

T ESI S

MEXICO

QUE PARA OBTENER EL GRADO DE: DOCTOR EN CIENCIAS QUIMICAS (QUIMICA INORGANICA)

PRESENTA LA MAESTRA EN CIENCIAS MA. DE LOURDES CHAVEZ GARCIA

Diciembre, 1993

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. INDICE

Resumen Summarv Introduction Obietivos Antecedentes Bl₂O₃ Bi2O3-CaO Bi2O3-SrO SrO-CaO Bi2O3-CuO CaO-CuO SrO-CuO Bi2O2-SrO-CaO Bi2O2-SrO-CuO Bi2O3-CaO-CuO SrO-CaO-CuO Bi2O3-SrO-CaO-CuO Experimental Resultados y discusión Relaciones de compatibilidad de fases BiO1 5-SrO-CaO-CuO a 800°C BiO1 5-SrO-CaO BiO1 5-SrO-CuO BiO1 5-CaO-CuO SrO-CaO-CuO BiO_{1.5}-SrO-CaO-CuO βBi₂O_{3ss1}-βBi₂O_{3ss2}-CuO βBi₂O_{3SrCass}-Bi₂SrO₄-CuO βBi₂O_{3Cass}-Bi₂CaO₄-CuO Bi2SrO4-755-CuO $\beta Bi_2O_{3SrCass}-\gamma_{ss}-Bi_2SrO_4-CuO$ βBi₂O_{3SrCass}-γ_{ss}-Bi₂CaO₄-CuO βBi₂O_{3SrCass}-γ_{ss}-CuO γss-8250-2201-CuO 8250-2201-2212-CuO 8250-2201-2212-9.11.5.0 2201-2212-Sr14Cu24O41-CuO 2201-2212-9.11.5.0-Sr14Cu24O41 9.11.5.0-Ca2CuO3-Bi2Sr6O9-CuO 2212-9.11.5.0-Ca2CuO3-Sr14Cu24O41 9.11.5.0-Ca2CuO3-SrCuO2-Sr14Cu24O41

3

4

6

6

777

9

10

11

11

11

12

12

13

13

15

17

23

29

29

29

32

9.11.5.0-Ca-CuO-Sr-CuO-SrCuO	48
2212-Ca-CuO-Sr. 4Cu-4O4-CuO	49
BinSraOn-(Sr.Ca)O-SraCuOn-CanCuOn	49
9.11.5.0-CR-CUO-Bi-Sr-O-Sr-CuO	50
8250-9.11.5.0-2212-Ca-CuO	50
8250-9.11.5.0-Ca_CuOCaO	52
9.11.5.0-2201-Sr. (Cu.) Out SrCuO	53
8250-9.11.5.0-2201-Bi-Sr-O.	53
BlaStaOa-8250-v2201	54
BiOSro-CeO.CuO a 12009C	55
	55
pDi20366	55
pBi2O3Sree-Yee-Bi2SrO4-IIquido	56
βBi ₂ O _{3Srss} -γ _{es} -líquido	57
βBi ₂ O _{3Cess} -líquido	57
2201-líquido	58
2201-CaO-líquido	58
2201-Ca₂CuO₃-CaO-líquido	58
2201-2212-Ca ₂ CuO ₃ -líquido	59
9.11.5.0-líquido	59
2201-9.11.5.0-líquido	61
9.11.5.0-CaO-líquido	61
CaO-líquido y (SrCa)O-líquido	· 61
Propiedades	
 Solución Sólida βBi₂O_{3es} 	62
Conductividad Iónica	69
Conclusiones	71
Bibliografia	77

FIGURAS

		Cinterne Rich - CrO Coro CuO indianado los adesistentes		
	1	Sistema BiO _{1.5} -Sio-CaO-CuO indicando los principales	49	
	2	Composiciones base seleccionadas en el sistema	10	
	-	BiO ₁₅ -SrO-CaO	18	
	3	Relaciones de compatibilidad en el sistema BIO15-SrO-CaO		
		a 800°C	32	
	- 4	Lineas de compatibilidad en el sistema BiO _{1.5} -SrO-CuO	33	
	5	Compatibilidades en el sistema BIO _{1.5} -CaO-CuO	36	
	6	Sistema SrO-CaO-CuO	37	
	7	Tetraedro de compatibilidad βBi ₂ O _{3ss1} -βBi ₂ O _{3ss2} -CuO	36	
	8	Relaciones de compatibilidad βBi ₂ O _{3es} -Bi ₂ SrO ₄ -CuO	37	
	9	Equilibrio βBi ₂ O _{3es} -Bi ₂ CaO ₄ -CuO	37	
	10	Tetraedro de compatibilidad Bi2SrO4-Yas-CuO	38	
	11	Compatibilidad Bi2O3SrCass-Bi2SrO4-Yas-CuO	39	
	12	Compatibilidad βBi ₂ O _{3SrCasa} -Bi ₂ CaO ₄ -γ _{ss} -CuO	40	
•	13	Compatibilidad Bi2O3SrCase-Yas-CuO	40	
	14	Relaciones de compatibilidad yss-8250-2201-2212-CuO	42	
	15	Relaciones de equilibrio 8250-2201-2212-CuO	43	
	16	Tetraedro de compatibilidad 8250-2201-2212-9.11.5.0	44	
	1/	Tetraedro de compatibilidad 2201-2212-Sr ₁₄ Cu ₂₄ O ₄₁ -CuO	44	
	18	Compatibilidad 2201-2212-9.11.5.0-Sr ₁₄ CU ₂₄ O ₄₁	45	
	19	Compatibilidad 9.11.5.0-Ca ₂ CuO ₃ -Sr ₁₄ Cu ₂₄ O ₄₁	46	
	20	Companyindad 2212-9.11.5.0-Ca ₂ CuO ₃ -Sr ₁₄ Cu ₂₄ O ₄₁	47	
	21	Equinorio 9.11.5.0-Ca ₂ CuO ₃ -SrCuO ₂ -Sr ₁₄ Cu ₂₄ O ₄₁	47	
	22	Sistema 9.11.5.0-Ca2CuO3-SiCuO2-Si2CuO3	40	
	23	Compatibilidad Bi St O (St Ca)O St CuO Ca CuO	49	
	25	Equilibria 9.11 5.4 Ca CuO \overrightarrow{Pi} Sr O Sr CuO	50	
	20	Sistema 8250 9 11 5 0 2212 Ca CuO	51	
	20	Sistema 8250-9.11.5.0-2212-082003	51	
	20		52	
	20	Equilibrio 8250-0 11 5 0-2201-Bi Sr O	53	
	20	Totrondro de compatibilidad Pi Sr O 9250 - 2201	54	
	30	Associación motocriteble de GPLO	55	
	31	Asociación metaestable de pol203SrCess=Yss=D2SIO4=ilquido	50	
	22	a 1300°C Asociación metaetable do onfriamionto 881 O	56	
	32	Iguido	57	
	33	Asociación metaestable de enfriamiento	57	
		2201-Ca2CuO3-CaO-líquido	59	
	34	Asociación metaestable de enfriamiento		
		2201-2212-Ca ₂ CuO ₃ -líquido	60	
. 1	35	Asociación metaestable de enfriamiento 9.11.5.0-2201-	40	
	36	nguido Asociación (SrCa)O-líquido y CaO-líquido	61	
		Landrand (algaba.udana 1 ang-udana	VI.	

•

TABLAS

I Composiciones seleccionadas en el sistema BiO _{1.5} -SrO-CaO-CuO	20
II Composición de fases de mezclas seleccionadas en el sistema BiO _{1,5} -SrO-CaO-CuO a 800ºC	23
III Composición de fases de mezclas seleccionadas en el sistema BiO _{1.5} -SrO-CaO-CuO a 1300°C	26
IV Relaciones de compatibilidad binarias a 800°C en el sistema BiO _{1.5} -SrO-CaO-CuO	30
V Datos de difracción de rayos X de βBi ₂ O _{3as} romboédrica	64
VI Datos de difracción de rayos X de βBi ₂ O _{3ea} cúbica	66
VII Parámetros de la celda unitaria de Bi2O3as	67
VIII Vibraciones de absorción infrarroja de Bi2O3as	68
IX Factor de grupo de modos ópticos de βBi ₂ O _{3es}	68
X Conductividad Iónica de composiciones seleccionadas de	
βBi ₂ O _{3ss}	69
XI Relaciones cuatemarias de compatibilidad en el sistema	
BiO _{1.5} -SrO-CaO-CuO a 800⁰C	71

RESUMEN

El sistema BiO, c-SrO-CaO-CuO presenta a 800ºC las siguientes diez y nueve nuevas relaciones de compatibilidad, producto de esta investigación, ßBi2O3es1-βBi2O3es2-CuO, $\beta Bi_{2}O_{3S_{1}C_{2Ba}}-Bi_{2}SrO_{4}-CuO, \quad \beta Bi_{2}O_{3C_{2Ba}}-Bi_{2}CaO_{4}-CuO, \quad Bi_{2}SrO_{4}-\gamma_{aa}-CuO, \quad \beta Bi_{2}O_{3S_{1}C_{2Ba}}-\gamma_{aa}-\gamma_{a$ Bi₂SrO₄-CuO, βBi₂O_{3CaSraa}-Bi₂CaO₄-γ_{as}-CuO, βBi₂O_{3SrCasa}-γ_{as}-CuO, γ_{as}-8250-2201-CuO, 8250-2201-2212-9.11.5.0, 9.11.5.0-Ca₂CuO₃-Bi₂Sr₆O₆-CaO, 9.11.5.0-Ca₂CuO₃-Sr₄Cu₂O₄,-SrCuO₅. 9.11.5.0-Ca₂CuO₃-Sr₂CuO₃-SrCuO₃, 2212-Ca₂CuO₃-Sr₄Cu₂₄O₄-CuO, Bi₂Sr₄O₆-(SrCa)O-Sr₂CuO₃-Ca₂CuO₃, 9.11.5.0-Ca₂CuO₃-Bi₂Sr₈O₀-Sr₂CuO₃, 8250-9.11.5.0-2212-Ca₂CuO₃, 8250-9.11.5.0-Ca2CuO3-CaO 8250-9.11.5.0-2201-Bi2SreOa У 8250-y - - 2201-Bi2Sr.O. La investigación demuestra la invalidez de las relaciones de compatibilidad βBi_2O_{35ma} -2201. Sr14Cu24O41-CaO, SrCuO2-CaO y 2212-CaO propuestas por otros autores. Se confirman las relaciones βBi₂O_{3Srss}-Bi₂SrO₄-CuO, -Bi₂SrO₄-γ_{ss}-CuO, βBi₂O_{3CaSrss}-Bi₂CaO₄-CuO, 8250-2201-2212-CuO, 2201-2212-Sr14Cu24O41-CuO, 2201-2212-9.11.5.0-Sr14Cu24O41, 2212-9.11.5.0-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁ 2212-Ca2CuO3-Sr14Cu24O41-CuO y 9.11.5.0-2201-Sr14Cu24O41-SrCuO2. Las relaciones se determinaron experimentalmente de composiciones seleccionadas a través del sistema cuatemario, reaccionadas a 800°C hasta lograr equilibrio de fases y enfriadas rápidamente en agua helada. La identificación de fases se hizo por microscopía óptica para determinar la homogeneidad de fases y naturaleza de la cristalización, difracción de rayos X. espectrometría de infrarroio para interpretar la estructura molecular y por conductividad iónica.

El sistema se presenta a 800°C dividido en dos porciones, una conteniendo más de 40% mol BiO_{1.5} en la que cristaliza la fase de estequiometría 2201 Bi:Sr:Ca:Cu, y otra conteniendo menos de 28% mol BiO_{1.5} en la que se condensa 2212. Entre ambas ocurre un estrecho y amplio tetraedro en el que cristalizan conjuntamente 2201 y 2212.

Composiciones en el sistema Bi₂O₃-SrO-CaO altas en BiO_{1.5}, cercanas al componente puro Bi₂O₃, forman solución sólida β Bi₂O_{3Sras}, romboédrica, *a*=7.94, *c*=28.06 Å, que cambia a romboédrica *a*=3.94, *c*=27.81 Å, cuando ei ión huesped Sr es sustituido por Ca, y a β Bi₂O_{3SrCass}, cúbica, *a*=16.26 Å cuando SrO+CaO es superior a 40% mol. El espectro de vibración en el infrarrojo medio está caracterizado por cinco vibraciones asignadas a Bi-O y O-Bi-O que definen una simetría simple en la que 2Bi ocupan sitios C₃(2) y 3O ocupan posiciones 2C₁(3), en el grupo R3. La conductividad iónica de la misma solución romboedral, 1.25 x 10⁻⁹ ohm⁻¹cm⁻¹ a 347°K a 2.62 x 10⁻² a 1073°K, comparable a la de las soluciones binarias, y con una inflexión a 884°K que pudiera atribuirse a la transformación cúbica-romboédrica o a fa transformación $\beta_2 - \beta_1$.

• • • •

SUMMARY

BiO, -SrO-CaO-CuO has at 800°C the following nineteen new The system compatibility relations, found in the present investigation, BBi2O3es1-BBi2O3es2-CuO, $\beta Bi_2 O_{3CrCass} - Bi_2 SrO_4 - CuO, \quad \beta Bi_2 O_{3Crass} - Bi_2 CaO_4 - CuO, \quad Bi_2 SrO_4 - \gamma_{ss} - CuO, \quad \beta Bi_2 O_{3SrCass} - \gamma_{ss} - Si_2 -$ Bi₂SrO₄-CuO, βBi₂O_{3CaSras}-Bi₂CaO₄-γ_{as}-CuO, βBi₂O_{3SrCasa}-γ_{as}-CuO, γ_{as}-8250-2201-CuO, 8250-2201-2212-9.11.5.0, 9.11.5.0-Ca₂CuO₃-Bi₂Sr₈O₂-CaO, 9.11.5.0-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁-SrCuO₃, 9.11.5.0-Ca₂CuO₃-Sr₂CuO₃-SrCuO₂, 2212-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁-CuO, Bi₂Sr₆O₆-(SrCa)O-Sr2CuO3-Ca2CuO3, 9.11.5.0-Ca2CuO3-Bi2Sr6O9-Sr2CuO3, 8250-9.11.5.0-2212-Ca2CuO3, 8250-9.11.5.0-Ca₂CuO₂-CaO, 8250-9.11.5.0-2201-Bi₂Sr₆O₆, and 8250-y_{ee}-2201-Bi₂Sr₆O₆. The investigation proved the invalidity of the relations βBi₂O_{3Sras}-2201, Sr₁₄Cu₂₄O₄₁-CaO, SrCuO₂-CaO y 2212-CaO proposed by other authors. The compatibilities BBi2O3Srss-Bi2SrO4-CuO, -Bi₂SrO_{4⁻γ_{ee}-CuO, βBi₂O_{3CeSree}-Bi₂CaO₄-CuO, 8250-2201-2212-CuO, 2201-2212-Sr₁₄Cu₂₄O₄₁-} CuO, 2201-2212-9.11.5.0-Sr₁₄Cu₂₄O₄₁, 2212-9.11.5.0-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁, 2212-Ca₂CuO₃-Sr14Cu24O41-CuO and 9.11.5.0-2201-Sr14Cu24O41-SrCuO2 are confirmed. The compatibilities were determined experimentally from compositions selected through out the guaternary system. reacted at 800°C to equilibrium and quench in ice water. The homogenity of the reacted material and the phases formed were examined by optical microscopy and identified by X-ray diffraction. by infrared spectrometry to ascertain the molecular structure, and by ionic conductivity.

The system appears to be divided in two sections at 800°C, one containing over 40% mole BiO_{1.5} where 2201 is crystallized and another with less than 20% mole BiO_{1.5} where 2212 is condensed. In between, 2201 and 2212 can crystallize simultaneously within a narrow and wide tetrahedron located about the middle part of the tetrahedron. Compositions high in BiO_{1.5}, close to the pure component Bl₂O₃, form solid solution β Bi₂O_{3Srea}, rombohedral, *a=*7.94, *c=*28.06 Å, which is changed to rombohedral *a=*3.94, *c=*27.81 Å, when Sr is substituted by Ca, and to β Bi₂O_{3SrCass}, cubic, *a=*16.26 Å when SrO+CaO is higher than 40% mole. Structural analysis from the infrared vibration spectra shows five vibrations that are assigned to Bi-O y O-Bi-O and which define a simple symmetry by which 2Bi atoms take the sites C₃(2) y 3O atoms the sites 2C₁(3), in the group R3. The ionic conductivity of the same rombohedral solution changes from 1.25 x 10⁻⁹ ohm⁻¹ cm⁻¹ at 347°K to 2.62 x 10⁻² at 1073°K, similar to that of the binary solutions, with an inflexion at 884°K which could be assigned to the cubic - rombohedral transformation or to the $\beta_2 - \beta_1$ transformation.

At 1300°C liquid is the predominant phase. The only crystaline phase found is (SrCa)O. The experimental data indicate metastable crystallization of 2201, 2212, Ca₂CuO₃, and 9.11.5.0 due to the fast kinetics of crystallisation of these phases.

INTRODUCCION

Materiales cerámicos superconductores de alta temperatura de transición, superior a los 77 K o a la del nitrógeno ilquido, han adquirido un extraordinario interés por sus propiedades superconductoras o nula resistividad a temperaturas razonablemente altas, manejables bajo condiciones ambientales comunes¹. En los últimos años su investigación ha resultado en superconductores de temperatura de transición progresivamente más alta. Con el superconductor La_{2-x}Ba_xCuO₄₈ la temperatura se elevó a los 40 K² y con el YBa₂Cu₃O_{6+x} a los 90 K³. Compuestos de más alta temperatura de transición T_c se identificaron en los sistemas Bi-Sr-Ca-Cu-O y TI-Ba-Ca-Cu-O, dentro de las series homólogas A₂Ca_{n-1}B₂Cu_nO_{2n+4} (A=Sr,Ba; B=Bi,TI) permitiendo obtener superconductores cerámicos con temperaturas de transición entre los 80 y 110 K, de composición en el sistema Bi-Sr-Ca-Cu-O, de bajo costo y fácil preparación⁴⁻ 18.

El interés en desarrollar superconductores de mayor temperatura resultó en una febril. actividad en la búsqueda de nuevos materiales y en su producción y en el estudio del origen de la supercondutividad. Los superconductores de composición en el sistema Bi-Sr-Ca-Cu-O presentan estructuras tipo perowskita con 1, 2 y 3 capas de CuO que modifican su temperatura critica de 10 K en la fase Bi₂Sr₂CuO₆ o 2201 con una capa de CuO, a 80 K en el compuesto 2212 que contiene 2 capas de CuO, a 110 K en la fase 2223 con 3 capas de CuO. aparentemente como resultado de vacantes y alteraciones en la estructura y en las relaciones entre cationes y oxigeno9-13. Las condiciones bajo las cuales se forman, su estabilidad, sus relaciones de equilibrio que son necesarias para su óptima formación y desarrollo han sido escasamente estudiadas y los datos publicados son contravertidos Por otra parte, las diferentes caracteristicas de los óxidos de bismuto, estroncio, calcio y cobre, su fusión, volatilidad, refractabilidad, no facilitan un estudio sistemático y causan dificultades en la síntesis, estabilidad y composición de las fases formadas. No hay mayores estudios del sistema, sino más bien este ha sido deducido de los sistemas simples binarios o temarios que lo integran, habiéndose generado interpretaciones diferentes del mismo que si blen coinciden en algunos aspectos son totalmente opuestos en otros. De aquí, los objetivos del presente provecto son investigar experimentalmente las relaciones de compatibilidad de fases en el sistema Bi-Sr-Ca-Cu-O a diferentes temperaturas. El desarrollo del provecto implicó algunas dificultades en su ejecución: en los ultimos tres años y durante la ejecución de la presente investigación se publicaron tres versiones distintas del sistema.

فيريد والمتحاص

La interpretación conjunta de las relaciones de compatibilidad que se obtengan permitirá su representación en el diagrama de equilibrio de fases BiO_{1.5}-SrO-CaO-CuO. La discusión de las generalidades sobre los diagramas no forma parte de los objetivos de esta investigación. Se puede sin embargo citar que los diagramas son, más que una representación gráfica del estado de la materia, un medio de expresión que involucra variables como presión, temperatura, y composición. No representan un producto accidental de un registro de datos; sus características están dictadas por la Regla de las Fases de Gibbs, inspirada en la 1a y 2a leyes de la Termodinámica. Por consiguiente, el equilibrio de fases es aplicable a cualquier material o sistema.

Para investigar las relaciones de equilibrio de fases en un sistema, se: (1), mantiene la composición constante y varía la temperatura, esto es, se selecciona composición y determina las fases formadas a diferentes temperaturas; (2), se fija la temperatura y varia la composición, o (3), la combinación de ambos. Este último método se aplica en la presente investigación.

Los diagramas llustran, como seria el caso actual, la relación composición-temperatura en el sistema BiO_{1.5}-SrO-CaO-CuO. Como tal, permitirá conocer las relaciones entre fases, formación de compuestos, sintesis, estabilidad, cristalizacion y trayectoria de cristalizacion, de materiales que son de conocido interés como conductores iónicos, semiconductores y superconductores.

OBJETIVOS

r

Son los objetivos de la investigación que se presenta:

- Definir las relaciones de compatibilidad en el sistema BiO_{1,5}-SrO-CaO-CuO, a 800°C, en el subsolidus, donde las reacciones son predominantemente entre fases cristalinas, en presencia de mínima fase líquida.

-. Definir el sistema a 1300°C, en que el líquido es la fase dominante con mínima presencia de componentes sólidos.

 Definir las relaciones de compatibilidad en ausencia de iones estabilizadores y mineralizantes que pudieran alterar la cristalización y estabilidad de fases o afectar sus propiedades.

 Identificar la estabilidad y compatibilidad de las fases conocidas, de composición estequiométrica 2212 y 2201 BI:Sr:Ca;Cu.

 Caracterizar la solución sólida βBl₂O_{3SrCess} y los efectos de la substitución Sr/Ca en su estructura y propiedades.

Los anteriores objetivos pretenden servir de base para posteriores estudios en el sistema BIO_{1.5}-SrO-CaO-CuO, de crecimiento y modificación de cristales, superficie e interfases y sus efectos en superconductividad y propiedades.

ANTECEDENTES

Las relaciones de equilibrio de fases en el sistema BiO_{1.5}-SrO-CaO-CuO han sido interpretadas de aquellas de los subsistemas binarios y temarios que lo integran, en un intento para explicar la superconductividad de algunos materiales e identificar nuevos. Son conocidas la cristalización y propiedades de varios compuestos, algunos de interés como superconductores, semiconductores o conductores iónicos y las relaciones de equilibrio de fases en algunos de los 6 subsistemas que lo forman. Su interpretación ha permitido proponer sistemas cuatemarios que coiciden en algunos aspectos pero que tambien son opuestos en otros. La revisión de lo hasta ahora investigado constituye el antecedente y justificación para el presente proyecto.

La estequiometría de los compuestos está representada a continuación en el orden Bi:Sr:Ca:Cu. La soluciones sólida β se expresa indicando primero el catión más abundante; las soluciones de Sr y Ca se presentan en forma genérica (SrCa)O o (SrCa)₂CuO₃.

Bi2O3

Es componente importante que cristaliza en un apreciable volumen del sistema BiO_{1,5}⁻ SrO-CaO-CuO. En su máximo estado de pureza se presenta en las varias formas polimórficas: (1), α Bl₂O₃, monoclínico P2₁/a, Z=4, pseudo-ortorrómbico^{19,20} P2₁/c, y ortorrómbico^{21,22}; (2), β Bi₂O₃, tetragonal^{21,23} P4b2, *e*=7.736, *c*=5.632 Å, estable entre 710 y 825°C, o P4b2 con *a*=5.63 y *c*=10.95 Å, metastable a temperaturas inferiores a 700°C, posiblemente representando una superstructura^{24,25}; (3), β Bi₂O₃, deficiente en oxígeno, estructura tipo CaF₂²⁴, *a*=5.665 Å, estable a 720°C; (4), γ Bi₂O₃, cúbico 13, *a*=10.266 Å, inestable^{26,27}; cúbico C42b, *a*=10.93 Å²¹; cúbico I23, *a*=10.11 Å, como en el mineral sillenita procedente de Durango, México^{26,28} o como en la sillenita sintética, cúbica Pn3m, *a*=5.536 Å²¹.

Los polimorfos α -, β -, δ - y yBl2O3 exhiben conductividad iónica, siendo δBi_2O_3 uno de los mejores conductores iónicos conocidos y aceptándose que el ión oxígeno es la carga portadora móvil. δBi_2O_3 tiene la estructura de sillenita, es opticamente activo, de interés en electróptica. Presenta actividad catalítica para la oxidación seléctiva cuando se combina con Nb₂O₅, MoO₃, WO₃ y V₂O₅⁶⁴. βBi_2O_3 forma soluciones sólidas β dentro de los sistemas Bi₂O₃-MO (M = Ca, Sr, Ba, Pb, Cd, La) al incorporar otros iones, con sitios vacantes que permiten libre movimiento de oxígeno²⁹⁻³¹. En los sistemas Bi₂O₃-SrO y Bi₂O₃-CaO la conductividad alcanza valores de 1 ohm⁻¹cm⁻¹ a 800°C²⁹.

Sistema Bi₂O₃-CaO

El sistema publicado originalmente³² fué modificado con el advenimiento de los superconductores de alta T_c. De la concepción inicial de cuatro compuestos estables y cinco metaestables se derivó a la aceptación actual de Bi₁₄Ca₅O₂₆, Bi₂CaO₄, Bi₂Ca₂O₅ y Bi₆Ca₄O₁₃,

de cuatro soluciones sólidas fcc, bcc y dos romboédricas βBi_2O_{3Cass} en sus formas de alta y baja temperatura, como fases estables, y una metaestable de alta temperatura de composición cercana a Bi₇Ca₆O_{16.5}³²⁻³⁵. Sin embargo, los compuestos Bi₂CaO₄, Bi₁₀Ca₇O₂₂ y Bi₆Ca₇O₁₆³² no han sido identificados en tos experimentos a 800°C de otros investigadores⁴⁵.

