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Introduccién

La incorporacién de la teoria inflacionaria a la cosmologfa permite un mejor entendi-
miento de algunos aspectos enigmaticos del Universo temprano y proporciona las condi-
ciones fisicas que permiten sembrar la estructura a gran escala del Universo. Es un con-
cepto 1til para el Universo primordial pero el escenario para su desarrollo no estda atn
bien establecido. Para construir un modelo inflacionario completamente satisfactorio se
necesita cumplir con dos tipos de requisitos: lograr una solucion efectiva a los problemnas
cosmoldgicos que la teoria inflacionaria tiene el potencial de resolver y ser consistente con
una teoria realista de particulas elementales, Satisfacer simultineamente cstos requisitos

no ha resultado ser una tarea facil.

Los modelos inflacionarios propuestos hasta la fecha se dividen en dos clases: los mode-
los inflacionarios estdndar, que aportan modificaciones al sector de materia introduciendo
un campo escalar con un potencial efectivo particular, y los que introducen modificaciones
también en ¢l sector gravitacional. Este es el caso del recientemente propuesto modelo de

inflacion extendide, basado en la teoria de la gravedad de Jordan-Brans-Dicke.

Este trabajo vierte sobre los modelos inflacionarios que se desarrollan en el contexto de
teorias de la gravedad del tipo escalar-tensorial. Atacamos el problema partiendo de los dos
aspectos que abarca: modelos inflacionarios y teorias gravitacionales, Por un lado, estudi-
aimos las teorias gravitacionales del tipo escalar-tensorial aplicandolas a la historia actual
del Universo. Exponemos y delimitamos las variaciones al sector gravitacional permitidas
por la confrontacion con las observaciones. En particular, exploramos la posibilidad de
introducir acoplamientos directos entre el campo escalar del sector gravitacional (campo
de Jordan-Brans-Dicke) y algin tipo de materia oscura. El modelo consistente desarrol-
lado se aplica luego al Universo temprano. tratando de constrnir un escenario inflacionario

exitoso en cada uno de sus pasos.



El primer capitulo presenta un repaso de la teoria inflacionaria, sus ventajas y sus in-
convenientes, y contiene una muy breve presentacién de los modelos inflacionarios estandar,
El segundo capitulo es un repaso de la teoria de la gravedad de Jordan-Brans—-Dicke (JBD,
de ahora en adelante) y del modelo de inflacién extendida, recientemente propuesto. En el
capitulo III se sistematizan y comparan los diferentes modelos propuestos en la lteratura

en el contexto de teorias escalar-tensoriales y su relacion con teorias de mas dimensiones.

El trabajo original esta contenido principalmente en el capitulo IV, donde desarrollamos
el escenario generalizado con acoplamientos directos, generales, del campo de JBD con el
sector invisible, y en el capitulo VI, donde establecemos cotas observacionales actuales
sobre los acoplamientos generalizados. El capitulo V esti dedicado al Universo resultante
de estas teorias, en particular al problema de sembrar la estructura del Universo. Esta parte
también contiene cierta cantidad de trabajo original. Se investiga que tan sensibles son
los resultados obtenidos para las perturbaciones de densidad a los detalles de la estructura
del modelo. Se discute el significado y las implicaciones del procedimiento empleado en los
trabajos que abordan el problema de formacion de estructura y se exploran ulteriormente
algunas extensiones del modelo original de inflacién extendida y sus consecuencias para el

Universo post-inflacionario.



Descripcion

A continuacién presentamos un breve resumen de la version en inglés. Incluira solo

los puntes y conceptos principales. Sera particularmente breve en los capitulos de revision
’ ’ P » e L

y se extendera un poco mas en las partes originales. Las ecuaciones y definiciones de las

cantidades involucradas, asi como las referencias, se citarin de la versién integra en inglés.

Existe un modelo estandar para la cosmologia, basado en la teoria de Einstein y las
observaciones de Hubble, que describe correctamente la historia del Universo por lo menos
desde la época de la sintesis de los elementos ligeros. Ha superado hasta ahora todas las
pruehas observacionales pero encuentra dificultades al enfrentarse con la historia temprana
del Universo: deben imponerse condiciones iniciales muy particulares para obtener un Uni-
verso como el que observamos actualmente. Las condiciones particulares que caracterizan
al Universo temprano pueden resumirse de esta manera: existe un balance inicial preciso
entre la densidad de energia y la tasa de expansion (Universo plano), con un inicio bien
sincronizado en regiones aparentemente causalmente desconectadas del Universo (prob-
lema del horizonte). En este Universo uniforme a muy gran cscala existen estructuras
que requieren de perturbaciones de densidad que, en una época temprana, actuen como
semillas para ¢l crecimiento gravitacional. Estas fluctuaciones deben ser suficientemente
grandes como para desarrollarse en las estructuras a gran escala que observamos (galaxias,
cimulos de galaxias y grandes regiones aparentemente vacias) y bastante pequenas para
aber en una regién causalmente concctada al momento de su formacion. La amplitud de
las perturbaciones de densidad esta ademas severamente restringida por observaciones: uua
inhomogeneidad en la densidad de materia presente en el momento del desacoplamiento
radiacion-materia deja huella en la radiacion de fondo de microondas. Sin embargo, la
radiacion de fondo ha resultado ser altamente homogenea e isdtropa: la deteccion de sus
anisotropias por COBE ("Cosmic Background Explorer”} entregd el siguiente resultado:

3



AT/T =~ 6 x 107% [3].

Los desarrollos tedricos que se extienden mas alla del modelo estandar son esencial-
mente un intento de comprender las bases fisicas para condiciones iniciales tan especificas.
Una de las posibilidades que han sido exploradas es la inclusién, en una época temprana,
de una historia térmica que se desvia del modelo estandar, dejando inalterada la evolucién
posterior del Universo. La aplicacion a la cosmologia de las teorias de transicion de fase
en fisica de particulas nos ofrece esta posibilidad: un campo escalar que interactia consigo
mismo se puede comportar a altas energias como un fluido no-clasico y actuar como fuente
para una expansion acelerada —inflacion— del Universo. Este particular comportamiento

termina al concluirse la transicion de fase.

La idea basica de la teoria inflacionaria es que hubo una época en la que el Universo
sufrié una expansién exponencial como resultado de la dominacién de una densidad de
energia constante (energia del vacio en Universo de de Sitter). Esta dominacion debe ser
temporal y la energia de vacio se tiene que transformar en energia de particulas. termalizada
y uniformemente distribuida, para recobrar el Universo de Friedmann que observamos. En
este sentido es 1til trabajar con una configuracién metaestable de un campo escalar que
llena el Universo en expansion, y no con una verdadera constante cosmologica que refleja
la propiedad del vacio: un campo escalar homogeneo, clasico, puede jugar el papel de un
estado de vacio inestable y su decaimiento puede recalentar el Universo. En teorias de
gran unificacion se requieren potenciales de rompimiento de simetria para que la simetria
existente a altas energias entre las diferentes componentes de una misma fuerza no se
manifieste a bajas energins. E] campo escalar responsable por esta transicion de fase
puede dominar el comportamiento del Universo mientras que se encuentra en ¢l minimo
local de su potencial a altas energias. La figura 1 del capitulo I muestra un ejemplo de
potencial con rompimiento espontaneo de simetria. (1.2.1) da la densidad Lagrangiana de
un campo escalar real o y (1.2.2) su densidad de energia potencial para que presente una

transicion de fase.



Se propusieron inicialmente tres modelos (que llamamos modelos estandar de inflacion):

~Vieja inflacién. Guth [8] construyé el primer modelo inflacionario, basandose en nu-
merosos trabajos previos (vease [7] y Linde [3] para una breve historia del desarrollo de
las ideas inflacionarias y su bibliografia), con un potencial de transicion de fase de primer
orden. Una barrera de potencial alrededor del minimo local (fig. 3 del cap. I) mantiene
atrapado al campo durante un periodo de tiempo en una configuracion de falso vacio con
una densidad de energia constante. La transicion de fase se lleva a cabo mediante tuneleo
cudntico y se forman burbujas de verdadero vacio en un medio de falso vacio. La termal-
izacion de la energia (recalentamiento del Universo) se llevaria a cabo mediante choques
de las paredes de las burbujas. Sin embargo, el escenario presenté un problema serio: las
burbujas de verdadero vacio (que sec expanden, al maximo, a la velocidad de la luz) no

logran percolar puesto que el medio que las separa sigue expandiéndose exponencialmente.

~Nueva inflacién {13]. La inflacidn ocurre durante el proceso de caida lenta del inflatén
hacia el minimo del potencial (g9). La transicién de fase es suave (de segundo orden) y
una sola regién, conectada, abarca nuestro Universo. Para asegurar un comportamiento
inflacionario, el potencial efectivo tiene que ser plano cerca de ¢ = 0 y, en una segunda
fase, tiene que ser mas escarpado para que la inflacion termine y las oscilaciones del campo
escalar alrededor del minimo permitan volver a poblar el Universo con particulas producto

de su decaimiento.

~Inflacién cadtica. Este modelo, propuesto por Linde {14], se basa en la suposicién que
la distribucion inicial del campo escalar ¢s cadtica, i.e. toma diferentes valores en difer-
entes regiones del Universo. Esto se deberia a que a altas energias (época de Planck) las
fluctuaciones son tan grandes que el campo "no sabe” donde esta el minimo del potencial.
En este caso, el potencial no es de rompimiento de simetria y tiene minimo en ¢ = 0
Vo) = (A/n)e™. con constantes de acoplamiento, \, pequeas para que la evolucion del

campo sea lenta y lograr asi una expansion quasi-exponencial.

La inflacién resuelve el problema del horizonte puesto que lo aleja hasta distancias ain
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no observadas y predice un Universo plano puesto que el crecimiento exponencial del radio
de curvatura del Universo en esa época asegura que sea hoy en dia mucho mas grande que el
radio de Hubble. Resuelve ademés otro problema que se genera al introducir transiciones
de fase: diluye los defectos topoldgicos. Su mayor logro es proporcionar un mecanismo
de creacion y amplificacién de fluctuaciones de densidad. El hecho que la inflacion estire
exponencialmente las dimensiones espaciales hace posible que las fluctuaciones de densidad
que crean la estructura a gran escala provengan de las fluctuaciones microscdpicas de punto
cero de los campos cuantizados. Las fluctuaciones del campo escalar se convierten, al final
de la inflacion, en perturbaciones de densidad de las particulas creadas en el decaimiento
del inflatén, La teoria nos permite definir las fluctuaciones cuédnticas en el momento en
que cruzan el horizonte, es decir, cuando su longitud de onda es del tamano de una region
causalmente conectada. La amplitud de las fluctuaciones es una cantidad dependiente
del modelo escogido pero la forma del espectro es una prediccion genérica de la teoria
inflacionaria: un Universo de de Sitter nos proporciona un espectro invariante de escala
(i.e. amplitudes independientes de la longitud de onda al cruce del horizonte). Esta
prediccion coincide razonablemente con las caracteristicas de la estructura a gran escala
del Universo. Desafortunadamente, la amplitud de las fluctuaciones resulta demasiado
grande (por varios ordenes de magnitud) comparada con las fluctuaciones de la radiacion
de fondo. Para obtener perturbaciones de densidad observacionalmente aceptables, es
necesario ajustar las constantes de autoacoplamiento que intervienen en el potencial a
valores muy pequefios (A S 107!2), Esto es lo que llamaremos el problema del ajuste fino.
Puesto que los modelos inflacionarios estandar presentan, en mayor o menor medida, un
problema de ajuste fino de alguna constante de la teoria, es necesario mas trabajo para

encontrar una representacion concreta para el concepto de inflacion,

La y Steinhardt [15] desarrollaron en 1989 un modelo inflacionario basado en la teoria
de Jordan-Brans-Dicke de la gravedad [16] en el que la extraordinaria expansién que
caracteriza a la inflacion sigue ahora una ley de potencia. Modelos de inflacién de ley de
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potencia habian sido obtenidos anteriormente con un potencial exponencial para el inflatén
[18]. En este nuevo modelo, llamado inflacién extendida, el mismo comportamicnto es el
resultado de la dindmica de dos campos: un inflatdn, con un potencial del tipo de vieja
inflacion, y un campo escalar que juega el papel de un acoplamiento gravitacional variable
en el tiempo (® = G~!), La expansiéon mas lenta puede explicarse por el hecho que la
densidad de energia del vacio es ahora compartida entre la expansién del Universo y la
evolucion del campo JBD. Al proponer su teoria, Brans y Dicke [16] introducen en el
Lagrangiano para el sector gravitacional y la materia un campo escalar ® acoplado con el
escalar de curvatura, como se ve en la densidad Lagrangiana (I11.1.2). El pardmetro w que
interviene en el término cinético es una medida de la influencia adquirida por el campo
escalar sobre el campo gravitacional con respecto al efecto de la curvatura del espacio-
tiempo. De acuerdo con el principio de Mach, la fuente del campo ® es la distribucion
espacial de la materia. La ecuacién de onda para & y las ecuaciones de Einstein estan
dadas por (11.1.5) y (IL.1.4) respectivamente. Para la inflacion extendida se resuelven estas
ecuaciones tomando como fuente dominante la densidad de energia del inflatén (con métrica
de Friedmann-Robertson-Walker (FRW) y campos espacialmente homogéncos @ = ${t),
o = a(t)). Sec obtienen las soluciones (11.3.3) y (I1.3.4) para la evolucion del camnpo JBD

y del factor de escala del Universo.

Los dos esquemas de inflacion de ley de potencia estén relacionados por una transfor-
macion conforme (vease e.g. [19]): un sector gravitacional de JBD mas un inflatén con
energia potencial constante (esquema de Jordan) se convierte, mediante la transformacion
(II1.1.2) de la métrica, en un modelo con acoplamiento gravitacional constante mas un
campo con potencial inflacionario exponencial (esquema de Einstein). En este trabajo
seguiremos la evolucidn del sistema en los dos esquemas: el de Jordan, que consideraremos
como el sistema fisico, y el de Einstein donde disponemos de una serie de resultados cono-
cidos que podremnos utilizar, lo cual nos sera particularmente til para el estudio de las

fluctuaciones de densidad.



En inflacion extendida, como en ¢l modelo de vieja inflacién, la transicion de fase es
de primer orden pero la expansion mas lenta facilita la percolacién de las burbujas de ver-
dadero vacio y por lo tanto la formacién de una regiéon homogenca suficientemente grande
como para contener nuestro Universo. Sin embargo la termalizacion y homogeinizacion de
la energia contenida en las paredes de las burbujas mas grandes siguen siendo una fuente
de problemas. Para que estos procesos se lleven a cabo en buena medida antes e la época
de la recombinacion, se requiere de un valor bajo del parametro de Brans--Dicke [20], [21]:
w S 25, el cual esta en conflicto con la cota observacional actual [22]: w < 500. Esta cota
sobre w se obtiene de medidas del retardo de senales por la gravedad solar, comparindolas

con el valor predicho por la relatividad general.

Debido a estas discrepancias (que llamarernos el problema de w), tenemos que renun-
ciar al modelo mas simple de inflacién extendida. Diferentes variantes han sido propuestas:
introducir un potencial para el campo JBD [23] que mantenga anclado el campo a algin
valor de manera que el limite de baja energia de la teoria JBD coincida con la gravedad de
Einstein, introducir un campo JBD en modelos de inflacion cadtica [24], [25] o nueva {25],
dejar variar en el tiempo el pardmetro de Brans-Dicke {26], {27]. o permitir acoplamientos
no-estandar del campo JBD con el inflatén, Esta Gltima posibilidad surge de un trabajo de
Damour, Gibbons y Gundlach [28] quienes consideran una teoria escalar-tensorial gener-
alizada con acoplamientos directos del campo de JBD con el sector de materia oscura. Los
efectos de un campo escalar del tipo JBD mezclado con la interaccion tensorial usual estan
severamente restringidos por los experimentos. Sin embargo, puesto que las observaciones
se llevan a cabo con materia visible, es posible construir una teoria en la cual el campo
escalar esta mas fuertemente acoplado a una componente de materia que no esté involu-
crado en tests observacionales del principio de equivalencia. La restriccidon observacional
se aplicaria entonees unicamente al acoplamiento eon la inateria visible. Damour. Gibhons
y Guudlach encuentran un valor méximo para la variabilidad actual de la “constante”
gravitacional compatible con -y no muy lejos de- las cotas observacionales.

8



Holman et ol. [40] aplican la misma técnica al campo inflaton del modelo extendido,
considerandolo como una componente de materia invisible con acoplamientos no-estiandar
con el campo de JBD. En este modelo generalizado de inflacion extendida, la intervencion
de dos pardmetros permite satisfacer simultaneamente los requerimientos actuales {w ob-

servacional) y primordiales (condiciones para una inflacién exitosa).

El modelo escalar-tensorial generalizado esta descrito por el Lagrangiano (IV.1.1),
con acoplamientos generalizados m y n arbitrarios. Derivamos las ecuaciones de Einstein
(IV.1.3) y las ecuaciones de los campos (IV.1.4) y (IV.1.5). Trabajaudo con el campo re-
definido de JBD p = g In(2®) que tiene un término cinético convencional, con una meétrica
FRW, espacio plano (¢ = 0) y campos espacialmente homogéneos, llegamos al sistema de
ecuaciones (IV.1.8), (IV.1.9) y (IV.1.10). De aqui en adelante trabajamos basindonos en
dos suposiciones que permiten simplificar el problema y que consideramos describen correc-
tamente nuestro Universo durante las épocas que nos interesan: la componente invisible se
comporta como un fluido perfecto y representa la fuente dominante de energia para la ex-
pansion del Universo. Como fluido perfecto, se puede describir por su densidad de energia y
de presion definidas a través de (IV.1.13) y cumple con la ecuacién de estado pr = (y1-1)p;.
Al ser la compouente dominante se puede despreciar la contribucion de la materia visible,
lo cual es una condicién razonable tanto en la época inflacionaria, como en la época actual

si suponemos un Universo plano con Qpqrionica = 0.1y Qmateria oscura = 0.9.

Nuestro problema estard entonces descrito por el sistema de ecuaciones (IV.1.17),
(IV.1.18) y (IV.1.19), en funcion de las variables H y y = ¢ /. El estudio de su espacio fase
muestra que el sistema tiene tres lineas invariantes que corresponden a soluciones de ley de
potencia: una solucion atractor dada por (IV.3.1} y dos soluciones repulsor (IV.3.1a). El
comportamicnto del sistema dindmico puede verse cn los diagramas de fase en las figuras
(IV.1) y (IV.2). El punto critico del sistema esta en el origen del plano H-y. La flecha
externa indica la solucidn atractor (IV.3.1) y las flechas pequenas sobre las trayectorias
senalan la direccion del tiempo. En los diagramas se puede ver que una region importante
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del espacio fase tiende asintéticamente a la linea atractor pero el punto critico no es un
atractor universal del sistema. Regiones separadas de la solucién atractor por una linea
repulsora no tienden a la solucién (IV.3.1), es decir no todas las soluciones del sistema
tienen un comportamiento de ley de potencia. La evolucién del campo de JBD ¢ v del

factor de escala a a lo largo de la solucién atractor estia dada por (IV.3.2).

Se puede encontrar el potencial para un campo escalar que actila como un fluido per-
fecto dominante, resulta de la forma V(o) oc 67 (ec. (IV.3.13)). En la época inflacionaria,
tenemos un potencial de tipo inflacién cadtica. La inflacién de ley de potencia mas general
gse obtiene pidiendo una potencia mayor que uno en la ley de evolucion del factor de escala
(expansién superluminica): f(n,m,vr) > 1 en (IV.3.2). Si el potencial no se va a cero al
final de la inflacién, da lugar a un modelo con “constante” cosmolégica que decae. En este
contexto, el mismo campo que dominé durante la inflacion puede volver & dominar en la
época actual si su densidad de energia sufre un corrimiento al rojo menor que la densidad
de energia de la radiacién y la materia visibles. De esta manera, si existe una constante
cosmolégica no nula actualmente, este modelo permite relacionarla con la densidad de

energia que sostuvo la inflacién.

Podemos derivar la evolucion del acoplamiento gravitacional y del pardmetro de Hub-
ble a lo largo de la solucién atractor y compararlos con las cotas cbservacionales. La
constante gravitacional medida en experimentos de retardo del tiempo es G = [(2w +
4}/(2w + 3)](1/167®). La variabilidad de G en funcion de la evolucién de ¢ esta dada
por (IV.3.3). Un resultado interesante es que el acoplamiento gravitacional caleulado a lo
largo de la solucién atractor varia con el tiempo atin cuando el tensor de energia-momento
de la componente invisible tiene traza cero, i.e. cuando el Universo estd dominado por la
radiacién de la componente invisible (y; = 4/3), como lo indica la expresion (IV.3.4). No

es asi en el modelo original de JBD, ni en las subsecuentes generalizaciones.

Considerando en cada era sdlo el efecto de la componente dominante. se investigé, en
el iltimo capitulo, la posibilidad de establecer cotas sobre los acoplamientos generalizados
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del campo JBD. Suponiendo que el Universo esta dominado hoy en dia por la componente
de materia oscura con ecuacion de estado py = 0 (47 = 1), la variabilidad actual de
G estd dada por (IV.3.5) y el pardmetro de Hubble por (IV.3.6). Para restringir los
acoplamientos del dilatén con la materia oscura consideramos limites post-Newtonianos
sobre el pardmetro de Brans-Dicke w, cotas observacionales sobre la edad del Universo,
el parametro de Hubble y la variabilidad de la “constante” de Newton hoy en dia, asi
como sobre su valor durante la nucleosintesis primordial. Queda un amplio intervalo para
los pardmetros m y n: ~7.7 S n—-m 5 4.5. El limite superior resulta de incorporar
consideraciones de la nucleosintesis directamente en los modelos generalizados y el inferior
proviene de la comparacién de la variacién de G predicha por nuestro modelo con el valor

permitido observacionalmente.

Si nos remontamos a la época de la inflacién, los limites mas estrictos provienen de la
radiacién de fondo, traduciéndose en restricciones sobre las burbujas y sobre la amplitud
y el espectro de las perturbaciones de densidad creadas por las fluctuaciones cudnticas
de los campos escalares. El capitulo V estd dedicado al estudio de estas cantidades: se
exponen y comparan los resultados obtenidos en articulos recientes para los modelos de
inflacién extendida y se exploran ulteriormente los modelos generalizados y el escenario

con un término de masa para el campo de JBD, durante y después de la inflacion.

Al trabajar con modelos inflacionarios del tipo escalar-tensorial, disponemos de los
siguientes ingredientes para sembrar la estructura del Universo: las fluctuaciones cuanticas
de dos campos escalares ~el inflaton y el campo de JBD- y tres tipos de perturbaciones
de densidad: perturbaciones adiabaticas producidas por el campo con energia dominante,
perturbaciones isotérmicas asociadas con las fluctuaciones del campo subdominante, ¢ in-
homogencidades formadas por la estructura de burbujas del Universo emergente de la
transicidén de fase. Surgen entonces ciferentes posibilidades para la subsecuente evolucion
del Universo, dependiendo de cuil campo tiene las fluctuaciones dominantes y cual campo
es el principal responsable de recalentar el Universo. Como ya se sabia [18], la inflacion de
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ley de potencia crea un espectro de fluctuaciones que se desvia ligeramente de la invariancia
de escala, introduciendo mas potencia a grandes escalas. Este es un resultado interesante
puesto que, segin algunos observadores (vease e.g. ¢l estudio A.P.M. de Maddox et al
[64]), un espectro invariante de escala carece de suficiente potencin a grandes escalas para
ser consistente con la estructura observada (movimientos de corrientes a grandes escalas,
correlaciones ciimulo-ctimulo, regiones vacias). Por otro lado, la presencia de dos campos
abre otra posibilidad en el disefo de espectros de fluctuaciones: se puede asociar un inter-
valo de escalas de las estructuras césmicas a las fluctuaciones de un campo y otra parte

del espectro puede corresponder a las fluctuaciones del otro campo.

El problema de las fluctuaciones puede ser atacado, en principio, en cualquiera de los
dos sistemas conformes, pero el camino mas directo es estudiarlo en el esquema de Einstein,
donde el campo de JBD esta minimamente acoplado, tiene un término cinético estandar
¥, bajo ciertas condiciones, juega el papel de un inflatéon con potencial de caida lenta.
E!l potencial inflacionario para el campo de JBD es el potencial (constante) del inflaton
original multiplicado por un término exponencial en el campo de JBD. resultado de la
transformacion conforme. Este serd el campo responsable de la estructura. En el esquema
de Jordan tenemos la presencia de dos campos pero, mientras que el inflatén esté atrapado
en el minimo local de su potencial efectivo, el campo de JBD tendra automaticamente las
fluctuaciones dominantes [73], [78]. Si uno quisiera dejar evolucionar también el inflaton,
ya sea con un tuneleo a través de la barrera del potencial (del tipo vieja inflacién) o de caida
lenta (inflacién extendida nueva o cadtica), tendria que tomar en cuenta las fluctuaciones de
ambos campos y el acoplamiento del dilatén con el inflaton. Los resultados obtenidos seran
facilmente transformados al marco original a tiempos grandes, donde ambos esquemnas
practicamente coinciden puesto que el factor conforme 2¢ — 1 cuando G — Gpy. La
densidad de energia y sus fluctuaciones sc transforman mediante p = (29)*p y ép/p =
6p/p+28®/®, respectivamente. Puesto que el campo de JBD varia muy lentamente en un
régimen no-inflacionario, se puede considerar que al terminar la inflacién las fluctuaciones
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ya coinciden en ambos esquemas.

La aplicacion a una inflacién de ley de potencia (de hecho, a una métrica inflacionaria
general) de la formula estandar {66] do = H/27 para la fluctuacion r.m.s de un campo
escalar al cruzar el horizonte, derivada originalmente para el espacio de de Sitter, fue
comprobada por Abbott y Wise [31]. Usando este resultado, Lucchin, Matarrese and
Pollock [74] verificaron la validez de la relacion 8p/p = aH?/$ para la inflacién de ley de
potencia y encontraron que la constante de proporcionalidad es & & 2 x 1072, Puesto que
la amplitud de las perturbaciones de densidad es proporcional a H? y H ~ ¢t~ en inflacién
de ley de potencia, las perturbaciones que salen del horizonte a tiempos anteriores son
mas grandes. Metiendo en (V.1.25) la dependencia en el tiempo de H, la evolucion del
campo clasico ¢ que se encuentra resolviendo la ecuacién de onda (V.1.4) con un potencial
exponencial V(p) = Mie~2#/¥o y considerando que en este caso la longitud de onda
crece con una ley de potencia, se encuentra que la amplitud de la fluctuacion crece con la
escala ([70], [72], [73], [19]), como se ve en las expresiones (V.2.1) y (V.2.2), donde p' es la

potencia de la expansion en el esquema de Einstein.

