

TESIS CON FALLA DE ORIGEN

FACULTAD DE ESTUDIOS SUPERIORES

"ANALISIS COMPARATIVO DE RELLENOS PARA TORRES DE ENFRIAMIENTO HUMEDAS"

T		E	5		I		5
QUE	₽AR.	A 08	TENER	EL	Π	TULO	DE
INGE!	VIERC) ME	CANIC	co	ELEC	CTRIC	ISTA
P	R	E S	Ε	N	τ	А	:
JORG	ΕA	LEJAN	DRO	MA	YA	SERR	ANO

ASESOR: M.I. ARTURO F. MONEDERO DE LA VEGA

CUAUTITLAN IZCALLI, EDO. DE MEX.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

1

3

4

Nomenclatura

Introducción

Capítulo 1

- 1. Torres de enfriamiento.
 - 1.1. Torres húmedas,
 - 1.2. Torres secas.
 - 1.3. Aplicaciones.

Capítulo 2

2. Descripción de los elementos de las torres de enfriamiento.	
2.1. Tubos ascendentes y cabezal de descarga.	6
2.2. Valvula de compuerta del cabezal de descarga.	6
2.3. Celdas.	6
2.4. Charolas.	6
2.5. Espreas.	6
2.6. Persianas de entrada.	7
2.7. Relleno.	7
2.8. Eliminadores de húmedad.	8
2.9. Pileta.	8
2.10. Ventiladores.	9
2.11. Conos.	10
Capítulo 3	
3. Principios teóricos de las torres.	
3.1. Teoría. Ecuación de Merkel.	12
3.1.1. Solución númerica de la ecuación de Merkel.	16
3.1.2. Solución gráfica de la ecuación de la ecuación de Merkel.	17
3.2. Otras formas de evaluar el rendimiento de la torre de enfriamiento.	20
Capítulo 4	
4. Evaluación de los rellenos	
4.1. Rellenos.	. 25
4.2. Materiales.	25
4.3, Sistema de relleno.	26
4.4. Principio del relleno celular.	26

4.4. Principio del relleno celular.

- 4.5. Coeficientes de correlación de transferencia de masa.
- 4.6. Analisis lineal.
 - 4.6.1. Regresión múltiple.
- 4.7. Comportamiento térmico.
- 4.8. Caída de presión.

Capítulo 5

5. Comparación entre torres a Contra Flujo y Flujo Cruzado.

- 5.1. Torre a Contra Flujo.
- 5.2. Torre a Flujo Cruzado.
- 5.3. Tabla de resultados.

Capítulo 6

6. Analisis comparativo de relienos.	0/
6.1. Ingeniería del proyecto.	67
A. Evaluación técnica de las materias primas.	68
B. Elaboración de balances de materia y energía.	68
C. Selección y especificación de los servicios auxiliares.	68
D. Especificación de la obra civil.	68
6.1.1. Estimación de la inversión fija y capital de trabajo.	68
6.1.2. Costos variables de operación.	69
A. Reactivos de proceso.	69
B. Servicios auxiliares.	69
C. Mantenimiento y reparación	69
6.2. Comparación térmica.	69
6.3. Comparación por caída de presión.	75

26

27

27

29

31

45

57

61

. 79 . . .

Conclusiones

Anexo A Propiedades termodinámicas de la húmedad del aire.

Anexo B Gráficas de comportamiento térmico rellenos a contra flujo.

Anexo C Gráficas de comportamiento térmico rellenos a flujo cruzado.

Anexo D Gráficas de caída de presión rellenos a contra flujo.

Anexo E Gráficas de caída de presión rellenos a flujo cruzado.

Bibliografía

NOMENCLATURA

A Aproximación = T_{sc}-T_{bh}, [°F] [°C]

ACFM Pies cúbicos por minuto actuales de aire

A_L Area transversal por la cual el agua circula a través de la celda, [ft²] [m²]

An Area por la cual circula el aire a través de la celda, [ft²] [m²]

Apersiana Area de la persiana, [ft2] [m2]

A_{mi} Area de salida, [ft²] [m²]

a Superfice del agua por m3 de la torre, tanto de gotas como de película

C1, C2, C3, C4 Parámetros de la correlación de caída de presión

C, Calor específico a presión constante, [BTU/lb] [Kcal/kg]

CTI Cooling Towers Institute

D Diámetro de la tubería, [ft] [m]

D, Diámetro del ventilador, [ft] [m]

DVA Distancia que viaja el aire, [ft] [m]

DVA* Valor adimensional; DVA*=DVA/DVAu

DVA₀ Valor de referencia de DVA, [ft] [m]

dq_T Diferencial de calor total, [kw/hr-m²]

dq, Diferencial de calor transmitido por convección, [kw/hr-m²]

dq₄ Diferencial de calor transmitido por difusión, [kw/hr-m²]

dV Diferencial de volumen de la torre en el que existe la superficie, [ft²] [m²]

EPRI Electric Power Research Institute

G Flujo de aire, [lb/hr] [kg/hr]

G" Flujo de aire por unidad de área, [lb/hr-ft²] [kg/hr-m²]

G^{*}º Valor de referencia de flujo de aire por unidad de área, [lb/hr-ft²] [kg/hr-m²]

G⁺ Valor adimensional; G⁺=G^{*}/G^{*}₀

g Aceleración de la gravedad, [ft/s²] [m/s²]

H' Entalpía del aire a la salida de la torre, [BTU/lb] [KJ/kg]

H Entalpía del aire a la entrada de la torre, [BTU/lb] [KJ/kg]

H Altura del relleno, [ft] [m]

h Coeficiente de transferencia de calor, [BTU/hr-ft2-°F] [KW/hr-m2-°C]

h Altura a la cual se levanta el relleno en una torre a contra flujo, [ft] [m]

h_{m,y} Pérdidas primarias de carga en el tramo x,y, [ft] [m]

K Coeficiente de transferencia de masa [ft/s], [m/s]

1 Largo de la celda, [ft] [m]

L Longitud de la tubería, [ft] [m]

L Flujo de agua, [ib/hr] [kg/hr]

L" Flujo de agua por unidad de área, [lb/hr-ft²] [kg/hr-m²]

L" Valor de referencia de flujo de agua por unidad de área, [ib/hr-ft²] [kg/hr-m²]

L⁺ Valor adimensional; L⁺=L^{*}/L^{*}_u

Le Número de Lewis (h/C_nk)

Lucrima longitud de la persiana

n, n,..., ns Exponentes de las ecuaciones de correlación de comportamiento térmico

N Número de celdas

N. Número de espreas

NyH Específica un número adimensional de presión dinámica

Pot Potencia de ventiladores o de bombeo, [HP] [KW]

Q Gasto, [ft³/s] [m³/s]

R Rango R=T_{sc}-T_{sf}, [°F] [°C]

Re Número de Reynolds

- T Temperatura del agua, [°F] [°C]
- t Temperatura de] aire, [°F] [°C]
- To Temperatura de referencia, [°F] [°C]
- T⁺ Valor adimensional; T⁺=T_x/T₀
- T_M Temperatura de agua caliente, [°F] [°C]
- T_{af} Temperatura de agua fría, [°F] [°C]

T_{bh} Temperatura de bulbo húmedo, [°F] [°C]

V Velocidad, [ft/seg] [m/s]

V. Velocidad promedio del aire a la entrada y salida del relleno, [ft/seg] [m/s]

w Ancho de la celda, [ft] [m]

X' Húmedad del aire a la temperatura del agua, [lb_{vapor}/lb_{gas seo}] [Kg_{vapor}/Kg_{gas seo}]

X Humedad del aire a la temperatura del aire, [lbysog/lbras aco] [Kgyagg/Kges aco]

Ka/L* Característica de comportamiento térmico de la torre, [ft*]

KaV/L Número de unidades de transferencia para una torre a contra flujo (adimensional)

KaY/L" Número de unidades de transferencia para una torre a flujocruzado (adimensional)

ρ, densidad del aire promedio a la entrada y a la salida del relleno, [lb/ft³] [kg/m³]

 ρ_1 densidad del aire a la entrada del relleno, [lb/ft¹] [kg/m³]

 ρ_1 densidad del aire a la salida del relleno, [ib/ft³] [kg/m³]

€ Rugosidad media del material

λ Calor latente promedio de vaporización, [BTU/lb] [Kcal/Kg]

λ Coeficiente de fricción, [adimensional]

ΔP_{EH} Caída de presión en el eliminador de húmedad, [lb/plg²] [Kg/cm²]

 ΔP_{PE} Caída de presión en las persianas de entrada, [lb/plg²] [Kg/cm²]

ΔP_{RELLENO} Caída de presión en el relleno, [lb/plg²] [Kg/cm²]

η, Eficiencia del ventilador

 η_{B} Eficiencia de la bomba

v Viscocidad cinemática

INTRODUCCION

Las torres de enfriamiento son equipos de enfriamiento artificial de agua que se clasifican como cambiadores de calor, entre un volumen cerrado de agua y aire. El agua se toma de un depósito artificial, se pasa a través del sistema de enfriamiento y después se regresa al depósito de donde se recircula al mismo, enfriándose previamente en la torre.

Las torres de enfriamiento se utilizan en las plantas químicas, de generación eléctrica, en la industria de celulosa y papel, en la industria alimenticia, en aire acondicionado y refrigeración, etc.

Por otra parte, el agua de enfriamiento tiene una influencia decisiva tanto en la eficiencia, como en la capacidad de la planta, por lo que hace necesario, hacer un análisis cuidadoso para su utilización con objeto de conservar los recursos. Como se sabe mientras más fría llegue el agua al sistema de enfriamiento la capacidad en el proceso se verá incrementada, sin embargo, se debe de considerar ciertas restricciones económicas como son: costos de material, de equipo, de mantenimiento, de operación, etc. que son los que conlleva el enfriar el agua un grado centígrado más. Por lo que, esta tesis fué desarrollada basada en el estudio del relleno que es uno de los elementos de las torres que más ha evolucionado, contando ahora con diferentes tipos como lo es el relleno de salpicado en forma de T, o en forma de V, o con perforaciones en forma de rombo ó circulares y con el rellenos de alplícula (ó celular) que logran los mismos o mayores beneficios que los rellenos de salpicado.

El estudio del relleno se fundamenta en el comportamiento térmico y de caída de presión, ya que estos son los parámetros a considerar para el diseño de una torre, ya que éste nos determinará la potencia de ventiladores, las dimensiones de la torre, y así determinar la potencia de bombeo que requiere la torre, bajo este lineamiento se plantea la correlación de comportamiento térmico del relleno y su respectiva caída de presión de 16 rellenos, los cuales 8 son a contra flujo y 8 a flujo cruzado.

Capítulo 1

1. Torres de enfriamiento.

Las torres de enfriamiento son enfriadores artificiales en donde tiene lugar un cambio de calor organizado entre un volumen cerrado de agua y el aire atmosférico.

Una clasificación de las torres de enfriamiento es:

a. Torres de enfriamiento húmedas

a.1 Flujo cruzado a.2 Contra flujo a.3 Tiro natural a.4 Tiro mecánico a.4.1 Inducido a.4.2 Forzado

b. Torres de enfriamiento secas b. 1 Tiro natural b.2 Tiro mecánico b.2.1 Inducido b.2.2 Forzado

a. Torres húmedas

En las torres húmedas la forma en que se lleva a cabo el intercambio de calor, entre el flujo de agua y el aire, es por medio, de un contacto directo entre el agua y el aire.

a.1 <u>Elujo cruzado</u>.- Son aquellas en las cuales el contacto para el intercambio de calor entre el flujo de agua (siempre descendente) y el flujo del aire se efectúa en forma cruzada (perpendicular).

a.2 <u>Contra flujo</u>.- Cuando el contacto para intercambiar calor, entre el flujo de agua y el flujo de aire, se lleva a cabo en la misma dirección pero con sentidos opuestos.

Desde el punto de vista termodinámico, la configuración a contra flujo es más eficaz, ya que el agua más fría entra en contacto con el aire más frío, obteniendo así un máximo potencial de entalpía.

a.3.<u>Tiro natural</u>.- En las torres húmedas de tiro natural, el aire frío entra en la parte inferior de la torre, es calentado al pasar a través del interior de la torre e intercambiar calor con el agua caliente, de manera que su densidad baja. Por lo tanto, el movimiento del aire a través del torre se lleva acabo por una diferencia de densidades. Por lo que, la diferencia entre la densidad del aire en la torre y en el exterior origina un flujo natural de aire frío en la parte inferior y una

L

expulsión de aire caliente menos denso en la parte superior. El perfil de este tipo de torres generalmente es hiperbólico, aunque también hay perfil cilíndrico y cónico.

Una desventaja de este tipo de torre es que ocupan un mayor volumen a igualdad de capacidad de enfriamiento que las torres de tiro mecánico (inducido o forzado), esto se debe a que las velocidades del aire son frecuentemente bajas y la dirección del viento local es variable. Su ventaja es que no consume energía ya que no cuenta con ventiladores.

a.4. Tiro mecánico.

Las torres de tiro mecánico usan ventiladores o sopladores para abastecer los requerimientos de aire a través de la torre.

a.4.1 <u>Tiro inducido</u>.- Las torres de tiro inducido tienen ventiladores a la salida de la corriente de aire y "jalan", o inducen, el flujo de aire a través de la torre.

Las torres de tiro inducido tienen una velocidad de descarga más alta que las de tiro forzado, el aire después de fluir en contra flujo o flujo cruzado con respecto al agua que desciende, es descargado hacia arriba por los ventiladores, impulsando este aire, el cual se encuentra caliente a una altura tal que dificulte su recirculación, por lo que el problema de recirculación es menor.

a.4.2 <u>Tiro Forzado</u>.-Las torres de tiro forzado tienen ventiladores con su eje horizontal, colocados a los lados de la torre, los cuales generan un flujo de aire y este es forzado hacia arriba por medio de mámparas, haciéndolo pasar a través de la corriente descendente de agua. Después de intercambiar calor con el agua es descargado por la parte superior de la torre. Debido a que la totalidad de la superficie de la torre es usada para la descarga de aire, la velocidad de éste a la salida es más baja que la velocidad de descarga de las torres de tiro inducido.

b. Torres secas

El calor de rechazo es transferido directamente al aire atmosférico a través de una interfase sólida (haz de tubos aletados) sin la evaporación del agua.

b.1 <u>Tiro natural</u>.- El flujo de aire dentro de la torre se establece debido a la diferencia de densidades entre el aire al salir del intercambiador y el aire en el exterior de la torre, provocando un tiro térmico.

Debido a la geometría de las torres de tiro natural (hiperbólico) se tiene una gran flexibilidad en la selección del arreglo de los tubos del intercambiador de calor en su interior. En un principio el arreglo de los tubos era en una posición vertical alrededor de la base de la torre, actualmente, existen arreglos de tubos en "A" o en "V" que presentan ventajas de espacio y contribuyen adeunás a la estabilidad del flujo de aire. El arreglo de tubos en posición horizontal, no es muy usado debido à que requieren mayor espacio.

b.2 Tiro mecánico

b.2.1 Tiro Inducido.- El tiro inducido es cuando el ventilador "jala" el aire a través del conjunto de tubos de aletas creando un ligero vacío de aire caliente entre el ventilador y los tubos de aletas. En este caso, el aire manejado por los ventiladores tiene un volumen más grande para la misma masa de flujo, debido al calor absorbido y al ligero vacío en la succión del ventilador.

b.2 Tiro forzado.- Las unidades de tiro forzado impulsan el aire sobre la superficie de tubos con aletas. El ventilador se encuentra por debajo de los tubos.

1.1 Torres húmedas

El principio básico de la operación de la torre de enfriamiento húmeda consiste en un enfriamiento evaporativo y en el intercambio de calor sensible. El enfriamiento por evaporación del líquido comprende el enfriamiento de éste por un cambio de calor y de masa que tiene lugar por contacto directo entre la superficie del líquido y el aire atmosférico; en este caso la disminución de la temperatura del líquido se produce cediendo calor por contacto y por evaporación del líquido.

El papel predominante en el enfriamiento del agua que juega la evaporación se comprende mejor si se conoce que cerca del 80% del calor total eliminado en el agua se hace por evaporación'; en temperaturas muy bajas del aire exterior, el papel de la evaporación se reduce y aumenta el calor cedido por contacto por el agua.

La evaporación del líquido se produce cuando la presión del vapor saturado a la presión del líquido es mayor que la presión parcial del vapor en el medio ambiente, independientemente del hecho de que la temperatura del líquido sea mayor o menor que el aire sobre la superficie del líquido y de esta forma la evaporación del líquido esta lígada a su enfriamiento.

La eliminación teórica de calor posible del aire circulado en una torre de enfraimento depende de la temperatura y el contenido de húmedad del aire. La temperatura de bulbo húmedo es un indicador del contenido de húmedad del aire. Por lo tanto, desde un punto de vista ideal, ésta es la temperatura teórica más baja a la que se puede enfriar el agua. Prácticamente, la temperatura del agua se acerca, pero no llega a ser igual, a la de bulbo húmedo del aire en una torre de enfriamiento, y esto se debe a que es imposible establecer un contacto de toda el agua con el aire fresco conforme ésta desciende por la superficie mojada de relleno hasta la pileta. La magnitud de acercamiento a la temperatura de bulbo húmedo depende del diseño de la torre. El factor más importante es el tiempo de contacto entre agua y aire.

Además del agua perdida por evaporación en las torres de enfriamiento húmedas, una cantidad

Ing. M. Aguilar Rodríguez, "Torres de Enfriamiento, Diseño, Operación y Mantenimiento"

mínima de agua en forma de pequeñas gotas es sacada por el aire que pasa a través de la torre. El agua que se pierde de esta manera se le llama pérdida por "arrastre", en una torre depende del diseño de la misma y en especial de la disposición de los eliminadores de húmedad y de la velocidad del viento. Normalmente las torres de enfriamiento húmedas se instalan en aquellos lugares dónde hay agua en abundancia, debido a que los requerimientos de agua de repuesto son bastante considerables y así no se vea afectada la región en dónde sean instaladas.

Una descripción general de su funcionamiento es la siguiente:

El agua caliente que proviene del proceso de enfriamiento es descargada en la parte superior de la torre, en unas charolas, desde dónde es rociada sobre una estructura, llamada "empaque" o "relleno", la finalidad de éste es hacer que la superficie de contacto entre el agua y el aire aumente, así como hacer mayor el tiempo de caída y como consecuencia aumentar la transferencia de calor. En la parte inferior de la torre de enfriamiento se encuentra la pileta de recolección de agua fría y, desde ésta es recirculada al proceso de enfriamiento.

Para que la torre de enfriamiento húmeda opere correctamente se necesita que los elementos que la constituyen estén operando correctamente, por lo que en el capítulo 2 se hará mención de estos.

1.2 Torres secas

El uso de torres de enfriamiento secas ha tenido un marcado desarrollo debido a las restricciones que existen en algunos países para la utilización del agua, en lugar de las torres húmedas en donde el calor se rechaza por evaporación del agua en una corriente de aire, ocasionando un consumo de agua para recuperar el líquido pérdido.

Existen dos sistemas básicos de enfriamiento secos; el directo y el indirecto. En el primero la corriente del líquido que absorbio el calor de rechazo que viene del proceso se conduce por medio de una tubería a serpentines de enfriamiento, que consisten en tubos con aletas, en dónde exteriormente se hace pasar una corriente de aire para enfriar el líquido en el interior de los tubos y, posteriormente, recircularlo en el proceso de la planta; en el segundo, se emplea un condensador de contacto directo o de mezcla, en dónde se enfría previamente el fluido empleado en el sistema de enfriamiento del proceso por medio de una corriente de agua fría y la mezcla se envía por medio de una bomba a los serpentines de enfriamiento (igual a los del sistema directo de tubos con aletas), en dónde se enfría la mezcla de agua que posteriormente se recircula, una parte al condensador y otra al proceso.

Debido a que las torres de enfriamiento secas no tienen relleno y el objetivo de está tesis es hacer un análisis comparativo de rellenos, de aquí en adelante se omitirán la torres de enfriamiento secas.

1.3 Aplicaciones

Una torre de enfriamiento es esencialmente un equipo de transferencia calor a la atmósfera. Las fuentes típicas dónde se utilizan son: aire acondicionado, refrigeración, compresores de aire, máquinas de soldar, hornos enchaquetados, horno de ladrillos, tanque de enfriamiento por inmersión, desengrasadoras, equipos de generación eléctrica, procesos de producción de acero, máquinas de moldeo, máquinas de diesel o gas y muchas otras.

Fig 1.1 Torre Húmeda a Flujo Cruzado

Capítulo 2

2. Descripción de los elementos de las torres de enfriamiento

2.1 Tubos ascendentes y cabezal de descarga.

El papel principal de los tubos ascendentes es hacer que el agua caliente que sale del proceso de enfriamiento suba a la parte alta de la torre, para llegar al cabezal de descarga y éste distribuya el agua caliente en cada una de has celdas.

2.2. Válvula de compuerta del cabezal de descarga.

Las válvulas de descarga de la tubería o válvulas de control de flujo, están localizadas en la parte superior de la torre, se utilizan part distribuir y controlar el flujo de agua a las celdas y su diseño debe ser para manejar flujos grandes de agua a baja presión, baja turbulencia de descarga y caída estática despreciable.

Los arreglos y localizaciones de las válvulas deben considerar el fácil acceso y flexibilidad de operación; los materiales deben ser resistentes al deterioro. Se ocupan únicamente en torres a flujo cruzado.

2.3. Celdas

Una celda es la más pequeña subdivisión de la torre, la cual puede funcionar como una unidad independiente, con la consideración de flujo de agua y aire; en la cual cada celda tiene su propio ventilador, relleno, cono, entradas de aire, etc. lo que permite unirlas una detrás de otra formando una hilera, y así el arregio más conveniente para la capacidad térmica que se requiera.