 β Bi₂O_{3Cass}, de composición Bi_{1-x}Ca_xO_{1.5-0.5x}, es romboédrica, R32, R3m o R3m³², de dimensiones a=3.94, *c*=27.70 Å que se modifican a a=3.941, *c*=27.95 Å para Bi₂O₃CaO₁₂²⁵. La solucion β se transforma a 740°C de la forma de baja temperatura a la de alta temperatura³². Sobre esta fase β se extiende la solución sólida cúbica fcc del Bi₂O₃, que funde congruente a 885°C cuando incorpora entre 20 y 23 % mol CaO; su celda disminuye con la adicion de Ca, desde a=5.63 Å para 20% mol CaO a a=5.57 Å con 40 % mol CaO. Con mayor contenido de Ca, de 35 a 45% mol CaO, se forma la solución sólida cúbica bcc, estable entre 825° y 965°C, celda a=4.262 Å. Los registros de difraccción de rayos X muestran desdoblamiento de reflexiones que sugieren en ambos casos la posible formación de superestructuras^{32,33}.

Bi₁₄Ca₅O₂₆ es triclínico³³, estable a 650°C, se descompone a 732°C a la fase romboédrica ß y a Bi2CaO4. Bi2CaO4 es monoclínico centrado en el cuerpo, se transforma a 778ºC a Bi₁₀Ca7O22 más solución sólida fcc. Bi6Ca4O13, originalmente reportado34 como Bi10Ca2O22, es estable hasto los 855°C en que se descompone a Bi2Ca2O5 y solución bcc. Es de estructura ortorrómbica C2mm, Z=2, a=5.937, b=17.356 y c=7.206 Å, formada por cadenas unidas a las aristas de las piramides de BiO5 que corren paratelas al eje z, con coordinación IIIBi, para formar semicilindros apilados a lo largo de la dirección del eje x34. Bi2Ca2O5, inicialmente aceptado como Bi₆Ca₇O₁₆, es triclínico, P1, Z=2, a=10.101, b=10.130 y c=10.466 Å, α=116.86, β =107.18 y γ =92.90°; como en el caso de otros bien ordenados óxidos alcalinos de bismuto, la coordinación es IIIBi pero en este compuesto la coordinación ha sido descrita como (III+I)Bi35 sin llegar a coordinación VBi como había sido publicado anteriormente³³. Bi₂Ca₂O₅ presenta un polimorfo con transición a 925°C cuando las composiciones son cálcicas y a 885°C cuando no lo son: aparece bajo condiciones de síntesis de tiempo corto con tendencia a desaparecer a medida que este se prolonga. Se descompone a 929°C a CaO+líguido. Su estructura se compara con la del compuesto equivalente monoclínico centrado en las caras del sistema Bi20-SrO-CaO32,33.

Sistema Bi₂O₃-SrO

9

En el sistema inicialmente publicado³⁶ se reconocía la formación de soluciones romboédrica y tetragonal de Bi₂O₃ y de los compuestos Bi₂SrO₄ y Bi₂Sr₂O₅. Se modificó al agregarle las soluciones sólidas α Bi₂O₃ (fcc) y γ Bi₂O₃ (cc) tetraédricas y β Bi₂O₃ romboédricas de alta y baja temperatura y los compuestos Bi₂SrO₄, Bi₂Sr₂O₅, Bi₂Sr₃O₆, Bi₂Sr₆O₉ y BiSr₃O_x, en sus formas de alta y baja temperatura^{37-39,45}. De estos, algunos autores solo han identificado Bi₂Sr₃O₆ y BiSr₃O_x en sus investigaciones sobre el sistema cuatemario⁴⁵.

La solución βBi_2O_{3Srss} es romboédrica y su estabilidad se extiende entre 24 y 54% mol Bi₂O₃ y de 600 a 900°C. De composición representada por Bi_{1-x}Sr_xO_{1.5-.5x}, cristaliza R3m, a=3.97A, c=28.13 Å. Para 19Bi₂O₃.2SrO, a=3.97, c=28.09 Å²⁵. La temperatura del solidus se incrementa con la adición de SrO, presentando un máximo entre 25 y 30% mol SrO y 950 y 960°C^{37,40}. La transición de la solución β de baja a atta temperatura no siempre ha sido identificada, particularmente cuando la síntesis ha implicado enfriamiento rápido³⁷. Entre la solución β y Bl₂SrO₄ se forma un eutéctico a 925°C, de composición cercana a 31.5% mol SrO³⁸. βBi_2O_{3Srss} es conductor de aniones O⁼, con valores de conductividad de 2.2 x 10⁻¹ohm⁻¹cm⁻¹ a 700°C para (Bi₂O₃O₈(SrO)_{0.2}en aire²⁹.

Bl₂SrO₄ es estable hasta los 940°C en que funde incongruente a líquido más la solución sólida βBl₂O_{3Sres} tetragonal^{37,38,40}. A los 825°C hay una transición entre las formas de alta y baja temperatura³⁷. Datos de difracción de rayos X de composiciones enfriadas bruscamente sugieren que la fase de alta temperatura pudiera ser de simetría ortorrómbica, fundiendo incongruente a la solución sólida tetragonal más líquido. Para la fase de baja temperatura se acepta la simetría monociínica centrada en la base, C2/m, *a*=19.301, *b*=4.356, *c*=6.105 Å, β=94.85°⁴⁰.

La solución sólida tetragonal centrada en el cuerpo (bct) es de composición cercana a Bi_{1.22}SrO_{2.83}⁴⁰, estable entre 985 y 765°C³⁷, cristalizando I4/m, *a*=13.239, *c*=4.257 Å⁴⁰. Es compatible desde los 765°C con Bi₂Sr₂O₅, que a su vez es estable hasta los 925°C en que se transforma a la solución sólida tetragonal (bct) que a más alta temperatura desarrolla incongruentemente la fase bct más Bi₂Sr₃O₆^{36,37}. La forma de alta temperatura tiene unidades estructurales desordenadas de BiO₃ y SrO₆ con un silio compartido entre Bi y Sr. La de baja temperatura se caracteriza por un arreglo catiónico ordenado que corresponde a una estructura de baja simetría en donde todos los átomos de Bi están en coordinación tres; cristaliza ortorrómbico, Pcmm⁴⁰, Z=4, a=14.293, b=6.172, c=7.651 Å, o Pnma³⁷, Z=4, a=14.261, b=6.160, c=7.642 Å³⁷, en un intercrecimiento ordenado a lo largo del eje z de cadenas Sr₂O₄ y uniones Bi-O-Bi...,Bi-O-Bi..., donde \Box representa sitios vacantes de oxígeno en una estructura inversa tipo NiAs.

Bi₂Sr₃O₆ es estable hasta los 1210°C en que funde incongruente a SrO más líquido. Composiciones comprendidas entre Bl₂Sr₃O₆ y BiO_{1.5} son de baja fusión, desarrollando líquidos a temperaturas superiores a los 800°C, mientras que hacia SrO ios líquidos se forman a temperaturas mayores de 985°C. Bi₂Sr₈O₉ se descompone a 965°C a SrO más Bi₂Sr₃O₆ y tiende a hidratarse en aire³⁷. En monocristales se ha medido su ceida unitaria romboédrica en a=6.009 y c=58.633 Å, que sugiere una subceida de doble dimensión en el eje x⁴⁰. Bi₂Sr₃O₆, cristaliza romboédrico, a=12.526, c=18.331 Å³⁷, probable grupo espacial R3m⁴⁰. En el sistema BiO_{1.5}-SrO-CuO desarrolla una gran area de cristalización primaria a temperaturas mayores de 900°C⁴⁰.

Varios compuestos en los sistemas Sr-Bi-O y Ca-Sr-O³⁸ son de estructura tipo sillenita en donde el metal alcalinoterreo y el bismuto se sitúan desordenados ocupando los mismos sitios en estructuras de alta simetría. Los esfuerzos en la caracterización de estructuras ordenadas de baja temperatura en los sistemas Ca-Bi-O, Sr-Bi-O, Sr-Bi-Cu-O y Sr/Ca-Bi-Cu-O han identificado un nuevo ambiente de baja coordinación ^{III}Bi con el oxígeno. Esto solo existe en sistemas contenlendo cationes de Ca y Sr. Puede ser que estos cationes permitan uniones Bi-O de carácter más covalente y direccional³⁸.

Sistema SrO-CaO

Las relaciones de equilibrio del sistema no han sido publicadas, aunque es generalmente aceptado que corresponde a una solución sólida contínua. Ambos, SrO y CaO, tienen estructura tipo NaCI, con parámetros de celda de SrO y CaO de 5.16 y 4.81 Å respectivamente que aumentan con el contenido de SrO. Cuando la relación molal CaO;SrO es de 7:3, la constante de la celda es 4.89 Å. Para otros autores⁴⁵, en el sistema cuatemario BiO_{1,5}-SrO-CaO-CuO solo se identifica CaO, lo que atribuyen esencialmente a la lenta cinética asociada a las composiciones de alto contenido de SrO. Siendo que las temperaturas de fusión de los óxidos son de 2614 y 2420°C respectivamente, es de suponer que las temperaturas de reacción en el sistema exceden los 1500°C⁴¹.

Sistema Bi₂O₃-CuO

El único compuesto intermedio que se condensa es Bi₂CuO₄, tetragonal, P4/mcc, a=8.510, c=5.814 Å. Forma composiciones eutécticas con Bi₂O₃ y CuO a 770 y 820°C respectivamente^{40,42,45}.

Sistema CaO-CuO

El sistema no es estrictamente binario debido a la pérdida de oxígeno que ocurre durante la fusión y a la transformación de CuO a Cu₂O a temperaturas superiores a 1012°C; Cu₂O y CuO coexisten entre 1012 y 1028°C, en aire³³. Como compuestos intermedios se forman CaCu₂O₃, que es estable entre 985 y 1018°C³³, y Ca₂CuO₃ que lo es entre 950 y 1000°C^{44,46} y se descompone a 1034°C en CaO más líquido³³; es ortorrómbico, Immm, a=12.243, b=3.779 y c=3.258 Å⁴¹. CaCuO₂ es estable por abajo de 740°C, siendo ortorrómbico Cmca, a=10.588, b=2.812 y c=6.324 Å⁴⁴. La composición eutéctica en el sistema ha sido estimada en 20CaO.80CuO, con pérdida de oxígeno a 1020°C^{43.45}.

 $Ca_{0.85}CuO_2(Ca_{5+x}Cu_6O_{12})^{47}$, también representado como $Ca_{1-x}CuO_2^{48}$, es una solución sólida cuya región de homogeneidad aparentemente cambia con la temperatura y la presión parcial de oxígeno^{33,43,49}. Se descompone en aire a Ca_2CuO_3 más CuO a 755°C y, en oxígeno, por arriba de los 835°C³³. Consta de dos subestructuras basadas en dos diferentes subceldas, la celda CuO que es ortorrómbica centrada en las caras *a*=2.8, *b*=6.32, *c*=10.57 Å; la incorporación de Ca a la estructura se relaciona a una subcelda monoclínica *a*=3.30, *b*=6.32, *c*=10.58 Å y β =87°47,49. La transformación de fases es tal que a temperaturas superiores a 1034°C sólamente quedan CaO+líquido para composiciones conteniendo más de 68% mol CaO, y CaO+líquido+CuO para aquellas composiciones más pobres en CaO.

Sistema SrO-CuO

Se forman los compuestos SrCuO₂⁵⁰, Sr₂CuO₃⁵¹, y Sr₂Cu₃O_x⁵² o Sr₃Cu₅O_x que posteriormente se ha demostrado corresponde a Sr₁₄Cu₂₄O₄₁⁵³, estables a 800°C^{40,45}. SrCuO₂ es ortorrómbico, Cmcm, *a*=3.56, *b*=16.32 y *c*=3.92 Å, con una capa Cu₂O₃ entre láminas dobles de Sr; funde incongruentemente a Sr₂CuO₃+líquido *a* ~1085°C^{37,40}.

Sr₂CuO₃ es ortorrómbico Immm, a=12.68, b=3.91 y c=3.48 Å. Los átomos de Cu están en coordinación cuatro planar con oxígeno, formando unidades CuO₄ enlazadas por las esquinas en cadena entre láminas dobles de Sr. Funde incongruente a SrO+liquido a aproximadamente 1225°C^{37,40}. SrCuO₂ fuñde iĝcongruente a 1085°C a Sr₂CuO₃+liquido y Sr₁₄Cu₂₄O₄₁ funde incongruente a 955°C a SrCuO₂+liquido⁴⁰. Sr₁₄Cu₂₄O₄₁ inicialmente indicado como SrCu₂O₃ tetragonal, es ahora aceptado como una estructura interpenetrada de capas Sr-(Cu₂O₃)-Sr en un arregio ortorrómbico, a=11.459, b=13.368 y c=3.931 Å y de capas de cadenas CuO₂ en un arregio igualmente ortorrómbico para el que c=2.749 Å, resultando en una supercelda con a=11.459, b=13.368 y c~27.52 Å, 7 a 10 veces mayor que la dimensión c original. El compuesto no estequiométrico se considera como una fase Sr_{1+x}Cu_{2-x}O₃, x=1. Se aceptan Sr₄Cu₇O₁₁, ortorrómbico, a=11.47, b=13.40 y c=3.95 Å^{40,52-54} y las relaciones de equilibrio SrO-SrCu₂O₂-Cu, SrO-Sr₂CuO₃-SrCu₂O, SrO-SrCu₂O₂, SrCu₂O₂-Cu₂O y SrO-Cu₂O, de menor estado de oxidación del Cu y el proceso de reducción del Sr₁₄Cu₂₄O₄₁ a través de la mezcia de SrCuO₂+CuO a SrCuO₂+SrCu₂O₄-SrCu₂O₂-SrCu₂O₂ y los equilibrios termarios Sr₂CuO₄-SrCu₂O₂-SrCu₂O₂ y los equilibrios termarios Sr₂CuO₄-SrCu₂O₂-SrCu₂O₂ y SrCuO₂-Cru₂O.

Sistema Bi2O3-SrO-CaO

Las solución sólida &-Bi $_2O_{3SrCass}$ incorpora hasta un 25% mol de SrO+CaO y exhibe conducción iónica⁵⁵. Altas concentraciones de Bi $_2O_3$ causan condensación de Bi $_2CaO_4$, Bi $_2SrO_4$, γ_{ss} , y bajas, de los compuestos 8250 y 9.11.5.0 en relación estequiométrica de BiO:SrO:CaO⁴⁵.

Sistema Bi2O2-SrO-CuO

El sistema ha sido publicado en tres versiones diferentes, de Saggio y col.⁵⁶, Ikeda y col.⁵⁷ y Chakoumakos y col.⁶⁰. Destaca la formación del superconductor Bi₂Sr₂CuO₆ o 2201, y se han identificado los compuestos Bi_{2+x}Sr_{2-x}Cu_{1+y}O₂, Bi₂Sr₃Cu₂O₂, Bi₄Sr₆Cu₅O₂ y Bi₂Sr₃CuO₇^{40,56,57}, o Bi_{2.2-x}Sr_{1.8+x}CuO₇, de temperatura de transición 9 K^{40,57}, monoclínico C2/m o Cm, a=24.493, b=5.4223, c=21.959, β =105.40⁶⁴⁰. La fase de estequiometría Bi:Sr:Ca:Cu 2201 sintetizada en tiempos cortos de 15 min a 800°C cambia a una segunda fase deformada cuando se mantiene tiempos tan largos como 380 h a 830°C⁶⁰; su composición puede ser variable y se expresa como Bi₂Sr_{2-x}CuO₆. Presenta las asociaciones de fases⁵⁰ 2201-

Sr2Cu₅O.-CuO. 2201deformado-2201ideal, 2201ideal-Bi₂Sr₂O₅-2201deformado, Bi₂Sr₂O₅-BBi2O35me-CuO-2201ideal, 2201ideal-2201deformado-CuO. βBi₂O_{3Sms}-2201, CuO-2201deformado-Sr₁₄Cu₂₄O₄₁. Otros autores tambien admiten las compatibilidades βBi₂O_{3Sras}- $Bi_{2}CuO_{4}, \quad \beta Bi_{2}O_{3Srea}-CuO, \quad \beta Bi_{2}O_{3Srea}-Bi_{2+x}Sr_{2-x}Cu_{1+y}O_{z}, \quad Sr_{3}Cu_{5}O_{z} \quad con \quad Bi_{2+x}Sr_{2-x}Cu_{1+y}O_{z}, \quad con \quad Bi_{2+x}Sr_{2-x}Cu_{1+x}O_{z}, \quad con \quad Bi_{2+x}Sr_{2-x}Cu_{1+x}O_{z}, \quad con \quad Bi_{2+x}Sr_{2-$ Bi₂Sr₃Cu₂O₂, Bi₄₇Sr₄₈Cu₇Oz y Bl₄Sr₈Cu₅O₇, SrCuO₂ y Sr₂CuO₃ con composiciones conteniendo 0.75 y 0.6% mole SrO en el sistema BiO1 5-SrO, a 840ºC, en aire⁵⁷. Las relaciones de compatibilidad a 800°C con y sin Li₂CO₃ como estabilizador han mostrado la formación de Bi₂Sr₂CuO₆, de la serie homóloga Bi₂Sr₂Ca_{n-1}Cu_nO_{2n+4} (solución sólida tipo Raveau)⁴⁰, de Bi₄Sr₈Cu₅O_{19+x} inicialmente presentada como Bi₂Sr₄Cu₂O_{9+x}, ortorrómbico, Fmmm, a=5.373, b=33.907, c=23.996 Å, cristaliza sólo en atmósfera de oxígeno⁴⁰, de Bi₂Sr₃Cu₂O₈ monoclínico centrado en C. a=24.937, b=5.395 y c=19.094 Å y de las fases estecuiométricas 4.9.1 y 2.7.256 (Bi:Sr:Ca), estable a temperaturas menores de 875°C o con Li₂CO₃ como mineralizante. Las propiedades superconductoras han sido estudiadas por varios autores^{40,58-61}.

Sistema Bi₂O₃ -CaO-CuO

Es un sistema en el que curiosamente no parecen formarse compuestos temarios ni soluciones sólidas. A 850°C las relaciones de compatibilidad conocidas son CaO-Ca₂CuO₃-Bi₆Ca₇O₁₆ y CuO-Ca₂CuO₃-Bi₆Ca₇O₁₆. Una gran región de líquido se extiende desde el binario Bi₂O₃-CuO hasta casi 60% mol CaO. Cuando Bi₂O₃ contiene hasta un 30% mol CaO, los compuestos Bi₆Ca₇O₁₆, Bi₁₀Ca₇O₂₂, γ_{as} , y α_{as} deben estar en equilibrio con sus líquidos⁴⁵.

Sistema SrO-CaO-CuO

Se presentan tres series de soluciones sólidas que se extienden desde el sistema SrO-CuO hacia el vértice CaO. A 940°C se desarrollan las soluciones $(Sr,Ca)_2CuO_3$, SrCuO₂ a Sr_{0.25}Ca_{0.75}CuO₂. Sr₁₄Cu₂₄O₄₁ a Sr₇Ca₇Cu₂₄O₄₁, $(Sr_{0.16}Cu_{0.84})$.CuO₂, $(Sr,Ca)_{14}Cu_{24}O_{41}$ y $(Sr,Ca)CuO_2^{45}$. Las soluciones sólidas están limitadas a relaciones de Sr:Ca 1:1 y 1:3, respectivamente^{41,44}. La serie de soluciones 1:1 mantiene la estructura del SrCuO₂ con sustitución Ca/Sr hasta Sr_{0.25}Ca_{0.75}CuO₂. CaCuO₂ es menos estable y compatible con Ca₂CuO₃ más CuO. La celda es lineal con la composición, como es el caso del $(Sr_{0.5}Ca_{0.5})CuO_2$ otorrómbico, Cmcm, a=3.454, b=16.13, y c=3.873 Å. Otros autores⁴⁵, solamente identifican a 800°C los compuestos $(Sr,Ca)2CuO_3$, $(Sr,Ca)CuO_2$, $y (SrCa)_1_4Cu_2_4O_4_1$. La solución $Sr_{14}Cu_{24}O_{41}$, cuando parte del Sr es sustituído por Ca, modifica las dimensiones de su calda a a=3.931, b=11.380 y c=12.972 Å. En la serie (Sr,Ca):Cu, los compuestos Sr_2CuO_3 y Ca_2CuO_3 son ortorómbicos, isoestructurales, estables en aire, hidrolizables y solubles en ácidos. En la solución $Sr_{2.x}Ca_xCuO_3^{62}$ (preparada a partir de oxalatos) las dimensiones de la celda siguen tendencias aproximadamente lineales con la composición⁴⁴. Fué indicada también como $Sr_{1.0}Ca_{1.0}CuO_3$, de reacción en estado sólido, ortorrómbica, Immm, a=3.306, b=12.219 y c=3.807 Å, siendo los valores de los ejes x y z aproximadamente la mitad de aquellos característicos para Sr_2CuO_3 y $Ca_2CuO_3^{44}$. La sustitución de Sr por Ca hace que disminuyan las constantes de la celda principalmente el parámetro a^{62} , incrementándose tas dimensiones a medida que se reduce el contenido de $Ca_2CuO_3^{41}$. Algunas propiedades termodinámicas han sido publicados⁶².

La fase temaria con un pequeño intervalo de homogeneidad $(Sr_xCa_{1+,x})CuO_2$, x aproximadamente 0.15, es tetragonal para $(Sr_{0.16}Ca_{0.84})CuO_2$, a=3.867 y c=3.2195 Å. Su estructura es de tipo perovskita simple con sitios vacantes de oxígeno, conteniendo Cu^{2+} en coordinación planar cuadrada⁶³. $Sr_xCa_{1,x}CuO_2$, x-0.1, a 1000°C y presión atmosférica muestra una estructura similar a la de los superconductores de atta T_c ya que contiene capas de CuO₂ separadas por planos de átomos de Ca. $Sr_{0.14}Ca_{0.86}CuO_2$ y $Sr_{0.09}Ca_{0.91}CuO_2$ no son superconductores; $Sr_{1,x}Nd_yCuO_2$ y una estructura similar en el sistema Bi-Sr-Cu-O si lo son. Para 0.08<x<0.15 solo una capa de cuprato ha sido observada; para x<0.08 y x=0.16 coexiste con pequeñas cantidades de CaCu₂O₃, Ca₂CuO₃ y $Sr_2CuO_3^{63}$. La solución sólida $Sr_xCa_{1,x}CuO_2$ y $Sr_{0.09}Ca_{0.91}CuO_2$; sus dimensiones a y c se expanden 14 y 45% respectivamente con el incremento de x de 0.09 a 0.14, aparentemente por la sustitución Sr/Ca en los planos (Ca,Sr) que se encuentran entre capas de CuO₂⁶³.

Otros reportes no han establecido compuestos temarios a temperatura ambiente, quedando el diagrama de equilibrio a 850-950°C dividido en cuatro regiones de dos fases $(Sr,Ca)O_{ss}$ + $(Sr,Ca)_2CuO_{3ss}$; $(Sr,Ca)_2CuO_{3ss}$ + $(Sr,Ca)CuO_{2ss}$; $(Sr,Ca)CuO_{2ss}$ + $(Sr,Ca)_3Cu_5O_{8ss}$; $(Sr,Ca)_3Cu_5O_{8ss}$ +CuO y dos regiones de tres fases $Sr_{0.65}Ca_{0.35}CuO_2$ + $Sr_{1.5}Ca_{1.5}Cu_5O_8$ + Ca_2CuO_3 ; Ca_2CuO_3 + $Sr_{1.5}Ca_{1.5}Cu_5O_8$ +CuO⁴¹. Roth y col.⁴⁴ discuten que Ca₂CuO₃ funde incongruentemente a CaO+liquido a 1030°C⁴¹, CaCuO₂ se transforma a Ca₂CuO₃+CuO a 760°C y, a 980°C, se indica la coexistencia de Ca₂CuO₄+CaCu₂O₃.

Sistema Bi₂O₃-SrO-CaO-CuO

La aplicación fundamental del sistema BiO_{1.5}-SrO-CaO-CuO es hacia materiales superconductores. Los mate^{fi}tales aquí comprendidos se expresan por la fórmula general Bi₂Sr₂Ca_{n-1}Cu_nO₄ (n=1,2,3) que más quèⁿidéntificar una composición química refleja el número y secuencia de capas separadas del tipo Me-O (Bi-O, Sr-O, Cu-O, etc.) en el cristal. La temperatura de transición depende relativamente del valor de n o capas CuO, siendo de 4 a 22 K para n=1, de 67 a 89 K para n=2 y de 89 a 120 K para n=3. La estructura consiste de capas de perovskita Sr-(CuO₂Ca)_{n-1}-CuO₂-SrO separadas por capas dobles BiO⁶⁵⁻⁶⁷. Con adición de Li, Pr u otros elementos la fase de 80 K eleva su temperatura hasta cerca de los 120 K⁶⁸⁻⁷⁰. La fase de 110 K requiere para su formación de elementos estabilizadores adicionales como el Pb y de preparación por fusión⁷¹⁻⁷³. La fase de 75 K es ortorómbica, de estructura tipo Bi₄Ti₃O₄, dimensiones de celda unitaria de *a*=2a, *b*=5 2a y c~8a (a=celda unitaria de perovskita cúbica simple)³⁷.

Los compuestos de estequiometría 2212 y 2223 Bi:Sr:Ca:Cu son los únicos superconductores que se forman en el sistema. De hecho 2223 no suele ser incluido en el sistema por requerir la adición de Pb para poder sintetizarse y mantenerse estable. A 800°C no es posible sinterizarlo sin adición de Pb aún en tiempos largos.