De la expresion (V.2.2) se puede ver que la amplitud de las fluctuaciones esta carac-
terizada por el cociente de la escala de unificacion (M) sobre la escala de Planck (mpy) a
una potencia a, donde o & 2 para w < 10, y esta solo ligeramente en exceso de la cota
observacional. La amplitud diverge en el limite w — oo dado que el potencial efectivo se va
a una constante y ¢ = 0, pero disminuye si aumentamos w en un intervalo intermedio de
valores. Por otro lado, una ligera disminucion de M puede resolver el problema puesto que
la amplitud de las perturbaciones es muy sensible a variaciones en M: ép/p x M? para
w grande. No tenemos aqui la posibilidad de ajustar la constante de auto acoplamiento
puesto que el potencial para ¢ se toma como estrictamente constante (= M*); el ajuste
fino recae sobre el pardametro de Brans-Dicke. Como habiamos niencionado, una de las
posibilidades para evitar el problema de w es introducir un potencial para el campo de

JBD. La presencia de los dos campos escalares puede entonces llevar a un escenario infla-
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cionario de dos rounds, con fluctuaciones importantes de ambos campos. Se exploraron las
consecuencias, durante y después de la inflacion, de incluir un término de potencial para

el campo de JBD.

En el caso mas simple el potencial es un término de masa. La ecuacion de movimiento
para el campo de JBD en el marco de Jordan es entonces una ecuacion de Klein-Gordon
modificada por la expansion (ec. (V.2.5)) y en las ecuaciones de Einstein aparece un
término de constante cosmoldgica, como se ve en la ec. (V.2.6). Puesto que después de la
inflacion esta constante cosmolégica puede llegar a dominar. tenemos que imponer que el
campo de JBD decaiga. Por otro lado, para que la masa del campo de JBD no estorbe la
evolucién del Universo inflacionario, es necesario, en ambas ecuaciones: mj} < py /®. con
pv = M. Puesto que durante la inflacion & < m%,, un limite seguro es: m¢ < M?/mp,
que para M ~ 10MGeV', implica: me < 10°GeV. Este limite puede verse claramente en
las figuras (V.1), (V.2), para H y ® en la época inflacionaria. El comportamiento cambia
drasticamente para mg¢ > 10°GeV: H va rapidamente a una constante y ¢ se establece
en el minimo de su potencial. Esto significa que se ha recuperado un régimen de inflacion
estandar, donde el término de masa dominante actiia como una constante cosmologica. Si
consideramos un modelo de gravedad inducida el potencial para JBD es de rompimiento de
simetria: V(@) = M ® — &;)? con By = m},/167, y se puede ver que tenemos nuevamente
la misma restriccion sobre mg. Este limite implica que se necesita una constante de auto
acoplamiento pequeiia (A ~ mg/m%,), asi que, ain en el contexto de una inflacién de dos

campos, es necesarto un ajuste fino.

La posibilidad de que las grandes regiones casi vacias que se observan Loy en dia sean
residuos de las burbujas de la inflacion extendida ha sido descartada porque la presencia
de estas inhomogeneidades en la época de la recombinacion provocaria una distorsion
inaceptable sobre €l fondo de microondas. Como ya se discutid, este argumento impuso
restriceiones severas sobre el pardanictro de Brans-Dicke w {21], [34}, [82). [83]. Sin embargo,
ha sido publicado recientemente un trabajo en el que se propone que el tiempo necesario
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para llenar una burbuja se reduce sustancinlmente si se incorporan en el calculo efectos
relativistas [84]. Durante la época dominada por la radiacidn, las burbujas se contraen,
a la velocidad de la luz para un vacio relativista, debido a la gran fuerza de presion que
actia sobre las paredes y este proceso de llenado puede llevarse a cabo en un tiempo corto,
para un observador fuera de la burbuja, debido a la dilatacion del tiempo causada por el
potencial grande y negativo de la regién vacia. Tomando en cuenta este efecto, se podria
descartar el problema de las burbujas grandes y relajar los limites sobre w aunque este
problema estéd mas directamente relacionado con el proceso de termalizacion que con el
proceso de llenado. La termalizacion es una cuestion mas complicada que no estd del todo
resuelta y que depende en cierta medida del tipo de materia que domina el cornportamiento

del Universo.

Los modelos generalizados no introducen nuevos ingredientes en este tema puesto que
la estructura no proviene de las fluctuaciones del inflatén que es el sector que lleva los
acoplamientos gencralizados. Hay que imponer sin embargo algunas reestricciones sobre
los pardmetros del modelo para preservar las condiciones inflacionarias. En particular,
para poder utilizar el formalismo estandar para las perturbaciones de densidad tenemos
que asegurarnos de que, en ¢l marco de Einstein, el potencial sea de caida lenta. Al
cumplirse esta condicién (2w + 3 > (2 — m)?), la fluctuacion de densidad al cruzar el

horizonte estara dada por (V.2.7).

Wang [45] analizé en detalle las restricciones itnpuestas sobre los modelos generalizados
por los requisitos inflacionarios, obteniendo el siguiente intervalo para el parametro m:
—~11 £ m S —8. La necesidad de suprimir burbujas grandes, que no alcanzariau a Hlenarse
y termalizar, fija la cota superior (usando w > 500) mientras que el limite inferior proviene
de la cota impuesta por la isotropfa de la rediacion de fondo sobre la amplitud de las
perturbaciones adiabaticas de densidad (tomando (§T/T )s~1000 = 1073), Las restricciones
recaen basicamente sobre el pardmetro m puesto que durante la inflacion el término cinético

es despreciable. Una restriccion menos severa que las anteriores pero de cierta importancia
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es que para tener una expansion de ley de potencia con un campo de JBD creciente se

necesita m < 1, es decir valores pequefios o negativos para m.

Otra cota severa proviene de las restricciones impuestas por COBE sobre el espectro de
las fluctuaciones. Para comparar el espectro tedrico con datos observacionales (disponibles
a partir de una época muy posterior ) tenemos que tomar en cuenta la evolucion del espectro.
La teorin inflacionaria nos permite determinar la amplitud de las perturbaciones en el
momento que cruzan el horizonte, lo cual significa que la amplitud de modos diferentes
estd especificada a tiempos diferentes. La comparacion con las observaciones requiere del
espectro a un tiempo fijo, en particular en la época del desacoplamiento radiacién-materia.
Para tomar en cuenta la evolucidn de las perturbaciones fuera del horizoute se tiene que
multiplicar el espectro (VI.2.1) por un factor de evolucién At (fucra del horizonte las
perturbaciones son cantidades que no estan bien definidas en el sentido que dependen de la
norma seleccionada; trabajando en la norma sincrona, las perturbaciones crecen como A2,
donde X es la longitud de onda que caracteriza a la fluctuacién, vease, e.g. {6]). El espectro
de fluctuaciones a la época de la recombinacion es entonces ;]2 = k™ = kI-0'-1),
Usando los resultados del primer aiio de COBE [3] n, = 1.1 £ 0.5,* se puede poner una
cota sobre p' y restringir el acoplamiento m: —~11 5 m S 15. Es el mismo intervalo que el

que resulta de las restricciones sobre la amplitud de las fluctuaciones.

Finalmente, si el mismo campo actia como campo inflacionario en el Universo tem-

prano y como la componente de materia oscura actual, tendra que obedecer a las condi-

* Los resultados del segundo alio de COBE DM han sido publicados recientemente: “Cosmic Temper-
ature Fluctuations from Two Years of COBE DMR Observations”, C.L. Bennett el al.. enviado a The
Astrophysical Journal El valor mas probable para el indice espectral reportado en este segundo analisis
a5 N o= 1.59fg:gg (68% CL). Si se comprueba este resultado, los modelos inflacionarios “normales” deherdn
ser descartados en su version mds simple pnesto que no s¢ pueden oblener indices espectrales mayores que
o, ni con una expansion de ley de potencia ni con una exponencial. Vease [87] para modeos inflacionarios

con espectros asiles.
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ciones de ambas épocas. Combinando los dos grupos de restricciones se obtiene: —11 S

mS 8y ~18.7 % n S ~3.5.
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Conclusiones

Hemos visto que un escenario inflacionario puede resultar de un amplio intervalo de
teorias de particulas y de la gravitacion, y que algunag de las dificultades encontradas
pueden ser superadas introduciendo madificaciones en el término de potencial o en los
términos de acoplamiento de los campos involucrados. En particular, las caracteristicas
problematicas de una inflacion de primer orden dejan entrever una solucion: un proceso
inflacionario mas suave. Surge entonces la inflacién eztendida: un modelo inflacionario
que se desarrolla en el contexto de una teoria escalar~tensorial de la gravedad, en el cual
el campo de Jordan-Brans-Dicke utiliza parte de la energia de vacio para su evolucion,
sustrayéndola a la expansion del Universo. El resultado de esta distribucion de energia es

una inflacién de ley de potencia en lugar de una inflacién exponencial.

Consideramos y comparamos las variaciones a la inflacion extendida que han sido
propuestas ¢n la literatura y exploramos a fondo la posibilidad de introducir acoplamientos
generalizados, mas fuertes. del campo JBD con el sector invisible, Investigamos también

las consecuencias de incluir un término de masa para el campo JBD.

Obtuvimos las ecuaciones de campo y sus soluciones atractor para la evolucion del
factor de escala y los campos escalares, considerando la componente de materia oscura
como un fluide perfecto que constituye la fuente dominante para la expansion del Universo.,
Encontramos que el término potencial correspondicnte a un campo escalar que se comporta
como un fluido perfecto dominante decae con una ley de potencia del campo. Un aspecto
particular de este modelo es que el campo JBD, y por lo tanto el acoplamiento gravitacional.
varia con el tietnpo atn cuando el vniverso estd dominado por una componente oscura

radiativa, i.e. por un fluido cuyo tensor de energia-momento tienc traza cero.

La dominacién de un sector invisible es particularmente adecuada para describir dos
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épocas de la historia del Universo: la época actual, con una supuesta materia oscura
no-bariénica que cierra el Universo, y el periodo inflacionario temprano. Obtenemos un
modelo compatible con la evidencia observacional actual y cuyos parametros libres {(m y
n) pueden ser acotados. Usando las cotas observacionales sobre el acoplamiento del campo
JBD con la materia visible, cotas provenientes de calculos de la nucleosintesis primordial y
limites sobre la edad del Universo y el parametro de Hubble, pusimos restricciones sobre las
constantes de acoplamiento de este modelo aplicado a una componente de materia oscura
actualmente dominante. Un valor mayor de Hgty reduece el intervalo permitido para m-n
pero la cota mas severa proviene de la variabilidad de G permitida por consideraciones
de nucleosintesis. Con los valores observacionales actuales, queda un amplio intervalo
para m — n. Los acoplamientos generalizados del campo JBD con la componente invisible
generan contribuciones extra a la densidad de energia del Universo y a las posibilidades de
variacién de G. El intervalo permitido para G es asi més grande que el que se obtiene en

la teoria JBD estdndar.

Yendo hacia atras en el tiempo. aplicamos este modelo a la época inflacionaria. La
isotropia de la radiacién de fondo restringe los parametros de la teoria cuando la compo-
nente invisible representa al campo inflaton en el Universo temprano: impone condiciones
sobre la distribucion y la evolucidn de las burbujas, sobre la amplitud de las perturbaciones
de densidad que resultan de las fluctuaciones cuanticas del campo JBD y sobre el indice
del espectro de potencia de las fluctuaciones. Consideradas en conjunto, estas condiciones
restringen notablemente el intervalo permitido. En este caso las restricciones caen sobre
el pardmetro m, imponiéndole valores negativos y grandes (—11 S m S —8), puesto que el

término cinético, que incluye el parametro n, es despreciable durante la época inflacionaria,

En el contexto de una “constante” cosmologica que decae, el mismo campo que do-
minaba durante la inflacion puede volver a ser dominante en la época actual si su densidad
de energia sufre un menor corrimiento al rojo que la densidad de energia de la materia y de
la radiacion. En este caso, m y n tienen que cumplir simultaneanente con las condiciones
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primordiales y con los requerimientos actuales.

Un efecto importante de la inclusion de un campo JBD en escenarios inflacionarios es la
obtebeion de un espectro de perturbaciones de densidad con més potencia a grandes escalas,
Esta es una caracteristica que puede resultar de cierta utilidad al constrnir modelos que
reproduzcan la estructura observada del Universo. Es un resultado general de los escenarios
de inflacion de ley de potencia. En los modelos de inflacion extendida, la estructura resulta
principalmente de las fluctuaciones del campo JBD y no de las del inflatdn, como sucede
en los escenarios inflacionarios estdndar. Las amplitudes estimadas de las fAuctuaciones
estan caracterizadas por la razon al cuadrado de la escala de unificacion sobre la escala de
Planck (para valores no muy pequerios de w) y son solo ligeramente mis grandes que la
cota observacional. Esta es otra ventaja de estos modelos sobre los modelos de inflacion
exponencial los cuales producen fluctuaciones con amplitudes que exceden las observadas
por varios érdencs de magnitud, a menos que se impongan restricciones severas y poco
naturales sobre la constante de acoplamiento contenida en el término de potencial. Por
otro lado, los posibles efectos observables de las fluctuaciones en el campo JBD, y por lo

tanto en el acoplamiento gravitacional, merecen ulterior investigacion.

Los acoplamientos generalizados no introducen ingredientes nuevos en este tema, salvo
algunas limitaciones al paridmetro m con el fin de respetar condiciones generales infla-
cionarias. Por otro lado, la inclusién de un término potencial para el campo JBD, 1til
para resolver el problema de w, aumenta la amplitud de las fluctuaciones de densidad y
vuelve a introducir un problema de ajuste fino de las constantes de acoplamiento de la
teoria. Despues de la inflacién, este término de masa tiende a volverse dominante, por lo

que tenemos que imponer la condicion de que el campo JBD decae.

Por lo que se refiere a la cuestion de ubicar los modelos inflacionarios del tipo escalar-
tensorial en el contexto de una teoria fundamental, las teorias de cuerdas ofrecen una
posibilidad atractiva. Al reducir estas teorias a cuatro dimensiones, tenenos un campo
dilatén acoplado al escalar de curvatura de la métrica en cuatro dimensiones y directamente
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acoplado a los scctores no-—gravitacionales. Desafortunadamente, un resultado general de
las teorias de supercuerdas, y de otras teorias de mas dimensiones, es que no logramos
obtener bastante inflacidn. Sin embargo, uno de los grupos que trabaja sobre este punto
reportd algunos resultados positivos al introducir dos campos del sector gravitacional (el
dilatén y un campo modular). La obtencion, a bajas energias, de una teoria JBD también
encuentra algunos problemas, en particular cuando sus predicciones son comparadas con

observaciones actuales.
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Introduction

Inflation provides cosmology with a better understanding of some enigmatic features
of the early Universe and provides the physical conditions for seeding the Universe large
scale structure, It is a useful concept for the primeval Universe but it is still a developing
scenario, The building of a successful inflationary model requires two things: that it
provides an effective solution to the cosmological problems it has the potential to solve
and that it is consistent with a realistic elementary particle theory. The simultaneous

satisfaction of both requirements has not been an casy task.

The inflationary models proposed up to now may be devided in two classes: those which
modify the matter sector by including a scalar ficld with some particular effective potential,
which we call standard inflationary models, and those that also introduce variations in the
gravitational sector, as compared to general relativity. This is the case of the recently

proposed eztended inflation model that works with a Jordan-Brans-Dicke gravity theory.

In this work we focus our attention on inflationary models embedded in scalar-tensor
gravity theories, We approach the problem from the two aspects it embraces: inflationary
scenarios and gravitational theories. On one hand, we study scalar-tensor gravitational
theories applying them to the present Universe history. We outline and delimit the vari-
ations to the gravitational sector that are consistent with observations. In particular,
we explore the possibility of direct couplings between the scalar field of the gravitational
sector (Jordan-Brans-Dicke field) and some kind of invisible matter., We then apply the
consistent developed model to the early Universe history, trying to implement a successful

inflationary scenario in all its steps.

Chapter I presents a review of the inflationary theory, its advantages and its drawbacks,
and contains a very brief description of the standard inflationary models, Chapter 11 is
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a review of the Jordan-Brans-Dicke theory of gravity and a presentation of the recently
proposed extended inflation model. Chapter 111 is a systematization and comparison of the
different models propoged in the literature in the context of scalar-tensor gravity theories

and of their relation with a higher-dimensional theory.

The original work is mainly contained in chapter IV, where we develop the generalized
scenario with direct, general, couplings of the Jordan-Brans--Dicke ficld with the invisible
sector and in chapter VI, where we establish present experimental bounds and primordial
constraints on the generalized couplings, Chapter V is dedicated to the Universe cmerging
from these theories, in particular to the problem of seeding the structure of the Universe.
Some original work is also contained in this part, where we investigate how sensible are the
results obtained for the density perturbation formalism, to the details of the structure of
the model. We discuss the sense and the implications of the method employed in previous
analysis and further explore some extensions of the original extended inflation model and

their consequences for the post-inflationary Universe.



Chapter I
Inflationary Scenario

Introduction

The standard cosmological model, developed from Einstein's theory and Hubble obser-
vations, has so far withstood observational tests and successfuly accounts for the history
of the Universe from at least the light elements synthesis epoch. It encounters nonethe-
less conceptual difficulties when dealing with the earliest history: very uunatural initial
conditions have to be imposed in order to end up with the Universe as it appears today.
Theoretical developments beyond the standard model consist mainly in trying to under-
stand the physical grounds for these specific initial conditions. One of the possibilities
that have been explored is to introduce, at some early epoch, a thermal history deviating
from the standard model, while leaving unchanged the Universe evolution at later stages.
Theories of phase transition in particle physics, applied to cosmology, offer this possibility:
a self-interacting scalar field may behave, at high energies, as a non-classical fluid and act
as a source of accelerated expansion -inflation- for the Universe. This particular behaviour

ends with the phase transition.

This first chapter is dedicated to a review of the basic ideas of the inflationary model:

what do we need it for. how to implement it and the issues that remain unsetrled.

I.1) The Standard model

The standard cosmological mode! gives the following scenario for the early Universe:
after the initial big bang. the Universe is filled with a hot gas of elementary particles in
thermal equilibrium. adiabatically expanding, homogeneous and isotropic. The effects of
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gravitation are described by Einstein's general relativity (hereafter GR) and the funda-
mental laws of physics do not change with time. The Universe is supposed to have heen
homogeneous from the start and remained homogeneous as it evolved and changes in the
state of matter and radiation are supposed to be smooth, with negligible effect on the

thermodynamical history of the Universe.

An homogeneous and isotropic Universe is described by the Friedmann-Robertson-

Walker metric (FRW):
2 2 _ 2 dr? 2 402 ¢ 2020042
ds® = dt* — a*(t) Tz + r*{d8” + sin“0d¢*) (I1.1.1)

where a(t) is the scale factor of the Universe and & = +1,0,—1, for a closed, flat or
open universe respectively. The evolution of the scale factor is governed by the Einstein

equations:

1
Ryy — §Rguu = Tyy (1.1.2)

where Ry, and R are the Ricci tensor and the Ricei scalar respectively and T, is the
stress-energy tensor for all the fields present (matter, radiation, etc...). In equation (1.1.2)
we have used units such that 87G = 1 and taken the cosmological constant A = 0 (such
a term appears in the most general form of Einstein’s equations consistent with general

covariance). Greek indices run from 0 to 3 while Latin indices will run from 1 to 3.

The non—zero components of the Ricci tensor for the FRW metric are

Roo = -3~
o (1.1.3)
a _a* 2k
Rij = - [E 2+ Z—i] bij,
and the Ricci scalar is
@ 02 k
R=-6 [§+%2-+ EE] (1.1.4)

The energy-momentum tensor of the Universe must be diagonal in order to respect the
symumetries of the metric and its spatial components must be equal, reflecting the isotropy
of space; in such a way, it takes the same form as the one for a perfect fluid: 7%, =
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diag(p, —p, —p,~p). The 00 component of the Einstein equations gives the Friedmann

equation

s k1
2 =
HY+ 5 = 3P (1.1.5)

where H = d/a is the Hubble parameter, that determines the expansion rate of the Uni-

verse, and p is the energy density; the ii component gives

" ' 3
a a k
25 + Z + ;‘-2- = —p, (1.1.6)

Combining this two equations we get a useful expression for the acceleration
w 1
a= —a(p + 3p)a, (1.1.7)

which shows that, if (p 4 3p) is positive, as it is always the case in the standard model, d is
negative and the Universe expansion is slower and slower; it just reflects the deceleration
due to matter gravitational attraction. On the other hand, it suggests the way to inflation:
if we wanted the Universe to have an accelerating expansion phase, we would need a

negative p+ 3p term. Equations (1.1.5) and (1.1.7) together lead to the continuity equation
p=~3H(p +p), (1.1.8)
equivalent to the more familiar form
d(pa®) = —pd(a®), (1.1.9)

which is the s = 0 component of the conservation of the energy-momentum tensor T"}, =

0.

To obtain the evolution with time of the Universe, we need the equation of state of its

content; for a hot ultrarelativistic gas of non-interacting particles
1 -
p= §p=>p~u , (1.1.10)
and for non-relativistic cold matter

p=0=>p~a> (1.1.11)
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Introducing these expressions in the Friedmann equation, we sce that, for small a, in both

cases, the quantity p/3 is much greater than k/a, therefore the scale factor goes as
art/? (1.1.12)

and

@~ 2 (1.1.13)
respectively.

The Standard big bang (BB) model successfully accounts for the development of the
Universe since, at least, the epoch of synthesis of nuclei and provides an explanation to
many important aspects: the redshift of galaxies, the cosmic background radiation, and
light elements abundance. There is however an important question left: what is the origin
of the structures we see? This problem is enhanced by the lack of knowledge of the precise
value of the parameters of the theory and by some enigmatic features of this cosmology.
Some observations, some fundamental cosmological features, have no natural explanation
in the context of the theory and this suggests that an importmxﬂt.piece of the picture may

be missing. We briefly go through these controversial points,

a) Isotropy

Homogeneity is a very useful principle in cosmology: a theory of the Universe would
be intractable without a simplifying principle; but it also turns out to be excessively true,
in the sense that the scale of homogeneity is so large that we do not find (in the standard

model) an explanation for it.

The cosmic background radiation coming from different parts of the sky is (almost)
exactly the same. This relic redshifted radiation, released when the thermal equilibrium
hetween matter and radiation broke down, practically does not interact with the matter
today: the universe became transparent to it after hydrogen recombination, so its homo-
geneity traces back to this epoch. Of course, what we observe does not guarantee that the
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entire Universe is smooth, it just gives information about the present observable region. By
comparing radiation background intensisties we see that the temperature and expansion
rate are precisely synchronized across the visible Universe. The probleti appears if an ex-
planation is sought for this, because distant regions ohserved in well separated parts of the
sky are so far apart that there is not enongh time since the BB for a signal to have traveled
from one to the other. Assuming that causal relations require the transport of information
at a velocity not exceeding that of light, we must conclude that microphysical processes
(such as Compton scattering) could not operate to smooth temperature fluctuations and
single out a unique temperature through such separated regions. In the past. these parts of
the Universe were inuch closer together but this does not eliminate the problem since the
zone of influence about an object, going backwards in time, decreases even faster. A light
signal propagates along a geodesic ds? = 0, with df = d¢ = 0, so the equation describing
the ray propagation is dr = —dt/a(t). The particle horizon is the distance light can travel

from the beginning (of the particular cosmological epoch) to the time ¢ we are considering;

t '
dy(t) = a(t) /; ;li(i*:-'-j i1.1.14)

(in this expression we have placed ourselves at the origin » = 0 of coordinates. » mere con-
vention according to isotropy and homogeneity). This quantity represents the coustraint
imposed by causality on dynamical evolution; if dy(t) is finite, our past light cone is lim-
ited by a particle horizon, otherwise all the Universe will be in causal contact. Taking
t; = 0 at the big bang, and a power-law expansion a(t) ~ #* with o < 1 for the Universe

(according to both cases (7.1.12) and (I.1.13)) the particle horizon is
di(t) = 1115
nlt) = —— (1.1.15)

so the distance of maximal causal connection goes like ¢ and is finite. In spite of the
fact that all the physical distances approach zero as a — 0, the expansion of rhe universe
precludes all but a very small part of the universe from being in causal conract. Then,
why are all the disconnected regions so synchronised?
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b) flatness

The energy density of the Universe is the quantity that determines in what type of
Universe (open, flat or closed) we live. We call critical density p. the value for which the

Universe 1s flat

pe = 3H? (1.1.16)
and we define the density parameter
Q=L (1.1.17)
Pc

where € and p. change as the Universe expands. The correspondence between the value

of  and the sign of & is
k=+41==0>1 Closed

k= 0= Q=1 Flat (1.1.18)

k=-1=>0Q<1 Open.
The observational value for the present density parameter £y is uncertain but is not far
from 1. Dynamical estimations of % on scales of 15 — 20Mpc yield a lower limit of
0y ~ 0.25, while analysis of large scale flows, comparing the peculiar velocity field with
the density distribution (with the assumption that IRAS galaxies trace the mass on large

scales) seem to indicate Qp = 1, with a bias factor b~ 1 -2 [1].

This approximate balance between the effective kinetic energy of expansion ( H*) and
the gravitational potential energy (p/3) becomes extremely accurate as t — 0: the condi-
tion € = 1 is unstable. This can clearly be seen if we write the Friedmann equation as an

evolution equation for the density parameter
N—1= . (1.1.19)

Since in the standard model @ decreases with time, & always deviates froni 1. Eq. (1.1.19)

can be written

a?
a(t)
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where i indicates an “initial” time (that can be takén at the Planck time tp;). Since at
the present time, Q(#g) = 1, the value of Qp; — 1 must have been really small to balance
the very big factor a},/a*(t). If  were ever exactly equal to 1, it would remain exactly
equal to 1 forever but if Q differed slightly from 1 after the BB the deviation from 1 would
rapidly grow with time and the universe would either soon (few x tpy) recollapse, if it is
a closed Universe. or expand so fast that matter condensations could never form, if it is
open. A universe can survive 10'%7 only by extreme fine tuning of the initial values of p

and H.