2.4. Charolas

La función de las charolas es distribuir el agua caliente a lo largo de la celdas de las torres a flujo cruzado, y ésta función se efectúa por medio de orificios hechos en el piso de la charola que contiene otros elementos, generalmente de plástico, llamados espreas. Una torre a contra flujo no utiliza las charolas, pero, utiliza espreas para lograr la distribución del agua en el relleno.

2.5. Espreas

En una torre a flujo cruzado las espreas son dispositivos colocados en los orificios que están en el fondo de las charolas de distribución, las espreas son las encargadas de romper el chorro de agua que pasa por ellas. Su correcto funcionamiento requiere que no estén deterioradas, ni tapadas, y como operan por gravedad, es también requisito que los niveles de las charolas sean uniformes y cercanos a los especificados por diseño.

Dada la importancia de la función de estos elementos, una torre de enfriamiento que opere con espreas faltantes, deterioradas o tapadas, así como con niveles no uniformes en sus charolas,

б

verá severamente disminuida su capacidad de enfriamiento.

Para una torre a contra flujo las espreas están contenidas en el ramal de distribución y se coloca un número determinado de éstas para mojar todo el relleno, y estás operan a una presión y ángulo de salida determinados por el fabricante para así fraccionar el chorro de agua.

2.6. Persianas de entrada

El objetivo principal de las persianas de entrada es la admisión del aire rompiendo su velocidad para evitar que se formen canalizaciones y pérdidas de agua; normalmente las persianas se colocan con una pendiente hacia el centro de la torre de enfriamiento con un ángulo de 40° aproximadamente con la horizontal. El diseño deberá permitir que las persianas se puedan retirar deslizándolas de las ranuras, y como normalmente son de asbesto-cemento, la distancia entre apoyos no debe ser mayor de 90cm, con sus juntas selladas para dirigir el agua hacia la pileta de la torre, el diseño de las persianas deberá ser tal que no haya resistencia al paso del aire.

2.7. Relleno

La finalidad del relleno consiste en hacer que la corriente de agua caliente se fraccione en pequeñas gotas o flujos, y su descenso a través de la torre se prolongue tanto como sea posible, además es conveniente también que el área mojada de la torre sea grande y que la caída de presión del aire al circular a través de la torre sea pequeña. La principal contribución a las pérdidas de presión, se deben a la forma y arreglo del relleno.

El relleno deberá proporcionar una superficie y un tiempo de contacto entre el agua y el aire, lo más grandes posibles, con el consiguiente aumento de la capacidad de enfriamiento del agua. Es necesario considerar, sin embargo, que si el relleno es demasiado denso, la superficie mojada expuesta al contacto con el aire, se verá aumentada, pero la resistencia al flujo de aire, pued circula a través de la torre será elevada. Ahora, el reducir la resistencia al flujo de aire, pued significar que la superficie mojada expuesta al contacto con el aire disminuya, o que el tiempo durante el cual se hallan en contacto el aire y el agua sea menor, afectando de una manera adversa la capacidad de enfriamiento, por lo que el arreglo y distribución óptimo del relleno, es difícil determinar.

El relleno de la torre de enfriamiento puede ser de un gran número de formas y arreglos, por lo que los fabricantes construyen modelos y efectúan pruebas en los diferentes tipos de estos. Para determinar el óptimo, generalmente los fabricantes, efectúan un balance entre las pérdidas por fricción y la transferencia de calor, ya que existe una relación definida entre estos dos factores.

Existen dos tipos básicos de rellenos: los de salpicado y los que no producen salpicado o de flujo de película. Para el relleno de salpicado se utilizan barras de diferentes formas y diferentes espacios con objeto de que el agua al caer choque contra éstos, y se rompa en pequeñas gotas; en el arreglo de no salpicado o de película, el agua se distribuye finamente sobre la superficie

del relleno.

2.8. Eliminadores de húmedad

El objetivo de los eliminadores de húmedad es el evitar el arrastre excesivo del agua a la atmosféra, con lo cual se ayuda a controlar la llovizna en los alrededores de la torre; básicamente los eliminadores de húmedad funcionan forzando el aire a hacer un cambio brusco de dirección con lo que la fuerza centrífuga resultante separa las gotas de agua alanzándolas contra las placas de los separadores en dónde se forma una película delgada de agua que fluye hacia la pileta de la torre. Para lograr lo anterior, los eliminadores de húmedad se forman con placas colocadas en zig-zag de materiales resistentes al deterioro y que produzcan la mínima caída de presión del aire, el área de la sección transversal de los eliminadores de húmedad deberá ser igual o mayor que la sección transversal del relleno de la torre medida perpendicularmente al flujo de aire².

El diseño de los eliminadores de húmedad deberá ser tal que permita fácilmente el retiro de las placas para su limpieza y mantenimiento.

2.9. Pileta

La pileta de la torre de enfriamiento normalmente se construye de concreto, aunque en algunos casos, para capacidades pequeñas, pueden ser de madera o metálicas.

El principal problema de las piletas es la eliminación de fugas, principalmente en las juntas de construcción, siendo necesario efectuar pruebas hidrostáticas para asegurar su estanqueidad. Las piletas deberán tener pendiente normal hacia el cárcamo de bombeo y hacia la salida de la purga de fondo, agua de repuesto, inyección de acido, cloro e inhibidor de corrosión, asf como las rejillas del cárcamo de bombeo.

Por lo general, las piletas funcionan como cimetación de las torres de enfriamiento.

Para el diseño de las piletas, deberán tomarse en cuenta los siguientes factores:

1. El costo aumenta con la profundidad; debe conservarse entre 1.20 y 1.80 m, compatible con las necesidades de almacenamiento de agua³.

2. Debe tener forma igual al área en planta de la torre.

3. Es recomendable acomodar las paredes de la pileta con los soportes de la torre, por conveniencia o ahorro de material.

² Tonatiuh Ramos, "Análisis Comparativo de Torres Húmedas y Torres Secas"

¹ Ing. H Aguilar Rodríguez, "Torres de Enfriamiento, Diseño, Operación y Hantenimiento

2.10. Ventiladores

Los ventiladores en las torres de enfriamiento de tiro mecánico se utilizan para mover aire a través de la torre, en grandes volúmenes y a bajas presiones. El movimiento del aire significa vencer la fricción o resistencia al fluio, lo cual representa trabajo, por lo que el ventilador puede verse como una máquina que sumistra aire, requiriéndose energía para moverlo. La energía se suministra a la flecha del ventilador y se transfiere al aire manejado para elevar su presión y velocidad lo suficiente para vencer la resistencia presente y producir el flujo

Existen dos tipos básicos de ventiladores: de flujo radial o centrífugos y de flujo axial. Los ventiladores centrífugos pueden ser de aspas rectas, curvas hacia atrás y curvas hacia adelante. Los ventiladores axiales pueden ser de propela y tuboaxiales. Normalemente los ventiladores trabajan con presiones bajas (hasta 15 cm de columna de agua), sin embargo, no existe una línea límite de presión definida con los sopladores y compresores que se emplean para presiones más altas de aire.

Las principales leyes de los ventiladores son las siguientes:

1. La capacidad varía directamente con la velocidad del ventilador.

2. La presión varía con el cuadrado de la velocidad del ventilador.

3. La potencia varía con el cubo de la velocidad del ventilador.

4. Para un peso constante de aire, la velocidad, capacidad y presión varían inversamente con la densidad. También la potencia varía inversamente con el cuadrado de la densidad.

Los ventiladores pueden ser de aspas fijas, o bien, existe la posibilidad de que sean de aspas móviles (ajustables a varios ángulos).

Los diámetros de los ventiladores más comúnmente usados en las torres de enfriamiento están dentro del rango de 4 a 10 m.⁴

La transmisión de potencia desde el motor eléctrico al ventilador, se efectúa normalmente por medio de una flecha horizontal y un reductor de velocidad con flecha de salida vertical en dónde es colocado el ventilador. Los reductores de velocidad enfriados con ventiladores no deben usarse, puesto que introducen un flujo de aíre cruzado que ayuda la turbulencia y a la recirculación. Los reductores de velocidad deberán sobredimensionarse generalmente y diseñarse con especial cuidado para que las ranuras de ventilación del reductor, durante la evaporación, no permita la entrada de vapor de agua. La cimentación del reductor de velocidad deberá estar nivelada para proporcionar un apoyo firme.

En la construcción de los ventiladores en las torres de enfriamiento de tiro mecánico, se emplean principalmente los siguientes materiales:

a. Aspas de acero dulce ó acero inoxidable. Estas últimas casi no requieren mantenimiento, pero

. 9

⁴ Marley, "Cooling Towers Fundamentals"

las primeras requieren un recubrimiento cada año.

b. Aspas de fundición de aluminio que requieren ser raspadas y recubiertas con zinc después de varios años de servicio.

 Aspas de madera laminada que normalmente requieren un recubrimiento en el lado de ataque, de acero inoxidable.

d. Plásticos (poliester reforzado para proporcionarle la resistencia y rigidez necesaria); no los ataca la corrosión ni los hongos.

2.11. Conos

El cono ó chimenea de los ventiladores se utiliza para ayudar a eliminar la turbulencia del aire en la sección de la garganta, producir un efecto de chimenea en la expulsión del aire en caso de que tenga altura suficiente y actuar como guarda del ventilador para reducir la recirculación. En el caso de chimeneas del tipo de recuperación de velocidad, con garganta Venturi de altura de 4m o más, se recupera la carga de velocidad de la corriente de aire descargada, en la forma de presión estática reducida, con lo cual se aumenta la eficiencia de los ventiladores. La superficie interior de los conos debe ser lisa, sin rugosidades para máximo flujo de aire, con juntas apropiadas en la base para evitar fugas.

Figura 2.1 Torre a Flujo Cruzado

Capítulo 3

3. Principios Teóricos de las Torres de Enfriamiento. 3.1 Teoría, Ecuación de Merkel

El concepto generalmente aceptado del rendimiento de la torre de enfriamiento fue desarrollado por Merkel en 1925. Un número de suposiciones y aproximaciones fueron usadas para simplificar el desarrollo de la ecuación final.

El análisis combina la transferencia de calor sensible y latente de vaporización en un proceso total basado en la entalpía como fuerza impulsora. La transferencia de calor sensible ocurre debido a que el aire a la entrada de la torre de enfriamiento está a menor temperatura que el agua; por ello absorbe calor y el agua se enfría. El enfriamiento evaporativo involucra un intercambio simultánce de calor y masa.

Para que este proceso se lleve a cabo es necesario que el aire posea la capacidad para absorber el vapor de agua que se produce, es decir, que no este saturado de húmedad. Afortunadamente, aún cuando el aire que rodea a la torre (en un día húmedo y lluvioso, por ejemplo) este saturado, la transferencia de calor sensible que ocurre apenas ingresa el aire a la torre, incrementa su temperatura y con ello su capacidad de absorber más húmedad.

Merkel considera una torre de enfriamiento a contra flujo teniendo 1 m² de área, "a", un volumen de enfriamiento, V, contenida "a" en 1 m² de la superficie interfacial aire-agua por m³ de relleno, un flujo de agua L [kg/hr] y un flujo de aire G [kg/hr]. Puesto que la transferencia total de calor en una torre de enfriamiento es el paso de calor por difusión y convección del agua a la aire.

donde:

 $dq_{\tau} = calor total transferido [kw/hr-m²]$ $<math>dq_4 = calor transferido por difusión [kw/hr-m²]$ $<math>dq_e = calor transferido por convección [kw/hr-m²]$

Si λ es el calor latente promedio de vaporización de toda el agua que se vaporiza en la torre:

 $dq_d = K \lambda (X' - X) a dV \dots (2)$

12

donde:

K = Coeficiente de transferencia de masa $<math>\lambda = Calor latente promedio de vaporización, [Kcal/Kg]$ X' = Húmedad del aire a la temperatura T del agua, $[Kg_{report}/Kg_{gas accal} X = Húmedad del aire a la temperatura t del aire, <math>[Kg_{report}/Kg_{gas accal} a = Superficie del agua por m³ de la torre, tanto de gotas como de película.$ dV = Diferencial de volumen de la torre en el que existe la superficie. [m³/m³]T = Temperatura del agua, [°C]t = Temperatura del are, [°C]h = Coeficiente de transferencia de calor, [KW/hr-m²-°C]

Sustituyendo (2) y (3) en (1)

$$dq_r = K \lambda (X' - X) a dV + h(T - t) a dV \dots (4)$$

agrupando términos

$$dq_{T} = KadV \left[\lambda \left(X' - X \right) + \frac{h}{K} \left(T - t \right) \right] \quad \dots \quad (5)$$

restando y sumando C_n(T-t)

$$dq_{T} = KadV \left[\frac{h}{K} (T-t) - C_{p} (T-t) + (\lambda (X'-X) + C_{p} (T-t)) \right]$$

$$dq_{T} = KadV \left[C_{p}(T-t) \left(\frac{h}{KC_{p}} - 1 \right) + (\lambda X' - \lambda X) + C_{p}(T-t) \right] \dots (6)$$

Por otra parte la entalpía del aire húmedo es:

$$H = C_{\rm p}T + \lambda X \implies \lambda X = H - C_{\rm p}T \dots (7)$$

sustituyendo (7) en (6)

$$dq_{T} = KadV \left[C_{p}(T-t) \left(\frac{h}{KC_{p}} - 1 \right) + (H' - C_{p}T - H + C_{p}t + C_{p}T - C_{p}t) \right]$$

$$dq_{T} = KadV \left[C_{p}(T-t) \left(\frac{h}{KC_{p}} - 1 \right) + (H'-H) \right] \dots (\theta)$$

dado que h/KC_p es el número de Lewis, para el agua que se difunde en el aire es aproximadamente l³ tenemos que:

⁵ Donald Q. Kern, "Procesos de Transferencia de Calor"

$$dq_T = KadV(H' - H) \qquad \dots \dots \dots (9)$$

pero dq_T puede expresarse en términos de un balance térmico donde el calor perdido por el agua es ganado por el aire.

$$dq_{T} = LC_{d}T = GdH \qquad \dots \dots \dots (10)$$

igualando (9) y (10)

$$dq_r = KadV(H' - H) = LC_r dT = GdH \dots (11)$$

recordando que C,=1 para el agua; Integrando (11)

$$\frac{KaV}{G} = \int_{H_{c}}^{H_{1}} \frac{dH}{H^{\prime} - H} \qquad (13)$$

En las torres de enfriamiento de agua el valor de n no puede determinarse directamente, ya que está compuesto de disposiciones al azar de gotas y superficie de película. La superficie de película es casi independiente del espesor de la misma, mientras que la superficie de las gotas depende tanto de la porción del líquido que forman las gotas como del tamaño promedio de las mismas. En una torre de caída interrumpida, es decir con relleno, obviamente hay otros factores que considerar. La imposibilidad de calcular a se obvia determinando experimentalmente el producto Ka como un solo factor para un tipo particular de empaque a flujos específicos para los fluidos que componen el sistema.

Es más conveniente usar la ecuación (12), dado que el interés principal se sitúa en la temperatura del agua producida, el valor númerico de la integral se conoce como "número de unidades de dífusión", y su expresión es:

$$n_d = \frac{KaV}{L} = \int_{T_0}^{T_1} \frac{dt}{H' - H}$$

Fig. 3.1. Representación Gráfica de la Ecuación de Merkel.

En la figura 3.1 (a), se muestra el diagrama temperatura-entalpía del aire en una torre de enfriamiento, representando la curva de saturación las condiciones de la película de aire que rodea el agua en la torre de enfriamiento, y la línea de operación, las condiciones del aire que están inmediatamente después de la película de aire saturado.

El agua entra por lo alto de la torre a una temperatura T_1 , ésta corresponde al punto A sobre la curva de saturación.

Como el agua es enfriada a una temperatura T_2 , la entalpía de la película sigue la curva de saturación al punto B.

El aire entra en la base de la torre a la temperatura del bulbo húmedo, tiene una entalpía correspondiente a C' sobre la curva de saturación. La fuerza impulsora en la base de la torre es representada por la distancia vertical BC.

El rango como se puede observar en la figura es la diferencia de temperaturas del agua caliente y el agua fría (Rango=T₁-T₂) la aproximación es la diferencia de temperaturas del agua fría y la temperatura de bulbo húmedo (Aproximación=T₂-T₂); la ecuación (10) está representada por la línea recta C-D en donde L/G es la pendiente de la recta.

En la figura 3.1 (b) se observa el área bajo la curva del número de unidades de difusión (KaV/L), que es la ecuación de Merkel.

3.1.1.SOLUCION NUMERICA

Evaluación de la ecuación de Merkel por el método de Tchebycheff.

El método de Tchebycheff para evaluar numéricamente la integral

usa valores de "y" a valores predeterminados de "x" dentro de los límites de "a" a "b" seleccionados en tal forma que la suma de estos valores de "y" multiplicados por una constante del intervalo (b-a) da el valor descado de la integral. En esta forma de cuatro puntos, los valores de "y" así seleccionados, son tomados a valores de "x" de 0.102673, 0.406204, 0.593796 y 0.897327 del intervalo (b-a); para la determinación de KaV/L, los valores anteriores redondeados a un décimo son enteramente adecuados.

La fórmula entonces se transforma:

$$\frac{KaV}{L} = \int_{-\infty}^{b} y dx = \frac{b-a}{4} (y_1 + y_2 + y_3 + y_4)$$

donde:

 $y_1 = valor de "y" a x=a+0.1(b-a)$ $y_2 = valor de "y" a x=a+0.4(b-a)$ $y_3 = valor de "y" a x=b-0.4(b-a)$ $y_4 = valor de "y" a x=b-0.1(b-a)$

Para la evaluación de KaV/L

$$\frac{KaV}{L} = \int_{T_1}^{T_1} \frac{dT}{H' - H} = \frac{T_1 - T_2}{4} \left(\frac{1}{\Delta H_1} + \frac{1}{\Delta H_2} + \frac{1}{\Delta H_3} + \frac{1}{\Delta H_4} \right)$$

donde:

 $\Delta H_1 = valor de (H' - H) a T = T_2 + 0.1 (T_1 - T_2)$

 $\Delta H_2 = valor de (H' - H) a T = T_2 + 0.4 (T_1 - T_2)$

 $\Delta H_1 = valor de (H' - H) a T = T_1 - 0.4 (T_1 - T_1)$

 $\Delta H_{A} = valor de (H' - H) a T = T_{1} - 0.1(T_{1} - T_{2})$

3.1.2 Solución gráfica.

Existen dos métodos para evaluar los resultados de una torre de enfriamiento, el primero consiste en el método de la curva característica y el segundo es por la curva de comportamiento; en el primero el fabricante debe suministrar una familia de curva, que conosiste en tres gráficas a diferentes rangos, estas gráficas son para una capacidad al 90%, 100% y 110% de el diseño de circulación de agua. Cada gráfica será trazada con la temperatura de bulbo húmedo como abscisa contra temperatura de agua fría como ordenada; con el rango de enfriamiento como parámetro. Por el segundo método se obtiene el número de unidades de difusión, que es mediante el empleo de curvas. Dichas curvas han sido elaboradas y publicadas por el CTI y Kelly's, las primeras son para tortes a contra flujo y las segundas para tortes a flujo cruzado. Las curvas publicadas por el CTI y Kelly's, se usan para diseñar las tortes a contra flujo y flujo cruzado, para el análisis de los datos de prueba y para predicción a varias condiciones de operación.

Generalmente esta publicación de curvas, se identifican con el nombre de curvas de comportamiento.

Estas curvas se construyeron considerando que el efecto de la vaporización del líquido en los resultados es despreciable.

En la curva de comportamiento de una determinada torre, normalmente no viene dibujada la curva característica de la torre, pero esta se puede trazar mediante una recta con pendiente -0.6 (según estudios del CTI este es un valor promedio), que pase por el punto de intersección de L/G y KaV/L de diseño la cual esta dentro de los límites razonables.

Para obtener el número de unidades de difusión (n_d) , de las curvas de comportamiento, publicadas por el CTI ó Kelly's, primeramente se debe seleccionar la curva que corresponde la temperatura de bulbo húmedo y rangos dados, en seguida con la relación L/G previamente calculado y la aproximación elegida, localizar el punto de intersección entre éste valor y la curva de aproximación, y el valor de n_a se lee siguiendo una línea horizontal, la cual tiene como origen el punto de intersección.

La publicación del CTI consta de 821 páginas con curvas en papel logarítmico con la relación L/G (agua-aire) como abscisa y KaV/L (característica de la torre) como ordenada, y las aproximaciones como parámetros. Cada página representa una combinación fija de temperatura de bulbo húmedo y rango de enfriamiento.

Kelly's ha publicado unas curvas de comportamiento de torres de enfriamiento húmedas a flujo cruzado siendo similares a las curvas publicadas por el CTI la única diferencia es la ordenada que aparece como KaY/L.

Para comparar la capacidad de la torre de los datos de diseño con los datos de prueba, se hace una extrapolación de los datos de prueba a los datos de diseño; con los datos de prueba se entra en la relación L/G y KaV/L, en ese punto de intersección se traza una pendiente de -0.6 que según la experiencia del CTI es un valor aceptable para torres a contra flujo, desplazándonos por esa recta hasta la curva de aproximación de diseño y en ese nuevo punto de intersección es el nuevo punto de operación de la torre⁶.

EJEMPLO:

Una torre de enfriamiento esta diseñada para enfriar 0.7m³/seg de agua de 41°C a 32°C con una temperatura de bulbo húmedo de 30°C usando una potencia de ventiladores de 179 KW. La prueba de campo arrojo los resultados siguientes:

Flujo de agua (L)	0.65m ³ /seg
Temperatura de agua caliente (T _{sc})	41°C (105.8°F)
Temperatura de agua fría (Ta)	32°C (89.6°F)
Temperatura de bulbo húmedo (Th)	28°C (82.4°F)
Potencia de los ventiladores (KW)	161.136 KW

El fabricante indica el valor de diseño de L/G=1.20 para evaluar la capacidad de la torre.