Investigaciones recientes^{40,45,74} muestran discrepancias y dejan dudas sobre la compatibilidad y cristalización en varias zonas del sistema. Se han determinado las relaciones de compatibilidad en el sistema cuando los contenidos de CaO son de 10 y 15% mol⁴⁵, pero no se han investigado las relaciones en composiciones ricas en Bi, Sr o Cu. El conocimiento del sistema sólo es parcial; se conocen las compatibilidades Ca_2CuO_3 ·2212-Sr₁₄Cu₂₄O₄₁·CuO, 2212-Sr₁₄Cu₂₄O₄₁·9.11.5.0-2201, 2212-2201-Sr₁₄Cu₂₄O₄₁·CuO, 8250-2201-2212-CuO, Ca₂CuO₃·9.11.5.0-Sr₁₄Cu₂₄O₄₁·212 y CaO-9.11.5.0-Sr₁₄Cu₂₄O₄₁-SrCuO₂⁴⁵. En el plano 10% mol CaO hay compatibilidad entre Sr₁₄Cu₂₄O₄₁ y el superconductor 2201, y de este con (Sr_{1-x}Ca_x)CuO₂. 2212 es el único compuesto cuatemario compatible con 2201, 8250, 9.11.5.0, CuO, Sr₁₄Cu₂₄O₄₁, Ca₂CuO₃ y CaO⁴⁵. Otros indican ocho compuestos que coexisten con el Bi₂Sr₂CaCu₂O_{8+x} o fase de estequiometría Bi:Sr:Ca:Cu 2:21:2; en aire. Todos los compuestos en el sistema SrO-CaO-CuO, excepto la solución sólida (Sr,Ca)CuO₂, mantienen equilibrio con 2212. (Sr,Ca)CuO₂ solidifica como fase primaria previa a la cristalización de 2212.

Composiciones en el sistema Bi₂O₃-SrO-CaO-CuO reaccionadas a temperaturas superiores al liquidus y rápidamente enfriadas desarrollan escasa fase cristalina, en abundante vidrio. Esto ha dado lugar a las llamadas "vitro cerámicas superconductoras de alta T_c" que generalmente se funden por arriba de los 1150°C y, someten a templado a temperaturas de 800 a 850°C⁷⁶ para que desarrollen superconductividad.

Las composiciones Bi_{1.5}SrCaCu₂O_x, Bi_{1.5}SrCa_{1.5}CuO_x, Bi_{0.5}Pb_{0.5}SrCaCu₂O_x, BiAl_{0.1}SrCaCu₂O_x, y BiAl_{0.9}SrCaCu₂O_x desarrollan superconductividad con temperaturas de transición entre 63 y 78 K cuando se incluye doble templado y enfriamiento en nitrógeno líquido. Los superconductores 2201, 2212, y 2223 han sido preparados a partir de sus correspondientes líquidos⁷⁵⁻⁸⁵. La principal ventaja de la fusión a temperatura elevada reside en que permite cristalizar composiciones seleccionadas en diferentes matrices vítreas, en ausencia de otras fases cristalinas que pudieran interferir, con formatos propios del estado vítreo.

EXPERIMENTAL

Las relaciones de compatibilidad en el sistema BiO_{1.5}-SrO-CaO-CuO se investigan en el presente estudio por el método de síntesis y enfriamiento rápido. Las composiciones inicialmente seleccionadas se calcularon de datos de la literatura pertinente a los varios sistemas que conforman el cuatemario BiO_{1.5}-SrO-CaO-CuO y de los compuestos estables cuya existencia es conocida¹⁻⁸⁵ (Figura 1). Estas composiciones seleccionadas se. localizaron como composiciones bases dentro del sistema BiO_{1.5}-SrO-CaO, a las que se les adicionó CuO en incrementos de 10% mol, 25%, 40%, 50%, 70% y 90% a manera de variar las composiciones investigadas a través del sistema cuatemario BiO_{1.5}-SrO-CaO-CuO hacia el vértice de 100% mol CuO, cubriéndolo adecuadamente. Las composiciones seleccionadas para demostrar los objetivos del presente proyecto se llustran en la Figura 2 e indican en la Tabla I.

Como reactivos para preparar las composiciones se utilizaron Sr(NO₃)2. Ca(NO₃)₂.4H₂O, Bi₂O₃ y CuO, grado analítico, mezclándolos en las proporciones adecuadas, moliendo en acetona, secando a 60°C, y sintetizando en recipientes de platino a temperaturas entre 600 and 800°C dependiendo de la composición. Los materiales así obtenidos se molieron nuevamente y reaccionaron a 800°C durante ocho dias. Parte de estos mismos sinterizados se sometieron a un nuevo tratamiento a 1300°C, por periodos de 15 a 30 min para desarrollar fusión apreciable dependiendo de la composición. Reacciones a más altas temperaturas no fueron necesarias, ya que además causan volatilización parcial de los componentes o reacciones no deseadas con el contenedor. En ambos casos, los materiales reaccionados se enfriaron rápidamente por inmersión en agua con hielo. Las variaciones observadas en los grados de reacción y de fusión se atribuyen a la variación de la composición a través del sistema y a la diferente naturaleza de los óxidos de Bi, Sr, Ca y Cu. Las condiciones de reacción de 800°C y ocho dias se seleccionaron después de varios experimentos que demostraron la conveniencia de lograr condiciones de máxima reacción, mínima volatilidad y predominancia de fases cristalinas con escasez de líquido; la temperatura de 1300°C demostró ser óptima para obtener rápidamente fusión intensa en tiempo muy corto que evitase volatilización, en ausencia de fases cristalinas. Tiempos de fusión largos o temperaturas excesivas no mejoran en este sistema el grado de reacción, la viscocidad o fluidez de los productos formados, o el enfriamiento rápido y si aumentan la volatilización y las posibilidades de reaccionar en sistemas mixtos sólido-líquido y no en sistemas sólido o líquido como se pretende. Los resultados probaron que para la mayoría de las composiciones preparadas la abundancia de las fases formadas depende relativamente del tiempo de reacción.

Figura 1. Sistema BiO_{1.5}-SrO-CaO-CuO indicando los principales compuestos estables a 800°C1-85

Figura 2. Composiciones base seleccionadas en el sistema BiO_{1,5}-SrO-CaO. Las composiciones en el tetraedro BiO_{1,5}-SrO-CaO-CuO se localizan sobre lineas imaginarias entre estas composiciones y el vértice CuO. La identificación de los productos de reacción requirió de varias técnicas analíticas. La difracción de rayos X fué de primordial importancia en el análisis de los compuestos sinterizados y de sus características cristalográficas, dado el fino tamaño de los cristales, sus altos índices de refracción y la compleja asociación de fases. Para ello se empleó un difractómetro Siemens modelo D500 provisto de radiación filtrada CuK α , operado a ángulos de Bragg de 5 a 60°, velocidad del goniómetro 1°/min, calibrado con KCI como estándar interno. La identificación de fases fué problemática debido a la abundante variedad de fases cristalinas que se forman en el sistema, la similitud entre sus espectros, la confusión entre los datos reportados, y la frecuente formación de soluciones sólidas, todo ello obligando a una interpretación muy cuidadosa de las distancias interplanares y de las intensidades de las reflexiones^{19-28,39}.

Otras técnicas analíticas, como la microscopía óptica por inmersión de fragmentos en líquidos de índice de refracción conocido, no pudo aplicarse en toda su amplitud debido al alto índice de refracción de las fases formadas, que es superior a n>2.00. Sin embargo, la técnica sí se empleó para establecer las fases desarrolladas, su homogenidad y cristalinidad, incluyendo los vidrios.

La estructura molecular de la solución sólida β -Bi₂O_{3ss}, se interpretó mediante espectroscopía de absorción infrarroja. La técnica requirió mezclar las composiciones preparadas con KBr grado espectroscópico, en proporción de 0.2 gm por 2 gm, y prensarlas a 10000 lb/pulg² para formar pastillas de 1 cm de diámetro por 0.3 mm de espesor, compactas y transiúcidas, usadas para análisis en un espectrómetro de doble haz Perkin-Elmer modelo 783, operado a una velocidad de barrido de 1000 cm⁻¹/min en el intervalo de longitud de onda de 4000 a 2000 cm⁻¹ y de 500 cm⁻¹/min entre 2000 y 300 cm⁻¹. La identificación de los espectros y cálculo de la estructura molecular se hizo según los métodos convencionales⁹⁶⁻⁸⁹.

La estructura de la solución sólida β -Bi₂O_{3ss}, sus índices de Miller y parámetros de red se calcularon de los datos de difracción de rayos X empleando el programa de Garvey⁹⁰ basado en el algoritmo de Visser⁹¹. El grupo espacial fué confirmado del análisis estructural del espectro de vibración infrarroja, por el método de correlación basado en la suposición de que el grupo del sitio es un subgrupo del grupo espacial del cristal y del grupo puntual de la molécula aislada, y que el número de sitios equivalentes es igual al número de moléculas en él⁸⁹. La conductividad lónica de la solución sólida β -Bi₂O_{3ss} se midió en un puente de conductividad Hewlet-Packard, suspendiendo pastillas de aproximadamente 1 cm de diámetro y 2 mm de espesor entre electrodos de oro, en un horno vertical cuya temperatura varió desde 75 hasta 800°C en incrementos de 100°.

	Composición (% mol)								
Muestra	BiO _{1.5}	SrO	CaO	CuO					
	•								
01	92.00	4.00	4.00						
02	85.00	7.50	7.50						
03	80.00	10.00	10.00						
04	75.00	12.50	12.50						
05	75.00	18.75	6.25						
06	75.00	25.00							
07	86.00	14.00							
08	75.00	6.25	18.75						
09	86.00	14.00	÷						
1*	90.00	5.00	5.00						
11	81.00	4.50	4.50	10.00					
2*	75.00	12.50	12.50						
12	67.50	11.20	11.20	10.00					
20*	70.00	20.00	10.00						
13	63.00	18.00	9.00	10.00					
21	52.50	15.00	7.50	25.00					
21*	70.00	10.00	20.00						
14	63.00	9.00	18.00	10.00					
22	52.50	7.50	15.00	25.00					
25*	60.00	20.00	20.00						
15	54.00	18.00	18.00	10.00					
23	45.00	15.00	15.00	25.00					
38*	55.00	15.00	30.00						
116	49.50	13.50	27.00	10.00					

Tabla I. Composiciones seleccionadas en el sistema BiO_{1.5}-SrO-CaO-CuO

20

and the second second

50.00	40.00	10.00	
45.00	36.00	9.00	10.00
37.50	30.00	7.50	25.00
50 .00	25.00	25.00	•
¢*45.00	22.50 🖞	6 22.50	10.00
37.50	18.70	18.70	25.00
30.00	15.00	15.00	40.00
50.00	10.00	40.00	
30.00	15.00	15.00	40.00
40.00	50.00	10.00	
24.00	30.00	6.00	40.00
20.00	25.00	5.00	50.00
40.00	40.00	20.00	
36.00	36.00	18.00	10.00
24.00	24.00	12.00	40.00
40.00	30.00	30.00	
36.00	27.00	27.00	10. 00
20.00	15. 00	15.00	50. 00
40.00	20.00	40.00	
36.00	18.00	36.00	10.00
20.00	10.00	20.00	50.00
40.00	10.00	50.00	
30.00	7.50	37.50	25.00
24.00	6.00	30.00	40.00
20.00	5.0 0	25.00	50.00
12.00	3.00	15.00	70.00
4.00	1.00	5.00	90. 00
30.00	50.00	20.00	
22.50	37.50	15.00	25.00
1 8 .00	30.00	12.00	40.00
15.00	25.00	10.00	50.00
30.00	20.00	50.00	
27.00	18.00	45.00	10.00
22.50	15.00	37.50	25.00
30.00	35.00	35.00	
27.00	31.50	31.50	10.00
	50.00 45.00 37.50 50.00 \$ 45.00 37.50 30.00 50.00 30.00 24.00 20.00 40.00 36.00 20.00 40.00 36.00 20.00 40.00 36.00 20.00 40.00 36.00 20.00 40.00 36.00 20.00 40.00 36.00 20.00 40.00 36.00 20.00 40.00 30.00 22.50 18.00 30.00 22.50 30.00 22.50 30.00	50.00 40.00 45.00 36.00 37.50 30.00 50.00 25.00 \$ 45.00 22.50 (2) 37.50 18.70 30.00 15.00 50.00 10.00 30.00 15.00 40.00 50.00 24.00 30.00 20.00 25.00 40.00 30.00 24.00 30.00 20.00 25.00 40.00 30.00 36.00 24.00 40.00 30.00 36.00 27.00 20.00 15.00 40.00 20.00 36.00 10.00 30.00 7.50 24.00 6.00 20.00 5.00 30.00 7.50 24.00 6.00 20.00 5.00 30.00 50.00 22.50 37.50 18.00 30.00 25.00 <td>$50.00$$40.00$$10.00$$45.00$$36.00$$9.00$$37.50$$30.00$$7.50$$50.00$$25.00$$25.00$$445.00$$22.50\frac{2}{2}$$622.50$$37.50$$18.70$$18.70$$30.00$$15.00$$40.00$$30.00$$15.00$$15.00$$50.00$$10.00$$40.00$$30.00$$15.00$$15.00$$40.00$$50.00$$10.00$$24.00$$25.00$$5.00$$40.00$$40.00$$20.00$$36.00$$36.00$$18.00$$24.00$$22.00$$40.00$$36.00$$27.00$$27.00$$20.00$$15.00$$15.00$$40.00$$20.00$$40.00$$36.00$$18.00$$30.00$$36.00$$15.00$$15.00$$40.00$$10.00$$20.00$$40.00$$10.00$$20.00$$40.00$$10.00$$50.00$$20.00$$5.00$$30.00$$20.00$$5.00$$25.00$$12.00$$3.00$$5.00$$22.50$$37.50$$15.00$$18.00$$30.00$$20.00$$22.50$$15.00$$37.50$$30.00$$20.00$$50.00$$22.50$$15.00$$37.50$$30.00$$25.00$$10.00$$30.00$$25.00$$10.00$$30.00$$25.00$$10.00$$30.00$$25.00$$10.00$$22.50$$15.00$</td>	50.00 40.00 10.00 45.00 36.00 9.00 37.50 30.00 7.50 50.00 25.00 25.00 445.00 $22.50\frac{2}{2}$ 622.50 37.50 18.70 18.70 30.00 15.00 40.00 30.00 15.00 15.00 50.00 10.00 40.00 30.00 15.00 15.00 40.00 50.00 10.00 24.00 25.00 5.00 40.00 40.00 20.00 36.00 36.00 18.00 24.00 22.00 40.00 36.00 27.00 27.00 20.00 15.00 15.00 40.00 20.00 40.00 36.00 18.00 30.00 36.00 15.00 15.00 40.00 10.00 20.00 40.00 10.00 20.00 40.00 10.00 50.00 20.00 5.00 30.00 20.00 5.00 25.00 12.00 3.00 5.00 22.50 37.50 15.00 18.00 30.00 20.00 22.50 15.00 37.50 30.00 20.00 50.00 22.50 15.00 37.50 30.00 25.00 10.00 30.00 25.00 10.00 30.00 25.00 10.00 30.00 25.00 10.00 22.50 15.00

۰.

29.	22.50	26.20	26.25	25.00
36	18.00	21.00	21.00	40.00
45	15.00	17.50	17.50	50.00
52	9,00	10. 50	10.50	70.00
33G	6,00	7.00	7.00	80.00
62	3.00	3.50	3.50	90.00
34*	20,00	60.00	20.00	
112	18.00	54.00	18.00	10.00
30	15,00	45.00	15.00	25.00
35*	20.00	20.00	60.00	
114	18.00	18.00	54.00	10.00
210	15.00	15.00	45.00	25.00
37	12.00	12.00	36.00	40.00
46	10.00	10.00	30.00	50.00
53	6.00	6.00	18.00	70.00
63	2.00	2.00	6.00	90.00
36*	10.00	45.00	45.00	
36A	9.00	40.50	40.50	10.00
211	7,50	33.75	33.75	25.00
38	6.00	27.00	27.00	40.00
47	5.00	22.50	22.50	50.00
54	3.00	13.50	13.50	70. 00
64	1.00	4.50	4.50	90.00
37*	10.00	80.08	10.00	
115	9.00	72.00	9.00	10.00

*Composiciones base en el sistema BiO1.5-SrO-CaO-CuO

RESULTADOS Y DISCUSION

Las fases identificadas para las composiciones seleccionadas (Tabla I) reaccionadas a 800° se presentan en la Tabia II y en la Tabia III para 1300°C

Tabla II.	Composición	de fases d	e mezclas	seleccionadas	en el sistema
	8	iO1 5-SrO-	CaO-CuO	a 800°C.	

Muestra		Composic	Fases*		
	BiO _{1.5}	SrO	CaO	CuO	
01	92.00	4.00	4.00		ßBioO2 aBioO2
02	85.00	7.50	7.50		βBi ₂ O ₂₀₀
03	80.00	10.00	10.00		βBi ₂ O _{3en}
04	75.00	12.50	12.50		βBi ₂ O _{3es}
05	75.00	18.75	6.25		βBi ₂ O _{3ss}
06	75.00	25.00			βBi ₂ O _{3ee}
07	86.00	14.00			βBl ₂ O _{3ss}
08	75.00	6.25	18.75	•	βBi ₂ O _{3es}
09	86.00	14.00			βBi ₂ O ₃₆₈
1*	90.00	5.00	5.00		
11 .	81.00	4.50	4.50	10.00	βBi ₂ O _{3aa} , CuO
2*	75.00	12.50	12.50		
12	67.50	11,20	11.20	10.00	βBi ₂ O _{3ss} , CuO
20*	70.00	20.00	10.00		
13	63.00	18.00	9.00	10.00	β _{ss} , γ _{ss} , Bi ₂ SrO ₄ , CuO
21	52,50	15.00	7.50	25.00	β _{ss} , γ _{ss} , Bi ₂ SrO ₄ , CuO
21*	70.00	10.00	20.00		
14	63.00	9.00	18.00	10.00	β _{ss} , γ _{ss} , Bi ₂ CaO ₄ , CuO
22	52.50	7.50	15.00	25.00	β _{ss} , γ _{se} , Bi ₂ CaO ₄ , CuO
25*	60.00	20.00	20.00		

	•				·
15	54.00	18.00	18.00	10.00	β ₅₅ , γ ₈₅
23	45.00	15.00	15.00	25.00	γ _{ss} , β _{ss} , CuO
38*	55.00	15.00	30.00		
116	49.50	13.50	27.00	10.00	γ _{ss} , 8250
22*	50.00	40.00	10.00		
16	45.00	36.00	9.00	10.00	γ _{ss} , 2201
25	37.50	30.00	7.50	25.00	2201, CuO
23*	50.00	25.00	25.00		
17	45.00	22.50	22.50	10.00	8250, 9.11.5.0, 2201, Bi ₂ Sr ₆ O ₉
24	37.50	18.70	18.70	25.00	8250, 9.11.5.0, 2201, Bi ₂ Sr ₆ O ₉
31	30.00	15.00	15.00	40.00	9.11.5, Sr ₆ Bi ₂ O ₉ , 2201
32	30.00	15.00	15.00	40.00	8250, 2201, CuO
26*	40.00	50.00	10.00		
34	24.00	30.00	6.00	40.00	2201, Bi ₂ Sr ₆ O ₉
41	20.00	25.00	5.00	50.00	2201, 2212, CuO
27*	40.00	40.00	20.00		
18	36.00	36.00	18.00	10.00	9.11.5, 2201
33	24.00	24.00	12.00	40.00	CuO, 2212
28*	40.00	30.00	30.00		
19	36.00	27.00	27.00	10.00	8250, 9.11.5.0, 2201
42	20.00	15.00	15.00	50.00	2212, CuO
29*	40.00	20.00	40.00		
110	36.00	18.00	36.00	10.00	8250, 9.11.5.0, 2201
43	20.00	10.00	20.00	50.00	2201, CuO, 8250
30*	40.00	10.00	50.00		
26	30.00	7.50	37.50	25.00	8250, CaO
30C	24.00	6.00	30.00	40.00	8250, CuO
30D	20.00	5.00	25.00	50.00	8250, CuO
51	12.00	3.00	15.00	70.00	8250, 2201, CuO
61	4.00	. 1,00	5.00	90.00	8250, 2201, 2212, CuO
31*	30.00	50.0 0	20.00		
27	22.50	37.50	15.00	25.00	9.11.5.0, 2212
35	18.00	30.00	12.00	40.00	CuO, Sr ₁₄ Cu ₂₄ O ₄₁ ,
					9 11 5

•

24 .

44	15.00	25.00	10.00	50.00	CuO, Sr ₁₄ Cu ₂₄ O ₄₁ ,
					2212, 9.11.5.0
32*	30.00	20.00	50.00		
32A	27.00	18.00	45.00	10.00	2212, 2201, 9.11.5.0
28	22.50	15.00	37.50	25.00	2212, 2201, 9.11.5,
					CuO
33*	30.00	35.00	35.00		
111	27.00	31.50	31.50	10.00	9.11.5, 2212, Bi ₂ Sr ₆ O ₉ ,
29	22.50	26.20	26.25	25.00	2212, 9.11.5,Ca ₂ CuO ₃
36	18.00	21.00	21.00	40.00	2212, CuO, Ca ₂ CuO ₃
45	15.00	17.50	17.50	50.00	2212, CuO, Ca ₂ CuO ₃
52	9.00	10.50	10.50	70.00	2212, CuO, 2201
33G	6.00	7.00	7.00	80.00	2212, CuO, 2201
62	3.00	3.50	3.50	90.00	2212, CuO, 2201
34*	20.00	60.00	20.00		
112	18.00	54.00	18.00	10.00	Bi ₂ Sr ₆ O ₉ , (SrCa)O
30	15.00	45.00	15.00	25.00	Bi ₂ Sr ₆ O ₉ , (SrCa)O
210	15.00	15.00	45.00	25.00	2212, Ca ₂ CuO ₃ , CuO
37	12.00	12.00	36.00	40.00	2212, , CuO, Ca ₂ CuO ₃
46	10.00	10.00	30.00 ·	50.00	CuO, SrCuO ₂ , 2201(?)
53	6.00	6.00	18.00	70.00	2212, Sr ₁₄ Cu ₂₄ O ₄₁
63	2.00	2.00	6.00	90.00	2212, Sr ₁₄ Cu ₂₄ O ₄₁
36*	10.00	45.00	45.00		
36A	9.00	40.50	40.50	10.00	(SrCa)O
211	7.50	33.75	33.75	25.00	Bi ₂ Sr ₆ O ₉ , (SrCa)O
38	6.00	27.00	27.00	40.00	Sr ₁₄ Cu ₂₄ O ₄₁ , CuO,
•					9.11.5
47	5.00	22.50	22.50	50.00	Sr ₁₄ Cu ₂₄ O ₄₁ , 9.11.5,
					SrCuO ₂
54	3.00	13.50	13.50	70.00	Sr14Cu24O41
64	1.00	4.50	4.50	90.00	Sr ₁₄ Cu ₂₄ O ₄₁
37*	10.00	80.00	10.00		
115	9.00	72.00	9.00	10.00	(SrCa)O

*Identificación de fase por difracción de rayos x y microscopía óptica.

Muestra		Composi	Fases*		
	BiO _{1.5}	SrO	CaO	CuO	
01	92.00	4.00	4.00		α Bi₂O_{3ss}, βBi ₂ O _{3ss}
02	85.00	7.50	7.50		βBi ₂ O _{3es}
03	80.00	10.00	10.00		βBi ₂ O _{3ea}
04	75.00	12.50	12.50		βBi ₂ O ₃₆₈ .
05	75.00	18.75	6.25		βBi ₂ O _{3ss}
06	75.00	25.00			βBi ₂ O _{3ss}
07	86.00	14.00			βBi ₂ O _{3ss}
08	75.00	6.25	18.75		βBi ₂ O ₃₆₅
09	86.00	14.00			βBi ₂ O _{3ss}
1*	90.00	5. 0 0	5.00		
11 1	81.00	4.50	4.50	10.00	αBi ₂ O _{3ss} , βBi ₂ O _{3ss} , vidrio
2*	75.00	12.50	12.50		•
12	67.50	11.20	11.20	10.00	βBi ₂ O _{3ss} , vidrio
20*	70.00	20.00	10.00		
13	63.00	18.00	9.00	10.00	βBi ₂ O _{3ss} , γ _{ss} , Bi ₂ SrO ₄ ,
					vidrio .
21	52.50	15.00	7.50	25.00	βBi ₂ O _{3ss} , Bi ₂ SrO ₄ , vidrio
21*	70.00	10.00	20.00		. •
14	63.00	9.00	18.00	10.00	βBi ₂ O _{3ss} , vidrio
22	52.50	7.50	15.00	25.00	βBi ₂ O ₃₆₅ , vidrio
25*	60.00	20.00	20.00		
15	54.00	18.00	18.00	10.00	vidrio

Tabla III. Composición de fases de mezclas seleccionadas en el sistema BIO_{1.5}-SrO-CaO-CuO a 1300ºC.