¢) Smoothness and structure

Discrete structures are supposed to evolve from primordial seeds and, in this theoretical
context, matter perturbations are found to effectively grow, under favorable circumstances,
and reach values comparable to their mean values. Then, when this non-linear regime is
attained, the overdense region decouples from the expansion of the universe and collapses
to form a condensation. These theories of structure formation, based on the gravitational
growth of small primordial perturbations, predict that some imprint of this event remains
on the cosmic microwave background radiation (CMBR) in the form of small fluctuations:
photons are gravitationally redshifted by inhomogeneities of the gravitational potential
on the last scattering surface (Sachs-Wolfe effect, see e.g. [6]). But the Universe has
shown to be very smooth. Till recently, no such fluctuations had been detected and we
just had observabie upper bounds on the anisotropy of the cosmic background: AT/T 5
few x 1073 (see e.g. [2]), on intermediate to large angular separations, The analysis
of the first year of data fromi the Differential Microwave Radiometers of COBE (Cosmic
Background Explorer) [3] has just detected structure with characteristic anisotropy of
AT/T ~ 6 x 107 (and whose measured parameters are consistent with a scale-invariant
spectrum of perturbations), Their preliminary separation of galactic and cosmic microwave
emisgion [4] suggests that this anisotropy signal is intrinsic to the cosmie background
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radiation. When we translate these bounds on temperature fluctuations to bounds on
density perturbations at the time of decoupling, we obtain severe constraints for theories
of structure formation. There are also other difficulties in this approach: on one hand there
is no natural seed for these perturbations in the conventional BB model and, on the other.
it is difficult to understand how any physical process could have contributed to it in the
very early universe. This is because most of the astrophysically relevant scales (clusters,

groups. galaxies) were mueh bigger than the causal horizon for early epochs.

So. this is the picture we have: a precise initial balance of density and expansion rate,
with a well-synchronized start, which must apply to each separate part of the Universe,
on one hand. On the other, the local balance of expansion and gravity in the limit + — 0
must be supposed extremely accurate but not exact, in order to account for the observed
large-scale clumping of matter. We have to reconcile the existence of galaxies, groups,
clusters, with the overall homogeneity of the Universe. And we also wonder about some
fundamental questions on the origin of the universe: the uniqueness of our Universe and
the initial singularity. Why is nature just the way it is and not otherwise? and, was there

anything before t = (7

Facing these specific initial conditions (should we consider them just plausible enough?)
some proposals have been put forward. A pulsating universe —successively expanding and
contracting- could provide an escape from some of the conceptual puzzles, even if this
would only shift some of the problems many cyeles back (unless there were infinitely many
cycles). Including a cosmological constant, the Friedmann regime a ~ ¢ can be made to
change into de Sitter a(t) ~ ef* as t — 0, so the scale factor bounces near the singularity:
it comes to be very small but non-zero and all physical quantities remain finite. Anyway,
what undoubtedly has to be done near the singularity, is turn to a quantum theory of
gravitation. When density diverges it is essential to take into account quantumn cffects on
the cosmic scale, in such a way, the relativistic singularity at the BB (and in a collapsing
star) could be a problem of the theory, not of the universe, and flatness and horizon
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problems could arise just as a consequence of our application of classical physics beyond

its domain of validity.

An important attempt to solve some of these problems is the theory of inflation. We wili
develop it in the rest of this chapter, starting with a brief presentation of phase transitions

in the context of their cosmological application.

I.2) Uniflcation theories

The basic idea of a unifying theory is that what we perceive to be independent forces
are actually part of a single unified force, with an underlying syminetry relating each
component of the force to the other. Since experimentally the forces are very different in
strength and character, the theory is constructed so that the symmetry is spontancously
broken in the present Universe: the underlying symmetries are not manifest in the structure
of the vacuuin but are restored at high temperature. This means that the Universe must
undergo a phase transition from a disordered phase, characterized by certain symmetries,
to an ordered phase with a lower degree of symmetry. with the raising of an order parameter

-a macroscopic quantity which was zero in the high temperature phase.

The idea of spontanecous syminetry breaking in unified theories can be built and un-
derstood exploiting the analogy with phenomena such as ferroinaguetism, superfluidity or
superconductivity. In a ferromagnetic substance, for instance, the order parameter that
appears at T S T¢ is a non-zero magnetization whose direction breaks the rotational
symmetry present in the Hamiltonean. The symmetry breaking may be induced, as a con-
sequence of an external influence (an electromagnetic field), at any T, or spontaneously.
when it depends on a gradual change of the systen’s parameters. The magnetization can.
in principle, take any direction, but small fluctuations select one of the possible (degener-
ated) solutions. In general, in the case of a non-invariant vacuum state and a non-invariant
Lagrangian we can speak of an explicit symmetry breaking, while a symmmetry of the La-
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grangian not respected by the vacuum is said to be spontaneously broken. In this case,
we are in the presence of different vacuum states and the choice of one of them will detine
the “Universe”. Dealing with unification theories, the order parameter is a scalar field o
whose ground state does not present the symimetry of the Lagrangian. To this respect.
it is interesting to note that some kind of scalar field has been recurrently introduced in
cosmology, with a variety of motivations: to lead inflation, to incorporate. as we will see
in next chapter, Mach’s principle in general relativity, as a candidate for cold dark matter,

ete...

A real scalar field o is described by the Lagrangian deusity

1 . .

L= 3(3,,0)2 - V(o) (I.2.1)
and, in order to present a phase transition, the potential energy density is chosen to have
the form

B2 A
Vig) = -5 + i (1.2.2)

where i is the mass of the scalar field and A is its coupling constant (the only nteraction

we are considering for the o field is the self interaction: the Ao term).

A V(O‘}

I t
=04 +0, o

Fig. 1: An example of the potential for the

model with spontancous symmetry breaking,
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The potential has a degenerate minimum at oy = +5t/v/A. The shape of the potential
V{(r) is shown in figure. 1. We have added a constant term g /4\ whose sole effect will
be to cancel the vacuum energy at points of minimum potential. To explain the symmetry
restoration at some temperature T, we must take into account the effect of the background
gas in the calculation of higher-order quantuin corrections to the classical potential. With
this contribution, the equilibrium value of the scalar field at finite temperature (7' 3 0) is
governed by the location of the minimum of the frec encrgy density V(e, T), which reduces
to the potential energy density V(o) at T = 0. Omitting terms that do not depend on o,
the complete expression for the finite temperature effective potential can be written in the

form (see e.g. [5])
A

.2
V(e T) = ——‘i-l-rr"" + :1-04 + 3

AT?
ot 4. (1.2.4)

The temperature dependence of V' (o, T') is shown in figure 2.

Vio,T)

o
Fig. 2: ‘The temperature dependence of V(a, T').

Considering the effect of the therinal bath of o particles, we can define an effective
mass of the scalar field about the classical solution < ¢ >= 0 including a temperature
dependent term: m? = —p? -+ ;}/\TQ. At T > T, the cffective mass is real and < o >= 0 is
a stable classical minimuny at T < Tt the effective mass squared is negative, the symmetry
breaks and the field o leaves the unstable point < o >== 0, growing until it finds one of
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the true ground states, gg. From then onwards, the field ¢ will oscillate about the point
oo and it is about this point that the effective mass has to be defined. Making the change
of variable ¢ ~+ @ + oy in the Lagrangian density, it can be seen that the effective mass

squared of the o field has the correct sign at the minimum of the potential,

With an effective potential like the one in fig. 2, the change in the vacuum expecta-
tion value of the scalar field is continuous and the transition to the broken phase occurs
smoothly, it is second order. There is also the possibility of a first order phase transition
with a discontinuous change of the order parameter as the result of the presence, at T = T,
of two local minima in the potential with a barrier separating the stable from the unstable
state, The transition is then considerably delayed: even below Ti, the Universe stays in
the symumetric phase, although the ground-state energy is lower in the broken phase, and
supercools. After a period of cooling below T¢, quantum tunneling (at zero temperature)
can induce the phase transition, releasing the latent heet. The symmetry breaking proceeds
through the formation and subsequent expansion of bubbles of the stable phase within the
unstable one, If the phase transition is second or weakly first-order, thermal fluctuations
(at finite temperature) may drive the transition. The shape of the effective potential for a

first order phase transition is shown in figure. 3.

Vio) |

Q!

Oo

Fig. 3: An example of the potential for

a first order phase transition.
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Grand unification theories make 3 cosmological predictions:
1) Baryogenesis

Two fundamental observations about the content of matter in the Universe are: the
number of baryons is much smaller than the nunber of relic photons, with a baryon to
photon ratio of ny/n, ~ (4 — 7) x 107!, and there is no evidence for the presence of

antimatter (see e.g. [6]).

Although we have no antimatter in the Universe today, at one time in the early universe.
quarks and antiquarks were in thermal equilibrium with photons and hence they were
present with similar abundances: ny ~ ny ~ n.. This suggests the idea that the quantity
of baryons present today corresponds to a small excess of baryons over antibaryons at early
times, that consequently survived annihilation. Applying theories of Grand Unification
(GUT) to an expanding Universe gave the possibility of developing this asymmetry in a
Universe that was initially baryon synunetric. GUT brought the main ingredient: the new
interactions that embrace strong and electroweak forces, combining quarks and leptons in
multiplets of the unifying gauge group, violate baryon (B) and lepton number (L). Besides
the requirement of baryon number violation, there are two other necessary conditions for
generating a baryon asymmetry. First, violation of C (charge conjugation) and CP (charge
conjugation combined with parity) invariance is needed in order to break the syxﬁmetry
between particles and antiparticles, avoiding B-nonconserving reactions to produce baryon
and antibaryon excesses at the same rate. Second, temporary loss of thermal equilibrium
13 r'equired so that the annihilation rate for barvons and antibaryons cannot keep pace
with their production rate. These ingredients are also available: C is violated in weak
interactions; C'P violation -although quite small- is observed in the interactions of K¢
and K, finally, the necessary non-equilibrium condition is provided by the expansion of
the Universe: a heavy particle which decays slowly will always go out of therinal equilibrivin

when the temperature of the Universe falls below its mass.
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2)Monopoles

Another prediction of GUT, not so pleasant as the previous one, is the appearence of
superheavy magnetic monopoles (M, ~ 10!GeV) that would contribute with an energy
density far in excess of the critical one. Since they are stable objects, they cannot be

destroyed, and we need & mechanism to suppress them.

The production mechanism of these topological defects (false vacuum remnants) is tied
to the fact that during a cosmological phase transition any correlation length is limited by
the particle horizon. Since in different correlation lergths the scalar field can take different
vacuum expectation values (e.g. +0p and —0p in fig. 1) and the transition from one value
to the other must be smooth, there must be a point where the scalar field takes the value

< o >=10, i.e. a point of false vacuum,
3)Cosmological constant

Combining modern particle theories with gravity gives rise to another question. The
discovery of the expansion of the Universe has made unnecessary the introduction of the
cosmological constant (vacuum energy of the Universe) into the gravity equations, as first
done by Einstein in order to compensate the matter attraction and abtain a stationary
cosmological model. Astronomical observations indicate in fact that, if non-zero, it is very
small. The upper limit is of the same order of magnitude as the critical energy density.
This does not represent a very strong cosmological bound but from the point of view
of elementary particles physics it is an extremely small quantity. Quantum field theory
predicts a very large value (infinite) for the vacuuimn energy but one usually adjusts all scalar
potentials so that V(ap) = 0 since the origin of vacuum energy is purely conventional in
the absence of gravity. However, in general relativity vacuum energy affects the properties
of spacetime. If the present value of V(o) is attained as a result of a series of symmetry
breaking phase transitions, the vacuum energy is decreased by order M* (M = encrgy
scale of SSB) in each transition and after all these enormous drops it turns out to be equal

to zero with a great accuracy. It scems unlikely that the complete (or almost complete)
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cancellation of the vacuum energy should occur without some deep physical reason but we
do not know any symmetry that forbids a cosmological term nor a cancellation mechanism
for it by that degree, neither is there a reason why this vacuum should be transparent to

gravity.

1.3) Inflation

Theories of Unification and their phase transitions opened the way to inflation. Just
as the baryogenesis process has introduced the possibility of explaining the small ratio
of ng/n, instead of accepting it as an initial condition, the inflationary model proposes
dealing with other features of the Universe connected with the initial conditions. The
basic ideas for an inflationary scenario were developed by many authors -see [7] and Linde
[5] for some history on the development of inflation and a detuiled bibliography of early
work- but the definite step corresponds to Guth (8] who suggested using the exponential
expansion of the Universe during a phase transition with supercooled vacuum state to
solve the horizon and flatness problems and the monopole problem raised with unification

theories,

The basic idea of inflation is that there has been an epoch in which the Universe ex-
panded exponentially as the result of the domination of the vacuum energy component on
its energy density. This domination should be temporary and the vacuum energy should
transform into energy of particles. In this sense, it is useful to work with a metastable
configuration of a scalar field which fills the expanding Universe (instead of a real cosmo-
logical constant reflecting the vacuum property): an homogenecous, classical, scalar field
can play the role of an unstable vacuum state, and its decay can heat up the Universe.
Such a field, displaced from the minimum of its potential, causes a change in the vacuum
energy density described by the quantity V(o) that enters into the Eiustein equations,
affecting the properties of spacetime. After the phase transition, the appearance over all
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space of g¢ # 0 (true ground state displaced from zero) simply represents a restructuring
of the vacuum state but also changes the masses of those particles with which it interacts:
sign “correction” for the mass squared of the field o, as we saw, but also masses of botk
gauge bosons and fermions arise as the result of its non-zero vacuum expectation value

(Higgs mechanism).

As we saw, unification theories contain some scalar fields, displaced from the minitnum
of their potential. In a first order phase transition, during supercooling, the energy density
of relativistic particles oc T* becomes negligible and the presence of the barrier between the
true and the false vacuum keeps the Universe “hung up” in the metastable false vacuum
with a constant energy density V(0)(= V(o = 0)) during the supercooling. With a constant

energy density p = po in the Friedmann equation (1.1.5), neglecting the k/a” term,

2 ., Po
H 3 (1.3.1)

the Hubble parameter is constant and the expansion of the Universe turns to be exponential
a(t) ~ M, (£.3.2)
the Universe asymptotically approaches a de Sitter Universe.

In spite of the exponential expansion of the Universe, the energy density remains
constant: during inflation the amount of matter in the Universe grows exponentially as its

volume,

Due to its Lorentz invariance, the energy-momentum tensor of the (false) vacuum stare

is of the form

o = Aguy (1.3.3).
with constant A. In such a way, the energy density p and the pressure p are constant,
equal, and with opposite sign

p=-p ([.3.4
The negative pressure allows for the conservation of energy: p = —p = pda® = —pda?
allows for d(pa®) = —pda® with p = cte, and it is the driving force behind the exponentinl
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expansion since p+3p < 0in a = —%G(p + 3p)a = @ > 0 and the Universe expansion
becomes accelerated. And that is what uniquely characterizes inflation: a must increase
with ¢, Indeed, as we will see in next chapter, inflation can also be deseribed by a power-law

expansion,

The negative pressure (= “tension™) is a characteristic property of quantum vacumm
in field theory (this is similar to the case of the Casimir Energy). According to general
relativity, the pressure also contributes to the attraction, so, the notion of negative pressure

would lead to the effect of a gravitational force that is effectively repulsive,

1.4) Inflationary models

Inflation involves, as we have seen, a scalar field whose expectation value is, for some
reason, displaced from the true ground state of its potential; it will not necessarily be tied
to a phase transition. Models of inflation will usually involve very flat scalar potentials and
hence a scalar field weakly interacting with any other field in order to have V(o) = const.
and ¢ = 0. If we impose this conditions in the expressions for the energy and pressure

density of a homogeneous scalar (Vo = 0) field

1,,
po = (Tuw)utu® = 5(6%) + V(@) (1.41)
1 1.,
Do = —a—jh‘“’ (T} = §(a") —{V(a)) (1.4.2)
where h#¥ = g#¥ — uPu¥, we sec that the equation of state becomes p = —p. If 7 is

non-zero it has at least to satisfy: & < V(o = 0), and this will lead to a slow-rollover

regime for inflation.

a) Old Inflation

The old inflation model is tied to a phase transition that oceurs, for some values of
the parameters, very slowly compared with the cooling rate. Its success depends on the
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possibility of a smooth completion of the phase transition accompanied by a large scale
thermalization of the latent heat, in order that the inflationary period ends. followed by
a Universe described by standard cosmology. When he was proposing inflation. Guth 8]
already realized that this was a serious problem of his model: the volume inside bubbles
expands with a power-law (speed of light) whereas the region between bubbles still under-
goes a de Sitter expansion; in such a way, a very inhomogeneous Universe would appear
since the nucleated bubbles could not keep pace with the cosmic expansion and could never

reach each other,
Phase Transition

In the classical theory, the false vacuum would be completely stable; in the quantum
version the tunneling through the energy barrier can achieve the transition. resulting in
bubbles of the new phase growing at a speed that rapidly approaches the speed of light.
Coleman and Callan (9], generalizing the tunneling of a particle in quantum mechanics,
develop a Euclidean approach to the theory of the decay of a metastable vacuum state.
The tunneling rate or the probability of forming a bubble of the broken phase can be

written as

= Ae”B (1.4.3)

where B is the bounce action corresponding to the solution of the classical equation of
motion for the field ¢ in Euclidean space and the prefactor A o« M4, with M some
mass scale associated with the potential (e.g. the height of the barrier). A large action
corresponds to a strong first order transition with a considerable supercoolitig. Coleman
and De Luccia [10] have worked to generalize the Euclidean formalisin to curved space.
The progress in calculating the decay probability of the false vacuun in realistic theories
is complicated by the fact that the solution to the ¢ equation of motion and the associated
value of the Euclidean action must often be computed numerically and the prefactor can

only be calculated in certain special cases, working in general with just a rough estimate.

Guth and Weinberg [11] and [12] investigate cosmological phase traasitions driven by
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slow nucleation of bubbles via the zero temperature quantum tunneling process. They
consider that bubble nucleation starts at some time ¢ and afterwards occurs at a constant
rate per unit (physical) volume; bubbles are assumed to form with zero radius and then
expand at the speed of light, They first consider whether the hubbles percolate and
thermalize on a large scale, The fraction of space remaining in the old phase is given by

p(t) =exp[—~ | dt;T(t))ad(t1)V(1;,1)] (1.4.4)

lg

where

Vit ) = ‘%’-’- [‘ : ['iz%“)r (14.5)

is the coordinate volume at time t of a bubble formed at time ¢;. This volume is an
increasing function of time but it tends to an asymptotic value (= (4x/3H3)e~3H1) and
hence there is always a fraction of space that remains in the old phase, no matter how long
we wait, The finite limit of the volume occupied by bubbles represents an event horizon:
two bubbles which born simultaneously, separated by a distance greater than the Hubble
radius (2H 1) will never collide. This means there will be no large scale percolation. We
can define a measure of the possibility of percolation as the nucleation rate relative to the
expansion rate of the Universe
r

€ = }7‘:{ (I.46)

In [11] it was found, on one hand, that there is some critical value
1078 S e, S 0.24 (1.4.7)
at which percolation sets in, and, on the other hand,
€54 x%x1073 (1.4.8)

is needed in order to have enough inflation to solve horizon and flatness problems (provided,
of course, there is enough thermalization of the latent heat of transition). An estimation
of the tunneling action in an SU(5) phase transition {12} shows that values of ¢ of order
10-19%0 are quite plausible. But a small percolation parameter obviously means poor
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thermalization. As for the possibility that our Universe is the product of the collision
of & small number of bubbles, they prove that concentrations of bubbles form clusters
which are each finally dominated by one bubble (the largest) and argue that. colliding
with bubbles much smaller than itself, the energy in the walls of the largest bubble has no
chance to be thermalized, The possibility that the presently observed Universe developed
from a single bubble is ruled out because the region would fail to satisfy simultareously
the requirements of containing enough entropy to encompass our Universe and reheat to

a high enough temperature for nucleosynthesis,

These considerations leave a really small window for the percolation parameter value:
it has to be low enough to let inflation set in and high enough to restore a standard
Universe. In such a way, the possibility of large scale thermalization is rejected: even a
universe originating from the collisions of a small number of bubbles. as a consequence
of the spread in the bubbles size, is unlikely to be a homogeneous and isotropic region
containing sufficient entropy. They suggest that the solution would be to find a triggering
mechanism for the phase transition to keep low the nucleation rate at the beginning and

then become suddenly large, producing many bubbles of comparable size.

In the attempt to improve the situation, it was realized that inflation could be imple-

mented in another type of phase transition [13].

b) New Inflation

Inflation oceurs during the process of slowly growth of the inflaton field to its equi-
librium value o9 and the phase transition is smooth (weakly first order or second order).
We require a very flat potential barrier, that disappears for T = 0, in order to have a
jump of the expectation value of the scalar field from ¢ = 0 to some initial value o; by
quantum tunneling or through thermal fluctuations, and a slow evolution to thé minimum
oy from there on. If, during this slow-rollover, inflation is large enough. the whole ob-

servable Universe evolves out of a single fluctuation region (“bubble”). The walls of this
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region will be far apart and will not engender any inhomogeneities in the observable part
of the Universe. To ensure an inflationary behaviour, the effective potential must be Hat
near o = 0, requiring very small self-coupling constants. The recovery of the standard
Universe is not through the collisions of the bubble walls but rather through the decay
of the ¢ field to other, lighter fields to which it couples, The inflationary potential has
to become steep as it approaches the stable minimum op. As the inflaton field begins to
oscillate about oy, the vacuuin energy is in the form of spatially coherent oscillations of the
o field, corresponding to zero-momentuin o particles. Their decay to other fields, coupled
to the inflaton field, damp these oscillations and populate the Universe with matter and

radiation. As the decay products thermalize. the Universe is reheated,

¢) Chaotic Inflation

This model, suggested by Linde {14}, is based on the assumption that the initial dis-
tribution of a scalar field is chaotic, i.e, it takes different values in different regions of the
Universe. The reason for this would be that energy density fluctuations at the epoch of
quantum cosmology are so big that the field does not “know” where the potential minimum
is. The variation of the scalar field should be slow enough to ensure a quasi-exponential
expansion requiring therefore very small coupling constants in the potential that is of the
simple form

Vio) = :-\-a" (1.4.9)

1

with n an even number. The minimum of this potential is at & = 0. A chaotic distribution
of the scalar field avoids making the assumption that the initial value of the scalar field
corresponds to the minimum of its potential energy. And, indeed, with a small self-
interaction coupling A there is no reason to expect that at ¢t ~ tp; the field o is equal to
zero everywhere. In a Universe with a scalar field chaotic initial distribution, domains with
a iigh enough initial value ¢; to ensure a sufficiently large nflation inevitably exist and
give rise to mini-universes larger than the size of our observable part of the Universe. Sa,
as in new inflation, we live in one single inflated “bubble” evolved from a small fluctuation
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region within one causal distance and there is no need for a bubble percolation process.

The chactic inflation scenario differs from the other versions of inflationary Universe
in that it is not based on the theory of high-temperature phase transitions in the early
Universe. The scalar field is not attached to a unified theory and its only purpose is to

implement inflation.

L.5) Inflationary predictions and solutions to cosmological problems

a) With inflation the horizon problem disappears: the herizon will just be moved to
distances which have not been observed yet. Before inflation begins the region is much
smaller than the horizon distance and it has time to homogenize and reach thermal equi-
librium. And this small region is then inflated to become large enough to encompass our

Universe.

Guth [8] has estimated that if the scale factor increases more than ~ 10%* times during

inflation, the horizon problem is solved.

b) During inflation the energy density of the Universe remains constant (or decreases
very slowly) while the curvature term k/a? falls off exponentially, thereby explaining the
flatness of the Universe. The global topological properties of the Universe will certainly
remain unchanged but, for a sufficiently long inflationary period (that is approximately
equal to the one required by the horizon problem [8]), the exponential growth of the radius
of curvature of the Universe at that epoch ensures that it is still much greater than the

Hubble radius today.

¢) Inflation dilutes the monopole abundance: topological defects are created at the
intersection of exponentially large bubbles and therefore have exponentially small density.
To this end, GUT spontaneous symmetry breaking should of course occur before or during

inflation.
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d) An attractive feature of de Sitter expansion is that because of its rapidity, the

universe loses all information on initial conditions.

e) The main success of the inflationary theory is the possibility of generating the seed
perturbations that can grow to form the large scale structures. In the new and chaotic
inflation models, where a single inflating “bubble” encompasses our present observable
Universe, small quantum fluctuations of the scalar field in the homogeneously inflating
region may, because of the exponential stretching of spatial dimensions, be at the origin
of galaxies and clusters of galaxies. The inflationary theory provides the early Universe
with a scale-invariant spectrum of pertubations (i.e. amplitudes almost independent of
the wavelength). The amplitude of the spectrum is model dependent, but the form is a
generic prediction. We will treat this topic extensively in chapter V. This great success
unfortunately presents a drawback: the fluctuation amplitudes are much too large as comn-
pared with the observable fluctuations imprinted on the CMBR. Arranging for acceptable
density perturbations results in a very restrictive constraint on inflationary potentials: one
needs an extremely flat potential. For instance, with a potential of the form Ao?, the
self~coupling constant A must satisfy A < 1071, We then have a fine-tuning problem: not
only such a small value for the self~-coupling costant sounds unnatural, but it seems hard
to be preserved because of radiative corrections fromn interactions with other fields. The
inflaton field must then be very weakly coupled to all fields so that one-loop corrections
to the scalar potential do not interfere with the extremely flatness required. This fact has
unpleasant implications for reheating (see below) and elso for the new inflation potential:
with an extremely weakly interacting field the high temperature corrections to the effective
potential V(a,T) are negligibly small and this has the consequence that o = 0 is no longer

metastable.

f) An important question to be solved in all inflationary models is the thermalization
mechanism of the vacuum energy density. An extremely weakly interacting field essentially
decouples from any kind of particles leaving therefore no possibility of reheating, i.e. no
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transformation of vacuum into radiation.

g) The inflationary Universe requires a A term, but it arises and is supposed to last
only during the transient stage in which the GUT phase transition is taking place. While
inflation has the potential to solve all of the purely cosmological controversial issues of the
standard cosmology, it does not address the puzzle of the cosmological constant (which is

a problem of particle physics too).

h) Inflation explains the great degree of homogeneity of our observed Universe but one
must assume however that in the early universe at least some regions were uniform and
hot compared with the critical T of the phase transition. The scalar field must be smooth
in a large enough region so that the energy density and pressure associated with spatial
gradients in o are smaller than the potential energy since if (Vo )? dominates inflation will

not occur.

i) There are some questions (certainly related) that raise now: what is 0? Why is it so
weakly coupled? And are the initial conditions necessary for the realization of the infla-
tionary regime sufficiently natural? The identity of the “inflaton™ is not known. Presently.
it is taken to be either some yet unidentified scalar particle, or an effective action term
due to various interactions present. More or less successfﬁl models have been proposed
where the inflaton field is related to the GUT phase transition, to supersymmetry sponta-
neous symmetry breaking, to higher-dimensional theories (where it is related to the radius
of compactification of extra spatial dimensions), to a higher-derivative theory of gravity
(where it is associated to the curvature scalar), where it is a non—minimally coupled scalar

field or just a random scalar field as in chaotic inflation.

