible a variaciones en Al: 6,0) 112  para 

w grande. No tenemos aquí la posibilidad de ajustar la constante de auto acoplamiento 

puesto que el potencial para a se toma como estrictamente constante 	Mi); el ajuste 

fino recae sobre el parámetro de Brans-Dicke. Como habíamos mencionado, una de las 

posibilidades para evitar el problema de w es introducir mi potencial para el campo de 

JOD. La presencia de los dos campos escalares puede entonces llevar a un escenario infla- 
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cionario de dos rounds, con fluctuaciones importantes de ambos campos. Se exploraron las 

consecuencias, durante y después de la inflación, de incluir un término (le potencial para 

el campo de JBD. 

En el caso más simple el potencial es un término de masa, La ecuación de movimiento 

para el campo de JBD en el marco de Jordan es entonces una ecuación de Klein-Gordon 

modificada por la expansión (ec. (V.2.5)) y en las ecuaciones de Einstein aparece un 

término de constante cosmológica, como se ve en la ec. (V.2.6). Puesto que después de la 

inflación esta constante cosmológica puede llegar a dominar. tenemos que imponer que el 

campo de JBD decaiga. Por otro lado, para que la masa del campo (le JBD no estorbe la 

evolución del Universo inflacionario, es necesario, en ambas ecuaciones: n12,1, < pi,./4). con 

pv = M4 . Puesto que durante la inflación (I) < m2p1, un límite seguro es: at.b < 112  /mpi, 

que para M ti  1011  Cid'. implica: ma, < 109GeV. Este límite puede verse claramente en 

las figuras (V.1), (V.2), para H y (1) en la época inflacionaria. El comportamiento cambia 

drasticamente para m > 109GeV: H va rapidamente a una constante y (D se establece 

en el mínimo de su potencial. Esto significa que se ha recuperado un régimen de inflación 

estándar, donde el término de masa dominante actúa como una constante cosmológica. Si 

consideramos un modelo de gravedad inducida el potencial para JBD es de rompimiento de 

simetría: V(1) = A(4 — (130 )2  con th = 41 /167r, y se puede ver que tenemos nuevamente 

la misma restricción sobre ms. Este límite implica que se necesita una constante de auto 

acoplamiento pequeña (A ins/41), así que. m'in en el contexto de una inflación de das 

campos, es necesario un ajuste fino. 

La posibilidad de que las grandes regiones casi vacías que se observan hoy en día sean 

residuos de las burbujas de la inflación extendida ha sido descartada porque la presencia 

de estas inhomogeneidades en la época de la recombinación provocaría una distorsión 

inaceptable sobre el fondo de microondas. Como ya se discutió, este argumento impuso 

restricciones severas sobre el parámetro de Brans-Dicke w [21], [341, [82], [831. Sin embargo, 

ha sido publicado recientemente un trabajo en el que se propone que el tiempo necesario 



para llenar una burbuja se reduce sustancialmente si se incorporan en el cálculo efectos 

relativistas [841. Durante la época dominada por la radiación, las burbujas se contraen, 

a la velocidad de la luz para un vacío relativista, debido a la grán fuerza de presión que 

actúa sobre las paredes y este proceso de llenado puede llevarse a cabo en un tiempo corto, 

para un observador fuera de la burbuja, debido a la dilatación del tiempo causada por el 

potencial grande y negativo de la región vacía. Tomando en cuenta este efecto, se podría 

descartar el problema de las burbujas grandes y relajar los límites sobre w aunque este 

problema está más directamente relacionado con el proceso de termalización que con el 

proceso de llenado. La termalización es una cuestión más complicada que no está del todo 

resuelta y que depende en cierta medida del tipo de materia que domina el comportamiento 

del Universo. 

Los modelos generalizados no introducen nuevos ingredientes en este tema puesto que 

la estructura no proviene de las fluctuaciones del inflatón que es el sector que lleva los 

acoplamientos generalizados. Hay que imponer sin embargo algunas reestricciones sobre 

los parámetros del modelo para preservar las condiciones inflacionarias. En particular, 

para poder utilizar el formalismo estándar para las perturbaciones de densidad tenemos 

que asegurarnos de que, en el marco de Einstein, el potencial sea de caída lenta. Al 

cumplirse esta condición (2w + 3 >> (2 — m)2), la fluctuación de densidad al cruzar el 

horizonte estará dada por (V.2.7). 

Wang [451 analizó en detalle las restricciones impuestas sobre los modelos generalizados 

por los requisitos inflacionarios, obteniendo el siguiente intervalo para el parámetro m: 

—11 S m S --8. La necesidad de suprimir burbujas grandes, que no alcanzarían a llenarse 

y termalizar, fija la cota superior (usando w > 500) mientras que el límite inferior proviene 

de la cota impuesta por la isotropía de la rediación de fondo sobre la amplitud de las 

perturbaciones adiabáticas de densidad (tomando (hT/T)0,100. 10-5). Las restricciones 

recaen basicamente sobre el parámetro m puesto que durante la inflación el término cinético 

es despreciable. Una restricción menos severa que las anteriores pero de cierta importancia 
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es que para tener una expansión de ley de potencia con un campo de JBD creciente se 

necesita m < 1, es decir valores pequeños o negativos para M. 

Otra cota severa proviene de las restricciones impuestas por COBE sobre el espectro de 

las fluctuaciones. Para comparar el espectro teórico con datos observacionales (disponibles 

a partir de una época muy posterior) tenemos que tomar en cuenta la evolución del espectro. 

La teoría inflacionaria nos permite determinar la amplitud de las perturbaciones en el 

momento que cruzan el horizonte, lo cual significa que la amplitud de modos diferentes 

está especificada a tiempos diferentes. La comparación con las observaciones requiere del 

espectro a un tiempo fijo, en particular en la época del desacoplamiento radiación-materia. 

Para tomar en cuenta la evolución de las perturbaciones fuera del horizonte se tiene que 

multiplicar el espectro (V1.2.1) por un factor de evolución 	(fuera del horizonte las 

perturbaciones son cantidades que no están bien definidas en el sentido que dependen de la 

norma seleccionada; trabajando en la norma síncrona, las perturbaciones crecen como Á-2 7  

donde A es la longitud de onda que caracteriza a la fluctuación, verse, e.g. [61). El espectro 

de fluctuaciones a la época de la recombinacióri es entonces 145k  12 	bn . k -2/( Pi-1). 

Usando los resultados del primer año de COBE [31 ni  = 1.1 ± 0.5, se puede poner una 

cota sobre p' y restringir el acoplamiento in: -11 S m S 15. Es el mismo intervalo que el 

que resulta de las restricciones sobre la amplitud de las fluctuaciones. 

Finalmente, si el mismo campo actúa como campo inflacionario en el Universo tem-

prano y corno la componente de materia oscura actual, tendrá que obedecer a las condi- 

* Los resultados del segundo año de CODE DMR, han sido publicados recientemente: -Cosmic Temper-

ature Fluctuations from Two Years of CODE DM lt Observations", C.L. Hennett el al.. enviado a The 

Astrophysical Journal, El valor m 'as probable para el índice espectral reportado en este segundo análisis 

es rt = 1.59119  (t38 CL). Si se comprueba este resultado, los modelos inflacionarios -normales" deberán 

sil descartados en su versión más simple puesto que no se pueden obtener indices espectrales mayores que 

uno, ni con una expansión de ley de potencia ni con una exponencial. Veme [87) para modelos inflacionarios 

con espectros azules. 
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dones de ambas épocas. Combinando los das grupos de restricciones se obtiene: —11 

m 	—8 y —18.7 n —3.5. 
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Conclusiones 

Hemos visto que un escenario inflacionario puede resultar de un amplio intervalo de 

teorías de partículas y de la gravitación, y que algunas de las dificultades encontradas 

pueden ser superadas introduciendo modificaciones en el término de potencial o en los 

términos de acoplamiento de los campos involucrados. En particular, las características 

problemáticas de una inflación de primer orden dejan entrever una solución: un proceso 

inflacionario más suave. Surge entonces la inflación extendida: un modelo inflacionario 

que se desarrolla en el contexto de una teoría escalar-tensorial de la gravedad, en el cual 

el campo de Jordan-Brans-Dicke utiliza parte de la energía de vacío para su evolución, 

sustrayéndola a la expansión del Universo. El resultado de esta distribución de energía es 

una inflación de ley de potencia en lugar de una inflación exponencial. 

Consideramos y compararnos las variaciones a la inflación extendida que han sido 

propuestas en la literatura y exploramos a fondo la posibilidad de introducir acoplamientos 

generalizados, más fuertes. del campo JBD con el sector invisible. Investigamos también 

las consecuencias de incluir un término de masa para el campo JBD. 

Obtuvimos las ecuaciones de campo y sus soluciones atractor para la evolución del 

factor de escala y los campos escalares, considerando la componente de materia oscura 

como un fluido perfecto que constituye la fuente dominante para la expansión del Universo. 

Encontrarnos que el término potencial correspondiente a un campo escalar que se comporta 

corno un fluido perfecto dominante decae con una ley de potencia del campo. Un aspecto 

particular de este modelo es que el campo JBD, y por lo tanto el acoplamiento gravitacional. 

varía con el tiempo aún cuando el universo está dominado por una componente oscura 

radiativa, i.e. por un fluido cuyo tensor de energía-momento tiene traza cero. 

La dominación de un sector invisible es particularmente adecuada para describir dos 
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épocas de la historia del Universo: la época actual, con una supuesta materia oscura 

no-bariónica que cierra el Universo, y el período inflacionario temprano. Obtenemos un 

modelo compatible con la evidencia observacional actual y cuyos parámetros libres (na y 

n) pueden ser acotados. Usando las cotas observacionales sobre el acoplamiento del campo 

JBD con la materia visible, cotas provenientes de cálculos de la nucleosíntesis primordial y 

límites sobre la edad del Universo y el parámetro de Hubble, pusimos restricciones sobre las 

constantes de acoplamiento de este modelo aplicado a una componente de materia oscura 

actualmente dominante. Un valor mayor de H0 10  reduce el intervalo permitido para rn — 

pero la cota más severa proviene de la variabilidad de G permitida por consideraciones 

de nucleosíntesis. Con los valores observacionales actuales, queda un amplio intervalo 

para na — n. Los acoplamientos generalizados del campo JBD con la componente invisible 

generan contribuciones extra a la densidad de energía del Universo y a las posibilidades de 

variación de G. El intervalo permitido para C. es así más grande que el que se obtiene en 

la teoría JBD estándar. 

Yendo hacia atrás en el tiempo. aplicamos este modelo a la época inflacionaria. La 

isotropía de la. radiación de fondo restringe los parámetros de la teoría cuando la compo-

nente invisible representa al campo inflatón en el Universo temprano: impone condiciones 

sobre la distribución y la evolución de las burbujas, sobre la amplitud de las perturbaciones 

de densidad que resultan de las fluctuaciones cuánticas del campo JBD y sobre el índice 

del espectro de potencia de las fluctuaciones. Consideradas en conjunto, estas condiciones 

restringen notablemente el intervalo permitido. En este caso las restricciones caen sobre 

el parámetro m, imponiéndole valores negativos y grandes 	,s rna —8), puesto que el 

término cinético, que incluye el parámetro n, es despreciable durante la época inflacionaria. 

En el contexto de una "constante" cosmológica que decae, el mismo campo que do 

minaba durante la inflación puede volver a ser dominante en la época actual si su densidad 

de energía sufre un menor corrimiento al rojo que la densidad de energía de la materia y de 

la radiación. En este caso, ni y a tienen que cumplir simultáneamente con las condiciones 
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primordiales y con los requerimientos actuales. 

Un efecto importante de la inclusión de un campo JBD en escenarios inflacionarios es la 

obtebción de un espectro de perturbaciones de densidad con más potencia a grandes escalas. 

Esta es una característica que puede resultar de cierta utilidad al construir modelos que 

reproduzcan la estructura observada del Universo. Es un resultado general de los escenarios 

de inflación de ley de potencia. En los modelos de inflación extendida, la estructura resulta 

principalmente de las fluctuaciones del campo JBD y no de las del inflatón, como sucede 

en los escenarios inflacionarios estándar. Las amplitudes estimadas de las fluctuaciones 

están caracterizadas por la razón al cuadrado de la escala de unificación sobre la escala de 

Planck (para valores no muy pequeños de w) y son solo ligeramente más grandes que la 

cota observacional. Esta es otra ventaja de estos modelos sobre los modelos de inflación 

exponencial los cuales producen fluctuaciones con amplitudes que exceden las observadas 

por varios órdenes de magnitud, a menos que se impongan restricciones severas y poco 

naturales sobre la constante de acoplamiento contenida en el término de potencial. Por 

otro lado, los posibles efectos observables de las fluctuaciones en el campo JBD, y por lo 

tanto en el acoplamiento gravitacional, merecen ulterior investigación. 

Los acoplamientos generalizados no introducen ingredientes nuevos en este tema, salvo 

algunas limitaciones al parámetro ni con el fin de respetar condiciones generales infla-

cionarias. Por otro lado, la inclusión de un término potencial para el campo JBD, útil 

para resolver el problema de w, aumenta la amplitud de las fluctuaciones de densidad y 

vuelve a introducir un problema de ajuste fino de las constantes de acoplamiento de la 

teoría. Despues de la inflación, este término de masa tiende a volverse dominante, por lo 

que tenemos que imponer la condición de que el campo JBD decae. 

Por lo que se refiere a la cuestión de ubicar los modelos inflacionarios del tipo escalar--

tensorial en el contexto de una teoría fundamental, las teorías de cuerdas ofrecen una 

posibilidad atractiva. Al reducir estas teorías a cuatro dimensiones, tenemos un campo 

dilatón acoplado al escalar de curvatura de la métrica en cuatro dimensiones y directamente 
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acoplado a los sectores no-gravitacionales. Desafortunadamente, un resultado general de 

las teorías de supercuerdas, y de otras teorías de más dimensiones, es que no logramos 

obtener bastante inflación. Sin embargo, uno de los grupos que trabaja sobre este punto 

reportó algunos resultados positivos al introducir dos campos del sector gravitacional (el 

dilatón y un campo modular). La obtención, a bajas energías, de una teoría .113D también 

encuentra algunos problemas, en particular cuando sus predicciones son comparadas con 

observaciones actuales. 
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ntxoduction 

Inflation provides cosmology with a better understanding of some enigmatic features 

of the early Universe and provides the physical conditions for seeding the Universe large 

scale structure. It is a useful concept for the primeva1 Universe but it is still a (leveloping 

scenario. The building of a successful inflationary model requires two tliings: that it 

provides an effective solution to the cosmological problems it has the potential to solve 

and that it is consistent with a realistic eletnentary particle theory. The simultaneous 

satisfaction of both requirements has not been an easy task. 

The inflationary models proposed up to now may be devided in two classes: those which 

modify the matter sector by including a scalar field with some particular effective potential, 

which we call standard inflationary models, and those that also introduce variations in the 

gravitational sector, as cornpared to general relativity. This is the case of the recently 

proposed extended inflation rnodel that works with a. Jordan-Brans-Dicke gravity theory. 

In this work we focus our attention on inflationary models embedded in scalar-tensor 

gravity theories. We approach the problern from the two aspects it embraces: inflationary 

scenarios and gravitational theories. On one hand, we study scalar-tensor gravitational 

theories applying them to the present Universe history. We outline ami delitnit the vari-

ations to the gravitational sector that are consistent with observations. In particular, 

we explore the possibility of direct couplings between the scalar field of the gravitational 

sector (Jordan-Brans-Dicke field) and some kind of invisible matter. We then apply the 

consistent cleveloped model to the early Universe history, trying to implement a successful 

inflationary scenario in all its stops. 

Chapter I presents a review of the inflationary theory, its advantages and its drawbacks, 

and contains a very brief description of the standard inflationary models. Chapter II is 
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a review of the Jordan-Brans-Dicke theory of gravity and a presentation of the recently 

proposed extended inflation model. Chapter III is a systernatization and comparison of the 

different modela proposed in the literature in the context of scalar-tensor gravity theories 

and of their relation with a higher-dimensional theory. 

The original work is mainly contained in chapter IV, where we develop the generalized 

scenario with direct, general, couplings of the Jordan-Brans-Dicke field with the invisible 

sector and in chapter VI, where we establish present experimental bounds and primordial 

constraints on the generalized couplings. Chapter V is dedicated to the Universe emerging 

from these theories, in particular to the problem of seeding the structure of the Universe. 

Some original work is also contained in this part, where we investigate how sensible are the 

resulta obtained for the density perturbation formalism, to the details of the structurc of 

the model. We discuss the sense and the implications of the medica employed in previous 

analysis and further explore some extensions of the original extended inflation model and 

their consequences for the post-inflationary Universe. 
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Chapter I 

Inflationary Scenario 

Introduction 

The standard cosmological model, developed from Einstein's theory and Hubble obser-

vations, has so fax withstood observational tests and successfuly accounts for the history 

of the Universe from at least the light elements synthesis epoch. It encounters nonethe-

less conceptual difficulties when dealing with the earliest history: very uiuiatural initial 

conditions have to be imponed in order to ead up with the Universe as it appears today. 

Theoretical developments beyond the standard model consist mainly in trying to uncler-

stand the physical grounds for these specific initial conditions. One of the possibilities 

that have been explored is to introduce, at some early epoch, a therinal history deviating 

from the standard model, while leaving unchanged the Universe evolution at later stages. 

Theories of phase transition in particle physics, applied to cosmology, offer this possibility: 

a self-interacting scalar field may behave, at high energies, as a non-classical fiuid and act 

as a source of accelerated expansion -inflaiion-- for the Universe. This particular behaviour 

encls with the phase transition. 

This first chapter is declicated to a review of the basic ideas of the infiationary mode': 

what do we need it for. how to irnplement it and the issues that remain unsettled. 

I.1) The Standard model 

The standard cosmological model gives the following scenario for the early Universe: 

after the initial bit bang. the Universe is filled with a hot gas of elementary partirles in 

thermal equilibrium. acliabatically expanding, hoinogeneous and isotropic. The effects of 
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gravitation are described by Einstein's general relativity (hereafter GR.) ami the funda-

mental laws of physics do not change with time. The Universe is supposed to have been 

homogeneous from the start and remained homogeneous as it evolved and changes in the 

state of matter and radiation are supposed to be smooth, with negligible cffect un the 

thermociy-namical history of the Universe. 

An homogeneous and isotropic Universe is described by the Friedmann-Robertson - 

Walker metric (FRW): 

2  ds2 	,./#2 —  ,2e) 	dr 

1 	172-r 4- r2((11)2 	sin2 /9d02 ) 

where a(t) is the scale factor of the Universe and k = +1,0, -1, for a closed, fíat or 

open universo respectively. The evolution of the scale factor is governecl by the Einstein 

equations: 
1 73, 

Roo 	 = Tu,,
2 

(1,1.2) 

where Rin, and R are the Ricci tensor and the Ricci scalar respectively and T. is the 

stress-energy tensor for all the fields present (matter, radiation, etc...). In equation (1.1.2) 

we have used units such that 87rG = 1. and taken the cosmological constant A = O (such 

a term appears in the most general form of Einstein's equations consistent with general 

covariance). Greek indices run from O to 3 while Latin indices will run from 1 to 3. 

The non-zero components of the Ricci tensor for the FRW metric are 

Roo = -31  a 
(1.1.3) 

 

2k 
+ 
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and the Ricci scalar is 

  

2 k 
R. -fi [ - + 

a 
—
a2 

+ —
a2 

. (1.1.4) 

The energy-momenturn tensor of the Universe must be diagonal in order to respect the 

symmetries of the metric and its spatial components must be equal, reflecting the isotropy 

of space; in such a way, it takes the same form as the one for a perfect fluid: Tom  
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diag(p, -p,-p,-p). The 00 component of the Einstein equations gives the Friedmann 

equation 
k 	1 

H 2  + -7, = -p 	 ( 1.1.5) H 2̀ + -7,, 
3 

where II 11 1 a is the Hubble parameter, that determines the expansion rato of the Uni- 

verse, and p is the energy density; the ü cornponent gives 

	

a 	2  

	

2- 	 -p. 	 (L1.6) 
a a a2  

Combining this two equations we get a useful expression for the acceleration 

1 
= 6(P + 3P)a, (1.1.7) 

which shows that, if (p + 3p) is positive, as it is always the case in the standard model, a is 

negative and the Universe expansion is slower and slower; it just reflects the deceleration 

due to matter gravitational attractíon. On the other hand, it suggests the way to inflation: 

if we wanted the Universe to have an accelerating expansion phase, we would need 

negative p + 3p term. Equations (1.1.5) and (1.1.7) together lead to the continuity equation 

15= -31I(P+p), 

equivalent to the more familiar form 

d(pa3) = -pd(a3), 	 (1.1.9) 

which is the ji = O component of the conservation of the energy-momentum tensor 

0. 

To obtain the evolution with time of the Universe, we need the equation of state of its 

content; for a hot ultrarelativistic gas of non-interacting particles 

1 p=
3P 	

0-4
, 

and for non-relativistic cold matter 

p O p a-3. 	 (1.1.11) 
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introducing these expressions in the Friedmann equation, we see that, for salan a, in both 

cases, the quantity p/3 is tnuch greater than k/a, therefore the scale factor goes as 

and 

a 

a 	t2/' 

respectively. 

The Standard big bang (B-13) mode! successfully accounts for the developrnent of the 

Universe since, at least, the epoch of synthesis of nuclei and provides an explanation to 

many important aspects: the redshift of galaxics, the cosrnic background radiation, and 

light elements abundance. There is however an important question left: what is the origin 

of the structures we see? This problern is enhanced by the lack of knowledge of the precise 

value of the pararneters of the theory and by some enigmatie features of this cosmology. 

Some observations, sorne fundamental cosrnological features, have no natural explanation 

in the context of the theory and this suggests that an important piece of the picture may 

be missing. \Ve briefly go through these controversia! points. 

a) Isotropy 

Homogetteity is rti very useful principie in cosmology: a theory of the Universe would 

be intractable without a simplifying principie; but it aiso turras out to hez excessively trae, 

in the sense that the scale of homogeneity is so largo that wc do not fiad (in the standard 

mode!) an explanation for it. 

The cosmic background radiation coming from differeut parts of the sky is (almost) 

exactly the same. This relic redshifted radiation, released when the thermal equilibrium 

between matter and radiation broke down, practically does not interact 1.vith the matter 

today: the universe becante transparent to it after hydrogen recombination, so its homo-

gencity traces back to this epoch. Of course, what we observe does not guarantee that the 



entire Universe is smooth, it just gives information about the present observable regios. By 

comparing radiation background intensisties we see that the temperature and expansion 

rato are precisely synchronizecl across the visible Universe. The problem appears if an ex-

planation is sought for this, because distant regions observe(' in well separated parts of the 

sky are so far apart that there is not enough time since the BB for a signal to have traveled 

from one to the other. Assuming that causa! rclations require the transport of information 

at a velocity not exceeding that of light, we must conclude that microphysical proceses 

(such as Compton scattering) could not operate to smooth temperature fluctuations and 

single out a unique temperature through such separated regions. In the post. these parts of 

the Universe were much closer together but this does not eliminate the problem since the 

zone of influence about an object, going backwards in time, ("cercases oven faster. A light 

signal propagates along a geodesic d,s2  = O, with dO = d(/) = O, so the equation describing 

the ray propagation is dr = —dt/a(t). The particle horizon is the distance light can travel 

from the beginning (of the particular cosmological epoch) to the time t we are considering: 

t  de 
dii(t) a(t) I 

71(1  7 
 

) 
'T.1.14) 

(in this expression we have placed ourselves at the origin = O of coordinates.1: mere con-

vention according to isotropy and homogeneity). This quantity represents the coustraint 

imposed by causality on dynamical evolution; if dll(t) is finite, our past light cone is lim-

ited by a particle horizon, otherwise all the Universe will be in causal contact. Taking 

t i  =- O at the big bang, and a power-law expansion a(t) ,  t" with o < 1 for the Universe 

(according to both cases (1.1.12) and (1.1.13)) the particle horizon is 

dll(t) 

 

(1.1.15) 
1 — o 

so the distance of rnaximal causal connection goes like t and is finite. in spite of the 

fact that a11 the physical distantes approach zero as a -4 0, the expansion of the universe 

precludes all but a very 	part of the universo from being in causal coman. Then, 

why are all the disconnected regions so synchronised? 
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b) flatness 

The energy density of the Universe is the quant.ity that determines in what type of 

Universe (opera, flat or closed) we live. We cali critica' density pc  the value for which the 

Universe is flat 

pe  = 3112 	 (1.1.16) 

and we define the density parameter 

pc 
	 (1.1.17) 

where 11 and pe  change as the Universe expands. The correspondence between the value 

of SZ and the sign of k is 	
k . +1 --> 9 > 1 Closed 

k= 052=1 Flat 	 (1.1.18) 

k = —1= SZ < 1 Open. 