23	45.00	15.00	15.00	25.00	vidrio
38*	55.00	15.00	30. 00		
116	49.50	13.50	27.00	10.00	vidrio
22*	50.00	• 40.00°\$	10.00	· D	
16	45.00	36.00	9. 00	10.00	vidrio, 2201
25	37.50	30.00	7.50	25.00	vidrio, 2201
23*	50.00	25.00	25.00		
17	45.00	22.50	22.50	10.00	vidrio ·
24	37.50	18.70	18.70	25.00	vidrio, 9.11.5
31	30.00	15.00	15.00	40.00	vidrio
24*	50.00	10.00	40.00		
32	30.00	15.00	15.00	40.00	vidrio, 9.11.5
26*	40.00	50.00	10.00		*
34	24.00	30.00	6.00	40.00	vidrio, 2201
41	20.00	25.00	5.00	50.00	vidrio, 2201
27*	40.00	40.00	20. 00		
18	36.00	36.00	18.00	10.00	vidrio
33	24.00	24.00	12.00	40.00	vidrio
28*	40.00	30.00	30.00		
19	36.00	27.00	27.00	10.00	vidrio, 2201, CaO
42	20.00	15.00	15.00	50.00	vidrio
29* ·	40.00	20.00	40.00		
110	36.00	18.00	36.00	10.00	vidrio
43	20.00	10.00	20.00	50.00	vidrio, 9.11.5, 2201
30*	40.00	10.00	50.00		•
26	30.00	7.50	37.50	25.00	vidrio, CaO
30C	24.00	6.00	30.00	40.00	vidrio
51	12.00	3.00	15.00	70 .00	vidrio
61	4.00	1.00	5.00	90.00	vidrio
31*	30.00	50.00	20.00		
27	22.50	37.50	15.00	25.00	vidrio, 2201,Ca ₂ CuO ₃
35	18.00	30. 00	12.00	40.00	2201, Ca ₂ CuO ₃ , vidrio
44	15.00	25.00	10.00	50 .00	vidrio, 2201
32*	30.00	20.00	50.00		
32A	27.00	18.00	45.00	10.00	vidrio, CaO
28	22.50	15.00	37.50	25.00	vidrio, CaO

33*	30.00	35.00	35.00		·
111	27.00	31.50	31.50	10.00	vidrio, 2201, CaO, Ca ₂ CuO ₃
29	22.50	26.20	28.25	25.00	vidrio, CaO
36	18.00	21.00	21.00	40.00	vidrio
45	15.00	17.50	17.50	50.00	vidrio
52	9.00	10.50	10.50	70.00	vidrio, CaO, 9.11.5
33G	6.00	7.00	7.00	80.00	vidrio, CaO, 9.11.5
62	3.00	3.50	3.50	90.00	vidrio
34*	20.00	60.00	20.00		·
112	18.00	54.00	18.00	10.00	vidrio, (SrCa)O
30	15.00	45.00	15.00	25.00	vidrio, (SrCa)O
35*	20.00	20.00	60.00		
114	18.00	18.00	54.00	10.00	vidrio, Ca ₂ CuO ₃ , 2201,
					2212
210	15.00	15.00	45.00	25.00	CaO, vidrio
37	12.00	12.00	36.00	40.00	vidrio
48	10.00	10.00	30.00	50.00	vidrio, CaO, Ca ₂ CuO ₃ ,
					2201
53	6.00	6.00	18.00	70.00	vidrio, CaO
63	2.00	2.00	6.00	90.00	vidrio, CaO
36*	10.00	45.00	45.00		
36A	9.00	40.50	40.50	10.00	vidrio, (SrCa)O
211	7.50	33.75	33.75	25.00	vidrio, (SrCa)O, Ca ₂ CuO ₃ , 2201
38	6.00	27.00	27.00	40.00	vidrio, 2201, CaO, Ca ₂ CuO ₃
47	5.00	22.50	22.50	50.00	vidrio, CaO, Ca ₂ CuO ₃ ,
					2201
54	3.00	13.50	13.50	70.00	vidrio, (SrCa)O
64	1.00	4.50	4.50	90.00	vidrio, (SrCa)O
37*	10.00	80.00	10.00		
115	9.00	72.00	9.00	10.00	vidrio, (SrCa)O

*Identificación de fase por difracción de rayos x y microscopía óptica.

!8

RELACIONES DE COMPATIBILIDAD DE FASES

Las relaciones de compatibilidad obtenidas de composiciones reaccionadas a 800°C, en que predominan los componentes cristalinos y el ^contenido de líquido es bajo, y a la de 1300°C en que la abundancia de líquido es substancialmente mayor y las fases cristalinas son limitadas, se presentan a continuación. Los datos experimentales requirieron analizarse en forma aislada para cada composición y de manera conjunta para la totalidad del sistema para poder establecer las compatibilidades y subsistemas dentro del tetraédro BiO_{1.5}-SrO-CaO-CuO, así como para inferir otras compatibilidades comprendidas entre las determinadas experimentalmente.

Sistema BiO1.5-SrO-CaO-CuO a 800°C

Sistemas binarios

De los datos experimentales se deducen los equilibrios binarios a 800°C, presentados en la Tabla IV.

Sistemas ternarios

Sistema BIO4 5-SrO-CaO

En el sistema BiO_{1,5}-SrO se establece de los datos experimentales la cristalización como compuestos estables a 800°C de β Bi₂O_{3Srea}, Bi₂SrO₄ y Bi₂Sr₆O₉, β Bi₂O_{3Srea} se extiende desde 75 a 90% mol BiO_{1,5} y es compatible con Bi₂SrO₄. La discrepancia conocida entre si Bi₂SrO₄ se transforma³⁶ a 794°C a β Bi₂O_{3Srea}+ γ_{se} , o si es estable hasta 940°C³⁷ se resuelve al demostrarse experimentalmente la estabilidad de Bi₂SrO₄ a 800°C y su compatibilidad con β Bi₂O_{3Srea}. Las fases Bi₂Sr₃O₆, Bi₂Sr₂O₅ y BiSr₃O_x^{36,37,38} no se identificaron a 800°C en las composiciones estudiadas.

4	
2	PBI203ee1 - PBI203ee2
2	pBI2O3Srss Yss
3	βBI2O3Sres - BI2SrO4
4	βBi ₂ O _{3Srss} - CuO
5	γ _{ss} - Bi ₂ SrO ₄
6	γ _{se} - CuO
7	Bl ₂ SrO ₄ - CuO
8	βBi ₂ O _{3Cass} - γ _{ss}
9	βBi ₂ O _{3Casa} - Bi ₂ CaO ₄
10	γ _{ss} - Bi₂CaO₄
11	Bi ₂ CaO ₄ - CuO
12	βBi ₂ O _{3Cess} - CuO
13	γ _{ss} -8250
14	γ _{ss} - 2201
15	2201 - CuO
16	8250 - 9.11.5
17	8250 - 2201
18	8250 - Bi ₂ Sr ₆ O ₉
19	9.11.5 - 2201
20	9.11.5 - Bi ₂ Sr ₆ O ₉
21	2201 - Bi ₂ Sr ₆ O ₉
22	8250 - CuO
23	2201 - 2212
24	2212 - CuO
25	2212 - 8250
26	Bi ₂ Sr ₆ O ₉ - (SrCa)O
27	9.11.5 - CaO
28	9.11.5 - 2212
29	2201 - Sr ₁₄ Cu ₂₄ O ₄₁
30	2212 - Sr ₁₄ Cu ₂₄ O ₄₁
31	Ca ₂ CuO ₃ - CaO

Tabla IV. Relaciones de compatibilidad binaria a 800	°C en el
sistema BiO _{1.5} -SrO-CaO-CuO.	
32	Bi ₂ Sr ₆ O ₉ - CaO
------	---
33	Ca2CuO3 - Sr14Cu24O41
34	Ca ₂ CuO ₃ - SrCuO ₂
35	Sr ₁₄ Cu ₂₄ O ₄₁ - SrCuO ₂
36	Bi ₂ Sr ₆ O ₉ - Sr ₂ CuO ₃
37	Sr ₂ CuO ₃ - Ca ₂ CuO ₃
38	Sr ₁₄ Cu ₂₄ O ₄₁ - 9.11.5
• 39	Sr ₁₄ Cu ₂₄ O ₄₁ - CuO
40	2212 - Ca ₂ CuO ₃
41	Bi ₂ Sr ₆ O ₉ - Ca ₂ CuO ₃
42	9.11.5 - Ca ₂ CuO ₃
43	9.11.5 - Sr ₂ CuO ₃
44	Bi ₂ Sr ₆ O ₉ - 9.11.5
45	9.11.5 -SrCuO ₂
46	9.11.5 - Sr ₁₄ Cu ₂₄ O ₄₁

En el sistema BiO_{1,5}-CaO las composiciones mostraron la cristalización de Bi₂CaO₄, compatible con β Bi₂O_{3Cass} a 800°C. Esta solución se extiende desde 82 a 92% mol BiO_{1,5}. CaO aparece como fase estable en composiciones reaccionadas a 1300°C. Los compuestos Bi₁₄Ca₅O₂₆, Bi₂Ca₂O₅ y Bi₆Ca₄O₁₃³²⁻³⁵ no se observaron en la presente investigación.

El sistema SrO-CaO se presenta como una solución sólida, posibiemente continua.

En el sistema Bi₂O₃-SrO-CaO, la evidencia experimental muestra la cristalización de los compuestos temarios β Bi₂O_{3SrCaSS}, γ_{ss} , 8250 y 9.11.5.0 de estequiometría Bi:Sr:Ca. Se demuestran las relaciones de compatibilidad β Bi₂O_{3SrCaSS}, β Bi₂O_{3SrCaSS}, donde β_1 y β_2 representan respectivamente soluciones con contenidos bajo y alto de SrO+CaO, β Bi₂O_{3SrS} Bi₂SrO₄, Bi₂SrO₄, γ_{ss} , β Bi₂O_{3Sras}-Bi₂SrO₄, β Bi₂O_{3Sras}, β Bi₂O_{3CaSS}-Bi₂CaO₄, β Bi₂CaO₄, γ_{ss} , β Bi₂O_{3Sras}-Bi₂SrO₄, γ_{ss} , β Bi₂O_{3CaSS}-Bi₂CaO₄, β Bi₂SrO₆O₉-CaO, β Bi₂SrO₆O₉-(SrCa)O e inflere 8250-Bi₂Sr₆O₉. Se confirma la cristalización de β Bl₂O_{3ss} y de Bi₂SrO₄ a 800°C, pero no se observa la cristalización de Bi₂Sr₂O₅, β Bi₂Sr₃O₆ y Bi₃SrO_x⁴⁰ (Figura 3). Bi₂Sr₆O₉ se ha reportado su descomposición a **995**°C a SrO+Bi₂Sr₃O₆, arriba de los límites ahora considerados.

Figura 3. Relaciones de compatibilidad en el sistema BiO_{1,5}-SrO-CaO a 800°C. Los sistemas β Bi₂O_{3SrCaSS1}- β Bi₂O_{3SrCaSS2}, β Bi₂O_{3SrCaSS}-Bi₂SrO₄- γ _{ss}, β Bi₂O_{3CaSrSS}-Bi₂CaO₄- γ _{ss}, β Bi₂O_{3SrCaSS5}- γ _{ss}, 8250-9.11.5-Bi₂Sr₆O₉, 9.11.5-Bi₂Sr₆O₉-CaO y SrO-CaO-Bi₂Sr₆O₉ se determinan de los datos experimentales, mientras que γ _{ss}-8250-Bi₂Sr₆O₉ se inflere de los mismos.

Sistema BIO1, 5-SrO-CuO

Cristalizan Sr₁₄Cu₂₄O₄₁, SrCuO₂ y Sr₂CuO₃ dentro del sistema SrO-CuO y de Bl₂Sr₆O₉ y Bi₂SrO₄ en el sistema BiO_{1.5}-SrO. En el ternario BiO_{1.5}-SrO-CuO se demuestra de los datos experimentales compatibilidad entre β Bl₂O_{3SrSS}-CuO, Bl₂SrO₄-CuO, γ_{ss} -2201-CuO, γ_{ss} -2201-Bi₂Sr₆O₉, 2201-Sr₁₄Cu₂₄O₄₁, 2201-SrCuO₂, Bi₂Sr₆O₉-Sr₂CuO₃, y se infiere de los mismos la unión Bi₂Sr₆O₉-SrCuO₂. Las composiciones estudiadas no cubren la cristalización de Bi₂CuO₄^{40,42,45}. Son estables los compuestos SrCuO₂⁵⁰, Sr₂CuO₃⁵¹ y Sr₁₄Cu₂₄O₄₁⁵³ y las uniones β Bi₂O_{3SrSS}-CuO⁵⁷, SrCuO₂-2201 y Sr₁₄Cu₂₄O₄₁-2201 a 800°C^{40,45} y no se comprueban las compatibilidades β Bi₂O_{3SrSS}-Bi₂Sr₂O₅ y β Bi₂O_{3SrSS}-2201⁶⁰. La fase Bi₂Sr₃O₆⁴⁰ no fué observada.

Los resultados demuestran el triángulo de compatibilidad γ_{ss} -2201-CuO, o los binarios γ_{ss} -2201, γ_{ss} -CuO y 2201-CuO, agregando la unión γ_{ss} -CuO que no ha sido previamente publicada a los sistemas γ_{ss} -2201 y 2201-CuO⁴⁰. Considerando que los límites de composición de γ_{ss} varian con la temperatura y a 800°C se extienden de 44% mol SrO + 56% BiO_{1.5} a 46% SrO + 54% BiO_{1.5}, y que 2201 es una solución defectuosa en Sr que varía entre los límites Bi₂Sr_{2-x}CuO_y (0.1<x<0.5)⁶⁰, Bi_{2+x}Sr_{2-x}Cu_{1+y}O_x (0.1<x<0.6)⁵⁷ y Bi_{11-x}Sr_{9+x}Cu₅O_y (0<x<0.4)⁵⁶, es válida la unión γ_{ss} -CuO dependiendo de la composición de las fases γ_{ss} y 2201 y de ta temperatura 4).

Los registros de difracción de rayos X muestran variación en las distancias interplanares e intensidades de las reflexiones características del compuesto de estequiometría 2201 Bi:Sr:Ca:Cu, que indican formación de solución sólida. En el presente estudio no se estableció la naturaleza de las fase 2201 que pudiera formarse, no distinguiendo si era superconductora o no^{40,45}. En la Figura 4 la fase está ilustrada representando un intervalo de composición, pudiéndose así notar sus relaciones con otras fases. En otras figuras subsecuentes aparece indicada por un punto, para simplificar su ilustración.

Figura 4. Lineas de compatibilidad en el sistema $BiO_{1,5}$ -SrO-CuO. Los datos experimentales confirman equilibrio entre βBi_2O_{3SrSS} -CuO, $Bi_2SrO_4\beta Bi_2O_{3SrSS}$ -CuO, $Bi_2SrO_4\gamma_{88}$ -CuO, γ_{88} -2201-CuO, 2201-Sr₁₄Cu₂₄O₄₁-CuO, 2201-Sr₁₄Cu₂₄O₄₁-SrCuO₂, γ_{88} -2201-Bi₂Sr₆O₉ y posibles 2201-Bi₂Sr₆O₉-SrCuO₂, $Bi_2Sr_6O_9$ -SrCuO₂, $Bi_2Sr_6O_9$ -SrCuO₂, $Bi_2Sr_6O_9$ -SrCuO₂, $Bi_2Sr_6O_9$ -SrCuO₃-SrO.

Sistema BiO1, -CaO-CuO

Los compuestos identificados son βBi_2O_{3CaSS} y Bi_2CaO_4 compatibles con CuO, y Ca_2CuO_3 compatible con CaO y CuO. Se definen las compatibilidades βBi_2O_{3Cass} -CuO y βBi_2O_{3Cass} -Bi_2CaO₄-CuO. No se identificaron otros compuestos en el sistema BiO_{1.5}-CaO-CuO (Figura 5).

Figura 5. Compatibilidades βBi_2O_{3Cees} -CuO, βBi_2O_{3Cees} -Bi_2CaO₄-CuO, Ca₂CuO₃-CaO y Ca₂CuO₃-CuO identificadas en el sistema BiO_{1.5}-CaO-CuO.

Sistema SrO-CaO-CuO

Sobre la arista CaO-CuO cristaliza Ca₂CuO₃ y, sobre la arista SrO-CuO, la de $Sr_{14}Cu_{24}O_{41}$, $SrCuO_2$ y Sr_2CuO_3 . $SrCuO_2$ es estable a 800°C⁴⁰. La relación entre SrO y CaO corresponde a una solución sólida, posiblemente continua, si bien composiciones altas en Ca muestran cristalización de CaO y no de (SrCa)O sugiriendo que pudiera existir una segunda solución sólida en un margen estrecho de composición inmediato al componente puro CaO. En el sistema temario se confirma compatibilidad entre SrO-Sr₂CuO₃, CaO-Ca₂CuO₃, Sr₂CuO₃, Sr₃Sr₄Cu₃, Sr₃CuO₃, Sr₃CuO

Figura 6. Sistema SrO-CaO-CuO, indicando soluciones sólidas entre SrO-CaO y Sr₂CuO₃-Ca₂CuO₃ y las compatibilidades SrCuO₂-Ca₂CuO₃-Sr₂CuO₃, SrCuO₂-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁ y Sr₁₄Cu₂₄O₄₁-Ca₂CuO₃-CuO.

Sistema BiO1.6-SrO-CaO-CuO

βBi₂O_{3ss1}-βBi₂O_{3ss2}-CuO

Los resultados indican que a 800°C βBl_2O_{3es} cristaliza en equilibrio con CuO (Tabla II). Variaciones en las distancias interplanares e intensidades muestran solución sólida cuyas características se discuten más adelante (pág. 62). Incorporando los datos de que Bi₂O₃ torna en solución de 24 a 54% mol SrO y de 12 a 24% mol CaO^{32,33}, se demuestra el tetraedro de compatibilidad βBl_2O_{3es1} - βBl_2O_{3es2} -CuO, en el que βBl_2O_{3es1} y βBl_2O_{3es2} representan respectivamente concentraciones bajas y attas de SrO+CaO en la solución (Figura 7).

Figura 7. Tetraedro de compatibilidad BBi2O3ee1-BBi2O3ee2-CuO

βBi2O3SrCass-Bi2SrO4-CuO

Se demuestra que la solución βBi_2O_{3Srss} se extiende hacia el CuO, confirmándose los datos de otros autores^{40,56}. Bi₂SrO₄ se identifica asociado a βBi_2O_{3Srss} +CuO, de donde se define el triángulo de compatibilidad βBi_2O_{3Srss} -Bi₂SrO₄-CuO y el tetraedro $\beta Bi_2O_{3SrCass}$ -Bi₂SrO₄-CuO que de hecho agrupa triángulos $\beta Bi_2O_{3SrCass}$ -Bi₂SrO₄-CuO. La configuración presentada (Figura 8) indica que la relación es con soluciones altas en Sr, con cierta substitución por Ca. Se confirma la estabilidad a 800°C del Bi₂SrO₄, cuestionándose su descomposición a 794°C a solución γ_{ss} + $\beta Bi_2O_{3ss}^{-36}$ y confirmando su descomposición a temperaturas más altas, posiblemente 940°C³⁷, a solución γ_{ss} +liquido. No se confirmó su transformación a 825°C a otra forma estable entre 8250 y 940°C³⁷.

βBi₂O_{3Cass}-Bi₂CaO₄-CuO

La solución βBi_2O_{3Cass} se extiende hacia el CuO, dentro del triángulo de compatibilidad βBi_2O_{3Cass} -Bi_2CaO₄-CuO o del tetraedro $\beta Bi_2O_{3CaSrss}$ -Bi_2CaO₄-CuO cuando la solución contiene CaO+SrO (Figura 9). Es conocido que βBi_2O_{3Cass} romboedrica incorpora de

38.

12 a 24% mol CaO y que entre 732°C y 773° puede cristalizar junto con Ca₂CuO₃³³; a temperaturas superiores β Bi₂O_{3Cass} podria dar lugar a la fase de alta temperatura que a 835°C se transformaría a la solución fcc. Algunas composiciones mostraron una fase cúbica cuyas características se discuten más adelante.

Bi2SrO4-Yas-CuO

La evidencia presentada demuestra la compatibilidad Bi₂SrO₄γ₈₈-CuO y la estabilidad del Bi₂SrO₄ a 800°C. La inconsistencia de los datos publicados está de manifiesto en la interpretación de Guillermo y col.³⁶ que reportan la descomposición del Bi₂SrO₄ a 794°C y de Roth y col.⁴⁰ que indican que γ₈₈ y CuO no son compatibles, en oposición a Chakoumakos y col.⁶⁰ que sostienen que esta unión es válida. No se confirma la unión β Bi₂O_{35ree}-2201^{57,65} que no es compatible con la unión γ₈₆-CuO, a 800°C. De hecho la validez de la unión γ₈₆-CuO está sujeta a la extensión de la composición de las fases γ₈₅ y 2201; una estructura 2201 muy defectuosa en Sr o atta en Bi y una γ₈₆ relativamente más atta en Sr podrían invalidar la unión γ₈₆-2201. La solución γ₈₅ se extiende hacia la arista BiO_{1.5}-CaO y los resultados demuestran el volumen de compatibilidad Bi₂SrO₄-γ₈₆-CuO cuando la solución contiene SrO+CaO (Figura 10).

βBi₂O_{3BrCass⁻γss}-Bi₂SrO₄-CuO

Los tetraedros anteriores dejan un volumen hacia el interior del sistema BiO_{1.5}-SrO-CaO-CuO que corresponde a la retación de compatibilidad Bi₂SrO₄- γ_{ss} - β Bi₂O_{3SrCass}-CuO. Se confirma la estabilidad del Bi₂SrO₄ a 800°C y su compatibilidad con γ_{ss} - β Bi₂O_{3Sres} como indican Roth y col.⁴⁰ para el sistema Bi₂O₃-SrO (Figura 11).

Figura 11. Compatibilidad βBi₂O_{3SrCasa}-γ_{sa}-Bi₂SrO₄-CuO.

βBi₂O_{3CaSras}-Bi₂CaO₄-γ_{sa}-CuO

Al igual que en el caso anterior, en la medida que las composiciones contienen Sr y se alejan del sistema BiO_{1.5}-CaO-CuO se define el tetraedro de compatibilidad $\beta Bi_2O_{3CaSres}-\gamma_{se}$ -Bi₂CaO₄-CuO. Los tetraedros $\beta Bi_2O_{3CaSres}-Bi_2CaO_4$ -CuO (Figura 11) coiciden con los datos de otros autores^{40,65} en cuanto al equilibrio entre las soluciones βBi_2O_{3Case} y γ_{ae} pero no respecto a fa compatibilidad Bi₂CaO₄-CuO que no es

incluída en sus trabajos. Se establece equilibrio entre $\beta Bl_2O_{3SrCass}\gamma_{ss}$ -CuO (Figura 12), ignorada en otras versiones del sistema que no incluyen calcio en sus composiciones⁴⁰ o que especifican una gran área de líquido y fases de estequiometría poco común no muy aceptadas⁶⁵.

βBi2O3SrCass-γss-CuO

Entre los volúmenes de compatibilidad anteriores queda un estrecho tetraedro que se extiende desde γ_{aa} a $\beta Bi_2O_{3SrCass}$ y hacia CuO (Figura 13).

La evidencia presentada indica que, a 800°C, composiciones con alta concentracion de BiO_{1.5} definen la compatibilidad β Bi₂O_{3Srss}•Bi₂SrO₄•CuO (Figura 8), demostrando equilibrio entre β Bi₂O_{3Srss} y CuO y confirmando los resultados de Roth y col.⁴⁰, a diferencia de Majewski y col.⁶⁵ que mantienen que β Bi₂O_{3Srss} solo es compatible con las fases 2201 y y pero no con CuO e Ignoran la formación de Bi₂SrO₄. El tetraédro β Bi₂O_{3Srss}·Pi₂SrO₄•CuO (Figura 11) indica que Bi₂SrO₄ y CuO son compatibles, coicidiendo solo en parte con otras versiones del sistema⁴⁰ que sostienen que Bl₂SrO₄ es compatible con β Bl₂O_{3Srss}· y 2201 pero no con CuO. Las compatibilidades β Bi₂O_{3Srss}-CuO-2201R y Bl₂SrO₄·γ_{Ss}-2201R son mantenidas en una versión publicada del sistema⁴⁰, a 750-800°C, mientras que en otra versión⁶⁵ se reporta formación de Iíquido a 650°C para esta sección del tetraédro.

 βBi_2O_{3Srss} es compatible con Bi_2SrO_4 , mientras que βBi_2O_{3Cass} lo es con Bi_2CaO_4 , pero Bi_2SrO_4 y Bi_2CaO_4 no son compatibles entre sí, a $800^{\circ}C$. Las lineas de compatibilidad de CuO con Bi_2SrO_4 , Bi_2CaO_4 , βBi_2O_{3Srss} y βBi_2O_{3Cass} indican coexistencia de fases en los sistemas $\beta Bi_2O_{3SrCass1}\beta Bi_2O_{3SrCass2}$ CuO (Figura 7), βBi_2O_{3Srss} - Bi_2SrO_4 -CuO (Figura 8), βBi_2O_{3Cass} - Bi_2CaO_4 -CuO (Figura 9), siendo $\beta Bi_2O_{3SrCass1}$ y $\beta Bi_2O_{3SrCass2}$ respectivamente soluciones sólidas de baja y alta concentración de SrO+CaO. Los datos experimentales para estas dos soluciones indican que la estructura cambia de romboédrica a cúbica en función del grado de substitución Sr/Ca.

γ...-8250-2201-CuO

Concentraciones menores de Bi definen el tetraédro Y_{SS}-8250-2201-CuO (Figura 14). Se confirman las uniones 2201-CuO^{57,60,65} y 2201-Y_{ss}^{40,57,60,65}. Las fases Bi₂Sr₂O₅ y Bi₂Sr₃O₆ citadas como estables a 800°C en el sistema Bi₂O₃-SrO²⁴⁻²⁶ no fueron observadas en la presente investigación. Los sistemas publicados^{40,65} no incluyen la fase de estequiometría 8250 Bi:Sr:Ca, mientras que una tercera versión⁴⁵ reporta la compatibilidad 8250-2201-CuO. En la literatura se suele diferenciar entre las fases 2201 superconductora^{44,45,60} y no superconductora; en la presente investigación no se hace esta distinción.

Las anteriores uniones de compatibilidad entre γ_{ss} -2201, γ_{ss} -CuO, γ_{ss} -Bi₂SrO₄, 2201-CuO y Bi₂SrO₄-CuO demuestran que no es posible la relación de equilibrio Bi₂SrO₄-2201 ni por consiguiente el tetraedro γ_{ss} -Bi₂SrO₄-2201-CuO. Las uniones Bi₂SrO₄-2201, 2201-CuO y Bi₂SrO₄- γ_{ss} son admitidas por Roth y otros⁴⁰, mientras que Bi₂SrO₄ no es incluída en los resultados de otros autores⁶⁵.

Figura 14. Relaciones de compatibilidad yss-8250-2201-CuO.

8250-2201-2212-CuO

El sistema 8250-2212-2201-CuO (Figura 15) incluye el plano 8250-2201-CuO que separa composiciones conteniendo más de 53% mol BiO_{1.5} que cristalizan 2201 como fase estable, de las de menor concentración de BiO_{1.5} que llevan a la condensación del

superconductor de estequiornetria 2212 Bi:Sr:Ca:Cu. Se confirman las uniones 2201-CuO^{40,65}, 2212-CuO⁶⁵ y el tetraedro 8250-2201-2212-CuO⁴⁵.

Figura 15. Relaciones de equilibrio 8250-2201-2212-CuO.