Conclusions

The inclusion of an inflationary period in the early history of the Universe is certainly
useful, in particular to aveid the assumption of narrow initial conditions and to produce
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seeds for structure formation. The vagueness about the cause of inflation implies that it is
a general concept rather than a specific physical theory. The important and difficult issue
is to ensure that the inflaton field fits in the framework of a realistic elementary particle
theory. Since we have encountered a, more or less pronounced fine-tuning problem in all

the models we have discussed, the search for inflationary models continues.



Chapter II

Extended Inflation

Introduction

In the previous chapter I have depicted the “standard” inflationary models: all of them
bring a modification to the matter sector (by including a scalar field with some particular
effective potential). Other models introduce a modification in the gravity sector too, we

will turn to them now.

La and Steinhardt [15) have recently developed a scenario for inflation based on the
Jordan-Brans-Dicke gravity theory {16] in which the extraordinary expansion which char-
acterizes inflation now follows a power law instead of an exponential one. Power-law
inflation models had been previously proposed using an exponential potential for the in-
flaton [18]. In this new model, called extended inflation, the same behavior is the result of
the dynamics of two fields: an inflaton, with an old-inflation type potential, and a scalar
field, the Jordan—-Brans-Dicke (hereafter JBD) field, which plays the role of a time-varying
gravitational coupling. The slower expansion can be explained by the fact that the vac-
uum energy density is now shared between the Universe expansion and the evolution of
the JBD (gravitational) scalar field. Actually the two schemes are related by a conformal
transformation (see e.g. [19]): to the JBD frame with an inflaton field corresponds in
the Einstein frame - where the gravitational coupling is constant - a model with a field
having an exponential inflationary potential. In extended inflation, as in the old inflation
model, the phase transition is of first order, but the slower expansion now allows bubbles of
true vacuum to percolate and form a big enough region to contain our Universe. However
bubbles are still a source of problems since the recovery at the end of inflation of such a

region, homogeneous and isotropic, demands a low value of the Brans-Dicke parameter
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[20], (21], which is in conflict with the lower observational bounds [22]. Taking this into
account, we have to abandon the simplest models of extended inflation, ¢.g. introducing a
potential for the JBD field [23]. Several other variations have heen proposed: introducing
a JBD field in chaotic [24], [25] or new [25] inflation, allowing the BD parameter to vary

with time [26], [27], introducing nen-standard couplings of the JBD field to matter {28].

In this chapter we will briefly discuss the JBD theory and review the work that has
been done on power-law inflation, leaving the model with non-standard couplings for the

next chapter.

I1.1) Jordan—-Brans—Dicke theory

In 1961 Brans and Dicke [16] developed a modified relativistic theory of gravitation in
which the gravitational effects are in part geometrical and in part duc to a scalar interac-
tion. (In 1959 Jordan [17] had developed a theory formally similar to the Brans-Dicke one
but with different physical interpretation). They were interested in a gravitational the-
ory compatible with Mach’s principle, in the sense that locally observed inertial reactions
should depend upon the mass distribution of the Universe about the point of observation
and consequently the physical “constants” should be position dependent. Being possible to
reduce the variation of physical “constants” to that of a single parameter, they introduced
a scalar field ® whose primary function is the determination of the local value of the grav-
itational coupling. The ideas they present are incompatible with the strong equivalence

principle,

Starting from the usual variational principle:

():6/ [R+(16ﬁ0

(4

):_:] (—9)'2, (I1.1.1)

they get the required generalization dividing by G - substituting it by &' - and intro-
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ducing a Lagrangian density of a scalar field,

0= 5/ [@R INELY, -w§)—"q);? Pl g2t (I1.1.2)
c ¢

where the scalar field in the denominator has been introduced to let the constant w be
dimensionless, The parameter w is a measure of the influence on the gravitational field
acquired by the scalar field, with respect to the space-time curvature. The smaller w, the
more important is the effect of the scalar field. When w — oo the JBD theory coincides

with Einstein gravity.

In order not to interfere with the successes of the equivalence principle, the Lagrangian
density of matter is identical in both equations and the equations of motion of matter are
the same as in general relativity and the difference between the two theories lies in the

gravitational field equations which determine g,,,.
The wave equation for ® is:

1 . R®
P - 520, 80" + 5= =0 (I1.1.3)

with = gV, V, = (~g)"20,[(—9) "2 9"¥D,].

The field equations for the metric field are obtained from (11.1.2} by varying the com-

ponents of the metric tensor and their first derivatives

1 8n

1 1
Rﬂu - 'ég”pR = "(‘:Tq';j"ur + '(I’%(a.“ (I)au@ - ':?.‘g“pan(ba"(b) + ‘&)"(Vya”(p - g.uy[]{b) (I!-l-‘l’)

The first terin on the right is the usual source term of general relativity (T, 1s the matter
energy -momentun tensor corresponding to £) with gravitational coupling ®—! and the
second one is the energy-momentum tensor of the scalar field. The third term, results
from the presence of second derivatives of the metric tensor in the variation of (11.1.2).
These second derivatives are eliminated by integration by parts to give a divergence and the
extra terins, The role of these extra terms is essential for a vanishing covariant divergence
of the energy-momentum tensor of matter to be consistent with the equations of motion.
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From (II.1.3) we see that the terms ®R and the ®-Lagrangian density serve as the
source term for the generation of ® waves. But it is interesting to see that, obtaining R
from (I1.1.4). this equation can be written:

8 -
Db = W(S T 2“))(:" T (Iflo)

in such a way the source term appears as the trace of the energy-momentum tensor of
matter alone (T'). thus meeting the requirement of Mach’s principle that ® has as its source

the matter distribution in space.

They also discuss the consequences of their theory on observable quantities. f.e. they
check the classic tests of Einstein’s theory. The gravitational redshift is computed in the
weak field approximation. It is determined by goy which contains, as compared to general
relativity, the extra factor [(4-2w)/(3+2w)]. But this factor is absorbed into the definition
of the gravitational constant: G = ®~{(4 + 2w)/(3 + 2«)] and there will be no anomaly

in the red shift. All metric theories of gravity predict the same gravitational redshift.

There is an anomaly in the deflection of light. This quantity differs from the GR value
by the factor {(3 + 2w)/(4 + 2w)], but at that time the accuracy of the light deflection

observations was too poor to set any useful limit on w, *

On the other hand, the accuracy in the observation of the perihelion rotation of the
orbit of Mercury allowed for this liinit. The precession is curnulative, so it can be observed
over several years. The relativistic rotation rate of the perihelion of a planetary orbit is
a factor [(4 + 3u)/(6 + 3w)] times the GR value. There are other causes for precession
(sun’s oblateness. sun’s rotation,...) but for comparison between measured and theoretical

precessions it is usually taken: Apgr = A@oss — A@yewt, With Ap precession angle in

* The first experiments were done with visible light, during an eclipse. Later, developments in radio
astronomy made possible a far greater aceuracy than was possible with optical astronomy. Along a decade,
a number of radio—wave deflection measurements with groups of quasars that pass very close to the sun
vielded different determinations of the metric parameter 5 with encreasing acenracy, the last of which, in
1975. gave an interval centered in the general relativity value, sce. e.g. Wil {35}, p. 172.
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each revolution, which are the ones large enough to be measured. Taking into account a
Ay caused by the sun oblateness (measurement from Dicke et al., in disagrecment with
other measurements, see e.g. Weinberg [29]) would enhance the diserepancy between the
 measured and the theoretical GR values. With an accuracy of 8% of agreement between

the observed and the GR computed results, the bound they find is: w > G.

Since then, the accuracy of the observations has notably improved. The previous
tests dealt only with the shape of the trajectories of light or plancts but it has then been
possible to follow their time history. As predicted by general relativity, the round-trip
times of light signals traveling to the inner planets or to artificial satellites and reflected
back to the earth are increased by the direct effect of solar gravity on spacetime. Upon
comparison between the theoretical value and measured echo delays we can put limits on
the metric parameter. The estimation of the theoretical value of each corrected echo delay
needs a metric theory and a model of the solar system. For this model we need distances,
radii, masses, planet rotations, and we do not know them with a great accuracy; then a
large set of unknown parameters are determined by fitting observed times with theoretical
formulas. The comparison of metric theories with each other and with observations, at
least for solar system tests, can be made in the post—Newtonian limit (i.e. weak field, slow
motion limit). The parametrized post-Newtontan (PPN) formalism embraces most metric
theories and contains a set of parameters (PPN parameters) whose values fix the particular
metric theory we are dealing with. One of this parameters is v, which is a measure of how
mutch space curvature (¢ix) is produced by unit rest mass, the general relativity value being
~ = 1 (see e.g. [30]). For a scalar-tensor theory, the parameter -y is related to the coupling

parameter w through: v = (w + 1}/(w + 2).

The most accurate value, obtained from radio ranging to the Viking spacecraft is [22]
- = 1.000 4 0.002, where the uncertainty given, about twice the formal standard deviation,
is based on the spread obtained in the estimates of 4 from the many measured times and
on a judgement of the reliability of all the procedures used in the collection and analysis
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of the solar system data. From the uncertainty on 4, the restriction on w 1s:

w > 800,

I1.2) Power-law inflation

The idea of inflation was continuously developed and it was realized that the cosmolog-
ical problems which led to the proposal of inflation could also be solved by any accelerated
phase of expansion, even if not exponential. In this way, a family of general inflationary
models characterized by a scale factor which grows like a ~ #P, with p a constant greater
than 1, was investigated by Abbott and Wise [31} and Lucchin and Matarrese (18]. The
first interesting result (18] is that the potential which leads to this power-law inflation is
exponential:

‘/'((I)) ~ c«..‘t!)—‘f’;)/d’ (II.2.1)

where @ is the inflaton and the ®-solution increasing with time is considered, i refers to
an initial time ¢; where ®; # 0 and o = (p/47)"/?my; V(®) is assumed to depend on ¢
only through ®. Since the authors did not consider any physics underlying the model, this
potential should be considered as a way to mimic the source for power-law intlation during
a time interval. Then, considering the conditions that the combination of the observed
isotropy of the cosmic background radiation and the requirement of forming galaxy proto-
structures imposes on the amplitude of quantum fluctuations of the scalar field it emerges
that p = 1.9 is the lowest permitted value but in general, low values of p, e.g. p = 2, give
a reheating temperature only marginally compatible with the usual baryosynthesis con-
straint and a perturbation spectrum not completely satisfactory on large scales. Abbott
and Wise get the same result imposing observational bounds on the amplitude of gravi-
tational waves generated from quantum fhictuations during the inflationary period. They
relate this quantity to the maximuin reheating temperature and find that for power-law

inflation it 1s an increasing function of p.
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A possible disease of this scenario is that the mechanism whereby inflation ends is

unclear.

I1.3) Extended inflation

In 1984, Mathiazhagan and Johri [32] reanalyse inflationary seenarios under the frame-
work of JBD theory. Their model contains two scalar fields: the JBD field and another
scalar which mediates the transition. The resulting expansion is power-law, With a
Coleman-Weinberg potential for the inflaton (in the standard SU(5) model), they esti-
mate the time required after the tunnelling event for the inflaton to roll down to the global
minimum and find that the amount of inflation is sufficient to solve the cosmological prob-

lems.

In 1989, La and Steinhardt [15] and [19] develop this scenario with an old inflation
type potential, giving special emphasis on the percolation of bubbles of true vacuum and

the thermalization during collisions, of the energy contained in the bubble walls.

Equations (I1.1.4) and (I1.1.5) with a FRW line clement with scale factor a{t) and a
spatially homogeneous JBD ficld & = () are:

8tp k w b &
2 _. —— I o L
H* = 3% o 6[‘1’] H[@] (11.3.1)
and
" . 8xT
P+ IHD = Ty (I1.3.2)

where p is the Universe energy density, H is the Hubble parameter H = @/a, a dot denotes
differentiation with respect to ¢t and & = 0,1, —1 corresponds to a flat, closed or open

Universe,

The solution to the JBD equations when the Uuiverse is essentially vacuum energy

density dominated is;

. xt..

B(t) = m3(1 + %)2 (I1.3.3)
' .

a(t) = (1 + %)WH/* (11.3.4)

59



where x? = 8rp,/3m? (Hubble constant in the Einstein theory), py is the vacunm cnergy
density, mp is an arbitrary integration constant corresponding to the effective Planck mass

at the beginning of inflation, and o® = (3 + 2w)(5 + 6w)/12.

For short times, yt < «, the JBD solution has an exponential regime (for large w)

a(t) = exp(xt), with ® nearly constant. Then, when xt > «, this solutions can be written:

~ o 2( X2 — 32mp, 2
(I'~mp(at) =67 2w)(5+6w)t (11.3.5)

a(t) ~ (:E-t)wﬂf? (I1.3.6)

It has to be noted that the solution for the JBD field used in extended inflation is a
special case of a more general class of solutions: it meets the boundary condition ®(0) = 0.
This ensures that the JBD solution is dominated by the vacuum energy and not by the
JBD scalar field as t — 0. The same initial condition is also usually imposed when solving
for matter domination. After the inflationary epoch, the evolution of the JBD field is much
slower, During the radiation dominated epoch, the Universe expansion is the same as in
general relativity

a(t) ~ t2wtD/Butd)

b = const,

since the source for the JBD field evolution is the trace of the energy--momentum tensor
of matter which is zero for an ultrarelativistic fluid. In the matter-dominated era, the
presence of the JBD field has again some effect on the Universe behaviour; with & = 0 we

have

(l(t) x t(‘lw—l—‘z)/(ilw-i-‘l),
‘I’(t) o t2/(3u+-l).

This solution corresponds to the simple case of zero integration constant in the field equa-
tion for ®. i.e. it is obtained imposing the constraint ®¢* — 0 on the initial singularity
(a = 0). While this solution is obtained with special values for the initial conditions that
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may not be the appropriate ones, all other solutions approach this one at large time, see

e.g. [29].

There have also been attempts to implement inflation by relating dirvectly the infaton
field with the gravity sector. In the induced gravity model [33], gravity arises as a sym-
metry breaking phenomenon; it is a consequence of vacuum fluctuations of quantum fields
in curved backgrounds. Thus, the theory deviates from general relativity only at high
energies. In this context, gravity is a phenomenological theory instead of a fundamental
one. With, for instance, a Ginzburg-Landau symmetry breaking, the transition can be
inflationary. Since the new feature, as compared to conventional scenarios, is the substi-
tution in the Lagrangian of the term (167G y)R by a term 1/2e0?R, one would expect,
as long as the slow-rolling approximation is valid, little change in the course of inflation.
This turns out to be true and we consequently have the same fine-tuning problems as in
standard inflation. That is why we turn to inflationary models with two fields. Inserting
extended inflation in the context of induced gravity, a more complicated model is obtained,
where both the inflaton and the JBD field have inflationary potentials {23]. The result is
a multiple-episodes inflation in which at low energies the gravitational coupling would be
driven to its present constant value by the JBD field potential. Furthermore, the fluctu-
ations generated in the initial inflationary phase could establish the large-scale structure,
while those of the second phase would be responsible for the perturbation spectrum at

small scales.

La and Steinhardt calculate (in the usual way defined by Guth and Weinberg [11]) the
probability p(t) for a point to remain in the false vacuum phase {(eq (1.3.8)), substituting
here a scale factor which grows as a power-law of time, With this dependence on time,
p(t) decreases faster than the Universe volume a®(t) increases and as the physical volume
oceupied by the false vacuum is p(t)a*(). the Universe exits from the false vacuum phase.
Another é.pproach is considering tlie number of bubbles ereated in a Hubble volume in one

Hubble time ¢ = I'/ H*, where the nucleation rate per unit time per unit volume (I') is
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again considered as a constant. In standard inflation H was also a constant and so was ¢
In the power-law expansion regime H = afa = Hy(1 + Hpt/w)™!, resulting in e x ¢4, In
this way, € can be very small at the beginning, allowing for inflation to oceur, and then
grow above the critical value where percolation is achieved. Here, the filling of space with
true vacuumn still occurs exponentially in time but now the expansion is only power law,
The time variation of ¢ also alters the bubble size distribution, this being an important
quantity for the estimation of the time necessary for thermalization. Since the energy is
concentrated in the bubble walls, the spread of energy through the bubble interior, after
collision, is faster in small bubbles than in big ones. On the other hand, for the same

reason, large bubbles could lead to voids in the subsequent matter distribution.

We can then hope that a small but non-negligible number of big bubbles exists. It
could influence the large-scale structure and be at the origin of voids and at the same time

it would be so small not to imprint inadmissible distortions to the background radiation.

Additionally, with this thermalisation process we have a mechanism for non adiabatic
fluctuations: the radiation pressure makes radiation separate from matter in their diffusion
through the true vacuum region. Isothermal fluctuations may be uscful for structure

formation.

When w — oo the model recovers the old inflationary scheme that fails precisely in
the percolation and thermalisation processes. We can therefore expect an upper limit
on the w parameter in order to get successful inflation. If the change from exponential
to power-law expansion is enough to ensure percolation, it is also necessary to verify
that a satisfactory reheating process is achieved {20], [34]. Considering astrophyvsical and
cosmological restrictions on the model, the most stringent bound that has been obtained
comes from the isotropy of the cosmic backgronnd radiation (CBR). To limit the distortions
in the CBR due to the bubbles energy, a heuristic constraint is imposed: that ouly a
small fraction of space (at most 10~4 — 10~3) is still in the thermalisation process at the

=
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recombination epoch. The upper limit obtained for w at the end of inflation is:
w S 25

Although this value is not very precise, it is definitely far from the observed present bound
[22] w > 500. So, the quantity of big bubbles turns out to be too high. However. since the
conflict originates from constraints applied at very different times, it is possible to think

to an “evolutionary” solution to the problen:.

The general features for a successful extended theory of inflation are outlined: an epoch
of sufficient inflation with a high initial value of the Hubble parameter -consequently a
small initial e~ decreasing slow, in order to prolong the inflationary period, to a value Hqpj;
~€cpit— at which percolation is achieved. At the end the decrease in H should he faster
than in purely Brans-Dicke, to obtain an adequate reheating. To meet this requirement
of a steeper variation of the bubble nucleation parameter in order to suppress big bubbles
and have, towards the end of inflation, a boom of small bubbles, all of them nearly of the
same dimensions, Steinhardt and Accetta [26] and Garcia-~Bellido and Quirds [27] propose
to generalize the model, introducing a variable BD parameter w(®). Thus. a dynamical
mechanism to keep low the w value during inflation and let it grow to the present value
during the subsequent epoch is available. (This more general scalar-tensor theory of gravity
had already been proposed in 1968-1970 {35]) In their Hyperestended model. Steinhardt

and Accetta introduce a non-minimal coupling for a field ¢:
. 1 ‘ ] "
L= “f(qb)R-{- 9 jt‘ﬁaﬂ(;) + IGTTL"”;“, (IIS()

where Lmaee does not include o, and then recast this Lagrangian in a form reminiscent of

JBD theory writing f(¢) = ® and absorbing in w the extra factors in the second terin

£ =0k + 20,5000 1 16nLan (11.3.8)

with w = f/2{f'] where f' = df/d.

The equations for a variable o are
, k 8t w, b $
H 4 ===ty (=¥ -H-
taE=e Tsw)
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which is the same as in extended inflation, and

dw(d® ., 87 |
= ) — . .1
5o 130 = 55l (11.3.10)

b+ 3HD +

where the extra term takes into account the variation of the parameter.

The advantage of the extended model over the old inflation model was that the nucle-
ation parameter e changed from a constant to a quantity growing in time -as the fourth
power of time. But this growth rate has still shown to be inadequate. The hyperextended

model obtains a nucleation parameter that grows exponentially with time.

To support the departure from standard gravity in order to get a successful inflation,
Accetta and Steinhardt [36] present the role that inflution can play in altering the grav-
itational force. They consider a non-minimal coupling for the JBD field, that takes the
form f(P)R where f(®) = MZ + P2 + DV /M + ... for & << My. Typically, the initial
value of ® and the coupling constants €, £’,... are small and all but the tirst term are taken
to be negligible. Inflation can amplify the effects of the non-minimal coupling since the
false-vacuum energy pushes ¢ to high vnlues and thus the higher order terms, usually

ignored. become important.

In the context of a time-dependent (P-dependent) w, an interesting alternative arises
for the mode in which inflation ends [37]. Since the exponent of the power-law expansion
depends on «. below a certain value of w (w = 1/2, in standard extended inflation) the
expansion of the Universe becomes subluminal. Thercfore, for an w decreasing with @,
inflation ends while the Universe is still trapped in the false vacuum and most of the false
vacuum is converted to true vacuum by bubbles nucleated after the end of inflation. In

this case, most of the bubbles do not inflate and the big bubble problem is avoided.

It is worth noticing. however, that there could be no big bubble problemi. A generaliza-
tion of the thin wall formalisin (Coleman [9]) to extended inflation [39] seems to indicate
that gravity can lead to the recollapse of bubbles at the beginning of the inflationary pe-

riod. thus altering the bubbles distribution. This happens in general relativity too —in
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curved spacetime, a newly nucleated bubble cannot, at first, keep pace with the expansion
of the Universe- but it is more important in JBD theory since gravity is stronger during
the early stages. Only after the gravitational constant has decrcased sufficiently can the
bubbles be treated as if they expand immediately after nucleation with the speed of light.
The source of energy for the expansion of bubbles is the energy stored in the false vacuum.
In flat space it is just the potential energy of the inflaton while in curved space it has an
additional contribution: the gravitational energy of the inflaton, which represents a con-
siderable fraction of the energy of early bubbles. In the context of a decreasing-G theory,
the conversion of gravitational encrgy into kinetic energy of the JBD field is responsible
for the depletion of energy of these early bubbles which will consequently start to shrink
and recollapse. For this mechanism to be useful to our purposes, it must last long enough
(i.e. gravity must inhibit the growth of bubbles during most of the inflationary epoch)
and this imposes restrictions on the model. For instance, Goldwirth and Zaglauer [39] find
that for a double-well inflaton potential with non-degenerate minima, the self-coupling
constant must satisfy X = M /Mp;, where M represents the typical mass scale of the phase
transition. It is a moderate fine tuning for A and it is consistent with the thin-wall ap-
proximation requirement (A < 1). The implications of these values on the inflationary

model (reheating, amplitude of density fluctuations) should, of course, be checked.

Another solution for the discrepancy between the value of w implied by present ob-
servations with the w value required by a succe‘ssful inflation is to resort to the induced
extended inflation madel. The key difference is the existence for a potential for the JBD
field: if there is some potential keeping ® anchored at some value, then the low-energy

limit of JBD will resemble Einstein gravity.

Among all these attempts to construct an appealing, “natural”, version of inflation.
the idea of extending the other inflation models to the JBD frame is quite immediate.
Linde suggests a chaotic extended inflation scenario [24], introducing in the matter sector
of the JBD action a chaotic type potential for the inflaton: V(o) = ,\-‘fﬁ:. He just shows
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that it is a possible model and puts special emphasis on the feature of self-regencration of
inflationary domains leading to an eternal process of inflation -as in the original chaotic
inflation model- and on the possibility of relating the present large value of the Planck
mass to other coupling constants in the theory or else to anthropic arguments. The model
has further been investigated by McDonald [24] obtaining the following constraints on the
BD parameter. To obtain sufficient inflation w < 0.25 but the model does not conflict
with the observed isotropy of the Universe provided that w & 16. On the other hand,
only for w < 250 does the mode! differ significantly from standard chaotic inflation. The
interesting interval would then be: 16 S w S 250. but in this range the bound imposed by
the CBR on the density fluctuations requires a much smaller self-coupling of the inflaton
than in conventional chaotic inflation. So it seems that although chaotic inflation in JBD

theory is possible it is not of great benefit.

A chaotic version of the hyperextended scenario have also been proposed by Lidsey

(37], with an exponential potential V(o) = Vj exp(—Axo) for the inflaton.

More work has been done about chaotic extended inflation but with further sophisti-

cations; we include it in the next section.

Conclusions

The JBD gravitational theory introduces interesting possibilities for the inflationary
scenario: a softer inflation that avoids some of the problems of the original model, while
still linked to a (first order) phase transition. Unfortunately, once again, the model does
not go successfuly through the whole inflationary process and variations of the extended
mode] have to be considered. Facing the discrepancies between present observations and
inflationary requirements —in particular the pressing issue of successful recovery of a Fried-
mann Universe- the simplest possibility seems to be the inclusion of a potential term for
the JBD field, that allows for different evolutions of the gravitational sector at high and
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low energies, We will investigate this possibility more extensively when considering the

Universe evolution resulting from the inflationary period (chapter V).

An important aspect is that inflation seems to be a very general concept -an accelerated
expansion epoch for the Universe- that may be implemented in the context of a wide range
of particle and gravitational theories, introducing modifications in the potential terms or

in the coupling terms in order to overcome the problematic steps of the process.
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Chapter II1
Generalized Scalar-Tensor Theories
of Gravity

Introduction

The effects of the presence of a JBD type scalar mixed to the usual tensor interaction
are severely constrained by experiments but, since observations only refer to visible matter,
it is possible to construct a theory where a scalar field is coupled more strongly to a possible
invisible or dark matter component than to visible matter, This is the key idea in a work
by Damour, Gibbons and Gundlach [28] (hereafter DGG) who consider a generalized (or
“amplified”) JBD theory, where a dilaton field couples with different strengths to visible
and dark matter. The observational bound would then apply only to the visible matter
coupling. They find a maximum value for the present rate of change of Newton’s constant

compatible with - and not far from ~ observational bounds.

The same technique was applied to the inflaton field driving extended inflation, con-
sidering it as an invisible matter component having non-standard coupling to the JBD
field [40]. In this amplified extended inflation model, the combination of the restrictions
imposed by the observational limits on the BD parameter w and by the requirements of
a successful inflation, leads to a considerable region in the parameter space of the theory
where all constraints are satisfied. It is the presence of two parameters -instead of one-
that gives enough freedom to keep w > 500 and at the same time satisfy the iéotmpy of

the CBR requirement.