SOLUCION NUMERICA

Debido a que los valores y correlaciones de las gráficas del CTI fueron hechas para trabajar en el sistema inglés, se harán las respectivas conversiones.

1. Los valores de las pruebas de L/G y KaV/L son calculados usando los valores de prueba de T_{bb}, T_{st}, T_{sc} y la potencia de los ventiladores. El valor de L/G de prueba se obtiene según el CTI code ATC-105

$$\left(\frac{L}{G}\right)_{prueba} = \left(\frac{L_{prueba}, m^3/seg}{L_{disence}, m^3/seg}\right) \left(\frac{PoL_{disence}, KW}{PoL_{prueba}, KW}\right)^{1/3} \left(\frac{L}{G}\right)_{disence}$$

(L/G)_{prucba}=1.16

⁶ Nota: Para más información ver CTI-ATC-105

$$\left(\frac{L}{G}\right)_{prueba} = \left(\frac{0.65}{0.7}\right) \left(\frac{179}{161.136}\right)^{1/3} (1.20)$$

2. Calculando la entalpía de tablas de vapor del ATC-105 (ver anexo A) a una temperatura de bulbo húmedo de $28^{\circ}C(82.9^{\circ}F)$

H=46.35 BTU/lb

3. Para calcular H' leemos de tablas de vapor del ATC-105 (ver anexo A) a la temperatura T, calculada según Tchebycheff

4. Calculando H' de la ecuación (10)

 $L(T_1 - T_2) = G(H' - H) \rightarrow H' = \left(\frac{L}{C}\right)(T_1 - T_2) + H$

sustituyendo valores

H'=(1.16)(105.8-89.6)+46.35

H'=65.14 BTU/lb

5. Aplicando Tchebycheff

T(°F)	H' BTU/lb	H BTU/Ib
$\begin{array}{c} T_2 \!=\! 89.6 \\ T_3 \!+\! 0.1(T_1\!\!-\!T_3) \!=\! 91.22 \\ T_1 \!+\! 0.4(T_1\!\!-\!T_3) \!=\! 96.08 \\ T_1 \!-\! 0.4(T_1\!\!-\!T_3) \!=\! 99.32 \\ T_1 \!-\! 0.1(T_1\!\!-\!T_2) \!=\! 104.2 \\ T_1 \!=\! 105.8 \end{array}$	57.64 65.05 70.53 79.68	$\begin{array}{c} H'=46.35\\ H'+0.1(L/G)(T_1-T_2)=48.23\\ H'+0.4(L/G)(T_1-T_2)=53.87\\ H-0.4(L/G)(T_1-T_2)=57.62\\ H-0.1(L/G)(T_1-T_2)=63.26\\ H=65.14\\ \end{array}$

1		
İ	Н'- Н	1/(H'-H)
	BTU/Ib	lb/BTU

9.41 11.18 12.91 16.42	0.1063 0.0894 0.0775 0.0609
	$\sum \frac{1}{H'-H} = 0.3341$

Calculando el número de unidades de difusión

$$\frac{KaV}{L} = \frac{T_1 - T_2}{4} * \sum_{H' - H} \frac{1}{H' - H} = \frac{(105.8 - 89.6)}{4} * 0.3341 = 1.35$$

Solución gráfica.

Con el valor de $(L/G)_{pnuche}$ calculado anteriormente y con el rango de 16.2°F entramos a la gráfica proporcionada por el CTI con una temperatura de bulbo húmedo de 82.4°F. Como no hay una gráfica con dichas características seleccionamos la más próxima que es $T_{bb}=82°F$ y rango de 16°F; ahora trazamos una normal a L/G hasta que intercepte con la curva de aproximación de 7.2 (aproximación = $T_{ac}T_{bb}$).

En el punto de intersección de L/G con la aproximación se traza una línea horizontal y leemos el valor de KaV/L (ver fig. 3.2).

El KaV/L leído es de 1.35 que concuerda con el método numérico.

3.2. Otras formas de evaluar el rendimiento de la torre de enfriamiento.

Con la creciente disponibilidad y uso de la computadora se han desarrollado varios códigos para evaluar el rendimiento de la torre de enfriamiento, esto debido principalmente a que la teoría de Merkel hace varias suposiciones significativas que reducen la precisión del modelo. Estas suposiciones son:

1. Usa la entalpía como fuerza impulsora

2. Usa el número de Lewis igual a uno

3. La fuerza impulsora para la transferencia de masa es la diferencia en húmedad absoluta en la superficie del agua y aire junto a la superficie.

4. La pérdida de agua por evaporación puede ser despreciada

5. Desprecia los efectos separados de la transferencia de calor y masa.

6. Desprecia el posible efecto de neblina dentro de la torre.

Sin embargo, se sigue utilizando, debido a que los códigos de computadora son algo engorrosos, los requerimientos de memoria que utiliza cada código suelen ser de más de 6 Mbytes, y depende del "trato amigable hacia el usuario".

Los métodos más utilizados como códigos de computadoras son:

 El código ESC, desarrollado por Environmental System Corporation basado sobre el modelo clásico de Merkel (Baker 1984, para torres a contra flujo y el modelo de Zivi and Brand, 1957 para flujo cruzado).

2. El código FACTS, desarrollado por Tennesse Valley Authority (Benton, 1983)

3. El código TEFERI, desarrollado por Electricite de France (Bourrillot 1983a, Bourrillot 1983b).

4. El código VERA2D, desarrollado para EPRI por CHAM de Norte América (Majumdar, Singhal, and Spalding 1983) y,

5. Un quinto código, STAR (Caytan, 1982), desarrollado por Electricite de France.

Código ESC.

Esta basado sobre el modelo clásico de Merkel, supone que el aire y agua son uniformes a través de la sección transversal de la torre de enfriamiento a través de la película. Este es un código unidimensional para configuraciones a contra flujo; para configuraciones a flujo cruzado el código usa una matriz bidimensional de flujo de agua y aire, pero trata al flujo en cada dirección como unidimensional. Así, que éste código es apropiado para clasificarlo en una dimensión.

Código de TEFERI.

Este código es básicamente para ambas configuraciones de torre a contra flujo y flujo cruzado. Dos opciones son disponibles, la primera, la cual usa la suposición de Merkel con el número de Lewis igual a uno y la segunda permite que el número de Lewis sea diferente de uno.

Las temperatura y flujos del agua y aire a la entrada se suponen uniformes. Sin embargo, el código calcula la pérdida de agua por evaporación, el flujo de agua no se mantiene uniforme en una torre a flujo cruzado.

Código FACTS,

Este código es más sofisticado que el modelo en una dimensión, es considerado como un código de dos dimensiones.

Una formulación integral de la ecuación de la conservación de la masa y energía es aplicada en conjunción con la ecuación de Bernoulli. Este código hace las suposiciones siguientes:

1. La pérdida por evaporación es despreciada en el balance de masa del agua.

2. El flujo del aire es bidimensional en la región del relleno de una torre a flujo cruzado, y una dimensión en la región del relleno en una torre a contra flujo.

3. Para torres a contra flujo, el flujo de aire es supuesto entre colineal e hiperbólico. La fracción del flujo de masa de aire entre cada línea de recorrido es computado por la ecuación de Bernoulli y refleja el flujo de resistencia en la zona del relleno y en la zona de lluvia. La caída de presión y la característica de transferencia del relleno son integrados en dirección radial para obtener un valor promedio.

4. Para torres a Îlujo cruzado, la distribución del flujo de aire es evaluado usando la ecuación de Bernoulli y la conservación de la masa para el aire.

Estas ecuaciones son resueltas por diferencias finitas. En la ausencia de la correlación del coeficiente de transferencia de calor, h y K son relacionados a través de un cálculo local del número de Lewis.

Las condiciones específicas de entrada de aire y agua pueden variar a través del plano de entrada. Sin embargo, la previsión de la pérdida de agua debida a la evaporación está incluido. El FACTS tiene la capacidad a modelar torres que contienen rellenos hibrídos o rellenos que contienen vacíos u obstrucciones.

Código VERA2D.

El código VERA2D trata el flujo de aire en la torre de enfriamiento como bidimensional y en estado estable. El flujo de agua es tratado como unidimensional. La ecuación diferencial parcial es resuelta para la conservación del masa y energía del agua y aire y la conservación del momento de la húmedad del aire. Estas condiciones están escritas en término de valores locales. El código VERA2D, a pesar de el cálculo de flujo bidimensional, incluye algunas generalidades que no incluyen otros códigos.

1. La temperatura del agua y el aire a la entrada son no uniformes.

2. La variación de la densidad del aire a través de la torre se incluye como una función de temperatura y presión.

3. La evaporación del agua tiene su modelo matemático

4. La transferencia de calor esta relacionada con la temperatura del agua y la presión ambiental.

5. La turbulencia es simulada por un modelo de equilibrio local.

En torres a contra flujo, el VERA2D usa una correlación de transferencia de masa para las zonas de lluvia y riego que difiere de la correlación del relleno.

Código STAR.

El código STAR es aplicable a torres de enfriamiento de tiro natural y mecánico tipo contra flujo y flujo cruzado. El código STAR resuelve la ecuación diferencial en dos dimensiones de fluidos dinámicos y termodinámicos aplicando el método de diferencias finitas a una rejilla de malla rectangular usando una etapa fraccional algorítmica.

Dos aspectos importantes son involucrados (1) simulación aerodinámica de la convección natural dentro y fuera de la torre y (2) simulación del momentum de la transferencia de calor y masa

en el relleno y en la zona de riego.

Las principales suposiciones del modelo son las siguientes:

1. Variación relativa de la densidad, es menor de 0.1, la aproximación de Boussinesq puede ser usada.

2. En el relleno, el flujo de agua cae a una velocidad constante

3. En la zona de lluvia el relleno de una torre a contra flujo, el diámetro de las gotas de agua se suponen constantes.

4. El intercambio de calor en el campo de dispersión es gobernado por la diferencia de temperaturas del agua y aire en la superficie de separación.

5. La fuerza impulsora implica un intercambio de masa que es generado por una diferencia en la concentración del vapor de agua entre la superficie de las gotas de agua y el aire.

6. La mezcla de aire seco, vapor de agua y agua en suspensión se suponen en equilibrio termodinámico todo el tiempo.

7. La turbulencia es simulada por un modelo de equilibrio local.

En el código STAR, las ecuaciones son resueltas aplicando el método de diferencias finitas a una rejilla de malla rectangular uniforme, utilizando una etapa fraccional algorítmica desarrollada por Electricite de France. Las ecuaciones de convección son resueltas utilizando el método característico para un barrido doble. La presión de campo y la ecuación de continuidad son resueltas por un método de relajación.

La eficiencia de un código computacional debe ser tratado como una combinación de eficiencia computacional y "el trato amigable hacia el usuario". La eficiencia computacional envuelve una comparación del tiempo requerido de la unidad central de proceso (UCP) y los requerimientos de memoria para cada modelo de computadora".

⁷ NOTA: Para mayor información sobre los códigos mencionados, ver EPRI RP2113

COOLING TOWER INSTITUTE

82 WET BULB(°F) 16 RANGE (°F)

Capítulo 4

Evaluación de los rellenos Rellenos.

Como se mencionó en el capítulo 2 la función del relleno consiste en proporcionar una superficie y tiempo de contacto entre el agua y el aire, lo más grandes posibles, con el consiguiente aumento de la capacidad de enframiento del agua.

El relleno de la torre de enfriamiento puede ser de un gran número de formas y arreglos, por lo que los fabricantes construyen modelos y efectúan pruebas en los diferentes tipos de éstos.

Para determinar el mejor relleno, se debe considerar lo siguiente:

a) Costo inicial de la torre de enfriamiento equipada con el empaque particular.

El volumen requerido del relleno y el costo unitario son factores importantes. La capacidad de transferencia de calor y masa del relleno es el principal indicador del volumen requerido. Sin embargo, cada empaque rendirá de manera diferente a diferentes proporciones de flujo de aire y agua.

b) Costos de operación.

La potencia de bombeo de la torre de enfriamiento y la potencia de los ventiladores para mover el aire a través de la torre son los más significativos costos de operación. La consideración debe ser dada por la altura de la torre, caída de presión en cabezales y la caída de presión del aire.

La caída de presión del aire a través del relleno es sólo una porción de la resistencia del flujo de aire, pero, generalmente constituye más de el 50% del total de caída de presión.

c)Vida esperada del relleno.

Es el tiempo de vida útil esperado que tendrá el relleno antes de ser reemplazado por otro; ya que debido a este reemplazo del relleno se tendrá que parar la torre de enfriamiento.

4.2. Materiales.

Una gran variedad de materiales son usados para la construcción del relleno. La selección depende del costo, duración, condiciones de uso, y algunas ocasiones del aspecto estético. Los materiales típicos de construcción son madera, acero inoxidable, acero galvanizado, concreto, fibra de vidrio, asbesio-cemento, fibra- cemento y plástico (polietileno). Cada uno ofrece sus ventajas y desventajas. Por ejemplo la madera ofrece resistencia a la corrosión, largo tiempo de servicio, y mantenimiento mínimo. Sin embargo, algunos códigos contraincendio prohíben la madera como relleno. El acero ofrece gran resistencia al fuego y estructura resistente. El acero galvanizado añade resistencia a la corrosión.

Aunque los rellenos son diseñados para una vida útil de 15 a 20 años, muchos tipos de rellenos

deben ser inspeccionados cada 7 ó 10 años.

4.3. Sistema de relleno.

Por lo general, las mejoras más importantes pueden lograrse con sólo cambiar el sistema de relleno, lo cual no obstante, no se hace arbitrariamente. La transferencia de calor debe investigarse desde un punto de vista de ingeniería térmica, junto con las características del relleno, como lo determinan las curvas de comportamiento que proporcionan los fabricantes, los cuales se desarrollan de una manera bien consiente, mediante el método de tanteos y experimentación y se expresa como KaV/L o KaY/L según sea el tipo de torre, o como número de unidades de difusión.

Sin embargo, en años recientes se han desarrollado diseños para el relleno de las torres de enfriamiento, lo cual mejora grandemente la efectividad. Esto hace posible incrementar la capacidad de la torre sin aumentar el tamaño y la potencia de la misma.

4.4. Principio del relleno celular.

El relleno celular funciona con base en el principio de que la gota de agua se estira hasta formar una película delgada, a medida de que el agua desciende a través de las celdas, lo cual permite al aire, a contra flujo o flujo cruzado enfriar más rápidamente la gota.

A pesar de que la presión estálica por cubo de relleno celular es más elevada que la presión estática por cubo de relleno de madera, se requiere una profundidad muy inferior de relleno celular para producir los mismos ó mayores resultados de enfriamiento.

4.5. Coeficientes de correlación de transferencia de masa.

Un trabajo realizado por Lichtenstein en 1943; evaluó un empaque particular de relleno y observó que el valor de la integral de la ecuación de Merkel variaba como una potencia de la relación L/G; si el valor del flujo de aire G era mantenida dentro de un rango limitado y la temperatura de entrada del agua era también limitada, se obtenía la siguiente correlación:

$$KaV/L = C_1(L/G)^n$$
(14)

donde C_1 y n son constantes de un relleno particular. El exponente n varía dentro de un rango de -0.35 a -1.1 y el valor promedio esta entre -0.55 y -0.65.

La experiencia e investigación realizada por la industria de las torres de enfriamiento y otras organizaciones mostraron que el método de correlación desarrollado por Lichtenstein aproxima el rendimiento de las torres de enfriamiento a contra flujo.

Este método puede ser usado para diseñar, evaluar y predecir el rendimiento de una torre a contra flujo.

Lichtenstein señaló que su teoría no es completamente explicativa del efecto del flujo de aire sobre la curva característica a contra flujo. Otros estudios reportados por varios investigadores mostraron que el rendimiento varía más significativamente con la temperatura del agua a la entrada de la torre.

El método de correlación desarrollado por Lichtenstein no incluye el efecto de esta variable; sin embargo, el efecto puede ser incorporado como lo muestra el CTI en su reporte (ATP-107R). La misma situación fue observada para torres a flujo cruzado por Kelly's en 1976, y además observa que la velocidad de la masa de aire debe estar entre el rango de $\pm 30\%$ de 2000 lb/hr-ff² (9780.36 kg/hr-m³) (equivalente a una velocidad de entrada de aproximadamente de 470 fl/min (143.29 m/min)).

Un flujo bajo de aire requiere una torre más grande, mientras que un flujo de aire alto requiere una torre más pequeña y más potencia en ventiladores.

Los límites prácticos de la velocidad del aire esta entre los rangos de 300 a 650 fi/min (91.46 a 198.17 m/min) en torres a contra flujo y de 350 a 700 fl/min (106.71 a 213.41 m/min) en flujo cruzado". Las velocidades más altas en flujo cruzado son debido a que está más abierto el empaque y porque la salida del aire no pasa a través del sistema de distribución del aqua.

Una correlación que considera las variaciones de velocidad, temperatura de bulbo húmedo y agua caliente es:

Esto es simplemente una suposición empiríca hecha en base de que Ka/L^{*} puede ser expresada como una función de L/G. Tomando el logaritmo natural en ambos lados de la ecuación resulta una ecuación lineal que permite determinar las variables independientes por medio de un análisis de regresión lineal.

$$Ln \ \frac{Ka}{L''} = Ln \ C_1 + n_1 Ln \ L^* + n_2 Ln \ G^* + n_3 Ln \ T_{HB} + n_4 Ln \ T_{HB} \dots \dots \dots (16)$$

4.6. Análisis lineal. 4.6.1. Regresión múltiple.

La forma de una ecuación de regresión lineal con k variables independientes es:

$$y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} \dots (17)$$

donde y_i = denota la variable dependiente (en esta situación y_i = Ln Ka/L"), X_{k_i} denota la variables independientes (Ln L⁺, Ln G⁺...).

⁸ Electric Power Research Institute, "Cooling Tower Performance Prediction and Improvement".
El método de los mínimos cuadrados es usado para determinar los parámetros $(\beta_0, \beta_1, ..., \beta_d)$. La suma de los cuadrados de las desviaciones entre los valores observados de "y" y los respectivos valores ajustados es:

$$SCE = \sum_{i=1}^{n} (y_i - y)^2 = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3)]^2$$

en donde β_0 , β_1 , β_2 y β_3 son los estimadores de los parámetros del modelo. Se usa el cálculo para encontrar los estimadores de los parámetros que hacen que SCE tome el valor mínimo. Los estimadores, al igual que en el caso lineal simple, se obtienen como solución a un sistema de ecuaciones lineales simultáneas conocidas como las ecuaciones de mínimos cuadrados.

En el caso mencionado de tres variables independientes x₁, x₂, x₃ las ecuaciones de mínimos cuadrados son cuatro ecuaciones lineales en las incógnitas β_0 , β_1 , β_2 , y β_3 . Las cuatro ecuaciones de mínimos cuadrados que no se han derivado aquí y simplemente se establecen son:

$$\beta_0 n + \beta_1 \sum x_1 + \beta_2 \sum x_2 + \beta_3 \sum x_3 = \sum y$$

$$\beta_0 \sum x_1 + \beta_1 \sum x_1^2 + \beta_2 \sum x_1 x_2 + \beta_3 \sum x_1 x_3 = \sum x_1 y$$

$$\beta_0 \sum x_2 + \beta_1 \sum x_1 x_2 + \beta_2 \sum x_2^2 + \beta_3 \sum x_2 x_3 = \sum x_2 y$$

$$\beta_0 \sum x_3 + \beta_1 \sum x_1 x_3 + \beta_2 \sum x_2 x_3 + \beta_3 \sum x_3^2 = \sum x_3 y$$

Resolviendo este sistema de ecuaciones lineales por cualquier método númerico se encuentran los valores de los parámetros β_0 , β_1 , β_2 y β_3 . En este caso el sistema de ecuaciones lineales se resolverá por un método de matrices, por lo que la ecuación (17) se puede expresar en forma matricial de la siguiente manera.

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_{11} \ x_{12} \ \vdots \ x_{1k} \\ x_{21} \ x_{22} \ \vdots \ x_{2k} \\ \vdots \\ x_{n1} \ x_{n2} \ \vdots \ x_{nk} \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \\ \vdots \\ \boldsymbol{\beta}_k \end{bmatrix}$$

Por lo tanto las n ecuaciones que representan las y_i como función de las x y las β se pueden escribir simultáneamente como

despejando β de (18) tenemos:

$$\beta = X^{-1}Y$$
(19)

Ahora con la ayuda de la computadora se puede uno ahorrar todo este trabajo que involucra el análisis de regresión múltiple, utilizando un macro hecho en Lotus que realiza todo este trabajo tan tedioso, y así obtener los parámetros de las correlaciones. A continuación se describe el macro que realiza el análisis de regresión múltiple.

```
{goto}a3 ~/mcy ~ .{end}{down} ~
{right}/rncx ~ . {end}{down}{end}{right} ~
{goto}i3~/rtx ~ ~/rncxt - . {end} {down}{end}{right} -
{goto}i7-/dmmxt-x-j7-/mcxtx-.{end}{down}{end}{right}-
{goto}n7-/dmixtx-n7-/mcinversa-.{end}{down}{end}{right}-
\{goto\}i12 - /dmmxt - y - i12 - /mcxtxy - . \{end\} \{down\} -
{goto}112 ~/dmminversa ~ xty~112~/mcfin~. {end}{down}~
{goto}120~+@avg(y)~
\{goto\}f3 - + \$1\$12 + \$1\$13*c3 + \$1\$14*d3 + \$1\$15*c3 - /c - . \{left\} \{end\}
{down}{right} ~
\{right\}+(a3-f3)^2-/c-.\{left\}\{end\}\{down\}\{right\}-/rncsce-\{end\}
{down}~
{right}+(f3-$1$120)^2/c-. {left} {end} {down} {right}-/mcsr-
{end}{down}
{goto}118~+@sum(scr)/(@sum(sce)+@sum(scr))~
/RNC\I~A214~
/RNR~/RNC\R~A200~
{goto}F3/REf3..iv199~
```

4.7. Comportamiento Térmico.

Aunque un número de relaciones funcionales en forma exponencial fueron investigadas por Electric Power Research Institute (EPRI) solamente se incluyen las mejores correlaciones de datos, en está tesis.