8250-2201-2212-9.11.5

El tetraedro 8250-2201-2212-9.11.5 se extiende desde el sistema BiO_{1.5}-SrO-CaO hacia el interior del BiO_{1.5}-SrO-CaO-CuO definiendo una gran cuña interior en la que es posible la cristalización de 2201 y 2212 y que separa composiciones altas en Bi capaces de cristalizar 2201 de las bajas en Bi que solo condensan 2212 (Figura 16). El sistema no es demostrado experimentalmente por Hong y otros⁴⁵ pero si inferido de los mismos para la fase superconductora 2201.

Figura 16. Tetraedro de compatibilidad 8250-2201-2212-9.11.5.

Figura 17. Tetraedro de compatibilidad 2201-2212-Sr₁₄Cu₂₄O₄₁-CuO.

2201-2212-Sr14Cu24O41-CuO

Se define la compatibilidad 2201-2212-Sr₁₄Cu₂₄O₄₁-CuO que extiende hacia la arista SrO-CuO la cuña antes referida. Se confirman los sistemas Sr₁₄Cu₂₄O₄₁-2201⁵⁶, Sr₁₄Cu₂₄O₄₁-2201-CuO⁴⁰ y 2201-2212-Sr₁₄Cu₂₄O₄₁-CuO⁴⁵ (Figura 17).

2201-2212-9.11.5-Sr14Cu24O41

Forma parte de la cuña antes indicada. Confirma las versiones $Sr_{14}Cu_{24}O_{41}$ -2201-CuO⁴⁰ y 2201-2212-9.11.5- $Sr_{14}Cu_{24}O_{41}$ ⁴⁵ (Figura 18). Deja sin definir las relaciones de compatibilidad en un amplio volumen que se extiende entre los planos BiO_{1.5}-SrO-CuO y BiO_{1.5}-SrO-CaO hacia la arista BiO_{1.5}-SrO en la porción central del tetraedro.

Figura 18. Compatibilidad 2201-2212-9.11.5.0-Sr14Cu24O41.

9.11.5-Ca2CuO3-Bi2Sr8O8-CaO

El sistema, que representa las compatibilidades del CaO hacia el interior del tetraedro, es un nuevo aporte de la presente investigación. Dado que la relación es con CaO y no con (Sr,Ca)O, sugiere que la solución SrO-CaO pudiera no ser continua en toda su extensión sino que cuando menos existan dos soluciones, una alta en CaO y otra con menor CaO y que podría extenderse hacia el SrO (Figura 19).

Figura 19. Compatibilidad 9.11.5.0-Ca2CuO3-Bi2Sr6O9-CaO.

2212-9.11.5-Ca2CuO3-Sr14Cu24O41

El sistema elimina la unión 9.11.5.0-CuO y el plano 2212-9.11.5.0-CuO. Se inflere de los datos experimentales el tetraedro 2212-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁-CuO. Se confirman las relaciones 2212-9.11.5-Ca₂CuO₃⁴⁵ y 2212-Ca₂CuO₃⁶⁵ (Figura 20).

Figura 20. Compatibilidad 2212-9.11.5.0-Ca2CuO3-Sr14Cu24O41

9.11.5-Ca2CuO3-SrCuO2-Sr14Cu24O41

Roth y col.⁴⁰ admiten el equilibrio SrCuO₂-Sr₁₄Cu₂₄O₄₁. No coincide con otros autores⁴⁵ que no aceptan la unión Ca₂CuO₃-Sr₂CuO₃ al admitir las compatibilidades Sr₁₄Cu₂₄O₄₁-CaO y SrCuO₂-CaO⁴⁵ (Figura 21).

9.11.5-Ca2CuO3-Sr2CuO3-SrCuO2

Es compatible con 2201-SrCuO₂^{40,56}. Roth y col.⁴⁰ admiten equilibrio entre soluciones sólidas Sr₂CuO₃-SrCuO₂ y se confirma la unión 9.11.5-Sr₂CuO₃⁴⁰. No se coincide con otros autores⁴⁵ que no aceptan la unión Ca₂CuO₃-Sr₂CuO₃ al admitir las compatibilidades Sr₁₄Cu₂₄O₄₁-CaO y SrCuO₂-CaO⁴⁵. En el sistema SrO-CaO-CuO quedaría una solución sólida extendiéndose desde Sr₂CuO₃-Ca₂CuO₃ hacia SrCuO₂ (Figura 22).

2212-Ca2CuO3-Sr14Cu24O41-CuO

Los datos experimentales demuestran la existencia del tetraedro 2212-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁-CuO que cierra esta parte del sistema cuatemario. Confirma el mismo sistema de Hong y col⁴⁵ e indica la unión Ca₂CuO₃-CuO a 800°C. No se observó la fase Ca_{1-x}CuO₂³³ que a 755°C se descompone a Ca₂CuO₃+CuO (Figura 23).

Figura 23. Equilibrio 2212-Ca2CuO3-Sr14Cu24O41-CuO

Bi2Sr8O8-(Sr,Ca)O-Sr2CuO3-Ca2CuO3

Se definen soluciones sólidas entre SrO-CaO y Sr₂CuO₃-Ca₂CuO₃, coincidiendo con otros autores en las uniones Bl₂Sr₆O₉-Sr₂CuO₃^{40,57} y Sr₂CuO₃-Ca₂CuO₃⁴⁴; es compatible con una posible unión Sr₂CuO₃-Sr₃Bl₂O₆⁵⁸. No sería compatible con las uniones Sr₁₄Cu₂₄O₄₁-CaO y SrCuO₂-CaO⁴⁵ ni con los tetraedros inferidos 9.11.5-Sr₁₄Cu₂₄O₄₁-SrCuO₂-CaO⁴⁵ y 9.11.5-SrCuO₂-Sr₂CuO₃-CaO⁴⁵ que impiden la unión Sr₂CuO₃-Ca₂CuO₃⁴⁴ e ignoran la solución (Sr,Ca)O. La compatibilidad Sr₈Bl₂O₆-SrO-CaO se confirma. Si se considera junto con la

solución sólida Sr_2CuO_3 - Ca_2CuO_3 reportada por otros autores⁴⁸, queda entonces definido el tetraedro de compatibilidad $Sr_6Bi_2O_9$ -(Sr,Ce)O-(Sr,Ca) $_2CuO_3$. (SrCa)O pudiera no ser solución sólida continua sino más bien estar asociada a una segunda solución predominantemente cálcica (Figura 24).

Figura 24. Compatibilidad Bi₂Sr₆O₉-(Sr,Ca)O-Sr₂CuO₃-Ca₂CuO₃.

9.11.5-Ca2CuO3-Bi2Sr8O9-Sr2CuO3

La relación no ha sido reportada previamente, aunque si se confirma la unión Sr_2CuO_3 - $Bi_2Sr_6O_6^{57}$ (Figura 25).

82509.11.5-2212-Ca2CuO3

El tetraedro 8250-9.11.5-2212-Ca₂CuO₃ difiere del tetredro 8250-2212-Ca₂CuO₃-CaO inferido por Hong y col.⁴⁵ en que éste implica la aceptación de la unión 2212-CaO que queda

hacia el lado bajo en Bi del plano 9.11.5.0-2212-Ca₂CuO₃ y que no es compatible con los tetraédros 2212-9.11.5-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁, 9.11.5-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁-SrCuO₂, 9.11.5.0-Ca₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-Sr₂CuO₃-CaO⁴⁵ y 8250-9.11.5.0-2212-CaO⁴⁵ incluyen la unión 2212-CaO (Figura 26).

8250-9.11.5-Ca2CuO3-CaO

Complementa hacia el vértice CaO el tetraédro anterior. Hong y col.⁴⁵ no presentan evidencia experimental de esta compatibilidad, pero si admiten las uniones 8250-CaO, 8250-Ca₂CuO₃, 9.11.5-CaO y Ca₂CuO₃-CaO e infieren los tetraedros 8250-9.11.5.0-2212-CaO y 9.11.5.0-2212-Ca₂CuO₃-CaO que nuevamente implican la unión 2212-CaO que corta el plano⁴⁵ 9.11.5.0-Ca₂CuO₃-Sr₁₄Cu₂₄O₄₁ (Figura 27).

Figura 27. 8250-9.11.5.0-Ca2CuO3-CaO.

9.11.5.0-2201-Sr14Cu24O41-SrCuO2

Se confirman los tetraedros $9.11.5.0-Ca_2CuO_3-Sr_{14}Cu_{24}O_{41}-SrCuO_2 y 9.11.5.0-Ca_2CuO_3-Sr_2CuO_3-Sr_2CuO_3-SrCuO_2 arriba indicados, cubriendo el volurnen hacia el triángulo BiO_{1.5}-SrO-CuO. Se comprueban la relaciónes inferidas 9.11.5.0-2201-Sr_{14}Cu_{24}O_{41}-SrCuO_2^{45}, 2201-Sr_{14}Cu_{24}O_{41}-SrCuO_2^{40} y Sr_{14}Cu_{24}O_{41}-SrCuO_2^{44} (Figura 28).$

Figura 28. Compatibilidad 9.11.5.0-2201-Sr14Cu24O41-SrCuO2

8250-9.11.5.0-2201-Bi2SreOs

Se infiere de los tetraedros amba indicados. Queda sin definir un volumen hacia la arista BiO_{1,5}-SrO que podria incluir al Bi₂Sr₃O₆ no detectado en los presentes estudios y para el que se ha reportado⁴⁰ es compatible con 2201, Bi₂Sr₃O₆-Bi₂Sr₆O₉-Sr₂CuO₃, Bi₂Sr₃O₆-Sr₂CuO₃-SrCuO₂, Bi₂Sr₃O₆-SrCuO₂-2201⁴⁰, Sr₁₄Cu₂₄O₄₁⁵⁶ y Sr₂CuO₃⁵⁶, mientras otros⁴⁵ no lo incluyen (Figura 29).

Bi2Sr8O9-8250-758-2201

Las composiciones estudiadas no cubren adecuadamente el volumen limitado entre las lineas Bi₂Sr₆O₆-8250 y Bi₂Sr₆O₆-Bi₂SrO₄, pero la evidencia experimental sugiere que podrían

Figura 30. Tetraedro de compatibilidad Bi₂Sr₆O₉-8250- γ_{ss} -2201 inferido. existir la compatibilidad Bi₂Sr₆O₉-8250- γ_{ss} -2201 (Figura 30). Otra versión del sistema⁴⁰ admite la cristalización estable de Bi₂Sr₃O₆ y de Bi₂Sr₂O₅ y las compatibilidades Bi₂Sr₆O₉-Sr₂CuO₃-Bi₂Sr₃O₆, Bi₂Sr₃O₆-Bi₂Sr₂O₅-2201R y Bi₂Sr₂O₅- γ_{ss} -2201R. En la presente investigación no se identificaron las fases Bi₂Sr₂O₅ y Bi₂Sr₃O₆, quedando Bi₂Sr₆O₉ como la única fase estable en esta región del sistema SrO-BiO_{1.5}.

Sistema BiO1.8-SrO-Ca-CuO a 1300°C

Los datos experimentales demuestran que el líquido es la fase predominante a 1300°C, confirmando los datos de otros autores^{33,40,44,45}. La asociación metaestable que se observa de βBi_2O_{3ss} , Bi_2SrO_4 , γ_{ss} , 2201, 2212, Ca_2CuO_3 y 9.11.5.0 se atribuye a su rapida cinética de cristalización.

β**Bi₂O_{3\$5}**

Composiciones correspondientes a la solución BBI₂O_{3SrCass} muestran una alta cinética de cristalización. Reaccionadas a temperaturas hasta de 1450º a fusión a un líquido fluido, se cristalizan BBI₂O_{3SrCass} con solamente trazas de líquido cuando se enfrian bruscamente. Tanto difracción de rayos X como microscopía óptica muestran una excelente cristalización de la fase β.

βBi₂O_{3Sras}-γ_{as}-Bi₂SrO₄-líquido

La asociación $\beta Bi_2 O_{3Srss} \gamma_{ss} Bi_2 SrO_4$ -líquido se atribuye a un equilibrio desarrollado durante el enfriamiento de las composiciones reaccionadas a 1300°C, debido a su rápida cinética de cristalización. Se mantiene hasta niveles de 10% mol CuO, desapareciendo a concentraciones mayores de CuO en que solamente se observa la fase β e indicios de γ y Bi₂SrO₄ (Figura 31).

Figura 31. Asociación metaestable de βBi₂O_{3Sree}γ_{es}-Bi₂SrO₄-líquido, de composiciones reaccionadas a 1300°C y enfriadas bruscamente.

Figura 32. Asociación metaestable de enfriamiento βBi₂O_{3Sras}-γ_{es}-liquido, en composiciones reaccionadas a 1300ºC.

βBi₂O_{3Srss}-γ_{ss}-líquido

La relación se presenta en composiciones altas en BiO_{1,5} con concentraciones de CuO inferiores a 25% mol. Se confirma la disolución del Bi₂SrO₄ en la medida que aumenta CuO y disminuye BiO_{1,5}, a 1300°C. La condensación de estas fases se atribuye igualmente a su rápida cinética de cristalización, dado que βBi_2O_{3Sraa} funde a 960°C⁴⁰ (Figura 32).

βBi₂O_{3Cass}-líquido

La compatibilidad corresponde al volumen rico en BiO_{1.5} del sistema cuatemario. Se confirma la ausencia de las fases γ_{ss} y Bi₂CaO₄ a niveles de 10 y 25% mol CuO. Por microscopía óptica se observa la estabilidad del líquido y la condensación de pequeños y escasos cristales de β . β Bi₂O_{3Cass} que se transforma a 830°C a la solución cúbica fcc, que funde a 880°C³³.

2201-líquido

Los datos experimentales muestran la cristalización de la fase 2201 en bajas concentraciones. Se forma en el enfriamiento, demostrando tener una muy rápida cinética de cristalización. Cristaliza a temperaturas elevadas⁷⁵⁻⁸⁵, si bien se admite que la mayor parte del sistema BiO_{1.5}-SrO-CuO permanece líquido arriba de 925°C, por lo que se piensa que se forma durante el enfriamiento dada su rápida velocidad de cristalización. La asociación se observa a niveles de hasta 50% mol CuO (Figuras 33).

2201-CaO-líquido

La asociación 2201-CaO-líquido sugiere que la fase 2201 puede cristalizar en enfriamiento dentro de límites de composición muy amplios en el sistema cuatemano. El CaO se estima representa una cristalización del exceso que no fué soluble en el líquido. Es estable hasta un 10% mol CuO (Figura 33).

2201-Ca2CuO3-CaO-líquido

Es similar a la asociación anterior, que ocurre hasta 50% mol CuO. Se presenta cristalización de Ca₂CuO₃. Ca₂CuO₃ funde a 1030°C a CaO+líquido⁴⁴, por lo que la asociación Ca₂CuO₃+CaO pudiera ser metaestable durante el enfriamiento (Figura 33).

2201-2212-Ca2CuO3-líquido

La cristalización de 2212, al igual que en los casos anteiores, se atribuye a su alta velocidad de cristalización en enfriamiento. Su asociación con 2201 y Ca₂CuO₃ en el líquido corresponde a composiciones centrales en el sistema BiO_{1.5}-SrO-CaO-CuO. Algunos autores⁷⁵⁻⁸⁵ reportan su cristalización por templado a baja temperatura (Figura 34).

9.11.5.0-líquido

La cristalización de escaso 9.11.5.0 se observa en niveles de 25 y 40% mol CuO. Es en este caso fase de enfriamiento (Figura 35).

Figura 34. Asociación metaestable de enfriamiento 2201-2212-Ca₂CuO₃-líquido, en composiciones reaccionadas a 1300°C.

Figura 35. Asociación metaestable de enfriamiento 9.11.5.0-2201-líquido, en composiciones reaccionadas a 1300ºC.

2201-9.11.5.0-líquido

Al igual que en los casos anteriores, la asociación 2201-9.11.5.0 ocurre durante el enfriamiento del liquido (Figura 35).

9.11.5.0-CaO-líquido

61

9.11.5.0 representa en esta asociación una fase metaestable de enfriamiento, asociada a CaO que podría ser una fase estable a 1300°C (Figura 35).

CaO-líquido y (SrCa)O-líquido

Se confirma como es de esperarse que el CaO y (SrCa)O son estables a temperaturas elevadas. Se mantienen hasta un 25% mol de CuO (Figura 36).

Figura 36. Associación (SrCa)O - líquido y CaO - líquido.

PROPIEDADES

Solución sólida β-Bi2O388

βBi₂O₃ es la fase estable entre 85 a 60% mol de Bi₂O₃ y entre 15 y 40% mol de SrO+CaO. Si bien se presenta como una solución sólida continua estable hasta 931ºC36 o 960º40, los datos de difracción de ravos X muestran variación en las distancias e intensidades de las reflexiones características que pudieran estar asociadas al grado de substitución Sr/Ca en la solución. Empleando el programa de Garvev⁹⁰ basado en el algoritmo de Vissar⁹¹ se calculó de los datos experimentales de rayos X (Tablas V, VI) que la βBi₂O_{36rea} cristalizada es romboédrico, a=7,94A, c=28.06 Å. Las dimensiones de su ceida se modifican a a=7.91Å. c=28.37 A, cuando el SrO se incrementa de 25 a 40% mol (Tabla VII), Cuando el soluto es CaO, la βBi₂O_{3Cass} formada es también romboédrica, pero las dimensiones son de a=7.88Å, con una posible subceida a=3.94, c=27.81 Å, más pequeña que la solucion alta en Sr. La sustitución simultánea por SrO+CaO produce celdas romboédricas de dimensiones a y b intermedias (Tabla VII). La dimensión a de la celda tiende a decrecer y la dimensión c a incrementarse conforme la sustitución de SrO+CaO se eleva. Dos composiciones conteniendo 40% mol SrO+CaO (composiciones 04 y 08, Tabla I, pág. 20) no mostraron dicha variación (Tabla VI) y sus datos de difracción no corresponden a una celda romboédrica sino más bien a una celda cúbica con parámetro de a=16.12 Å (Tabla VII). Estos valores confirman la simetría romboédral^{15,16,17,19} y las celda publicadas de a=3.97A, c=28.09Å para 2SrO 10Bi2O3 y de a=3.941, c=27.95 Å para CaO 1,2Bi2O3, conteniendo respectivamente 9.52% mol SrO y 7.69% mol CaO¹⁹. Evidentemente, βBi₂O_{3SrCasa} es estable dentro de amplios intervalos de composición, pero cuando la concentración de solutos Sr+Ca es superior al 40% mol la celda unitaria cambia de romboedral a cúbica.

Habiendo determinado los parámetros de la celda de β -Bi₂O_{3ss} se calcula el grupo puntual, partiendo de los datos de espectrometría de vibración en el infrarrojo medio. β -Bl₂O_{3ss} se caracteriza por presentar bandas de absorción a 1640-1630 cm⁻¹, 1425-1400, 1090-1040, 625-595 y 530-500 cm⁻¹ (Tabla VIII). Señales débiles a 3500-3400 cm⁻¹ y 2900 cm⁻¹ corresponden al estiramiento-OH de H₂O absorbida. Las vibraciones registradas a 1640, 1425, y 1090 cm⁻¹ son de intensidad media, anchas y asimétricas, mientras que aquellas a 625 and 530 cm⁻¹ son intensas y simétricas; una vibración muy débil a 430 cm⁻¹ fué ocasionalmente detectada. Este espectro simple con sólo cinco vibraciones normales, posiblemente 6, define sistemas de baja simetría. De los posibles grupos espaciales que pudieran adjudicársele a la

celda romboédrica, el grupo R3 no tiene suficientes posiciones equivalentes en el silio de simetría para acomodar a la molécula de Bi₂O₃. Igualmente sería el caso de los grupos R3m y R3c. Consecuentemente, los grupos espaciales R32, R3m, R3c, y R3 son los únicos que podrían aplicarse. De estos, R32 o D₃⁷, Z=3, podría acomodar dos átomos de Bi en posiciones C₃ y 30 en los sitios de simetría 2C₂ para generar 4A₂+3E o un total de diez vibraciones activas en el infrarrojo, más de las que los resultados experimentales indican. Los grupos R3m o D_{3d}⁵, Z=3, pueden tener 2Bi y 30 en los sitios C3, y 2C_{2h} generando 4A_{2u}+3E_u vibraciones o un total de 10 las cuales no podrían ser consideradas. El grupo R3c o D_{3d}⁶, Z=6, podrían acomodar 4Bi y 60 en sitios C₃ y C₂ para dar 3A_{2u}+4E_u vibraciones normales activas, que son mas de las observadas experimentalmente. El grupo R3 o C_{3l}², Z=3, acomoda 2Bi en C₃ y 30 en 2C₁ generando un espectro simple con seis vibraciones A_u que sí coinciden con los resultados experimentales y con las consideraciones teóricas para los 5 átomos de la molécula de Bi₂O₃. Consecuentemente, el grupo R3 corresponde a la simetría de sitio y grupo espacial calculado del espectro de infrarrojo para la solución sólida romboedral βBi₂O₃ (Tabla IX), diferente del arupo espacial R3m reportado de datos de cristal único^{12,17}.

hki		01	0;	2	0	3		05		D6		9		7
	d(Å)	ı	d(Å)	1										
100			9.34	3			9.43	9	9.37	8	9.25	2	9.45	3
200	4.68	5	4.66	11	4.66	16	4.73	18	4.71	15	4.63	12	4.69	9
102	3.40	4	3.40	10	3.39	6	3.39	10	3.39	23	3.39	4	3.41	15
011														
002	3.33	4	3,33	12	3.31	8	3.33	17	3.33	39	3,33	16	3.39	4
111														
300	3.12	100	3.11	100	3.11	100	3.15	100	3.14	100	3.09	100	3.12	100
301														
111	3.08	12	3.08	34	3.07	17	3.08	30	3.08	96			3.06	43
202					•									
102	2.92	9	2.92	20	2.91	10	2.93	22	2 93	54	2.91	8	2.93	30
211														
211	2.60	2	2.60	6	2.60	83	2.62	7	2.61	16	2.59	2	2.61	8
302														
202							2.47	7	2.46	11			2.45	9
311	2.45	2	2.45	5	2.44	4					2.44	3		
400							2.37	3	2.36	2			2,39	. 4
311	2.173	2	2.17	4	2.17	2	2.19	3	2.18	4	2.15	2	2,18	.7
202	2.05	2	2.04	4	2.04	4	2.08	8	2.06	12	2.03	2	2.05	6
113	1.98	4	1.98	13	1.97	7	1.97	12	1.96	37	1.97	4	1,96	18
020		-						_						
500	1.87	2			1.87	.4	1.89	5	1.89	4	1.85	3	1.87	4
T														

Tabla V. Datos de difracción de rayos X de βBi_2O_{3SS} romboedrica.

....

411	1.83	5	1.82	12	1.83	7	1.84	13	1.84	23	1.81	7	1.83	15
502														
511	1.73	4	1.73	8	1.73	5	1.75	8	1.74	12	1.72	3	1.73	11
204	-								1.70	8				
213	1.67	5	1.67	13	1.67	7	1.67	14	1.67	- 32	1.66	6	1.67	18
413														
320														
600	1.56	6	1.55	8	1.56	9	1.58	10	1.58	14			• 1.56	10
511														
602														
404			•						1.54	3	1.54	7		
611	1.49	1			1.49	2			1.50	5	1.47	2		
502														
613									1.37	3				
604					1.30	2								
404					1.23	3								
622														

	Composición									
nki	04		08							
	d(Å)	 I	d(Å)	1						
010	9.35	18	9,40	16						
02 0	4.68	27	4.69	30						
100	3.37	23	3,37	10						
110	3.30	52	3.31	18						
030	3.13	100	3.12	100						
110	3.06	89	3.07	30						
111										
120	2.91	50	2.91	18						
120	2.59	7	2.60	9						
130	2.47	5								
131	2.44	13	2.45	6						
130	2.17	6								
140	2.04	14	2.04	7						
101	1.96	30	1.97	11						
050			1.87	6						
221	1.83	22	1.83	12						
150 .	1.73	11	1.73	6						
231										
132	1.66	30	1. 66	11						
210	1.63	7								
022	1.57	8								
150	1.56	12	1.56	8						

Tabla VI. Datos de difracción de rayos X de βBi₂O3_{ss} cúbica.
omposición	Celda	Dimensio	nes celda (Å)
		a	С
01	sonbéodmon	7.92	28.10
02		7.92	28.13
		3.96	
03		7.89	28.13
		3.95	
04	cúbica	16.12	
05	romboédrica	7.90	28.46
06		7.91	28.37
07		7.94	28. 06
		3.97	
08	cúbica	16.26	
09		7.88	27.81
		3.94	

Tabla VII. Parámetros de la ceida unitaria de βBi2O3.

Composición		Vi	bración (cm [.]	')			
01	1640	1400	1070		610	510	
02	1630	1420	1050		605	525	
03	1630	1420	1050		605	525	
04	1630	1430	1090		620	535	
05	1630	1420	1050		625	525	
07			1040		600	510	
08	1630	1425	1040		610	530	
09			1040		595	520	
Bi ₂ O ₃					545	510	
SrO*				650			
CaO*				653			

Tabla VIII. Vibraciones de absorción infrarroja de β-Bi₂O_{3es}.

*Tomado de Nakamoto (1978).

Tabla IX. Factor de grupo de modos ópticos de βBi₂O_{3SS}

Cristal	Sistema	Grupo espacial	z	Sime	otría O	Factor de
				Bi	ο	grupo
ß-Bi2O3ss	romboedral	R3	3	C ₃ (2)	2C _i (3)	6Au

Conductividad iónica de βBi2O3ss

Datos de conducción iónica de las muestras 03 y 04, entre 75 y 800°C, conteniendo 33% mol SrO+CaO y 40% respectivamente, describen la correlación mostrada en la Tabla X, Figura 31. La composición 03, romboédrica, presenta tendencia contínua ascendente; la composición 04, cúbica, exhibe cambio de pendiente a 884°K o 611°C. Considerando que se sintetizaron a 700°C, el cambio de pendiente podría asignarse a la transformación cúbica - romboedrica, a una temperatura menor que la normalmente aceptada para ello. Es posible que el cambio de pendiente este asociado a una transformación $\beta_2 - \beta_1$, que se ha reportado ocurre a 725-730°C¹⁻³.