The observational value for the present density parameter Po  is uncertain but is not far 

from 1. Dynamical estimations of 90  ora scales of 15 — 20/11pc yield a lower litnit of 

90  r-z-, 0.25, while analysis of large scale fiows, comparing the peculiar velocity field with 

the density distribution (with the assumption that IRAS galaxies trace the rnass ora large 

scales) scem to indicate SZo  'c....-. 1, with a bias factor b P:.1 1 — 2 [1]. 

This approximate balance between the effective kinetic energy of expansion t H2 ) and 

the gravitational potential energy (p13) becomes extremely accurate as t 	O: the condi- 

tion 9 = 1 is (instable. This can clearly be seen if we write the Friedmann equation as 1111 

evolution equation for the density parameter 

(1.1.19) 

Since in the standard model it decreases with time, f always cleviates from I. Eq. (1.1.19) 

can be written 

51(i) — 1 ---1), 
a 2 (1) 
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where i indicates an "initial" time (that can be taken at the Planck time t pi). Since at 

the present time, 12(to  ) 	1, the value of Qpi - 1 niust have been really small to balance 

the very big factor ii1,142(t). If Q were ever exactly equal to 1, it would remain exactly 

equal to 1 forever but if S2 differed slightly from 1 after the BB the deviation from 1 would 

rapidly grow with time and the universe would eithcr soon ( j'es) x /pi) recollapse, if it is 

a closed Universe. or expancl so fast that matter condensations could never forro, if it is 

open. A universe can survive 101° j). only by extreme fine tuning of the Majal values of p 

and H. 

c) Smoothness and structure 

Discrete structures are supposed to evolve from primordial seeds and, in this theoretical 

context, matter perturbations are found to effectively grow, under favorable circumstances, 

and reach values comparable to their mean values. Then, when this non-linear regime is 

attained, the overdense region decouples from the expansion of the universe and collapses 

to forin a condensat ion. These theories of structure formation, based on the gravitational 

growth of small primordial perturbations, predict that some imprint of this event remains 

on the cosmic microwave background radiation (CMBR) in the fortn of small fluctuations: 

photons are gravitationally redshifted by inhomogeneities of the gravitational potential 

on the iast scattering surface (Sachs-Wolfe effect, see e.g. [6]). But the Universe has 

shown to be very smooth. Till recently, no such fluctuations liad been cletected and we 

just had observable upper bounds on the anisotropy of time cosmic background: 11/T 

f cuí x 10-5  (see e.g. [2]), on intermecliate to large angular separations. The analysis 

of the first year of data fron ►  the Differential Microwave Radiort►eters of COBE (Cosmic 

Background Explorer) [3] has just detected structure with characteristic anisotropy of 

AT/T 6 x 10-6  land whose measured parameters are consistent with a scale-inva.riant 

spectrum of perturbations). Their preliminary separation of galactie and cosmic microwave 

etnission [4] suggests that this anisotropy signal is intrinsic to the cosmic background 
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radiation. When we translate these bounds on temperature fiuctuations to bounds on 

density perturbations at the time of decoupling, we obtain severe constraints for theories 

of structuxe formation. There are also other difficulties in this approach: oil one h;ind there 

is no natural seed for diese perturbations in the conventional BB model and, en the other. 

it is difficult te understand how any physical process could have contributed to it in the 

very early universe. This is because most of the astrophysically relevara sedes (clusters, 

groups, galaxies) were much bigger than the causal horizon for early epochs. 

So. this is the picture we have: a precise initial balance of clensity and expansion rato, 

with a well-synchronized start, which must apply to each separate part of the Universe, 

en one hand. On the other, the local balance of expansion and gravity in the limit t --) O 

must be supposed extrernely accurate but not exact, in order to account for the observed 

large--scale dumping of matter. We have to reconcile the existence of galaxies, groups, 

clusters, with the overall hornogeneity of the Universe. Aiid we also wonder about sorne 

fundamental questions on the origin of the universe: the uniqueness of our Universe and 

the initial singularity. Why is nature just the way it is and not otherwisc? and, was there 

anything bcfor t O? 

Facing these specific initial conditions (should we consider thern just plausible enough?) 

some proposals have been put forward. A pulsating universe -successively expanding and 

contracting- coulcl provide an escape from sorne of the conceptual puzzles, oven if this 

would only shift sorne of the problems many cycles back (unless there were infinitrly many 

cycles). Inclucling a cosinological constant, the Friedmann regime a r can be made te 

changa into de Sitter a(t) 	el" as t ---►  O, so the seale factor bourices near the singularity: 

it come, to be very small but non-zero and all physical quantities remara finito. Anyway, 

what undoubtedly has to be done near the singularity, is turra to a quantum theory of 

gravitation. When density diverges it is essential te take into accourtt quantum effects en 

the cosmic scale. in such a way, the relativistic singularity at the BB (and in a collapsing 

star) could be a problern of the thcory, not of the universe, and flatness ami horizon 
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problems could irise just as a consequence of our application of classical physics beyond 

its domain of validity. 

An important attempt to solve some of diese problems is the theory of infiation. We will 

develop it in the rest of this chapter, starting with a brief presentation of phase transition, 

in the context of their cosmological application. 

1.2) Uniflcation theories 

The basic idea of a unifying theory is that what we perceive to be independent forces 

are actually part of a single unified force, with an underlying syminetry relating each 

cornponent of the force Lo the other. Since experimentally the forces are very different in 

strength and character, the theory is constructed so that the symmetry is spontaneously 

broken in the present Universe: the underlying symmetries are not rnanifest in the structure 

of the vacuuxn but are restored at high temperature. This means that the Universe must 

unclergo a phase transition from a disordered phase, characterized by certain symmetries, 

to an ordered phase with a lower degree of syrnmetry, with the raising of an order parameter 

-a macroscopic quantity which was zero in the high temperature phase. 

The idea of spontaneous symmetry breaking in unified theories can be built and un-

derstood exploiting the analogy with phenomena such as ferromagnetism, superfluidity or 

superconductivity. In a ferromagnetic substance, for instance, the order parameter that 

appears at T S Tc  is a non-zero magnetization whose direction breaks the rotational 

symmetry present in the Hamiltonean. The syrnmetry breaking may he induce(!, as a con-

sequence of an externa! influence (an electromagnetic field), at any T, or spontaneously. 

when it depends on a gradual change of the system's parameters. The magnetization can. 

in principie, Cake any direction, but small fluctuations select one of the possible (degener-

ated) solutions. In general, in the case of a non-invariaut vacuum state and a non-invariant 

Lagrangian we can speak of an explica syrnmetry breaking, while a symmetry of the La- 
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grangian not respected by the vacuum is said to be spontaneously broker'. In this case, 

we are in the presence of different vacuum states and the choice of orle of t hen" will define 

the "Universe". Dealing with ttnification theories, the arder pararneter is a sentar field a 

whose grotmd state does not present the syntmetry of the Lagrangian. To this respect, 

it is interesting to note that sonie kind of scalar field has peen recurrently introduce(' in 

cosrnology, with a variety of motivations: to lead infiation, to incorporate. as we vill see 

in next chapter, Macli's principie in general relativity, as a candidate for cold dark matter, 

etc... 

A real scalar field a is described by the Lagrangian density 

1 	n 
-5(aiza)4  V(a) (1.2.1) 

and, in order to present a phase transition, the potential energy density is chosen to have 

the forro 
2 	1 

V(a)=.._E = 	0.2 + 
4 2  (L2.2) 

where tz is the inass of the scalar field anda is its coupLing constant (the only interaction 

we are considering for the a field is the seif interaction: the Aal tertn). 

o. 

Fig. 1: An example of the pohltitial for the 

model with spontancous syminetry breakirig. 
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The potential has a degenerate minimum at ao  = 	The shape of the potential 

V(a) is shown in figure. 1. We have added a constant terne 1/4 / 4,1 whose solo effect will 

be to cancel the vacuurn energy at points of minimurn potential. To explain the synnuetry 

restoration at sorne temperature Te we must take into account the effect of the background 

gas in the calculation of higher-order quantum corrections to the classical potential. With 

this contrihution, the equilibrium value of the scalar field at finito temperature (T O) is 

governed by the location of the minimum of the free energy density V(a,T), which reduces 

to the potential energy density V(a) at T = O. Ornitting terrns that do not depend on a, 

the complete expression for the finito temperature effective potential can be written in the 

form (seo e.g. [5]) 

, 	—p2  2 	.NT2  
V(a, T) ---a 

+ 4 
—a + 	Cf 	. 

8 

The temperature dependence of V( T) is shown in figure 2. 

(1.2.4) 

V(07,T) 

Fig. 2: 'flie temperature dependence of 1/(a, 71). 

Considering the effect of the thermal bath of a partidos, we can define an effective 

mass of the scalar field about the classical solution < a >. O including a temperature 

dependent terco: m2  -112  + PT2. At T > 	the effective mass is real and < rr >. O is 

a stahle classical rninimum; at T < Te, the effective mass squarcd is negativo, the symmetry 

breaks and the field a leaves the unstable point < a >= O, growing until it finds one of 
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the true ground states, 00 . Frota then onwards, the field a will oscillate about the point 

aa  and it is ahout this point that the effective 'miss has tea be defined. Making the change 

of variable. a -4 a + an  in the Lagrangian density, it can be seen that the effective !miss 

squarecl of the a field has the rorrect sign at the minimum of the potential. 

With an effective potential lile the ore in fig. 2, the change in the vacuurn expecta-

tion value of the scalar field is continuous and the transition Lo the broken phase occurs 

smoothly, it is second order. There is also the possibility of a first order phase transition 

with a discontinuous change of the order parameter as the result of the presence, at T = Tc, 

of two local minina in the potential with a barrier separating the stable from the unstable 

state. The transition is then considerably delayed: even below Te, the Universe stays in 

the symmetric phase, although the ground-state energy is lower in the broken phase, and 

supercools. After a period of cooling below n, quantum tunneling (at zero temperature) 

can induce the phase transition, releasing the latent hect. The symnietry breaking proceeds 

through the formation and subsequent expansion of bubbles of the stable phase within the 

unstable one. If the phase transition is second or weakly first-order, thermal fiuctuations 

(at finite temperature) u-my drive the transition. The shape of the effective potential for a 

first order phase transition is shown in figure. 3. 

V (cr) 

cr. 

Fig. 	Ata example of the potential for 

a first arder pitase transition, 
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Grand unification theories rnake 3 cosmologickti predictions: 

1) Baryogenesis 

Two fundamental observations about the content of matter in the Universe are: the 

number of baryons is much smaller than the number of relic photons, with a baryon tu 

photon ratio of nbini 	(4 — 7) x 10-10, and there is no evidente for the presence of 

antimatter (see e.g. [6j). 

Although we have no antimatter in the Universe today, at one time in the early aniverse, 

quarks and antiquarks were in therrnal equilibrium with photons and hence they were 

present with similar abundantes: ng 	rtl. This suggests the idea that the quantity 

of baryons present today corresponcls tu a su-mil excess of baryons over antibaryons at early 

times, that conseqttently survived annihilation. Applying theories of Grand Unification 

(GUT) to an expanding Universe gane the possibility of developing this asymmetry in a 

Universe that was initially baryon synnnetrie. GUT brought the main ingredient: the new 

interactions that embute strong and electroweak forces, combining quarks and leptons in 

multiplets of the unifying gauge group, violate baryon (B) and lepton number (L). Resides 

the requirement of baryon number violation, there are two other necessary cottditions for 

generating a baryon asymntetry. First, violation of C (charge conjugation) and CP (charge 

conjugation combined with parity) invariance is needed in order tu break the synunetry 

between particles and antiparticles, avoiding B-nonconserving reactions to produce baryon 

and antibaryon excesses at the same rate. Second, tetnporary loss of therrnal equilibrium 

is required so that the annihilation rate for baryons and autibaryons cannot keep pace 

with their production rate. These ingredients are also available: C is violated in \veak 

interactions; CP violation -although quite small- is observed in the interactions of K° 

and K°, hnally, the necessary non-equilibrium condition is províded by the expansion of 

the Universe: a heavy particle which decays slowly will always go out of thermal equilibrium 

when the temperature of the Universe fans below its mass. 
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2)Monopoles 

Another prediction of GUT, not so pleasant as the previous one, is the appearence of 

superheavy magnetic monopoles (M,n  N 1016 Gelf) that would contribute with an energy 

density far in excess of the critical one. Since they are stable objects, they cannot be 

destroyed, and we need a mechanism to suppress thern. 

The production mechanism of diese topological defeets (false vacuum retunants) is tied 

to the fact that during a cosmological phase transition any correlation length is limited by 

the particle horizon. Since in different correlation lerigths the scalar field can take differenr 

vacuum expectation values (e.g. +uo and —'o  in fig. 1) and the transition from one value 

to the other must be smooth, there must be a polla where the seglar field takes the value 

< a >= O, i.e. a point of false vacuum. 

3)Cosmological constant 

Combining modem particle theories with gravity gives rise to another question. The 

discovery of the expansion of the Universe has made unnecessary the introduction of the 

cosmological constant (vacuum energy of the Universe) into the gravity equations, as first 

done by Einstein in order to compensate the matter attraction and obtain a stationary 

cosrnological model. Astronomical observations indicate in fact that, if non—zero, it is very 

small. The upper limit is of the sarne order of magnitude as the critical energy density. 

This does not represent a very strong cosmological bound but from the point of view 

of elementary particles physics it is an extremely small quantity. Quantum field theory 

preclicts a very large value (infinito) for the vacutun energy but one usually adjusts all scalar 

potentials so that V(a0 ) 	O since the origin of vacuum energy is purely conventional in 

the absence of gravity. However, in general relativity vacuum energy affects The properties 

of spacetime. If the present value of V(a) is attained as a resuit of a series of symmetry 

breaking phase transitions, the vacuum energy is decreased by order Al4  ( 	energy 

scale of SSB) in each transition and afta all these enormous drops it turns out to be equal 

to zero with a great a,ccuracy. It seerns unlikely that the complete (or almost complete; 
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caucellation of the vacuurn energy should occur without some deep physical reason but we 

do not know any symmetry that forbids a cosmological terco nor a cancellation mechanism 

for it by that degree, neither is there a reason why this vacuurn should be transparent to 

grava t y. 

1.3) Infiation 

Theories of Unification and their phase transitions opened the way to inflation. Just 

as the baryogenesis process has introcluced the possibility of explaining the small ratio 

of na/n7  instead of accepting it as an initial condition, the inflationary model proposes 

dealing with other features of the Universe connected with the initial conditions. The 

basic ideas for an inflationary scenaxio were developed by muy authors -see [7] and Linde 

[5] for some history on the development of inflation and a detailed bihliography of carly 

work- but the definite step corresponds to Guth [8] who suggested using the exponential 

expansion of the Universe during a pitase transition with supercooled vacuum state to 

solve the horizon and flatness problems and the monopole problem raised with unification 

theories. 

The basic idea of inflation is that there has been an epoch in which the Universe ex-

panded exponentially as the result of the clornination of the vacuurn energy component on 

its energy density. This clomination should be temporary and the vacuurn energy should 

transform into energy of particles. In this sense, it is useful to work with a metastable 

configuration of a scalar field which fills the expanding Universe (instead of a real cosmo-

logical constant reflecting the vacutun property): an liomogeneous, classical, scalar field 

can play the role of an unstable vacuum state, and its decay can heat up the Universe. 

Such a field, displaced from the minimum of its potential, causes a change in the vacuurn 

energy density described by the quantity V(a. ) that enters into the Einstein equations, 

atfecting the properties of spacetirne. After the phase transition, the appearance over all 
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space of 470  O (true ground state displaced from cero) simply represents a restructuring 

of the vacuum state but also changes the ma.sses of those particles with which it interacts: 

sign "correction" for the mass aiare(' of the field a, as we saw, but also masses of bntL  

gattge bosons and fermions arise as the result of its non-zero vacuum expectation value 

(Higgs mechanism). 

As we saw, unification theories contain some scalar fields, displaced from the miniinuin 

of their potential. In a first arder phase transition, during supercooling, the energy density 

of relativistic particles oc T4  becomes negligible and the presence of the barrier between the 

true and the false vacuum keeps the Universe "hung up" in the metastable false vacuum 

with a constant energy density V(0)(-: V(a = O)) during the supercooling. With a constant 

energy density p po in the Friedmann equation (I.1.5), neglecting the 107 2  tern', 

H2  1:.), 	 (1.3.1) 

the Hubble pararneter is constant and the expansion of the Universe turns to be exponential 

	

a(t) cHt, 
	 (1.3.2 

the Universe asymptotically approaches a de Sitter Universe. 

In spite of the exponential expansion of the Universe, the energy density rematas 

constant: during inflation the amount of matter in the Universe grows exponentially as its 

volume. 

Due to its Lorentz invariance, the energy-momentum tensor of the (false i vacuurn st are 

is of the forrn 

A g 	,„ 	 (1.3.3). 

with constant A. In such a way, the energy density p and the pressure p are constant. 

equal, and with opposite sign 

P = 	 (1.3.-1) 

The negative pressure allows for the conservation of energy: p = —p = pd& 	—pda 3  

allows for d(pa 3 ) = —pdall  with p etc, and it is the driving force behind the exponential 
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expansion since p 3p < O in á = -itG(p 3p)a 	ii > O and the Universe expansion 

becornes Itccelerated. And that is what uniquely characterizes inflador': á must increase 

with t. Indeed, as we will see in next chapter, inflation can also be described by a power--law 

expansion. 

The negative pressure 	"tension" ) is a characteristic property of quantum vacuum 

in field theory (this is similar to the case of the Casimir Energy). According to general 

relativity, the pressure also contributes to the attraction, so, the notion of negative pressure 

would lead to the effect of a gravitational force that is effectively repulsivo. 

1.4) Inflationary models 

Infiation involves, as we have seen, a scalar field whose expectation value is, for some 

reason, displaced from the trae ground state of its potential; it will not necessarily be tied 

to a phase transition. Models of inflation will usually involve very fíat scalar potentials and 

hence a scalar field weakly interacting with any other field in order to have V(a) con.s t. 

and dr = O. 1f we impuse this conditions in the expressions for the energy and pressure 

density of a homogeneous scalar 04 a = 0) field 

Pa = (TR)ii"ts°  =(.2) + (V (Ir)) 
	

(1.4.1) 

Pa = --
1 
3  

h"" (ny) = -
1

(6' 2) - 1V  (a)) 
	

(1.4.2) 

where 	gPv 	ve see that the equation of state becornes p 	-p. If dr is 

non-zero it has at least to satisfy: á C< V (o.  = 0), and this will lead to a slow-rollover 

regitne for inflador'. 

a) Old Inflador" 

The old inflado!' model is tied to a phase transition that occurs, for sorne values of 

the paraineters, very slowly compare(' with the cooling rate. Its success depends on the 
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possibility of a smooth completion of the phase transition acconipanied by a large scale 

thermalization of the latent heat, in order that the inflationary period ends. followed by 

a Universe described by standard costnology. Whcn he was proposing inflation. Guth :8] 

already realized that this was a serious problem of his rnodel: the volurne inside bubbles 

expands with a power-law (speed of light) whereas the region between bubbles still ander-

goes a de Sitter expansion; in such a way, a very inhomogeneous Universe would appear 

since the nucleated bubbles could not keep pace with the cosrnic expansion and could never 

reach each other. 

Phase Transition 

In the classical theory, the false vacuum would be completely stable; in the quantum 

version the tunneling through the energy barrier can achieve the transition. resulting in 

bubbles of the new phase growing at a speed that rapidly approaches the speed of light. 

Coleman and Callan (01, generalizing the tunneling of a particle in quantum mechanics, 

develop a Euclidean approach to the theory of the decay of a metastable vacuum state. 

The tunneling rate or the probability of forming a bubble of the broker' phase can be 

written as 

.le-8  

where f3 is the bounce action corresponcling to the solution of the classical equation of 

rnotion for the field a in Euclidean space and the prefactor A a M't, with M some 

mass scale associated with the potential (e.g. the height of the barrier). A large action 

corresponds to a strong first order transition with a considerable supercooling. Coleman 

and De Luccia [10] have worked to generalizo the Euclidean formalisrn to curved space. 

The progress in calculating the clecay probability of the false vacuum in realistic theories 

is complicated by the fact that the solution to the a equation of motion and the assoeiated 

value of the Euclidean action must often be computed numerically and the prefactor can 

only he calculated in certain special cases, working in general with just a rough estimare. 

Guth and Weinberg [11] and [12] investigate cosmological phase traositions driven by 
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slow nucleation of bubbles via the zero temperature quantum tunneling process. They 

consider that bubble nucleation starts at some time ti)  and afterwards occurs at a constara 

tate per unit (physical) votarle; bubbles are assumecl tú fono with zero radius and then 

expand at the speed of light. They first consider whether the bubbles percolate and 

therrnalize on a largo scale. The fraction of space remaining in the old phase is giren by 

where 

J)(t) = exp [ 
j 

 diir(11)(23(tov(ilet)i 
tQ  

/.4.4) 

47r 	[ 	13  
V(ti,t) = 3- ft, 	 (1.4.5) 

is the coordinate volurne at time t of a bubble formed at time ti. This volurne is un 

increasing function of time but it tends to an asymptotic value (= (41r/31/3)e-3H10) and 

hence there ís always a fraction of space that reunas in the old phase, no rnatter how long 

we wait. 'The finite limit of the volurne occupied by bubbles representes an event horizon: 

two bubbles which born simultaneously, separated by a distance greater than the Hubble 

radius (211-1) will never collide. This means there will be no large scale percolation. We 

can define a mensure of the possibility of percolation as the nucleation rato relativo to the 

expansion rate of the Universe 
r 

6  = 717  

In [11) it was found, on one hand, that there is soine critica' value 

10-6  e, 0.24 

at which percolation sets in, and, on the other hand. 

e 	4 x 10-3  

(1.4.6) 

(1.4.7) 

(1.4,8) 

is needed in order to have enough inflation to solve horizon and flatness problems (provideci, 

of course. there is enough thermalization of the latent heat of transition). An estirnation 

of the tunneling action in an SU(5) phase transition [12) shows that values of f of order 

10-1°°° are quite plausible. But a small percolation pararneter obviously means poor 
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thermalization. As for the possibility that our Universe is the product of the collision 

of a small nutnber of bubbles, they prove that concentrations of la►tbble= fosa clusters 

which are each finally dotninated by one bubble (the largest) and argot,  that. colliding 

with bubbles much smaller than itself, the energy in the walls of the largest bubble Las no 

chance to be thermalized, The possibility that the presently observed Universe dereloped 

from a single buhble is ruled out because the region would fail to sntisfy simultaneously 

the requirements of containing enough entropy tú encompass our Universe and reheat to 

a high enough temperature for nucleosynthesis. 

These considerations leave a really small window for the percolation parameter value: 

it has to be low enough to let inflation set in and high enough to restore a standard 

Universe. In such a way, the possibility of large scale therntalization is rejected: oven a 

universe originating from the collisions of a small number of bubbles. as a consequence 

of the spread in the bubbles size, is unlikely to be a homogeneous and isotropic region 

containing sufficient entropy, They suggest that the solution would be to find a triggering 

mechanism for the phase transition to keep low the nucleation rate at the beginning and 

then becorne suddenly large, producing many bubbles of comparable size. 

In the attempt to improve the situation, it was realized that inflation could be imple-

mentad in another type of phase transition [131. 

b) New Infiation 

Inflation occurs during the process of slowly growth of the inflaton field to its equi-

librium value as  and the phase transition is smooth (weakly first order or seconci order). 