Así, las tres correlaciones que fueron usadas para ambas torres a contra flujo y flujo cruzado son:

Correlación No 1: $Ka/L^{*} = C(L^{+}/G^{+})^{a_{1}}$ Correlación No 2: $Ka/L^{*} = C(L^{+})^{a_{2}}(G^{+})^{a_{3}}$ Correlación No 3: $Ka/L^{*} = C(L^{+})^{a_{2}}(G^{+})^{a_{3}}(T^{+})^{a_{4}}$

29

and the she bear and the second

Para rellenos a contra flujo, el parámetro "Distancia que Viaja el Aire" (DVA⁺) fue incluido en las tres correlaciones con el exponente n_s, porque el rendimiento de un relleno a contra flujo es dependiente de la altura del relleno, por lo que, las correlaciones se expresan como sigue:

> Correlación No 1': Ka/L" = $C(L^+/G^+)^{s1}(DVA)^{s5}$ Correlación No 2': Ka/L" = $C(L^+)^{s3}(G^+)^{s3}(DVA)^{s5}$ Correlación No 3': Ka/L" = $C(L^+)^{s3}(G^+)^{s3}(T^+)^{s4}(DVA)^{s5}$

El uso de los valores L⁺, G⁺ y DVA⁺ indican números adimensionales de L y G obtenidos de la división de L^{*}, G^{*} y DVA entre sus respectivos valores de referencia de L^{*}₀=6000 lb/hr-ft² (9780.36 kg/hr-m³) y G^{*}₀=2000 lb/hf-ft² (2341.09 kg/hr-m³) para rellenos a flujo cruzado y L^{*}₀=2500 lb/hr-ft² (12225.45 kg/hr-m²) G^{*}₀=2500 lb/hr-ft² (12225.45 kg/hr-m³) para rellenos contra flujo; para ambos tipos de relleno T₀=110°F (43.6°C) y DVA₀=6 ft (1.83 ft). Estos valores de referencia fueron seleccionados como valores representativos en cada tipo de torre de tiro mecánico, según experiencia de EPRI. Una importante ventaja de usar valores adimensionales es la necesidad de emplear menos cifras significativas en los exponentes de L⁺ y G⁺.

Para graficar las correlaciones de comportamiento térmico se desglosan las correlaciones para que queden en función de los parámetros geométricos de la torre y se pueda generalizar para diferente "distancia de viaje del aire" (DVA) y altura del relleno (H), por lo que desglosando la primera correlación para torres a contra flujo tenemos:

$$\frac{Ka}{L''} = C \left(\frac{LA_G G_0''}{L_0'' A_L G} \right)^{n1} (DVA^*)^{n5}$$

como para una torre a contra flujo las áreas A_G y A_L y los valores de referencia L^{*}_0 y G^{*}_0 son iguales se cancelan, quedando la ecuación como sigue:

$$\frac{Ka}{L''} = C \left(\frac{L}{G}\right)^{n_1} (DVA^*)^{n_5} \dots \dots \dots (20)$$

Es importante notar que para obtener el KaV/L como aparece en el CTI es necesario multiplicar la ecuación (20) por la altura del relleno y así obtener el KaV/L.

Elaborando una base de datos en Lotus y utilizando la primera correlación para después exportarla a un sofware llamado Harvard Graphics para graficar la base de datos en escala logarítmica para diferentes alturas de relleno (ver anexo "B").

Una vez obtenidas estas gráficas pueden ser sobrepuestas sobre las curvas de comportamiento del CTI, y poder así, seleccionar el relleno y la altura adecuada del relleno para ciertas condiciones de operación, como son: aproximación, relación L/G y KaV/L o número de unidades de difusión. Por otra parte, para una torre a flujo cruzado las áreas A_d y A_L son diferentes por lo que la correlación queda de la siguiente forma:

$$\frac{Ka}{L''} = C\left(\frac{2\cdot L\cdot l \cdot H \cdot N \cdot G_0''}{2\cdot L_0'' \cdot l \cdot D V A \cdot N \cdot G}\right)^{nl}$$

simplificando la ecuación obtenemos:

$$\frac{Ka}{L''} = C \left(\frac{L \cdot H \cdot G_0''}{L_0'' \cdot D V A \cdot G} \right)^{nI} \dots \dots (21)$$

Al igual que en las torres a contra flujo, para obtener el KaY/L como aparece en el Kelly's es necesario multiplicar la ecuación (21) por la altura del relleno y así obtener KaY/L, y siguiendo el mismo procedimiento antes descrito para obtener las gráficas de comportamiento térmico de los rellenos, excepto que es para diferente altura del relleno y distancia de viaje del aire a través de la torre (ver gráficas en anexo "C"); y sobreponiendo estas gráficas sobre el libro del Kelly's, se puede seleccionar el relleno adecuado para ciertas condiciones de operación de la torre como son: aproximación relación L/G y KaY/L ó número de unidades de difusión.

Para poder corroborar los parámetros C, n, n, n, n, n, y n, q v n, que está reportando EPRI en las correlaciones de comportamiento térmico de los rellenos, los datos que reporta el EPRI fueron cargados en una hoja de cálculo para que ésta información sea fácilmente manipulada, siendo 320 valores en promedio por relleno, estando distribuidos de la siguiente manera: S columnas x 64 renglones; en la primera columna se tiene el valor de L en la segunda los valores de G, en la tercera columna los valores de L"/G", en la cuarta columna los valores de Ka/L" y en la quinta los valores de N_{vii}; una vez cargada toda la información en las hojas de cálculo, obtenemos sus respectivos logaritmos naturales de todos los valores para poder aplicar el análisis de regresión móltiple y usando el macro que se describió anteriormente, se encuentra el valor de los parámetros; recordando que el valor de C debe de obtenerse el antilogaritmo natural (e^c) según la ecuación (16), éste procedimiento se realizó para los dieciséis rellenos, los valores de los parámetros se muestran en las blas 4.1 y 4.2.

4.8. Caída de presión.

La caída de presión a través del relleno fue tradicionalmente expresado en términos de una presión dinámica por unidad de longitud del relleno, siendo la siguiente expresión:

$$\frac{N_{VV}}{DVA} = \frac{\Delta P}{\frac{1}{2g}\rho_a (V_a)^2 DVA} = \frac{2g\Delta P\rho_a}{(G'')^2 DVA} \dots \dots (22)$$

Para unificar el tratado de caída de presión y transferencia de masa, se expresa una correlación que involucre el flujo de agua y aire. Esta correlación está expresada en términos de valores adimensionales de L⁺ y G⁺, los cuales son obtenidos dividiendo L^{*} y G^{*} por sus valores de referencia como se mencionó en el punto previo a esté. Así, la correlación es:

$$\frac{N_{VH}}{DVA} = C_1 (L^*)^{C_1} (G^*)^{C_1} \qquad \{ft^{-1}\} \qquad \dots \dots (23)$$

Para rellenos a contra flujo el parámetro "distancia que viaja el aire" (DVA⁺) es incluido con el exponente C₄, porque el rendimiento de un relleno a contra flujo es dependiente de la altura del relleno.

$$\frac{N_{VH}}{DVA} = C_1 (L^*)^{C_1} (G^*)^{C_1} (DVA^*)^{C_4} \qquad [ft^{-1}] \qquad \dots \dots \qquad (24)$$

Combinando las ecuaciones (22) y (23) tenemos

$$C_{1}(L^{*})^{C_{2}}(G^{*})^{C_{3}} = \frac{2g \cdot \Delta P \cdot p_{a}}{(G'')^{2} \cdot DVA} \qquad \dots \dots (25)$$

Despejando ΔP de (25)

La ecuación (26) es sólo para rellenos a flujo cruzado, para rellenos a contra flujo se añade (DVA⁺) con en el exponente C₄ teniendo la ecuación siguiente:

$$\frac{\Delta P}{DVA} = \frac{C_1 (L^*)^{C_1} (G^*)^{C_1} (DVA^*)^{C_4} (G'')^2}{2g' \rho_a} \qquad \left[\frac{1b}{ft^2 - ft}\right] \dots \dots \dots (27)$$

La ΔP se da por unidad de longitud para poder generalizar cualquier relleno. Considerando una densidad estándar de aire $\rho = 0.075 \text{ lb/ft}^3$ y realizando la transformación de unidades:

 $0.0361 \text{ lb/plg}^2 = 1 \text{ plg de H}_2\text{O}$

$$\frac{\Delta P}{DVA} = \frac{C_1(L^*)^{C_2}(G^*)^{C_3}(G'')^{1}}{325'403,205.1} \qquad \left[\frac{plg \ de \ H_2O}{ft}\right] \dots (26')$$

$$\frac{\Delta P}{DVA} = \frac{C_1 (L^*)^{C_1} (G^*)^{C_1} (DVA^*)^{C_1} (G')^2}{325'403,205.1} \left[\frac{plg \ de \ H_2O}{ft} \right] \dots (27')$$

Los parámetros C₁, C₂, C₃ y C₄ fueron obtenidos de la misma forma que los parámetros n_1 , n_2 , n_3 y n_4 mediante un análisis de regresión lineal explicado previamente.

Tabulando las ecuaciones (26') y (27') en una hoja de cálculo e importando la base del Harvard Graphics obtenemos las gráficas mostradas en el anexo "D" y "E".

En la tabla 4.3 se muestran los valores de los parámetros $C_1, \ C_2, \ C_3 \ y \ C_4$ de cada uno de los relienos.

Una vez calculada la caída de presión se debe multiplicar por la densidad estándar del aire (p=0.75 lb/hr) y dividir por la densidad promedio del aire que circula a través del relleno, y multiplicar por la distancia de viaje del aire, para obtener la caída de presión.

33

A continuación se muestra un resumen de este capítulo

TORRE A FLUJO CRUZADO.

Valores de referencia: $L^*_0 = 6000 \text{ lb/hr-ft}^2$ $G^*_0 = 2000 \text{ lb/hr-ft}^2$ $T_0 = 110^\circ\text{F}$ $DVA_0 = 6 \text{ ft}$

Valores adimensionales:

G+=G"/G";;

 $T^+ = T_{m}/T_0;$

Donde:

 $L^{*} = L/A_{L} = L/(2 \cdot w \cdot DVA \cdot N)$

 $G^* = G/A_{\sigma} = G/(2 \cdot w \cdot H \cdot N)$

Correlaciones para comportamiento térmico:

- 1. $Ka/L^* = C(L^+/G^+)^{al}$
- 2. Ka/L* = $C(L^+)^{a^2}(G^+)^{a^3}$
- 3. Ka/L"=C(L+)n2(G+)n3(T+)n4

Correlación de caída de presión:

$$\frac{\Delta P}{DVA} = \frac{C_1 (L^*)^{C_2} (G^*)^{C_3} (G'')^2}{325'403, 205.1} \qquad \left[\frac{plg \ de \ H_2 O}{ft} \right]$$

TORRES A CONTRA FLUJO.

Valores de referencia: $L_{0}^{*} = 2500 \text{ lb/hr-ft}^{2}$ $G_{0}^{*} = 2500 \text{ lb/hr-ft}^{2}$ $DVA_{0}=6 \text{ ft}$ $T_{0}= 110^{\circ}\text{F}$

Valores adimensionales:

L+=L"/L";

G⁺=G⁺/G^{*}₀;

 $T^+ = T_{ec}/T_0;$

Donde:

$$L^{n} = L/A_{1} = L/(w \cdot l \cdot N)$$

 $G'' = G/A_q = G/(w \cdot l \cdot N)$

DVA+=DVA/DVA0

Correlaciones para comportamiento térmico:

- 1. Ka/L" = $C(L^+/G^+)^{n1}(DVA^+)^{n5}$
- 2. Ka/L^{*} = $C(L^{+})^{n^{2}}(G^{+})^{n^{3}}(DVA^{+})^{n^{3}}$
- 3. $Ka/L^* = C(L^+)^{a_2}(G^+)^{a_3}(T^+)^{a_4}(DVA^+)^{a_5}$

Correlación de caída de presión:

$$\frac{\Delta P}{DVA} = \frac{C_1 (L^*)^{C_3} (G^*)^{C_3} (DVA^*)^{C_4} (G'')^2}{325' 403, 205.1} \qquad \left[\frac{plg \ de \ H_2O}{ft} \right]$$

	Correlación											
	1			2				1				
Relicao	С	ai	n 5	С	n 2	ม	n5	С	n2	لم	n4	n.5
Munters 12060	0.817	-0.60	-0.042	0.820	-0.62	0.54	-0.041	0.826	-0.61	0.50	-0,34	-0.045
Munters 19060	0.477	-0.52	-0.180	0.476	-0.50	0.58	-0.170	0.483	-0.50	0.58	-0.40	-0.170
American Tower Plastic Coolfilm	0.418	-0.50	-0.360	0.417	-0.49	0.55	-0.360	0.421	-0.49	0.56	-0.35	-0.360
American Tower Plastic Cooldroop	0.170	-0,39	-0.500	0.169	-0.36	0.48	-0.500	0.170	-0.38	0.48	-0,54	-0.460
Marley MC67	0.392	-0.61	-0.340	0.393	-0.61	0.58	-0.340	0.397	-0.60	0.62	-0.60	-0.360
Ecodyne Shape 10	0.164	-0,33	-0.480	0.158	-0.26	0.60	-0.470	0.156	-0.26	0.58	-0.45	-0.400
Toschi Fiber Cemcat	0.238	-0.62	-0.530	0.229	-0.51	0.95	-0.540	0.232	-0.51	0.93	-0.52	-0.540
Brenwood Industrics Accu-Pac	0.440	-0,69	-0.280	0.441	-0.60	0.58	-0.280	0.448	-0.60	0.60	-0.38	-0.280

Valor de los Parámetros para Evaluar el Comportamiento Térmico de los Rellenos a Contra Flujo

Tabla 4.1

Valor de los Parámetros para Evaluar el Comportamiento Térmico de los Rellenos a Flujo Cruzado

	Correlación								
	1 2				3				
Relicno	с	ai	с	n2	n3	С	n2	n3	n4
Doron V-Bar 4"x8" estacado	0.0490	-0.52	-0.049	-0.52	0.52	0.0489	-0.58	0.52	-0.44
Doron V-Bar 8"x8" en línea	0.0521	-0.34	0.0521	-0.34	0.34	0.0515	-0.34	0.32	-0.43
Ecodyne T-Bar 4"x8" estacado	0.0606	-0.27	0.0619	-0.46	0.18	0.0616	-0.48	0.20	0.31
Ecodyne T-Bar 8"x8" en línea	0.0563	-0.31	0.0571	-0.43	0.13	0.0566	-0.44	0.14	-0.29
Wood Lath (paralelo) 4"x4" estacado	0.0563	-0.40	0.0577	-0.54	0.22	0.0576	-0.54	0.23	-0.29
Wood Lath (perpendicular) 4"x8" estacado	0.0657	-0.50	0.0658	-0.52	0.48	0.0658	-0.51	0.47	-0.34
Marley Alpha-Bar 4"x16" estacado	0.0593	-0.46	0.0591	-0.42	0.49	0.0646	~0.41	0.50	-0.42
Marley Ladder 4" estacado	0.0710	-0.45	0.0710	-0.45	0.46	0.0712	-0.45	0.45	-0.48

Table 4.2

Relieno	CI	C2	C3	C4
Doron V-Bar (Heavy-Duty) 4"x8" estacado	0.441	0.660	-0.073	-
Doron V-Bar (Heavy-Duty) 8"x8" en línea	0,599	0.720	-0.820	-
Ecodyne T-Bar 4"x8" estacado	1.239	1.340	0,220	-
Ecodyne T-Bar 8"x8" en línea	0.738	0.894	0.068	-
Wood Lath (paralelo) 4"x4" estacado	0.970	0.760	-0.800	-
Wood Lath (perpendicular) 4"x8" estacado	1.370	0.710	-0.590	-
Marley Alpha-Bar 4"x16" estacado	1.050	0.710	-0.850	-
Marley Ladder 4" estacado	2.464	0.591	0.156	-
Munters 12060	5.860	0.340	0.190	0.017
Munters 19060	2.910	0.310	-0.048	0.014
American Tower Plastics Coolfilm	3,080	0.230	-0.039	0.038
American Tower Plastics Cooldrop	1.320	0.850	0.060	-0.170
Marley MC67	2.540	0.270	-0.140	0.005
Ecodyne Shape 10	0.715	1.100	-0.640	0.320
Toschi Fiber Cement	0.458	0.990	0.035	0.170
Brentwood Industries Accu-Pac	1.910	0.310	0.099	0.450

Valor de los Parámetros para Evaluar el Comportamiento de Caída de Presión

• sólo para rellenos a contra flujo

Tabla 4.3

Figura 4.2. Relleno a flujo cruzado : Ecodyne T-Bar 4in x 8in y 8in x 8in Fuente: EPRI GS-6370 Volumen dos

Figura 4.4. Relieno a flujo eruzado: Wood Lath 4in x 4in. Orientación perpendicular Fuente: EPRI OS-6370 Volumen dos

Figura 4.5. Reileno a flujo cruzado: Marley Alpha-Bar. Orientación perpendicular

Fuente: EPRI GS-6370 Volumen dos

Figura 4.6. Relleno a flujo eruzado: Marley Ladder, Orientación perpendicular Fuente: EPRI GS-6370 Volumen dos

Figura 4.7, relleno a contra flujo: Munters 12060 y 19060 Fuente: EPRI GS-6370 Volumen dos

Figura 4.8, Relleno a contra Iluío: American Tower Plastics Coolfilm Fuente: EPRI GS-6370 Volumen dos

and the second second second second

A = 0.45 in. B = 1.17 in. G = 0.01 in, Munters 19060 = 0.73 in. B = 1.80 m.

Figura 4.10, Relleno a contra flujo: Ecodyne Shape 10 Fuente: EPRT GS-6370 Volumen dos

Figura 4.11. Relleno a contra flujo: Marley MC67

Figura 4.12. Relleno a contra flujo: Toschi Asbestos-Free Fiber Cement Fuente: EPRI GS-6370 Volumen dos

Figura 4.13. Relleno a contra flujo: Brentwood Industries Accu-Pac Fuente: EPRI GS-6370 Volumen dos

Capítulo 5

5. Comparación entre Torres a Contra Flujo y Flujo Cruzado. 5.1. Torre a Contra Fluio

La comparación entre torres a contra flujo y flujo cruzado se hará mediante un ejemplo que muestre las diferencias entre una y otra torre bajo las mismas condiciones de operación, para esta comparación se seleccionaron los mejores rellenos de cada torre en comportamiento térmico, para la torre a contra fluio de seleccionó el Munters 12060 y para la torre a flujo cruzado se seleccionó el Marley Ladder.

Elemplo:

Calcular la potencia de ventiladores y de bombeo que se requiere para enfriar 280,000 gpm (17,68 m³/s) de agua de una temperatura de 119°F (48.3°C) a 89°F (31,67°C) con una temperatura de bulbo húmedo de 81°F (27.2°C) utilizando ventiladores de 48 ft (14.63 m) de diámetro.

Datos

 $L=280\ 000\ gpm\ (17.68\ m^3/s)$ $T_{\mu} = 119^{\circ}F (48.3^{\circ}C)$ T,=89°F (31.67°C) $T_{u} = 81^{\circ}F(27.2^{\circ}C)$ $D_{4} = 48 \text{ ft} (14.63 \text{ m})$ dimensiones de la celda 65 ft x 50 ft relleno: Munters 12060 4 ft (1.22 m) de |ga| = 8.34 lb altura N = 11 celdas $A = 8^{\circ}F(4.4^{\circ}C)$ Solución: Sobreponiendo la curva de comportamiento $L'' = L/A_{L}$

térmico del Munters 12060 sobre la curva de comportamiento de la torre del Cooling Towers Institute, a una temperatura de bulbo húmedo de 81°F y Rango de 30°F; el punto donde cruce con la curva de aproximación de 8°F se obtienen los valores siguientes (ver fig. 5.1):

KaV/L=2.5: L/G = 1.55 Sabemos que:

 $A_{q} = A_{L} = w x I x N$ $A_{1} = A_{1} = 65 \times 50 \times 11$ $A_{a}=A_{1}=35750 \text{ ft}^{2}$ L = (280000)(8,34)(60)L=140112000 lb/hr L=63687.27 ton/hr

 $L^{*} = 140112000/35750$ L'' = 3919.22 lb/hr-ft²

 $G^* = L^*/1.55$ G'' = 3919.22/1.55G"=2528.53 lb/hr-ft2

如果是 #16.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #17.11 #1

Calculando la densidad promedio del aire

(ρ_{o}) a través del relleno. Con la temperatura de bulbo húmedo de 81°F obtenemos de las tablas del ATC-105 (ver anexo "A").

 $\rho_1 = 0.07241 \text{ lb/ft}^3$ H=44.78 BTU/lb

para la densidad de salida del relleno (ρ_2) utilizamos la ecuación (10)

 $H' = L/G(T_{s} - T_{s}) + H$

sustituyendo valores.