Holman et al. [41] go beyond this model, now allowing non-standard kinetic and
potential terms for the inflaton in the JBD frame, i.e. more general couplings (that is the
model we will call “generalized” from now on) between the JBD field and the inflaton.
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Generalized chaotic and new extended inflation have also been analysed by Berkin
and Maeda {52) and several works have been done trying to constrain these generalized
couplings from observational bounds [42], [43] and [44) and from requirements of successful

inflation [45).

In this chapter we review the DGG work and the subsequent generalized extended

inflation models. Constraints on these models are treated in more detail in chapter VI.

II1.1) Dark Matter, non—-standard dilaton couplings

As we have seen, extended inflation models are not casily implemented: they are
subject to a stringent restriction that leads to introduce sophistications to the simplest
model. The fact is that the JBD theory itself is severcly constrained by present experiments
and it is in this sector that we have to nnpose further modifications. The scalar field ¢
that is introduced in JBD is coupled to matter only throngh the metric: it appears in the
gravitational field equations. determining the metric, and then intervenes in the matter
equations of motion only through it. \We may look for the possibility of a more general JBD
theory where the scalar field couples with different stengths to different matter sectors.
This leads to a violation of the weak equivalence principle and is severely restricted by
experiments. If we, however, postulate some kind of “dark” matter, since experiments
usually work with visible matter, the equivalence principle would be violated in a matter
sector that eludes experimental tests. This would also reconcile the theoretically preferred

spatially flat universe with the presently observed matter density.

Modified theories of gravity may result from higher-dimensional theories upon com-
pactification to 4 dimensions: supergravity or superstring models produce a decaying ex-
ponential potential coupled to other scalar fields and generalized Einstein theories ~by
generalized Einstein theories we mean JBD, induced gravity, any theory wirth non-minimal
coupling, R? theory and effective four-dimensional theories arising from compactification

65



from higher-dimensions. So we may search for the more general couplings we need in the
dimensional-reduced Lagrangians. In superstring theories (see e.g. (46]), the couplings of
the eftective four-dimensional theory (i.e. the measured experimental values) are deter-
mined by the vacuuni expectation values of the fields; the coupling “constants” are in fact
not constant. One of these fields, coming from the gravitational multiplet, is the dilaton,

a neutral scalar field coupled to R (the Ricci scalar) in a way reminiscent of a JBD theory.

DGG work with a dilaton fleld coupled with different strengths to visible and invisible

matter, their action functional in the Jordan (physical) frame reads
S = fd";v\/-g [—‘IJR + %g‘"’@,ﬂb@ﬂ) + Sv[¥v, 9]

+51[‘1’1,(2‘I’)1""'/H"!}pu], (f11.1.1)

where Sy and §; denote the action functionals for the visible matter fields. ¥y, and
invisible ones, ¥y, respectively. We have again adopted units such that 8xrGy = 1, with
G the value of Newton’s constant; this implies that the present value of the JBD field
is ®(ty9) = 1/2. The visible sector couples only to the metric and not to the JBD field.
The standard JBD theory corresponds to the simple case §y = 7. DGG actually define
their model in the Einstein conformal frame, which is defined as that frame where the
gravitational action takes the standard Einstein-Hilbert form and is obtained via the

conformal (Weyl) transformation
Juv g;w = Q(I'!hm- (IIII?)

The rescaled action is

- RO, ~28ve;
S= | dey/-i [—3— + 59" aﬂ%’au‘p] + Sv{¥y,c 2 gy

Si¥r. e~ *1%§,,] (I11.1.3)

where we also defined the new JBD field variable

Y = o Ill(g‘p)

with po = Vw + 3/2.
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In the Einstein frame both material systems couple to the dilaton field, but with different

metric: e?Avtg,, and ¢?Ai%g,, for visible and dark matter respectively.

Through a Weyl rescaling and redefinitions of the scalar field, every scalar-tensor the-
ory can exhibit standard gravitational and kinetic terms (the two first terms of eq. (I111.1.3))
and then the difference resides in the couplings to matter and in the self-interaction terms.
In the transformation from a theory with a variable G to a theory with a constant G we
have shifted the time dependence from the gravitational coupling to the inflaton vacuum
energy density (and to couplings to the other material systems). The fact that extended
inflation models can be transformed to a frame where the gravitational action assumes the
standard form suggests that the physical justification could come from the modification
of the particle physics scalar sector instead of the modification of the gravitational inter-
action, The solution to the percolation problem is power-law inflation, not some theory
of non-minimal gravity; the latter is just a scenario for the achievement of power-law
inflation. In this respect, it is interesting to keep in mind that in all these models there
can be different versions for the physical idea that underpins the non-standard couplings

proposed to overcome the difficulties encountered.

By working in this frame and assuming that the universe is dynamically dominated by
an invisible fluid, DGG find a dynamical system which, transformed back to the Jordan

frame adapted to visible matter, reads

d , . 1
:g = =3r3 H® + (6rB1 Bv — 3)Hy + (2Bv — 3y + 530y’ (I11.1.5)
dH 3 . »
— = (-—57 —3rd1 v IH? + (3y8y — 4y + Gi'ﬁfﬂf")Hy
. i 3 | ! , (I11.1.6)
~(37 =5~ ~§7_3ff + 36y ~ 3rBi Ay + Eﬂfﬂv)y’,

with y = dp/dt, r =4 — 3y and p; = (v ~ 1)p;. They find the attractor solution

H = PRl
3y — %7‘2 + ,.'Zﬁ;- - 2rg By

, (1I1.1.7)

T
y = - ;
rBiBv -1+ 37
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The variation of the scalar field gives the variation of the gravitational “constant”,
which can be compared with observational values. Using the observational constraints on
the JBD coupling to visible matter and considering lower limits on the Hubble constant
and the age of the Universe, the coupling constant 3; of the dilaton to invisible matter is
constrained, nearly independent of gy, to | 3r |S 1. They find & maximum value for the
present rate of change of Newton’s constant, | dln G/dt [pS 6.6 x107"2yr~1, consistent with
the bounds based on the Viking-lander ranging data [47], | dInG/dt [¢S 107 yr~!, or
with the less restrictive bounds based on binary pulsar measurements [48]. Animprovement
in the precision of G experiments can be a possible test for their model and indeed theiv
theoretical value is slightly beyond the more recent bound {49] obtained incorporating
new measurements of the neutron half-life and reaction uncertainties in nucleosynthesis

calculations.

For radiation domination (y = 4/3) the model gives dG/dt = 0 since the scalar field ¢

couples to the trace of the energy-momentum tensor only, as in the simple JBD theory.

I11.2) Generalized extended inflation

Inspired by this possibility, Holman. Kolb and Wang [40}, propose to solve the prob-
lem of thermalizing the energy in the bubble walls by the neccessary epoch associating
the inflationary field to the invisible matter having a different coupling to the JBD field;
the identity of the inflaton being unknown allows such an assumption. The process of
thermalization of the bubbles energy involves both types of matter and, consequently, the
limit deriving from this requirement is now imposed on a combination of the parameters
of the theory. On the other hand, timing measurements, as signal delay or orbital period
change of a binary pulsar, refer only to visible couplings ~with the assumption of a simooth
distribution of dark matter over the solar system or the binary pulsar scales-- thus the
bound on w is unaltered. Combining rhe restrictions imposed by the observational limit
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on w and by requirements of a successful inflation, they obtain a considerable region in
the w-3 space (8 = fr/Pv) where all the constraints are satisfied: occurrence of an infla-
tionary regime, sufficient inflation, percolation and thermalization, recovery of a common
Robertson-Walker frame in all the bubbles that form our Universe. As in the simplest
mode! of extended inflation, the truly restrictive bound comes from the requirement that
a small fraction of space should be contained in big bubbles and leads to the relation
w/p? S 25, instead of the standard limit w S 25. With # & 5 one recovers w 2 500, in

agreement with the observational limit.

Considering the action (IIL1.1) in the inflationary regime (the invisible component
being now associated to the inflaton field) we have ¥; = ¥y with V(¥) = p, = const.
(in extended inflation as in the old model), and the energy density of the false vacuum
pv dominates the total energy density (visible matter will play no role during inflation).

With k = 0 the equations of motion for a(t) and $(t) are

H? = 22(2(1,)1-2364.3"_(2)2_ Hg, (I11.2.1)
3 6 iy
® amd = 4B gy (I11.2.2)

o ® 2w+3

This system of equations admits power-law solutions just as the original extended inflation

scenario did

a(t) = a(0)(1 + Bt)?, p=(w— f +3/2)/(28 — 1),
®(t) = 2(0)(1 + BY)?, ¢ =2/(26 1),

where t = 0 means the beginning of inflation and

B = 48%(28 — 1)2p,[28(0)])! ~2#
T (2w + 3)(6w + 9 — 4/32)

With 8 = 3;/Bv = 1, these results reduce to those for extended inflation (I11.3.3) and
(I1.3.4).

(111.2.3)

Holman et al. [41] further generalize the model considering non-standard kinetic and

potential terms for the inflaton ¢ in the Jordan frame
S = /d“z\/—-g [——@R + %g’“’ﬂ,,(b@ﬁh + (2@)"%9""0,,06,.0 - (2(1)]'“1/’(0)] (I11.2.4)
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Comparison of the actions in eq.(111.1.1) and eq.(II1.2.4) with ®; = o, shows that the
DGG model corresponds to the particular case 1 — 8;/8y = n = m/2. They arguc that
in dimensionally reduced theories the generic action has m,n # 0. Starting {from a higher
dimensional (4+D) gravity model coupled to a scalar field whose potential allows for a
phase transition to oceur via bubble nucleation, they recast the Kaluza-Klein action into
a “generalized JBD form", containing ®-¢ cross terms with m = n = 1. The ®-fleld is
defined, during the process of dimensional reduction, as a function of the scale factor b(t)

of the internal dimensions:

D
B(t) = .;.(f’_;_‘)l) , (II12.5)

and the BD parameter is defined as w = 1 — 1/D {which is of order unity for any D
and hence far from the obscrvational value). There are however two more differences
with a JBD action: the effective JBD field has a kinetic term with “wrong” sign and a
non-trivial self-interaction term. However their result is that their equations admit no
power-law solution and the exponential expansion solution leads to an insufficient amount
of inflation. Further attempts to implement generalized extended inflation from higher~

dimensional theories will be analysed in the next section.

Holman et al. examine the bubble nucleation and percolation processes [50},{40]. The
time evolution of the JBD field and its non~trivial couplings cause a time-varying false
vacuum energy during (the Euclidian bounce, corresponding to) the tunneling process. In
order to compute the bubble nucleation rate, the mechanism of false vacuum tunneling
under these circumstances should be understood (see [61] for some work in this direction).
Nevertheless, to ease the task, Holman et el [50] establish an approximate expression
that systematically “freezes out” gravitational effects taking Go — (. In this limnit they
also have to neglect the JBD field kinetic term, since it has the same Gy dependence as
the gravitational term: ¢ — &y o G 42 45 Gy — 0. On the other hand, the JBD field
is of course not considered a constant during this treatment —~its variation is the main
feature of the process under description. The way out is to argue that the imaginary time
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bounce configuration, which is the one used to compute the tunnelling action. is a different
situation from the real time configuration, where the JBD field can remain time-dependent,
governing the evolution of the universe (after all. something similar happens in the original
calculations [9] where the metric is frozen out from the bounce solution although the real
time Universe was still expanding). They expect that their approximation ignoring terms
of order Gy will be reliable when the effective Planck mass induced by the JBD is much
greater than the mass scales associated with the inflaton. If ¢ increases with time, the
approximation works better at late times. They work in the Einstein frame, to have

standard gravitational couplings, with the truncated Euclidean action for the inflaton
1
Sp = / B[ f(8)50"0040 + g(B)V ()] (I11.2.6)

where the JBD field time evolution is accounted for in the non-trivial couplings of the
inflaton; and then they follow the same procedure as in the calculation for old inflation.
They find, in the general situation, a time-dependent bubble nucleation rate per unit
volume, If 2n —m # 0 (i.e. the most general couplings) the time dependence of the
nucleation probability (I') can be exponentially strong through the time dependence of the
JBD field:

T = .40(2(1))2"‘9“"0(”)2"_"'

where Ay and By are & independent (they depend only on the inflaton potential). It has
to be stressed out that Accetta and Romanelli [51], applying the formalism of Coleman
and De Luccia [10] to the false vacuum decay in a scalar-tensor theory of gravity (where
confident results are only obtained in the limit of small values of the non-minimal coupling
parameter), find that I' exponentially decreases during inflation, with a cutoff at T'y (the
constant decay rate calculated in flat space). This situation would not help in the search
for an increasing ' at the end of inflation, as suggested by the difficulty in thermalizing
the energy in the walls of large bubbles. In the original extended inflation model one
would also expect a time dependent nucleation rate due to the time dependence of the

JBD field in the false vacuum but, applying the same technique to this case {30], it can
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be seen that, at late times (large JBD field), the rate becomes approximately constant in
the Jordan frame (although time dependent in the Einstein frame). The different time
dependence of the nucleation rate in the two frames may look uncomfortable but it is the
result of making use of a time-dependent rescaling of space-time and is eliminated if one

asks physical questions such as whether and when the true vacuum percolates.

So, we now have generalized extended inflation models where the time variation of e

may come not only from a varying H but also from a varying I,

The Soft Inflation model by Berkin, Maeda and Yokoyama [25] also involves non~
standard couplings which can be seen to correspond to the case m = n = 1. They work
with two coupled scalar fields: the inflaton driving new or chaotic inflation, and a field with
exponentially decaying potential that slows the expansion rate. In a second paper, Berkin
and Maeda[52] allow for arbitrary m and n as may result from fundamental theories or from
conformal transformations on generalized Einstein theories. In the former case the kinetic
term is standard (n = 1) [53] while in the latter one there may also appear an exponential
coupling in the inflaton kinetic term. If the starting point is higher-dimensional theories,
there are two possibilities for the inflaton: it can be defined in {4+4D)-dimensions or

introduced in the effective 4-dimensional theory.

They work in the inflationary regime, starting from the general action
S = f (l“m\/—g[-——g + %g""a,,(pa.,p + %e-Nv’gwa,,aa.,a - e_M"’V(a)}, (IT1.2.7)

which can be obtained from Eq.(I11.2.4) via the conformal transformation leading to the
Einstein frame (111.1.2) and the rescaling (II1.1.4). The new parameters N and M are
related to n and m through N = (1 —n)/p and M = (2-m)/pe. They work with a new
inflation type Coleman-Weinberg potential [38]

A
Viey=Vy — Zo'*, (1I1.2.8)
and with a chaotic type potential
V(o) = 2 dno". (I11.2.9)

72



and apply cosmological restrictions to impose limits on the parameters of the inflationary
potential. The exponential potential muitiplied by the coupling constant acts as an effec-
tive constantly decreasing coupling “constant”, thus suppressing the amplitude of density
fluctuations, softening the restrictions for standard values of the parameters. Reducing M
corresponds to reducing the exponential potential importance thus making more and more
severe the CMB constraint on the perturbations amplitude, till the standard regime is re-
covered when M = 0 (m = 2). Both with a new inflation potential and a chaotic inflation
one the .V = 0 (n = 1), arising from a fundamental theory [18], scems to give better results
than the N = M/2 (m = 2n) case which is the case of almost all the generalized Einstein
theories considered so far. With N = 0 they find a broad allowed region in the space of
the new inflation potential parameters while a narrow one —containing anyhow the desir-
able value of the self-coupling constant near unity- for a chaotic inflationary potential,
The N = M/2 case seems to be of little advantage compared to the standard inflationary

models.

Wang [45) uses the conditions for successful inflation to put constraints on the expo-
nients m and n of the couplings of the JBD field to the inflaton sector. The resulting allowed
region in m-n is quite large. Casas, Garcia-Bellido and Quiros {54] recently considered
improved nucleosynthesis limits on the parameters 3; and gy of the DGG model (sce also

(42}]). We will report their procedures and results in chapter VI

111.3) Generalized extended Inflation from higher-dimensional theories

The main problem encountered by Holman et al. in their higher-dimensional ( Kaluza-
Klein) model [41] is that it cannot be made inflate enough. The generic situation is that the
scale factor b(¢) of the internal dimensions goes to its minimum without allowing enough
time for sufficient inflation. It could perhaps be possible to put together all the conditions
to make the model work (construct a potential stable at large b, that has o i at
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nonzero value of b to aveid the internal dimensions from shrinking to zero, and Hat enough
to allow sufficient inflation) but the need for an adjustment of parameters makes it an

unnatural constructicn.

Superstring theories present several different candidates for the inflaton field and are
particularly suitable for some kind of extended inflation since the scalar fields of the grav-
itational multiplet (the dilaton and the moduli) are coupled to the curvature scalar of the
four-dimensional metric in the same way as the JBD field and are also coupled to the

non-gravitational sector.

Exploring the claimed connection between string theory and extended inflation, Camp-
bell, Linde and Olive [53] conclude that the existence of a dilaton. by itself, does not provide
a natural basis for a realization of extended inflation. This is the result of the dynamies
of the diiaton alone in the presence of a source of vacuum energy, it does not represent
the exhaustive exploration of the possibility of realization of an inflationary regime, which
would require involving all the scalar fields present in every possible string ground-state

construction. They start from the string effective action [55]

Sstrf"g = /(1-‘;'B\/a_ﬁ_ﬁﬁ¢ _}i‘ - a,,f:ia”é - “‘1‘).‘0"!,0"” - ”l'zy;} - IE] (III-S.I)

2n2

where ¢ is the dilaton, y represents any other massive scalar and V; is the potential at
string tree level (genus 0). Applying a conformal transformation g, — e"‘/'z""’g,,,,, one

obtains;

R 1 1 ST
Sstrl'ng = fdim\/!?[m - § ,;(ﬁaptf) — 50;;!}8"!} — € V2 ’(1"7?.‘!‘92 + VO)] . (III-S-Q)

By comparison with the extended inflation action in the Einstein frame

S = /d‘.c\/(_;[-z—f}- - ;1)- 0" — %c"’""’/**’a,.ya“y - c.""""""/""‘(m"’y2 + VU)]. (111.3.3)

with @g = /w + 3/2 (which is the M = 2N case of the more general (1I1.2.6), exhibiting
explicitly here the inflaton mass term), it can be seen that the full string theory effective

action is not of the JBD type: there is no value of the parameter w for which the matter
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(field y) kinetic and potential terms take the same form in both actions. The two theories
agree only under some extreme assumptions. A JBD form with w = 1/2 is obtained
considering a truncated action, retaining only the graviton and the dilaton kinetic terms
and the potential VD(U) (genus ), There seems to be no way to recover a JBD theory
for any value of w. No inflation solutions are found, anyway. Including, and taking as
dominant, a higher genus potential (ignoring corrections to kinetic terms). Campbell et
al, [33] are able to find a power-law expansion with exponent < 1. which is not inHation.

Their conclusion is that if extended inflation is to oceur, it will not be due solely to dilaton

evolution.

A better connection between effective string theories and scalar-tensor theories is ob-
tained if what we want to get is generalized extended inflation. Indeed. the generalized
action (I11.2.2) is of the same form of the effective string action (I111.3.2) if N = 0 and
M = /3. So string theory seems to suggest “non-standard” couplings of the dilaton to

kinetic and potential matter terms.

Casas. Garcia-Bellido and Quirds [58] analyze the cosmological solutions in the ra-
diation and matter dominated regimes from the gravitational sector of four-dimensional

heterotic strings. Their starting point is the action
1 .
S = &T / d.“t ""ﬂf‘zo(R + 49'“’011‘;’au¢ -+ Q"CM) (III34)

obtained by a truncation procedure developed by Witten {57], from the higher-dimensional
action computed at tree-level in string loop perturbation theory and keeping only linear
terms in the string tension a’ and in the curvature. Here. ¢ is the dilaton and the matter
Lagrangian Ly contains at least one scalar field whose effective potenrial precise form
depends on thé details of the compactification procedure. After conformal rransformations
and field redefinitions they obtain general scalar-tensor theories of gravity, wirh a value of
the « parameter which depends on the particular conformal transformation. corresponding
to different supersymmetric and non-supersymmetric string scenarios. The result is that
all of them are in conflict with bounds on the time variation of gauge couplings and/or the
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post Newtonian bounds of general relativity. Bounds from the clectromagnetic coupling,
when they hold, yield in fact much stronger constraints. They have assumed a flat direction
involving the dilaton field and a constant vaenum expectation value for the moduli: a more
complicated scalar-tensor theory of the same type, that could maybe lead to different
conclusions, would result keeping the moduli fields as dynamical degrees of freedom and

taking into account non-trivial potentials that can appenr from non-perturbative effects.

Garcia~Bellido and Quirds [36] study the possibility of extended inflation in string
scenarios with spontaneously broken supersymmetry, involving another field of the grav-
itational sector: a modulus \. They consider one direction in the {x, ¢) configuration
space fixed to its vacuum expectation value and one runaway direction (if both fields were
fixed to their vacuum expectation value there would be no extended inflation) and they
suggest that the non-constant value of the moduli along the runaway direction will help
to overcome the problems found by Campbell et al.. They are able, through conformal
redefinitions, to put the effective string action under a generalized extended inflation form.
They impose all the conditions for successful extended inflation and find that they can
be satisfied in a region of the parameters space. wherefrom the constant moduli region is

excluded, meeting the results of ref. [53).

Conclusions

In this chapter we have reviewed different extensions of the original extended inflation
model. We were particularly interested in the possibility of introducing direct. stronger
couplings of the JBD field with an invisible matter sector, which means any marter that is
not “common” matter involved in observational tests of the equivalence principle. Today,
this model can be constrained by. and is compatible with, observational bounds on the
variability of the gravitational coupling. In the next chapter, we will amiplify and further
develop this possibility. If the invisible sector is taken to be the inflaton fleld. we have
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the advantage of another available parameter which gives more freedom for satisfying
simultaneously present and primordial requirements. Bounds on generalized inflationary

models will be presented in the last chapter.,

We have also reported some attempts to relare extended inflation models with a fun-
damental theory. String theories are a good candidate for supply generalized scalar-tensor
gravity theories: upon reduction to four dimensions we find a scalar field coupled to the
curvature scalar of the four-dimensional metric and directly coupled to non-gravitational
sectors. Nonetheless. inflation from strings is not very promising: a general result is that
there is not enough inflation, nor standard, nor extended. Although some positive results
are found when introducing two scalar fields from the gravitational sector. On the other
hand, one may ask if a JBD theory is obtainable from higher-dimensional theories. In
spite of the characteristics of the dilaton field in four dimensions, its couplings with the
non-gravitational sector do not correspond to a Brans-Dicke field. Allowing for general-
ized couplings. we can avoid this problem, yet the predictions of the model are found to
be in contradiction with present bounds on the time variation of gauge couplings and of

the gravitational coupling.

-)
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Chapter IV
Generalized Dilaton Couplings
to Dark Matter

Introduction

Inspired by these “generalized extended inflation™ models, we work with the most
general couplings between the JBD field, or dilaton field, and the conjectured dark matter
component, i.e. we extend the DGG model allowing for arbitrary m and n in the dark
matter kinetic and potential terms [59]. We work in two conforsnally related frumes: the
Jordan (physical) frame and the Einstein one. We obtain the field equations and their
attractor solution, considering the dark matter component as an invisible perfect fluid
which gives the dominant source to the universe expansion. We discuss how to implement
this model in a Lagrangian formalism and argue that a natural choice of coupling constant
would actually exclude the DGG model. Finally. the potential for the scalar field acting as
a dominant perfect fluid, is presented. This could correspond to the inflationary epoch or
to the present one and, in the context of a decaying cosmological constant, the same ficld
that dominated during inflation may dominate again in the present epoch if the energy

density associated with it redshifts slower than the energy density of matter and radiation,

IV.1) Model in the Jordan—-Brans--Dicke frame

We start in the Jordan frame from the gencral action of eq.(I11.2.4) adding to it the
contribution of visible matter fields throngh a Lagrangian Ly

@ 1 '
S = /d".r:\/wg[—ql]?v#-;f)y‘”’(?,,fba,,(l’-{-(2‘1’)"5(1“"6,.00,,0—~(2¢I’)'“l"(rf,n—r-L'l-‘ (IV.1.1)
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with n and m arbitrary parameters. Applying

_ 2 d=gL) 0L .
‘I}IU - \/::a ag‘"’ - “‘aguu ."] L’

to the matter Lagrangian L, = L+ 9 R, we obtain the energy-mamentum rensor, con-

taining contributions from the fields ¢, ¢ and from visible matter,

Tyy = %ia“@au(p +(2¢)"0,00,0 — gﬂuug“ﬁﬂu‘wﬂ‘p - %(Q(I’)"gwg“'if},,0030'-4}—

+(2‘I’)mg‘wl"(a) + T\’uu- (IVlZ)

From the complete Lagrangian £ we get the Einstein equations

1 1
TN + %(a‘,@aﬁl’ - §g,wg“"aa(b8ﬂ‘l’) -+ :I‘)(vav‘p - 4,,,0%)

+0—1¢;[( 2¢)"(3u00y0 ~ %9,”8006"0) +(28)" g, V(a)) (IV.1.3)

and the field equations

""«--—-w————m—--l y - -_ ( ) aﬂ — — ( )"l
D‘I’-—-2(2w+3)T'. F(n 1)2(2 +3)9 00,0080 — (m 2)9 +3Hm (IV.1.4)

BV(a)

(20)'0r = —2n(28)" "1 gD, 8,0 — (2B)" —— (IV.1.5)

with O = ¢**V,V,. With a (spatially flat) FRW line element with scale Zzctor aft). the

field cquations are

d*d dP

L aTIAMP = pv — 3py o n- 1 oL i{z 2 el w2
o T A= S5 T e oY) (G - T
_m- g.(‘)(ll)mV(a) (IV.1.6)
2o + 37 ! o
d*c do dd do nat L o=
apn{ =Y a2 A B T T Lt ¥ (et L o -
(28) (”2 +3HS ~a7?A 7) = 2n(20) (dt AT AT
ov
_*.(g(p}mma(a), (IV.LT)

where AP = 8,9,. Defining now the new JBD ficld variable ¢ = ! 29 . in order
to work with a conventional kinetic energy term, and considering spatially homogenecous

fields ¢ = (1), 7 = o(t). the field equations reduce to
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d?p dip dyp e~w/vo (n — 1)e(n~Dep/e do
;f.-t? +3H dt T (dt ) 20 (dt )
m — '(mwl}p/w _
__u‘:_____; V(a), ([V.I.S)
“o
d’c do  n dyde V(o)
ne/les el ______f__ = gl —_—
¢ (dt* t3H @0 di dt) © s (1V.1.9)

where we assumed that the visible matter is described by a perfe

ct fluid with energy density
Pv. From Eq.(IV.1.3) the Friedman;

2v and isotropic pressure Lequation follows

3H"=e““”""°9v+-21-(1 > )(‘;‘;’ _%% 1.n- nwm(jf:)

+e(m-”¢/ﬁ°°v’(a). (IV.1.10)
Since in the Jordan frame the visible mat

ter has no couplings with t),e JBD field, it
satisfies the stand

ard conservation law VT

= 0; in our case only the g = () component
matters,

doy
dr. = ~SH(ov +py).