Tabla X. Conductividad iónica de composiciones seleccionadas de β-Bi₂O_{3se}

nperatura	Conductividad iónica (ohm ⁻¹ cm ⁻¹)				
(°K)	03	04			
247	4 248 - 40-8	1 250 x 10-9			
347	4.348 × 10 °	9 709 x 10 ⁻⁹			
478	1.587 x 10 ⁻⁶	6.897 x 10 ⁻⁷			
529	7.107 x 10 ⁻⁶	3.145 x 10 ⁻⁸			
600	3.413 x 10 ⁻⁵				
627	5.882 x 10 ⁻⁵	6.410 x 10 ⁻⁵			
673	1.726 x 10 ⁻⁴	1.916 x 10 ⁻⁴			
725	4.973 x 10 ⁻⁴	6.098 x 10 ⁻⁴			
774	1.067 x 10 ⁻³	1.416 x 10 ⁻³			
827		1.015 x 10 ⁻²			
858	4.310 x 10 ⁻³				
884		1.531 x 10 ⁻²			
923		1.497 x 10 ⁻²			
983	3.570 x 10 ⁻²	2.174 x 10 ⁻²			
1023		2.475 x 10 ⁻²			
1073	•	2.620 x 10 ⁻²			

Conductividad Bi203ss

Figura 37. Conductividad iónica de composiciones seleccionadas de βBi₂O₃₆₈.

CONCLUSIONES

El sistema BiO_{1.5}-SrO-CaO-CuO, a 800°C, presenta veintiocho tetraedros de compatibilidad, determinados experimentalmente (Tabla XI, Figuras 39, 40, 41, 42, 43). De estos, veinte son aportación original de la presente investigación y los ocho restentes confirman datos antes publicados.

Tabla XI. Relaciones cuatemarias de compatibilidad en el sistema BiO_{1.5}-SrO-CaO-CuO a 800°C

1	βBi ₂ O _{3ea1} -βBi ₂ O _{3ea2} -CuO ¹
2	βBi ₂ O _{3SrCess} -Bi ₂ SrO ₄ -CuO
3	βBi₂O _{3Cess} -Bi₂CaO₄-CuO
4	βBi ₂ O _{3CeSrsa} -Bi ₂ CaO ₄ -CuO
5	Bi ₂ SrO ₄ -γ _{ss} -CuO
6	βBi ₂ O _{3SrCess} -γ _{ss} -Bi ₂ SrO ₄ -CuO
7	βBi ₂ O _{3CaSraa} -Bi ₂ CaO ₄ -γ _{aa} CuO
8	βBi ₂ O _{3SrCass} -βBi ₂ O _{3CaSras} -γ _{as} -CuO
9	γ ₈₃ -8250-2201-CuO
10	8250-2201-2212-9.11.5.0
11	9.11.5.0-Ca ₂ CuO ₃ -Bi ₂ Sr ₆ O ₉ -CaO
12	9.11.5.0-Ca ₂ CuO ₃ -SrCuO ₂ -Sr ₁₄ Cu ₂₄ O ₄₁
13	9.11.5.0-Ca2CuO3-Sr2CuO3-SrCuO2
14	9.11.5.0-Ca ₂ CuO ₃ -Sr ₁₄ Cu ₂₄ O ₄₁ -CuO
15	Bi ₂ Sr ₈ O ₉ -(SrCa)O-Sr ₂ CuO ₃ -Ca ₂ CuO ₃
16	9.11.5.0-Ca2CuO3-Bi2Sr8O9-Sr2CuO3
17	8250-9.11.5.0-2212-Ca ₂ CuO ₃
18	8250-9.11.5.0-Ca ₂ CuO ₃ -CaO
19	8250-9.11.5.0-2201-Bi ₂ Sr ₆ O ₉
20	Bi ₂ Sr ₆ O ₉ -8250-γ _{ss} -2201
2 1	βBi ₂ O _{3Sree} -Bi ₂ SrO ₄ -CuO ²
22	8250-2201-2212-CuO
23	2201-2212-Sr14Cu24O41-CuO

24	2201-2212-9.11.5.0-Sr ₁₄ Cu ₂₄ O ₄₁
25	2212-9.11.5.0-Ca ₂ CuO ₃ -Sr ₁₄ Cu ₂₄ O ₄₁
26	2212-Ca ₂ CuO ₃ -Sr ₁₄ Cu ₂₄ O ₄₁ -CuO
27	9.11.5.0-2201-Sr ₁₄ Cu ₂₄ O ₄₁ -SrCuO ₂
28	8250-2201-2212-9 11 53

¹compatibilidades nuevas obtenidas de la presente investi-

gación; ²compatibilidades conocidas confirmadas en esta investigación; ³compatibilidad inferida⁴⁰.

Figura 39. Relaciones de compatibilidad en el sistema BiO15-SrO-CaO-CuO.

Figura 41. Relaciones de compatibilidad en el sistema BIO1 5-SrO-CaO-CuO.

Figura 42. Relaciones de compatibilidad en el sistema BiO1.5-SrO-CaO-CuO.

El sistema se presenta dividido en dos porciones, una conteniendo más de 40% mol BiO₁₅, y otra alta en SrO+CaO, separadas por una cuña central que se extiende desde la arista SrO-CuO hacia el sistema BiO_{1.5}-SrO-CaO y que incluye las fases 2201, 2212, 9.11.5.0 y 8250.
 Composiciones altas en BiO_{1.5} cristalizan βBi₂O_{3ss} o la fase 2201; composiciones entre el 2201 (40% BiO_{1.5}) y el 2212 (28% BiO_{1.5}) cristalizan 2201+2212, y si el contenido de BiO_{1.5} es menor a 28% se forma 2212.

Composiciones cercanas al 100% de BiO_{1.5} precipitan βBi₂O_{3sa}, Bi₂SrO₄, Bi₂CaO₄ y CuO. Dependiendo del contenido de Sr+Ca, la simetría de la solución β cambia de romboédrica *a*=7.94, *c*=28.06 Å cuando es alta en Sr, a *a*=3.94, *c*=27.81 Å si predomina Ca, a cúbica, *a*=16.26 Å, cuando Sr+Ca es mayor de 40% mol. La simetría de la fase romboedrica es R3. La conductividad iónica muestra una inflexión a 600°C que pudiera estar asociada a una recristalización.

Las relaciones cuaternarias establecidas a 800°C coinciden algunas con las publicadas por otros autores, que entre ellos con frecuencia muestran resultados incompatibles. Se aportan nuevas relaciones de compatibilidad en el volumen cercano a $BiO_{1.5}$, definiendo las compatibilidades de βBi_2O_{3es} con Bi_2SrO_4 , Ca_2SO_4 , γ_{es} , Cu. Se cuestiona la validez de la unión βBi_2O_{3es} -2201, que se considera inexistente. Se definen las compatibilidades con la fase 8250 Bi:Sr:Ca. La unión 9.11.5.0-CuO aceptada por algunos autores e invalidada por otros, no se demuestra que exista. Se acepta sin embargo la importancia de esta unión en definir buena parte de las relaciones de equilibrio del sistema cuaternario. La unión 2212-CaO aceptada por algunos autores y que es incompatible con varios sistemas definidos por ellos mismos y otros investigadores, no se demuestra como válida en los resultados obtenidos. La solución SrO-CaO pudiera no ser continua en toda la extensión del sistema sino más bien existir una segunda solución substancialmente cálcica. Las uniones binarias $Sr_{14}Cu_24O_{41}$ -CaO y SrCuO₂-CaO mantenidas por algunos autores, se demuestra que no son aceptables.

A 1300°C se forma abundante líquido y cristalizan βBi₂O_{3ss}, 2201, 2212, Ca₂CuO₃, 9.11.5.0 y CaO. Estas cristalizaciones se consideran metaestables, desarrolladas durante el enfriamiento de los líquidos y se atribuyen a la alta velocidad o cinética de cristalización de dichas fases. De aquí que no se presenten como relaciones de compatibilidad a 1300°C sino simplemente como asociaciones de fases.

La presente investigación aporta al conocimiento del sistema BiO1.5-SrO-CaO-CuO:

 veinte nuevas relaciones de compatibilidad en el subsolidus, a 800°C, y argumentos experimentales demostrando la invalidez de compatibilidades previamente conocidas - la estabilidad y propiedades de conducción iónica, parámetros de red y de vibración en el intervalo del infrarrojo de la solución sólida temaria βBi₂O_{3SrCasa}

- la estabilidad de fases a 1300°C

BIBLIOGRAFIA

¹A. L. Robinson, "Record High-Temperature Superconductors Claimed", Research News, 30, 531-3 (1987).

²Bednorz, J. G. y Muller, K.A. "Posible High T_c Supercondctivity in the Ba-La-Cu-O System", Z. Phys., B 64, 189-93 (1986).

³M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Q. Wang, y C. W. Chu, "Superconductivity at 93 K in a New Mixed Phase Y-Ba-Cu-O Compound System at Ambient Pressure", Phys. Rev. Lett., 58, 908 (1987).

⁴Z. Z. Sheng y A. M. Hermann, "Superconductivity in the Rare Earth-Free Ti-Ba-Cu-O System above Liquid-Nitrogen Temperature", Nature, 323 [3], 55-58 (1988).

⁵D. S. Ginley, B. Morosin, R. J. Baughman, E. L. Venturini, J. E. Schirber y J. F. Kwak, "Growth of Crystals and Effects of Oxygen Annealing in the Bi-Ca-Sr-Cu-O and Ti-Ca-Ba-Cu-O Superconductor Systems", J. Crystal Growth, 91, 456-462 (1988).

⁶J. Akimitsu, A. Yamazaki, H. Sawa y H. Fujiki, "Superconductivity in the Bi-Sr-Cu-O System", Jpn. J. Appl. Phys., 26 [12], L2080-L2081 (1987).

⁷C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost y B. Raveau, "Superconductivity in the Bi-Sr-Cu-O System", Z. Phys. B:Condens. Matter, 68, 421-23 (1987).

⁸S. Uchida, H. Takagi, K. Kitazawa y S. Tanaka, "High T_c Superconductivity of La-Ba-Cu Oxides", Jon. J. Appl. Phys. 26, L1 (1987).

⁹M. A. Subramanian, C. C. Torardi, J. C. Calabrese, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry y A. W. Sleight, "A New High-Temperature Superconductor Bi₂Sr_{2-x}Ca_xCu₂O_{8+y}", Science, 239 [26], 1015-18 (1988).

¹⁰H. Jaeger, M. Aslan, K. Schulze y G. Petzow, "Processing and Superconducting Properties of Bi-Sr-Ca-Cu-O Compounds", J. Crystal Growth. 96,459-464 (1989).

¹¹L. Gao, Z. J. Huang, R. L. Meng, P. H. Hor, J. Bechtold, Y. Y. Sun, C. W. Chu, Z. Z. Sheng y A. M. Hermann, "Bulk Superconductivity in Tl₂CaBa₂Cu₂O_{8+x} up to 120 K", Nature, 332, 623-624 (1988).

¹²T. Honda, T. Wada, M. Sakai, M. Miyajima, N. Nishikawa, Sh-I. Uchida, K. Uchinokura y S. Tanaka, "Preparation of High-T_c (105 K) Superconducting Phase in Bi-Sr-Ca-K-Cu Oxide System", Jap. J. App. Phys., 27 [4], L545-L547 (1988).

¹³Y. Tanaka, M. Fukutomi, T. Asano, H. Maeda, "Effects of Synthesis Conditions on the Properties of a Superconducting Bi-Sr-Ca-Cu-O System", Jap. J. App. Phys., 27 [4], L548-L549 (1988).

¹⁴M. Ohta, K. Takahashi y M. Kosuge, "Superconductor with a Layered Structure in Bi-Sr-Ca-Cu Oxides", Jap. J. App. Phys., 27 [4], L567-L568 (1988).

¹⁵A. Maeda, T. Yabe, H. Ikuta, Y. Nakayama, T. Wada, S. Okuda, T. Itoh, M. Izumi, K., Uchinokura, Sh-i. Uchida y S. Tanaka, "Physical Properties of an 80 K Superconductor: Bi-Sr-Ca-Cu-O Ceramics", Jap. J. App. Phys., 27 [4], L661-L664 (1988).

¹⁶H. Maeda, Y. Tanaka, M. Fukutomi y T. Asano, "A New High-Tc Oxide Superconductor without a Rare Earth Element", Jap. J. Appl. Phys., 27 [2], L209-L210 (1988).

¹⁷C. Greaves, "Infinite Stacks of Copper Oxide", Nature, 334 [21], 193-194 (1988).

¹⁸M. G. Smith y H. Oesterreicher, "Structural and Superconducting Properties of Bi₂Sr₂(M'_{1-y}M'_y)₂Cu₃O_x (M'=Ca,Y; M"=Na,Ca) Including Hydrided Materials", Mat. Res. Bull., 24, 1103-10 (1989).

¹⁹E. Sillen, "Bismuth Trioxide (alfa form)". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Com. Powder Diffraction Standards, Washington, D. C., p. M-63 (1973).

²⁰Takahashi, T., "High conductivity solid ionic conducting recent trends and applications", World Scientific, Singapore (1989).

²¹E. Sillen, "Bismuth Trioxide". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Corn. Powder Diffraction Standards, Washington, D. C., p. T-48 (1973).

²²A. Swanson, "Bismuth Trioxide (alfa form)". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Com. Powder Diffraction Standards, Washington, D. C., p. O-80 (1973).

²³R. S. Roth y Waring, J. Res. Nat. Bur. St., 66A, 451 (1962).

²⁴Gattow, "Bismuth Trioxide". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Com. Powder Diffraction Standards, Washington, D. C., p. T-48 (1973).

²⁵Zav'gatova et al., Kristalografiya, 9, 857 (1964)

²⁶Schumb y Rittner, "Bismuth Trioxide". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Com. Powder Diffraction Standards, Washington, D. C., p. T-48 (1973).

²⁷Levin y R. S. Roth, "Bismuth Trioxide (gama form)". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Com. Powder Diffraction Standards, Washington, D. C., p. C-276 (1973).

²⁸C. Frondel, "Sillenite". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Com. Powder Diffraction Standards, Washington, D. C., p. C-266 (1973).

²⁹T. Takahashi, H. Iwahara y Y.Nagei, "High Oxides Ion Conduction in Sintered Bi₂O₃ Containing SrO, CaO, and La₂O₃", J. App. Electrochem., 2, 97-104 (1972).

³⁰P. Conflant, J. C. Bolvin, G. Newogroski y D. Thomas, "Etude Structural par Difractometrie X a Haute Temperature du Conducteur Anionique Bl_{0.844}Ba_{0.156}O_{1.422}", Solid State Ionics, 9-10, 925-928 (1983).

³¹T.Graia, P. Conflant, J. C. Boivin y D. Thomas, "High Oxygen Ion Conduction in a Bismuth Oxide Cadmium Oxide Phase: Conductivity and Transport Measurements; Structural Investigations", Solid State Ionics, 18-19, 751-755 (1986).

³²P. Conflant, J. C. Boivin y D. Thomas, "Le Diagramme des Phases Solides du System Bi₂O₃-CaO", J. Solid State Chem., 18, 133-140 (1976).

³³R. S. Roth, N. M. Hwang, C. J. Rawn, B. P. Burton y J. J. Ritter, "Phase Equilibria in the Systems CaO-CuO and CaO-Bi₂O₃", J. Am. Ceram. Soc., 74 [9], 2148-51 (1991).

³⁴J. B. Parise, C. C. Torardi, M. H. Whangbo, C. R. Rawn, R. S. Roth y B. P. Burton, "Ca₄Bi₆O₁₃

a Compound Containing an Unusually Low Bismuth Coordination Number and Short Bi...Bi Contacts", Chern. Mater., 2, 454-58 (1990).

³⁵J. B. Parise, C. C. Torardi, C. J. Rawn, R. S. Roth, B. P. Burton y A. Santoro, "Synthesis and Structure of $Ca_6Bi_6O_{15}$: Its Relatioship to $Ca_4Bi_6O_{13}$ ", J. Solid State Chem., 102, 132-139 (1993).

³⁶R. Guillermo, P. Conflant, J. C. Boivin y D. Thomas, "Le Diagramme des Phases Solides du System Bi₂O₃-SrO", Revue Chimie Minerale, 15, 153, (1978).

³⁷N. M. Hwang, R. S. Roth y C. J. Rawn, "Phase Equilibria in the System SrO-CuO and SrO-0.5Bi₂O₃", J. Am. Ceram. Soc., 73 [8], 2531-33 (1990).

³⁸C. C. Torardi, J. B. Parise, A. Santoro, C. J. Rawn, R. S. Roth y B. P. Burton, "Sr₂Bi₂O₅: A Structure Containing Only 3-Coordinated Bismuth", J. Solid State Chem., 93, 228-235 (1991).

³⁹Auruvillius, "Bismuth Strontium Oxide". En: Crystal Data Determinative Tables, Vol. II, Inorganic Compounds. Ed.: D. H. Donnay y H. M. Ondik, National Bureau of Standards y J. Com. Powder Diffraction Standards, Washington, D. C., p. H-322 (1973).

⁴⁰R. S. Roth, C. J. Rawn, B. P. Burton y F. Beech, "Phase Equilibria and Crystal Chemistry in the Portions of the System SrO-CaO-Bi₂O₃-CuO, Part II: The System SrO-Bi₂O₃-CuO", J. Res. Nat. Inst. Stand. Technol., 95, 291 (1990).

⁴¹J. Liang, Z. Chen, F. Wu y S. Xie, "Phase Diagram of SrO-CaO-CuO Ternary System", Solid State Comm., 75 [3], 247-52 (1990).

⁴²R. S. Roth, J. R. Dennis y H. F. McMurdie. En: Phase Diagrams for Ceramists, Vol. VI. Ed.: American Ceramic Society, Westerville, OH, Figs. 6329 y 6428 (1987).

⁴³A. M. M. Gadalla y J. White, "Equilibrium Relationships in the System CuO-Cu₂O-CaO", Trans. Br. Ceram. Soc., 65 [4], 181-90 (1966).

ESTA TESIS

NO DEBE Minimiteda

⁴⁴R. S. Roth, C. J. Rawn, J. J. Ritter y B. P. Burton, "Phase Equilibria of the System SrO-CaO-CuO", J. Arn, Ceram, Soc., 72 [8], 1545-49 (1989).

⁴⁵B. Hong, J. Hahn y T. O. Mason, "Phase Composition and Compatibilities in the Bi-Sr-Ca-Cu Quaternary Oxide System at 800oC in Air", J. Am. Ceram. Soc., 73 [7], 1965-72 (1990).

⁴⁶C.L.Teske y L. Muller-Buschbaum,"On Alkaline-Earth Metal Oxocuprates II.Data on CaCu₂O₃",

Z. Anorg. Allg. Chem. 370, 134 (1969)

⁴⁷O. Milat, G. Vandeloo, S. Amelinckx, T. G. N. Babu y C. Greaves, "Structural Variants of Ca_{0.85}CuO₂(Ca_{5+x}Cu₆O₁₂)", J. Sol. St. Chem., 101, 92-114 (1992).

⁴⁸T. Siegrist, R. S. Roth, C. J. Rawn y J. J. Ritter, "Ca_{1-x}CuO₂, a NaCuO₂-Type Related Structure", Chem. Mat., 2, 192-94 (1990).

⁴⁹Milat, G. Van Tendeloo, S. Amelinckx, T. G. N. Babu y C. Greaves, "The Modulated Structure of Ca_{0.85}CuO₂ as Studied by Means of Electron Diffraction and Microscopy", J. Solid State Chem., 97, 405-418 (1992).

⁵⁰C. L. Teske y H. Müller-Buschbaum, "On Our Knowledge of Ca₂CuO₃ and SrCuO₂", Z. Anorg.

Allg. Chem., 379, 234-41 (1970).

⁵¹C. L. Teske y H. Müller-Buschbaum, "On Our Knowledge of Sr₂CuO₃", Z. Anorg. Alig. Chem., 371, 325-32 (1969).

⁵²J. Hahn, T. O. Mason, S. J. Hwu y K. R. Poeppelmeier, "Solid State Phase Chemistry in the Superconducting Systems: Y-Ba-Cu-O and La-Sr-Cu-O", Chemstronics, 2, 126-29 (1987).

⁵³T. Siegrist, L. R. Schneemeyer, S. A. Sunshine, J. V. Waszcak y R. S. Roth. "A New Layered Cuprate Structure-Typer, (A_{1,x}A'_x)_{1,4}Cu₂₄O₄₁", Mater. Res. Buil., 23, 1429-38 (1988).

⁵⁴K. T. Jacob y T. Mathews, "Phase Relations and Thermodynamic Properties of Condensed Phase in the System Sr-Cu-O", J. Am. Ceram. Soc., **75** [12], 3225-32 (1992).

⁵⁵M. L. Chávez y L. de Pablo, "High-Bi $β_{ss}$ in the Bi₂O₃-SrO-CaO System", en prensa Brit. Cer. Trans. (1993).

⁵⁶J. A. Saggio, K. Sujata, J. Hahn, S. J. Hwu, K. P. Poeppimeier y T. O. Mason, "Partial Bi-Sr-Cu-O Subsolidus Diagram at 800°C with and without Lithium Carbonate", J. Am. Ceram. Soc., 72 [5], 1849-53 (1989).

⁵⁷Y. Ikeda, H. Ito, Sh. Shimomura, Y. Oue, K. Inaba, S. Hiroi y M. Takano, "Phase and their Relations in the Bi-Sr-Cu-O System", Physica C., 159, 93-104 (1989).

⁵⁶M. T. Caldes, J. M. Navarro, F. Perez, M. Carrera, J. Fontcuberta, N. Casan-Pastor, C. Miravitilles, X. Obradors, J. Rodriguez-Carvajal, J. M. Gonzalez-Calbet, M. Vallet-Regi, A. Garcia y A. Fuertes, "Electron Microscopy, Neutron Diffraction, and Physical Properties of Bi₄Sr₈Cu₅O_{10+v}", Chem. Mater., 3, 844-852 (1991).

⁵⁹J. Aximitsu, A. Yamasaki, H. Sawa y H. Fujiki, "Superconductivity in the Bi-Sr-Cu-O System", Jap. J. Appl. Phys., 26 [12], L2080-L2081 (1987).

⁶⁰B. C. Chakoumakos, P. S. Ebey, B. C. Sales y E. Sonder, "Characterization and Superconductivity Properties of Phases in the Bi-Sr-Cu-O System", J. Mater. Res., 4 [4], 767-80 (1989).

⁶¹R. A. Vaile, S, Bosi, T. Puzzer, A. Bailey, J. Cochrane, N. Mondinos, K. Sealy, G. J. Russell, D. N. Matthews, M. Aristides y K. N. R. Taylor, "Superconductivity in the Bi-Sr-Cu Oxide Compositional Diagram", J. Cryst. Growth, 91, 450-55 (1988).

⁶²Ch. Krüger, W. Reichelt, A. Almes, U. König, H. Oppermann y H. Scheler, " Synthesis and Properties of Compounds in the System Sr₂CuO₃ - Ca₂CuO₃", J. Solid State, 96, 67-71 (1992).

⁶³Kijima T. y Okazaki A., "Stability Field of Layered Cuprate Ca_{1-x}Sr_xCuO₂ (x~0.1) at 1000°C Under Oxygen Atmosphere", J. Solid State Chem. 102, 582-85 (1993).

⁶⁴F. D. Hardcastle e I. E. Wachs, " The Molecular Structure of Bismuth Oxide by Raman Spectroscopy ", J. Solid State Chem. 97, 319-331 (1992).

⁶⁵P. Majewski, B. Hettich, H. Jaeger y K. Schulze, "The Phase Equilibrium Diagram of Bl₂O₃-SrO-CaO-CuO -A Tool of Processing the High-T_c Superconducting Bismuth Compounds", Adv. Mater., 3 [1], 67-69 (1991).

⁶⁶R. Horyn, J. Ziaja, I. Fhatow, M. Wolcyrz, J. Olejniczak, A. J. Zaleski, P. W. Klamut e I. Benzar. "Domains of Existence and Physical Properties of the 2201- and 2202-Type Structure Pnases in the Bi₂O₃-SrO-CaO-CuO Quaternary System", Supercond. Sci. Technol., 3, 356-62 (1990).

⁶⁷B. Hong y T. O. Mason, "Solid-Solution Ranges of the n=2 and n=3 Superconducting Phases in Bi₂(Sr_xCa_{1-x})_{n+1}Cu_nO_v and the Effect on T_c", J. Am. Ceram. Soc., 74 [5], 1045-52 (1991).

⁶⁸X. B. Kan, J. Kulik, P. C. Chow, S. C. Moss, Y. F. Yan, J. H. Wang y Z. X. Zhao, "X-Ray and Electron Diffraction Study of Single Crystal Bi₂Sr₂CaCu₂O_x", J. Mater. Res., 5 [4], 731-736 (1990).

⁶⁹H. M. O'Brian, W. W. Rhodes y P. K. Gallager, "Effect of Oxygen Stoichiometry on the Critical Temperature and Thermal Expansion of Two-Layer BiSrCaCu Oxide Superconductors", Chem. Mater., 2, 421-424 (1990).

⁷⁰A. Gama, E. Chavira, y R. Escudero, " Superconductivity above 100-K by Pr Substitution in the Two-Copper-Layer Bi-Pr-Sr-Ca-Cu-O", Phys. Rev. B., **42** (4), 2161-65 (1990).

⁷¹E. Chavira, R. Escudero, D. Rios-Jara, y L. M. León, " Influence of Lead on the Formation of the 110 K Superconducting Phase in the Bi-Sr-Ca-Cu-O Compunds", Phys. Rev. B Condensed Matter 38 [13], 9272-75 (1988).

⁷²R. Escudero, E. Chavira, y D. Rios-Jara, " Isolation of the 110K Superconducting Phase of Bi-Pb-Sr-Ca-Cu-O Compounds ", Appl. Phys. Lett. **54** [16] 1576-78 (1989).