H'=(1.55)(119-89)+44.78 H'=91.28 BTU/lb

De tablas de entalpía (ver anexo "A") con el valor de H' encontramos el valor de $T_2 \approx 109.55^{\circ}F$ y con esta temperatura obtenemos la densidad del aire que se supone saturado.

ρ2=0.067642 lb/ft1

obteniendo la densidad promedio

$$\rho_a = \frac{0.07241 + 0.067462}{2}$$

 $\rho_{a} = 0.069936 \text{ lb/ft}^{3}$

Calculando la caída de presión a través de las persianas de entrada, mediante la siguiente ecuación:

$$\Delta P_{PE} \approx \frac{N_{VH}(G'')^2}{2 \cdot g \cdot \rho_1}$$

en este caso el valor de N_{VH} lo debe proporcionar el fabricante de la torre, por lo que supondremos un valor de 3 sustituyendo valores

$$\Delta P_{PB} = \frac{3\left(\frac{2528.53}{3600}\right)^2}{(2)(32.2)(0.07241)}$$

$$\Delta P_{PE} = 0.3174 \frac{lb}{fr^2}$$

$$\Delta P_{PR} = \frac{0.3174}{(144)(0.0361)}$$

 $\Delta P_{PE} = 0.06106 \ plg \ de \ H_2O$

Para obtener la caída de presión a través del relieno, aplicamos la ecuación (27') y la tabla 4.3 para obtener el valor de los parámetros.

Primeramente determinamos los valores adimensionales.

 $L^{+}=3919.22/2500=1.5677$

G*=2528.53/2500=1.0114

DVA+=4/6=0.6667

Sustituyendo en (27')

 $\frac{\Delta P}{DVA} = \frac{(5.86)(1.5677)^{0.34}}{325403205.1} *$

(1.0114)0.19(0.6667)0.017(2528.53)2

$$\frac{\Delta P}{DVA} = 0.1336 \frac{plg \ de \ H_2O}{ft}$$

multiplicando por el DVA, la densidad estándar y dividiendo por la densidad promedio, obtenemos la ΔP del relleno

 $\Delta P_{\text{RELLENO}} = (0.1336)(4)(0.075)/0.069936$

 $\Delta P_{\text{RELLENO}} = 0.5731 \text{ plg de H}_20$ $\Delta P_{\text{RELLENO}} = 14.56 \text{ mm de H}_20$

Para la caída de presión a través del eliminador de húmedad se tiene que:

ΔPPE=ΔPPLENUM=ΔPPENT, VENT

utilizando la siguiente ecuación:

$$\Delta P_{PE} = \frac{N_{VH}(G'')^2}{2 \cdot g \cdot \rho_2}$$

al igual que en las persianas de entrada el valor de N_{vil} lo debe de proporcionar el fabricante da la torre, por lo que supondremos un valor de 5 $^{\circ}$

$$\Delta P_{EH} = \frac{(5) \left(\frac{2528.53}{3600}\right)^2}{(2) (32.2) (0.067462)}$$

 $\Delta P_{EH} = 0.5677 \text{ lb/h}^2$ $\Delta P_{EH} = 0.1092 \text{ plg de H}_2\text{O}$ $\Delta P_{EH} = 2.7741 \text{ mm de H}_2\text{O}$

Obteniendo la caída de presión a través del ventilador mediante la ecuación siguiente:

$$\Delta P = \frac{V^2 \cdot \rho_2}{2 \cdot g}$$

donde:

V=ACFM/A_{ul}

los ACFM que maneja el ventilador se obtienen de la siguiente manera:

$$ACFM = \frac{A_c \cdot G''}{60 \cdot \rho_2}$$

donde:

 $A_c = w \times 1$ $A_c = 65 \times 50 = 3250 \text{ ft}^2$

Sustituyendo los valores encontrados

$$ACFM = \frac{(3250)(2528.53)}{(60)(0.067462)}$$

ACFM=2030210.217 ft3/min

sustituyendo estos valores, encontramos la velocidad

$$V = \frac{\frac{2030210.217}{\pi (48)^2}}{\frac{\pi (48)^2}{4}}$$

V = 1121.94 ft/min V = 18.7 ft/seg V = 5.7 m/seg

ahora, podemos obtener la caída de presión en el ventilador sustituyendo los valores obtenidos.

$$\Delta P = \frac{(18.7)^2 (0.067462)}{(2) (32.2)}$$

$$\Delta P = 0.3663 \frac{lb}{ft^2}$$

 $\Delta P = 0.07047$ plg de H₂O

⁹ EPRI, "Cooling Tower Performance, Prediction and Improvement".

ΔP=1.7899 mm de H₂O

La caída de presión total en la torre, es la suma de las ΔP 's parciales

 $\Delta P_{\text{real}} = \Delta P_{\text{PE}} + \Delta P_{\text{Relleno}} + \Delta P_{\text{eh}} + \Delta P_{\text{rlenum}} + \Delta P_{\text{pent, vent}} + \Delta P_{\text{sal, vent}}$

 $\Delta P_{\text{total}} = 0.06106 + 0.5731 + 0.1092 + (0.07047)(3)$

 $\Delta P_{total} = 0.9548 \text{ pig de } H_2\text{O}$ $\Delta P_{total} = 4.96 \text{ lb/ft}^2$ $\Delta P_{total} = 24.25 \text{ mm de } H_2\text{O}$

la potencia requerida por los ventiladores, se obtiene con la siguiente ecuación.

$$Pot = \frac{ACFM \cdot \Delta P_{total}}{33000 \, \eta_v}$$

suponiendo una eficiencia de $\eta_{e}=0.75$

 $Pot = \frac{(2030210.217)(4.96)}{(33000)(0.75)}$

Pot=406.86 HP

Pot=303,52 KW

como cada celda requiere un ventilador y son 11 celdas

Pot_{totat}=3338.71 KW.

Para poder obtener la potencia de bombeo que se requiere para que el agua asciende a la parte alta de la torre, se calcularán las pérdidas primarias y secundarias en el sistema de distribución.

Se necesita que el área del relleno este totalmente mojada, por lo que se colocan espreas para que rieguen el área del relleno, mediante esto se selecciona una esprea 6HSS5690SQ, cada esprea maneja 480 gpm y tiene una distancia de separación al relleno de 3 ft (0.9144 m) con un ángulo de descarga de 102° y moja un área total de 7905.45 plg² (5.1 m²), por lo tanto, calculando el número de espreas.

 $Ne = 3250/(3.28^2 x 5.1)$

Ne = $59.22 \approx 60$ espreas

distribuidas de la siguiente manera: 6 ramales por celda y en cada ramal 10 espreas.

la distancia entre un tubo ascendente y otro es de 50 ft (15.24 m)

Determinando el gasto que circula a través del cabezal principal:

0.002228 ft3/seg = 1 gpm

Q = (280000)(0.002228)

 $Q = 623.84 \text{ ft}^3/\text{seg}$ $Q = 17.68 \text{ m}^3/\text{seg}$

Para lograr una buena distribución del flujo de agua, está se distribuirá en la misma proporción en cada celda, por lo tanto, el flujo de agua en cada celda será:

Q=17.68/11=1.61 m³/seg

ver figura 5.2 para visualizar el arreglo del sistema de distribución

la caída de presión en la T del cabezal de distribución, se obtiene aplicando la ecuación siguiente:

$$h_r = \lambda \frac{V^2}{2 \cdot g}$$

(28)

el valor de $\lambda = 2^{10}$ para una T que bifurca el flujo hacia arriba y horizontalmente.

Por normalización se requiere una velocidad de 2.5 a 3 m/s para evitar erosiones en la línea, por lo que se asumirá una V=3 m/s para toda la línea.

sustituyendo valores

 $h_r = (2)(3)^2/(2x9.81)$ $h_r = 0.92 \text{ m}$

como son 10 T's

h,=9.2 m

Calculando las pérdidas primarias en el cabezal mediante la ecuación de Darcy-Weisbach

$$h_r = \lambda \frac{L \cdot V^2}{D \cdot 2 \cdot g}$$
(29)

para la caída de presión del cabezal de la primera T a la segunda T, el gasto va disminuyendo, por lo que, el diámetro de la tubería se puede disminuir.

 $Q = 17.68 - 1.61 = 16.07 \text{ m}^3/\text{s}$

determinando el diámetro de la tubería mediante la ecuación de continuidad

 $Q = VA = V \pi D^2/4$

despejando D

$$D = \sqrt{\frac{4Q}{\pi V}}$$

sustituyendo valores

$$D = \sqrt{\frac{4x16.07}{3x\pi}}$$

D=2.61 m

el Reynolds se obtiene con la siguiente ecuación:

$$R\Theta = \frac{V \cdot D}{v}$$

el valor de $\nu = 1.79 \times 10^{-5} \text{ m}^2/\text{s}$

sustituyendo valores

Re=(3x2.61)/1.79x10⁻⁵=4.374x10⁵

En toda la tubería se usará hierro galvanizado a menos que se especifique otra cosa.

La rugosidad del hierro galvanizado es $\epsilon = 0.20 \text{ mm} = 0.0002 \text{ m}$

$$\frac{2}{D} = \frac{0.2 \times 10^{-3}}{2.61} = 0.000077$$

Utilizando el diagrama de Moody para obtener el coeficiente de fricción λ (ver figura 5.3)

 $\lambda_{1,2} = 0.015$

la longitud entre cada tubo ascendente es de 15.24 m y aplicando (29)

$$h_{r1,2} = \frac{(0.015)(15.24)(3)^2}{(2.61)(2)(9.81)}$$

¹⁰ Claudio Mataix, "Mecánica de Fluidos y Máquinas Hidraúlicas".

h_{r1.2}=0.040 m

para la siguiente distancia, repetimos el mismo procedimiento.

$$Q = 16.07 \cdot 1.61 = 14.46 \text{ m}^3/\text{s}$$
$$D = \sqrt{\frac{(4)(14.46)}{(\pi)(3)}}$$

D=2.48 m

$$Re = \frac{(3)(2.48)}{1.79 \times 10^{-5}} = 4.16 \times 10^{5}$$

$$\frac{e}{D} = \frac{0.2\kappa 10^{-3}}{2.48} = 0.000081$$

del diagrama de Moody

λ13=0.016

aplicando (29)

 $h_{r2,3} = \frac{(0.016)(15.24)(3)^2}{(2.48)(2)(9.81)}$

ha3=0.045 m

como el procedimiento iterativo se omitirá explicación

$$Q = 14.46 - 1.61 = 12.85 \text{ m}^3/\text{s}$$

 $D = \sqrt{\frac{(4)(12.85)}{(\pi)(3)}}$

D≈2.34 m

$$Re = \frac{(3)(2.34)}{1.79 \times 10^{-5}} = 3.92 \times 10^{5}$$

 $\frac{e}{D} = \frac{0.2 \times 10^{-3}}{2.34} = 0.000085$

del diagrama de Moody

$$\lambda_{3.4} = 0.0165$$

aplicando (29)

$$h_{r3,4} = \frac{(0.0165)(15.24)(3)^2}{(2.34)(2)(9.81)}$$

h_{r3.4}=0.049

Q=12.85-1.61=11.24 m3/s

$$D = \sqrt{\frac{(4)(11.24)}{(\pi)(3)}}$$

D=2.18 m

$$Re = \frac{(3)(2.18)}{1.79 \times 10^{-5}} = 3.65 \times 10^{5}$$

 $\frac{e}{D} = \frac{0.2 \times 10^{-3}}{2.18} = 0.000092$

del diagrama de Moody

λ. = 0.017

aplicando (29)

$$h_{r4,5} = \frac{(0.017)(15.24)(3)^2}{(2.18)(2)(9.81)}$$

 $h_{N,3} = 0.055 \text{ m}$

Q=11.24-1.61=9.63 m3/s

$$D = \sqrt{\frac{(4) (9.63)}{(\pi) (3)}}$$

D == 2.02 m

$$Re = \frac{(3)(2.02)}{1.79 \times 10^{-5}} = 3.39 \times 10^{5}$$

$$\frac{e}{D} = \frac{0.2 \times 10^{-3}}{2.02} = 0.00010$$

del diagrama de Moody

λ_{5.6}=0.0155

aplicando (29)

$$h_{15,6} = \frac{(0.0155)(15.24)(3)^2}{(2.02)(2)(9.81)}$$

h_{r5.6}=0.054 m

$$D = \sqrt{\frac{(4)(8.02)}{(\pi)(3)}}$$

D=1.84 m

$$Re = \frac{(3)(1.84)}{1.79 \times 10^{-5}} = 3.08 \times 10^{5}$$

$$\frac{e}{D} = \frac{0.2 \times 10^{-3}}{1.84} = 0.00011$$

del diagrama de Moody

 $\lambda_{6.7} = 0.016$

aplicando (29)

$$h_{x6,7} = \frac{(0.016)(15.24)(3)^2}{(1.84)(2)(9.81)}$$

h_{e6.7}=0.061 m

Q=8.02-1.61=6.41 m³/s

$$D = \sqrt{\frac{(4) (6.41)}{(\pi) (3)}}$$

 $Re = \frac{(3)(1.65)}{1.79 \times 10^{-5}} = 2.77 \times 10^{5}$

 $\frac{e}{D} = \frac{0.2 \times 10^{-3}}{1.65} = 0.00012$

del diagrama de Moody

λ_{7.8}=0.0157

aplicando (29)

$$h_{27,8} = \frac{(0.0157)(15.24)(3)^2}{(1.65)(2)(9.81)}$$

h.7.4=0.067 m

$$D = \sqrt{\frac{(4)(4.8)}{(\pi)(3)}}$$

D=1.43 m

 $Re = \frac{(3)(1.43)}{1.79 \times 10^{-5}} = 2.5 \times 10^{5}$

$$\frac{e}{D} = \frac{0.2 \times 10^{-3}}{1.43} = 0.00014$$

del diagrama de Moody

λ_{8.9}=0.016

aplicando (29)

$$h_{rs,9} = \frac{(0.016)(15.24)(3)^2}{(1.43)(2)(9.81)}$$

h_{d.9}=0.078 m

$$D = \sqrt{\frac{(4)(3.19)}{(\pi)(3)}}$$

D=1.16 m

$$Re = \frac{(3)(1.16)}{1.79 \times 10^{-5}} = 1.94 \times 10^{5}$$

$$\frac{\mathbf{c}}{D} = \frac{0.2 \times 10^{-3}}{1.16} = 0.00017$$

del diagrama de Moody

λ_{9,10}=0.017

aplicando (29)

$$h_{r9,10} = \frac{(0.017)(15.24)(3)^2}{(1.16)(2)(9.81)}$$

h_{r9,10}=0.10 m

$$D = \sqrt{\frac{(4)(1.58)}{(\pi)(3)}}$$

D=0.82 m

1

$$Re = \frac{(3)(0.82)}{1.79 \times 10^{-5}} = 1.37 \times 10^{-5}$$

$$\frac{e}{D} = \frac{0.2x10^{-3}}{0.82} = 0.0002$$

del diagrama de Moody

 $\lambda_{10,11} = 0.018$

$$h_{r10,11} = \frac{(0.018)(15.24)(3)^2}{(0.82)(2)(9.81)}$$

h_{r10.11}=0.15 m

sumamos las pérdidas primarias parciales del cabezal de distribución y obtenemos las pérdidas totales del cabezal.

 $h_{r}=0.040 + 0.045 + 0.049 + 0.055 + 0.054 + 0.061 + 0.067 + 0.078 + 0.10 + 0.15$

h,=0.699 m

Calculando la pérdida por fricción a través del codo de 90° en el último tubo asceridente, del Crane obtenemos las siguientes relaciones: $r=1.23^{*}$; $D=0.82^{*}$

r/D=1.23/0.82=1.5

 $\epsilon/D = 0.0002/0.82$ $\epsilon/D = 0.00024$

con las relaciones r/D y ϵ /D obtenemos del White el valor de λ

λ=0.38

aplicando (28)

 $h_r = (0.38)(3)^2/(2x9.81)$ $h_r = 0.1743 \text{ m}$

como son dos codos en el mismo tubo ascendente

h.=0.3486 m

determinando la altura a la cual debe de estar el relleno para que circule la cantidad de aire requerida.

 $G^* = G/A_B = G/[h(2 \cdot a + 2 \cdot N \cdot i)]$

despejando h

 $h = G/[G^{*}(2 \cdot a + 2 \cdot N \cdot 1)]$

sustituyendo valores

h = 90394838.7/[2528.53(2x65+2x11x50)]

h=29.07 ft

h=8.86 m

más los 4 ft (1.22 m) de altura del relleno, más 3 ft de distancia de las espreas al relleno.

h = 8.86 + 1.22 + 0.91

h=10.99 m

determinando las pérdidas en el cabezal del ramal, situado en la parte alta de la torre. Del tubo ascendente pasa al cabezal del ramal mediante una T distribuyendose en dos direcciones por lo que $\lambda = 1.5$ según el Mataix (pág 240) y aplicando (28)

 $h_r = (1.5)(3)^2/[(2)(9.81)]$

h,=0.69 m

el gasto se bifurca en dos direcciones por lo que:

 $O = 1.61/2 = 0.0805 \text{ m}^3/\text{s}$

determinando el diámetro del cabezal de distribución a los ramales.

$$D = \sqrt{\frac{(4) (0.805)}{(\pi) (3)}}$$

D=0.585 m

Como es una T que divide al flujo en una dirección vertical y otra horizontal el valor de $\lambda=2$

como hay dos T's, y aplicando (28)

 $h_r = (2)(2)(3)^2/[(2)(9.81)]$

h,=1.83 m

Determinando las pérdidas por fricción en el cabezal del ramal

$$Re = \frac{(3)(0.585)}{1.79 \times 10^{-5}} = 9.8 \times 10^{4}$$

$$\frac{e}{D} = \frac{0.2 \times 10^{-3}}{0.585} = 0.00034$$

del diagrama de Moody

λ1=0.019

aplicando (29)

$$h_{r2} = \frac{(0.019) \left(\frac{15.24}{2}\right) (3)^2}{(0.585) (2) (9.81)}$$

h_a=0.11 m

Q=0.805-0.268=0.537 m3/s

$$D = \sqrt{\frac{(4)(0.537)}{(\pi)(3)}}$$

D=0.477 m

$$R\theta = \frac{(3)(0.477)}{1.79 \times 10^{-5}} = 7.9 \times 10^{4}$$

$$\frac{e}{D} = \frac{0.2 \times 10^{-3}}{0.477} = 0.00042$$

del diagrama de Moody

λ,=0.021

$$h_{r2} = \frac{(0.021)(15.24)(3)^2}{(0.477)(2)(9.81)}$$

h_{r2}=0.31 m

Q=0.537-0.268=0.269 m3/s

$$D = \sqrt{\frac{(4)(0.269)}{(\pi)(3)}}$$

D=0.34 m

$$Re = \frac{(3)(0.34)}{1.79 \times 10^{-5}} = 5.7 \times 10^{5}$$

 $\frac{e}{D} = \frac{0.2 \times 10^{-3}}{0.34} = 0.00059$

del diagrama de Moody

λ₁=0.022

aplicando (29)

$$h_{rJ} = \frac{(0.022)(15.24)(3)^2}{(0.34)(2)(9.81)}$$

h_{r3}=0.45 m

determinando la caída de presión a través del codo del cabezal del ramal, del Crane $r=21^{\circ}$; $D=14^{\circ}$

r/D=21"/14"=1.5

€/D=0.2x10-3/0.34=0.00059

del White obtenemos

λ=0.25

aplicando (28)

 $h_r = (0.25)(3)^2/(2x9.81)$ $h_r = 0.115 \text{ m}$

sumando las pérdidas parciales

 $h_r = 0.69 + 1.83 + 0.11 + 0.31 + 0.45 + 0.115$

h, = 3.505 m

Determinando las pérdidas a través del ramal

La pérdida por esprea se considera como una contracción brusca, por lo tanto, el

valor de λ lo encontramos en la gráfica del Mataix pág 239 a 102°

D/d=6/(103/32)=1.86

y obtenemos el valor de λ

λ=0.3

de la ecuación de continuidad despejamos la velocidad

$$V = \frac{4Q}{\pi D^2}$$

sustituyendo valores

$$V = \frac{(4) \left(\frac{0.268}{10} \right)}{(\pi) \left(\frac{(103) (0.0254)}{32} \right)^2}$$

V=5.11 m/s

aplicando (28)

$$h_{r} = (0.3)(5.11)^{2}/(2x9.81)$$

h,=0.4 m

como son 10 espreas

h,=4 m

Determinando las pérdidas a través de la longitud del ramal haciendo una reducción del diámetro a la mitad de la tubería.

D=0.34 m

calculando el Reynolds

 $Re = (3)(0.34)/1.79 \times 10^{-5}$

Re=5.7x104

 $\epsilon/D = 0.2 \times 10^{-3} / 0.34 = 0.00059$

del diagrama de Moody

λ=0.0225

aplicando (29)

$$h_r = \frac{(0.0225)(8.96)(3)^2}{(0.34)(2)(9.81)}$$

h,≔0.27 m

Q=0.268-0.134=0.134 m³/s

obteniendo el diámetro de la otra mitad del ramal

$$D = \sqrt{\frac{(4) (0.134)}{(\pi) (3)}}$$

D=0.24 m

 $Re = (0.24)(3)/1.79 \times 10^{-5}$ $Re = 4.02 \times 10^{4}$

 $\epsilon/D = 0.2 \times 10^{-3}/0.24 = 0.00083$

del diagrama de Moody

λ=0.024

$$h_r = \frac{(0.024)(8.96)(3)^2}{(0.24)(2)(9.81)}$$

h,=0.41 m

la pérdida total en el ramal es la suma de las pérdidas parciales

 $h_{r} = 4 + 0.41 + 0.27$

 $h_r = 4.68 m$

sumando las pérdidas totales

$$h_{r \text{ totals}} = 9.2 + 0.699 + 0.3486 + 10.99 \\ + 3.505 + 4 + 4.68$$

 $h_{r \text{ totake}} = 33.42 \text{ m}$

Calculando la potencia de bombeo

$$Pot = \frac{Q \cdot h_{rtotales} \cdot \gamma}{\eta_{R}}$$

suponiendo una $\eta_{\rm B}$ =0.75 de la bomba

Pot=(12.63)(33.42)(9810)/(0.75x1000)

Pot=5520.997 KW

5.2. Torre a Flujo Cruzado

Para que se pueda realizar la comparación de torres se necesitan que opere bajo las mismas condiciones. Seleccionando el mejor relleno a flujo cruzado térmicamente hablando, siendo, el Wood Lath de 4^*x8^* perpendicular estacado, sobreponemos la curva característica del relleno sobre la curva de comportamiento de la torre bajo el mismo KaY/L=2.5 obtenemos (ver figura 5.4).