-TI;w =" p/wo(auaauo' - "g;wa ”apg) -+ !]uuemv/;u (a).

) (1171.12)
the energy density and isotropic pressure can be ohtained
Y 1 / do mep/
o1 = Truty? = Zone “’“( + eM¥P/va V(a),
2¢ dt s
1 | o (IV.1.13)
= _ " huy = LpNele — oM@/ po 1,
PIE kT, < 5 o((ﬁ el (g,

We are implicitly: assuming that both the

visible
in the FRW metric,

and dark matter compotients

are at regt
\Ve can then rewrite the 7 fie

Id equation as 5 conservation law

doy _ 1 dp
i T T3H(or + pp) + 5;:-—[("2 = n)er~(m -+ n)p,).

(IV.1.14)
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We can also rewrite our Eq.(IV.1.8) and Eq.(IV.1.10) in terms of the invisible fluid

d?p _1_((1.,;)2 SHE!f- _e¥/vo

lov =3py +(n—~m+1)gs+(n+m-3)pg]. (IV.1.15,

" o \dt dt — 20
2 Yo 3 \(de\? _SHdy o ;
3 = 5(1 Q(pg)(dt) Goar T ev e (I¥.1.16:

Equation (1V.1.16) (Friedmann equation), Eq.(IV.1.15) (JBD field equation), Eq.(IV.1.11.
(energy conservation for the visible matter) and Eq.(IV.1.14) (energy conservation for the
dark matter component) completely describe our physical system., We will therefore define
the generalized couplings of the JBD field to an invisible fluid with energy density p; and

pressure py through these equations.

Let us now consider the universe dominated by the invisible fluid, assumed to obey
the equation of state pr = (y5 — 1)ps, and neglect py and py. In terms of the variables

y = dyp/dt and H, the system of Eq.(1V.1.16), Eq.(IV.1.15) and Eq.(IV.1.14) reduces to

%:3;:1’{24-3(:‘;-‘;—-1)11;/— %+§(1—?gg)]y2. (IV.1.17)
L L)a 4 5-;-5(% 31~ 3. ) Hy
(1~ Ef;g) (-2 L), (IV.1.18

where ut = [2(2 — m) — 4;(3 — m — n)]/2pp. The dark matter energy density is given by

3 1 3
91=6¢/P°[3H2+-—-H —--(1—-—-“)12]. IV.1.19)
po 0T T )Y (
From now on, we work with this system of equations ((IV.1.17), (IV.1.18) and (IV.1.10
since we consider that it correctly describes our Universe during the two epochs we are

interested in: inflation and the present epoch with a dark matter dominating component.

We will solve it and compare its predictions with observational bounds.
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IV.2) Model in the Einstein frame

The system of equations (IV.1.17) and (IV.1.18) can also be obtained, following DGG,
by working in the Einstein frame and then transforming back to the Jordan one. The
action in the Einstein frame can be obtained from that in the Jordan one by performing
the conformal transformation (IIL1.2) g4 — §uw = exp(@/90)gun Of course. the visible
matter Lagrangian is also affected by the transformation, The complete action is then that

of Eq.(I11.2.6) with the addition of the visible matter contribution through the Lagrangian

-

Ly
fd‘a:\/ [— =+ 09“”3 POy -+ —;—e'N"”g“"B,‘aa,,o — e MeV(o) + fy] (11.2.1)

(with N = (1 =n)/po, M = (2~ m)/ipe and py = y/w + 3/2). As in the Jordan trame we

define a matter Lagrangian from which the energy-momentum tensor follows
Ty = Oupdyp + €~ N%0,00,0 — 2005000 — 2e~N90,,0,00"
uv = dupldyy + € uoo,a — éguu PP P — '.é'e JuuOpo0"a

+9uu‘5-M‘PV(J) -+ TV;w (IV.2.2)
Here and in the following we drop the tildes unless we compare quantities in the t wo frames.

The field equations read
Op = —~Ne=Neg9,00,0 + MeM¥V(a) + é—;—Tv. (IV.2.3)
a

~me V()

ﬁnN(kaI —_ .\-f_‘\]vg“ya”‘paua Ll 4 aa

(1V.2.4)

while the Einstein equations take the standard form with the r.is. provided by the
energy-momentum tensor of Eq.(IV.2.2). With spatially homogeneous fields and a FRW

line element these equations reduce to

d? d “Muarr . Ny dG’ i . o &
7 +- 3H-X o = Me "¢V (o) ~ T(dt) ﬁ(gv —3Ipv), (IV.2.5)
d*a do dp do MOV (o)
"‘x\rkp —_ M‘P_____.
e ("'"'dtz +3H T - N dt) —e o, (IV.2.6)
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17dp\? | 1 _yo(doy?
31 = 5 () +5¢7(5) +e Vo) +ov. (1V.2.7)

Under the conformal transformation, the proper time, the scale factor, the energy density
and the pressure transformn as df = exp(p/2p0)dt; @ = exp(p/2p0)a; § = exp(—2¢/po)e;
P = exp(—2p/po)p. We can therefore transform Eq.(IV.1.11) to the Einstein frame and
obtain

dov

1 dy
— T — . — mo— it — Y, I 2.
7 3H(pv +pv) 500 5 (ev — 3pv) (IV.2.8)

Taking the o field as an invisible fluid, from its energy-momentum tensor, we obtain its

energy density and isotropic pressure

2
or = Effw“"(fl—a-) +e"MeV(0),
2 dt Iv.2.9)
= .1. ~N¢(fiﬁ)2_ ~Mey (s
Pr=5e o € (o).
The o field equation, written ns a conservation law, reads
d 1d
2L = ~3H(g: + pr) - 550 1e/(M = N) = pi(M + V). (IV2.10)
and in terms of the invisible fluid, equations (IV.2.8) and (IV.2.5) take the form
s lrdpy\?
31 = 5(F) +ev+en (Iv2.11)
d?y dp 1 1 . ,
~i7 + 3H—E = '27‘0"(;(9&' —-3pv)+ -é[g;(M — N} = pi{M + N} (1V.2.12)

In a universe dominated by the invisible fluid, with equation of state py = (+; — 1)g;, the

system of Eq.(1V.2.11), Eq.(IV.2.12) and Eq.(IV.2.10) reduces to

) (&) - =
ffﬁ‘{i = -~3H(:1—"t2 +p[3H? - %(%)2] (IV.2.14)

with ¢ = M ~ (M + N)/2. The dark matter energy density reads oy = 3H* —
(1/2)(dyp/dt)?. The two equations (IV.2.13) and (1V.2.14), transformed back to the Jordan
frame, reduce to Eq.(1V.1.17) and Eq.(IV.1.18), respectively.
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IV.3) Dark matter as a dominant invisible fluid

a) Attractor solutions

A study of the phase space of the system of equations (IV.1.17) and (IV.1.18) shows

that there are three invariant lines: an attractor solution:

H = 2— 91 — Bl 41
pE+ 3yl ;ZJ/?) — #/po (IV.3.1)
VS AT S ) il
and two repeller solutions:
o e O
(2po)=! £3(6)~172" (IV.3.1a)

1
= t
YT o) T £ 3(6) 1T

This behaviour can be seen in the phase portraits of the dynamical system, in figures (IV.1)
and (IV.2), at the end of this chapter. The critical point of the system is located at the
origin of the H-y plane. The external arrow indicates the attracting line solution (IV.3.1)
and small arrows on the trajectories show the time direction. On the diagram it can be seen
that points in an important region of phase space tend asymptotically to the attracting line
but the critical point is not a universal attractor for the system. Regions separated from the
attracting line by a repulsive line (IV.3.1a) do not tend asymptotically to solution (IV.3.1),
meaning that not all solutions of the system have a power-law behaviour. Figure (IV.1)
has been drawn for the dark dust (47 = 1) domination case and fig. (IV.2) corresponds to

an inflaton field (y; = 0).

Note that Eq.(IV.1.16) and Eq.(IV.1.17) and their solutions Eq.(IV.3.1) reduce to the
corresponding ones in DGG ([I1.1.5, II11.1.6, II1.1.7 and I11.1.8) when m = 2n, with
Bv = 1/2¢zq. 31 = (1 —n)/2p0 (our ¢ field corresponds to DGG (—o) field). Moreover,
our results can be obtained directly from theirs if the replacement (4 — 395)3; — p is
performed in their equations.
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The time evolution of the JBD field and of the scale factor are easily obtained from
(1v.3.1)
t
P =gln+e
! (1V.3.2)
a = a(i)!
i y
where t;, v, and a; refer to the initial time of invisible matter domination and f =
f(nym, 1) = Ht; g = g(n,m,y1) = yt.
The gravitational constant measured in time-delay experiments is G = (2w +4)/(2w +
3))(1/16n®), the time-variation of G is therefore related to the variation of ® hy: GQ/G =

~&/®. Assuming that the universe is close to the attractor solution we can write

dinG 1 2

dint ~ o p2 + 3vi(1 = 71/2) - pfen’

Note that if py = pr/3 (41 = 4/3) the expression for the rate of change of the gravitational

(1V.3.3)

constant reduces to

dnG 6(2n — m)
dint = 1202+ (2n—m)(2n —m - 3)’

(1V.3.4)

which vanishes only in the m = 2n case: the gravitational coupling continues to change
along the attractor solution even if the universe is dominated by an invisible radiation
component, unlike the standard case, where the JBD field couples to other fields only
through the trace of their energy--momentum tensor. In this respect we mention that
a modification of the JBD theory has been proposed [86] that takes into account the
gravitational effect of electromagnetic radiation from a Machian point of view. For this
purpose, the source for the scalar field ¢ has been taken as p + 3p (like the source for
the gravitational field in general relativity) instead of the energy-momentum trace p — 3p.

Both theories coincide during dust domination.

Assuming that the Universe today is matter dominated, which implies p; = 0 (y; = 1),

we have that the variation of G at the present time is

dinG _ 414 n—m)
dint = 622+ (1+n-m)(n-m-1)

85

(IV.3.5)



and the Hubble parameter

_ o3 - 201+ n—m)
T b+ (l+n—m)n—m-1)

¢!, (1V.3.6)

These quantities can be compared to the observational limits and it will be done in chapter
V1. On the other hand, it is interesting to note that on the attractor solution, with a
particular coupling (m = n -+ 1) of the JBD field to dark matter, the presence of the scalar
field seems to have no effect on the Universe behaviour: dinG/dInt =0 and Ht = 2/3, as
in the standard cosmological model, And if we ask for this particular coupling in the DGG
case m = 2n (n = 1 and m = 2), it comes out, in the Einstein frame, that N = 0 and
M = 0, so that the w parameter completely disappeurs from action (IV.2.1) in the dark
matter sector. Going from the Jordan frame to the Einstein one, the coupling between the

JBD field and dark matter seems to disappear.
b) Dark matter Lagrangian

So far we have defined our generalized dilaton-dark matter couplings only through the
set of equations that governs their dynamics, eq.(1V.1.14}, eq.(IV.1.15) and eq.(IV.1.16).
One would like, instead, to write down a Lagrangian containing the explicit couplings
~ between the invisible matter field and the JBD one [59] similarly to what is done for the
DGG model through eq.(I11.1.1). This is obvious if ¢ is a neutral scalar field o whose
self-interactions are described by the potential V(e): in such a case, in fact, our recipe
would just reduce to the action of eq.(111.2.4), with general parameters m and n. It is much
less obvious if the dark matter component is represented by a petfect finid, the problem
being that. in the latter case the Lagrangian, which is just the isotropic pressure (see, e.g.,
ref.[60]), cannot be explicitly written in terms of the ficld variables and the metric tensor.
However, it has been shown in Ref.[61] that, in the particular case of an irrotational,

isentropic perfect fluid with equation of state p/o =y — 1 = constant, one can write

1= 1(gpua"?/)a"d‘,)"r/?(‘r“”_ (IV37)

‘Cﬂuid = p[k‘!’!giw] =
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where the real scalar field + is the velocity potential, defined by
uf = (g7 8, 0, p) " g™ D, (1V.3.8)

The main limitation of this approach is that it is not suitable to describe a fluid of dust.
since, in such a case, the Lagrangian would identically vanish. (Other approaches are
possible, which overcome this difficulty, see, e.p., ref.[62]). Restricting our analysis to the
41 # 1 case we can use the Lagrangian of Eq.(IV.3.7} for our purposes. Noting that the
formal change 1 — f1/0y — [2m — y1(m + n)]/(4 — 3vr) maps the DGG maodel into ours,
and using Eq.(I11.1.1) and Eq.(IV.3.7), we arrive to the following action functional for the

invisible matter component

St “"fd"“’\/:?p[qb:,yw,‘l’l =
= /d41‘\/'-——§ :” 1

Vi

(1V.3.9)

(2(1))'1;(1714-11)-21’!1 (g;wapl‘blavwf)j;/?(',;--l}}

which reduces to the DGG meodel for m = 2n and to the standard perfect fluid one in the

JBD case, m=n =0,

This clearly shows that, at least in the constant p;/o; case. there is a unique com-
bination of the parameters m, n and ;. namely ay = v;(m + n) — 2m playing the role
of dilaton-dark matter coupling constant. [t seems rather unnatural. however, that the
coupling constant depends upon the fluid equation of state; note that this is also true for
the DGG model. The only case in which a; has the desirable feature of being equation-

of-state-independent is when m = —n, which would then exclude the DGG case.

¢) Dark matter potential

From the Friedmann equation (IV.1.10) and the Jordan—Brans-Dicke field equation
(IV.1.8), neglecting the visible matter contribution and substituting the attractor solutions

(IV.3.1), we find the tine variation of the potential for the “invisible™ scalar field

Vie(t)] = Zt¢ (1V.3.10)
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with
¢= 2= pop? + (2 — m)u — 3v1(1 = v1/2)po]
pop? — p+ 371(1 = v1/2)p0
g1y B 2P =3
270 = pfoo + 3yl - 71/2)
e(l-m)t,a.-/gagti Wm—Dplgop® —u+371 (1= /2)p0] !

(we remember that ;¢ was defined as u = [2(2—m)+7(n+m--3)]/2p¢)). Finding the time
dependence of ¢ from the o—field equation (IV.1.9) allows to write the effective potential
that makes the scalar field act as a dominant invisible fluid. Assuming a solution of the
form

o = Bt’, (IV.3.11)

it comes out that 3 and B are:

_ (1 —n)u
op? — p -+ 3v1(1 — 71/2)

and

-

B = .u_’_Q{(2 — D)2 + (M~ 2)p + 9ol l = I [3(yr — 2)* ~ 242 }
H [~ w20 + (n = L} + 6ol — 71/2)?]

E(l-—n)-,a.'/’chot(_""1)#["70#2”4"*'3‘”‘ L=1/2)w0)"!
i .

Finally, the potential V(o) can be written as a power-law of ¢, depending upon the

parameters m and n and the equation of state ()

Z

= 2(n-=1)" Yo+ m =243 (=51 /2)ypa /1 : n
= FEi=mi—m=p-1° ’ 1T mielve (IV.3.12)

Vi)

or, substituting g and p2y:

Vie) U‘u(n-—l)"‘{n+m-3+3(2—1;)(2w+3)[2(2-m)+11(n+m—-3)]"‘}. (IV.3.13)
Assuming that at the present time the invisible fluid dominates, with equation of state
p =0 (47 = 1), the o-potential reduces to

Vo) x O,(n-—l)"[ﬂ+m-3+.'l(2u:+ll)(n~—m+l)"]. (IV314)
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It may be of some interest to exhibit explicitly the evolution for the o-field and its potential

in some special cases, in which the exponent takes a simpler form:
. . . e 2 1—=m)? {n 4 Geog — 31— ek
* with m = 2n, as in DGG original model, o x 1=/ {(n"+6va=1) an V(o) x @ - g=e]

*for m = n = 0, i.e. the standard JBD model with dark, dominating matter. we have

o o t¥(6¢0=1) and V(o) o g~ 08w,

These potentials decrease as o increases, for w > 0, and if they are non-zero at the end
of inflation and apply up to the present epoch, they give rise to models with a decaying
cosmological costant [63]. In such models, the scalar field that drove inflation has a poten-
tial with a power-law tail at large o: V o« 07, acting like a cosmological constant that
decreases toward the “natural value” A = 0 less rapidly than the energy densities of matter
and radiation. This could happen if the inflaton energy density hiad been converted only
in part to entropy at the end of inflation, leaving a part decreasing much more slowly. If
there is any non-zero cosmological constant at present, the model allows a relation between

A and the energy density that drove inflation.

In order to avoid affecting the usual nucleosynthesis theory, the assumption p, <
Pordinary matter at that epoch, has to be done, and, in this sense, a cosmological constant
A or a rolling, homogeneous scalar field very weakly coupled to ordinary matter are good
candidates as they resist gravitational collapse up to large scales and dominate the energy
density only at low redshifts. This assumption is indeed present in all the models with a

time-varyving G.

The constraint placed by experiments ~the Eotvos-Dicke experiment that probes the
independence of the acceleration towards the sun upon the material- is that the scalar

field can only be exceedingly weakly coupled to ordinary matter.
e) Inflationary epoch

Turning to the inflationary epoch, the potential (IV.3.13) can be considered of the
chaotic type, in the sense that it is a rolling potential, with no local minima. The most
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general power-law inflation is obtained by requiring;

21— pufg
12+ 371(1 — 71/2) = ppo

in a oc /(") On the other hand, imposing the standard requirement for first-order

f(nam17f)5, >1

inflation y; = 0, we obtain a constant effective potential since its exponent (in IV.3.13)

becomes zero

9 — 2 _
V(o) = 2C ’1”)_(?:0 1) gt1-myefooy=200,

The n parameter, i.e. the one that is present in the kinetic term, cancels out in the
solution ~as we should expect, since the kinetic term is usually taken to be negligible
during inflation— and we recover the generalized extended solution considered so far in the
literature [40], [45]: a power—law expansion with

2w4+m-+1
flw,n,m) = 2-m)(1-m)

Conclusions

We have considered a scalar-tensor theory of gravity, in which, in analogy with the
so-called generalized extended inflation model, two parameters determine the couplings of
the dilaton to the invisible matter sector. Assuming that the invisible sector is a dom-
inant perfect fluid, we have found the attractor solution for the system, along which we
have derived the evolution of the gravitational and the Hubble parameters. We have also
been able to write the potential for the dominating invisible fluid and the dark matter
action functional containing the explicit coupling to the dilaton field, from where a special

coupling seems to emerge.

A new aspect of this model is that the JBD field, and therefore the gravitational
constant, varies with time even if the universe is dominated by a dark radiative component,
i.e. by a fluid whose energy-momentum tensor has vanishing trace. It is not so in the

original JBD model and in almost all subsequent generalizations.
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Figure V.1

The H and y trajectories in phase space
for the parameters: 0=10, Y= 1,m=1,
n=2. The arrow indicates the attractor
solution (IV.3.1).
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Figure IV.2

The H and y trajectories in phase space
for the parameters: w=10, y=0,
m=12, n=0. The external arrow indicates
the attractor solution (1V.3.1).



Chapter V
Density Fluctuations
in Extended Inflationary Models

Introduction

Dealing with inflationary models imbedded in scalar-tensor theories of gravity. we have
the following ingredients for seeding the Universe structure: the quantum fluctuations of
two scalar fields -the inflaton and the JBD field- and three types of density perrurbations:
adiabatic perturbations, produced by the field with dominating energy, isothermal pertur-
bations, associated with the fluctuations of the subdominant field, and inhomaogeneities
resulting from the bubbly structure of the Universe emerging from the phase transition,
Then, different possibilities arise for the subsequent evolution of the Universe. depending
on which field has the dominant fluctuations and which field is mainly responsible for the

reheating of the Universe,

As it is already known {18}, power-law inflation leads to a fluctuation spectrum which
slightly deviates from scale invariance, introducing more power on large scales. This is an
interesting result since, according to some observers (see e.g. the A.P.M. survey by Maddox
et al. [64]), a perturbation spectrum with more power on large scales than the scale-
invariant one seems to be required to be consistent with large scale structure, Nevertheless,
it has to be noticed that the COBE DMR results [65] do not seem to suggest such an
excess power. On the other hand, the presence of two fields in extended inflation models,
introduces another possibility for designing the fluctuation spectrum: a range of scales of
cosmic stuctures can be associated to the fluctuations of one field and another part of the
spectrum may correspond to the other’s field fluctuations. This could happen in a double
episode inflation, or in a scenario where a weakly interacting, initially subdominant field,
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lately dominates because its energy density redshifts less than matter and radiation.

The problem of fluctuations may. in principle, be addressed in either of the two confor-
mal frames -Jordan’s or Einstein’s- but the most direct approach is in the Einstein frame.
In this frame the JBD field is minimnally coupled, has a standard kinetic term and, under
some conditions, plays the role of a slow-rolling inflaton, for which there already exists
a standard procedure for computing density fluctuations. The inflationary potential for
the JBD field is supplied by the potential of the original inflaton field multiplied by an
exponential term in the JBD field resulting from the conformal transformation. The re-
sults will be easily transforined back to the original frame at late times, when both frames
practically coincide. In the Jordan frame, we have the presence of two ficlds but, as long
as the inflaton is trapped in the local minimum of its effective potential, the JBD field will

automatically have the dominant fluctuations.

In fact, the generalized models do not introduce any new ingredient in this topic since
structure does not arise from fluctuations of the inflaton, which is the sector that carries
the generalized couplings. Some care must be taken, anyway, in order to preserve the

inflationary conditions: some constraints must be imposed on the parameters of these

models {45].

This chapter begins with a review of the basic ideas about density perturbations from
inflation. In section (V.2), 1 report and compare the results obtained for extended infla-
tionary models of perturbations arising from scalar field quantum fluctuations and, briefly,
from the bubble distribution. Finally, I further explore the generalized models and the

scenario with a mass for the JBD field, during and after inflation.

V.1) Review of quantum fluctuations and density perturbations in theories of

inflation

The fact that inflation exponentially stretches spatial dimensions, suggests that density
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fluctuations that are at the origin of large scale structure, may come from microscopic zero—
point fluctuations of the quantized fields. The main idea of the theory of generation of
density perturbations in inflationary cosmology would be that the stretched, long wave
fluctuations of the scalar field transform at a later stage to perturbations of the density of
particles that were created during the decay of the inflaton field. In a rather direct way,

the development of density perturbations can be viewed as:

bp _6V(g) _ (0V/0p)ss
p V(¢) Vig) ’

that means that, a fluctuation in the inflaton field results in a fluctuation in the Universe

(V.1.1)

energy density since the inflaton potential is the dominating energy during the inflationary

stage.
a) Scalar field quantum fluctuations

When the Universe is expanding faster than the horizon growth, as it does in an infla-
tionary regime, the wavelength of a fluctuation becomes greater than a causally connected
region and causal microphysics do not operate anymore, so the fluctuation amplitude
freezes at some nonzero value §¢(x) i.e. it remains almost unchanged for a long tine,
until it reenters the horizon. Such a frozen fluctuation is equivalent to the appearence of
a classical field 6¢(a) whose average over macroscopic intervals of space and time, do not
vanish. The equation of motion for a scalar field in the background of a de Sitter metric is

S+3HG— P24 = —%%. (V.1.2)

If we want to consider the possibility that the scalar field undergoes small inhomogeneous

quantum fluctuations, we may write
o(X. 1) = oolt) + 6é(x, ). (V.1.3)

where ¢p(1) is the classical homogeneous field which obeys to the equation

1%

C.';u +3H00 = —'a'%,

(V.1.4)
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and the quantum fluctuations d¢(x,t) imposed on the classical solution ¢o(t) satisfy the

equation

V(o)
O

that is obtained substituting (V.1.3) into {V.1.2), using (V.1.4), and retaining terms linear

6 + 3HbEp — "M% b0 = 5, (V.1.5)

in §¢. The amplitude of the field fluctuations can be estimated by quantizing the scalar
field in de Sitter space ([66], or see e.g. 5}) decomposing the field fluctuations into their

Fourier components
bd(x,t) = (2m)~*/? / p [af ¢p(1)e'P* + ag pr(t)e™P] (V.1.6)

where p is the, time-independent, conformal momentum and a,‘f, a, are creation and

annihilation operators. For a (nearly) massless field {m <« H), with a flat potential, the

equation for ¢,(t) rends:

dolt) + 3HB,(t) + pPe™2H,(t) = 0. (V.1.7)
Solving for ¢,(t):
- 2il P _‘_E —Ht ’
¢p(t)— W (1+ ;’ﬁ"é )exp He y (‘18)
we can estimate the field fluctuations
a1 ap. 1 e~ HN
(60 = s [ 150 = / ( o+ 4 ) (V.19)
whose interpretation becomes clearer in terms of the physical momentum k = pe~H* (which
decreases as the Universe expands)
1 d*k (1 H?
- dk (1 H? .
((60)°} "('zn)“/ k (2 i zk'z)' (V.1.10)

The first term 1s the usual contribution from vacuum fluctuations i Minkowski space

i H =0} and can be eliminated by renonnalization: the remaining term

Y 1 (.']‘lk IIE .
(54) = oo / " (%2) (V.1.11)
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is directly related to the inflationary regime. The main contribution to the average devia-
tion of the field ¢ from its homogeneous value ¢y comes from the long-wave fluctuations,
which are, at the same time, the important ones for seeding structure formation. So,
restricting our attention to wavenumbers from & = O(H) to a kpyin = He !t which cor-
responds to a long-wave cut-off due to the fact that intlation starts at a finite time ¢;, this
deviation grows as

H3t

((607%) = 1 (V.1.12)

The source of this growth is the contribution of newborn fluctuations, stretched by the
expansion to wavelengths bigger than the horizon. Of more interest for the characterization
of the perturbations spectrum is the field fluctuation power on each scale k defined as the

contribution to ((6¢4)%) in a given logarithmic interval in &:
2 3 2 dk 2
(687) = [ @180 7= [ Riagn. (V.1.13)
From a direct comparison of equations (V.1.13) and (V.1.11), we obtain
(AP)E = k3|6k|* /272 = (H/27)?, (V.1.14)

which is a scale-independent quantity, since H & const. during inflation. The fluctuation

can also be calculated taking into account, the field mass, with the following result (see e.g.
[67]):

| H k m?/3H?

and this coincides with the previous expression (eq. (V.1.14)), provided that m? <« H?.
So, any effectively massless scalar field will have fluctuations of order H/2r imprinted upon
it, on all scales, as they cross outside the horizon. By effectively massless we mean a field
whnse mass is smaller than the amplitude of its fluctuations H/2m; this will be gencrally

true since inflationary potentials arc very fiat.