⁷³K-H. Song, H-K. Liu, S-X Dou y Ch. C. Sorrell, "Rapid Formation of the 110 K Phase in Bi-Pb-Sr-Ca-Cu-O through Freeze-Drying Powder Processing", J. Am. Cer. Soc., 73 (6), 1771-73 (1990).

⁷⁴R. S. Roth, C. J. Rawn, B. P. Burton y F. Beech, "Crystal Chemistry and Phases in the System SrO-CaO-Bi₂O₃-CuO", presentado en Annual Meeting of the American Crystallographic Association. Seattle, WA, Julio 23-29 (1989).

⁷⁵D. Swinbanks, "High-Critical Temperature Superconductor Made from Glass", Nature, 332 [14], 575 (1988).

⁷⁶T. Komatsu, K. Imai, R. Sato, K. Matusita y T. Yamashita, "Preparation of High-T_c Superconducting Bi-Ca-Sr-Cu-O Ceramics by the Melt Quenching Method", Jap. J. Appl. Phys., 27 [4], L533-L535 (1986).

⁷⁷T. Komatsu, R. Sato, K.Imai, K. Matusita y T. Yamashita, "High-Tc Superconducting Glass Ceramics Based on the Bi-Ca-Sr-Cu-O System", Jap. J. Appl. Phys., 27 [4], L550-L552 (1988).

⁷⁸A. Inoue, H. Kimura, K. Matsuzaki, A. P. Tasi y T. Masumoto, "Production of Bi-Sr-Ca-Cu-O Glasses by Liquid Quenching and their Glass Transition and Structural Relaxation", Jap. J. Appl. Phys., 27 [6], L941-L943 (1988).

⁷⁹A. Asthana, P. D. Han, L. Chang y D. A. Payne, "Development of the High-Tc Phase by Crystallization of Melt-Quenched Bi-Ca-Sr-Cu Oxides", Mat. Let., 8 [8], 286-292 (1989).

⁸⁰D. Bahadur, A. Banerjee, A. Das, K. P. Gupta, A. Mittra, M. Tewari y A. K. Majumdar, "Superconducting Glass Ceramics in the Bi-Pb-Sr-Ca-Cu-O System", Mat. Res. Bull., 24, 1405-1412 (1989).

⁸¹H. Zheng y J. D. Mackenzie, "Glass Formation and Glass Structure of BiO_{1.5}-CuO-Ca_{0.5}Sr_{0.5}O System". J. Mat. Res., 4 (4), 911-15 (1989).

⁸²W. Zhu, M. M. Miller, P. A. Metcalf y H. Sato, "Preparation of Superconducting Films of Bi-Sr-Ca-Cu Oxides by In-Situ Melting", Mat. Let., 8 [9], 340-42 (1989).

⁸³M. R. de Guire, N. P. Bansai y C. J. Kim, "Superconducting Glass-Ceramics in the Bi-Sr-Ca-Cu-O System", J. Am. Cer. Soc., 73 [5], 1165-71 (1990).

⁸⁴T. Komatsu, C. Hirosi, T. Ohki y K. Matusita, "Superconducting Coupling Nature of Grain Boundaries in Bi₂Sr₂CaCu₂O_x Glass-Ceramics", J. Am. Cer. Soc., 73 [12], 3569-74 (1990).

⁸⁵T. G. Holesinger, D. J. Miller y L. S. Chumbley, "Crystallisation of Bi-Sr-Ca-Cu-O Glasses in Oxygen", J. Mater. Res., 7 [7], 1658-71 (1992).

⁸⁶R. S. Halford. En: K. Nakamoto, infrared and Raman Spectra of Inorganic and Coordination Compounds, 3a Edición, Wiley, New York, p. 92 (1978).

⁸⁷K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. 3a Edición, Wiley, New York, 1978, 448 ps.

⁸⁸J. R. Ferraro, Low-Frequency Vibrations of Inorganic and Coordination Compounds. Plenum Press, New York, (1971).

⁸⁹W. G. Fateley, F. R. Dollish, N. T. McDevitt, and F. F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations; The Correlation Method. Wiley-Interscience, New York, (1972).

⁹⁰R. Garvey, "A Personal Computer Program for Finding Lattice Parameters from Powder Data", Dep. of Chemistry, North Dakota St. Univ., (1992).

⁹¹J. W. Visser, "A Fully Automated Program for Finding the Unit Cell from Powder Data", J. Appl. Cryst., 2, 89-95 (1969).

Crystal Structure and Ionic Conductivity of High-Bismuth Beta Solid Solution in the System Bi₂O₃-SrO-CaO

M. L. Chávez-García

Facultad de Química, Universidad Nacional A. de México

L. de Pablo-Galán

Instituto de Geología, Universidad Nacional A. de México,

Ciudad Universitaria, 04510 México, D. F.

ABSTRACT

ß-Bl₂O_{3SrCa} ss is formed as a stable phase between 85% mole Bl₂O₃ and 60% in the system Bl₂O₃-SrO-CaO. ß-Bl₂O_{3Sr}ss is rhombohedral, *a*=7.94A, *c*=28.06A, that change to *a*=7.91A, *c*=28.37A when SrO is increased from 25% mole to 40%. ß-Bl₂O_{3Ca}ss is rhombohedral, *a*=7.88A with a strong possibility of a subcell *a*=3.94A, *c*=27.81A. ß-Bl₂O_{3SrCa} ss have intermediate cell dimensions. The infrared spectra presents five normal vibrations suggesting that ß-Bl₂O_{3SrCa} ss is crystallized in the low-symmetry space group R3 which has the site symmetries to accommodate 2Bi in C₃ and 30 in 2C₁ positions and generate a simple vibrational spectra 6A_{2u}. The ionic conductivity of ß-Bl₂O_{3SrCa}ss varies from 1.25x10⁻⁹ ohm⁻¹ cm⁻¹ to 2.62x10⁻² between 348⁰K and 1073⁰ with an inflection at 884^oK that may be associated with the ß₂-ß₁ transformation.

1. INTRODUCTION

1

Bismuth oxide can dissolve ions like Ca, Sr, Ba, Pb, La, and Cd to form ß-Bi₂O₃ solid solutions of rhombohedral symmetry, with anionic vacancies in the structure that make them interesting ionic conductors¹⁻³. They have generally been studied within the framework of phase

equilibrium and ion conduction studies of two-components systems¹⁻³, and lately has been reported their crystallization within the system Bi₂O₃-SrO-CaO⁴, stability, and B₁-B₂ transformation, without much consideration be given to their competition range, structure, stability, and ionic conduction properties. Henceforth, the objectives of the present work of investigating the composition range, structure, stability, and ionic conductivity of B-Bi₂O_{3srCa}ss.

The pure oxide Bi_2O_3 exists in several polymorphic forms, which are: (1), α - Bi_2O_3 , monoclinic P21/a, Z=4, pseudorthorhombic^{5,6} P21/c, and orthorhombic^{7,8}; (2), β - Bi_2O_3 , tetragonal⁹ P4b2, a=7.736A, *c*=5.632A, stable between 710°C and 825°, or P4b2 with a=5.63A and *c*=10.95A, metastable at room temperature or below 700°C, possibly representing a superstructure^{10,11}; (3), δ - Bi_2O_3 , with an O-deficient CaF₂-type structure¹⁰, a=5.665A, stable to 720°C; and (4), γ - Bi_2O_3 , cubic 13, *a*=10.266A, unstable from 25°C to the melting temperature^{12,13}; cubic C42b, a=10.93A⁷; cubic 123, *a*=10.11A, as in the mineral sillenite from Durango, México^{12,14} or as in synthetic sillenite, cubic Pn3m, *a*=5.536A⁷.

When Bi_2O_3 takes into solution other ions and forms $\&Bi_2O_3$ solid solutions¹⁻³ the structural variations are much reduced. In the system Bi_2O_3 -CaO¹⁵, $\&-Bi_2O_{3Ca}$ ss of composition $Ca_xBi_{1-x}O_{1.5\cdot0.5x}$, crystallizes rhombohedral, $R\bar{3}m$, a=3.94A, $c=27.70A^{16}$; for CaO.12 Bi_2O_3 , a=3.941A, $c=27.95A^{11}$. In the system Bi_2O_3 -SrO¹⁷, $\&-Bi_2O_{3Sr}$ ss is condensed between 18% mole SrO and 42%^{1,17}, represented by $Sr_xBi_{1-x}O_{1.5\cdot0.5x}$, rhombohedral, $R\bar{3}m$, a=3.97A, $c=28.13A^{16}$; for 2SrO.19 Bi_2O_3 , rhombohedral, R3m, a=3.97A, $c=28.09A^{11}$. In both cases, the solutions can exist in the low-temperature $\&_2$ -form which is transformed to the high-temperature $\&_1$ -type at 740°C¹⁵ in the case of Ca or at about 690°C¹⁷ when Sr is the solute, or it could remain as one single form stable between 600°C and 900°¹⁶. One important characteristic of &-Bi_2O_3ss is the anionic O⁼ conduction, reported to be of 2.2x10⁻¹ ohm⁻¹cm⁻¹ at 700°C for (Bi_2O_3)_{0.6}(SrO)_{0.2} in air¹. The crystallization of &-Bi_2O_{3srCa}ss in the system Bi_2O_3-SrO-CaO has been confirmed by Schulze et al.⁴. These data, however, do leave some questions which are the objectives of the present work to investigate the compositional range of the solution within the

ternary system, its structural stability, the β_1 - β_2 transformation and its reversibility, dependence on composition, initial structural form, and effect on the ionic conductivity.

2. EXPERIMENTAL

2.1 Sample preparation

The compositions studied were prepared from analytical grade SrNO₃, CaNO₃.4H₂O, and Bi_2O_3 mixed in the proper proportions (Table I), ground in acetone, and calcined to 600⁰C for 8 hr in Pt crucibles. These pre-sintered mixes were ground a second time, calcined to 700⁰C for 10 hr, and guenched to obtain the final homogeneous sintered products.

2.2 Phase identification and structural analysis

The phases formed were basically identified by x-ray diffraction using a Siemens D5000 diffractometer provided with filtered CuKa radiation, mixing the powder samples with KCI for internal calibration purposes. Optical microscopy under polarized light by the oil-immersion technique on crushed fragments was applied to test the homogeneity of the compositions prepared, the phases formed, abundance of class, and the variation of the refractive indices of the crystalline and classy phases as an indication of their purity and dependence on composition: unfortunately, the indices were higher than 2.00, limiting the application of the technique to the analysis of homogeneity and abundance. Infrared absorption spectrometer was used to identify phases, detect changes in the solid solutions, and elucidate the structure of the phases formed; the technique required mixing the samples with KBr and pressing discs for analysis in a Perkin-Eimer double beam spectrometer in the wavelength range from 4000 cm⁻¹ to 300. The only property measured was the ionic conductivity, employing a Hewlet-Packard conductivity bridge connected to pressed discs suspended between Pt-foil electrodes in a vertical furnace held at continuously increasing temperatures from 75°C to 800°. The structure of the sintered crystalline solid solutions, their cell edges and Miller indices were calculated from x-ray diffraction data corrected for equipment deviation using the program of Garvey19 based on the algorithm of Visser²⁰. The space groups were ascertained from structural analysis of the infrared vibrational

spectra by the correlation method, based on the assumption that the site group is a subgroup of the space group of the crystal and of the molecular point group of the isolated molecule, and that the number of equivalent sites is equal to the number of molecules in the unit cell^{21,22,23,24}.

3. RESULTS AND DISCUSSION

3.1 Optical microscopy

The microscopic exams showed complete reaction to a predominantly single crystalline homogeneous phase, pleochroic in green and yellow, of refractive indices higher than 2.00. Glass was present only as a minor component in some samples. The high index of refraction did not allowed to correlate with composition.

3.2 X-ray diffraction

XRD data indicate that $\&Bi_2O_3$ ss is the stable phase in the range from 85% mole Bi_2O_3 to 60% and from 15% mole SrO+CaO to 40%, at 700°C. Changes in the solutions formed are noted by the displacement of the reflections and their intensities, more so in those corresponding to the lateral prisms like (300) than in the basal ones like (002) (Table II). $\&Bi_2O_{3Sr}$ ss is crystallized in rhombohedrat cells, *a*=7.94A, *c*=28.06A, that change to *a*=7.91A, *c*=28.37A, when SrO is increased from 25% mole to 40% (Table IV). When the solute is CaO, the $\&Bi_2O_{3Ca}$ ss formed is rhombohedral, *a*=7.88A, with a possible subcell *a*=3.94A, *c*=27.81A, smaller than the Sr solution. Simultaneous substitution by SrO+CaO produce rhombohedral cells of intermediate *a* and *c* dimensions (Table IV); the *a* values tend to decrease whereas *c* increases as the SrO+CaO substitution is raised. Two compositions containing 40% mole SrO+CaO (samples 4 and 8, Table I) did not showed much variation in the interplanar values (Table III); they could not be indexed within a rhombohedral cell and were better fitted in a cubic cell of an edge *a*=16.12A (Table IV). These values confirm the rhombohedral symmetry^{15,16,17,19} and cell dimensions¹⁹ published of *a*=3.97A, *c*=28.09A for 2SrO.19Bi₂O₃ and *a*=3.941A, *c*=27.95A for CaO.12Bi₂O₃, containing respectively 9.52% mole SrO and 7.69% mole CaO. Evidently, &-Bi₂O₃SrCa^{SS} is

crystallographically stable within wide composition limits and only when the solutes rich 40% mole the cell is changed from rhombohedral to cubic.

3.3 Infrared spectrometry

The infrared vibrational spectra measured was characterized by band maxima at 1640-1630 cm⁻¹, 1425-1400, 1090-1040, 625-595, and 530-500 cm⁻¹ (Table V). Weak signals at 3500-3400 cm⁻¹ and 2900 cm-1 were assigned to water. The vibrations at 1640, 1425, and 1090 cm⁻¹ were medium intense, broad, and asymmetric, whereas those at 625 and 530 cm⁻¹ were intense and symmetric; a very weak vibration at 430 cm⁻¹ was occasionally detected. This simple spectra with only five normal vibrations, possibly six, limit the site symmetries to space groups of low symmetry giving small numbers of vibrations. From the preceding diffraction data and the calculated mombohedral cell, it was estimated that of the possible mombohedral space groups that could fit the vibrational spectra, group R3 would not have sufficient number of equivalent positions within the site symmetry to accommodate the Bi2O3 molecule, and groups R3m and R3c would not have site symmetries appropriate for the same molecule. Consequently, the space groups R32. R3m, R3c, and R3 are about the only remaining applicable choices. Of these, space group R32, D₃, Z=3, could accommodate 2Bi atoms in C₃ and 3O in 2C₂ site symmetries to generate 4A₂+3E or a total of ten normal vibrations active in the infrared, far more than what the experimental results indicate. Group R3m, D3d, Z=3, can take the 2Bi and 3O in C3v and 2C_{2h} sites, generating 4A_{2u}+3E_u vibrations or a total of 10 which could neither be considered. Group R3c, D_{3d}, Z=6, could accommodate 4Bi and 6O in C₃ and C₂ sites to give 3A_{2u}+4E_u normal active vibrations which again are more than those experimentally observed. Group R3. C3i, Z≈3, accommodating 2Bi in C3 and 3O in 2Ci site symmetries generates a simple spectra of 6A,, vibrations which are more in agreement with experimental results and with theoretically expectations for the 5 atoms Bi2O3 molecule. Consequently, group R3 is the space group calculated from the infrared spectra for the rhombohedral B-Bi2O3 solid solution (Table VI), differing from the R3m group reported from single crystal data12,17.

3.4 Ionic conductivity

Ionic conductivity measurements taken from 75^oC to 800^o for samples 3 and 4, containing 33% mole SrO+CaO and 40% respectively, depict a smooth correlation (Table VII, Fig. 1). Sample 3, rhombohedral, shows a continuously ascending trend whereas sample 4, cubic, exhibits a change in slope starting at 884^oK or 611^oC. Considering that the samples were sintered at 700^oC, this change in slope could possibly be assigned to a recrystallization from cubic to rhombohedral but it would seem unlikely when compared with the different trend showed by sample 3. More possibly it is associated with the β_2 - β_1 transformation, although it has been reported to occur at about 725-730^oC¹⁻³.

4. CONCLUSIONS

B-Bi₂O_{3SrCa}ss is crystallized between 85% mole Bi₂O₃ and 60% in the system Bi₂O₃-SrO-CaO, at 700^oC. The field of stability is the extension of the B-Bi₂O_{3Sr}ss and B-Bi₂O_{3Ca}ss fields from the systems Bi₂O₃-SrO and Bi₂O₃-CaO. B-Bi₂O_{3Sr}ss is rhombohedral, a=7.94A, c=28.06A, B-Bi₂O_{3Ca}ss is also rhombohedral, a=7.88A, with the possibility of being a=3.94A, c=27.81A; B-Bi₂O_{3SrCa}ss have intermediate values. The symmetry is changed to cubic, a=16.26A, for compositions containing 60% mole Bi₂O₃.

The infrared vibrational spectra is characterized by five normal vibrations which depict a simple symmetry corresponding to the space group R3. Two vibrations are assigned to Bi-O stretching and four to bending O-Bi-O. Site symmetries requirements place 2Bi in C₃(2) and 3O in 2C₁(3) positions. Infrared data on Bi compounds are not common^{22,25}. In the present study, the 8-Bi₂O_{3SrCa}ss was characterized by normal vibrations at 1640-1630 cm⁻¹, 1425-1400, 1090-1040, 625-595, and 530-500 cm⁻¹. Ionic conduction in 8-Bi₂O_{3SrCa}ss is not improved over that typical of the binary Sr and Ca solutions. An inflection starting at 611°C recorded on 8-Bi₂O_{3SrCa}ss of cubic symmetry is attributed to the possible 8₂-8₁ transformation.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to L. Baños and A. Maturano for their analytical work.

REFERENCES

¹T. Takahashi, H. Iwahara and Y.Nagai, "High Oxides Ion Conduction in Sintered Bi₂O₃ Containing SrO, CaO, and La₂O₃", J. App. Electrochem., 2, 97-104 (1972).

²P. Conflant, J. C. Boivin, G. Newogroski and D. Thomas, "Etude Structural par Difractometrie X a Haute Temperature du Conducteur Anionique Bi0_{.844}Ba0_{.156}O_{1.422}", Sol. St. Ionics, **9-10**, 925-928 (1983).

³T.Graia, P. Conflant, J. C. Boivin, and D. Thomas, "High Oxygen Ion Conduction in a Bismuth Oxide Cadmium Oxide Phase: Conductivity and Transport Measurements; Structural Investigations", Sol. St. Ionics, **18-19**, 751-755 (1986).

⁴K. Schulze, P. Majewski, B. Hettich, and G. Petzow, "Phase Equilibria in the System Bi₂O₃-SrO-CaO-CuO with Emphasis on the High-Tc Superconducting Compounds", preprint (1990).

⁵Sillen, "Bismuth Trioxide (alfa form)"; pp. M-63 in Crystal Data Determinative Tables. Vol. II, Inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J. Com. Powder Diffraction Standards, Washington, D. C., 1973.

⁶Sillen, "Bismuth Trioxide (alfa form)"; pp. M-63 in Crystal Data Determinative Tables. Vol. II, Inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J. Com. Powder Diffraction Standards, Washington, D. C., 1973.

⁷Sillen, "Bismuth Trioxide"; pp. T-48 in Crystal Data Determinative Tables. Vol. II, Inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J. Com. Powder Diffraction Standards, Washington, D. C., 1973.

⁸Swanscn et al., "Bismuth Trioxide (alfa form)"; pp. O-80 in Crystal Data Determinative Tables. Vol. II, Inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J. Com. Powder Diffraction Standards, Washington, D. C., 1973.

⁹Roth & Waring, J. Res. Nat. Bur. St ., 66A, 451 (1962).

¹⁰Gattow, "Bismuth Trioxide"; pp. T-48 in Crystal Data Determinative Tables. Vol. II, Inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J.

Com. Powder Diffraction Standards, Washington, D. C., 1973.

¹¹Zav'galova et al., Kristalografiya, 9. 857 (1964)

¹²Schumb & Rittner, "Bismuth Trioxide"; pp. T-48 in Crystal Data Determinative Tables. Vol. II, Inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J. Com. Powder Diffraction Standards, Washington, D. C., 1973.

¹³Levin and Roth, "Bismuth Trioxide (gamma form)"; pp. C-276 in Crystal Data Determinative Tables. Vol. II, inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J. Com. Powder Diffraction Standards, Washington, D. C., 1973.

¹⁴Frondel, "Sillenite"; pp. C-266 in Crystal Data Determinative Tables. Vol. II, Inorganic
 Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J.
 Com. Powder Diffraction Standards. Washington, D. C., 1973.

¹⁵P. Conflant, J. C. Boivin, and D. Thomas, "Le Diagrame des Phases Solides du Systeme Bi₂O₃-CaO", J. of Sol. St. Chem., 18, 133-140 (1976).

¹⁶N. M. Huang, R. S. Roth, and C. J. Rawn, "Phase Equilibria in the System SrO-CuO and SrO_{0.5}Bi₂O₃", Jour. Am. Cer. Soc., **73** [8], 2531-2533 (1990).

 ¹⁷R. Guillermo, P. Conflant, J.C. Boivin and D.Thomas, "Le Diagrame des Phases Solides du Systeme Bi₂O₃-SrO", Rev. de Chim. Miner., **15**, 153 (1978).

¹⁸Auruvillius, "Bismuth Strontium Oxide"; pp. H-322 in Crystal Data Determinative Tables. Vol. II, Inorganic Compounds. Edited by D. H. Donnay and H. M. Ondik, National Bureau of Standards and J. Com. Powder Diffraction Standards, Washington, D. C., 1973. ¹⁹R: Garvey, "A Personal Computer Program for Finding Lattice Parameters from Powder Data", Dep. of Chemistry, North Dakota St. Univ., 1992.

²⁰J. W. Visser, "A Fully Automated Program for Finding the Unit Cell from Powder Data", J. Appl. Cryst., 2, 89-95 (1969).

²¹R. S. Halford, pp. 92 in Infrared and Raman Spectra of Inorganic and Coordination Compounds. 3rd Edition, Wiley, New York, 1978.

²²K. Nakamoto; pp.1-448 in Infrared and Raman Spectra of Inorganic and Coordination
 Compounds. 3rd Edition, Wiley, New York, 1978.

²³J. R. Ferraro, Low-Frequency Vibrations of Inorganic and Coordination Compounds. Plenum Press, New York, 1971.

²⁴W. G. Fateley, F. R. Dollish, N. T. McDevitt, and F. F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations; The Correlation Method. Wiley-Interscience, New York, 1972.

²⁵H. Zheng, R. Xu, and J. D. Mackenzie, "Glass Formation and Glass Structure of BiO1.5-CuO-Ca_{0.5}Sr_{0.5}O System", J. Mat. Res., 4(4), 911-915 (1989).

Table I. Selected compositions in the system Bi₂O₃-SrO-CaO

Composition (% mole)							
Sam ple	Bi ₂ O ₃	SrO	CaO				
1	85.0	7.5	7.5				
2	74.0	13.0	13.0				
3	67.0	16.5	16.5				
- 4	60.0	20.0	20.0				
5	60.0	30.0	10.0				
6	60.0	40.0	•				
7	75.0	25.0	-				
8	60.0	10.0	30.0				
9	75.0	-	25.0				

hki	. Composition						
	1	2	3	5	6	9	7
	d(A) I	d(A) I	d(A) 1	d(A) 1	d(A) I	d(A) 1	d(A) 1.
100		9.339 3		9.426 9	9.370 8	9.249 2	9.455 3
200	4.679 5	4.663 11	4.664 16	4.733 18	4.712 15	4.632 12	4.693 9
102, 011	3.402 4	3.399 10	3.388 6	3.397 10	3.396 23	3.392 4	3.409 15
002, 111	3.329 4	3.329 12	3.314 8	3.327 17	3.326 39	3,335 16	3.392 4
300, 301	3.120 100	3.109 100	3.116 100	3.157 100	3.146 100	3.089 100	3.126 100
111, 202	3.083 12	3.078 34	3.073 17	3.084 30	3.081 96		3.087 43
102, 211	2.924 9	2.921 20	2.914 10	2.932 22	2 929 54	2.909 8	2.932 30
211, 302	2.605 2	2.601 6	2.599 83	2.617 7	2.613 16	2.595 2	2.611 8
202				2.467 7	2.463 11		2.457 9
311, 400	2.451 2	2.448 5	2.445 4			2.436 3	
311	2.173 2	2.167 4	2.170 2	2.187 3	2.184 4	2.156 2	2.177 7
202	2.048 2	2.042 4	2.042 4	2.062 8	2.059 12	2.031 2	2.051 6
113,020	1.979 4	1.978 13	1.971 7	1.976 12	1.978 37	1.971 4	1.983 18
500	1.871 2		1.871 4	1.896 5	1.892 4	1.854 3	1.873 4
411, 502	1.827 5	1.823 12	1.826 7	1.843 13	1.840 23	1.813 7	1.831 15
511, 204	1.731 4	1.726 8	1.728 5	1.746 8	1.744 12	1.717 3	1.734 11
213, 320	1.671 5	1.667 13	1.668 7	1.676 14	1.675 32	1.661 6	1.673 18
600	1.560 6	1.555 8	1.561 9	1.579 10	1.577 14		1.564 10
404					1.544 3	1.546 7	
611,502	1.488, 1		1.487 2		1.500 5	1.476 2	
613					1.369 3		
604			1,300 2				
404, 622			1.226 3				•

Table II. X-ray diffraction data of selected compositions crystallizing rhombohedral $\beta\text{-Bi}_2\text{O}_{3SrCa}$ ss

Table III. X-ray diffraction data of compositions crystallizing cubic β-Bi₂O₃ss

hki	Composition				
	4	8			
	d(A) I	d(A) I			
010	9.351 18	9.388 16			
020	4.684 27	4.689 30			
100	3.373 23	3.376 10			
110	3.302 52	3.308 18			
030	3.130 100	3.125 100			
110	3.060 89	3.066 30			
111					
120	2.909 50	2.912 18			
120	2.594 7	2.598 9			
130	2.471 5				
131	2.444 13	2.447 6			
1 30	2.170 6				
140	2.044 14	2.044 7			
101	1.962 30	1.966 11			
050		1.876 6			
221	1.828 22	1.826 12			
150	1.731 11	1.731 6			
231					
132	1.663 30	1.664 11			
210	1.628 7				
022	1.573 8				
150	1.565 12	1.563 8			

Table IV. Calculated cell dimensions for **B-Bi₂O₃ ss**

Samp	ie Ceil	Cell dimensi	ons (A)
		٠	c
1	Rhomb	7.92	28.10
2		7.92, 3. 96	28.13
3		7.89, 3.95	28,13
4	Cubic	16.12	
5	Rhomb	7.90	28.46
6		7.91	28.37
7		7.94, 3.97	28.06
8	Cubic	16.26	
9		7.88, 3.94	27.81

Table V. Infrared absorption spectra of selected compositions

Com	Composition			Wavenumber (cn		
1	1640	1400	1070	610	510	
2	1630	1420	1050	605	525	
з	1630	1420	1050	605	525	
4	1630	1430	1090	620	535	
5	1630	1420	1050	625	525	
7			1040	600	510	
8	1630	1425	1040	610	530	
9			1040	595	520	
Bi2O3	5			545	510	
SrO [*]				650		
CaO®				653		

*Taken from Nakamoto²².