KaY/L=2.5 L/G=1.0 H=50 ft DVA=7.78 ft

considerando la misma velocidad de entrada del aire que en la torre a contra flujo.

G*=2528,53 lb/hr-ft2

G=L/1.0=140112000 lb/hr

determinando el área de la persiana de entrada.

 $\begin{array}{l} A_{persians}\!=\!G/G" \\ A_{persians}\!=\!140112000/2528.53 \\ A_{persians}\!=\!55412.43 \ ft^2 \\ A_{monisms}\!=\!5150.62 \ m^2 \end{array}$

determinando la longitud total de la persiana, recordando que tenemos una persiana en ambos lados de la torre.

 $L_{\text{persiana}} = A_{\text{persiana}} / (2 \cdot \text{H})$ $L_{\text{persiana}} = 55412.43 / (2x50)$ $L_{\text{persiana}} = 554.12 \text{ ft}$

Calculando el número de celdas

 $N = L_{persiana}/L_{celda}$ N=554.12/50 N=11.08 = 11 celdas

Calculando los nuevos valores de L" y G" para 11 celdas. $A_L = 2 \times 1 \times DVA \times N$ $A_L = 2 \times 50 \times 9.65 \times 11$ $A_L = 10615 \text{ ft}^2$

 $L^* = L/A_L = 140112000/10615$ $L^* = 13199.43$ lb/hr-ft²

 $A_a = 2 \times I \times H \times N$ $A_a = 2 \times 50 \times 50 \times 11$ $A_a = 55000 \text{ ft}_2$

 $G^* = G/A_G = 140112000/55000$ $G^* = 2547.49 \text{ lb/hr-ft}_2$

obteniendo la densidad promedio del aire a través del relleno con la $T_{bb}=81^{\circ}F$ obtenemos:

 $\rho_1 = 0.07241 \text{ lb/ft}^3$ H = 44.78 BTU/lb

para la densidad ρ_2 de salida del aire del relleno utilizamos la ecuación (10)

H'=1.0(119-86)+44.78 H'=77.78 BTU/lb

de tablas de entalpía (ver anexo "A") obtenemos la temperatura

T₂=103.2 °F

y con esta temperatura se encuentra ρ_1

 $\rho_2 = 0.06861 \text{ lb/ft}^3$

calculando la densidad promedio

 $\rho_a = (0.07241 + 0.06861)/2$ $\rho_a = 0.07051 \text{ lb/ft}^3$

calculando la caída de presión a través de las persianas de entrada

$$\Delta P_{PB} = \frac{N_{VH}(G'')^2}{2 \cdot g \cdot \rho_1}$$

suponiendo que el N_{VH} es similar al usado para una torre a contra flujo (N_{VH} =3)

$$\Delta F_{PB} = \frac{(3) \left(\frac{2547.49}{3600}\right)^2}{(2) (32.2) (0.07241)}$$

$$\Delta P_{PB} = 0.3221 \frac{lb}{ft^2}$$

$$\Delta P_{pg} = 0.06197 \ plg \ de \ H_0$$

$$\Delta P_{pr} = 1.5740 \text{ mm de } H_{2}O$$

determinando los valores adimensionales y aplicando la ecuación (26') y con la tabla 4.3 leemos los valores de los parámetros.

L*=13199.43/6000=2.19991

 $G^+ = 2547.49/2000 = 1.2737$

sustituyendo valores

$$\frac{\Delta P}{DVA} = \frac{(2.464)((2.19991)^{0.591}}{325403205.1}$$

(1,2737)0.156(2547.49)2

$$\frac{\Delta P}{DVA} = 0.06789 \frac{Plg \ de \ H_2O}{ft}$$

multiplicando por el DVA, la densidad estándar y dividiendo por la densidad promedio

$$\Delta P_{\text{RELLENO}} = (0.06789)(7.76)(0.075)/0.07051$$

$$\Delta P = 0.5603 \text{ plg de } H_2O$$

ΔP=10.809 mm de H₂O

calculando la caída de presión a través del eliminador de húmedad y a la entrada del ventilador

$$\Delta P_{EH} = \Delta P_{ent. vent.} = \frac{N_{VH} (G'')^2}{2 \cdot g \cdot \rho_2}$$

suponiendo el N_{VH} tiene el mismo valor que para una torre a contra flujo N_{VH} =5

$$\Delta P_{EH} = \frac{(5) \left(\frac{2547.49}{3600}\right)^2}{(2) (32.2) (0.06861)}$$

$$\Delta P_{EH} = 0.5667 \frac{lb}{ft^2}$$

 $\Delta P_{EH} = 0.1090 \ plg \ de \ H_2O$

$$\Delta P_{FH} = 2.7687 \text{ mm de } H_{2}O$$

determinando la caída de presión a la salida del ventilador

 $A_c = 2 \times 1 \times H$ $A_c = 2 \times 50 \times 50$

$$ACFM = \frac{A_c \cdot G''}{60 \cdot p_2}$$

A_=5000 ft²

 $ACFM = \frac{(5000) (2547.49)}{(60) (0.06861)}$

ACFM=3094167.52 ft3/min

V=ACFM/A_m

$$V_{sal} = \frac{3094167.52}{(\pi) (48)^2}$$

V=1709.9 ft/min V=28.5 ft/s

$$\Delta P = \frac{V^2 \cdot \rho_2}{2 \cdot q}$$

$$\Delta P = \frac{(28.5)^2 (0.06861)}{(2) (32.2)}$$

$$\Delta P=0.8653 \frac{1b}{ft^2}$$

∆P=0.1665 plg de H₂O

∆P=4.2282 mm de H2O

sumando las caídas de presión parciales

 $\Delta P_{\text{total}} = 0.06197 + 0.5603 + 2(0.1090) + 0.1665$

$$\Delta P_{total} = 1.007 \text{ plg de } H_2O$$

$$\Delta P_{total} = 5.23 \frac{1b}{ft^2}$$

APtotal=25.57 mm de H₂O

determinando la potencia requerida en ventiladores suponiendo una $\eta_V=0.75$

 $Pot = \frac{ACFM \Delta P_{total}}{33000 \, \text{m}_{..}}$

 $Pot = \frac{(3094167.52)(5.23)}{(33000)(0.75)}$

Pot=653.84 HP Pot=487.76 KW

como es un ventilador por celda y hay 11 celdas

Pot.....=5365.4 KW

Calculando la potencia de bombeo en la torre a flujo cruzado. Suponiendo que tiene el mismo arreglo de distribución que la torre a flujo cruzado, excepto que no tiene espreas y únicamente un tubo que riega a toda la celda, por lo que la caída de presión en el cabezal principal de distribución será el mismo.

 $h_{r} = 9.2 + 0.699 + 0.3486$

 $h_r = 10.2476 \text{ m}$

el agua tiene que ascender 50 ft de altura de relleno más la altura de las charolas de distribución suponiendo una altura de 3 ft

$h_r = 53 ft = 16.16 m$

obteniendo las pérdidas por fricción en el tubo ascendente por el cual circula 1.61 m³/s

Calculando el diámetro de la tubería

$$D=\sqrt{\frac{(4)(1.61)}{(\pi)(3)}}$$

D=0.8266 m

$$\frac{e}{D} = \frac{0.2 \times 10^{-3}}{0.8266} = 0.00024$$

del diagrama de Moody

λ=0.0185

aplicando (29)

 $h_r = \frac{(0.0185)(10.3806)(3)^2}{(0.8266)(2)(9.81)}$

h,=0,1066 m

para la salida del agua la válvula se considerá como un orificio y la tubería será de duelas de madera que tiene una rugosidad de ϵ =0.75x10³ m

como hay dos orificios, cada orificio debe manejar la mitad del gasto

Q=1.61/2=0.805 m³/s

calculando el diámetro del orificio D=0.5845 m

para orificios del Crane $\lambda = 0.74$

$$D = \sqrt{\frac{(4) (0.805)}{(\pi) (3)}}$$

$$h_r = \frac{\left(\frac{O}{\lambda \cdot A}\right)^2}{2 \cdot g}$$

sustituyendo valores

$$h_{r} = \frac{\left(\frac{0.805}{(0.74) - (\pi) (0.5845)^{2}}\right)^{2}}{(2) (9.81)}$$

h,=0.8377 m

como son dos orificios

h,=1.6755 m

sumando las pérdidas parciales

 $h_{r, totales} = 10.2476 + 16.16 + 0.1066 + 1.6755$

h. maka = 28.1897 m

calculando la potencia de bombeo

$$Pot = \frac{h_{r \text{ totales}} \gamma Q}{\eta_{v}}$$

sustituyendo valores

$$Pot = \frac{(12.63) (28.1897) (9810)}{(0.75) (1000)}$$

	Тогге			
	Contraflujo	Flujocruzado		
Comportamiento térmico	KaV/L=2.5	KaY/L=2.5		
L/G	1.55	1.0		
Tbh	81°F (27.2°C)	\$1°F (27.2°C)		
Tac	119°F (48.3°C)	119°F (48.3°C)		
Taf	89°F (31.67°C)	89°F (31.67°C)		
L	17.68 m3/s	17.68 m3/s		
N	11 celdas	11 celdas		
Altura del relleno	4 ft (1.22 m)	50 ft (15.24 m)		
Altura de la torre	10.81 m	16.16 m		
DVA	1.22 m	2.94 m		
Aproximación	8°F (4.4°C)	8°F (4.4°C)		
Area transversal	3322.98 m2	2172,72 m2		
Potencia en ventiladores	3338.71 KW	5365.4 KW		
Potencia de bombeo	5520.997 KW	4656.95 KW		
Potencia total consumida	8859.707 KW	10022.35 KW		

5.3 Tabla de Resultados

Tabla 5.1

En la tabla 5.1 se establece la comparación entre usar el mejor relleno de comportamiento térmico a contra flujo y flujo cruzado, manteniendo las mismas condiciones de operación como son: Temperatura de bulbo húmedo, temperatura de agua caliente, temperatura de agua frá y flujo de agua observando que la relación agua-aire es mayor en una torre a contra flujo 66.52%, debido a que una torre a contra flujo aprovecha mejor el aire recibido por lo que éste tiene un mayor área de contacto con el agua, también hay que hacer notar que la altura del relleno es demasiado alta en una torre a flujo cruzado 12.5 veces mayor que en una torre a contra flujo, esto es ocasionado porque el relleno de salpicado no es tan eficiente térmicamente hablando como el relleno de película en la torre a contra flujo, pues con menos relleno se logran los mismos beneficios que en una torre a flujo cruzado.

La altura de la torre es mayor en la torre a flujo cruzado puesto que el aire entra por los costados de ésta, y como necesita emplear mayor cantidad de aire es necesario que el área de entrada sea mayor.

Y la distancia que viaja el aire es mayor en una torre a flujo cruzado para que el agua tenga el suficiente tiempo de contacto con el aire, esto también obedece al bajo rendimiento térmico del relleno a flujo cruzado.

El área transversal de la torre a contra flujo es mayor porque el aire entra por la parte baja de la torre y no por los costados como en la torre a flujo cruzado.

La potencia en los ventiladores es mayor en la torre a flujo cruzado porque necesita manejar mayor cantidad de aire, esto obedece a que la capacidad de enfriamiento del relleno no es tan bueno como el relleno a contra flujo, pero la potencia de bombeo es mayor en una torre a contra flujo es mayor, ya que utiliza espreas para conseguir el riego uniforme de todo el relleno, pero esto, nos ocasiona una mayor caída de presión.

La potencia total consumida es mayor en la torre a flujo cruzado como consecuencia de que la potencia en ventiladores es mucho mayor en la torre a flujo cruzado y no se ve compensado con la potencia de bombeo.

Desde el punto de vista técnico, la mejor selección es una torre a contra flujo, esto, sin tomar en cuenta los costos de operación, mantenimiento y área disponible para colocar la torre.

Tomando en cuenta el aspecto técnico y económico, habría la necesidad de hacer un estudio detallado para optar por la mejor opción atendiendo a nuestras necesidades. COOLING TOWER INSTITUTE

81 WET BULB(°F) 30 Range (°F)

Figura 5.1

DIAGRAMA DE MOODY PARA HALLAR EL COEFICIENTE DE PERDIDAS DE CARGA & EN TUBERIAS

Fig. 5.3

8-472

Capítulo 6

6. Análisis Comparativo de los Rellenos.

El criterio empleado par decidir el relleno óptimo a emplearse en una torre de enfriamiento, conlleva a establecer un análisis comparativo entre rellenos a contra flujo por una parte y rellenos a flujo cruzado por otra, para la cual se debe de elaborar un estudio técnico-económico para poder así seleccionar el adecuado a nuestras necesidades.

La evaluación técnica del relleno consiste en revisar que las soluciones técnicas establecidas estén perfectamente definidas y sean satisfactorias, no sólo en lo relativo a las características de diseño y operación del proceso y de los diverso tipos de equipos que habrán de requerizes, sino también respecto de su accesibilidad, su vida útil, su obsolencia previsible y todas aquellas implicaciones relacionadas con la propiedad industrial, las inversiones a realizar y los costos previsibles de operación.

Conviene señalar que todas las decisiones que se adoptan en los diversos aspectos del relleno vienen a reflejarse en el monto de las inversiones requeridas para su realización y en los presupuestos de ingresos y egresos. Por tal motivo, la evaluación de todos los factores que inciden en el relleno, cualesquiera que sea su naturaleza, suele desembocar en una evaluación económica del proceso en su conjunto.

Los rubros que se consideran en la evaluación técnica-económica del relleno son las siguientes:

- 1. Ingeniería del proyecto.
- 2. Inversión fija de capital de operación.
- 3. Costos y presupuestos de operación.

6.1. Ingeniería del proyecto.

La ingeniería del proyecto cumple dos funciones; la primera consiste en la realización en una serie de actividades que tienen por objeto obtener la información necesaria para la adopción del relleno adecuado; y en la segunda se específica, maquinaria, equipo y la obra civil, para obtener cotizaciones y presupuestos, y con esta base determinar la magnitud de la inversión y los costos de operación de la torre.

Los principales puntos de carácter técnico que son necesarios llevar a cabo como parte de la evaluación técnico-económica del relleno son:

- a. Evaluación técnica de las materias primas.
- b. Elaboración de balances de materia y energía.
- c. Selección y especificación de los servicios auxiliares.
- d. Especificación de la obra civil.

A. Evaluación técnica de las materias primas.

Desde el punto de vista técnico estos datos deben ser complementados con información sobre las características químicas, físico-químicas, o biológicas de las diversas variedades de relleno. Para la evaluación del relleno es indispensable saber su comportamiento térmico y cafda de presión, los cuales mencionaremos más adelante, además, se necesita saber su estabilidad frente a agentes térmicos, y biológicos, su forma, su tamaño, características dimensionales, etc.

B. Elaboración de balances de materia y energía.

Estos balances incluyen las cantidades de materiales y energía que entran y salen de la torre de enfriamiento, éstos permiten determinar las capacidades de la torre. Asimismo, permiten conocer los volúmenes de subproductos y desechos que deben esperarse de la operación de la torre.

C. Selección y especificación de los servicios auxiliares.

Con base a los balances de materiales y energía se determinan las necesidades de servicios para la torre de enfriamiento, entre los cuales se incluyen agua de repuesto debido a las purgas, ventiladores, bombas, reductores de velocidad, inhibidores de corrosión, pileta, etc. Una vez conocidas las características y volúmenes requeridos de los servicios auxiliares será posible especificar los equipos que deberán instalarse. Las especificaciones así obtenidas permitirán gestionar las cotizaciones correspondientes, para posteriormente, seleccionar los materiales que resulten más convenientes, de acuerdo al análisis técnico-económico.

D. Especificación de la obra civil.

La obra civil se especifica de tal manera que satisfaga los requerimientos de la torre de enframiento, con base a las características de los equipos y los requerimientos para su instalación.

Para la obtención de los presupuestos de la obra civil es necesario disponer de todas las especificaciones básicas entre las que se pueden encontrar los siguientes:

- 1. La superficie a construir
- 2. Las dimensiones de las construcciones
- 3. La resistencia estructural de la construcción
- 4. Los materiales de construcción
- 5. La localización y tipo de cimentaciones
- 6. El tipo de iluminación.

6.1.1. Estimación de la inversión fija y capital de trabajo.

Para llevar a cabo la materialización de la torre de enfriamiento se requiere asignarle una cantidad de recursos que se agrupan en: (a) los que se requieren para la adquisición e instalación

de la torre y (b) los requeridos para la operación de la misma.

Los recursos necesarios para la adquisición e instalación de la torre constituyen la inversión fija de la torre de enfriamiento y los que requiere la operación de la misma se le llama capital de trabajo.

Los diversos elementos de costo que integran los egresos totales de la torre pueden agruparse en los siguientes rubros:

- 1. Costos variables de operación.
- 2. Cargos fijos de inversión.
- 3. Cargos fijos de operación.

4. Gastos generales.

6.1.2. Costos variables de operación.

Son aquellos directamente involucrados en la operación de la torre. Estos costos se derivan del pago de los siguientes rubros:

- a. Reactivos de proceso.
- b. Servicios generales.
- c. Mantenimiento y reparación.

A. Reactivos de proceso.

La operación de la torre requiere reactivos químicos, solventes y catalizadores, el costo de los volúmenes consumidos en pruebas y en el proceso, ya sea por mermas o por agotamiento debe incluirse también en los costos variables de operación.

B. Servicios auxiliares.

El costo de los servicios auxiliares, entre los cuales se encuentran agua, y energía eléctrica, etc. varía considerablemente en función de la localización de la planta.

Los consumos de estos servicios se derivan de los balances de materiales y energía realizados en el estudio de ingeniería del proyecto.

C. Mantenimiento y reparación.

Para que la torre opere eficientemente es necesario efectuar gastos de mantenimiento y reparación, cuyo monto depende de las condiciones de operación, incluyendo presión, temperatura, potenciales de hidrógeno, etc.

Bien, como para poder hacer la selección del relleno se requiere hacer el estudio técnicoeconómico antes mencionado; pero, el alcance de esta tesis no va tan lejos, por lo que únicamente se realizará el estudio técnico que será el comportamiento térmico y de cafda de presión para ambos tipos de rellenos.

Tomando como base las mismas condiciones de operación en cuanto a los parámetros distancia viajada del aire, altura del relleno y relación agua-aire tanto como para el comportamiento térmico, como el de caída de presión, se hace la comparación siguiente:

6.2. Comparación térmica.

La comparación térinica de los rellenos se hará seleccionando una curva de cada uno de los rellenos elaboradas en el capítulo 4, manteniendo constante la distancia viajada del aire (DVA) y la altura del relleno (H) se elabora una gráfica independiente (observar fig. 6.1 y 6.2), en donde la figura 6.1 es la comparación térmica de los rellenos a contra flujo y la 6.2 es para los rellenos a flujo cruzado.

Sf se hiciera otra gráfica igual a la anterior, pero con diferente DVA se puede inferir que es similar a ésta, con la única variante de que puede desplazarse hacia arriba ó hacia abajo, dependiendo del DVA que se elija por lo que es suficiente contar con una gráfica, para encontrar el óptimo relleno térmico a nuestras necesidades.

Para continuar con la comparación de los rellenos cada relleno recibirá un número y estos representarán al relleno en una tabla; por lo que, los rellenos tomarán los números 1 al 8 para rellenos a contra lluigo y del 9 al 16 los rellenos a fluigo cruzado.

- 1. Munters 12060
- 2. Munters 19060
- 3. American Towers Plastics Coolfilm
- 4. American Towers Plastics Cooldroop
- 5. Marley MC67
- 6. Ecodyne Shape 10
- 7. Toschi Fiber Cement
- 8. Brentwood Industries Accu-Pac
- 9. Doron V-Bar (Heavy Duty) 4"x8"
- 10. Doron V-Bar (Heavy Duty) 8"x8"
- 11. Ecodyne T-Bar 4"x8"
- 12. Ecodyne T-Bar 8"x8"
- 13. Wood Lath 4"x4" (paralelo)
- 14. Wood Lath 4"x4" (perpendicular)
- 15. Marley Alpha-Bar
- 16. Marley Ladder

Los valores de DVA son en ft

DVA 6

.

Los valores de H y DVA son en ft

0.1

0.1

Fig. 6.2

1

(L/G)Total

Relación L/G	Comportamiento térmico	Relación L/G	Comportamiento térmico
0.3 <l <0.35<="" g="" td=""><td>1 8 2 5 3 7 4 6</td><td>1.9 <1/G <3.5</td><td>1 2 3 8 5 7 4 6</td></l>	1 8 2 5 3 7 4 6	1.9 <1/G <3.5	1 2 3 8 5 7 4 6
0.35 < L/G < 0.56	1 2 8 3 5 7 4 6	1.9 <l <3.5<="" g="" td=""><td>1 2 3 8 5 6 7 4</td></l>	1 2 3 8 5 6 7 4
0.56 <1/G< 1.7	1 2 8 3 5 7 4 6	1.9 <ƯG <3.5	1 2 3 8 5 6 4 7
1.7 <1∕G< 1.9	1 2 3 8 5 7 4 6		

Tabia 6.1 Comparación Térmica de rellenos a Contra Flujo.