We requise a very flat potential barrier e  that disappears for T = O, in order tú have a 

jump of the expectation value of the scalar field from a 	O tú sotne initial value a;  by 

quantum tunneling or through thermal fluctuations, and a slow evolution to the rninimuru 

ao  from therc on, If, during this slow-rollover, inflation is large enough. the whole ob-

servable Universe evolves out of a single fluctuation region ("bubble"). The walls of this 
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region will be far apart and will not engender a.ny inhomogeneities in the observable part 

of the Universe. Tu ensure an inflationary behaviour, the effeetive potential must be fíat 

near 	O, requiring very small self-eoupling constants. The reeovery of the standard 

Universe is not through the collisions of the bubble watts but rather through the dccay 

of the a field tu other, lighter fields to which it couples. The infiationary potential has 

ro become steep as it approaches the stable minimum ao. As the inflatun field begins tu 

oscillate about tia , the vaemun energy is in the forte of spatially coherent oscillations of the 

a field, corresponding to zero-momentuin a partirles. Their decay to other fields, coupled 

to the inflaton field, datup these oseillations and populate the Universe with matter and 

radiation. As the decay products thermalize. the Universo is reheated. 

c) Chaotie Inflation 

This moda, suggested by Linde [14), is based on the assumption that the initial dis-. 

tribution of a sealar field is chaotic, i.e. it takes different values in different regions of the 

Universe. The reason for this would be that energy density fluetuations at the epoch of 

quantum cosmology are so big that the field does not "know" where the potential minimum 

The variation of the sealar field should be slow enough tu ensure a quasi-exponential 

expansion requiring therefore very small coupling constaras in the potential that is of the 

simple forro 

) =an 
	

(/.4.9) 

with n an even number. The rninimum of this potential is at 	O. A chaotic distribution 

of the sealar field avoids making the assumption that the initial value of the sealar field 

corresporids tu the minimum of its potential energy. And, indeed, with a small self-

interaction coupling A there is no reason to expect that at f — tpi the field a is equal tu 

zero everywhere. In a Universe with a sealar field chaotic initial distribution, domains with 

a Iligh enough initial value a;  tu ensure a sufHeiently largo inflation inevitably exist and 

lis-e vise tu mini-universes larger than the size of our observable part of the Universe. So, 

as in new inflation, we live in une single inflated "bubble" evolved froru a small fiuctuation 
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region within one causal distance and there is no need for a bubble percolation process. 

The chaotic inflation scenario differs from the other versions of inflationary Universe 

in that it is not based on the theory of high-temperature pitase transitions in the early 

Universe. The scalar field is not attached to a unified theory and its only purpose is tu 

implement inflation. 

1.5) Inflationary predictions and solutions to cosmological problems 

a) With inflation the horizon problem disappears: the horizon will just be moved to 

distances which have not been observad yet. Before inflation begins the region is much 

smaller than the horizon distance and it has time to homogenize and reach thermal equi-

librium. And this small region is then inflated to become largo enough to encompass our 

Universe. 

Guth [81 has estimated that if the scale factor inereases more that' -- 1O times during 

inflation, the horizon problem is solved. 

b) During inflation the energy density of the Universe rernains constant (or decreases 

very slowly) while the curvature terco kla2  falls off exponentially, thereby explaining the 

flatness of the Universe. The global topological properties of the Universe will certainly 

remain unchanged but, for a sufficiently long inflationary periad (that is approximately 

equal to the one required by the horizon problem [81), the exponential growth of the radius 

of curvatura of the Universe at that epoch enseres that it is still much greater than the 

Hubble radius today. 

e) Inflation chutes the monopole abundance: topological clefects are created at the 

intersection of exponentially larga bubbles and therefore have exponentially small density. 

To this end. G UT spontaneous symmetry breaking should of course occur before or during 

inflation. 
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d) An attractive feattire of de Sitter expansion is that because of its rapidity, the 

universo loses all information on initial conclitions. 

e) The main success of the inflationary theory is the possibility of generating the seed 

perturbations that can grow to form the large scale structures. In the new and chaotic 

inflation models, where a single inflating "bubble" encompasses our present observable 

Universe, small quantum fluctuations of the scalar field in the homogeneously inflating 

region tnay, because of the exponential stretching of spatial dimensions, he at the origin 

of galaxies and clusters of galaxies. The inflationary theory provides the early Universe 

with a scale-invariant spectrum of pertubations (i.e. amplitudes almost independent of 

the wavelength). The amplitucle of the spectrum is model depenclent, but the form is a 

generic prediction. We will treat this topic extensively irr chapter V. This great success 

unfortunately presents a drawback: the fluctuation amplitudes are much too large as com-

pared with the observable fluctuations imprinted un the CMBR,. Arranging for acceptable 

density perturbations results in a very restrictiva constraint on inflationary potentials: one 

needs an extremely flat potential. For instance, with a potential of the form Acr4 , the 

self--coupling constant A mttst satisfy A < 10-12. Wc then have a fine-tuning problem: not 

only such a small value for the self-coupling costant sounds 'innatural, but it seems hará 

to be preser•ved because of radiative corrections from interactions with other fields. The 

inflaton field must then be very weakly coupled to all fields so that one-loop corrections 

to the scalar potential do not interfere with the extremely flatness required. This fact has 

unpleasant implications for• reheating ( see below) and also for the new inflation potential: 

with an extremely weakly interacting field the high temperature corrections ro the effective 

potential V(cr,T) are negligibly small and this has the consequence that u = O is no longer 

metastable. 

f) An important question to be solved in all inflationary modds is the thermalization 

mechanism of the vactium energy density. An extremely weakly interacting field essentially 

decouples from any kind of particles leaving therefore no possibility 	reheating, i.e. no 
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transformation of vacuum into radiation. 

g) The inflationary Universe requires a A term, but it arises and is supposed to last 

only during the transient stage in which the GUT phase transition is taking place. \\lile  

inflation has the potential to solve all of the purely cosmological controversia! issues of the 

standard cosmology, it does not address the puzzle of the cosmological constant (which is 

a problem of particle physics too). 

h) inflation explains the great degree of hornogeneity of our observed Universe but one 

rnust assume however that in the early universe at least some regions were uniform and 

hot compartid with the critical T of the phase transition. The scalar field must be smooth 

in a large enough region so that the energy density and pressure associated with spatial 

gradients in o are srnaller than the potential energy since if (Vcr)2  dominates inflation will 

not occur. 

i) There are some questions (certainly related) that raise now: what is o? Why is it so 

weakly coupled? And are the initial conditions necessary for the realization oí* the infla-

tionary regime sufficiently natural? The identity of the "inflaton" is not knuwn. Prescntly. 

it is taken to be either some yet unidentified scalar particle, or an effective action term 

due to various interactions present. More or less successful models have beca proposed 

where the inflaton field is related to the GUT phase transition, to supersymmetry sponta-

neous symmetry breaking, to higher-dimensional theories (where it is related to the radius 

of compactification of extra spatial dimensions), to a higher-derivative theory of gravity 

(where it is associated to the curvature scalar), where it is a non-minimally coupled scalar 

field or just a random scalar field as in chaotic inflation. 

Conclusions 

The inclusion of an inflationary penad in the early history of the Universe is certainly 

useful, in particular to avoid the assumption of narrcm Mitin! conditions and to produce 
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seeds for structure formation. The vagueness about the cause of inflation implies that it is 

a general concept rather than a specific physical theory. The important and difficult issue 

is to ensure that the infiaton field flts in the framework of a realistic elementary particle 

theory. Since we have encountered a, more ter less pronounced fine--tuning problem in all 

the modela we have discussed, the search for inflationary tnodels confirmes. 
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Clirtpter II 

Extended Inflation 

Introduction 

In the previous chapter I have depicted the "standard" infiationary models: all of thern 

bring a modification to the matter sector (by including a scalar field with some particular 

effective potential). Other models introduce a rnodification in the gravity sector too, we 

will tuca to them now. 

La and Steinhardt [15] ha,ve recently developecl a scenario for infiation basad on the 

Jordan-Brans-Dicke gravity theory [161 in which the extraorclinary expansion which char-

acterizes inflation now .follows a power law instead of an exponential one. Power-law 

inflation models had been previously proposed using an exponential potential for the in-

flaton [14 In this new model, called extended inflation, the sarne behavior is the result of 

the dynamics of two fields: an inflaton, with an old-infiation type potential, and a scalar 

field, the Jordan-Brans-Dicke (herea.fter JBD) field, which plays the role of a time-varying 

gravitational coupling. The siower expansion can be explained by the fact that the vac-

num energy density is now shared between the Universe expansion and the evolution of 

the JBD (gravitational) scalar field. Actually the two schernes are related by a conformal 

transfortnation (see e.g. [191): to the JBD frame with an inflaton field corresponda in 

the Einstein frame where the gravitational coupling is constant - a model with a. field 

having an exponential inflationary potential. In extended infiation, as in the old inflation 

mode!, the phase transition is of first order, but the siower expansion now aliows bubbles of 

true vacuum to percolate and forma big enough region to contain our Universe. However 

bubbles are still a source of problems since the recovery at the end of infiation of such 

region, hornogeneous and isotropic, demands a low value of the Brans--Dicke para,meter 
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[201, [211, which is in conflict ;s'ah the lower observational bounds [22]. Taking this finto 

account, we have to abandon the simplest models of extended inflation, e.g. introducing 

potential for the JBD field [23]. Severa! (Alter variations have been proposed: introdncing 

a JBD field in chaotic [241, [251 or new [25] inflation, allowing the BD parameter tu vary 

with time [261, 1271, introducing non-standard couplings of the JBD field tu matter [24 

In this chapter we will briefly discuss the JBD theory and review the work that has 

been done on power-law inflation, leaving the mode! with non-standard couplings for the 

next chapter. 

11.1) Jordan-Brans-Dicke theory 

In 1961 I3rans and Dicke [16] developed a utodified relativistic theory of gravitation in 

which the gravitational effects are in part geornetrical and in part due tua scalar interac-

tion. (In 1959 Jordan [17] had developed a theory 1.-minally similar to the Brans-Dicke one 

but with different physical interpretation). They were interested in a gravitational the-

ory compatible with /vIach's principie, in the sense that locally observed inertial reactions 

shoulcl depend upan the mass distribution of the Universe about the point of observation 

and consequentiy the physical "constants" shoulci be position dependent. Being possible tu 

reduce the variation of physical "constants" to that of a single parameter, they introcluced 

a scalar field (I) whose primary function is the deterniination of the local value of the grav-

itational coupling. The ideas they present are incompatible with the strong equívalence 

principie. 

Starting frotn the usual variational principie: 

O 	b 	[R (
16 7r 

4
G 

)£1 (-9)a /`, 
	 (¡1.1.1) 

they get the required generalization dividing by G -- substituting it by <I)-1  -- and intro- 
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ducing a Lagrangian density of a scalar field, 

O 	6 	[4> R (
167r

)C 	
0„ (D" (1) 

( 	tt x 
	

(11.1.2) 

where the scalar field in the denominator has been introduced to let the constata w be 

dimensionless. The parameter 	is a measure of the influence on the gravitational field 

acquired by the scalar field, with respect tu the space--time curvature. The smaller w, the 

more important is the effect of the scalar field. When w 	cc the JEID theory coincides 

with Einstein gravity. 

In order not to interfere with the successes of the equivalence principie. the Lagrangian 

density of matter is identical in both equations and the equations of motion of matter are 

the same as in general relativity and the diflerence between the two thcories lies in the 

gravitational -field equations which determine by. 

The wave equation for di is: 

2-7,—
(1)

0
1
4(paii(1,  -4- 4' —

R 	
O 

(4 
(11.1.3) 

with O =---T 	 (-0-1/20Z-9)-1/ 2g"uail• 

The field equations for the metric field are obtained from (11.1.2) by varying the com. 

ponents of the metric tensor and their first derivatives 

1 	871- 	 1 
Ro„ 	2govR 	} eme,.(0

/ 	 9 
,,Dap(h - 

1 
g

/I
a ,„<pao(1))+ -(s7„0/4 4)- g11„1:11)) ( /1.1.4) 

The first term on the right is the usual source terral of general relativity (4, is the matter 

energy-momentum tensor corresponding tu 	with gravitational coupling (13-1  and the 

second ove is the energy-momentum tensor of the scalar field. The third terco, results 

from the presence of second derivatives of the metric tensor in the variation of (11.1.2). 

These second derivatives are eliminated by integration by parís tu givc a divergence and the 

extra terms. The role of these extra, terms is essential for a vanishing covariant divergence 

of the energy-momentum tensor of matter tu be consistent with the equations of motion. 
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From (11.1.3) we see that the tercos (1)I? and the (1)-Lagrangian density serve as the 

source term for the generation of (I) waves. But it is interesting to see that, obtaining I? 

from (11.1.4), this equation can be writ ten: 

DF 	87r 
(11.1.5) 

(3 + 
	T 

in such a way the source terco appears as the trace of the energy-momenturn tensor of 

matter alone (T), thus meeting the requirernent of Mach's principie that (1) has as its source 

the matter distribution in space. 

They also discuss the consequences of their theory on observable quantities. i.e. they 

check the classic tests of Einstein's theory. The gravitational redshift is computed in the 

weak field approximation. It is determined by goo  which rontains. as comparecí to general 

relativity, the extra factor [(4+ 2w)/(3+ U)]. But Ibis factor is absorbed lato the definition 

of the gravitational constant: G = (D-1[(4 + 2w)/(3 + 	and there will be no anomaly 

in the red shift. AH metric theories of gravity predict the sanee gravitational redshift. 

There is an anornaly in the deflection of light. This quantity differs from the GR. valle 

by the factor R3 + 1.))/(4 + 2w)1, but at that time the accuracy of the light deflection 

observations ovas too poor to set any useful limit on 

On the other hand, the accuracy in the observation of the perihelion rotation of the 

orbit of Mercury allowed for this limit. The precession is cumulative, so it can be obsrrved 

over several years. The relativistic rotation mate of the perihelion of a planetary orbit is 

a factor [(4 3A:)/(6 + 314 times the GR value. There are other causes for precession 

(sun's oblateness. sun's rotation,...) but for comparison betwcen measured and theoretical 

precessions it is usually taken: [5,99GR 	— AwNewi, with 	precession ingle in 

* The first experiments were done with visible light, during an eclipse. Later, developntents in radio 

astronomy malle possible a far greater accuracy than was possible with optical astronomy. Along a t'evade, 

a number of radio—wave defiection measurements with groups uf quasars that pass very clase to the sun 

yielded different determinations of the metric parameter Ir with encreasing accuracy, the 'list uf Ivhich, in 

1975. gavie an interval centered in the general relativity value, see. e.g. %Vill f35), p. 172. 



each revolution, which are the anea large enough to be measured. Taking into account a 

caused by the sun oblateness (measurement from Dicke et al., in disagreement with 

other measurements, see e.g. Weinberg [29]) worlld enhance the discrepancy between the 

• measured and the theoretical GR values. With an accuracy of 8% of agreernent between 

the observed and the GR computed results, the bound they find is: w > G. 

Since then, the accuracy of the ohservations has notahly improved. The previous 

tests dealt only with the shape of the trajectories of light or planets but it has then been 

possible to follow their time history. As predicted by general relativity, the round-trip 

times of light signals traveling to the inner planets or tú artificial satellites and reflected 

back to the earth are Mercase(' by the direct effect of solar gravity on spacetime. Upon 

comparison between the theoretical value and measured echo delays we can put limits on 

the metric parameter. The estimation of the theoretical value of each corrected echo delay 

needs a metric theory and a model of the solar system. For this model we need distantes, 

radii, masses, planet rotations, and we do not know diem with a great accuracy; then 

large set of unknown parameters are determinad by fitting observed times with theoretical 

formulas. The comparison of incide theories with each other aml with ohservations, at 

least for solar system tests, can be made in the post-Newtonian limit (Le. weak field, slow 

motiort limit). The parametrized po3t-Newionian (PPN) formalism embraces most metric 

theories and contains a set of parameters (PPN parameters) whose values fix the particular 

metric theory we are clealing with. One of this parameters is y, which is a mensure of how 

much space curvature (gik) is produced by unit rest mass, the general relativity value being 

1 (see e.g. [30]). For a scalar-tensor theory, the parameter is related to the coupling 

parameter w through: ry = 	1)/(w 2). 

The most accurate value, obtained from radio ranging to the Vikitig spacecraft is [22] 

= 1.000 ± 0.002, where the uncertainty given, about ti,vice the formal standard deviation, 

is based on the spread obtained in the estimates of / from the many measured times and 

un a judgement of the reliability of all the procedures used in the collection and analysis 
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of the solar system data. From the uncertainty on 7, the restriction on c4.) is: 

w > 500. 

11.2) Power-law inflation 

The idea of inflation was continuously developed ami it was realized that the cosmolog-

ical problems which lcd to the proposal of inflation corrí(' also be solved by any accelerated 

phase of expansion, even if not exponential. In this way, a family-  of general inflationary 

models characterized by a scale factor which grows like a ti  tP, with p a constant greater 

than 1, was investigated by Abbott and Wise [311 and Lucchin and Matarrese [181. The 

first interesting result [181 is that the potential which leads to this power-law inflation is 

exponential: 

17(4)) e-(4)-4'‘1/17 
	

(11..2.1) 

where 	is the inflaton and the (11-3olution increasing with time is considered, i refers tú 

an initial time t i  where (Di 	O and a = (pl4r)1 12 mi; 17(4)) is assurned tú depend on t 

only through t1. Since the authors dad not consider any physics underlying the model, this 

potential should be considere(' as a way to mimic the source for power--law intlation during 

a time interval. Then, considering the conclitions that the combination of the observe(' 

isotropy of the cosmic background radiation and the requirement of fonning galaxy proto-

structures impones on the amplitude of quantum fluctuations of the sedar field it emerges 

that p = 1.9 is the lowest permitted valle but in general, low values of p, e.g. p 2, give 

rt reheating temperature only marginally compatible with the usual baryosynthesis con-

straint and a perturbation spectrum not coznpletcly satisfactory on largo scalcs. Abhott 

and Wise get the sarne result irnposing observational bounds on the amplitude of gravi-

tational waves generated from quantum fluctuations during the inflationary period. They 

relate this quantity tú the maximmn reheating temperature and fiad that for poner-law 

inflation it is an increasing function of p. 
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A posible disease of this scenario is that the mechanism whereby inflation encía; is 

unclear. 

11.3) Extended inflation 

In 1984, Mathiazhagan and Johri [32] reanalyse inflationary seenarios tullir the frame-

work of JBD theory. Their inodel contains two scalar fiehls: the JBD field and another 

scalar which mediates the transition. The resulting expansion is power-law. With a 

Colernan-Weinberg potential for the infiaton (in the standard SU(5) model), they esti-

mate the time required after the tunnelling event for the inflaton to roll down to the global 

minimum and fiad that the amount of inflation is sufficient to solve the cosmological prob. 

lems. 

In 1989, La and Steinhardt [15] and [19] develop this scenario with an old inflation 

type potential, giving special emphasis on the percolation of bubbles of true vacuum and 

the thermalization during collisions, of the energy contained in the bubble walls. 

Equations (11.1.4) and (II.1.5) with a FRW line elernent with scale factor a(t) and a 

spatially homogeneous JBD field (l = 1(0 are: 

H2 	87rp 	(.7 ft2 	rir  45 1  

341,  a2  614i 	
(11.3.1) 

and 
3114, 	87rT  

(1/.3.2) 
3 + 2w 

where p is the Universe energy density, H is the Hubble parameter H qa, a dot denotes 

differentiation with respect to t and k = 0,1, -1 corresponds to a fíat, closed or open 

Universe. 

The solution to the JBD equations when the Universe is essentially vacuum energy 

density dominated is: 

4i(t) = inp2(1 + (t )2  

(0) = (1 + 3-1
)w+1/2  

fk 

Jarr  

(11.3.3) 

(11.3.4) 



where x2  = Srp„/3mp2  (Hubble constant iu the Einstein theory), 	is the vacuum energy 

density, mp  is an arbitrary integration constant corresponcling to the effective Planck inass 

at the beginning of inflation, and a2  = (3 -I- 2w)(5 6w)/12. 

For short times, xt < a, the JBD solution has an exponential regirse (for largo w) 

a(t) ti exp(xt), with (1) nearly constara. Then, when xt > a, this solutions can be written: 

327rpv 	12 2/ X 4A2 - 
(1)  Prj 1711A7y" - (3 + 2w)(5  + 6w)  

a(1) P.-, ( 2-C  t)w+ 1  / 2  

It has to be noted that the solution for the JBD field used in extended inflation is a 

special case of a more general class of solutions: it meets the boundary condition di(0) = O. 

This ensures that the JBD solution is dominated by the vacuum energy and not by the 

JBD scalar field as t --> O. The same initial condition is also usually imposed when solving 

for matter domination. After the inflationary epoch, the evolution of the JBD field is much 

slower. During the racliation dominated epoch, the Universe expansion is the same as in 

general relativity 

a(t) t2(w+2)/(3.44) 

(.7h = const, 

since the source for the JBD field evolution is the trace of the energy-momentum tensor 

of matter which is zero for an ultrarelativistic Huid. In the matter-dominated era, the 

presence of the JBD field has again sorne effect on the Universe behavionr; with k = O we 

have 

a(t) QC t(2w+2)/(3.)-1,0 

40(t) cK 0/(3"44). 

This solution corresponds to the simple case of zero integration constant in the field equa-

don for <D. i.e. it is obtained imposing the constraint 403  --+ O on the initial singularity 

(a == O). While this solution is obtained with special values for the Mitin! conditions that 
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may not be the appropriate ones, all other solutions approach this one at large time, see 

e.g. [29]. 

There have also been attempts to implement inflation by relating direetly the intlaton 

field with the gravity sector. In the induced gravity model [33], gravity avises as a sym-

metry breaking phenomenon; it is a consequence of vacuum fiuctuations of quantum fields 

in curved backgrounds. Thus, the theory deviates froin general relativity only at high 

energies. In this context, gravity is a phenornenological theory instead of a fundamental 

one. With, for instance, a Ginzburg-Lanciau symmetry breaking, the transition can be 

inflationary. Since the new feature, as compared to conventional scenarios, is the substi-

tution in the Lagrangian of the term (167rGN)R by a terna 1/2ea2 R, one would expect, 

as long as the slow-rolling approximation is valid, little change in the mune of inflation. 

This turns out to be true and we consequently have the sa.me fine-tuning problems as in 

standard inflation. That is why we tturn to inflationary models with two fields. Inserting 

extended inflation in the context of induced gravity, a more complicated model is obtained, 

where both the inflaton and the JIM field have inflationary potentials [23]. The result is 

a rnultiple-episodes inflation in which at low energies the gravitational coupling would be 

driven to its present constant value by the JBD field potential. Furthermore, the fluctu-

ations generated in the initial inflationary phase could establish the largo-scale structure, 

while those of the second phase would be responsible for the perturbation spectrum at 

small scales. 

La and Steinhardt calculate (in the usual way defined by Guth and Weinberg [11]) the 

probability p(t) for a point to remain in the false vacuum phase (eq (1.3.8)), substituting 

hcre a scale factor which grows as a power-law of time. With this dependence on time, 

p(t) decreases faster than the Universe volume o3(i) increases and as the physical volume 

occupied by the false vacuum is p(t)a3(1). the Universe exits from the false vacuum phase. 

Another approach is considering the number of bubbles created in a Hubble volume in one 

Hubble time E a rfiti, where the nucleation rate per unit tinte per unit volume 	is 
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again considered as a constant. In standard inflation H was also a constant and so was e 

In the power-law expansion regirte H w ála = Ho (1 + Hot/w)-1, resulting in e x t4. In 

this way, e can be very small at the beginning, allowing for inflation to occur, ancl then 

grow aboye the critica' value where percolation is achieved. Here, the fitting of space with 

true vacutun still occurs exponentially in time but now the expansion is only power 

The time variation of e also alters the bttbble size distribution, this being an important 

quantity for the estinuttion of the time nccessary for thertnalization. Since the energy is 

concentrated in the bubble walls, the spread of energy through the bubble interior, alter 

collision, is faster in small bubbles than in big ones. On the other batid, for the same 

reason, large bubbles could load to voids in the subscquent matter distribution. 

\Ve can then hope that a small hut non-negligible number of big bubbles cxists. It 

could influence the large-scale structurc and be at the origin of voids and at the same time 

it would be so small not to imprint inadrnissible distortions to the background radiation. 

Additionally, with this thermalisation process we llave a naechanism for non adiabatic 

fluctuations: the radiation pressure multes radiation separate from matter in their diffusion 

through the true vacuum region. Isothermal fluctuations may be useful for structnre 

forrnation. 