Component	System	Space	z	Site syr	Factor	
		Broop		Bi	0	Broop
ß-Bi ₂ O3 88	rhombohedral	ิสวิ	3	C ₃ (2)	2C _i (3)	6A _U

Table VI. Factor group analysis of the optical modes of 8-Bi₂O₃ss

Table VII. Ionic conductivity of selected compositions

Temperature (⁰ K)	lonic conductivity (ohm-1 cm-1)	
	3	4
347	4.348 x 10 ⁻⁹	1.250 x 10 ⁻⁸
377	6.757 x 10 ⁻⁸	9.709 x 10 ⁻⁹
478	1.587 x 10 ⁻⁶	6.897 x 10 ⁻⁷
529	7.107 x 10 ⁻⁶	3.145 x 10 ⁻⁶
600	3.413 x 10 ⁻⁵	
627	5.882 x 10 ⁻⁵	6.410 x 10 ⁻⁵
673	1.726 x 10 ⁻⁴	1.916 x 10 ⁻⁴
725	4.973 x 10 ⁻⁴	6.098 x 10 ⁻⁴
774	1.067 x 10 ⁻³	1.416 x 10 ⁻³
827		1.015 × 10 ⁻²
858	4.310 × 10 ⁻³	
884		1.531 x 10 ⁻²
923		1.497 x 10 ⁻²
983	3.570 × 10 ⁻²	2.174 x 10 ⁻²
1023		2.475 x 10 ⁻²
1073		2.620 x 10 ⁻²

Figure Caption

17

Fig. 1. Variation of the conductivity of β -Bi₂O₃ ss with temperature. The inflection at 884⁰K could be associated with the β_2 - β_1 transformation.

The Institute of Materials

Regional Centre (Director: Ms S C Buchanan) Shelton House Stoke Road, Shelton Stoke-on-Trent ST4 2DR

Telephone: 0782 202116 Fax: 0782 202421

Patron: HM The Queen Secretary: Dr J A Catterall CEng, FIM

DTL/MJ

Dr. L. de Pablo Instituto de Geologia Universidad Nacional A. De Mexico Ciudad Universitaria 04510 Mexico D.F.

Dear Dr. De Pablo,

Re: <u>"Crystal Structure and Jonic Conductivity of High-Bismuth Beta Solid</u> Solution...."

Many thanks for your letter of 14th October. With regard to date of publication I am sorry to say that it will be some months yet because of the other papers in the pipeline.

My best judgement at the moment is to include it in Issue 2 1994 which appears in April and I shall endeavour to ensure that. If I can get it into Issue 1 I will try to do that - it depends how long the other papers are when printed etc. so I would not like to make a commitment to Issue 1.

I appreciate this seems a long time yet but there is little I can do other than what I indicate above. We do however appreciate very much your interest in the Transactions.

Yours sincerely. Monica 1.6

Dr. D. T. Livey Editor.
THIRD EURO-CERAMICS

Volume 1 Processing of Ceramics

Edited by

P. DURAN

and

J. F. FERNANDEZ

Instituto de Cerámica y Vidrio, C.S.I.C., Arganda del Rey, SPAIN.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, carording, or otherwise without the prior willen permission of the publisher.

COLLECTION THIRD EURO-CERAMICS ISBN-84-87683-04-05 VOL, 1: PROCESSING OF CERAMICS D L CS-231-1993 ISBN-84-87683-05-3 VOL 2: PROPERTIES OF CERAMICS D L CS-232-1993 ISBN-84-87683-05-1 VOL. 3: ENGINEERING CERAMICS D L CS-233-1993 ISBN-84-87683-07-X

*

Third Euro-Ceramics P. Durán and J.F. Fernández

San Vicente, 62 - 12001 Castellón de la Plana - Spain GRUPPO EDITORIALE FAENZA EDITRICE S.p.A.

FAENZA EDITRICE IBERICA, S.L.

Via de Crescenzi, 44 - 48018 Faenza - Italy

© 1993 Faeriza Editrice Iberica, S.L.

Spanish Library Cataloguing in Publication Data

REFERENCES

¹M. L. Chávez-Garcla and L. de Pablo-Galán, "Compatibility Relations in the BiO1.5-SrQ-Ca)-CuO System at 800oC", Proc. 3rd European Ceramic Congress, Madrid, september 1993 (in press).

2D. Swinbanks, "High-Critical Temperature Superconductor Made from Glass", Nature, 332(14).575(1988).

3A.E. Miller, K. Nassau, and D.J. Werder, "New Tricks in the Rapid Quench Route to High-Tc Materials", J. Mater. Res., 8(5), 93(1993).

4T. Komatsu, K. Imai, R. Sato, K. Matusita, and T. Yamashita, "Preparation of High-Tc Superconducting Bi-Ca-Sr-Cu-O Ceramics by the Melt Quenching Method", Jap. J. Appl. Phys., 27[4].L533-L535(1988).

5M. Yoshimura, T. Suno, Z. Nakaouwa, and T. Nakamura, "Preparation of High-Tc (11090) Bi-Sr-Ca-Cu-Q Superconductors from Amorphous Films by Rapid Quenching after Rapid Melting". J. Mater, Sci. Letters, 8,687-688 (1989)

A. Inoue, H. Kimura, K. Matsuzaki, A. P. Tasi, and T. Masumoto, "Production of Bi-Sr-Ca-Cu-O Glasses by Liquid Quenching and their Glass Transition and Structural Relaxation", Jap. J. Apol. Phys., 27(6)L941-L943(1988).

7A. Asthana, P. D. Han, L. Chang, and D. A. Payne, "Development of the High-Tc Phase by Crystallization of Mell-Quenched Bi-Ca-Sr-Cu Oxides", Mat. Let., 8(8)286-292(1989).

⁸D. Bahadur, A. Baneriee, A. Das, K. P. Gupta, A. Mittra, M. Tewari, and A. K. Maiumdar, "Superconducting Glass Ceramics in the Bi-Pb-Sr-Ca-Cu-O System", Mat. Res. Bull., 24,1405-1412(1989).

9H. Zheng and J. D. Mackenzie, "Glass Formation and Glass Structure of BiO, -CuO-Ca0.5Sr0.5O System", J. Mat. Res., 4[4]911-15(1989).

10W. Zhu, M. M. Miller, P. A. Metcalf, and H. Sato, "Preparation of Superconducting Films of Bi-Sr-Ca-Cu Oxides by In-Situ Melting", Mat. Let., 8(9)340-42(1989).

¹¹M. R. de Guire, N. P. Bansal, and C. J. Klim, "Superconducting Glass-Ceramics in the BI-Sr-Ca-Cu-O System", J. Am. Cer. Soc., 73[5]1165-71 (1990).

12T. Komatsu, C. Hirosi, T. Ohki, and K. Matusita, "Superconducting Coupling Nature of Grain Boundaries In Bi₂Sr₂CeCu₂O, Glass-Ceramics*, J. Am. Cer. Soc., 73(12)3569-74(1990).

13T. G. Holesinger, D. J. Miller, and L. S. Chumbley, "Crystallisation of Bi-Sr-Ca-Cu-O Glasses in Oxygen", J. Mater. Res., 7[7]1658-71(1992).

COMPATIBILITY RELATIONS IN THE BIO1 5-StO-CaO-CuO SYSTEM AT 800°C

Ma, de Lourdes Chávez García⁽¹⁾ and Liberto de Pablo Galán⁽²⁾

THIRD EURO-CERAMICS V.1, pp. 1187-1192. Edited by P. Duran and J. F. Fernandez, @Faenza Editrice Ibérica S.L. 1993, Printed in Spain.

(1)DEPg, Facultad de Química, Universidad Nacional A. de México, Cludad Universitaria, 04510 México, D. F. and ⁽²⁾Instituto de Geología, Universidad Nacional A. de México, Cludad Universitaria, 04510 México, D. F.

ABSTRACT

In the system BiO1 s-SrO-CaO-CuO selected compositions prepared from

corresponding nitrates and oxides were reacted at 800°C, guenched, and the phases formed identified by XRD to establish the compatibility relations at this temperature. The experimental results obtained to the present time indicate that compatibility exists between B1ec-B2ee-CuO. (155-755-SrBi204-CuO, 755-825-2201-CuO, 825-2201-2212-CuO, 825-2201-2212-9.11.5, 9.11.5-7ee-2201-SrBi2O4-Sr6Bi2Og-Sr14Cu24O41-CuO, 2212-Sr6Bi2Og-Ca2CuO3-CaO, and StelligOg.

INTRODUCTION

The system BiO1 5-SrO-CaO-CuO is important on account of its superconductive phases 2212 and 2223 of BiO4 c:SrO:CaO.CuO stoichiometry which have high transition

temperatures at 80°K and 120°K respectively. It is of key interest in the investigation of new superconductive materials. Phase equilibrium studies in the system have been reported by several authors, including those on the binary⁽¹⁻⁸⁾ and temary⁽⁹⁻¹⁶⁾ subsystems and on parts of the four components Tetrahedron(17-18). The works of Roth et al(15) and Hong et al(15) represent the latest thinking on the system. However, some questions remain particularly in repard with those regions high in bismuth, copper, and strontium, and on the formation and extension of the solid solutions.

In the present paper are reported some experimentally determined compatibility relations in the system BiO1 5-SrO-CaO-CuO, at the temperature of 800°C within the subsolidus where a priori the class phase is minimum and the crystalline compounds predominate.

EXPERIMENTAL

 Compositions within the four components system where selected starting with the base compositions in the ternary BiO1, 5-SrO-CaO to which CuO was added successively in 10% increments up to 100% mole CuO (Table 1). The reactants Sr(NO3)2, Ca(NO3)2,4H20. Bi2O3,

and CuO were mixed under acetone, dried, and reacted at 600-800°C. The samples were then

ground and heated to 800°C for 7 days depending on their compositions. High-temperatures sintered materials were preserved by rapid quenching in frozen water. The conditions for reaction changed slightly throughout the system due to differences between the pure oxides, their refractionness, and volatifities.

Phases were identified by XRD using CuK₁₄ filtered radiation. The interpretation of the diffractograms required close attention to the interplanar of spacing and to the intensities due to the similarities between those of the various phases. Solid solutions and cation substitution are common in the system, affecting both location and intensity of the peaks, and variation of the xray absorption also affected adversely the identification of low scattering phases in the presence of those of high-scattering power. Phase identification based on the refractive indices was not possible due to their light values (n=2.00).

Table I. Compositions selected in the system BiO1 5-SrO-CaO-CuO

	Composition (% mole)					
Sample	BiO _{1.5}	SrO	CaO	CuO		
02	85.00	7.50	.7.50			
03	80.00	10.00	10.30			
04	75 00	12.50	12 50			
05	75 00	18.75	6.25			
06	75.00	25 00				
07	86.00	14,00				
08	75.00	6.25	18,75			
09	86,00	•	14.00			
2*	75.00	12.50	12.50	•		
12	67,50	11.20	11.20	10.00		
20*	70.00	20.00	10.00			
13	63.00	18.00	9.00	t0.00		
21	52.50	15.00	7.50	25.00		
21*	70.00	10.00	20.00			
14	63.00	9.00	18.00	10.00		
22	52.50	7.50	15.00	25.00		
25*	60.00	20.00	20.00			
15	54.00	18.00	18.00	10.00		
23	45.00	15.00	15.00	25.00		
22*	50,00	40.00	10.00			
16	45.00	36.00	9.00	10.00		
25	37.50	30.00	7.50	25.00		

50.00	25 00	25 00	
45.00	22 50	22 50	10.00
37 50	15 70	18,70	25 00
30 00	15 00	15 00	40 00
50.00	10 00	40 00	
30.00	15.00	15.00	40.00

Base compositions in the system BiO 1 5-SrO-CaO

PESULTS .

23

24 31

24'

32

The proposed compatibility relations were developed from over one hundred XRD

analysis of more than eightly compositions reacted at 800°C and likey represent only part of the results that are being obtained on the system. Once more it should be stressed the minor -bifurences in the scap data of the user phases, which forced to correlate results within tertaindriven and between neighbourney tetrahedrens to conclude on the compatibilities presented.

Solid solutions occur willing wells competition ranges, as it is the case of the Bss or within narrow ranges as seems to be the case with the phases of 2212 and 2201 BiO_{1,5}:Sr0-CaO-CuO store boundry. Towards the DiO_{1,5}:CuO edge of the Tetrahedron, a primary volume of crystallization of $R_{155}^*R_{255}^*$ -CuO extends from the R_{55} area in the ternary BiO_{1,5}:Sr0-CaO-towards the CuO conner. Lower contents of BiO_{1,5} displace the crystallization lowards the primary volume of $\mu_{55}^*R_{55}^*Sr_{55}^*SrB_2O_4$:CuO even lower contents of BiO_{1,5} develop equilibrium between $\kappa_{55}^*R_{55}^*Sr_{55}^*SrB_2O_4$:CuO even lower contents of BiO_{1,5} develop equilibrium between $\kappa_{55}^*R_{55}^*Sr_{55}^*SrB_2O_4$:CuO even lower contents of BiO_{1,5} develop equilibrium between $\kappa_{55}^*R_{55}^*Sr_{55$

Table 2. Phase compatibilities in the system

BIO1 5-SIO-COO-CIIO at 6000 C

Composition	Phase compatibilities
1	μ _{1se} ,υ _{γee} .CuO
· · · · · · · · · · · · · · · · · · ·	I ^t ss [,] °ss [,] ⊕t <mark>0'204</mark> -CuO
· · ·	× .825.2201-CuO

Cu_O

825-2201-2212-CuO
825-2201-2212-9.11.5
9.11.5-Sr ₆ Bi ₂ Og-Sr ₁₄ Cu ₂₄ O ₄₁ -CuO
2212-Sr ₆ Bi ₂ Og-Ca ₂ CuO ₃ -CaO
₇₅₅ -2201-SrBi ₂ O ₄ -Sr ₆ Bi ₂ O ₉

Figure 2. System BiO1.5-SrO-CaO-CuO showing the compatibility tetrahedrons 2, 4, and 7 (table 2).

REFERENCES

¹P. Conflant, J. C. Bolvin, and D. Thomas, "Le Diagramme des Phases Solides du System Bi₂O₂-CaO", J. Sol, St. Chem., 18, 133-140(1976).

²R. Guillermo, P. Conflant, J. C. Boivin, and D. Thomas, "Le Diagramme des Phases Solides du System Bi₂O₃-SrO^{*}, Rev. Chim. Miner., 15, 153, (1978).

³R. S. Roth, J. R. Dennis, and H. F. McMurdie, Figs. 6329 and 6428 in Phase Diagrams for Ceramists, Vol. VI. Edited by American Ceramic Society, Westerville, OH, 1987.

⁴A. M. M. Gadalla and J. White, "Equilibrium Relationships in the System CuO-Cu₂O-CaO⁺, Trans, Br. Ceram, Soc.,65(4)181-90(1966).

⁵N. M. Hang, R. S. Roth, and C. J. Rawn, "Phase Equilibria in the System SrO-CuO and SrO-1/2BipO₃", J. Am. Ceram: Soc.,73(8)2531-33 (1990).

⁶R. S. Roth, N. M. Hwang, C. J. Rawn, B. P. Burton, and J. J. Ritter, "Phase Equilibria in the Systems CaO-CuO and CaO-Bi₂O₃", J. Am. Ceram. Soc.,74[9]2148-51(1991).

⁷J. B. Parise, C. C. Torardi, C. J. Rawn, R. S. Rolh, B. P. Burton, and A. Sanloro, "Synthesis and Structure of Ca₆Bi₆O₁₅: Its Relationship to Ca₆Bi₆O₁₃", J. Sol. St. Chem. 102,132-139(1953).

⁸C: C. Torardi, J. B. Parise, A. Santoro, C. J. Rawn, R. S. Roth, and B. P. Burton, "Sr₂Bi₂O₅: A Structure Containing Only 3-Coordinated Bismuth", J. Sol. SI, Chem., 93,228-235(1991).

1191

VHIRD EURO-CERAMICS V.1, pp. 1193 1197, Edited by P. Durén and J. F. Fernández. @Feerze Editrice Ibánce S.L. 1993, Proted in Span.

COMPATIBILITY RELATIONS AND GLASSES IN THE BIO15 SIO CaO CUO SYSTEM AT

Ma de Lourdes Châvez Garcia⁽¹⁾ and Liberto de Pablo Galán⁽²⁾

⁽¹⁾DEPg, Facultad de Química, Universidad Nacional A. de México, Cludad Universitaria, 04510 México, D. F. and (2)Instituto de Geología, Universidad Nacional A. de México, Ciudad Universitaria, 04510 México, D. F.

ABSTRACT

Compositions selected in the system BiO₁₅-SrO-CaO-CuO, reacted at 800°C, melled at 1300°C, and quenched indicate that at this temperature the largest part of the system remains liquid, with the only crystalline phases being [Iss, yss, Bi₂CuO₄, StBi₂O₄, 2201, 9.11.5, (SrCa)O, CaO, and Ca₂CuO₄, mantaining the compatibility relations [Iss-rss-Bi₂CuO₄-riquid, JIss-SrBi₂O₄- fiquid, 2201-liquid, 2201-liquid, 2201-CaO-liquid, CaO-liquid, 2201-Iiquid, 0-liquid, 201-SrBi₂O₄- fiquid, 2201-CaO-liquid, CaO-9.11.5-fiquid, 2201-CaO-Ca₃CuO₄-riquid, and (SrCa)O-liquid.

INTRODUCTION

Superconductive materials of 2212 and 2201 Bi:Sr.Ca:Cu stoichiometry are among those known with the highest transition temperatures of 80°K and 120°K respectively. They are crystallized in the system BiO15-SrO-CaO-CuO where phase compatibility studies reported elsewhere(1) have shown that they may be readily condensed alone or associated with other phases, including glass. Both materials have spurred the investigation of new superconductors in other systems. The superconductors so synthesized by solid state reactions or in the presence of minor liquid have the advantages inherent to a simple preparation technique at low temperatures of synthesis and the disadvantages represented by impurities, uncontrolled crystal growth, seggregation, plasticity, and rigidity of a predominantly crystalline material. For these reasons, an important effort has been centered on the investigation of superconductive materials prepared from glasses which could render them homogeneous, easily shaped, of even higher Tc's(2-13), Researches from the Technical University of Nagakoa(2) have succeeded in preparing superconductors of high-transition temperature from glasses made from mixes of oxides of Bi. Ca, Sr, Al, Pb, and Cu metted at 1150°C, quenched on a steel plate, pressurized with another plate, and annealed at 820°C. Bi15CaSrCu2 and Bi15Ca15SrCu2Ox prepared by this technique develop uniform glasses that, when annealed at 400-500°C crystallize exotermically. The materials have been referred⁽²⁾ to as glass-ceramic superconductors of high-Tc. BiAlo CaCrCu2O, compositions so prepared and quenched in liquid nitrogen have produced higher Tc up to 78°K. Similar methods have been applied to YIBaCu superconductors, although YI compositions tend to be microcrystatine. The compounds Bit 5CaSrCu₂O₄, Bit 5Ca1 5SrCuO₂, Bi_{0.5}Pb_{0.5}C+3:rCu_2O_a, BiAl_{0.1}CaS:rCu_2O_a, and BiAl_{0.9}CaS:rCu_2O_a, when synthesized by solid state reactions, are known to have Tc about 120% and T(o) of the order of 92% whereas, when prepared from mixes melted at 1150°C and annealed at 800-850°C in oxygen, develop glasses that can be very easily shaped showing Tc in the range from 83 to 78%⁽⁷⁾. The phases of 2201, 2212, and 31 23 BiS:rCa:Cu stolchiometry also exhibit superconductivity when prepared from glasses summarged in liquid nitrogen. The main advantage found has been the readfress by which materialis can be shaped, including the forming of whereas shi has optical fibers.

In the present paper are reported the Investigations on the formation of glass, phase compatibilities, and crystallisation in the system BiO1,5-SrO-CaO-CuO at the temperature of 1300°C where liquid is the oredominant obase.

EXPERIMENTAL

Compositions investigated in the system BiO_{1 e}-SrO-CeO-CuO were arbitrarily selected, starting from base compositions within the BiO, s-SrO-CaO triangle to which gradual increments of 10% mole CuO, 25%, 40%, 50%, 70%, and 90% were added, displacing them through the tetrahedrom towards the CuO apex (Table I). Annalytical grade Sr(NO₁)₂, Ca(NO₁)₂,4H₂O, BI₂O₂, and CuO were used as reactants, mixed in calculated proportions, ground under acetone, dried, and sinterized at temperatures between 600°C and 600° depending on the composition The sintered materials were ground, reheated to temperatures slightly below metting for 24 hr. and melled at 1300°C for periods of 15-30 min; depending on the composition. Some mixes required lower temperatures. Reactions at higher temperatures or for longer times often resulted in partial volatilization of components or in unwanted reactions with the containers. The reacted materials were quentched in ice. Given the different nature of the oxides of Bi, Sr, Ca, and Cu, some variation would be expected in the degree of metting and on the conditions of reaction throughout the system, although the results proved that most compositions reacted to the same phases regardless of time with minor variation in the crystallinity and abundance of the phases formed. The reacted products were studied by optical microscopy under polarized light using the oil-immersion method to determine the abundance, uniformity, and characteristics of the plasses, Unfortunately, their high refractive indices (u>2.00) did not allowed their full identification, Crystalline phases were identified by X-ray diffraction (XRD) using a Siemens D5000 diffractometer, with filtered CuKa radiation and KCI as internal standard, infrared spectroscopy was applied to the analysis of the vibrational spectra, the molecular groups, and the characterization of the glasses.

Table I. Compositions selected in the system BiO15-SrO-CaO-CuO

	Composition (% mole)			
Samp ie	BiO _{1.5}	SrO	CaO	CuO
13	63.00	18.00	9.00	10 00
21	52.50	15,00	7.50	25.00
14	63.00	9,00	18.00	10.00
22	52.50	7.50	15.00	25.00
15	54.90	18.00	18.00	10.00
23	.45.00	15.00	15.00	25.00

16	45.00	36.00	9.00	10.00
25	37.50	30.00	7.50	25.00
17	45.00	22.50	22.50	10.00
24	37.50	18.70	18.70	25.00
31	30.00	15.00	15.00	40.00
32	30.00	15.00	15.00	40.00
34	24.00	30.00	6.00	40.00
41	20.00	25.00	5.00	50.00
18	38.00	36.00	18.00	10.00
33	24.00	24.00	12.00	40.00
19	36.00	27.00	27.00	10.00
42	20.00	15.00	15.00	50.00
10	36.00	18,00	36.00	10.00
43	20.00	10.00	20.00	50.00
26	30.00	7.50	37.50	25.00
51	12.00	3.00	15.00	70.00
51	4.00	1.00	5.00	90.00
27	22.50	37.50	15.00	25.00
35	18.00	30.00	12.00	40.00
14	15.00	25.00	10.00	50.00
28	22.50	15.00	37.50	25.00
11	27.00	31 50	31.50	10.00
29	22.50	26 20	26.25	25.00
36	18.00	21.00	21.00	40.00
15	15.00	17.50	17.50	50.00
52	9.00	10.50	10.50	70.00
52	3.00	3.50	3.50	90.00
12	18.00	54.00	18.00	10.00
14	18.00	18.00	54.00	10.00
10	15.00	15.00	45.00	25.00
37	12.00	12.00	36.00	40.00
48	10.00	10.00	30.00	50.00
53	6.00	6.00	18.00	70.00
53	2.00	2.00	6.00	90.00
11	7.50	33.75	33.75	25.00
38	6.00	27.00	27.00	40.00
47	5.00	22.50	22.50	50.00
54	3.00	13.50	13.50	70.00
54	1.00	4.50	4.50	90.00

RESULTS

Experimental evidence from compositions reacted at 1300°C showed that Bi₂CuO₄, bss, gss, 2201, 9.11.5, CaO, (5rCa)O, and Ca2CuO3 are the only crystallize stable phases at this lemperature, crystallizing in a glass matrix upon quenching. The largest internal volume of the system BiO¹⁵, SrO-CaO-CuO is liquid and only these few indicated phases remain crystalline. Under more prolonged heating and for most of the compositions studied, 2201 proved to be the most stable whereas 2212 was easily dissolved. Some of the phase compatibilities identified at 1300°C are indicated in Table 2. These results proved that homogeneous glasses or glass-ceramics can be prepared by melting at 1300°C and cooling but that superconductors of the 2212 type stolchiometry can not crystallize unless the glass is annealed at lower temperatures that would ravor its crystallization.

1196

Table II. Phase compatibilities in the system BIO1 5 SrO-CaO-CuO at 13000C

Phase compatibilities

[35-75-Bi₂CuO₄-liquid [35-75:Bi₂O₄-liquid 2201-liquid 9.11,5-liquid 2201-CaO-liquid CaO-liquid 2201-(5/Ca)O-liquid 2201-(5/Ca)O-liquid 2201-CaO-Ca₂CuO₂-liquid 2201-CaO-Ca₂CuO₂-liquid (SrCa)O-liquid