From the solution (V.1.8), it can be seen that a “freczing” of the amplitude of the field
$p(t) occurs when the physical momentum k, for any mode, becomes smaller than H.
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The leading effect of quantwn fluctuations of the scalar field is to alter the time needed
for ¢g(t) to reach the minimum of the potential, so that the transition from de Sitter to
Friedmann expansion starts at different times in different regions of space. At large times
(t > H™'), the term with spatial derivatives in equation (V.1.5) becomes negligible and
d¢(x,t) starts to satisfy the same equation as $o (compare eq. (V.1.5) with the time
derivative of eq. (V.1.4)). Therefore, since the solution to the equation is essentially
unique,* the ratio between these two quantities approaches a constant. The proportionality

constant may depend on x and has time dimensions, we may then write

5d(x,t) = —Bt(X)da(t). (V.1.16).
Thus, to linear order in 64, eq. (V.1.3) can be written as

$(x,t) = do(t) + 8¢(x, 1) = do(t — bt(x)) (V.1.17)

and 6#(x) can be interpreted as a time-delay (position dependent) function for the evo-
lution of @o(t). Since the oscillations of the scalar field in its potential minimum result
in the production of radiation and particles, this inhomogeneous time delay results in

inhomogeneities in the mass density of the Universe.

b) Density perturbations

The density contrast can be expressed in a Fourier expansion:

Sp(x,t Bk - )
5(x,t) = J’..(_:...l = /é—;)—abk(t)e“""", (1.1.18)

and its r.m.s value can be caleilated averaging over all space

B0 L s(x, )6(x, 1) V12,

p

* ‘This can be easily proved if one notices that, at large times (t 3> H™'), the Wronskian vanishes
“V(C?.ﬁn, 6(;5) = LV()C“SIH ~ (.
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yielding

() -] (52
P pJy k'

where we have defined the density fluctuation power per logarithmic interval (0p/ p)'i. =

(272) Y | 6 12

In order to translate scalar field fluctuations at the inflationary stage into density
perturbations that develop later, when the Universe is filled with matter and radiation,
we have to relate quantities that correspond to different epochs. To this end, we work at
the transition time between the inflationary and radiation dominated regimes, assuming
that the transition takes place sharply at time ¢y, A variety of methods have been followed
to treat the problem, with agreement about the answer. I shall present here a rather

simple reasoning that reproduces the correct order of magnitude result and more rigorous

treatments can be found in {68).

At late times, after the phase transition from de Sitter to FRW regime, i.e. at & > iy,
the Hubble parameter is given by H = 1/2t. As we saw in the previous section, there
is a fluctuation in ¢y, and therefore in ¢, of order 6¢t(x) (eq. (V.1.16)). This time shift
can be related to a perturbation in the expansion rate: 6H = —(1/2)t728t = —2H?é1.
Inhomogeneities in the expansion may in turn be related to fluctuations in the energy

density through the Friedmann equation: 8p/p = 26 Hf H. This results in
—— = —4H§l(x). (V.1.20)

Therefore, once we have defined the retardation time at each point through eq. 1V.1.16),

we can substitute it in eq. (V.1.20) to estimate the resulting fluctuation density:

bp _ HS$ (V.1.21)
r $o

Decomposing in Fourier components on both sides, this relation can be written for each

mode as

4H(t)
dolt)
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and, from this equation, the contribution to (8p/p)? from a unit logarithmic inmerval in &
is found to be related to the field fluctuation power by
sp\* . HY .
(—f’-) =16=—(Ag)}. (V.1.23)
P/ Kk o
Introducing (V.1.14), we finally have

() 20 v
iy ke Wq'to(t)

Expression (V.1.14) is accurate only for small times, when the potential term is negligible
and the fluctuation is still not subject to unstable growth, at late times the behaviour of
d¢(k,t) should had been determined using its complete equation of motion. On the other
hand, the time-delay function is accurate only at late times, when the spatial derivatives
become unimportant; however, both results should be rcasonable estimates at the time of
transition between the two regimes. So, matching two results at the interphase of their
validity domains and assuming that the phase transition is instantanous, we can obtain a
relation between the scalar field fluctuations and the density perturbations. The quantities
on the right hand side of the previous equation correspond to the inflationary regime. when
the scalar field fluctuation becomes larger then the horizon and is frozen in as a classical
field (so that the field fluctuation is treated as a classical object), while the density contrast
refers to the radiation dominated epoch, after the decay of the inflaton field into matter
and radiation. A more rigorous calculation shows that the quantity in the left hand side
should strictly correspond to the density contrast when the A-modes reenter the horizon.

Therefore, the correct result at the horizon scale is

2
(‘fﬁ) _o
/7 hor 2“‘150

where C = 4 or C' = 2/5 if the mode k reenters the horizon wlhen the Universe is radiation

] (I’.IQS)
k~H

or matter doninated (see e.g. [3]). effectively given by (V.1.1).

During inflation, H and o vary slowly, yiclding a very nearly scale invariant speetrum
of perturbations. Let us consider a specific potential for illustrating the dependence on

100



time, and hence on wavenumber, of the density contrast. With V(g) = —(\/4)¢?, typical
for many theories, and neglecting ¢ (i.e. with the slow--rollover condition) in the ficld

equation (V.1.4). the solution for ¢ is

4= (30 _1 1/
YT\t -t)

where ¢, is the time when inflation ends (actually, at large values of ¢, the potential differs

/

from the one we use here and ¢p does not tend to infinity). We can then calculate degy/dt
and, taking t = 2),,, substitute it in eq. (V.1.25). Thus,

bp 1/273/2 3/2

- ~ /\ H (te - thgr) .

P/ hor
In the time interval (¢, — tpor) & wavelength grows from H =1 to k~} = H~1etlte=thor) g0,

the density fluctuation at horizon scale has a weak k-dependence:

(@) ~ A2 312 (ﬂ) .
P / hor k

Nonetheless, it should be noted that if the inflating Universe were indistinguishable from
de Sitter space and the Hubble parameter and the field ¢ were really constant, the result
would be a far too inhornogeneous Universe. This is, in fact, the origin of the amplitude
excess of the perturbations in inflationary models: to obtain a nearly constant energy

density and sufficient inflation, ¢q is kept small and this tends to increase §p/p.

Density fluctuations can be classified, at early times, when they are super—-horizon sized,
as adiabatic and isothermal. Adiabatic fluctuations arise from scalar fluctuations of the
metric (different expansion rates in different spacetime points) in an initially homogencous
distribution of matter and are density fluctuations in which the ratio of matter density to
radiation density (pmat/prad) is not altered. They are possible when the matter radiation
interaction is strong. On the other hand, fluctuations in the composition of matter at a
constant total energy density are called isocurvature fluctuations. If matter density changes
slightly from point to point and radiation is left homogeneous, there are no temperature
fluctuations; in this way they are also called isothermal. They correspond to fluctuations
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in the local equation of state. So, the term isothermal fluctuation usually refers ro the case
where the ratio of baryonic matter concentration to radiation density changes, however,
it can also he applied to fluctuations of a field {connected with the hidden sector of the
theory) that interacts with usual matter only gravitationally and whose fluctuations do

not consequently alter the plasma temperature.

The field fluctuation amplitude H/2# is valid for the fluctuation of any effectively
massless scalar field; if we are dealing with the field o that drives inflation, the total
energy density of matter being peor = V'(o), then, the inhomogeneities of V(a), after its

decay, give rise to adiabatic density perturbations of pyoe ~ T:

éfl 6}"!0! 6T

po pProa T

Fluctuations in any other field, with energy p. < pinst ® pror, will not, initially, lead to
considerable perturbations of the total energy, nor to the associated metric and tempera-
ture perturbations. Such isothermal perturbations may become important at later stages
of the evolution of the Universe: if a ficld interacts weakly with other particles. it, or
its decay products, can eventually give the main contribution to the total energy of the
Universe. It will act as a decaying cosmological constant, as already suggested in chapter
IV, for the remnant of the inflaton field (see anyhow [69] for constraints on this kind of

models).

V.2) Scalar field fluctuations and density perturbations in extended inflation

models

Inhoniogeneities in the JBD field correspond to spatial variations of the gravitational
constant. The consequences of these variations and the observational constraints that can
be imposed remain to be dicussed in detail, but. dealing with density fluctuations, the
variation of G will be of interest ouly as long as it affects the expansion rate H.
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a) Perturbations in Standard Brans-Dicke Theory

As already mentioned, the expression for the fluctuation amplitude o = H/2x at
the epoch of horizon crossing, applies, in de Sitter space, to a minimally coupled scalar
field with standard kinetic term. The JBD field & has not a standard kinetic term and has
dimensions of mass squared but it can be written in terms of a field ¢ with usual dimensions
(mass) and kinetic term: ® = 27¢%/w. This is the field to which it seems more natural
to ascribe this fluctuation, although it will be strictly correct only in the limit w > 1,
where ¢ is minimally coupled. So, an even more natural approach is to analyze curvature
fluctuations in the conformally rescaled Einstein frame, where the JBD field looks like
a minimally coupled field with an exponential potential V(p) = M* exp(—2¢/p() and
hence plays the role of the inflaton in the context of a slow-rollover inflation [70]. From
then on, the usual formula for density fluctuations ép/p = aH?/$, is directly applied.
Lucchin, Matarrese and Pollock [74] have verified the application of this formula to power—
law inflation and found the constant of proportionality is o &2 2 x 10~2, The Huctuations
spectrum behaves as: 8p/p oc A'/P~1, where ) is, here and in the following, the wavelenght
associated to a perturbation and p is the power of the expansion law a x t?. The application
of the standard formula for the r.m.s. fluctuation of a scalar field, derived for de Sitter
space, to power-law inflation has been investigated by Abbott and Wise (31]. They have
shown that, in a general inflationary metric, the amplitude of scalar field fluctuations for
wavelengths well outside the horizon, can be written as: | Api [*oc £2/a®(ty.) « HE,,
where use have been made of the fact that the time of horizon crossing (sub-index he) is

defined by k/a(ty.) = Hpe.

Since the Jordan frame is our physical frame, we will have to transform this expression
back toit. Under the conformal transformation, the energy density and the density contrast

transform as:

p=(20)"p
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and
bp ép 215_?

AR X
At late times, the conformal factor 2@ —» 1 since ® = 1/2 when G reaches its present value
G (in units such that 871Gy = 1). The JBD field varies very slowly in a non-inflationary
regime, so, after inflation, the two frames are already approximately the same and the
density fluctuations in both frames coincide. In the Jordan frame, density perturbations
generated from the JBD field fluctuations are, initially, isothermal fluctuations since the
JBD field has prevailing fluctuations but makes an important contibution to the energy

density of the Universe only after the inflaton phase transition. From here on. we work in

the Einstein frame and omit tildes except when comparing quantities in the two frames.

The amplitude of density perturbations in extended inflationary models increases with

scale (70}, {72], (73}, {19):

(éf) = f(w, MOAVE'=D) = oo, MYM/@=D), (V2.1)
hor

where p' = (2w + 3)/4 is the power in the expansion law, in the Einstein frame: a o 7',
and, raising w, the scale dependence becomes negligible, as expected. This stronger scale
dependence a3 compared to the exponential inflation case can be found following the same
procedure as in section (V.1): solving eq. (V.1.4) with an exponential potential V() =
Mie—2¢/¥o and considering that in this case the wavelength grows as a power-law. In
fact, as the density perturbation spectrum is proportional to H?, one expects, in power-
law inflation models, perturbations leaving the horizon at earlier times to be lurger. This
means the spectrum has more power on large scales. The function f{w.M), where M
indicates the scale of the phase transition, differs somewhat from one author to another.

In ref. [70} it is

2w+3 l/2 {6&,"}‘5)(2‘.‘) 'I- 3) “2/(2““1) AI 2-2¢‘+l)j(2u—l)
6 R2rw?

f(w M) ~ 47r101l1()/(2w-1)
’ mpy
(V.2.2)
for A in eq. (V.2.1) given in Mpc: Aprpe = A/ Mpe = A 10738GeV. From this last
equation we see that, on one hand, the fluctuation amplitude diverges in the very large
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w limit because the effective potential goes to a constant and ¢ = 0, but, on the other
hand, it is lessened, if we increase w in the range of intermediate values. This expression
leads to interesting amplitudes ép/p ~ 10~* for energy scales of the phase transition
M < 10" GeV; while computing the associated temperaure fluctuations on large angular
scales (corresponding to scales from 100 to 10 000Mpc), with this value for M and, e.g.
w = 10, too large values are obtained to be consistent with current limits on quadrupole
anisotropy (AT/T ~ 6 x 1079, see [3]). Increasing w ~while still in the range allowed by
successful extended inflation- or decreasing M slightly ~as §p/p o< M? for large w, it is
very sensitive to variations in M- can remedy this problem. We do not have here the
possibility of fine-tuning the self-coupling constant, since the o potential is taken strictly
constant = M?; in (old) extended inflation models the fine-tuning falls on the Brans-Dicke
parameter. The fact that the spectrum behaves as a positive power of the wavelength is a
feature that might be useful in building models that account for the observed large-scale
structure of the Universe. Depending on the value of w, this can represent a very slight
increase of power at large scales, or a more substantial one. For w = 25, §x|pe oc AV08,
with w = 10, éx|ae < A%2, (with w = 500 the spectrum is, as expected, practically scale
invariant). Which, if any, of these deviations from the scale invariance could account for

the very large structures observed remains to be worked out in detail.

Now, if we want to compare the theoretical spectrum with observational data (that
are available from a much later epoch), we have to work out its evolution. From inflation,
we calculated the perturbation amplitude at horizon crossing, but this means that the
amplitude for different modes is specified at different times; for comparison with obser-
vations, we have to estimate the spectrum of perturbations at a fixed time, in particular,
at the epoch of decoupling, when the background radiation last scattered. As we saw in
section (V.I), the density contrast can be written for cach mode k: (8p/p)i = A% | & {2
Introducing the usual assumption that there is no preferred primordial scale, the fluctua-
tion spectrum is a power-law | & [2oc k*, implying n = —3 for scale invariance. In order
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to take the evolution of the perturbation outside the horizon into account, the processed
spectrum have to include an evolution factor &% (density perturbations outside the horizon
are gauge-dependent and hence not well-defined quantities; working in the synchronous
gauge, density fluctuations grow as A™2, keeping metric perturbations constant. see e.g.
[6]). The redefined fluctuation spectrum, | 8 |*= k™, will then have index ny = 1. All the
above mentioned exponents for \ are well inside the range allowed by COBE results for

the index of the primordial fluctuation power-law spectrum | 8; [?ox k™ ny = 1.1:£ 0.5

(3].

It is worth noticing that power-law inflation models with small p values, exist: a ~ t*
in wall-dominated inflation, in a model of broken symmetric theory of gravity, or a model
of Kaluza—Klein cosmology during the initial compactification of the D extra dimensions,

whose spectra can therefore be very far from the scale invariance [74].

Guth and Jain [72] have pointed out some subtleties of the procedure for the estimation
of density fluctuations that could question previous results. The main doubt is, of course, in
which frame the field should be quantized. Since the conformal transformation, transforms
the JBD field to a new field non-linearly related to the original one, it is not clear if the
results will be the same with both fields. But they do not attack this problem: they achieve
the calculation employing the standard formula in the Einstein frame, albeit avoiding some
of the usual simplifying assumptions. In this way, they find results that coincide with
previous ones for not too small values of w (R O(few)). The points they work on more
carefully relate to the evaluation time of the quantities envolved in the standard formula.
Even in the context of standard inflation, the formula for 8p/p is only an approximation,
matching quantities corresponding to different epochs, but here H depends on time more
strongly and any answear that depends on H must specify precisely the time ar which it
should be evaluated. Instead of using the standard approximation of slow-rollover. it is
possible, here, to evaluate @(t) by differentiating the exact solution for the evolution of the
scalar field. In fact, the assumption that ¢ is negligible must be taken with care for small
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values of w since:
" Hzt)
£y ~ —T -
P~ G ava

Also. a standard convention for the time of horizon crossing (at which the righr hand side
of the density fluctuation formula has to be evaluated) is Apnye = H™!, but. with a o t”,
H = nt™! and Appys = nH~', This would produce, through n (= 2w + 3/41. an w de-
pendent cotrection, enhancing the fluctuations amplitude. Incorporating this corrections.

the resulting discrepancy factor is near unity for values of w usually employed in extended

inflation (< 10).

The results obtained applying directly the standard procedure in the Jordan frame.
can be compared with the result in the Einstein frame [72], {70]. The answer in the Jordan
frame is smaller by a factor that is near unity and becomes large only for very small values
of w (~ 2—3). Anyhow, we do not expect the standard procedure to be applicable in the

Jordan frame, because of the non-minimal coupling.

Some work has been done [75] addressing the question of consistency between the
two frames, but only with near classical states. i.e. decomposing each of the dynamical
variables into the homogenecous classical background part and a small fluctuating quantum
part: ¢ = ¢, — d¢, where ¢, plays the role of G~! and é¢ is a dynamical field. Following
o Hamiltonian formalismn for constrained systems to extract the true dynamical degrees
of freedom and canonically quantizing the resulting system, they find that the quantum
part can be analyzed in either of the frames. since the conformal transformation will
induce only a linear transformation in the dynamical variables, so the amplitude of density
perturbations in the original frame coincides with the one in the Einstein frame. The

problem with pure quantum fields has not been addressed.

Seshadri quantizes directly the JBD field in the Jordan frame [76) for a mocdel in which
w varies with time (hyperextended inflation). It should be stressed, anyhow. that his
results are not so promising: density perturbations are large in amplitude and have a scale
invariant spectrum, implying further constraints on the model. Large amplitudes arise
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due to the large value of the parameter /7 contained in the expression for the « evolution:
2w+ 3 = 23/($: — ¢), which in turn is required for the source of the Einstein equation to
be dominated by the constant term. The value of 3 affects both the magnitude and the

spectrum of density perturbations.

Lidsey [77] works out the fluctuation spectrum for Extended Chaotic Inflation and
finds the same scale dependence as the spectrum of old extended inflation, from which it
can be seen that, as long as the inflaton potential is taken to be approximately constant
(V(o) = const), it does not affect the scale dependence of the spectrum, but does determine

the amplitude.

What about the o field (the inflaton in the original frame) fluctuations? In [70], it is
argued that the ¢ quantum fluctuations should be highly supressed because its effective
mass (=3 V; / %) is much larger than the Hawking-Gibbons temperature H /27 (temperature
associnted to de Sitter space due to the periodicity of the S* sphere obtained in the
Euclidean formulation, which gives the characteristic amplitude of fluctuations). This
however may not be true at the beginning of inflation, as the time dependence of the
gravitational constant (Geyy = e %/¥0 = (2¢)~!) leads to a Hubble parameter H =
(GessVy)!? larger than its general relativity value (GnVy)!/2. Comparing the mass m, of
the inflaton, defined by: m2 = V(0)/80)o ~ M? with the fluctuation amplitude H/2m,
using a roughly estimate for H:

H? ~ 8rpy, 8TMAG.ysy

36 3 == H ~ 2(21/3)/*(Goys)'* M?,

we have

f75n ~ (VGerM)™. (V2.3)
Since (G.sy)™' < m%,; dunng inflation and M <« mp; is required to ensure that the
JBD field fluctuations are acceptably small (as can be seen from eq. (V.2.2)). then m, >
H/2r. The strength of this argument of course depends on how small G _,1! can be at this
epoch and could be wrong, as we said, at the beginning of the inflationary period. These
estimations correspond to the Jordan frame, since it is in this frame where the o field
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has canonical kinetic term, but the ratio between the o-mass and the Hubble constant
should of course hold in the Einstein frame, using the redifined field and the conformally
transformed expansion rate H. The key argument for ignoring the inflaton perturbations
is rather that this field is confined to a passive role and then its dynaniics are irrelevant.
Deruelle et al. [78] calculate explicitly the contribution of the perturbation of the inflaton
and show that, to linear order, the perturbation of any field sitting in a local minimum
of its potential, and hence behaving as an effective cosmological constant, decouples from
the perturbations of the other fields, including the metric, and consequently the density.
To first order, the density fluctuation will depend on 8¢ alone (more precisely. to its
gauge invariant version) and the mixed terms in §¢ and do will vanish, precluding any
implication of the coupling of the dilaton and the inflaton on the initial spectrum. So, this
is the reason why, in old extended inflation, the o-field fluctuations can be ignored, and
not because they are suppressed. However, if one wants to allow for background inflaton
dynamics, in the form of tunnelling (old Extended Inflation) or of slow rolling (new or
chaotic Extended Inflation), inflaton fluctuations must be considered and the coupling of
the dilaton to the inflaton taken into account. In old extended inflation, the fact that the
JBD field is evolving while the inflaton is tunnelling and how to follow the production and
evolution of fluctuations during the bubble coalescence process are questions that have
not been adressed. Besides, the presence of two scalar flelds could lead to a scenario of

double-round inflation, with relevant fluctuations of both fields,

Two-field inflation models have already been considered [79], in which two scalar fields
are coupled together, one ficld rolling and the other trapped in the false vacuum, with
canonical gravity and kinetic terms. They suffer from the general problem of fine-tuning
of the coupling constant to keep the potential of the rolling field flat. There are two effects
that work in the direction of increasing the perturbations amplitude: first, H is cletermined
by the strictly constant energy of the infalton field o, so that it does not decrease at the end

of the inflationary epoch; second, inflation ends when the ¢ fleld makes the transition to
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the true vacuum, hence there is no need for the denominator on the right-hand side of the
density fluctnation formula (p) to be increasing at the end of inflation. In this approach,
the features of the effective potential V{o,) are: a barrier in the o direction (quantum
evolution), and a smooth rolling down for ¢ (classical evolution); for large values of ¢, the
barrier can be smoothed out as an effect of the coupling between the two fields. In Extended
Inflation models, if we introduce a potential for the JBD field and work in the Einstein
frame, we have a similar behaviour, The introduction of this potential is suggested, as we
saw, by observational requirements: if, at some time after inflation, a potential anchors the
JBD field at some value, the low energy limit of the theory coincides with Einstein gravity.
During inflation, this potential should be negligible compared with the energy density of
the inflaton field and is expected not to affect the inflationary Universe evolution. The
most simple potential is a mass term, and, in fact, the scalar field is expected to acquire
mass due to quantum effects: a primarily massless field emitting and absorbing quanta
of other fields will become massive, unless there is, in the theory, an invariance principle
that forbids mass. The interaction mediated by this field then beconies short range and its
influence at large distances becomes negligible. There is no difficulty from the experimental
point of view for modifying gravity at small scales: astronomical tests would not detect
it, If, introducing another ingredient, a symmetry breaking potential is chosen for the
(redefined) JBD field: V(4) = M? — ¢3) (equivalent to V(d) = dw(P — $y)?), we have
an induced gravity scenario [23], [73]. Let us explore the conscquences, during and after
inflation, of including a potential for the JBD field, considering also the JBD field evolution

after the o-field phase transition.

If the JBD field settles to its general relativity value before the inflaton has tunnelled
(and the barrier is not completely smoothed out), there is a phase of standard inflation,
with its inherent problem of bubble percolation. So, the o tunnelling must succeed first
and ® might evolve significantly after inflation, one should therefore keep in mind that
the value of ¢ at the end of inflation (®,) will affect the results for the amplitude of the

110



density fluctuations, enhancing it by a factor of (&, /mp))~ 2wt w112 if &, < m%,, as
calculated in {70). After the inflaton transition, there are a number of possibilities. As in
old inflation, the collision of bubbles should generate a hot fluid of radiation; if this energy
density dominates, the standard FRW cosmology is recovered. This could, however, not
be the case, since reheating due to bubble collisions is not expected to be very efficient
(see below). If, on the other hand, the JBD field potential energy dominates over radiation
produced by the inflaton decay, extended inflation reduces to some kind of chaotic inflation
and reheating really happens when the JBD field oscillates before settling, as in new or
chaoticinflation. In the case that reheating is efficient, with a symmetry breaking potential,
it could also happen that the ¢ symmetry is restored, leading to a round of induced gravity
inflation in the percolated region. We may then expect a second inflationary episode, after
the o phase transition, with an effective potential V() = ¢~2#/¥0 V5 p(e#?/#0). Depending
on the form of Vypp, V(p) may be an extended inflation type exponential potential (when
ViBD & const.), reduce to an effective cosmological constant, or even grow exponentially.
Here, if V() dominates, constraints on density fluctuations once again imply a small
value for the self-coupling constant A, entering in V(p). When V(¢) does not dominate,
we are still left with constraints on p, and V(p = 0). It is interesting to note that the
fine-tuning problems of the inflationary models are hardly eluded. It has been proposed
that, in a g chaotic inflation model with non-minimal coupling £R¢$2, the contraint
on A is substantially weakened if very strong non-minimal coupling is allowed. But one
cannot really say the fine-tuning problem is resolved since an unnaturally small A is merely

replaced by an unnaturally large £ (see e.g. [75], [80]).
b) Mass for the JBD field, picture in the Jordan frame.