When to -+ oo the model recovers the old inflationary scheute that fails precisely in 

the percolation and thermalisation proccsses. We can therefore expect an upper limit 

on the w parameter in arder to get successful inflation. If the chango from exponential 

to power-law expansion is enough Lo ensure percolation, it is also necessary to verify 

that a satisfactory reheating process is achieved 	[34]. Considering astrophysiettl and 

cosmological restrirtions on the model, the most stringent bound that has been obtainecl 

comes from the isotropy of tlw comide backgrolind radiation (CBR). To limit the distortions 

in the CBR, iue to the bubbles energy, a heuristic constraint is imposed: that only tt 

small fraction of space (at most 10-1  - 10-3) is still in the thermalisation process at the 
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recombination epoch. The upper limit obtainecl for w at the end of inflation is: 

95 

Although this value is not very precise, it is definitely far from the observecl present bound 

[22) ch) 7 500. So, the quantity of big bubbles turras out, to be too high. However. since the 

conflict originates from constraints applied at very different times, it is possible to think 

to a.n "evolutionary" solution to the problem. 

The general features for a successful extended theory of inflation are outlined: ara epoch 

of sufficient inflation with a. high initial value of the Hable parameter -consequently a 

small initial e- decreasing slow, in arder to prolong the inflationary period, to a value Her jg 

--e„ii- at which percolation is achieved. At the end the decrease in 11 should be faster 

than in purely Brans-Dicke, to obtain ara adequate reheating. To meet this requirement 

of a steeper variation of the bubble nucleation pararneter in order Lo suppress big bubbles 

and have, towards the end of inflation, a boom of small bubbles, all of them nearly of the 

same dimensions, Steinhardt and Accetta. [26) and García--Bellido and Quirós [27] propase 

to gencralize the model, introducing a variable BD parameter w(4)). Thus. a dynamical 

tnechanism to keep low the IQ value during inflation and let it grow te the present value 

during the subsequent epoch is available. (This more general scalar-tensor theory of gravity 

had already been proposed in 1968-1970 [351) In their Hyperestended model. Stcinhardt 

and Accetta introduce a non-minimal coupling for a field (/): 

1 
(11.3.7) f(0)R 	75-0i,001' -1- 1GIr 	, 

where Z.:„,„it  does not include o, and then recast this Lagrangian in a forra reminiscent of 

JBD theory writing f(0) = d) and absorbing in i.4) the extra. factors in the second terin 

ce((1)) r, .1.51" in o  £ = —4)  R --1--tioletr (ir + 	 (11.3.8) 

with w = f/2(fij where f' df /dei. 

The equations for a variable w are 

k 	87rp 	1.4) (i) 2 	4/ 

cié
H- 	- --,-- 	) - .1/ 

50 

(11.3,9) 



which is the same as in extended inflation, and 

(i) + 31/4 '14")  4,2 _Sn.  
2w +3 — 2w + 	31))  

where the extra term takes into account the variation of the pararneter. 

(11.3.10) 

The advantage of the extended model over the °id inflation model was that the nuele-

ation parameter e changed from a constant to II quantity growing in time -as the fourth 

power of time. But this growth rate has still shown to be inadequate. The hyperextended 

mode! obtains a nucleation parameter that grows exponentially with time. 

To support the departure from standard gravity in order to get a successful infiation, 

Accetta and Steinhardt (36] present the role that inflation can play in altering the grav-

itational force. They consider a non-rninimal coupling for the. JBD field, that takes the 

foral f(4))R where f((I)) M -1- el>2  + '(10/,:11(? + 	for (I) << M0. Typically, the Mida! 

l'abre of (1) and the coupling constaras 1, 	... are small and al] but the first term are taken 

to be negligible. Inflation can amplify the effects of the non-minimal coupling since the 

false-vacuum energy puches <I> to high 'mines and thus the higher order tercos, usually 

ignored. become important. 

In the context of a time-dependent (4)-depenclent) w, an interesting alternativo (trises 

for the mode in which inflation ends [37]. Since the exponent of the power-law expansion 

depends on w. below a certain value of 	1/2, in standard extended inflation) the 

expansion of the Universe becomes subluminat Therefore, for an w decreasing ‘vith t», 

inflation ends while the Universe is still trapped in the false vacunan ami utast of the false 

vacuum is converted to true vacuum by hobbies nucleated after the end of inflador'. In 

this case, most of the bubbles do not inflate and the big bubble problem is avoided. 

It is worth noticing. however, that there could be no big bubble problent. A generaliza-

don of the thin wall formalism (Coleman [9]) to extended inflador' [39] seenis to indicate 

that gravity can iead to the recollapse of bubbles at the beginning of the inflationary pe-

riod. thus alterinl the bubbles distribution, This happens in general relativity too -in 
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curved spacetime, a newly nucleated bubble cannot, at first, keep pace with the expansion 

of the Universe- but it is more important in JBD theory since gravity is stronger during 

the early stages. Only after the gravitational constant has decreased sufficiently can the 

bubbles be treated as if they expand immediately after nucleation with the speed of light. 

The source of energy for the expansion of bubbles is the energy stored, in the falso VaCI.111111. 

In flat space it is just the potential energy of the infla.ton while in curved space it has an 

additional contribution: the gravitational energy of the infiaton, which represents a con-

siderable fraction of the energy of early bubbles. In the context of a decreasing-G theory, 

the conversion of gravitational energy into ldnetic energy of the JBD field is responsible 

for the depletion of energy of these early bubbles which will consequently start to shrink 

and recollapse. For this mechanisrn to be useful to our purposes, it must last long cnough 

(i.e, gravity must inhibit the growth of bubbles during most of the inflationary epoch) 

and this imposes restrictions on the model. For instance, Goldwirth and Zaglauer [39J find 

that for a double-well inflaton potential with non-degenerate minima, the self-coupling 

constant must satisfy A M/Mpi, where M represarás the typical mass scale of the phase 

transition. It is a moderate fine tuning for A and it is consistent with the thin-wall ap-

proximation requirement (A < 1). The implications of these values on the inflationary 

model (reheating, amplitucle of clensity fluctuations) should, of course, be checked. 

Another solution for the discrepancy between the value of w implied by present oh-

servations with the w value requirecl by a successful inflation is to resort to the induced 

extended inflation model. The key differcnce is the existence for a potential for the JBD 

fielci: if there is some potential keeping 	anchored at sorne value, then the low-energy 

limit of JBD will resemble Einstein gravity. 

Among all these attempts to construct an appealing, "natural", version of inflation. 

the idea of extending the other inflation models to the JBD frame is quite immediate. 

Linde suggcsts a chaotic extended inflation scenario [241, introducing in the matter sector 

of the JBD action a chaotic type potential for the infiaton: V(a) A12742" . He just shows 
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that it is a possible model and puts special emphasis on the feature of self-regeneration of 

inflationary clomains lending to an eternal process of inflation —as in the original chaotic 

inflation model- and on the possibility of relating the present large value of the Planck 

niass to other coupling constants in the theory or che to anthropic arguments. The model 

has further been investigated by McDonald [241 obtaining the following constraints on the 

BD parameter. To obtain sufficient inflation w Z 0.25 but the model does not conflict 

with the observed isotropy of the Universe provided that w Z 16. On the other hand, 

only for w < 250 does the model differ significantly from standard chaotic inflation. The 

interesting interval would then be: 16 S w S 250. but in this rango the bound imposed by 

the CBR on the density fluctuations requires a much smaller self-coupling of the inflaton 

than in conventional chaotic inflation. So it seems that although chaotic inflation in JBD 

theory is possible it is not of great benefit. 

A chaotic version of the hyperextended scenario have also been proposed by Lidsey 

[371, with an exponential potential V(o) Vo exp( -Asa) for the inflaton. 

More work has been done about chaotic extended inflation but with further sophisti-

cations; we inclucle it in the next section. 

Conciusions 

The 313D gravitational theory introduces interesting possibilities for the inflationary 

scenario: a softer inflation that avoids some of the problems of the original model, while 

still linked to a (first order) phase transition. Unfortunately, once again, the model does 

not go successfuly through the whole inflationary process and variations of the extended 

model have to be considered. Facing the discrepancies between present observations and 

inflationary requiretnents -in particular the pressing islam of successful rerovery of a Fried-

mann Universe-,  the simplest possibility seerns to be the inclusion of a potential terna for 

the JBD field, that allows for different evolutions of the gravitational sector at high and 
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low energies, We will investigate this possibility more extensively when considering the 

Universe evolution resulting from the inflationary period (chapter V). 

An important aspect is that inflation seems to be a very general concept -an accelerated 

expansion epoch for the Universe- that may be implemented in the context of a vide ranga 

of partido and gravitational theories, introducing modifications in the potential terms or 

in the coupling terms in order to overcome the problematie stops of the process. 
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Chapter III 

Generalized Scalar-Tensor Theories 
of Gravity 

Introduct ion 

The effects of the presence of a JBD type scalar mixed te the usual tensor interaction 

are severely constrained by experiments but, since observations only refer te visible matter, 

it is possible to construct a theory where a scalar field is coupled more strongly to a possible 

or dark matter coinponent than to visible matter. This is the key idea in a work 

by Damour, Gibbons arel Gundlach [28) (hereafter DGG) who consider a generalized (or 

"amplified") JBD theory, where a dilaten field couples with different strengths to visible 

and dark matter. The observational round would then apply only to the visible matter 

coupling. They find a maximum value for the present rate of change of Newton's constant 

compatible with - and not far from - observational bounds. 

The same technique was applied te the inflaton field driving extended inflation, con-

sidering it as an invisible matter component having non-standard coupling to the JBD 

field [40). In this amplified extended inflation model, the combination of the restrictions 

imposed by the observational limas en the BD parameter w and by the requirements of 

a successful intiation, leads to a considerable region in the parameter space of the theory 

where all constraints are satisfied. lt is the presence of two pararneters --instead of one-

that gives enough freedom to keep w > 500 and at the same time satisfy the isotropy of 

the CBR, requirement. 

Holman et al. [411 go beyond this model, now allowing non--standard kinetic and 

potential terms for the inflaton in the JBD frame, i.e. more general couplings i that is the 

model we will call "generalized" from now on) between the JBD field and the inflaton. 
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Generalized cha,otic and new extended infiation have also been analysed by Berkin 

and Maeda [52] and several works have been done trying to constrain these generalized 

couplings from observational bounds [42], [43) and [44) and from requircments of successful 

inflation [451. 

In this chapter we review the DGG work and the subsequent generalized extended 

infiation models. Constrnints on these models are treated in more detail in chapter VI. 

111.1) Dark Matter, non-standard dilatan couplings 

As we have seen, extended itiflation models are not easily implementad: they are 

subject to a stringent restriction that leads to introduce sophistications to the simplest 

moclel. The fact is that the JBD theory itself is severely constrained by present experinients 

and it is in this sector that we have to impose further modifications. The scalar field ck 

that is introduced in JBD is coupled to matter only through the metric: it appears in the 

gravitational field equations. deterinining the metric, and then intervenes in the matter 

equations of motion only through it. \Ve may look for the possibility of a more general JIID 

theory where the scalar field couples with different stengths to different matter sectors. 

This leads to a violation of the weak equivalence principie and is severely restricted by 

experiments. If ww•e, however, postulate some kind of "dark" matter, since experiments 

usually work with visible matter, the equivalence principie would be vioiated in a matter 

sector that eludes experimental tests. This would also reconcile the theoretically preferred 

spatially fiat universe with the presently observecl matter density. 

Niodified theories of gravity niay result from higher-dimensional theories upon coni-

pactification to 4 dimensions: supergravity or superstring models produce a decaying ex-

ponential potential coupled to other scalar fields and generalized Einstein theories -by 

generalized Einstein theories we mean JBD, induced gravity, any thcory with non-minimal 

coupling, R2  theory and effective four-dimensional theories arising, from compactification 
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from higher-dimensions. So we may search for the more general couplings we need in the 

climensional-reduced Lagranginus. In superstring theories (see e.g. [46]), the couplings of 

the effective four-dimensional theory (i.e. the measured experimental values) are cleter-

mined by the vacuum expectation values of the fields; the coupling "constante'' are in fact 

not constant. One of these fields, coming froto the gravitational multiplet, is the dilaton, 

a neutral scalar field couplecl to 1? (the Ricci scalar) in a way reminiscent of a JBD theory. 

DGG work with a dilatan field coupled with different strengths to visible and invisible 

matter, their action functional in the Jordan (physical) frame reads 

S = f 	19"00  (149,,(1)1 Sv[q' v, gpv] 

+.50/,(24))1-131/4 9itu), 	 (111.1.1) 

where Sv and SI denote the action functionals for the visible matter fields. kily, and 

invisible ones, qii, respectively. We have again adopted units such that 81rG0  = 1, with 

Go the value of Newton's constant; this implies that the present value of the JBD field 

is (1)(to ) = 1/2. The visible sector couples only to the metric and not to the JBD field. 

The standard JBD theory corresponds to the simple case 131.,  = flk . DGG actually define 

their rnodel in the Einstein conformal frame, which is defined as that frame where the 

gravitational action takes the standard Einstein-Hilbert foral and is obtained vial the 

conforma' (Weyl) transformation 

gis, 	= 2.(1)gi,„• 	 (III .1.2) 

The rescaled action is 

= 	c/4.r \T-71[----- 	 + svikp v, r  -201,591.1+  

. e -231'Pjli p] 	 (II 1 .1.3) 

where we piso defined the new JBD field variable 

= 	ln(2(13) 
(111.1.4) 

with .po 	+ 3/2. 
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In the Einstein frame both material systems couple to the dilaton field, but with different 

metric: e20.95g1,i, and e2 fitiOgo„ for visible and dark matter respectively. 

Through a Weyl rescaling and reclefinitions of the scala.r field, every scalar-tensor the-

ory can exhiba standard gravitational and kinetic terms (the. two first terms of eq. (III.1.3)) 

and then the difference resides in the couplings to matter and in the self-interaction terms. 

In the transformation from a theory with a variable G toa theory with a constata G we 

have shifted the time dependence from the gravitational coupling to the inflaton vacuum 

energy density (and to couplings to the other material systems). The fact that extended 

inflation rnodels can be transformed to a frame where the gravitational action assumes the 

standard form suggests that the physical justification could come from the tnodification 

of the partirle physics scalar sector instead of the modification of the gravitational inter-

action, The solution to the percolation problem is power-law inflation, not some theory 

of non-minimal gravity; the !alter is just a scenario for the achievement of power-law 

inflation. In this respect, it is interesting to keep in mind that in all there rnodels there 

can be different versions for the physical idea that underpins the non-standard couplings 

proposed to overcome the difficulties encountered. 

By working in this frame and assuming that the universe is dynamically dominated by 

an invisible flttid. DGG find a dynamical system which, transformed back to the Jordan 

frame adapted to visible matter, reads 

dy  
-d-t- -3r 3/  H2  + (6r/3/13v 3)Hy + ( 2fiv  - 303/4 + -1191  )y2  , 	(III .1.5) 

dH 	3 
( 	- 301 7.3v )112  + (3-03v - 41317 + 601131)14 

1 1 3 	 1 

4."-^/ 	 3/31 3I131/31  i31°v)Y2 ' 

with y = dcp/dt, r = 4 - 37 and pi 	1)pf. They fine! the attractor solution 

2 - - 2/.314 
H = 	 1-1  

- s. 2  + x'2 131  - 2011117  

= 	  
791 	

H. 
r/31/31: - 1 + 

(111..1.7) 

(III .1.8) 
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The variation of the scalar field gives the variation of the gravitational "constant", 

which can be compared with observational values. Using the observational constraints on 

the JBD coupling to visible matter and considering lower limits on the Hubble constant 

and the age of the Universe, the coupling constant j3/ of the dilaton to invisible matter is 

constrained, nearly independent of 	to I /3/ IS 1. They fiad a maximum value for the 

present rate of cliange of Newton's constant, dln G /dt l o S 6.6 ><10-12 yr-1, consistent with 

the bounds based on the Viking-lander ranging data [471, 1 dln Cid/ J oS 10-11yr-1  or 

with the less restrictive bounds based on binary pulsar measurements [48). An improvement 

in the precision of G experiments can be a possible test for their model and indeed their 

theoretical value is slightly beyond the more recent bound 1491 obtained incorporating 

new measurements of the neutron half-life ami reaction uncertainties in nucleosynthesis 

caleulations. 

For radiation clomination 	4/3) the model gives dG / dt = O since the scalar field lp 

couples to the trace of the energy-mornenturn tensor only, as in the simple JBD theory. 

111.2) Generalized extended inflation 

Inspired by this possibility, Holman. Kolb and Wang [40), propose to solve the prob-

lem of thermalizing the energy in the bubble walls by the necessary epoch associating 

the inflationary field to the invisible matter having a different coupling to the .1BD field; 

the identity of the inflaton being unknown allows such an assumptiou. The process of 

thermalization of the bubbles energy involves both types of matter and, coiisequently, the 

llniit deriving from this requirement is now imposed on a combination of the paratneters 

of the theory. On the othcr hand, tirning measurements, as signal delay or orbital period 

change of a binary pulsar, refer only to visible couplings -with the assumption uf a sxuooth 

distribution of dark matter over the solar system or the binary pulsar scales- thus the 

bound un c.) is unaltered. Cornbining the restrictions imposed by the observational Una 
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on u; and by requirements of a successful inflation, they obtain a considerable region in 

the w-/3 space (3 ==- fir I fiv) where alt the constraints are satisfied: occurrence of an infla-

tionary regime, sufficient inflation, percolation and thermalization, recovery of a cm:mon 

Robertson-Walker frame in all the bubbles that forra our Universe. As in the simplest 

model of extended inflation, the truly restrictive bound comes from the requirentent that 

a small fraction of space should be contained in big bubbles and leads te the relation 

432 	25, instead of the standard lirnit w S 25. With /3  5 ene recovers w Z 500, in 

agreement with the observational limit. 

Considering the action (111.1.1) in the infiationary regime (the invisible component 

being now associated to the inflaton field) we have xlíj = To with V(4/0) = p, = const. 

(in extended inflation as in the old model), and the energy density of the falso vacuum 

p„ dorninates the total energy density (visible rnatter will play no role during inflation). 

With k = 0 the equations of motion for a(t) and 1(t) are 

H.2 = f3L(21)1-2p 4.1( 1))2 _ H71,  (111.2.1) 

it 	 413 pu 	)1 _ 2ft.  + 3111  = 2w  +  3(2T 	 (111.2.2) 

This system of equations admits power-law solutions just as the original extended inflation 

a(t) = a(0)(1 +13t)P, p = (w - /3  + 3/2)/(20 - 1)(3, 

1(t) = (1)(0)(1 Bt)? , q = 2/(2/3 - 1), 

where t = 0 means the beginning of inflation and 

B2-  4/32(2/3 	1)2 Pv[2(1)(0)]1-2,3  

(2w + 3)(6w + - 402) 

	

With fi 	/3i/Av = 1, these results reduce to those for extended inflation (11.3.3) and 

(11.3.4). 

Habitan et al. [41] further generalize the model considering non-standard kinetic and 

potential terms for the inflaton a. in the Jordan frame 

	

S = 	d4 xV-17g[-IR (21)"-
1

gi'"Opera,a• -(2I)mV(a)] (111.2.4) 
(I)  

69 

scenario did 

(111.2.3) 



Comparison of the actions in eq.(III.1.1) and eq.(III.2.4) with Xl= a, shows that the 

DGG model corresponds to the particular case 1 — Pj/fiv = n = m/2. Thcy argue that 

in dimensionally reduced theories the generie action has rn, n O. Starting from a higher 

dimensional (4+D) gravíty model coupled to a scalar field whose potential allows for a 

phase transition tu occur via bubble nucleation, they recast the Kaluza-Klein action finto 

a "generalized JBD form", containing clt-er cross tercos with m = n = 1. The 1-field is 

defined, during the process of dimensional reduction, as a function of the scale factor b(t) 

of the interna! dimensions: 

1(140)D 
1(t) 2 bo (111.2.5) 

and the BD parameter is defined as w 	1 — 1/D (which is of order unity for any D 

and hence far from the observational value). There are however two more differences 

with a JBD action: the effective JBD field has a kinetic term with "wrong" sign and a 

non-trivial self-interaction terco. However their result is that their equations admit no 

power-law solution and the exponential expansion solution leads to an insufficient amount 

of inflation. Further attempts tu implement generalized extended infiation from higher-

dimensional theories will be analysed in the next section. 

Holman el al. examine the bubble nucleation and percolation processes [51[44 The 

time evolution of the JBD field and its non-trivial couplings cause a time-varying false 

vacuum energy during (the Euclidian bounce, corresponding to) the tunneling process. In 

order to compute the bubble nucleation rate, the mechanism of false vacuuru tunneling 

under these circumstances should be understood (see [51) for some work in this dírection). 

Nevertheless, to case the task, Holman ti al. [50) cstablish an approximate cxpression 

that systematically "freezes out" gravitational effects taking Go --> O. In this lirnit they 

also have to neglect the JBD field kinetic term, since it has the same Go  dependence as 

the gravitational term: 	cx Go-1/ 2  as Go -+ O. On the other hand, the JBD field 

is of course not considered a constant during this treatment -its variation is the main 

feature of the process under description. The way out is to argue that the imaginary time 
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bounce configuration, which is the one used to compute the tunnelling action. is a different 

situation from the real time configuration, where the JBD field can remain time-dependent, 

governing the evolution of the universe (after all. sornething similar happens in the original 

calculations [9J  where the metric is frozen out from the bounce solution although the real 

time Universe was still expancling). They expect that their approximation ignoring terms 

of order Go will be reliable when the effective Plauck mass induced by the JBD is much 

greater than the mass scales associated with the inflaton. lf(I) increases with time, the 

approximation works better at late times. They work in the Einstein frame, to have 

standard gravitational couplings, with the truncated Euclidean action for the infiaton 

SE 7.=-- 
J 

di xtf(4.)1aPaAja g(I)V(a)1 	 (111.2.6) 

where the JBD field time evolution is accounted for in the non-trivial couplings of the 

infiaton; and then they follow the same procedure as in the calculation for old inflation. 

They find, in the general situation, a time-dependent bubble nucleation rate per unit 

volume. If 2n — m 	O (Le. the most general couplings) the time dependence of the 

nucleation probability (F) can be exponentially strong through the time dependence of the 

JBD field: 

r = .40(2 ,2ne-no(243)2,.-„,  

where A0  and Bo  are fi independent (they depend only on the inflaton potential). It has 

to be stressed out that Accetta and Itomanelli [51), applying the formalisrn of Coleman 

and De Luccia [10) to the false vacuum decay in a scalar-tensor theory of gravity (where 

confident resuits are only obtained in the lirnit of small values of the non-rninimal coupling 

paxarneter), fiad that r exponentially decreases during inflation, with a cutoff at ro  (the 

constant decay rate caiculated in flat space). This situation would not help in the search 

for an increasing r at the end of inflation, as suggestecl by the difficulty in thermalizing 

the energy in the walls of large bubbles. In the original extended inflation model one 

would also expect a time dependent nucleation rate cine to the time dependence of the 

JBD field in the false vacuunr but, applying the same technique to this case [501, it can 
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be seen that, at late times (large .IBD field), the yate becomes approxirnately constant in 

the Jordan frame (although time dependent in the Einstein frame). The different time 

dependence of the nucleation yate in the two frames may look uncornfortable but it is the 

result of rnaking use of a time-dependent rescaling of space-tinte and is eliminated if one 

asks physical questions such as whether and when the true vacuum percolates. 

So, we now have generalized extended inflation models where the time variation of e 

may come not only from a varying H but also from a varying P. 

The Soft Inflation model by Berkin, Maeda and Yokoyama [251 also involves non-

standard couplings which can be seen to correspond to the case m = n = 1. They work 

with two couplecl scalar fields: the inflaton driving new or chaotic inflation, and a field with 

exponentially decaying potential that slows the expansion rate. In a second paper, Berkin 

and Maeda (521 allow for arbitrary ni and a as may result frotn fundamental theories or from 

conformal transforniations on generalized Einstein theories. In the former case the kinetic 

term is standard (n = 1) (53) while in the latter one there may also appear an exponential 

coupling in the inflaton kinetic term. If the starting point is higher-dimensional theories, 

there are two possibilities for the inflaton: it can be defined in (4-1-D)-dimensions or 

introduced in the effective 4-dimensional theory. 