Relación L/G	Comportamiento Térmico	Relación L/G	Comportamiento Térmico
0.3 < L/G <0.465	16 14 15 09 13 11 12 10	14 < 1/0 < 1.7	16 14 11 15 13 12 10 09
0.465 < L/G < 0.65	16 14 15 13 09 11 12 10	1.7 < L/G < 2.15	16 14 11 15 12 13 10 09
0.65 < L∕G < 0.78	16 14 15 13 11 09 12 10	2.15 < L/G < 3,4	16 11 12 15 13 10 09
0.78<1/G<0.86	16 14 15 13 11 12 09 10	3.4 < 1/G < 4.3	11 16 12 14 13 15 10 09
0.86 < L/G < 1.1	16 14 15 11 13 12 09 10	4.3 < 1/G < 5	11 16 12 14 13 10 15 09
1.1 < 1/G < 1.4	16 14 15 11 13 12 10 09		

Tabla 6.2 Comparación térmica de relienos a Flujo Cruzado.

6.3. Comparación por caída de presión.

En la comparación por caída de presión de los rellenos resulta que las curvas obtenidas no son paralelas como en el caso de comportamiento térmico y varían con la cantidad de agua a enfriar y la cantidad de aire, por lo que en este caso no es posible hacer la comparación haciendo una sola gráfica como en el caso térmico, aunado a esto, se debe de realizar una curva para cada situación. En la figura 6.3 se puede visualizar las curvas de cada uno de los rellenos a contra flujo graficados en una gráfica independiente y en la fig. 6.4 es la comparación gráfica de los rellenos a flujo cruzado, en la tabla 6.3 y 6.4 se muestra los resultados obteniendos mostrando en primer lugar el que nos produce una menor caída de presión hasta llegar al de mayor caída de presión.

.

G"	Caída de presión
600 < G• < 740	7 4 8 5 3,2 1
1740 < Q° < 2480	7 6 4 5 3,2
1740 < G* < 2480	7 6 8 4 5 3,2 1

Tabla 6.3 Comparación por caída de presión rellenos a contra flujo,

G"	Caída de presión	G"	Caída de presión
	09		09
	12		10
	10		12
1600 < G* < 1640	11	1740 < G* < 1910	13
	13		11
	15		15
	14		14
	16		16
	09		09
	10		10
	12		12
1640 < G" < 1740	11	1640 < G" < 1740	13
	13		15
	15		11
	14		14
	16		16

Tabla 6.4 Comparación por caída de presión de los rellenos a flujo cruzado.

Conclusiones

Las torres de enfriamiento se clasifican en torres húmedas y secas, en las torres húmedas el intercambio de calor entre el agua y el aire, es por medio, de un contacto directo entre el agua y el aire; en las torres secas el calor es transferido directamente al aire a través de un haz de tubos aletados sin la evaporación del agua.

Las torres húmedas están compuestas por varios elementos como son: conos, ventiladores, eliminadores de húmedad, etc., pero el elemento que logra aumentar la capacidad de la torre es el relleno, ya que debido a su configuración podrá permitir el tiempo de contacto necesario entre el agua y el aire para su enfriamiento, pero se debe de tener en cuenta que si el tiempo de contacto es muy prolongado, esto traerá como consecuencia una mayor caída de presión y se verá repercutido en la potencia de ventiladores, pero sí la densidad del relleno es baja, se encontrará que el agua no se verá enfriada, por lo que, se debe de encontrar la relación óptima de comportamiento térmico y de caída de presión.

Los principios teóricos sobre los que se fundamentan las torres húmedas lo estableció Merkel, por lo que, a dicho modelo matemático se le conoce como ecuación de Merkel, aunque este método se desarrolló en 1925 todavía se sigue utilizando para evaluar el rendimiento de la torre debido a que da una buena aproximación a los resultados de prueba hechas a las torres, sin embargo, existen códigos computacionales, que pueden evaluar el rendimiento de la torre, pero estos códigos requieren para poder operar por lo menos una minicomputadora, además no son muy "amigables" con el usuario y no es muy común que en los lugares de trabajo se encuentra una minicomputadora, por tal motivo, se continua utilizando la ecuación de Merkel.

Para la correlación de comportamiento térmico de los rellenos se utilizó la correlación que obtuvo Lichtenstein en 1943, pero con la variante de que incluye la distancia de viaje del aire y la altura del relleno que son unos parámetros que no consideró Lichtenstein en su correlación, obteniéndose así las gráficas de cada relleno.

En la caída de presión un estudio reportado por EPRI nos da dos correlaciones a usar para obtener el factor de fricción en los rellenos, una es para los rellenos a contra flujo y la segunda es para rellenos a flujo cruzado; y llevando las correlaciones a una ecuación que nos exprese directamente la caída de presión tal como lo muestra el Kelly's en sus gráficas.

En la comparación entre torres a contra flujo y flujo cruzado se observa que es mejor técnicamente hablando la torre a contra flujo que la torre a flujo cruzado, esto es debido al tipo del relleno que es de película, que es más eficiente térmicamente que el relleno de salpicado, lo que trac consigo que la torre sea menos alta y que la potencia total

> ESTA TESIS NO DEBE Salir de la Biblioteca

consumida sea menor que en la torre a flujo cruzado.

Para poder seleccionar el relleno óplimo a nuestras necesidades no es posible decidirlo técnicamente, por que se ve relacionado con ciertos parámetros económicos, por lo que se requiere realizar un estudio técnico-económico y así seleccionar el que más se acerque a nuestras necesidades.

Una vez concluido el trabajo de tesis se puede inferir que los rellenos a contra flujo es más sencilla la elección técnica, ya que en el comportamiento térmico no presenta tantas variaciones como en los rellenos a flujo cruzado, y en la comparación por medio de la caída de presión es sencillo por que únicamente tienen dos o tres cruces, por lo que esto hace más sencilla su comparación técnica, pero si se desea elegir el mejor se requiere realizar todo el estudio que implica la evaluación de proyectos y estos aspectos serán:

80

1. Ingeniería del proyecto

2. Estimación de la inversión fija y capital de trabajo y

3. Costos variables de operación.

Anexo A

Propiedades Termodinámicas

de la húmedad del aire

·P	0.0	0.1	0.2	0.5	(1.4 .	05	0.6	0.7	Ø.8	0.9	T.
0-2-3-4-5	0.843 1.120 1.408 1.698 1.991 2.286	0.863 1.149 1.437 1.727 2.020 1.316	0.892 1.777 1.466 1.756 2.050 2.315	0.920 1.206 1.495 1.786 2.079 2.475	0.949 1.215 1.524 1.814 2.109 2.405	0.977 1.266 1.553 1.844 2.118 2.414	1.006 1.295 1.582 1.874 2.168 2.464	1.034 1.321 1.611 1.903 2.197 2.494	1.061 1.350 1.640 1.942 2.227 2.523	1.091 1.179 1.669 1.962 2.256 2.551	0
А 7 Н 9 10	2.584 2.883 3.188 3.494 3.603	2.613 1.913 1.219 3.525 1.834	2.643 2.944 1.249 3.356 1.865	2.673 2.974 3.280 3.586 3.897	2.701 5.005 5.310 3.617 3.928	2.732 3.035 3.341 3.648 3.959	2.764 3.066 3.371 3.679 3.990	2,793 1,096 3,402 1,710 4,022	2.823 5.127 3.433 3.741 4.053	2.853 5.157 5.463 1.772 4.085	10 10 10
	4.116 4.432 4.753 5.076 5.403	4.147 4.364 4.785 5.109 5.436	4.179 4.496 4.817 5.141 5.469	4.210 4.52H 4.850 5.174 5.502	4.242 4.560 4.882 5.206 5.535	4.273 4.592 4.914 5.219 5.568	4.105 1.624 4.946 5.272 5.602	4.3.17 4.656 4.979 5.504 5.615	4.368 4.689 5 017 5 317 5.668	4.400 4.721 5.014 5.470 5.702	
16 17 18 19 20	5.735 6.071 6.412 6.756 7.106	5.768 6.105 6.446 6.791 7.141	5.802 6.139 6.480 6.826 7.176	5.835 6.173 6.515 6.860 7.212	5.869 6.207 6.549 6.895 7.247	5.902 6.241 6.183 6.930 7.282	5.936 6.275 6.618 6.963 7.318	5.970 6.309 6.652 7.000 7.353	6.001 6.143 6.687 7.036 7.389	6 0 47 6.378 6.721 7.071 7.421	101-1-1910
21 22 21 24 25	7.460 7.820 8.186 8.557 8.934	7.496 7.856 8.225 8.594 8.972	7.532 7.893 8.260 8.612 9.010	7.567 7.919 8.297 8.669 9.048	7.603 7.966 8.314 8.707 9.086	7.639 8.002 8.371 8.745 9.125	7.675 # 039 #.40# #.782 9.163	7,711 8,07G 8,445 8,820 9,201	7,748 8,112 8,482 8,858 9,240	7.784 8.149 8.520 8.896 9.278	1
26 27 28 29 30	9.317 9.706 10.103 10.506 10.915	9.356 9.745 10.143 10.547 10.956	9.394 9.785 10.183 10.587 10.998	9.433 9.824 10.223 10.628 11.040	9.472 9.864 10.263 10.669 11.081	9.511 9.904 10.304 10.710 11.123	9.550 9.943 10.344 10.750 11.165	9.589 9.983 10.384 10.791 11.207	9.62H 10.023 10.425 10.833 11.249	9.667 10.063 10.465 10.874 11.291	11.12.9
32 32 34 35	21.313 21.75H 72.169 12.5R3 13.00H	11.376 11.799 12.210 12.627 13.051	11.418 11.841 12.252 12.669 13.093	11.461 11.482 12.293 12.711 13.136	11.501 11.923 12.315 12.753 13.179	11.346 11.964 12.376 12.796 13.222	11.589 12.005 12.418 12.938 13.265	11.631 12.046 12.460 12.860 13.308	11 673 12.087 12.501 12.923 13.531	11.716 12.128 12.541 12.965 21.395	11 31 31 31 31 31 31 31
36 37 38 39 40	13.438 13.874 14.319 14.771 15.230	13.481 13.918 14.164 14.817 15.276	13.525 13.962 14.409 14.862 15.323	13.568 14.007 14.454 14.908 85.369	13.612 14.051 14.499 14.934 15.416	13.655 14.095 14.544 15.000 (5.462	13.699 14.140 14.589 15.045 15.509	13.742 14.185 14.635 15.092 13.536	13.786 14.229 14.680 15.138 15.601	13.910 14.274 14.725 15.184 15.650	36 1 19 19 10
41 42 44 45	13.697 16.172 16.637 17.149 17.650	15.744 16.220 16.706 17.199 17.701	15.791 16.268 16.755 17.248 17.751	15.839 16.317 16.804 17.298 17.802	15.886 16.365 16.853 17.148 17.853	15.533 16.413 16.902 17.398 17.904	15.981 16.462 16.951 17.448 17.956	16.029 16.511 17.001 17.499 18.007	16.076 16.559 17.050 17.549 18.058	16.124 16.608 17.099 17.599 18.110	44444
46 47 48 49 50	18.161 18.620 19.211 19.751 20.30	18.212 18.733 19.263 19.806 20.36	18.264 18.785 19.318 19.860 20.41	18.316 18.838 19.372 19.915 20.47	18 167 18 891 19.426 19.970 20.13	18.419 18.944 19.480 20.025 20.58	18.471 18.997 19.534 20.080 20.64	18.523 19.051 19.588 20.135 20.70	18.575 19.104 19.642 20.190 20.75	18.628 19.137 19.697 20.246 20.41	40 - 11 - 11 - 19 - 50
51 52 53 54 55	20.86 21.43 22.02 22.61 23.22	20.92 21.49 22.07 22.67 23.28	20.97 21.55 22.13 22.73 23.34	21.03 21.60 22.19 22.79 23.40	21.09 21.66 22.25 22.85 23.46	21.14 21.72 22.31 22.91 23.53	21.20 21.78 22.37 22.97 23.59	21.26 21.84 22.43 23.03 23.65	21.32 21.90 22.49 23.09 23.71	21.37 21.96 22.55 23.16 23.78	51 52 54 54
56 57 58 59 60	23.84 24.48 25.12 25.78 26.46	23.90 24.54 25.18 25.85 26.53	23.96 24.60 25.25 25.91 26.60	24.03 24.67 25.31 25.98 26.67	24.09 24.73 25.38 26.05 26.74	24.16 24.80 25.45 26.12 26.80	24.22 24.86 25.51 26.18 26.87	24.28 24.92 25.58 26.25 26.94	24.35 24.99 23.65 26.32 27.01	24.41 25.05 25.71 26.39 27.08	56 58 59
61 62 63 64	27.15 27.85 28.57 29.51 30.06	27.22 27.92 28.64 29.58 30.13	27.29 27.99 28.72 29.46 30.20	27.36 28.06 28.79 29.53 30.28	27.43 28.13 28.86 29.61 30.36	27.50 28.21 28.94 29.68 30.44	27.57 28.28 29.01 29.76 30.51	27.64 28.35 29.09 29.83 30.59	27.71 28.42 29.16 29.91 30.67	27.78 28.50 29.24 29.98 30.75	61 63 64 65

Table III-E ... Enthalpy of Saturated Air-Water Vapor Mixtures (at 29.921 in Hg)* (BTU per pound of dry air)

*J. A. Gaff and S. Granch: "Thermodynamic Properties of Mairs Air" (ASHYS Transactions, Vol. 31, 1965, p. 125).

February 1975

CTI Code ATC-105

	_										
•F	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
66	30.83	30.90	30.98	31.06	\$1.14	31.22	31.30	31.38	31.46	11.55	5m
68	31.02	32.50	12.59	31.60	32.75	32.02	12.92	32.18	31.08	32.34	68
69	33.25	33.33	33.0	33.50	33.58	33.66	33.74	33.83	33.91	34.00	69
	34.09	34.17	34.25	.14.34	34.43	34.51	.11.60	34.69	34.78	34.87	-70
71	14.95	33.04	15.13	35.22	33.30	35.39	35.48	12.57	35.66	35.75	- 74
71	36,74	36.83	16.92	37.01	37.10	37.20	17.29	37.38	37.48	37.57	- 41
24	37.66	37.76	37.83	37.94	38.04	38.13	38.23	38.32	38.41	38.51	7 T
- /3	38.01	38.70	38.80	38.69	38.98	39.08	39.18	39.27	19.37	39.47	
79	122	39.67 40.67	39.77	39.87	19.97	40.07	40.17	40.27	40.37	40.17	- 79 1
78	41.58	41.68	41.78	41.88	41.99	42.10	42.20	42.30	42.41	42.52	78
79	42.62	42.73	42.84	42.94	43.05	43.16	11.26	43-37	41.47	41.58	- 29
	(4.78	44.50	45.00		44.33	41.14	48.48	45.66	14.67	44.74	
82	45.20	16.01	46.12	46.23	46.35	46.46	46.58	46.70	46.81	46.92	- 21 L
83	47.04	17.13	47.27	47.39	47.51	47.63	47.74	47.86	47.98	01.8}	- <u>81</u>
85	49.43	19.55	49.67	49.79	49.91	50.03	50.15	50.28	50.40	50.53	83
86	30.66	50.78	\$0.90	51.03	\$1.16	\$1.28	51.41	\$1.54	\$1.67	\$1.80	86
87	51.93	52.06	52.19	52.32	52.45	\$2.58	\$2.7	52.84	32.97	\$3.10	87
88	1 33.23	51.36	53.49	53.62	\$1.75	33.88	54.02	54.15	54.28	54.42	88
90	55.9.1	56.07	\$6.21	56.35	\$6.49	56.63	\$6.77	\$6.91	\$7.05	\$7.19	90
91	\$7.33	\$7.47	\$7.61	37.76	\$7.90	58.05	\$8.19	58.34	58.48	58.63	21
92	58.78	38.92	59 07	59.21	59.36	\$9.50	59.63	59.80	19.95	60.10	22
34	61.77	61.97	62.07	62.23	62.38	62.54	62.69	62.85	61.00	61.16	- 54
95	63.32	63.48	63.63	63.79	63.95	64.11	64.27	64.44	64.60	64.76	95
96	64 92	65.08	65.25	61.41	65.58	65.74	65.90	66.0G	66.23	66.39	96
97	66.55	66.7Z	66.88	67.03	67,22	67.39	67.56	67.73	67.90	68.07	- 22
92	69.96	70.14	70.32	70.50	70.67	70.85	71.02	71.20	71.38	71.55	- 52
100	71.73	7191	72.09	72.27	72.45	72.63	72.82	73.00	73.19	73.37	100
101	73.55	73.73	73.92	74.11	74.29	74.48	74.67	74.86	75.04	75.23	101
102	75.42	75.62	73.82	76.01	76.20	76.39	76.58	76.77	76.96	77.15	102
104	79.32	79.52	79.72	79.92	80.12	80.32	80.52	80.72	80.93	81.13	104
105	81.34	81.54	81.75	81.95	#2.1G	82.37	82.58	82.79	83.00	83.21	105
106	83.42	83.63	83.84	84.05	84.2G	84.48	84.69	84.91	63.12	85.34	106
106	87.76	87.99	88.22	88.44	88.67	80.63	80.87	89.34	87.52	87.54	104
109	90.03	90.25	90.48	90.71	90.94	91.17	91.40	91.64	91.87	92.10	109
110	92.54	91.37	97.81	93.03	93.29	99.52	95.7G	94.00	94.24	94,48	110
111	94.72	94.96	22.21	95.45	95.70	95.94	96.19	96.44	96.68	96.93	.111
115	99.71	22.96	100.22	100.48	100.74	101.00	101.26	101.52	101.78	102.05	114
114	102.31	102.58	102.84	103.10	103.37	103.63	103.90	104.17	104.44	104.71	114
113	104.95	105 25	105.52	105.79	106.06	100.34	106.61	106.89	107.17	107,45	115
116	107.73	108.01	108.29	108.57	108.85	109.13	109.41	109.70	109.98	110.27	116
116	113.46	113.75	114.05	11435	114.65	1114.95	115.25	115.55	111.87	116.16	116
119	116.46	116,77	117.07	117.38	117.69	118.00	118.30	118.61	118.92	119.23	119
120	119.54	119.85	120.17	120.48	120.80	121.12	121.44	121.76	122.08	122.40	120
121	122.72	123.04	123.36	123.68	124.01	12434	124.67	125.00	125.33	125.65	121
111	125.98	129.69	110.04	110.98	130.77	11/25	10.37	131.75	132.10	132.45	133 1
124	132.80	133.15	133.50	133.85	134.21	134.57	134.93	135.29	133.66	136.03	124
125	136.4	136.7	137.1	137.5	137.8	238.2	138.6	139.0	139.3	139.7	125
126	140.1	140.5	140.8	141-2	141.6	142.0	193	142.7	141.1	142.5	126
127	143.9	144.3	144.7	145.1	145.5	149.9	140.5	110.7	147.1	147.4	127
129	151.8	152.2	152.6	153.0	153.4	151.8	154.2	154.6	195.1	155.5	129
130	155.9	136.3	156.8	157.2	137.6	138.0	158.5	158.9	139.4	159.8	130
131	160.3	160.7	161.2	161.6	162.0	162.5	162.9	163.4	163.8	164.2	131
112	164.7	163.1	163.6	166.0	106.3	167.0	172.1	172.6	168.3	173.5	137
134	174.0	174.5	175.0	175.4	175.9	176.4	176.9	177.4	177.9	78.4	134
135	178.9	179.4	179.9	180.4	180.9	181.4	181.9	182.4	184.9	183.4 }	135 :

Table III-E (continued) ... Enthalpy of Saturated Alr-Water Vapor Mixtures (at 29.921 in Hg) * (BTU per pound of dry air)

*J. A. Goff and S. Gratch, "Thermodynamic Properties of Maiss Alr" (ASHVE francations, Vol. 31, 1745, p. 133).