The (#)~?! in the kinetic term was originally introduced by Brans and Dicke, to permit
w to be dimensionless since ® has dimensions of mass squared: {®] = [G™!] = [m*] . A
mass term for this field should be introduced in an analogous way and will have the form
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m?¢. Then, for a massive JBD field the Lagrangian reads:
1 .
Ley=-PR+ (g0, 0, ® — f(w)m}P?] . (V.2.4)

The equation of motion for the JBD field is a Klein—Gordon equation modified by the
expansion of the Universe (for f(w) = 2w -+ 3}

1 1

—e T — e 2
2w +3) Y 202 +3)

2 —
(D+m.p)q)—- % + 3

9*P8,0050 + V(a), (V.2.5)

and a cosmological constant term appears in the Einstein equations:

1 1
Ry - '2‘9:WR“" §f(“’)m2¢§w =

Tv By

1 1
—ﬁ- + g?(a;téau@ - §gpuauq’aa‘1’)+ '(i;(vl‘v"q') - g’“'D(I))

1
+§}(-b-[(8,.06.,0' - 59w0a00%a) + gV ()] (V.2.6)

After inflation, this cosmological constant will eventually dominate and hence the JBD
field must decay. During inflation, where V(o) = p, dominates, with a FRW metric and
® = &(t), we have: |

b+ 3H® +mid = 222

2 .
o 8mpy 2w+3 , w(P o
2 — 2 — Ari— — —

For mg not to disturb the evolution of the inflationary Universe, we must have, in both

and

equations, m3 < pyv/®, with py = M1, Since, during inflation, ® < rn},, a safe limit for
the JBD ficld mass is: me < M?/mpy, which, for M ~ 10 GeV, implies: mg < 10°GeV.
This limit can clearly be seen in the plots (V.1) and (V.2) at the end of this chapter, for H
and & during the inflationary epoch. The behaviour changes drastically for me > 10°GeV:
H quickly goes to a constant value and the & field settles to its potential minimum. This
means that a standard inflation regime has been recovered, with the dominating mass term
acting as a cosmological constant. In figures (V.1) and (V.2), r and ¥ are dimensionless
quantities: 7 = 1074 2M*/(2w +3)]'"" £ and ¥ = 1078 [2M* /(2w + 3)]
M = 10"GeV.

—1/2
&, where
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If we now want to introduce a symmetry breaking potential V(&) = A(® — $y)? with

¢y = mk, /167, the equations are:

w . ) 1_aV(®)
¢ -+-3IHD = 3oy [p,, + V(®) - —é‘I’W )
and 9
, 8mpy w® & 1V(d)
L —— — _— bl § hyond -t .
H“srb+6(d)) H(@)*’Q $
The mass term is m = Ay ~ Mm}; and we still have the same constraint on me.

This limit for the value of me shows that a small self-coupling constant A is required
(A ~ mg/m%,), so that, even in the context of two-fields inflation, a fine tuning is needed.
The ®2 term cancels out in the Klein-Gordon equation but appears in Einstein equations

as m4®g,up; when ® = const., after inflation, it is again a cosmological constant term.
¢) Perturbations from generalized models

Turning to the generalized models, the Lagrangian for ¢ in the Einstein frame is:
1 ~Ng i ~Meq
Ly = 3¢ g"d,00,0 —¢ V(a),

as we saw in chap. IV. The difference with standard Brans-Dicke, regarding fluctuation

production, will only be the power of the exponential factor in the potential term:

e~2elv0 _, o=Melvo

with M = (2 — m)/po. Then, we exclude the value m = 2, that leads us to exponen-
tial inflation in the Einstein frame. At the same time, care must be taken to avoid a
potential that would be too steep. In order to have a slowly decreasing potential that
allows us to apply the standard density perturbations formula to these models, we first
have to check that generalized extended inflation transforms to slow-rollover inflation in
the Einstein frame. Imposing the slow-rollover conditions | 8%p/dt? |« H(9p/dt) and
(1/2)(9p/0t)* < V(i) in the cquations of motion, we obtain constraints on the exponent
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of the power-law expansion: p’ 3> 1 and 3p' — 1 3» 1 [45], where the value of p' is now
p' = (2w+3)/(2—m)?. This implies 2w +3 > (2 ~m)?*, We can then estimate the density

fluctuations through:
bp| . H*  BH®
P lner  defdt —  dV/de'

where, for the last equality, use has been made of the slow roll-over conditions. Remem-

bering that, restoring normal units, H? = (87/3m%,)V(p), where V(p) = e~ ¢V (o) =

e~ MM, and e¥/¥0 = 16mD/m%,, we get
bp

9, 1/2 2 9
~ ('“’+3) ( M ) L - (V.2.7)
2 lhor 6 mpi/ (m—2)p2-m

With m = 0, we have the expression for standard Brans-Dicke theory:
bp

N (Qw 4-3)“"* ( M )2 (mg,,)
P hor h G mpy ¢

which is the expression employed to get eqs. (V.2.1) and (V.2.2).

The analysis of which values of m are requested to get interesting fluctuations ampli-
tudes and to observe the allowed deviation from the scale invariance of the spectrum will

be included in Chap.VI.

d) Inhomogeneities from bubbles

Finally, we briefly address the second mechanism for creating density inhomogeneities.
In all this work on the creation and evolution of perturbations, the phase transition is really
ignored, i.e. it is supposed to leave the Universe homogeneous and isotropic on cosmic
scales. Nevertheless, the percolation, collision and thermalization of bubbles generated
during the tunnelling process produce inhomogeneities as well and it has been suggested
[81] that nearly energy empty regions today (voids) could be remnants of extended inflation
Lubbles. But this possibility has been discarded by the fact that the distortion they would
cause on the CMBR, were they present at the recombination epoch, would be inacceptably
high (sec e.g. [83]). This argument has been used to impose stringent bounds on the Brans-
Dicke parameter w [21], [34], [82], [83], as we already discussed in chapter I, and these
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constraints preclude individual bubbles from providing an interesting source of density
perturbations. The estimation of the time needed for radiation to cross the bubble was
based on the assumption that a superhorizon-sized void would either conformally expand
with spacetime (and photons just leak into the void) [21], [82], or fill in with matter and
radiation that stream into the void, with the approximation of a FRW metric it and inside
the bubble wall with the same scale factor as the outer region [83]. Very recently. however.
the possibility that the time required for filling the bubbles can be substantially reduced
incorporating relativistic effects in the calculation, has been considered [84]. During the
radiation dominated epoch, bubbles shrink, at the speed of light for a relativistic void, due
to the large pressure force acting on the fluid in the wall, and this filling process can take
place in a short time, as observed from outside, due to a time dilation caused by the large,
negative potential of the void relative to the outer spacetime. In this work, care has heen
taken to distinguish between the inner and the outer scale factor and Hubble parameter.
Taking this effect into account, the so called “big bubble problem” could be discarded and
constraints on the Brans-Dicke parameter w relaxed, even though this problem is directly
related to the thermalization process, rather than to the filling process. The thermalization
time is certainly greater than the time required for photons originally in the void walls to
reach the center of the void, and this is & more complicated question to deal with. that

depends to some extent on the type of matter dominating the Universe behaviour.

Conclusions

From inflationary models with Jordan-Brans-Dicke gravity theory we obtain tilted
spectra (positive power of the wavelength) that could lead to a better agreement with the
observed large-scale structure of the Universe. The estimated fluctuation amplirudes are
only slightly in excess of the observational hound. There is no need to impose a very small

value on any (dimensionless) parameter; the fluctuation amplitude is characterized by the
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ratio of the unification scale to the Planck scale. In the simplest extended inflation model
(old inflation type potential with a massless JBD field), the only adjustable quantity is
the Brans- Dicke parameter. To avoid any mismatching between the required value of w
and the one suggested by observations, a potential for the JBD field is usually invoked.
But. if the inclusion of a potential is useful to solve the w problem, it also increases the
amplitude of density fluctuations and re-introduces the fine-tuning problems of standard
inflation models. In addition, we have to impose the condition that the JBD field decays
in order to preclude it from: dominating. On the other hand, the presence of a potential
term for the JBD field caunses, in most cases, two rounds of inflation, with the possi'bility

of two power spectra.

Regarding the Generalized Models, we must impose some limitations on the parameter
m not to upset the wnflationary behaviour of the intlaton field . m is limited by the slow
roll-over constraint, that depends on the w value, and m 3 2 is required for a power-law
inflation. We may expect that tighter constraints on m will come from bounds on the
fluctuations amplitude and spectrum imposed by COBE but this will be included in the

next chapter,

The possibility that inhomogeneities caused by bubbles created in a first order tran-
sition could provide an interesting source of density perturbations, which was one of the
initial motivations for these kind of models, scems to be discarded. On the other hand.
the constraint on the bubble distribution was the main limitation of the theory and now

it is proposed that a careful approach could invalidate this lmit.

More work has to be done in order to be able to follow the creation and development of
inhomogeneities originating from the scalar fields fluctuations, allowing for the evolution
of both fields. e.g. the o field tunnelling while the JBD field is slowly evolving, The
observable effects of fluctuations in the gravitatiounl coupling and any resulting costraints

remain to be anaivzed.
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Figure V.1:

Evolution of & during the inflationary epoch
with a mass term for the JBD Reld. r and ¥

are dimensionless quantities and w = 25,
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Figure V.2:

Evolution of H during the inflationary
epoch with a mass term for the JBD field.
T is a dimensionless time and w = 25,
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Chapter VI
Observational Limits on the Generalized
JBD Field Couplings

Introduction

Considering in each era only the effect of the dominant component, we investigate here
the possibility of establishing bounds on the general kinetic and potential couplings of
the JBD field. So, assuming a dark matter dominated Universe today, we consider post-
Newtonian bounds on the Brans-Dicke parameter w, observational bounds on the age of
the Universe, on the Hubble parameter and on the variability of the Newtonian constant
today, as well as on its value during primordial nucleosynthesis, to constrain the dilaton

couplings to dark matter.

Going back in time and applying the generalized model to the inflaton field, another
set of conditions must be gatisfied. We first report the constraints on the parameters of
the theory imposed by inflationary requirements and then discuss COBE results for the

primordial density fluctuations power spectrumn index.

Finally, if we think on the present dark matter component as a remnant of the inflaton

field, a combination of both scts of bounds should be considered,

VI.1) Present constraints on the generalized dilaton couplings to dark matter
a) Post-Newtonian bounds

We can constrain the generalized couplings today using the lower bound w R 500,
obtained from radar time-delay measurement [22] and the expressions for the present time
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variation of G (eq. IV.3.5) or the evolution of the Hubble parameter (eq. 1V.3.6). There
are two possibilities: one way is to constrain the parameters with bounds on Hyte and
then check that these values are compatible with limits on the variation rate of G, The

other possibility is to constrain m and n directly with bounds on the variability of G.

Following the first way, we consider a firm lower limit on the age of the universe
(t1in ~ 7.8Gyr) and the present Hubble constant (HJ*" ~ 48k s~! Mpc™!) (see, e.g.,
Ref.[28] and references therein), corresponding to Hetg < 0.4; we get a bound on the
dark matter component couplings, |1 +n —m| S 2p = 2m§. This represents, for
w ~ 500, very relaxed bounds: —44 S m —n S 46.

Comparing this result with the one from DGG, we notice that:

-in the Einstein frame this bound reads |[M — N| 5 2, which would reduce to their result

1 S 1 with M = 2N, and

—introducing, as they do, these limits in eq. (IV.3.5), we find, in spite of the more general
couplings, the same present rate of variation of G (|dInG/dtlp S 5 x 107'%yr—!), only

marginally consistent with recent limits based on primordial nucleosynthesis {49].

Investigating the possibility of improving this bound, we can use a higher value for
Hyty, that corresponds, in any case, to more accepted values for these quantities. Values
sucli as H(): = 50km s~ Mpe~! and tg & 1.3~ 1.3 x 10'%r lead to Hyty ~ 0.7, but we find
that this model, with positive values of w, does not allow for such a high value. From eq.
(IV.3.6) we see that the maximum value is Ht =~ 2/3, which is the standard FRW value
(in a matter dominated, k = 0 Universe). So, if future observational tests point to high H
values —as the one reported, e.g. [85], where the adopted value for the Hubble constant is
Hy = 67 £ 15kms~'Mpe™?! (other quoted values lying within 1 or 2 standard deviations

of this value)- these models do not help.

Among all the observational limits on a varying gravitational coupling, those due to
conditions for a successful (standard) nueleosynthesis appear to provide the most stringent
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bounds. However, it must be noticed that nucleosynthesis conditions are less reliable than
astrophysical tests since they do not constrain the present value, but rather the average
variability from nucleosynthesis until now, and depend on simplifying assumptions that
enter the big bang model. We will burn to this in the next section, but let ns first consider
the necessary conditions for the switchover from visible to invisible matter domination, The
invisible component energy redshift can be obtained following its evolution (eq. (IV.1.14))
on the attractor solution (IV.3.1), written as dp/dt = 2uH /(2 — 4; — nt/+q). We obtain

pr &« a® with
(1 +n—m)[m(2 -~ yr) — nvi]
2032-1)-(1+n-m)

In the case of invisible pressure-free matter domination, 4 = 1, this redshift reads

o= =3y + (VI.L1)

(1+n-m)(m~—n)
20 —(1+n—-m)’

= -3+

On the other hand, when the invisible pressure was py/3,

2(1 +n—m)(m - 2n)

=4+ 4ot ~3(1+n-m) "’

that reduces to the usual radiation energy redshift p oc a=* when m = 2n. During visible
radiation/matter domination the evolution of p; obeys to the usual scaling laws. From
these expressions we see that the deviation from the standard energy redshift laws, i.e. the
second term on the r.h.s., can be positive or negative, leading respectively to less or more
redshift then for the visible component, but is, for values p2 ~ O(500) and |1+n—m| < 2y,
in both cases small. So the most efficient way to have the domination switchover is to
assume that invisible matter becomes pressure-free during visible radiation domination.
In this case, we must require a = -3 + (1 + n — m)(m — n)/[2p3 — (1 + n — m)] > -4,
which leads to |1 ++n — m| < v/2¢py, tightening the previous coustraint. Then, if invisible
matter dominates now, it must be pressure-free and this is the reason why we use 4 =1

in the expressions for G and Ht for comparison with their present values.
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b) Nucleosynthesis bounds

On the other hand, we can get a more stringent limit on the parameters rm and n us-
ing bounds on the present G rate of change. Accetta, Krauss and Romanelli [49] recently
incorporated new measurements of the neutron half-life and reaction uncertainties in nucle-
osynthesis calculations and thus improved the constraint on the allowed range for G at this
epoch. Then, assuming that G decreases in time as a power-law: G(t)/G(tg) x (t/to)~ 7,
from nucleosynthesis until now, it is possible to constrain its variability. They obtain:
|dInG/dtlp S 0.9 x 10~'?yr—!. With the post-Newtonian bound g < 22.4 (w < 500)
and ty o 1.5 x 10'%yr we get |1+ n —m| S 0.3p0.

An independent bound on our parameters can be obtained from the nucleosynthesis
calculations of ref. [42] (see also refs.[43], [44], [54]), exploiting the formal analogy between
the DGG mode! and ours when 7 — p, where we remember that u = (n ~ m + 1)/(2¢0)
when 77 = 1. They find bounds on Go/(GoHy) ~ —48vfr: ~0.011 < Go/(GoHy) < 0.039
(compatible with and slightly beyond the purely phenomenological limit of [49]), from
where we get ~0.01192 S m~n—1 S 0.039p3. These calculations are based on
the requirement that nucleosynthesis, proceeding in the same scenario as in the standard
model, yields abundances compatible with observations. This constrains the expansion
rate at that epoch and can be translated, through eq. (IV.3.5), to limits on the range
of the coupling constants. In the context of generalized scalar-tensor theories of gravity,
the expansion rate of the Universe can be affected in 3 ways: G has a different value at
nucleosynthesis than today, dark matter contributes to the total energy density, the dilaton
field energy can also add its contribution if the dominating matter during nucleosynthesis
is the invisible one. In all this work, only a conservative scenario is considered, in which
the visible component dominates at the nucleosynthesis epoch (with vy = 4/3), so that
the only effect to be taken into account is the different value of G, that will be constant
until after nucleosynthesis. Since in the generalized models, with m # 2n, the gravitational
coupling varies during invisible radiation domination, we should explore the implications
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of the variability of G during nucleosynthesis. However, from expressions (IV.3.4) and
(IV.3.5), we sce that the variation rate of G during domination of invisible radiation
and of invisible matter are comparable. Then, even if G varies at this epocl, to the
allowed variation between nucleosynthesis and now corresponds a small variation during
the nucleosynthesis process. On the other hand, the contribution of the dilaton field to the
total energy density could be more relevant, especially if the JBD field is not massless as we
considered in last chapter. In this case, the evolution of the scalar field is no more coupled
only to the trace of the matter energy-momentum tensor and consequently continues

during radiation domination. In the present work we will not explore this possibility any

further.

Altogether these limits imply
~77 Sn-m S4.5,

where the upper limit comes from incorporating nucleosynthesis considerations directly in
the generalized model and the lower one from the previous result, obtained comparing our

madel with the presently allowed variability of G.

V1.2) Early Universe constraints on the generalized dilaton couplings to the

inflaton fleld
a) Inflationary requirements

Wang [45] has analyzed in detail the constraints imposed on the generalized model by
inflationary requirements. Working in the Einstein frame, first of all, m < 1 is needed for a
power-law expansion of the Universe with a growing JBD field. Then, The inore stingent
constraints are, as usually, the ones originated from the high degree isotropy of the cosimic
microwave background radiation (CMBR), This condition has to be imposed on the two
mechanisms for generating density inhomogeneities: the incomplete filling proeess of bub-
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bles and inhomogeneities derived from scalar field quantum fluctuations, and corresponds
to the relevant lower bound on m in the latter case and to the upper one in the former.
In order that the bubble nucleation and percolation processes accomplish successfuly, we
have to ask that the percolation probabibility grows with time and, with the same heuris-
tic procedure as in chapter II, require that no more than a fraction ~ O(10™V) of the
total volume, with IV ~ 5, be occupied by false vacuum at the recomnbination epoch, A
constraint on a combination of the parameters n, m and w is thus obtained, wherefrom,
taking w & 500 and using the range of values of n that ensures that € increases in time

(m =1 < n < m/2), alower bound on m can be established: m S —8.

From considering density inhorogeneities created by scalar field quantum fluctuations,
two conditions must be checked: first, as we said in chapter V, the slow rollover conditions
are required in order to apply the standard procedure in calculating density fluctuations
and lead to 2w + 3 > (2 — m)?. Second, we must convert eq. (V.2.1), together with eq.
(V.2.2), to an expression for temperatufe fluctuations and constrain it with observational
bounds. Using the {conservative) bound §7/T < 1073, for 8 > 1°, and making also use
of the bubbles constraint, the isotropy from the microwave background reads p' 2 6, that

translates in w +3;2 > 3(2 — m)2. For w =~ 500, the bounds on m are =11 S m S 13,

From all these considerations, the resulting allowed interval is:
~1185m =S -8,

where the bound from above comes from the requirement of suppression of large bubbles
an the one from below is imposed by constraints (from the CMBR) on adiabatic density

perturbations.

With a lower value of w, eg. w = 25, the allowed range is very narrow (albeit with
the advantage that the power of the coupling term is near unity): ~1 5 m 5 —~0.2 and
also 4.2 S m S 5. Although this is somehow meaningless since the main motivation for
introducing stronger dilaton-inflaton couplings was to avoid the discrepaney of w with its
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present observational value, i.e. allow a larger value of G than in the original JBD theory,

with a small JBD coupling to visible matter (large w).
b) Bounds on the fluctuation power spectrum from COBE

As we saw in chapter V (eq. (VI.2.1)), the density contrast resulting from power-law
inflation models is (6p/p)3,,. o« AM/(P'=1) = k=2/(#'-1) 'and an evolution factor k4 has to be
included to obtain the density contrast at the recombination epoch: (8p/p)?,. = k*|6x|? =

k4=2/(#'~1), This leads to a fluctuation power spectrum

lEkP = kM = kl—z/(p’-—l),

that can be constrained using COBE results [3] n, = 1.1 £ 0.5%:

1~~£L~>&6¢ﬂ>6.

(»—1)
Since p' = (2w + 3)/{2 — m)?, for w = 500, the allowed range for m is:

~115m S 15,

* Very recently, the results from the second year of COBE DMR observations have been published:
“Cosmic Temperature Fluctuations from Two Years of COBE DMR Observations”, C.L. Bennett et al,,
submitted to The Astrophysical Journal The most likely value for the spectral index resulting from
this second analysis is n = 1.59i8;g§ (68% CL). If this result comes to be true, “normal” inflation inodels
will be in trouble since spectral indexes larger than unity cannot be obtained with a power-law expaﬁsinn

nor with an exponential one. See anyhow [87] and references therein for inflationary models with blue

. perturbation spectra,



V1.3) Constraints on the dark matter component as a remnant of the inflation-

ary field

If the same field acts as the inflaton field in the early Universe and accounts at present
for the dark matter component, it has to fulfill requirements from both epochs. Combining

the two sets of constraints, we obtain:
-118m S -8,

-18.75n 5 -3.5.

Conclusions

Using the observational bounds on the JBD field coupling to visible matter, bounds
coming from primordial nucleosynthesis calculations, the limits on the age of the universe
and the Huhble parameter, we have restricted the coupling constants of this model applied
to a today dominant dark matter component: 7.7 Sn—m S 4.5. A higher Hytp value
reduces the allowed interval for (m — n) but the most stringent bound comes, at present,
from the variability of G allowed by nucleosynthesis considerations. Forthcoming, more

stringent observational limits on G can substantially reduce this interval,

CMBR isotropy constrains the parameters of the theory when the invisible component
is thought of as an inflaton field in the early universe. It imposes conditions on the bubble
distribution and evolution, on the amplitude of density fluctuations that result from the
JBD field quantum fluctuations and on the fluctuations power spectrum index. Altogether,
this conditios are quite stringent: —11 S m 5 —8. Here, the constraints fall mainly on the
parameter m since the kinetic term (which carries the parameter n) is negligible during

the inflationary epoch.

Thinking of the “invisible” field o as being both the inflaton and the present dark
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matter component, m and n have to satisfy early conditions and present requirements

simultaneously.

More work has to be done with non-—conventional scenarios at nucleosynthesis in gener-
alized JBD models. We have presented modifications to the standard JBD theory -direct.
generalized JBD couplings to the invisible component and a mass term for the JBD field-
that generate extra contibutions to the Universe energy density and to the variation possi-
bilities of G. The allowed interval for & is then larger than in the purely phenomenological
approach and in standard JBD theory. The implications of the eventual domination of the
invisible component and the variability of G during the nucleosynthesis process should be

explored.,
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Conclusions

We have seen that inflation may be implemented in a wide range of particle and gravi-
tational theories and that some of the encountered difficulties can be overcome introducing
modifications in the potential terms or in the coupling terms of the involucrated fields. In
particular, the problematic feaures of a first order inflation foresee that a softer inflation-
ary process may represent a solution, We then turn to eztended tnflation: an inflationary
model imbedded in a scalar-tensor gravity theory, where the Jordan-Brans-Dicke field
extracts some vacuum energy f(;r its evolution, stealing it from the Universe expansion.
The result of this energy distribution is a power-law inflation instead of an exponential

one,

We have considered and compared many variations to extended inflation proposed in
the literature and we have explored in depth the possibility of stronger, generalized cou-
plings of the JBD field with the invisible sector. We have also investigated the consequences

of the inclusion of a mass term for the JBD field.

Considering the dark matter component as an invisible perfect fluid which gives the
dominant source of the Universe expansion, we have obtained the field equations and their
attractor solutions for the evolution of the scale factor and the scalar fields. We have found
that the potential term that corresponds to a scalar field that behaves as a dominating
perfect fluid decays as a power-law. A particular aspect of this model is that the JBD
field, and therefore the gravitational constant. varies with time even if the universe is
dominated by a dark radiative component, i.e. by a fluid whose energy-momentum tensor

has a vanishing trace.

The domination of an invisible sector is particularly suitable for deseribing two epochs
of the Universe history: today, with a conjectured non-baryonic dark matter that closes the
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Universe, and in the early inflationary period. We obtain a model compatible with present
observational evidence and whose free parameters (m and n) may be constrained. Using
the observational bounds on the JBD field coupling to visible matter, bounds coming from
primordial nucleosynthesis calculations, limits on the age of the universe and the Hubble
parameter, we have restricted the coupling constants of this model applied to a today
dominant dark matter component. A higher Hyty value reduces the allowed interval for
(m-—n) but the most stringent bound comnes, at present, from the variability of GG allowed by
nucleosynthesis considerations. With present observational values, the resulting interval is
not very stringent. Generalized JBD couplings to the invisible cornponent and the inclusion
of a mass term for the JBD field generate extra contibutions to the Universe energy density
and to the variation possibilities of G. The allowed interval for ¢ s then larger than in

the purely phenomenological approach and in standard JBD theory.

Going back in time, we apply this model to the inflationary epocli. The cosmic mi-
crowave background radiation isotropy constrains the parameters of the theory when the
invisible component is thought of as an inflaton field in the early Universe. It'imposes
conditions on the bubble distribution and evolution, on the amplitude of density fluctua-
tions that result from the JBD field quantum fluctuations and on the fluctuations power
spectrum index. Altogether, these conditions are quite stringent. Here, the constraints fall
mainly on the parameter m, imposing on it large and negative values (~11 & m & —8),
since the kinetic term, which carries the parameter n, is negligible during the inflationary

epoch.

In the context of a decaying cosmological constant, the same ficld that dominated
during inflation may dominate again in the present epoch if the energy density associated
with it redshifts slower than the energy density of matter and radiation. In this case, mn

and n have to satisfy early conditions and present requirements simultaneously.

An important effect of introducing a Jordan-Brans-Dicke field in inflationary scenarios
is to obtain tilted models: more power on very large scales in the density perturbation
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spectrum, This is a feature that may be useful in building models that account for the
observed large—scale structure of the Universe. It is a general result of power-law inflation
scenarios. In extended inflationary models, structure arises from the JBD field fluctuations
rather than from fluctuations of the inflaton field. The estimated fluctuation amplitudes
are characterized by the squared ratio of the unification scale to the Planck scale (for
not too small w values) and are slightly in excess of the observational bound. This is
another advantage of these models on the exponential inflation models that end up with
fluctuation amplitudes of many order-of-magnitude in excess, unless the coupling constant
in the potential term is fine-tuned. On the other hand, the observable effects of fluctuations
in the JBD field, and hence in the gravitational coupling, is a topic that deserves further
investigation. Generalized couplings do not introduce any new ingredients in this topic
besides some limitations on the parameter m to observe general inflationary conditions.
On the other hand, the inclusion of a potential term for the JBD field, useful to solve the
w problem, increases the amplitude of density fluctuations and re-introduces a fine-tuning
problem. After inflation, this mass term tends to dominate and we have to impose the

condition that it decays.

Regarding the question of finding a place for scalar-tensor inflationary models in the
context of a fundamental theory, an appealing possibility is string theories. In these
theories we have, upon reduction to four dimensions, a dilaton field coupled to the curvature
scalar of the four-dimensional metric and directly coupled to non-gravitational sectors.
Unfortunately, a general result of superstring theory and other higher-dimensional theories
is that we can not get enough inflation. Nonetheless, one of the groups working on this point
reported somne positive results ivhen introducing two scalar fields from the gravitational
sector. The implementation of a JBD theory also has some problems, in particular when

its predictions are confronted with present observational bounds.
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