They work in the inflationary regime, starting from the general action 

S = 	d4s11-5[--1 + hiwapso0,,s9+ e-N9rOpaava e-419V(a)], 	(111.2.7) 

which can be obta.ined from Eq.(III.2.4) via the conformal transforntation leading to the 

Einstein frame (III.1.2) and the rescaling (III.1.4). The new parameters N and M are 

related to n and m through N = (1 - Ii)/90  and M = (2 - nt)/soo. They work with a new 

inflation type Coleman-Weinberg potential (381 

and with a chaotic type potential 

v(0-) vo  — —
4

a4  

V(a)= 
1

A„cr". 
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and apply cosrnological restrictions to inipose limits on the parameters of tlte inflationary 

potential. The exponential potential multiplied by the coupling constant acts as an effec-

tive constantly decreasing coupling "constant", thus suppressing the amplitude of density 

fiuctuations, softening the restrictions for standard values of the parameters. Reducing M 

corresponds to reducing the exponential potential importance thus niaking more and more 

severe the CMB constraint on the perturbations amplitude, till the standard regitne is re-

covereci when M O (rn = 2). Both with a new inflation potential and a chaotic inflation 

orle the X O (n = 1), arising from a fundamental theory [18], seems tu give better results 

than the N = M/2 (ni = 2n) case which is the case of almost all the generalized Einstein 

theories considered so far. With N = O they find a bread allowed region in the space of 

the new inflation potential parameters while a narrow one -containing anyhow the desir-

able value of the self-coupling constant near unity- for a chaotic infiationary potential. 

The N = M/2 case seems tu be of little advantage coinpared tu the standard inflationary 

models. 

Wang [45] uses the conditions for successful inflation tu put constraínts un the expo-

nents ni and n of the couplings of the JBD field tu the inflaton sector. The resulting allowed 

region in tn-n is quite largo. Casas, García-Bellido and Quiros [54] recently considered 

improved nucleosynthesis limits on the parameters ,31  and 	of the DGG model (see also 

[42]). \Ve will report their procederes and results in chapter VI. 

111.3) Generalized extended Inflation from higher-dimensional theories 

The main problem encountered by Hollinan et al. in their higher-dimensional (Kaluza. 

Klein) model [41] is that it cannot be made inflate enough. The generic situation is that the 

scale factor b(t) of the internal dimensions goes to its minimum without l'Hoy:Mg enough 

time for sufficient inflation. It could perhaps be possible tu put together all the conditions 

to malw the moda work (construct ii potential stablc at large b, that has a mittimunt ilt 
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nonzero value of b to avoid the internal dirnensions frorn shrinking tu zeru, ami thtt etiough 

to allow sufficient inflation) but the need for an adjustment of parameters makes it 

urinatural construction. 

Superstring theories present severa! different randidates for the infiaton field anci are 

particularl:s,  suitable for some kind of extended inflation since the scalar fields of the grav-

itational multiplet (the dilaton and the moduh ) are coupled to the curvature scalar of the 

four-dimensional metric in the same tvav as the JBD field and are algo coupled tu the 

non-gravitational sector. 

Exploring the claimed connection between string theory and extended inflation. Can-1p-

bell, Linde and Olive [53] conclude that the existence of a dilaton. by itself, does not provide 

a natural basis for a realization of extended inflation. This is the result of the dynamics 

of the dilaton alone in the presence of a saurce of vactrum energy, it does not represent 

the exhaustiva exploration of the possibility of realization of an inflationary regirle, which 

would require involving 	the scalar fields present in every possible string ground-state 

construction. They start froni the string effective action [55] 

Sitring 	
1,1 Xvrtle-V-2"11 i R  as, c)al,d) 	I Oil y - 7.112y2  — 

 

(111.3.1) 

 

where c  is the dilaton, y represents any other massive scalar and Vo  is the potential lit 

string tree level (genus O). Applying a confortan! transformation g1  --+ r' , one 

obtains: 

Ssiring =f d
-t

X tii[—
R 

K2 

1
a ,q5Y0 - 9O ,y015 - -‘/1'°(rra2 y2  + 	. 

2 	2 /   

By comparison with the extended inflation action in the Einstein frame 

(111.3.2) 

R 1 S 	I d'xVI{w 501,99aity - -1 c-'4'"Op yall y - c-2""0°(m2 y2  + 	(111.3.3) 

‘vith 	v1.4 + 3/2 (which is the M = 2N case of the more general (111.16), exhibiting 

explicitly Itere the inflaton mass term), it can be seen that the full string theory effective 

action is not of the JBD type: there is no value of the parameter w for which the matter 
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(field y) kinetic and potential terms Lake the same forra 	both actiotis. The two theories 

agree only under sotne extreme assumptions. A JBD form 1•Vit11 w = 1/2 is obtained 

considering a truncated action, retaining only,  the graviton and the dilaten kinetic terms 

and the potential 	(genus O), There seerns to be no way to recover a JBD theory 

for any value of 	No inflation solutions are found, anyway. Including. and taking as 

dominant, a higher genus potential (ignoring corrections to kinetic terms). Campbell el 

al, [53] are able to find a power-law expansion with exponent < 1. which is not inflation. 

Their conclusion is that if extended inflation is to occur, it will not be chic solely to dilaton 

evolution. 

A better connection between effective string theories and scalar-tensor theories is ob-

tained if what we want to get is generalized extended inflation. Indeed. the generalized 

action (111.2.2) is of the same form of the effcctive string action (111.3.2) if N = O and 

M 	So string theory seems to suggest "non-standard" couplings of the dilaton to 

kinetic and potential mattcr terms. 

Casas, García-Bellido and Quirós [58] analyze the cosmological solutions in the ra-

diation and matter dominated regirles from the gravitational sector of four-dimensional 

heterotic strings. Their starting point is the action 

S = 	di  Xsr---TIE-2?(R+ 4g"Os, 00„ -F o'C.11 
a' 

(111.3.4) 

obtained by a truncation procedure developed by Wit ten [57], from the higher-dimensional 

action computed at tree-level in string loop perturbation theory and keeping only linear 

terms in the string tension a' and in the curvature. Here. v is the dilatan and the mattcr 

Lagrangian ,CM ~tains at least once scalar field whose effective potential precise form 

depends on the details of the compactification procedure. After conformal transformations 

and field redefinitions t.hey obtain general scalar-tensor tucanes of gravity. with a valva. of 

the w parameter which depends on the particular etniformal transformation. corresponding 

to different supersymmetric and non-supersymmetric string seenarios. The result is that 

all of them are in conflict with bounds on the time variation of gauge couplings and/or the 
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post Newtonian bounds of general relativity. Rounds from thc electromagnetic coupling, 

when they hold, yielcl in fact lunch stronger constraints. They have assumed a fíat direction 

involving the dilaton field and a constant vacuum expectation value for the moduli: a more 

complicatecl scalar-tensor theory of the same type, that could maybe load tu different 

conclusions, would result keeping the moduli fields as dynamical degrees of freedom and 

taking imito account non--trivial potentials that can appear from non-perturbative effects. 

García-Bellido and Quirós [561 study the possibility of extended intlation in string 

scenarios with spontaneously broken supersynunetry, involving another field of the grav-

itational sector: a modulus . They consider une direction in the (x,0) configuration 

space fixed tu its vacuum expectation value and une runaway direction (if both fiel& were 

fixed to their vacuum expectation value there would be no extended inflationj and they 

suggest that the non-constant value of thc moduli along the runaway direction will hele 

to overcome the problems found by Campbell e t a/.. They are able, through conformal 

redefinitions, tu put the effective string action under a generalized extended inflation forro. 

They impose all the conditions for successful extended inflation and finca that they can 

be satisfied in a region of the parameters space. wherefrom the constant moduli region is 

excluded, meeting the results of ref. [:.531. 

Conclusions 

In this chapter we have rcviewed different extensions of the original extended inflation 

model. We were particularly interested in the possibility of introducing direct. stronger 

couplings of the 3BD field with an invisible mat ter sector, which nmeans any matter that, is 

not "connon" matter invoived in observational tests of the equivalence principie. Today, 

this model can be constrained by. and is compatible with, observational l unds oil time 

variability of time gravitational coupling. In time ncxt chapter, we will amplify and further 

develop this possibility. If thc invisible sector is taken tu be time intla.ton field. we have 
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the advantage of another available parameter which gives more freedom for satisfying 

simultaneously present and primordial requirements. Bounds un generalized inflationary 

models will be presented in the last chapter. 

We have also reported some attempts to relate extended inflation models with a fun-

damental theory. String theories are a good candidate for supply generalized scalar-tensor 

gravity theories: upon reduction tu four dimensions we find a scalar field coupled to the 

curvature scalar of the four-dimensional rnetric and directly coupled tu non-gravitational 

sectors. Nonetheless. inflation from strings is not very prornising: a general result is that 

there is not enough inflation, nor standard, nor extended. Although some positivo results 

are found when introducing two scalar fields from the gravitational sector. On the other 

hand, une may ask if a JBD theory is obtainablc from higher-dimensional theories. In 

spite of the characteristics of the dilaton field in four dimensions, its couplings with the 

non-gravitational sector do not correspond toa Brans-Dicke field. Allowing for general-

ized couplings. we can avoid this problem, yet the predictions uf the model are found tu 

be in contradiction with present bouncls on the time variation of gauge couplings and of 

the gravitational coupling. 
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cliapter IV 

Generalized Dilaton Couplings 
to Dark Matter 

Introduction 

Inspired by these "generalizecl extended infintion' mociels, we work with the most 

general couplings between the JIID field, or dilaton field, and the conjectured dark n'alter 

component, i.e. we extenci the DGG model allowing for arbitrary m and u in the dark 

rnatter kinetic and potential tercos [59). We work in two conforrnally related &ames: the 

Jordan (physical) frame and the Einstein one. «re obtain the field equations and their 

attractor solution, consiclering the dark matter component as an invisible perfect fluid 

which gives the dorninant source to the universe expansion. We discuss how to implernent 

this model in a Lagrangian formalism and argue that a natural choice of coupling constant 

would actually exclude the DGG model. Finally. the potential for the scalar field acting as 

a. dorninant perfect fluid, is presented. This could correspond to the inflationary epoch or 

to the present one and, in the context of a decaying cosmological constant, the same field 

that donainated during inflation muy dominate again iii the present epoch if the ettergy 

density associatecl with it redshifts slower than the encrgy density of matter and radiation. 

IV.1) Model in the Jordan—Brans—Dicke frame 

We start in the Jordan frame frorn the general action of eq.(111.2.4) adding to it the 

contribution of visible matter fields through a Lagrangian r.y• 

1 
S = 	di  x‘r-15[ — (DR -4- 17-'1  (IP "0„ (1)0„(1) (2(I))" —(11'0 i rOvo- (24))'"1/(ry 	C., 	I/A t. 	(I.1) (p. 	•   
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with n and in arbitrary parameters. Applying 

2  D( 	L)T vz-.1  agiw =   

to the matter Lagrangian Cr„ 	(1)11, we obtain the energy-momentum tenbor, con- 

	

taining contributions from the fields 	a and from visible matter, 

2Z.e) 
Tit o/ 	au (13  + (24)  Oí, a O, — g g"°  0„(1)00(, 	g 1,,,g" 

3  , 

-1-(2l))"'gpi,V(a) 	 (IV.1.2) 

From the complete Lagrangian we get the Einstein equations 

2
g„„n, = 	+ —( 0 cpavd>

2
g

P
uge°49or (D00(1) ) -(V ,Vv(1) gov0(10 

1w 	1 	 1 
24) 	<I) 2 	1

i 	 (I) 	I 

1 	
(IV.1.3) 

	

—,(1)E( 2 4)) ri ( pm  a av 	g 1,,Oac r Oa  a) (241)"`gp„V(a)) 

and the field equations 

2(2w +3)  Tv (n 1.)
1

(22

w

4)

+

)"

3)
9" a„a0pcs (m 	

2
2)

(24)m 
 I cr 	(.117.1.4) 1  

“7 + 3 

(24))"Ekr = -2n( 2<h)" g" 	(2<b)i" "00,(a) 	(T17.1.5) 

with C a gi")570V,, With a (spatially fiat) FRW line element with scale factor a(t), the 

field equations are 

d2(1) + 3H  d(1) 	 pv 3P1  _4 	n - 1 (24,v,ii  da 5 2 	_ 
VT )21 

dt 2 	dt 	 2(2.4) + 3) 	2(2w + 3) 	I.‘ dt 

m 2 
--(249mV(a), 	 (IV.1.6) 

2w + 3 

(24))" (—d2(7 + 3H 
da 

-- a —2  .,(3)(7) 	2n(24))"-1 
( 

tE 

d(1, da 
--' dt2 	dt 	dt 

+(24,),1,av(a) 
	

111:1.7) 

	

where L5(3)  = a,o) . Defining now the new JBD field variable w = 	2 	In order 

Lo work with a conventional kinetic energy terco, and considering spatially 1:omogeneous 

fields cp = yo(t), a = a(t). the field equations reduce to 
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dt 2  
all  Lpd + 1 pdv)\  2 	e -so/s`so/tifo

d250 

(II 	k 	- 2  - 	(01— 3pv) (n 1)e(n-1 )101w0 
SPa 2(po  

(ni - 2)e(m-ll'PbP° 
17(u), 

en,„1,00
d2a 

+ 3H  _do. n dp da 
cpo  dt —dt) 7-1 -6"/<"--- dt 	

ÜV0----a((j) 	(IV.1.9) 
where we assumed that the visible matter is described by 

	•a perfect fittid with energy density a' and isotropic pressurepv
. From Eq.(IV.1.3) the Friedmann equation follows 

3H2 = 	
OV +1(1  - 9-43 )(ddiPt) 2 	---399110 	-21e(n-1)9/14°(dda;) 2 +e(rn-1)50/420 17(a).  

the energy density and isotropic pressure can be obtained 

el a T. t 	= 1  e ǹ I'lw° (7-cdcft ) 2  + e"15°/(/ V(a), 

e"wiwo(_(.1(7 ) 2   en 	 (/17.1..13) i10/4P0 V6/7).  

We are implicitly assuming that both the visible and dark m 

in the FRW metric. We can then rewrite the a field eq 	
ercomponents are at test 

uation 
 

as a conservation law 
d9 1  
dt 	-3-11(el + pi) +1 	f i(n2  n)ei (m 
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da 
dt 

(17V.1.8) 

(/17.1.10) 

Since in the Jordan trame the visible matter has no couplings with the JBD field, it 
satisfies the standard conservation law VAT')P = O 
matters, 	 ; in out case only the µ 0 component 

dpv 
-311(ev Pv). 

(fi".1.11) 
Considering the o- 

field as an invisible fluid, from its energy-momentum tensor. 

,51  g„,,Opa0"a 	gl,„ew/ r(  a). 	(11-.1.12) 
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We can also rewrite our Eq.(IV.1.8) and Eq.(IV.1.10) in terms of the invisible fluid 

d2  y 	1 ((cl 	2 	rl  1,7 42 	e-9/9'7° 
7/.17 + 	k,7/t) + on 71-t-  = 	lgv 3Pv ( n 	+ Dei + ( 11 4- in — 3)p1 . (iV.1.15 

3H2 	1 (1 	32 (
dt  
y 

) 
2  3H dy + e_ y,/s,„ D(ov  + Lo.  

9  k 	2y°) 1 	100  di 

Equation (IV.1.16) (Friedmann equation), Eq.(IV.1.15) (JBD field equation), Eq.(IV.1.11 

(energy cortservation for the visible matter) and Eq.(IV.1.14) (energy conservation for the 

dark matter componen.t) completely describe our physical system. We will therefore riefinf; 

the generalized couplIngs of the 313D field to an invisible fluid with energy density pi and 

pressure pr through these equations. 

Let us now consider the universo dominated by the invisible Huid, assumecl tu obey 

the equation of state pi = (11  - i)e,r, and neglect gv and pv. In terrns of the variables 

y a-  dp/dt and H, the system of Eq.(IV.1.16), Eq,(IV.1.15) and Eq.(IV.1.14) reduces to 

dy 
dt 	

3itH2  3(11- 1)Hy - 	
+211 9 

- 3  )11/2  
'Po 	 400 . 493 

dH 3 
Tú- 	 )I/2  + 1  (43,

1 
(PO 	 2tpo 	1 

(IV. 1.17 1 

+ ti.  1 	- 3 \ 	2  + Ít )112,  
(/V.1.15 

4 k 	%rol, 	Yo 

where tc 	[2(2 - m)- -y/(3 - ryi - n)]/2990. The dark matter energy density is given by 

( 3 2 IpApo  [31/2 3 Hy 	--- —2-
1  Y I (21 — e 	

2,,90 (Po 
(N.1.10) 

Frota now on, we work with Chis system of equations ((IV.1.17), (1\7.1.18) and (IV. . 

since we consider that it correctly describes our Universe during the two epochs we are 

interested in: inflation and the present epoch with a dark matter dominating component. 

We will salve it and compare its predictions with observational bounds. 
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IV.2) Model in the Einstein frame 

The system of equations (IV.1.1 7) and (IV.1.18) can also he obtained, following DGG, 

by working in the Einstein frame and filen transfortning hack tu the Jordan une. The 

action in the Einstein fratne can be obtained from that in the Jordan une by performing 

	

the conforinal transformation (III.1.2) gpr, -› 	= exp(sob,90 )go, Of course. the visible 

matter Lagrangian is also affected by the transformation. The complete action is t hen that 

of Eq.(III.2.6) with the addition of the visible matter contribution through the Lagrangian 

S = f s/7-j[ 	+üoPam yOu tp + e -N9b"ai,a8va - e-11̀01,*(a) + É .1 (11'.2.1) 

(with N = (1 - n)/soo, 1vf = (2- m)/(po  and zpo  = v'w + 3/2). As in the Jordan trame we 

define a matter Lagrangian from which the energy-momentum tensor follows 

1 	 1 	14 	 - 

T, 	(1, am + e-Nv'apaapa - §g,,,,0„1,o0P(p- 72.e 'T`Pgi„,491,a0Pa 

+go pe. M(197  ( ) + Tviw 	 (14'2.2) 

Here and in the following we clrop the tildes unless we compare quantities in the two frames. 

The field equations read 

	

Oso 	-Ne-N4Vvai,crOva + Me-A19'V(a)+ 
1 	

(TV.2.3) 

Nwpa  = 	 cm,p 1917 (0") (/17.2.4) 
aa 

'hile the Einstein equations take the standard forte with the r.h.s. provided by the 

energy-momentum tensor of Eq.(1\ - .2.2). With spatia.11y homogeneous fields and a FRW 

line element these equations reduce tu 

fp 	d,, 

	

r=MC M  /1  1 ( a - N r- 	
N`.: (da\ 2 	I 

/ V.2.5) 

	

(T2 I-  311-j 	 2 dt) Vo(ev -3P"  

id2a + 3H  da N dp da 	_e _ m,e 0V(a)  
9 1 dt 2 	 dt dt) 	Oa 	

(IV.2.6) 
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31,2  = 1  (49 \ 2  	da \ 

/Lit) + 	 + 6-11197(a)+  t)v.  

Under the conformal transformation, the proper time, the scale factor, the energy density 

and the pressure transform as di = exp(9/2(po)dt; n exp(sa/290 )a; 8 = exp(-2solcipo)ei 

fi = exp( -41500)p. We can therefore transform Eq.(IV.1.11) to the Einstein trame and 

obtain 
dOv 1 dy 

= -311(1>v pv) 2yo-dT(ev  3P" 

Taking the a field as an invisible fluid, from its energy-moinentutn tensor, we obtain its 

energy density and isotropic pressure 

1
e 	

( da
)

2 pv 	

+ CartoV(a), 

= 6  - e-119V(cr). 
2 	dt 

The a field equation, written as a conservation law, reads 

del 
3H(2/ + PI) —1-1 19 .1(m — N) - pi(M + N)). 

dt 
- dt 

and in terms of the invisible fluid, equations (IV.2.8) and (IV.2.5) take the form 

3H2 	1 
k
/4\

)
2  
" 	

(W.2.11) 
2 d7 

d'y ,..dy 	1 , 	 1, 

dt 2 	" 	= —2soo k" 3Pv 	-11101(m --- N) -- + 	 (1V.2.12) 

In a universe dominated by the invisible Huid, with equation of state pi = 	-1», the 

system of Eq.(IV.2.11), Eq.(IV.2.12) and Eq.(IV.2.10) reduces to 

dtd
H 

 = 51  Cj" - 1) (d:t )2  - 11112,  

djcp 
Tí( 	 + P 131/2  - 	)21' 

(IV.2.13) 

(W.2.14) 

with µ = UVI - 11(M N)/2. The dark matter energy density reads o/  = 31/ 2  - 

(1/2)(dtp/dt)2. The two equations (IV.2.13) and (IV.2.14), transformad back tú the Jordan 

Trame, reduce tú Eq.(1V.1.17) and Eq.(IV.1.18), respectively. 

S3 

(IV.2.7) 

(IV.2.8) 

(/V.2.9) 

(W.2.10) 



TV.3) Dark matter as a dominant invisible Huid 

a) Attractor solutions 

A stucly of the phase space of the system of equations (IV.1.17) and (IV.1.18) shows 

that there are three invariant fines: an attractor solution: 

 

2 - 7/-  - 	11/990  .11 	 t-1, 
37/(1 1/ /2) libpo 

2pt 
(IV.3.1) 

and two repeler solutions: 

= 	
371(1 

- 1///2) tibpo 

(40)-1 ± (6)-1/2 
	 t-1  
(290 )-1  ± 3(6)-1/2 

1 
	 t-1  

= (4)0-i ±3(6)---1 /2  

(IV.3.1a) 

This behaviour can be seen in the phase portraits of the dynamical system, in figures (IV.1) 

and (IV.2), at the end of this chapter. The critica! point of the system is located at the 

origin of the H-y plane. The external arrow indicates the attracting line solution (IV.3.1) 

and salan arrows on the trajectories show the time direction. On the diagrarn it can be seen 

that points in an important regio!' of phase space tend asymptotically to the attracting fine 

but the critical point is not a universal attractor for the system. Regions separated from the 

attracting line by a repulsive fine (IV.3.1a) do not tend asymptotically to solution (IV.3.1), 

meaning that not all solutions of the system have a power-law behaviour. Figure (IV.1) 

has been drawn for the dark dust (71  = 1) domination case and fig. (IV.2) corresponds to 

an inflaton field (7j = O). 

Note that Eci.( IV.1.16) and Eq.(IV.1.17) and their solutions Eq.(IV.3.1) reduce tu the 

corresponding unes in DGG (111.1.5, 111.1.6, 111.1.7 and 111.1.8) when rn 	2n, with 

t. = 1/2 o. 3/  = (1 - n)/2(po  (our field corresponds to DGG (-a) field). Moreover, 

our results can be obtained directly from theirs if the replacement (4 - 371)31 	is 

perforrned in their equations. 
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The time evolution of the JBD field and of the seale factor are easily ohtained from 

(IV.3.1) 
t + (pi  

t 
(IV.3.2) 

a = a 	
f 

where ti, 	and a; refer to the initial time of invisible inattcr clomination and f 

f(n,rn,v) = Ht; y = g(n, m,71) = yt. 

The gravitational constant measured in time--delay experiments is G [(2w+4)/(2.)+ 

3)1(1/16v13), the tizne-variation of G is therefore related to the variation of 1 by: d/G = 

Assuming that the universe is close to the attractor solution we can write 

din G __  1 	 2ii 
dlnt 	'Pu p 2  3-Y1(1 -- / 2) -11No. 	

(1V.3.3) 

Note that if pi = 0113(yi = 4/3) the expression for the rate of change of the gravitational 

constant reduces to 

din G 	6(2n - m) 
din t 	129Z (2n - rn)(2n - m - 3) 	

(111.3.4) 

which vanishes only in the m = 2ra case: the gravitational coupling continues to change 

along the attractor solution even if the universe is dominated by an invisible radiation 

component, unlike the standard case, where the JBD field couples to other fields only 

through the trace of their energy-momentum tensor. In this respect we mention that 

a modification of the JBD theory has been proposed [861 that Cakes finto account the 

gravitational effect of electromagnetic radiation from a Machian point of view. For this 

purpose, the source for the scalar field (k has been taken as p + 3p (like the source for 

the gravitational field in general relativity) instead of the energy-rnornentum trace p 3p. 

Boda theories coincide during dust domination. 