February 1975

-19-

CTL Code ATTUCK

• •	0.0	0.1	0.2	0.1	0.4	0.5	0.0	0.7	0.8	0.9	
136	1810	184.4	1949	195.4	1810	1464	186.0	187 4	148.0	188.5	116
' iii	189.0	189.5	190.0	100.6	1913	1916	197.2	197.7	194.4	1918	1 17
138	194.4	194.9	195.5	196.0	196.6	197.1	197.6	198.2	198.0	199.4	138
1.19	199.9	200.5	201.1	201.7	202.2	202.N	203.4	204.0	204.5	205.1	1 19
140	205.7	206.3	206.9	207.5	20H.I	204,7	209.3	209.9	210.4	211.0	140
1 !!!!	1116	212.2	212.0	213.4	214.0	214.6	215.2	215.6	216.4	217.0	1.11
1 124	11/1	522.3	116.9	219.5	220.2	220.8	221.3	111.1	111.7	123.4	121
1 122	210.6	101	1110	220.0	220.0	1 44.3	220.0	1/8 0	1160	116.1	122
انتقا	217.4	258.1	238.8	239.5	240.2	240.9	2416	242.3	2410	243.7	1.11
146	244.4	245.1	245.8	246.5	247.2	248.0	248.7	249 5	210.2	250.9	146
÷ 107.	251,7	252.4	253.2	254.0	254.7	255.5	256.2	257.0	257.7	258.5	147.7
148	259.3	260.0	260.8	261.6	262.4	263.2	263.9	264.7	265.5	266.3	148
1 1121	207.1	267.9	268.7	269.5	270.5	271.1	171.9	272.7	273.5	274.4	1.9
1.20	4/3.3	470.1	270.9	211.1	2/8.3	2/9.4	1 200.2	191.1	281.9	101.0	110
	741 6	7844	144.1	246.2	101.	3#3.0	1000	300.7	100.0	201.	
1 1 2 5	2014	201 1	204.2	200.2	206.0	20/.9	1978	709.7	190 0	100.6	1 185 -
1 161	301.5	102.4	101.1	304.3	105 2	1061	107.1	108.0	109.0	109.9	161
154	110.9	111.9	112.0	111.0	114.6	1118	116.8	317.8	1188	119.8	1545
155	120.8	321.8	122.0	523.A	324.8	325.8	376.9	327.9	328.9	330.0	155
156	331.0	332.1	333.1	334.2	335.2	336.3	337.4	338.4	139.5	3406	156
1 157	341.7	342.8	343.9	345.0	346.1	347.1	348.3	349.4	150.5	331.6	157
158	152.7	151.8	355.0	356.1	357.2	358.4	359.5	360.7	361.9	363 0	158
139	161.2	105,4	466.6	367.8	369.0	370.2	371.4	372.6	373.8	375.	152
100	370.3	111.9	3/8.8	140.0	381.2	382.5	383.7	383.0	380.5	387.5	100
	1	1001	101.4	143.2	1510	104.1	1044	100.0	100.1	4000 7	
1 121	300 8	101 1	104.7	394.1	351.0	393.3	. 390.0	398.0	122.5	400.7	
161	415.7	417.1	418.5	410.0	421.3	422.7	1341	4216	107.0	1111	161
164	429.9	441.4	412.9	444.4	415.6	417.4	418.9	440.4	441.9	441.5	164
165	415.0	146.5	448.1	449.6	431.2	452.8	454.3	455.9	457.5	459.1	105
¹ 166 j	460.7	462.3	463.9	465.6	467.2	468.9	470.5	472.2	473.8	475.5	166
167	477.2	478.9	480.6	482.3	484.0	485.7	487.4	487.2	490.9	492.6	167
168	494.4	496.2	497.9	499.7	501.5	503.3	505.1	506.9	508.7	5106	108
169	512.4	214.2	510-1	518.0	319.9	521.8	1 525.7	\$25.7	\$27.6	529.5	169
1/0	3,11.3	,,,,,	333.4	237.4	339.4	241.4	213.1	343.4	347.4	349.5	1.0
	** * *	4416		447.7	510.0	142.0	4611	1// 2	160.6	670.6	1.74
1 1331	222.2	\$74.9	5771	479.7	4814	502.0	101.1	500.2	500 4	597.6	141
171	194.9	197.2	100.1	601.8	604.1	6064	GON B	611.3	611.5	611.9	173
174	618.3	620.7	623.2	625.6	628.1	630.6	633.1	635.6	638.1	640 6	174
175	643.2	645.8	648.3	630.9	653.5	636.1	658.7	661.4	664.0	666.7	175
			• • • • •		· · · · · · · · · · · · · · · · · · ·						-
176	669.4	672.1	674.8	677.6	680.4	683.1	685.9	688.B	691.6	694.4	176
1 122	697.3	700.2	703.1	706.0	708.9	711.9	714.8	717.8	720.0	723.9	77
1/8	720.9	750.0	755.0	730.1	739.2	1111	/ / / / /	/	751.9	(33.1	1/8
1 180	7018	791 1	708.7	802.2	BOLB	8001	817.9	916 5	101.9	8217	180
1 101	827.4	831.1	834.8	838.6	842.4	846.7	850.1	853.9	857.8	861.A	180
182	865.7	869.7	873.6	877.6	681.7	885.7	889.8	894.0	828.1	902.3	182
183	906.5	910.8	913.0	919.4	923.7	928.1	932.5	937.0	941.4	946.0	163
184	950.5	955.1	959.7	964.3	968.9	973.6	978.4	983.1	988.0	992.8	164
185	998.	1003.	1008.	1013.	1018.	1023.	1078.	1033.	1038.	1044.	185
1.00	10/0	1014	10/0		1070	1016	1 1001	1003	1001	1008	100
1 186	1049.	1054.	1060.	1063.	1070.	1076.	1 1081.	1087.	1093.	1098.	180
1	1164	1170	1112		1140	1 1122	1 1107	1100	1116	1222	100
180	1729	1236.	1243.	1750	1257.	1764	1 1771	1279.	1286	1294.	189
190	1301.	1308.	1316.	1323.	1331.	1339.	1346.	1354.	1362.	1370.	190
							<u> </u>				
191	1378.	138G.	1394.	1403.	1411.	1420.	1429.	1437.	1446	1455.	j 191 i
192	1464.	1473.	1482,	1491.	1501.	1510.	1520.	1129.	1539.	1549.	192
193	1559.	1569.	1579.	1590.	1600.	1611.	1622.	1633.	1644.	1655	193
124	1666.	1077.	1689.	1700.	1712	1723.	1 1723	1747.	1759.	1772.	194
1 52	1784.	1/9/.	1809.	1822.	1970	1849.	1997	1870.	1890.	1904.	193 (
100	1015	1017	10/7	10/1	1076	1001		1013	1017	2041	100
190	1916.	2085	2102	1901.	2116	1.22	2000.	2022.	2017.	2033.	190
. 108	7741	2262	2281	2100	2110	1110	2119	2380	2402	2477	108
199	2443.	2465.	2487.	2509.	2532	2555	2579.	2603.	2627.	2652.	199
200	2677.	2763.	2728.	2715.	2781.	2809.	2836	2064.	2893.	2922.	200
1							1				

Table III-E (continued) ... Enthalpy of Saturated Air-Water Vapor Mixtures (at 29,921 in Hg)* (BTU per pound of dry air)

"J. A. Goff and 3. Granh: "Thermodynamic Properties of Malet Air" (ASHVE fransactions, Vol. 31, 1945, p. 125).

February 1975

-20-

CTI Code ATC-105

P. C. March

۰F	.0	.1	.2	.3	4	.5	.8	.7	.6	.9	٩F
60	07586	07584	07582	07581	07579	07577	07576	07574	07573	07571	60
61	.07569	.07568	.07568	.07564	.07563	.07561	.07559	07558	07556	.07554	61
62	.07553	.07551	.07549	.07548	.07540	.07545	.07543	.07541	.07540	.07538	62
63	.07530	.07535	.07533	.07531	.07530	.07528	.07527	.07525	.07523	.07522	63
65	07503	07502	07500	01410	07/07	07404	07494	07100	07491	07303	0.5
66	.07488	07486	.07484	07483	.07481	07479	.07478	.07476	07474	.07472	68
67	.07471	.07469	.07468	.07466	.07464	.07463	.07461	.07459	.07458	.07456	67
68	.07454	.07453	.07551	.07449	.07448	.07445	.07444	.07443	.07441	.07440	68
70	07422	07420	07419	07417	07415	07414	07412	07411	07409	07407	70
1 71	.07406	.07404	07403	.07401	.07399	07395	.07396	.07395	.07393	07391	71
72	.07390	.07388	.07386	.07385	.07383	.07391	.07360	.07378	.07377	.07375	72
73	.07373	.07372	.07370	.07368	.07368	07365	.07363	.07361	.07360	.07358	73
75	07340	07338	07334	07335	07333	0.332	07330	07329	07327	07325	75
78	.07323	.07322	.07320	.07318	.07317	.07315	.07313	.07312	07310	.07308	76
77	.07307	.07305	.07303	.07302	.07300	.07299	.07297	.07295	.07294	07292	17
78	07290	07289	.07287	.07285	.07284	07282	07280	07279	07261	07259	78
- 00-	01214	01024	- 01954	07959	02051	07140	01204	101202	07211	01200	
âi	.07241	.07239	.07237	07236	.07234	.07232	.07230	.07229	07227	.07225	81
82	.07224	.07222	07221	.07219	.07217	.07215	.07214	.07212	.07211	07209	82
83	.07207	.07206	.07204	.07202	.07200	07199	.07197	.07195	.07191	.07192	83
- 65	07174	07172	07170	.07169	07167	07165	07164	01162	07160	07158	- 83
65	.07157	.07155	07154	.07152	.07150	07149	.07147	07145	.07143	.07142	86
87	.07140	.07138	07137	07135	.07133	.07132	.07130	.07128	07127	.07125	67
88	.07123	.07122	.07120	.07118	.07116	.07115	.07113	.07111	.0711/2	.07108	88
00	07090	07089	07064	07084	02083	07091	07079	07078	07076	07074	- 00
91	.07073	.07071	.07069	07067	.07068	07064	.07062	.07061	.07059	.07057	91
92	.07056	.07054	.07052	.07050	.07049	07047	.07045	.07043	.07042	.07040	92
93	.07038	.07037	.07035	07033	.07031	07013	.07028	.07026	070025	.07023	33
- 05	07004	07002	07001	04999	05997	06995	06994	06992	009990	RRPAN	-95
96	.06985	.06983	06982	.06980	.06978	.06978	.06975	.06973	.06971	.06970	96
97	.06969	.06968	06966	.06964	.06962	.06961	.06959	.06957	.06955	.06954	97
88	06952	.06950	06931	06911	.00945	06943 :	.06942	06940	04921	.06937	98
100	.06917	.06915	.06914	.06912	.06910	.06908	.06907	.06905	.06903	.06901	100
101	.06900	.06898	.06896	.06894	.06893	.06891	.06889	.06867	.06886	.06884	101
102	.06882	.06880	.06678	.06877	06875	,06873	.06871	.06870	.06868	.06866	102
104	.06846	.06844	06843	.00841	.06839	06837	.06836	.06834	.06832	.06830	104
105	.06529	.06827	.06825	.06823	.06821	.06819	.06818	06816	.06814	.06812	105
106	.06810	06809	.06607	.06805	.06803	.06801	.06800	.06798	.06796	.06794	100
107	.06792	.06791	.06789	.06787	.06785	.06783	.06781	.06779	06778	06776	107
109	.06756	.03754	.06752	.06751	06749	.06747	.06745	.06743	06741	.06740	109
110	.06738	.06736	.06734	.06732	.06730	,06728	.06727	.06725	.06723	.06721	110
111	.06719	.06717	.06715	.06714	.06712	.06710	.06708	.06706	.06704	.06703	111
1 112	06682	05699	00097	.06695	06674	06691	.06689	06668	06667	06665	113
114	.06663	.06661	.06660	.06658	.06656	.06654	.06652	.06650	.06648	.06646	1 114
115	.06614	.06843	,06641	.06639	.06637	.06635	.06633	.06631	.06629	.06627	115
116	.06625	.06624	06622	.06620	.06618	06616	.06614	.06612	.06610	.06608	116
liin	.06587	.06585	.06583	.06581	.06579	.06577	.06576	.06574	.06572	.08570	l iiś
1 119	06568	.06566	.08564	06562	06560	06558	.06556	.06554	.06552	00550	1119
120	.06548	.06548	.06544	.06542	.06540	.06538	.06537	.06535	.06533	.06531	120
121	.06529	.06527	.06525	.06523	.06521	06519	.06517	.06515	.06513	.06511	121
123	.05509	.06487	.06485	.06483	.06481	06479	.06417	.06 175	.06473	.06471	123
124	.06469	.06167	.06465	.06463	.06461	.06459	.06457	.06455	.06453	.06151	1.124
•F	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	

Table III-F ... Density of Saturated Air-Water Vapor Mixtures at 29.921 in Hg (Pounds of mixture per cubic foot of mixture)

February 1975

CTI Code ATC-105

۰F	.0	.1	.2	.3		.5	.6	.7	.8		• • • •
											<u> </u>
60	13.329	13.332	13.336	13.339	13.343	13.346	13.349	13.353	13.356	13.360	60
62	13.398	13.402	13.405	13.409	13.412	18.416	13.419	13.423	13.426	13.430	62
63	13.433	13.437	13.440	13.444	13.447	13.451	13,454	13.458	13.461	13.465	63
65	13.504	13.508	13.511	13.515	13.518	13.522	13.525	13.529	13.532	13.536	65
86	13.539	13.543	13.546	18.550	13.554	13.658	13.561	13.565	13.569	13.572	68
68	13.613	13.617	13.620	18.624	13.628	13.632	13.635	13.639	13.643	13.640	68
69	13.650	13.654	13.657	13.661	13.665	13.669	13.672	13.676	13.680	13.683	69
71	13.081	13.591	13.09	13.598	13.702	13.700	13.709	13.713	13.717	13.720	70
72	13.762	13.766	13.770	13.774	19.778	13.782	13.785	13.789	13.793	13.797	72
74	13.841	13.805	13.849	13.813	13.817	13.821	13.825	13.829	13.833	13.837	74
75	13.681	13.885	13.889	13.893	13.897	13.901	13.905	13.909	13.913	13.917	75
76	13.921	13.925	13.929	13.933	13.937	13.942	13.940	13.950	13.954	13.958	76
28	14.003	14.007	14.011	14.016	14.020	14.024	14.028	14.032	14.037	14.041	78
79	14.045	14.049	14.053	14.058	14.062	14.000	14.070	14.074	14.079	14.083	79
81	14.130	14.135	14.139	14.143	14.148	14.152	14.150	14.161	14.185	14.170	81
82	14.174	14.178	14.183	14.187	14.192	14.196	14.200	14.205	14.209	14.214	82
84	14.263	14.267	14.272	14.278	14.281	14.285	14.290	14.294	11,299	14.303	64
85	14.308	14.313	14.317	14.322	14.326	14.331	14.336	14.340	14.345	14.349	85
87	14.401	14.405	14.410	14.415	14.420	14.424	14.429	14.434	14.439	14.443	87
85	14.448	14.453	24.458	14.462	14.467	14.472	14.477	14.482	14.456	14.491	88
80-	14.545	14.550	14.555	14.560	14.565	14.570	14.575	-14.5A0	14.585	14.590	30
101	14.595	14.600	14.605	14.610	14.615	14.620	14.025	14.630	14.635	14.640	91
92	14.645	14.650	14.856	14.601	14.666	14.671	14.676	14.081	14,686	14.692	92
94	14.749	14.754	14.760	14.765	14.770	14.778	14.781	14.766	14.791	14.797	94
95	14.802	14.808	14.613	14.818	14.824	14.829	14.635	14.840	14,845	14.651	95
97	14.911	14.917	14.922	14.928	14.933	14.939	14.944	14.950	14.950	14.961	97
98	14.967	14.972	14.978	14.984	14.989	14.995	15.001	15.007	15.012	15.018	98
100	15.081	15.087	15.053	15.099	15.105	15.111	15.117	15.123	15.128	15.134	100
101	15.140	15.146	15.152	15.158	15.164	15.170	15.176	15.182	15,168	15.194	101
103	15.261	15.267	15.273	15.280	15.286	15.292	15.298	15.304	15.311	15.317	103
104	15.323	15.330	15.336	15.342	15.348	15.355	15.361	15.368	15.374	15.380	104
105	15.452	15.458	15.465	15.471	15.478	15.485	15.491	15.498	15,504	15.511	106
107	15.518	15.524	15.531	15.538	15.544	15.551	15.558	15.565	15.572	15.578	107
109	15.654	15.661	15.668	15.675	15.682	15.689	15.696	15.703	15.710	15.717	109
110	15.724	15.731	15.730	15.748	15.753	15.760	15.767	15.775	15.782	15.789	110
112	15.796	15.803	15.884	15.892	15.899	15.907	15.914	15.922	15.929	15.862	
113	15.944	15.952	15.959	15.967	15.974	15.982	15.990	15.997	16.005	16.013	113
115	16.020	16.108	16.114	16.122	16.130	16.138	16.145	16.154	16.162	16.170	115
116	16.178	16.186	18.194	16.202	16.210	16.218	16.227	16.235	16.243	10.251	110
	16.259	16.268	16.276	10.284	16.293	16.301	16.309	16.318	15.411	16.334	1117
119	16.428	16.437	16.448	16.454	16.463	16.472	16.480	16.489	16.498	10.507	1119
120	16.515	16.524	16.533	16.542	16.651	16.560	16,569	16.578	16.587	16.590	120
122	16.696	16.705	16.715	16.724	16.734	16.743	16.752	16.762	10.771	16.781	122
123	16.790	16.800	16.809	16.819	16.828	16.838	16.846	16.857	16.867	16.876	123
124	10.000	10.080			10.010	E	10.040				1

Table III-G ... Volume of Saturated Air-Water Vapor Mixtures at 29,921 in Hg (cubic feet of mixture per pound of dry air)

February 1975

CTI Code ATC-105

```
.....
```

Anexo B

Gráficas de Comportamiento Térmico

Rellenos a Contra Flujo

Los valores de DVA son en ft

L/G

MUNTERS 19060

Los valores de DVA son en ft

L/G

AMERICAN TOWER PLASTICS COOLFILM

L/G

Los valores de DVA son en ft

→ DVA 6 → DVA 7 → DVA 8 → DVA 9 ◆ DVA 10 → DVA 11

Los valores de DVA son en ft

L/G

Los valores de DVA son en ft

L/G

L/G

Los valores de DVA son en ft

Los valores de DVA son en ft

BRENWOOD INDUSTRIES ACCU-PAK

Los valores de DVA son en ft

L/G

Anexo C

Gráficas de Comportamiento Térmico

Rellenos a Flujo Cruzado

-+H=18 -→H=24 - H=30

Los valores de H y DVA son en ft

(L/G)Total

ECODYNE T-BAR (PARALELO), 4plg x 8plg (ESTACADO) DVA=12

ECODYNE T-BAR (PARALELO), 8plg x 8plg (EN LINEA) DVA=12

-⊷H=18 -≏H=24 - XH=30

KaY/L 10 - 1 1 0.1 0.1 1

Los valores de H y DVA son en ft

(L/G)Total
WOOD LATH (PARALELO), 4plg x 4plg (ESTACADO) DVA=12

--H=18 ☆H=24 ⊮H=30

Los valores de H y DVA son en ft

WOOD LATH (PERPENDICULAR), 4plg x 8plg (ESTACADO) DVA=12

Los valores de H y DVA son en ft

(L/G)Total

MARLEY ALPHA-BAR (PARALELO), 4plg x 16plg (ESTACADO) DVA=12

- H=18 ☆ H=24 ★ H=30

Los valores de H y DVA son en ft

MARLEY LADDER (PARALELO), 4plg (ESTACADO) DVA=12

--H=18 ☆H=24 ▼H=30

Los valores de H y DVA son en ft

(L/G)Total

AnexoD

Gráficas de Caída de Presión

Rellenos a Flujo Cruzado

(P2-P1)/DVA [PLG H2O/ft]

Anexo E

Gráficas de Caída de Presión

Rellenos a Contra Flujo

.

.

.

BIBLIOGRAFIA

- Ing. Martiniano Aguilar Rodríguez
 "TORRES DE ENFRIAMIENTO DISEÑO, OPERACION Y MANTENIMIENTO" Instituto de Investigaciones Eléctricas
- Tonatiuh Ramos Castro, Gilberto Rodríguez Ramos
 "ANALISIS COMPARATIVO ENTRE TORRES DE ENFRIAMIENTO HÚMEDAS Y SECAS"

 SECAS"
- James L. Willa *PROPER COOLING TOWER OPERATION MAKES MONEY* Cooling Towers Institute (CTI)
- 4. The Marley Cooling Tower Company "COOLING TOWERS FUNDAMENTALS"
- 5. Donald R. Baker and Howard A.Shryock JOURNAL OF HEAT TRANSFER "A COMPREHENSIVE APPROACH TO THE ANALYSIS OF COOLING TOWER PERFORMANCE". The Marley Company
- Donald Q. Kern.
 PROCESOS DE TRANSFERENCIA DE CALOR Editorial Continental S.A. de C.V. México
- 7. G. F. Hallet. "Performance Curves for Mechanical Draft Cooling Towers" JOURNAL OF ENGINEERING FOR POWER
- Published by Cooling Towers Institute "COOLING TOWERS PERFORMANCE CURVES" Houston, Texas.
- 9. CTI Code ATC-105 *ACCEPTANCE TEST CODE FOR WATER-COOLING TOWERS*
- "POWER ENGINEERING" July, 1987 volume ninety-one
- Electric Power Research Institute (EPRI) "COOLING TOWER PERFORMANCE PREDICTION AND IMPROVEMENT" Volume 1 y 2, Edición 1990.

- "COOLING TOWERS. ENERGY CONSIDERATIONS IN APPLICATION" The Marley Company
- by William Wurtz, Hamon Cooling Tower POWER POLLUTION CONTROL "Replacing Asbestos Fill In Cooling Towers" Octubre, 1988
- 14. Jeanine Katzel "Fundamentals of Cooling Towers" PLANT ENGINEERING Abril 27, 1989
- Claudio Mataix "Mecánica de Fluidos y Máquinas Hidrulicas" segunda edición Editorial Harla
- Crane Co.
 "Flujo de fluidos en Válvulas, Accesorios y Tuberías" Editorial Mc Graw Hill
- Crane Co. "Valves Fittings Pipe Fabricated Piping". Number 53
- William Mendenh all, James E. Reinmuth. "Estadística para Administración y Economía" Trad. por Joaquín Díaz Saiz, M. en C. Editorial Iberoamérica
- "Determination of Fan Flow and Water Rate Adjustment for of Design Cooling Tower Test".
 J. M. Vance, Oak Ridge Gaseous Diffusion Plant Operated by Union Carbide, Nuclear
- Robert Burger "Cooling Tower Technology Maintenance, Upgrading and Rebulding" Editorial Prentice Hall segunda edición
- George A. Taylor "Ingeniería Económica" Edit. Limusa

Division.

 Ing. Humberto Soto Rodríguez, Ing. Ernesto Espejel Zavala "La Formulación y Evaluación Técnico-Económica de Proyectos Industriales"