Assuming that the Universe today is matter dominated, which implies pr = O (11 = 1), 

we have that the variation of G at the present time is 

dinG 	 4(1+ n m)  
dlnt 	+ (1 + n na)(n m 1) 

85 

(IV.3.5) 



and the Hubble parameter 

— 2(1 + n rn) 
H = 

6y9(1+(1 + n m)(n rn —1) 
	 (IV.3.6) 

These quantities can be cornpared to the observational limas and it will be done in chapter 

VI. On the other hand, it is interesting to note that on the attractor solution, with a 

particular coupling (rn = n + 1) of the JBD field to dark rnatter, the presence of the scalar 

field seems to have no effect cm the Universe behaviour: din G/dint = O and Ht = 2/3, as 

in the standard cosmological model. And if we ask for thís particular coupling in the DGG 

case m = 2n (n = 1 and m = 2), it comes out, in the Einstein frame, that N = O and 

M = O, so that the w parameter completely disappears from action (IV.2.1) in the dark 

matter sector. Going from the Jordan frarne to the Einstein ene, the coupling between the 

JBD field and dark matter seems to disappear. 

b) Dark matter Lagrangian 

So far we have defined our generalizad dilaton-dark matter couplíngs only through the 

set of equations that governs their dynamics, eq.(IV.1.14), eq.(IV.1.15) and eq.(IV.1.16). 

One would like, instead, to write down a Lagrangian containing the explicit coupiings 

between the invisible matter field and the 3BD one [59] similarly to what is done for the 

DGG model through eq.(III.1.1). This is obvious if VI/ is a neutral scalar field cr whose 

self—interactions are described by the potential V(a); in such a case, in fact, our recipe 

would just reduce to the action of eq.(111.2.4), with general parameters in and n. It is much 

less obvious if the dark matter component is represented by a perfect fluici, the problem 

being that, in the latter case the Lagrangian, which is just the isotropic pressure (sea, e.g., 

ref.[60]), cannot be explicitly written in terms of the field variables and the metric tensor. 

However, it has been shows in Ref.[61] that, in the particular case of an irrotational, 

isentropic perfect fluid with equation of state p/ o = 	constant, ene can write 

Efiuíd 	= 1----12-(470,10 	i,)1/(1-1). 
• II 	t• j 
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where the real scalar field o is the velocity potential, defined by 

uP (g"Dc0D,0)-1/2 43090,,,p. 	 (/1113.8) 

The main limitation of this approach is that it is not suitable to describe a fluid of 

since, in such a case, the Lagrangian would identically vanish. (Other approaches are 

possible, which overcome this difficulty, see, e.g., ref.[62]). Restricting our analysis to the 

il 	1 case we can use the Lagrangian of Eq.(IV.3.7) for our purposes. Noting that the 

formal chango 1 — /3//fiv —› [2m — 7/(m -I- n)]/(4 37/) rnaps the DGG model into ours, 

and using Eq.(III.1.1) and Eq.(IV.3.7), we arrive to the following action functional for the 

invisible matter component 

SI  = f d's \r-lj pkb1,9iw,41= 

f = 	d4x\F —_,,- TI —1 (m)7/(nt-i-n)-2n1 (govailiplapoirid2( -r/ -I) 

71 

( IV.3 .9 ) 

which reduces to the DGG model for rn = 2n and to the standard perfect fluid one in the 

JBD case, m n 0. 

This clearly shows that, at least in the constant pile' case. there is a unique com-

bination of the parameters rn, n and 7i, narnely al  E,. 11(in -}-- n) — 2m playing the role 

of dilaton-dark matter coupling constant. It seems rather unriatural. however. that the 

coupling constant depends upon the Huid equation of state; note that this is also true for 

the DGG model. The only case in which al  has the desirable feature of being equation-

of-state-independent is when m = —n, which would then exclude the DGG case. 

c) Dark matter potential 

From the Friedmann equation (IV.1.10) and the Jordan-Brans-Dicke field equation 

(IV.1.8), neglecting the visible rnatter contribution and substituting the attractor solutions 

(IV.3.1), we find the time variation of the potential for the -invisible" scalar field 

V[ct(t)] = Zt 
	

(IV.3.10) 
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with 

2( - 44142  + (2  - m)P 31i(1  - 7//2)tPol  
(pope  P 3/1(1 7//2)(Po 

= (1 	71) 	
3(7/ - 2)2  - 21/2  

)< 2 ji2  -p/(7.90 + 37/(1 - 711/2) 

(i-mbeibpo ti  2(m-l)NEwop2 -$1+3-i/(1-11/2)w01-' 

(we remetnber that p was definecl as p = [2(2- rn)+-; n +in- 31/25,90 )). Finding the time 

depenclence of a frorn the a-field equation (IV.1.0) allows to write the effective potential 

that makes the scalar field act as a dominant invisible (luid. Assuming a solution of the 

form 

= 	 (117.3.11) 

it comes out that 3 and 11 are: 

= 	
(1 - n)p 
+ , 	 

So0P-   P011(1-  71/2) 

and 

„lo  f (2 - /1/12(,oe + (m  2)p  + 37/590 (1 - 1)1[3(71  - 2)2  - 2E12 ]  

	

1' 	[ layo (n - 1)p + 6).7 0(1 - 1112)2 ] 

c( -n),,,,i/2,,po t(l 	)ii(,a0i/ 2 -i1+3.)1( 1-11/2),,,o)-1  

Finally, the potential It(a) can be written as a powerlaw of a. depencling upon the 

parameters m and n and the equation of state (7 / ) 

	

V( a)= 	 03( -- 1 r [(pop+ u: -2+3^//(1-17/2),a0bil 
m)(1 	

(/V.3.12) 
B21(1 -  

or, substituting ji and 	: 

1 -  ( o. ) oc 0.11(11-1)-1  n+nt -3+3(2 -11)(2u2-1-3 )I2( 2  -n1)+11( ri-f-m-3)1-1 ) 
	

(117.3.13) 

Assuming that at the present time the invisible Huid dominates, with equation of state 

p = O (7/ = 1), the a-potential reduces to 

V.  ( a ) oc 0.(n-1)-17:+na-3+3(2,a+3)(rt-m+0-11 
	

(IV.3.14) 
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It may be of some interest to exhibit explicitly the evolution for the cr-field and its potential 

in some special cases, in which the exponent takes a simpler forra; 

* with nt 	2n, as in DGG original model, a 3( 2( 1—  ")2  R Y12-1.6`0° -1) and V(a) 	a311  j' j-12)71  

* for m = n = O, i.e. the standard 313D model with dark, dorninating matter. we have 

cr a t2 /((i w0 -1) and V (a) a a-6('-"). 

These potentials decrease as cr increases, for a; > O, and if they are non-zero at the end 

of inflation and apply up to the present epoch. they give rise to models with a decaying 

cosmological costant [63]. In such models, the scalar field that drove inflation has a poten-

tial with a power-law tail at largo a: V a a'-°, acting like a cosmological constant that 

decreases toward the "natural value" A = O less rapidly than the energy densities of matter 

and radiation. This could happen if the inflaton energy density liad been converted only 

in part to entropy at the end of inflation, leaving a part clecreasing much more slowly. If 

there is any non-zero cosmological constant at present, the model allows a relation between 

A and the energy density that drove inflation. 

In order to avoid affecting the usual nucleosynthesis theory, the assumption pa  < 

Pordinary snatter at that epoch, has to be done, and, in this sense, a cosmological constant 

A or a rolling, hornogeneous scalar field very weakly coupled to ordinary matter are good 

cancliclates as they resist gravitational collapse up to largo scales and dominate the energy 

density only at low redshifts. This assumption is j'idee(' present in all the models with a 

time-varying G. 

The constraint placed by experimenta -the 	 experiment that probes the 

independence of the acceleration towards the sun upon the material- is that the scalar 

field can only be exceeclingly weakly coupled to ordinary matter. 

e) Inflationary epoch 

Turning to the inflationary epoch, the potential (IV.3.13) can be considered of the 

chaotic type, in the sense that it is a rolling potential, with no local minium. The most 
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general power-law inflation is obtained by requiring: 

f(n,rn,7,r) 	112 
	  > 1 

+ 3-11(1 -11/2)- pwo  

in a o( 	On the other hand, impobing the standard requirement for first-order 

inflation yl = O, we obtain a constant effective potential since its exponent (in IV.3.13) 

becomes zero 

V(a) 
2(2 - m)(6<pl - 1)e(i_nswpoczpo  = 	 • 1-m 

The n parameter, i.e. the one that is prescnt in the kinetic term, cancels out in the 

solution -as we should expect, since the kinetic term is usually taken to be negligible 

during inflation- and we recover the generalizad extended solution considered so far in the 

literature [40], [45]: a power-law expansion with 

+  m + 1  
f (to, n, rn) 

(2 - m)(1 

Conclusions 

We have considered a scalar-tensor theory of gravity, in which, in analogy with the 

so-called generalizeci extended inflation model, two parameters determine the couplings of 

the dilaton to the invisible matter sector. Assurning that the invisible sector is a dom-

inant perfect fluid, we have found the attractor solution for the system, along which we 

have derived the evolution of the gravitational and the Hubble parameters. We have also 

been able to write the potential for the dominating invisible fluid and the dark matter 

action functional containing the explicit coupling to the dilaton field, from where a special 

coupling seerns to emerge. 

A new aspect of this model is that the JI3D field, and therefore the gravitational 

constant, varíes with time oven if the universe is dominated by a dark radiative coinponeut, 

i.e. by a fluid whose energy-momentum tensor has vanishing trace. It is not so in the 

original .113D model and in almost all subsequent generalizations. 
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Figure 1V.1 

The I-1 and y trajectorles In phase space 
for the parameters: co= 10, yr 1, m =1, 

n = 2. The arrow indicates the attractor 
solutIon (IV.3.1). 
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\
-4 
	

H 

Figure IV.2 

The H and y trajectories In phase space 
for the parametera: 010, y1=0, 
m=121  n=0. The external arrow indicates 
the attractor solution (IV.3.1). 
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Chapter V 

Density Fluctuations 
in Extended Inflationary Modeis 

Introduction 

Dealing with inflationary models imbedded in scalar-tensor theories of gravity. we have 

the following ingredients for seeding the Universe structure: the quantum fluctuations of 

two sudar fields -the inflaton and the JBD field- and three types of density perturbations: 

adiabatie perturbations, produced by the field with dominating energy, isothermal pertur-

bations, associated with the fluctuations of the subdotninant field, and inhornogerteities 

resulting from the bubbly structure of the Universe emerging from the pitase transition. 

Then, different possibilities arise for the subsequent evolution of the Universe. depending 

on which field has the dominant fluctuations and which field is mainly responsible for the 

reheating of the Universe. 

As it is already known [18), power-law inflation leads to a fluctuation spectrinn which 

slightly deviates from scale invariance, introducing more power on large scales. This is an 

interesting result since, according to some observers (see e.g, the 	survey by Maddox 

et al. [64j), a perturbation spectrum with more power on large scales than the scale-

invariant ene seems to be required to be consistan with large scale structure. Nevertheless, 

it has to be noticed that the COBE DMR results [65) do not seem to suggest surh an 

excess power. On the other hand, the presence of two fields in extended inflation rnodels, 

introduces another posaibility for designing the fluctuation spectrum: a range of serles of 

cosmic stuctures can be associated to the fluctuations of one field and another pan of the 

spectrum may correspond to the other's field fluctuations. This coulcl happen in a clouble 

episode inflation, or in a scenario where a weakly interacting, initially suhdominant field, 
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lately clominates because its energy density redshifts less than matter and radiation. 

The problem of fluctuations may, in principie, be addressed in either of the two confor-

mal frames -Jordan's or Einstein's- but the tnost direct approach is in the Einstein frame. 

In this frame the JBD field is miniinally coupled, has a standkud kinetic tern: and, under 

some conclitions, plays the role of a siow-rolling inflaton, for which there already exists 

a standard procedure for computing density fluctuations. The inflationary potential for 

the JBD field is supplied by the potential of the original inflaton field inultiplied by an 

exponential terco in the JBD field resulting from the conformal transformation. The re-

sults will be easily transformed back to the original fra.tne at late times, when both frames 

practically coincide. In the Jordan frame, we have the presence of two fields but, as long 

as the inflaton is trapped in the local minium:u of its effective potential, the JBD field will 

automatically have the dominant fluctuations. 

In fact, the generalized models do not introduce any new ingredient in this topic since 

structure does not arise from fluctuations of the infiaton, which is the sector that cardes 

the generalized couplings. Some tare rnust be taken, anyway, in orden to preserve the 

inflationary conditions: some constraints must be irnposed on the parameters of these 

models [451. 

This chapter begins with a review of the basic ideas about density perturbations from 

inflation. In section (V.2), 1 report and compare the results obtained for extended infla-

tionary models of perturbations arising frota scalar field quantum fluctuations and, briefly, 

from the bubble distribution. Finally, 1 further explore the generalized models and the 

scenario with a mass for the JBD field, during and after inflation. 

V.1) Review of quantum fluctuations and density perturbations in theories of 

inflation 

The fact that inflation exponentially stretches spatial dimensions, suggests that density 
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fluctuations that are at the origin of large scale structure, may come from microscopic zero—

point fluctuations of the quantized fields. The main idea of the theory of generation of 

density perturbations in inflationary cosmology would be that the stretched, long wave 

fluctuations of the scalar field transform at a later stage to perturbations of the density of 

particles that were created during the decay of the inflaton field. In a rather direct way, 

the development of density perturbations can be viewed as: 

15p bV(0) (aW00)4 

a) Scalar field quantum fluctuations 

When the Universe is expanding faster than the horizon growth, as it does in an infla-

tionary regime, the wavelength of a fluctuation becomes greater than a causally connected 

region and causal microphysics do not operate anymore, so the fluctuation amplitude 

freezes at some nonzero value 50(r) i.e. it remains almost unchanged for a long time, 

until it reenters the horizon. Such a froten fluctuation is equivalent to the appearenee of 

a classical field 60(,r) whose average over macroscopic intervals of space and time. do not 

vanish. The equation of motion for a scalar field in the background of a de Sitter metric is 

OV 
31/cA,  — C2Ht0P) = 	 (V.1.2) 

If we want to consider the possibility that the scalar field undergoes small inhornogeneous 

quantum fluctuations, we may write 

0(x. t) = ooit i  + 60(x, t). 	 (V.1.3) 

where 00(t) is the classical homogeneous field which obeys to the equation 

•. 	,.,. • 
00  + Jil 00 = - 

OV 
ah 
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that rneans that, a fluctuation in the inflaton field results in a fluctuation in the Universe 

energy density since the inflaton potential is the dominating energy during the infiationary 

stage. 



and the quantum fluctuations 60(x, t) imposed on the classical solution tim(t) satisfy the 

equation 
02V(00 )  

+5i4 	3././4 -- C -21110:2  á(,) = 	002  601 

that is obtained substituting (V.1.3) Mito (V.1.2), using (V.1.4), and retaining terins linear 

in 60. The amplitude of the field fluctuations cara be estimated by quantizing the scalar 

field in de Sitter space ([661, or see e.g. 51) deeotnposing the field fluctuations jato their 

Fourier components 

50(x, t) = (2/r)-3/2  I 4 [dif, Op(t)ei" + a; sbi,*(t)e-i") , 	(V.1.6) 

where p is the, time-independent, conformal momentum and oil- , a; are creation and 

annihilation operators. For a (nearly) massless field (m « IT), with a fíat potential, the 

equation for q5 p(t) reads: 

4(1) + 3H4(t) p2 e-2H5p(t) = O. 	 (V.1.7) 

Solving for 0i,(t): 

cpp(t)= 
 iH   

(1+ 7 P _e- 	exp 	11t 

V-2 	
} 

1)312 	1H 

we can estitnate the field fluctuations 

(V1.8) 

1 	 1 -21" i (e 	I/2 
d t) 3 	(V.1.9) (W)2) = ( -7r)3 j 1‹kP1'4 = (27r)3  I '---2p + 9p3 	• ' 

whose interpretat ion becomes clearer in ternes of the physical momentum k = pe-lit (which 

decreases as the Universe expands) 

	

1(502‘ 	1 	da I,. (1 	112  

	

I  I 	(27r)3 	k 	2 	2k2  j •  
(1/.1.10) 

The first terco is the usual contribution from vacuum fluctuations in illinkowski space 

H = O f and can be eiiminated by renormalization: the renta:Ming tesa 

1 	dik /12  
((6992) = (27)3 j L 9k 2  
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is directly relate(' to the inflationary regime. The main contribution to the average devia-

tion of the field (/) from its hotnogeneous value Po  comes from the long--wave fluctuations, 

which are, at the same time, the important unes for seeding structure formation. So, 

restricting our attention tú wavenumbers from k = 0(H) to a. km i„ 	 which cor- 

responds to a long—wave cut--off due te the fact that inflation starts at a finite time ti, this 

deviation grows as 
Hit  

((10)2 ) = 4n-2 . (V.1.12) 

The source of this growth is the contribution of newborn fluctuations, stretchecl by the 

expansion to wavelengths bigger than the horizon. Of more interest for the characterization 

of the perturbations spectrum is the field fluctuation power en each scale k define(' as the 

contribution te ((S0)2) in a given logarithmic interval in k: 

«102) = f d3k i cok 1 2 = I -(1'(.415)2k. 
	 (V.1.13) 

From a direct comparison of equations (V.1.13) and (V.1.11), we obtain 

(A(/))i = 0160W /27r2  = (11/2702 , 	 (V.1.14) 

which is a scale—independent quantity, since H ti const. during inflation. The fluctuation 

can also be calculated taking jato nccount the field masa, with the following result (see e.g. 

1671): 

(L50)k = 
	k  Tt12 /3 /0 	

(V.1.15) 

and this coincides with the previous expression (eq. (V.1.14)), provided that rrt2  < H2. 

So, any effectively massless acatar field will have fiuctuations of order H/271- imprinted upen 

it, on all scales, as they cross outside the horizon. By effectively massless we mean a field 

whose masa is smaller than the amplitude of its fiuctuations H/27r; this will be generally 

trae since infiationary potentials are very fiat. 

From the solution (V.1.8), it can be seca that a "freczing" of the amplitude of the field 

th p(t) occurs when the physical momentum k, for any tnode, becomes smaller than H. 
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The leading effect of quantum fluctuations of the scalar field is to alter the time needed 

for 00(0 to reach the minirnum of the potential, so that the transition from de Sitter Lo 

Friedmann expansion starts at clifferent times in different regions of space. At large times 

(t >> II-1), the terco with spatial derivatives in equation (V.1.5) becomes negligible and 

6(1)(x, t) starts to satisfy the same equation as 00  (compare eq. (V.1.5) with the time 

derivative of eq. (N7.1.4)). Therefore, since the solution to the equation is essentially 

unique,* the ratio between these two quantities approaches a constara. The proportionality 

constant may depend on x and has time dimensions, we may then write 

-1t(x)sbo(t). 	 (V.1.16). 

Thus, to linear ord.er in SO, eq. (V.1.3) can be written as 

(,(x, t) = 00(t)+60(x,t) 	00(t - bt(x)) 	 (V.1.17) 

and 6t(x) can he interpreted as a tinte-delay (position dependent) function for the evo-

lution of 00(t). Since the oscillations of the scalar field in its potential minimum resta 

in the production of radiation and particles, this inhoniogeneous time delay results in 

inhornogeneities in the mass density of the Universe. 

b) Density perturbations 

The density contrast can be expressed in a Fourier expansion: 

d3 k 	¡km  
8(x, = 	 

(2)3  

and its r.m.s value can be calcolated averaging over all space 

(1-.1.18) 

 

E' 
	

(5(x, t)fi(x, t) >112, 

 

   

* This can be easily proved if orle notices that, at large times (t > 	), the Wroliskian vanisbes 

W(f;/)0, 60) = Woe-31It 	0.  
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yielding 
(p...e\ 2  = f .5.  f.  \ 2  dk 

13 ) 	P)k 
where we have defined the density fluctuation power per logarithmic interval (<5 PiP)1 ----

(2/(-2 )-1k3  1 fik  12 . 

In order to translate scalar field fluctuations at the infiationary stage into clensity 

perturbations that develop later, when the Universo is filled with matter and radiation, 

we have to relate quantities that correspond tú different epochs. Tú this end, we work at 

the transition time between the infiationary and radiation clominated regimes, assuming 

that the transition takes place sharply at time t0. A variety of methods have been followed 

to treat the problern, with agreement about the answer. I shall present here a rather 

simple reasoning that reproduces the correct order of magnitude result and more rigorotis 

treatments can be found in [689. 

At late times, alter the phase trtmsition from de Sitter to FRW regime, i.e. at t > to , 

the Hubble pararneter is given by 11 = 1/2t. As we saw in the previous section, there 

is a fluctuation in t0, and therefore in t, of order ht(x) (eq. (V.1.16)). This time shift 

can be related to a perturbation in the expansion rate: 611 = -(112)t -26t 	-21/2 6t. 

Inhomogeneities in the expansion may in turn be relatecl to fluctuations in the encrgy 

density through the Frieclmatin equation: 6p1 p = 26111 H . This results in 

hp(x) 
-4Ha(x). 	 (17.1.20) 

Therefore, once we have defined the retardation time at each point through eq. ( V.1.16), 

we can substitute it in eq. (V.1.20) to estimate the resulting fluctuation density: 

6p 4114 

= 

Decomposint in Fourier coniponents on both sides, this relation can be writter, for vacli 

mode as 

bk(t)=- •
H(t)

b95k(t) 
00(t) 
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and, from this equation, the contribution to Pplp)2  from a unit logarithinic inierval in k 

is found to be related to the field fluctuation power by 

(12 = 16—H 2 (z50)1. 	 (V.1.23) 
P k 	 " 

Introducing (V.1.14), we finally have 

( 6p) 	2H2(t)  

kP k 

Expression (V.1.14) is accurate only for small times, when the potential terco is negligible 

and the fluctuation is still not subject to unstable growth, at late times the hehaviour of 

450(k, t) should had been deterrnined using its complete equation of rnotion. On the other 

hand, the time—delay function is accurate only at late times, when the spatial derivatives 

become unimportant; however, both results should be reasonable estimates at the time of 

transition between the two regimes. So, matching two results at the interphase of their 

valiclity dornains and assurning that the phase transition is instantanous, we can obtain a 

relation between the scalar field fluctuations and the density perturbations. The quantiries 

on the right hand side of the previous equation correspond to the inflationary regime. when 

the scalar field fluctuation becomes larger tiren the horizon and is frozen in as a classical 

field (so that the field fluctuation is treated as a classical object), while the density contrast 

refers to the radiaticut dominated epoch, after the decay of the inflaron field luto 'water 

and radiation. A more rigorous calculation shows that the quantity in the left hand side 

should strictly correspond tu the density contrast when the k--moles rcenter the horizon. 

Therefore, the correct result at the horizon scale is 

( V.1.24) 

( <1(—)) 
P hor 	27rt.bo k,11'  

(V.1.25) 

 

where C -,-- 4 or C = 2/5 if the mode A' reenters the horizon when the Universe is radiation 

or rnatter dominated (see e.g. 151). effectively givcn by (V.1.1). 

During inflation, II and vary slowly, yielding a very nearly scale invariant spectrum 

of perturbations. Let tes considera specific potential for illustrating the dependence on 
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time, and hence on wavenumber, of the density contrast. With 17(0) = -(44)0, typical 

for rriany theories, and neglecting u (i.e. with the slow-rollover condition) in the field 

equation (V.1.4). the solution for ri is 

( 
/ 2 

311  1  )1  
2,1 te  - t) 

where t, is the time when inflation ends (actually, at larte values of 00  the potential differs 

from the one we use Itere and 00  does not tend to infinity). We can thert calculate d0o/dt 

and, taking t = t'ion  substitute it in eq. (V.1.25). Thus, 

(4) 	
A1/2 H3/2(te  - thor)3/2. 

P hm- 

In the time interval 	-thor) a wavelength grows from H-1  to 	11-1cH ( le-th'' ,), so, 

the density fluctuation at horizon scale has a wcak k-dependence: 

e

Lo) ti  vpin3r2  (H) 

P hor 

Nonetheless, it should be noted that if the inflating Universe were indistinguishable from 

de Sitter space and the Hubble parameter and the field (1) were really constant, the result 

would be a fax too inhornogeneous Universe. This is, in fact, the origin of the autplitucle 

exccss of the perturbations in inflationary models: to obtain a nearly constant energy 

density and sufficient inflation, 910  is kept small and this tends to increase 6p1 p. 

Density fluctuations can be classified, at early times, when they are super--horizon sized, 

as adiabatic and isothermal. Adiabatic fluctuations arise from sudar fluctuations of the 

metric (different expansion ratos in different spacetime points) in an initially-  homogeneous 

distribution of matter and are density fluctuations in which the ratio of matter density to 

radiation density (Prriat/Prad)  is not altered. They are possible when the matter radiation 

interaction is strong. On the other hand, fluctuations in the cornposition of matter at a 

constant total energy density are called isocurvature fluctuations. If matter density changos 

slightly from point to point and radiation is left homogeneous, there are no temperature 

fluctuations; in this way they are also called isothermal. They correspond tu fluctuations 
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in the local equation of state. So, the terco isothermal fluctuation usually refers to the case 

where thc ratio of baryonic matter concentration to racliation clensity changes, however, 

it can also be applied to fluctuations of a field (connected with the hidden sector of the 

theory) that interacts with usual matter ouly gravitationally and whose fluctuntions do 

not consequently alter the plasma temperature. 

The field fluctuation amplitude 1//27r is valid for the fluctuation of any effectively 

rnassless scalar field: if we are dealing with the field a that chives inflation, the total 

energy densa.). of tnatter being pu, 1-:.11"(a), thcu, the inhomogeneities of V(a), aftcr its 

decay, give rise to adiabatic density perturbations of ptog  N  T4: 

bpa Speoi 6T 

Pa pum T 

Fluctuations in any other field, with energy pY  « pi, 	pe„t, will not, initially, leal to 

considerable perturbations of the total energy, flor to the associated nietric and tempera-

ture perturbations. Such isothermal perturbations may become important at later stages 

of the evolution of the Universe: if a field interacts weakly with other particles. it, or 

its decay products, can eventually give thc main contribution to the total energy of the 

Universe. It will act as a decaying cosmological constant, as already suggested in chapter 

IV, for the remnant of the inflaton field (see anyhow [691 for constraints un this kind of 

models). 

V.2) Scalar field fluctuations and density perturbations in extended inflation 

models 

Inhomogeneities in the JBD field correspond tu spatial variations of the gravitacional 

constant. The consequences of diese variations and the observational constraints that can 

be imposed remain to be dicussed II1 detall, but. dealing with density fluctuations, the 

variation of G will be of interest only as long as it affects the expansion rate 
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a) Perturbations in Standard Brans-Dicke Theory 

As already mentioned, the expression for the fluctuation amplitude ¿i9 = .1/127r at 

the epoch of horizon crossing, applies, in de Sitter space, toa minimally coupled scalar 

field with standard kinetic terrn. The JBD field (I) has not a standard kinetic term and has 

dimensions of 'miss squared but it can be written in terms of a field d) with usual dimensions 

(mass) and kinetic term: (I) 	27r02 /(.4./. This is the field to which it seems more natural 

to ascribe this fluctuation, although it will be strictly correct only in the limit w > 1, 

where is minimally coupled. So, an even more natural approach is to analyze curvatura 

fluctuations in the conformally rescaled Einstein frame, where the JBD field looks like 

a minimally coupled field with an exponential potential V((p) 	M4  exp(-2991<po) and 

hence plays the role of the inflaton in the context of a slow-rollover inflation [701. From 

then on, the usual formula for density fluctuations bplp = aH 2191, is directly applied. 

Lucchin, Matarrese and Pollock [741 have verifled the application of this formula to power-

law inflation and founcl the constant of proportionality is cY ti 2 x 10-2. The fluctuations 

spc'ctrurn behaves as: bplp cx Al/'-1, where A is, here and in the following, the wavelenght 

associated to a perturbation and p is the power of the expansion law a x tP. The application 

of the standard formula for the r.m.s. fluctuation of a scalar field, derived for de Sitter 

space, to power-law inflation has been investigated by Abbott and \Vise (31j. They have 

shows that. in a general inflationary metric, the amplitude of scalar field fluctuations for 

wavelengths well outside the horizon, can be written as: C  acole Poc k21a2(thc ) cx 

where use have been malle of the fact that the time of horizon crossing (sub-índex he) is 

defined by k/a(thc ) = Hlic• 

Sigue the Jordan frame is our physieal frame, we will have to transfortn this expression 

back to it. Under the confornuri transformation, the energy density and the density contrast 

transform as: 

p=(2402 /3  
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and 
hp ,t54) + 

At late times, the conformal factor 2(1) —1 1 since (I) = 1/2  when G reaches its present valué 

G N (in units such that 87rGN 1). The JBD field varíes very slowly in a non-inflationary 

regime, so, atter inflation, the two trames are already approximately the sa.me and the 

density fluctuations in both trames coincide. In the Jordan frame, density perturbations 

generated from the JBD field fluctuations are, initially, isothermal fluctuations since the 

JBD field has prevailing fluctuations but makes an important contibution to the energy 

density of the Universe only after the inflaton phase transition. From here on. we work in 

the Einstein frame and omit tildes except when comparing quantities in the two trames. 

The amplitude of clensity perturbations in extended inflationary models Mercases with 

scale (70), (72), (73), [191: 

((e 	f(cd, M))11/(P'-1)  = f(w, MP(4/(2w-1), n  
hor 

where 	(2w + 3)/4 is the power in the expansion law, in the Einstein frame: a ck 

and, raising w, the scale dependence becomes negligible, as expected. This stronger scale 

dependence as compartid to the exponential infiation case can be found followiug the same 

procedure as in section (V.1): solving eq. (V.1.4) with an exponential potencial V(9.9) .----

Atie-29qw0 and considering that in this case the wavelength grows as a power-law. In 

fact, as the density perturbation spectrum is proportional to H2, one expects, in power-

law infla,tion models, perturbations leaving the horizon at carlier times to he li:rger. This 

means the spectrum has more power on large scales. The function fk, M), where M 

indicates the scale of the phase transition, differs somewhat from one author to another. 

In ref. (70) it is 

f (w, M) 
47rioitio/(2„,) [2(.0 4_11/2 [(6w +5)(2w 4. 31-2/(2w-1) m 	2-41)/(2ta,— 

6 	 327rw2 	 In pi 

(y.2.2) 

for \ in eq. (V.2.1) given in Alpe: Amo, 	AllIpc = A 10-38GcV. From this last 

equation we see that, on one hand, the fluetuation arnplitude diverges in the very large 
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w lirnit because the effective potential goes to a constant and cp = 0, but, on the other 

hand, it is lessened, if we increase w in the range of intermediate values. This expression 

leads to interesting amplitudes bp1 p ti 10-1  for energy scales of the phase transition 

< 101'rGcV; while computing the associated temperaure fluctuations on largo angular 

scales (corresponding to scales from 100 tu 10 000Mpc), with this value for Al and, e.g. 

= 10, too largo values are obtained to be consistent with current limas on quadrupole 

anisotropy (LST I T 	G x 10', see [3]). Increasing w -while still in the range allowecl by 

successful extended inflation- or decreasing M slightly -as ápl p cx M 2  for large w, it is 

very sensitive to variations in M- can remedy this problem. We do not have here the 

possibility of fine-tuning the self-coupling constara, since the o potential is taken strictly 

constant = M4 ; in (old) extended inflation models the flne-tuning falls on the Brans-Dicke 

parameter. The fact that the spectrum hehaves as a positivo power of the wavelength is 

feature that might be useful in building inodels that account for the observed large-scale 

structure of the Universe. Depending on the value of w, this can represent a very slight 

increase of power at largo scales, or a more substantial one. For w = 25, 45,1,1h, oc ""; 

with al = 10, 6Alhc  az "2. (with Lo = 500 the spectrum is, as expected, practically scale 

invariant). Which, if any, of these deviations from the scale invariance could account for 

the very large structures observed remains to be worked out in detail. 

Now, if we want to compare the theoretical spectrum with observational data (that 

are available from a rnuch later epoch), we have to work out its evolution. From inflatiou, 

we calculated the perturbation amplitude at horizon crossing, but this mearas that the 

amplitude for clifferent mudes is specified at different times; for comparison with obser-

vations, we have to estimate the spectrum of perturbations at a fixed time. in particular, 

at the epoch of decoupling, when the background radiation lnst scattered. As we saw in 

section (V.I), the density ~trust can be written for each mode k: (ápl p)1 = k 3  1 b k  

Introducing the usual usumption that there is no preferred primordial scale, the fluctua-

tion spectrum is a power-law (5k  PCX k", implying n = —3 for scale invariance. In order 
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to take the evolution of the perturbation outside the horizon hito account, the processed 

spectrum have to include an evolution factor k' (density perturbations outside the horizon 

are gauge -dependent and hence not well-clefined quantities; working in the synchronous 

gauge, density fluctuations grow as A-2, keeping metric perturbations constant. see e.g. 

[6)). The redefined fluctuation spectrum, ¿k  12= k". will then have index ns  = 1. All the 

aboye mentioned exportents for A are well inside the range allowed by COBE results for 

the index of the, primordial fluctuation power-law spectrunt 1 bk I2 oc kn,: n., = 1.1 ± 0.5 

(3]. 

It is worth noticing that power-law inflation models with small p values, exist: a t2  

in wall-dominated inflation, in a inodel of broken syrnmetric theory of gravity, or a model 

of Kaluza-Klein cosmology during the initial cornpactification of the D extra dimensions, 

whose spectra can therefore be very far from the scale invariance [M]. 

Guth and Jain [72] have pointed out sorne subtleties of the procedure for the estimation 

of density fluctuations that could question previous results. The main doubt is, of course, in 

which frame the field should be quantized. Since the conformal transformation, transforms 

the JI3D field to a new field non-linearly related to the original one, it is not clear if the 

results will be the sarne with both fields. But they do not attack this problem: they achieve 

the calculation ernploying the standard formula in the Einstein frame, albeit avoiding some 

of the usual simplifying assumptions. In this way, they find results that coincide with 

previous ones for not toa small values of 	0(few)). The points they work on more 

carefully relate to the evaluation tinte of the quantities envolved in the standard formula. 

Even in the context of standard inflation, the formula for ápl p is only an approxirnation, 

matching quantities corresponding to different epochs, but here H depends on time more 

strongly and any answear that depends on H must spccify precisely the time at which it 

should be evaluated. Instead of using the standard approximation of slow--rollover. it is 

possible, here, to evaluate 4b(t)  by differentiating the exact solution for the evolut ion of the 

scalar field. In fact, the assumption that ;3 is negligible must be taken with care for small 
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valttes of w since: 
II (t)  

((t) "" (2w + 3)/4 

Also. a standard convention for the time of horizon crossing (at which the righr hand sirle 

of the density fluctuation formula has to be evaluated) is Aphy,9 = 11 1   but. with a oc 

nt -1  and ',«n  = nH-1, This would produce, through n 	+ 3/41. ele w de- 

pendent correction, enhancing the fluctuations amplitude. Incorporating this corrections. 

the resulting discrepancy factor is near unity for values of w usually employed in extended 

inflation 	10). 

The results obtained applying directly the standard procedure in the Jordan frame. 

can be compared with the result in the Einstein frame [72], [70]. The answer in the Jordan 

frame is smaller by a factor that is near unity and becomes large only for very small values 

of 	2 - 3). Anyhow, we do not expect the standard procedure to be applicable in the 

Jordan frame, because of the non-rninimal coupling. 

Some work has been done [75] addressing the question of consistency between the 

tuvo frames, but only with near classical states. i.e. decomposing each of the dynamical 

variables into the homogeneous classical background part and a stnall fluctuating quantum 

part: = c - &fi, where 	plays the role of G-1  and litk is a dynamical field. Following 

a Hamiltonian formalism for constrained systems to extract the true dynarnical degrees 

of freedom and canonically quantizing the resulting system, they fiad that the quantum 

part can be analyzed in either of the frames. since the conforma], traw4ormation will 

induce only a linear transformation in the dymunical variables, so the amplitude of density 

perturbations in the original frame coincides with the une in the Einstein frame. The 

problern with puye quantum fields has not been addressed. 

Seshadri quantizes directly the JBD field in the Jordan frame [76] for a mod,•1 in which 

w varíes with time (hyperextendecl inflation). It should be stressed, anyhow. that his 

results are not so promising: density perturbations are large in amplitude and have a scale 

invariant spectrum, implying further constraints on the mode!. Larga amplitudes irise 
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due to the large value of the parameter contained in the expression for the w evolution: 

2w + 3 = 2,9/(0, — 	which in turn is required for the source of the Einstein equation to 

be dominated by the constant term. The value of affects both the magnitude and the 

spectrum of density perturbationa. 

Lidsey (77] works out the fluctuation spectrum for Extended Chaotic Inflation and 

finds the same scale dependence as the spectrum of old extended inflation, from which it 

can be seen that, as long as the inflaton potential is taken to be approximately constant 

(V(a) cansí), it does not affect the scale dependence of the spectrum, but does determine 

the amplitude. 

What about the a field (the inflaton in the original frarne) fluctuations? In [70], it is 

argued that the o' quantum fluctuations should be higlily supressed because its effective 

mass (R1 I')/4 ) is much larger than the Hawking-Gibbona temperature H/27r (temperature 

associated to de Sitter space due to the periodicity of the 54  sphere obtained in the 

Euclidean formulation, which gives the characteristic amplitude of fluctuations). This 

however may not be true at the beginning of inflaban, as the time dependence of the 

gravitational constant (Gcif = 	= (21)-1) leads to a Hubble parameter H 

(Ge  j f Vf)1/2  larger than its general relativity value (GNIff)1 /2. Comparing the mass rria  of 

the infiaton, defined by: ml = aV (a)/ Ocio  ti M2  with the fluctuation amplitude H/ 27r, 

using a roughly estimate for H: 

H2  87rpu  87rM4Ge ff 
H 2(2 

316 	3 

we have 
ni u  

H/2/r r'd  (‘/GeffM)-1. 	 (v.2.3)  

Since (Ge ff)-1  < m2p1  during inflation and M « meí is required to ensure that the 

JBD field fluctuations are acceptably small (as can be seen from eq. (V.2.2)). then ma  > 

H/2ir. The strength of this argument of course depends on how small Gelf  can be at this 

epoch and could be wrong, as we said, at the beginning of the inflationary period. These 

estimations correspond to the Jordan frame, since it is in this frame where the a field 

los 
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has canonical kinetic term, but the ratio between the a-mass and the Hubble constant 

should of course hold in the Einstein frame, using the redifined field and the conformally 

transformed expansion rate H. The key argument for ignoring the inflaton perturbations 

is rather that this field is confined toa passive role and then its dynamics are irrelevant. 

Dentelle ci a/. [78) calculate explicitly the contribution of the perturbation of the inflaton 

and show that, to linear order, the perturbation of any field sitting in a local mínimum 

of its potential, and hence behaving as an effectivc cosmological constant, clecouples frorn 

the perturbations of the other fields, including the rnetric, and consequently the density. 

To first order, the density fiuctuation will depencl on Sed alone (more precisely. to its 

gauge invariant version) and the mixed terma in 80 and 5a will vanish, precluding any 

implication of the coupling of the dilaton and the inflaton on the initial spectrum. So, this 

is the reason why, in old extended inflation, the cr-field fluctuations can be ignored, and 

not because they are suppressed. However, if une wants tu allow for background inflaton 

dynamics, in the form of tunnelling (old Extended Inflation) or of slow rolling (new or 

chaotic Extended Inflation), inflaton fluctuations must be considered and the coupling of 

the dilaton to the inflaton taken into account. In old extended inflation, the fact that the 

11BD field is evolving while the inflaton is tunnelling and how to follow the production and 

evolution of fluctuations during the bubble coalescence process are questions that have 

not been adressed. Resides, the presence of two scalar fields eould load to a seenario of 

double-round inflation, with relevant fluctuations of both fields. 

Two-field inflation moclels have already been considered [79), in which two scalar fields 

are couplecl together, one field rolling and the other trapped in the false vacuum. with 

canonical gravity and kinetic terms. They suffer from the general problem of fine-tuning 

of the coupling constant to keep the potential uf the rolling field fíat. There are two effects 

that work in the direction of increasing the perturbations amplitudes first, 1-1 is riüterrnined 

by the strictly constant energy of the infalton field a, so that it does not decrease at the end 

of the inflationary epoch; second, inflation ends when the a field rnakes the transition to 
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the trae vacuum, Menee there is no need for the denominator on the right-hand side of the 

density fluctuation formula (t.¡9) to be increasing at the end of inflation. In this approach, 

the features of the effective poteutial V(o-, so) are: a barrier in the a direction (quantum 

evolution), and a smooth rolling clown for (p (classical evolution); for large values of 99, the 

barrier can be smoothed out as an effect of the coupling between the two ficlds. In Extended 

Inflation modas, if we introduce a potential for the JBD field and work in the Einstein 

frame, we have a similar behaviour. The introduction of this potential is suggested, as we 

saw, by observational requirements: if, at sorne time after inflation, a potential anchors the 

JBD field at some value, the low energy lirnit of the theory coincides with Einstein gravity. 

During inflation, this potential should be negligible comparecí with the energy density of 

the inflaton field and is expected not to affect the inflationary Universe evolution. The 

most simple potential is a mass terco, and, in fact, the scalar field is expected to acquire 

mass due to quantum effects: a primarily massless field einitting and absorbing quanta 

of other flelds will become massive, unless there is, in the theory, an invariance principie 

that forbids mass. The interaction mediated by this field then becomes short range and its 

infiuence at large distances becomes negligible. There is no difficitity from the experimental 

point of view for tnodifying gravity at srnall scales: astronomical tests would not detect 

it. If, introducing another ingredient, a symmetry breaking potential is chosen for the 

(redefined) JBD field: V(0) T A((¢2  O) (equivalent to 1/(4)) 	Aw(43 - (130)2 ), we have 

an incluced gravity scenario [23], [73]. Let us explore the conscquences, during and after 

inflation, of including a potential for the JBD field, considering also the JBD field evolution 

after the o-field pitase transition. 

If the JBD field settles to its general relativity value before the inflaton has tunnelled 

(and the barrier is not completely srnoothed out), there is a pitase of standard inflation, 

with its inhercnt problem of bubble percolation. So, the a tunnelling must stteeeed first 

and (1) might evolve significantly after inflation, one should therefore keep in mind that 

the value of (13 at the end of inflation (4„) will affect the restas for the aniplitude of the 
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density fluctuations, enhancing it by a factor of ( VZIi:/rn 	(2 +1)  (w-  / 2)  if 	< 	as 

calculated in 170]. After the inflaton transition, títere are a nurnber of possibilit ies. As in 

oíd inflation, the collision of bubbles should generate a hot Huid of radiation; if this energy 

density dominates, the standard FRW cosrnology is recovered. This could, however, not 

be the case, since reheating cine to bubble collisions is not expected to be very efficient 

(see below). If, on the other hand, the .1BD field potential energy dominates over radiation 

produce(' by the inflaton decay, extended inflation reduces to SOITIC kind of chaotic inflation 

and reheating really happens when the 3BD field oscillates bcfore settliug, as in new or 

chaotic inflation. In the case that reheating is efficient, with a synunetry breaking potential, 

it could also happen that the (k symmetry is restored, leacling to a round of induced gravity 

inflation in the percolated region. We may then expect a second inflationary episode, after 

the a phase transition, with an effective potential V(97) F_-= -21)4/9°  Vi n D(e9"I 'Po). Depending 

on the form of VJDD, V(9) may be an extended inflation type exponential potential (when 

Vn D 1-"d const.), reduce to an effective cosmological constant, or even grow exponentially. 

Here, if 	dominates, constraints on density fluctuations once again imply a small 

value for the self-coupling constant Aw, catering in V(p). When 17(w) does not clominate, 

we are still left with constraints on pu  and V((,a = O). It is interesting to note that the 

fine-tuning problems of the inflationary modas are hardly eluded. It has been proponed 

that, in a ) 4  chaotic inflation model with non-minimal coupling 1.1?02, the contraint 

on A is substantially weakened if very strong non-minimal coupling is allowed. But one 

cannot really say the fine-tuning problem is resolved since an unnaturally sn-tall A is merely 

replaced by an unnaturally large (see e.g. [75], [80]). 

b) Muss for the JBD field, picture in the Jordan fraine. 

The ((I))-1  in the kiiietic terco was originally introduce(' by Ikans and Dieke, to pertnit 

to be dirnensionless since (I) has dimensions of mass squarcd: 	[G-1] 	[m2] . A 

mass terin for this fielcl should be introduce(' in an analogous way and will have the form 
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m24-5. Then, for a massive JBD field the Lagrangian reads: 

£.> 	-(13R + 	[wg "81,(1)0,(1) f (w)m17,(1) 21 
	

(V.2.4) 

The equation of rnotion for the JBD field is a Klein-Gordon equation ruodified by the 

expansion of the Universe (for f(w) = 2“) + 3): 

1 	 1 2 
(o+1711)(1) 

2(2w + 3) Tv  2(2w + ) '1'4311.'78/3a + 2w + 
 3V(<7), 
	

(V.2.5) 

and a cosmological constant terco appears in the Einstein equations: 

1TV 	CV 	 1 
1111R-  f(w)rnIg = 	1-1-2-(8it l8vd3-5g„pachaa(p)+I(vo0v1—govo(D) 

1 	n 	1 
-1--§-1 kv/tac/ver — Igiri pacycraaa) g i,„V (V.2.6) 

After inflation, this cosmological constata will eventually dominate and hence the JBD 

field must decay. During inflation, where V(o) p„ dominates, with a FIVIV inetric and 

= 1(t), we have: 

+ 31-14 + m.11,(1) 
3 + 2w' 

and 2 

	

H2  = Sirptt + 2w + 3 7n2 (1) 	H  Li) 
34) 	2 4,  6  4, 	(I) 

For m4, not to disturb the evolution of the inflationary Universe, we must have, in both 

equations, m < pv PI), with pv = 	Since, during inflation, (I) < 	a safe lirnit for 

the JBD -field mass is: m4, < M2 htzpi, which, for M N 1014  G eV implies: m4, < 109GeV. 

This limit can clearly be seen in the plots (V.1) and (V.2) at the end of this chapter, for H 

and (13 during the inflationary epoch. The behaviour changes drastically for m4, > 	GeV : 

H quickly goes to a constant value and the <13 field settles to its potential minimum. This 

means that a standard inflation reghne has been recovered, with the dominating mass terco 

acting as a cosmological constant. In figures (V.1) and (V.2), r and IP are dimensionless 

quantities: r = 10-4  [1119(2W + 3)] 	t and kIf = 10-8  [2M9(21.0 + 3)1 -1/2  41, where 

1014 GeV. 
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If we now want to introduce a symznetry breaking potential Velv) = A(d) - (I00 )2  with 

(1)0  = mW167r, the equations are: 

017((1)) 
+ 	

2 
= 	[Pv + VeI)) - 

1 
 (1) 

3 + 2w 	 2 a) I 

and 

2  H2  = 87Pv  + w 41  () 	I/ (13) + 
1 V((1.) 

3(1) 	6 (II 	(I) 	2 (I) • 

The masa terne is m24, = 	o - ArnIn  and we still have the same constraint on m(h. 

This limit for the value of ritrp shows that a sinall self-coupling constara A is required 

(A 	m4,/m2p1), so that, even in the context of two-fields inflation, a fine tuning is needed. 

The (I)2  terrn cancels out in the Klein-Gordon equation but appears in Einstein equations 

as m:1,(1)g,,,,; when (I) 	const., after inflation, it is again a cosmological constant terco. 

e) Perturbations from generalized models 

Turning to the generalized models, the Lagrangian for a in the Einstein frame is: 

1 
= -c-iv`Pg'„am a0,,o -6-'11̀ PV(a), 

as we saw in chap. IV. The differenec with standard Brans-Dicke, regarding fiuctuation 

production, will only be the power of the exponential factor in the potential terne 

—Alt#9»Íz'o --> e 

with M 	(2 - Trz)/wo. Then, we exclude the value ni = 2, that leads lis to exponen- 

tial inflation in the Einstein frame. At the same time, tare must be taken to avoid a 

potential that would be too steep. In order to have a slowly decreasing potential that 

allows tes to apply the standard dcnsity perturbations formula to these models, we first 

have to check that generalized extended inflation transforms tú slow-rollover inflation in 

the Einstein frame. Imposing the slow-rollover conditions 02y/0t2  k< H(0910t) and 

(1/2)(89/002  « -1/((i)) in the equations of motion, we obtain constraints on the exponent 
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of the power-law expansion: p1  > 1 and 3p' - 1 » 1 [45], where the value of is now 

= (2w -3- 3)/(2 - m)2 . This irnplies 2w +3 >> (2 - in)2 . We can then estímate the dcnsity 

fluctuations through: 
p N  H2 	3H3 

P 	hor 	I dt - 	Irbp' 

where, for the last equality, use has been made of the slow rol[-over conditions. Remern- 

bering that, restoring normal units, 1/ 2  = (87r/3m2 1 )V(99), where V(9o) = c-Al`PV(u) 

e-1115°./114 , and ev1 /90 = 167r(I)/1rr2p1, we get 
1/2 m  2 	2 8p 	(2w + 3) 	m 1 	 (V.2.7) 

P hor 6 	 (m- 2)(1)(2-m)/2 ' 

With in 

15p 	(2w + 3) 112  (M )2  (741) 

Plhor --- 	6 	in pl 	(I) 

which is the expression employed to get eqs. (V.2.1) and (V.2.2). 

The analysis of which values of m are requested to get interesting fluctuations ampli-

tudes and Lo observe the allowed deviation from the scale invariance of the spectrum will 

be included in Chap.VI. 

d) Inhomogeneities from bubbles 

Finally, we briefly address the second rnechanism for creating dcnsity inhomogeneities. 

In all this work on the creation and evolution of perturbations, the phase transition is really 

ignored, i.e. it is supposed to [cave the Universe homogeneous and isotropic on cosmic 

scales. Nevertheless, the percolation, collision and thermalization of bubbles generated 

during the tunnelling process produce inhouiogeneities as well and it has been suggested 

[81] that nearly energy empty regions today (voids) could be reinnaiits of extended inflation 

bubblcs. But this possibility has been discarded by the fact that the distortion they would 

cause on the CMBR, were they present at the recombination epoch, would be inacceptably 

high (see e.g. [83]). This argument has been used to impose stringent bounds on the Brans- 

Dicke parameter 	[21], [3,4], [82], [83], tis we already discussed IIi chapter 11, and these 
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constraints preclude individual hobbies from providing an interesting source of density 

perturbations. The estimation of the time needed for radiation to cross the bubble vas 

basad on the assumption that a superhorizon-sized void would either conformally expand 

with spacetime (and photons just leak into the void) [21], [82], or fin in with matter and 

radiation that stream into the void, with the approximation of a FRW metric in and inside 

the bubble wall with the same scale factor as the outer region [83]. Very recently. however, 

the possibility that the time required for filling die bubbles can be substantially reduced 

incorporating relativistic effects in the calculation, has been considered [84]. During the 

radiation dominated epoch, bubbles shrink, at the speed of light for a relativistic void, dite 

to the largo pressure force acting on the Huid in the wall, and this filling process can take 

place in a short time, as observed from outsicle, due to a time dilation caused by the larga, 

negative potential of the void relative to the outer spacetime. In this work, care has been 

taken to distinguish between the inner and the outer scale factor and Hubble parameter. 

Taking this effect into account, the so called "big bubble problem" could be discarded and 

constraints on the Brans-Dicke parameter w relaxed, even though this problem is directly 

related to the thermalization process, rather than to the filling process, The thermalization 

time is certainly greater than the time required for photons originally in the void walls to 

reach the center of the void, and this is a more complicated question to deal with. that 

depends to some extent on the type of n'alter dominating the Universe behaviour. 

Conclusions 

From inflationary models with Jordan--Brans--Dicke gravity theory we obtain tilted 

spectra (positive po.ver of the wavelength) that could load to a better agreernent with the 

observed largo--scale structure of the Universe. The estimated thietuation amplitudes are 

only slightly in excess of the observational bouricl. There is no need to impose a very small 

value on any (dimensionless) parameter; the fluctuation arnplitude is characterized by the 
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ratio of the unífication scale to the Planck scale. In the simplest extended inflation model 

(old infiation type potential with a massless JBD field), the only adjustable quantity is 

the Brans-Dicke parameter. To avoid any mismatching between the requirecl valle of 

and the one stiggested by observations, a pc.)tential for the JBD field is usually invoked. 

But. if the inclusion of a potential is useful to salve the ta problem, it also Mercases the 

amplitude of density fluctuations and re-introduces the fine-tuning probletns of standard 

inflation models. In addition, we ]lave to impuse the condition that the ,TBD field decaes 

in order to preclude it from dominating. On the other hand, the presence of a potential 

terna for the JBD field causes, in most cases, two rounds of inflation, with the possibility 

of two power spectra. 

Regarding the Generalizad Models, we nmst impose soine limitations en the parameter 

m not te upset the infiationary behaviour of the inflaton field a. m is limited by the slow 

roll-oven constraint, that depends en the u; vahee, and m :-¿ 2 is required for a power-law 

inflation. We may expect that tighter constraints on m will come from rounds on the 

fluctuations amplitude and speetrum iniposed by COBE but this will be included in the 

next chapter. 

The possibility that inhomogeneities caused by bubbles create.d in a fir.st order tran-

sition could proside an interesting source of density perturbations, which was ene of the 

inicial motivations for these kind of models, seems to be discarded. On the other hand. 

the constraint on the bubhle distribution was the main limitation of the theorv and note 

it is proposed that a careful approach could invalidate this 

[ore ‘vork has te be done in order to be able to follow the creation ancl development of 

inhomogeneities originating from the scalar fields fluctuatb..nis, allowing for the evolution 

of both fields. e,g. the o field tunnelling while the JBD field is slowly evolving, The 

observable etrect.Js of fluctuations in the gravitational coupling and any resulting costraints 

remain to be analyzed. 
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Chapter VI 

Observational Limits on the Generalized 
JBD Field Couplings 

Introduction 

Consiclering in each era only the effect of the clominant component, we iuvestigate here 

the possibility of establishing bounds on the general kinetic and potential couplings of 

the JBD field. So, assuming a dark matter dominated Universe today, we consider post-

Newtonian bounds on the Brans-Dicke parameter w, observational bounds on the age of 

the Universe, on the Hubble parameter and on the variability of the Newtonian constant 

today, as well aa on its value during primordial nucleosynthesis, to constrain the dilatan 

couplings to dark matter. 

Going back in time and applying the generalized model to the inflaton field, a.nother 

set of conditions must be satisfied. Wc first report the constraints on the parameters of 

the theory imponed by inflationary requirements and then discrass COBE resulta for the 

primordial density fluctuations power spectruna 

Finally, if we think on the present clark matter component as a rernnant of the inflaton 

field, a combination of both sets of bounds should be consiclered. 

VI.1) Present constraints on the generalized dilaton couplings to dark matter 

a) Post--Newtonian bounds 

We can constrain the generalized couplings today using the lower buund w 	500, 

obtanied from radar time-delay mensure:alela 122] and the expressions for the present time 
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variation of G (eq. IV.3.5) or the evolution of the Hubble parameter (eq. IV.3.6). There 

are two possibilities: one way is to constrain the paratneters with bounds on Hoto  and 

then check that these values are compatible with limits en the variation yate of G. The 

other possibility is to constrain m and n directly with bounds on the variability of G. 

Following the first way, we consider a &in lower limit on the age of the universo 

(en ̀ -s-s 7.8Gyr) and the present Hubble constant (Htri" 48km 3~1  Mpe-1 ) (see, e.g., 

Ref.[281 and references therein), corresponding te ¡loto  Z 0.4; we get a bound on the 

dark matter cornponent couplings, 11 n ml S 295.0  = 2Vw -I- 3/2. This represents, for 

w M 500, very relaxed bounds: -44 	n S 46. 

Comparing this result with the one from DGG, we notice that: 

--in the Einstein frame this bound reads IM - NI 2, which would reduce te their result 

/3/ Ñ 1 with M = 2N, and 

-introducing, as they do, these limits in eq. (IV.3.5), we find, in spite of the more general 

couplings, the same present rate of variation of O (IdInG /dilo  S 5 x 10~12yr~1 ), only 

marginally consistent with recent limas based on primordial nucleosynthesis [49). 

Investigating the possibility of improving this bound, we can use a higher value for 

Hoto, that corresponds. in any case, to more accepted values for these quantities. Values 

such as Ho  = 50krn 3-1  Alpe-' and to  1.3 - 1,5 x 1010yr load to Hoto  N 0.7, but we find 

that this model, with positive values of w, does not allow for such a high value. Fromn eq. 

(IV.3.6) we see that the maxirnum value is FIt PZ 2/3, which is the standard FRW value 

(in a matter dominated, k = O Universe). So, if future observational tests point to high II 

values -as the ene reported, e.g. [85], where the adoptcd value for the Hubble constant is 

Ho  = 67 ± 15km,i~1 Mpc~1  (other quoted values [ying within 1 or 2 standard deviations 

of this value)- these rnodels do not hele. 

Among all the observational limits on a varying gravitational coupling, those due te 

conditions for a successful (standard) nucleosynthesis appear to provide the most stringent 
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bounds. However, it must be noticed that nucleosynthesis conditions are less reliable than 

astrophysical tests since they do not constrain the present value, but rather the average 

variability from nucleosynthesis until now, and delicti(' on siinplifying assurnptions that 

enter the big bang model. We will turn tu this in the next section, but let lis first consider 

the necessary conditions for the switchover from visible to invisible matter domination. The 

invisible cornponent energy redshift can be obtained following its evolution (eq. (IV.1.14)) 

on the attractor solution (IV.3.1), written as dp/dt = 2pH/(2 	p/;0 ). We obtain 

pi a a' with 
(1 + n m)Em(2 	ny l] i) 

- -371+ 254(2 - 71) - (1 n m) • 

in the case of invisible pressure-free matter dornination, - y .1, this redshift reads 

= -3 + (1 + n m)(in n) 
- (1 + n m) • 

On the other hand, when the invisible pressure was 

a = -4 + 
2(1 + n - m)(m  -  2n) 

- 3(1 + n m) 

that reduces to the usual radiation energy redshift p cc a-4  when in = 2n. During visible 

radiation/matter dornination the evolution of pi obeys to the usual scaling laws. From 

these expressions we see that the deviation from the standard energy redshift laws, i.e. the 

second term on the r.h.s., can be positive or negative, leading respectively to less or more 

redshift then for the visible component, but is, for values (,o13ti 0(500) and 11+n 	< 2(po, 

in both cases small. So the most efficient way to have the domination switchover is tu 

assume that invisible matter becotnes pressure-free during visible radiation domination. 

In this case, we must require c 	-3 + (1 + n rn)(m ii)/[2;oZ - (1 + n m)1 > -4, 

which leads tu 11 + n 	< 	tightening the prcvious constraint. Then, if invisible 

matter dominates now, it must be pressure-free and this is the reason why we use -yi = 1 

in the expressions for G and 	for comparison with their present values. 

(VI.1.1) 
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b) Nucleosynthesis bounds 

On the other hand, we can get a more stringcnt limit on the parameters m and u us-

ing bounds on the present G rate of change. Accetta, Krauss and Romanelli [491 recently 

incorporated new measurements of the neutron half-life and reaction uncertainties in nucle-

osynthesis calculations and thus improved the constraint on the allowed range for G at this 

epoch. Then, assuming that G decreases in time as a power-law: G(t)/G(to ) a (t/i0 )-", 

from nucleosynthesis until now, it is possible to constrain its variability. They obtain: 

'din Gidtio  S 0.9 x 10-12yr-1. With the post-Newtonian bound 	22.4 (u, z 500) 

and to  1.5 x 101°yr we get 11 n - ml S  0.3(po. 

An independent bound on our parameters can be obtained from the nucleosynthesis 

calculations of ref. [42] (see also refs.[43], [44],[54]), exploiting the formal analogy between 

the DGG model and ours when Pi ---> ta, where we remember that j = (n m + 1)/(2(Pa) 

when ,y/ = 1. They find bounds on á0/(GaHo) = -413vf3i : -0.011 < Co/(G0H0) 5 0.039 

(compatible with and slightly beyond the purely phenomenological limit of [49]), from 

where we get -0.01199 S  m n - 1 S 0.0394 These calculations are based on 

the requirement that nucleosynthesis, proceeding in the same scenario as in the standard 

model, yields abundances compatible with observations. This constrains the expansion 

rate at that epoch and can be translated, through eq. (IV.3.5), to limas on the range 

of the coupling constants. In the context of generalized scalar-tensor theories of gravity, 

the expansion rate of the Universe can be affected in 3 ways: G has a different value at 

nucleosynthesis than toclay, clark matter contributes to the total energy density, the dilaton 

field energy can also add its contribution if the dominating matter during nucleosynthesis 

is the invisible one. In all this work, only a conservative scenario is considerecl, in which 

the visible component dominates at the nucleosynthesis epoch (with 'yv = 4/3), so that 

the only effect to be talen luto account is the different value of G, that will be constant 

until nfter nucleosynthesis. Since in the generalized moclels, with m 2n, the gravitational 

coupling varíes during invisible radiation clomination, we should explore the implications 
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of the variability of O during nucleosynthesis. However, from expressions (IV,3.4) and 

(IV.3.5), we see that the variation rate of G during domination of invi ible radiation 

and of invisible matter are comparable. Timen, even if G varices at this epoch, to the 

allowed variation bctween nucleosynthesis and now corresponds a small variation during 

the nucleosynthesis process. On the other hand, thc contribution of the dilatan field te the 

total energy clensity could be more relevant, especially if the JBD field is not massless as we 

considerecl in last chapter. In this case, the evolution of the sealar field is no more coupled 

only te thc trace of the matter energy-momentum tensor and consequently continues 

during radiation dornination. In the present work we will not explore this possibility any 

further. 

Altogether these limits imply 

-7.7 n - m 54.5, 

where the upper limit comes from incorporating nucleosynthesis considerations directly iu 

the generalized model and the lower one from the previous result, obtained comparing our 

model with the presently allowed variability of G. 

VI.2) Early Universe constraints en the generalized dilatan couplings to the 

inflaton field 

a) Inflationary requirements 

Wang [451 has analyzed in detall the constraints imposed on the generalized model by 

inflationary requirements. Working in time Einstein frame, first of all, vn < 1 is needed for a 

power-law expansion of the Universe with a growing JBD field. Then, The more stingent 

constraints are, as usually, the enes originated from the high clegree isotropy ()f the cosmie 

microwave background rachation (CUBITO. This condition has to be imposed on the two 

mechanisms for generating density inhornogeneities: time incomplete Eilling proeess of bub- 
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bles and inhomogeneities derived from scalar field quantum fluctuations, and corresponda 

to the relevara lower bound on ni in the latter case and to the upper one in the former. 

In order that the bubble nucleation and percolation processes accomplish successfuly, we 

have to ask that the percolation probabibility grows with time and, with the same heuris- 

tic procedure as in chapter II, require that no more than a fraction 	0(10" tv) of the 

total volurne, with N 	5, be occupied by false vacuum at the recombination epoch. A 

constraint on a combination of the parameters n, m and w is thus obtained, wherefrom, 

taking w 	500 and using the range of values of it that ensures that e increases in time 

(m --1 < u < rn/2), a lower bound on in can be established: m S -8. 

From considering density inhomogeneities created by scalar field quantum fluctuations, 

two conditions must be checkerl: first, as we said in chapter V, the slow rollover conditions 

are required in order to apply the standard procedure in calculating density fitictuations 

and lead tú 2w + 3 >> (2 - tri)2. Second, we must convert eq. (V.2.1), together with eq. 

(V.2.2), tú an expression for temperature fluctuations and constrain it with observational 

bounds. Using the (conservative) bound STIT < 10-5, for O > 1°, and ina,king also use 

of the bubbles constraint, the isotropy from the microwave background reads ;-¿,' 6, that 

translates in u., + 3/2 > 3(2 - m)2. For wr.-2. 500, the bounds en ni are -11 rn 15. 

From all these consiclerations, the resulting allowed interval is: 

-11 	-8, 

where the bound from aboye comes from the requirement of suppression of large bubbles 

un the one from below is imposed by constraints (from the CIVIBR) on acliabatic density 

perturbations. 

With a lower value of w, e.g. w = 25, the allowed range is very narrow (albeit with 

the advantage that the power of the coupling term is mar unity): 	 -0.2 and 

also 4.2 S nt 	5. Although this is somehow meaningless siuce the main motivation for 

introducing stroncer dilaton-inflaton couplings ;vas tú avoid the discrepancy of with its 
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present observational value, i.e. allow a larger value of G than in the original JBD theory, 

with a small JBD coupling to visible matter (large w). 

b) Bou,nds on the fluctuation power spectrum from COI3E 

As we saw in chapter V (eq. (VI.2.1)), the density contrast resulting from power-law 

inflation models is (41 p)hor  cc \21(P'-1) = Ic-21(Pi-1 ), and an evolution factor k4  has to be 

included to obtain the density contrast at the recombination epoch• ( 6 PiP)2ree k3 1 6k12  

k4-21(?-1). This leads to a fluctuation power spectrum 

15k12 = kna= 0-21(p'-1) 

that can be constrained using COBE results 131 n, = 1.1 ± 0.5': 

1 	
2 	

>0.6 .1)t > 6. 
(p1  — 1) 

Since = (2w + 3)/(2 m)2, for w = 500, the allowed range for mis: 

—11 	m S 15. 

* Very recently, the results from the second year of CODE DMR observations have beca published: 

"Cosmic Temperature Fluctuations from Two Years of COBE DMR Observations", 	Dennett et al., 

submitted to The Adtrophyoical Journal. The most likely value for the spectral índex resulting from 

this second analysis is n = 1.59"0:1 (68% CL). If this result Coma to be trae, "normal" inflation models 

will be in trouble since spectral indexes larger than unity cannot be obtained with a power—law expansion 

nor with an exponential cine. See anyhow [87] and references therein for itillationary models with blue 

perturbation spectra. 
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VI.3) Constraints on the dark matter component as a remnant of the inflation-

ary field 

1f the same field acts as the inflaton field in the ea.rly Universe and accounts at present 

for the clark matter component, it has to fulfill requirements from both epochs. Combining 

the two sets of constraints, we obtain: 

—11 

—18.7 n —3.5. 

Conclusions 

Using the observational bounds on the 3I3D field coupling to visible matter, bounds 

coming from primordial nucleosynthesis calculations, the limits un the age of the universe 

and the Hubble parameter, we have restricted the coupling constants of this model applied 

tu a today dominant dark matter component: —7.7 S n — m 4.5. A higher finto value 

reduces the allowed interval for (in n) but the most stringent bound comes, at present, 

from the variability of G allowed by nucleosynthesis considerations. Forthcoming, more 

stringent observational limits on can substantiaily reduce this interval. 

CMBR isotropy constrains the parameters of the theory when the invisible coznponent 

is thought of as an inflaton field in the carly universe. It imposes conditions on the bubble 

distribution and evolution, un the amplitticle of density fluctuations that result from the 

3LID field quantum fluctuations and un the fluctuations power spectrum índex. Altogether, 

this conditios are quite stringent: —11 m á —8. Here, the constraints fall mainly on the 

parameter m siuce the kinetic term (which cardes the parameter n) is negligible during 

the inflationary epoch. 

Thinking of the "invisible" field u as being both the inflaton and the present dark 
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matter component, ni and n have to satisfy early conditions and present requirements 

sirnultaneously. 

More work has to be done with non-conventional scenarios a t nucleosynthesis in gener-

alized JBD models. We have presented rnodifications to the standard JBD theory -direct. 

generalized JBD couplings to the invisible component and a masa terco for the JBD field-

that generate extra contibutions to the Universe energy density ami to the variation possi-

bilities of G. The allowed interval for (:1 is then larger tiran in the purely pitenomenological 

approach and in standard JBD theory. The implications of the eventual domination of the 

invisible component and the variability of G during the nueleosynthesis process should be 

explored. 
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Conclusions 

We have seen that inflation may be implementecl in a vide range of particle and gravi-

tational theories and that some of the encountered difficulties can be overcome int roducing 

modifications in the potential tercos or in the roupling tercos of the involucrated fields. In 

particular, the probleinatic feaures of a first arder inflation foresee that, a softer inflation-

ary process may represent a solaban. We then turn to extended inflation: an infiationary 

model imbedded in a scalar-tensor gravity theory, where the Jordan-Brans-Dicke field 

extracts some vacuum energy for its evolution, stealing it from the Universe expansion. 

The resta of this energy distribution is a power-law inflation instead of an exponential 

one. 

We have considerad and compared many variations to extended infiation proposed in 

the literature and we have explored in depth the possibility of stronger, generalized cou-

plings of the JBD field with the invisible sector. We have also investigateci the can-equences 

of the inclusion of a mass terco for the JBD field. 

Considering the dark matter component as an invisible perfect fluid which gives the 

dominant source of the Universe expansion, we have obtained the field equations and their 

attractor solutions for the evolution of the scale factor and the scalar fields. We have found 

that the potential tertn that corresponds toa scaiar field that behaves as a driminating 

perfect fluid decays as a power-law. A particular aspect of this moda is that the JBD 

field, and therefore the gravitational constant. varies with time oven if the universo is 

dominated by a dark radiative component, i.e. by a Huid whose energy-momentum tensor 

has a vanishing trace. 

The dominaban of an invisible sector is particularly suitable for describing tuvo epochs 

of the Universe history: today, with a. conjectured non-baryonic dark 'water that clases the 

128 



Universe, and in the early inflationary period. We obtain a model compatible with present 

observational evidence and whose free parameters (ni and u) !my be constrained. Using 

the observational bounds on the JBD field coupling to visible rnatter, bounds coming from 

primordial nucleosynthesis calculations, liinits on the age of the universe ami the Hubble 

parameter, we have restricted the coupling constants of this moda applied tu a toclay 

dorninant dark matter component. A higher 1/0 /0  value reduces the allowed interval for 

(1-72-n) but the most stringent bound comes, at present, from the variability of G allowed by 

nucleosynthesis considerations. With present ohservational values, the resulting interval is 

not very stringent. Generalized JBD couplings to the invisible component and the inclusion 

of a mass term for the JBD field generate extra contibutions to the Universe energy density 

and to the variation possibilities of G. The allowed interval for á is then largor than in 

the purely phenomenological approach and in standard JBD theory. 

Going back in time, we apply this model to the inflationary epoch. The cosmic mi-

crowa,ve background radiation isotropy constrains the pararneters of the thx1ory when the 

invisible component is thought of as an iuflaton field in the early Universe. It imposes 

conditions on the bubble distribution and evolution, on the amplitude of density fluctua-

tions that result from the JBD field quantum fluctuations and on the fluctuations power 

spectrum índex. Altogether, diese conditions are quite stringent. Here, the constraints fall 

mainly un the parameter rn, imposing on it large and negative values (-11 s na S -S), 

since the kinetic term, which cardes the parameter n, is negligible during the inflationary 

epoch. 

In the context of a decaying cosmological constant, the same field that dominated 

during inflation may dominate again in the present epoch if the energy density associated 

with it redshifts slower than the energy density of niatter and radiation. In this case, in 

and n have to satisfy early conditions and present requirements simultaneously. 

An important effect of int rodueing a Jordan-Brans-Dicke field in infiationary seenarios 

is tu obtain tilted rnodels: more power on very large seales in the density perturbation 
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spectrum. This is a feature that rnay lae  useful in building models that account for the 

observecl large-seale structure of the Universe. It is a general result of power-law inflation 

scenarios. In extended inflationary models, structure arisca from the JI:ID field fluctuations 

rather than from fluctuations of the inflaton field. The estimated fluctuation amplitudes 

are characterized by the squared ratio of the unification scale to the Planck scale (for 

not too small (.4) values) and are slightly in excess of the observational bound. This is 

another advantage of these models on the exponential inflation models that end up with 

fluctuation amplitudes of many order-of-magnitude in excess, unless the coupling constant 

in the potential term is fine-tuned. On the other hand, the observable effects of fluctuations 

in the JBD field, and hence in the gravitational coupling, is a topic that deserves further 

investiga.tion. Generalized couplings do not introduce any new ingrediente in this topic 

besicles some limitations on the pararneter m to observe general inflationary conditions. 

On the other hand, the inclusion of a potential term for the JBD field, useful to solve the 

probletn, increases the amplitude of density fluctuations and re-introduces a fine-tuning 

problem. After inflation, this masa term tends to dominate and we have to impose the 

condition that it decays. 

Regarding the question of finding a place for scalar-tensor inflationary models in the 

context of a fundamental theory, an appealing possibility is string theories. In diese 

theories we have, upon reduction to four dimensions, a dilaton field coupled to the curvature 

scalar of the four-dimensional metric and directly coupled to non--gravitational sectors. 

Unfortunately, a. general result of superstring theory and other higher-dimensional theories 

is that we can not get enough inflation. Nonetheless, one of the groups working on this polla 

reponed some positive resulta when introducing two scalar fields from the gravitational 

sector. The implementation of a JBD theory also has some problema, in particular when 

its predictions are confronted with present observational borlada. 
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