

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

MODELAMIENTO MATEMATICO DE UN REACTOR ROTATORIO (REACTOR DE BIODISCOS): ESTUDIO DEL EFECTO DE LA TEMPERATURA, LA CARGA ORGANICA Y LA VELOCIDAD DE ROTACION.

T E S I S Que para obtener el Título de INGENIERO QUIMICO presenta

JOSE LUIS LOPEZ MARTINEZ

TESIS CON Falla de Cristin

México, D. F.

19**9**2

1 15

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

- 1. Resumen
- 2. Introducción
- 3. Reactores de biopelícula
- 3.1 Generalidades
- 3.2 Reactor biológico rotatorio o de biodiscos
- Metodología
- 5. Resultados
- 6. Análisis de resultados
- 7. Conclusiones y recomendaciones

Reconocimientos

Bibliografía

Apéndice

Indice de figuras

Indice de gráficas

Indice de tablas

1. Resumen

El interés creciente acerca de la conservación y mejoramiento de los recursos naturales, en particular con la calidad de los recursos acuíferos, ha llevado a un cambio en el pensamiento. Se busca ahora diseñar con tecnologías limpias o, si busca abatir la generación de efluentes contaminados de todo tipo, industriales y domésticos. Para esto se han desarrollado una serie de dispositivos tanto de control, como de tratamiento de contaminantes. Los problemas graves están en torno a la gran cantidad de agua que las industrias utilizan en sus procesos, en donde el agua es contaminada tanto física, como química y biológicamente. Estas aguas residuales, al ser arrogiadas al entorno, hacen que éste sufre un quave deterioro ecológico.

En este rubro un sistema que ha demostrado una alta eficiencia de operación, a la vez que costos de operación menores, es el sistema de fratamiento aerobio de contacto rotatorio, conocido como reactor biológico rotatorio o reactor de biodiscos y, generalmente se le señala con las siglas RBR.

Se han realizado múltiples investigaciones en torno a esté sistema, con el fin de poder controlar más eficientemente el proceso, minimizando inversión de capital y costos de operación y maximizando eficiencias de remoción de contaminantes. Para poder encontrar estas condiciones óptimas realizando un número menor de experimentos, se ha probado la utilización de expresiones matemáticas que permitan modelar adecuadamente el comportamiento del RBR, con lo que se disminuirían los costos de experimentación, permitiendo además el escalamiento de las unidades de tratamiento para niveles industriales.'

La realización de esta correlación entre datos teóricos y experimentales requiere la definición de las variables de operación que afectan al proceso.

Experimentalmente se ha encontrado que la temperatura del sistema, la velocidad de rotación de los biodiscos, el tiempo de residencia hidráulica, el número de etapas del sistema, así como la concentración de materia orgánica inicial podrían definir el dimensionamiento del RBR (volumen de trabajo y área de contacto).

Consecuentemente, con estas premisas se procedió a procesar una serie de datos experimentales, para reactores de diferentes volúmenes de trabajo y operando a diferentes. Sus capacidades eran de 20, 50 y 250 L.

De acuerdo con estudios previos, se propuso un modelo de tipo exponencial para modelar el efecto de estas variables sobre la eficiencia de remoción. Posteriormente, se realizó un análisis de los resultados obtenidos para evaluar el efecto de la variables sobre la capacidad de remoción. Se encontró que al aumentar la temperatura, también se aumentaba la capacidad depurativa del sistema, especialmente en el intervalo idóneo para el crecimiento microbiano (10-30°C).

Con respecto a la velocidad de rotación se pudo observar que a altas velocidades de rotación aumentaba la renoción, debido que se aumentaba la transferencia de oxígeno y de nutrientes hacia la biopelícula, así como la eliminación del exceso de microorganismos adheridos a la biopelícula. Aquí también se tiene el límite impuesto por los esfuerzos cortantes del agua sobre la biopelícula que dan un máximo a esta variable ya que al rebasarse la biopelícula que de la superfície inerte.

En cuanto al tiempo de residencia hidráulica se encontró una dependencia directamente proporcional con la remoción. Aquí la limitante se refiere al dimensionamiento del equipo y, consecuentemente, a su costo de capital.

También se observó que, conforme el número de etapas aumentaba, la remoción también lo hacía (reactores de flujo pistón sobre reactores perfectamente merclados en cascada). Sin embargo, es importante mencionar que la remoción más considerable se lleva a cabo en las primeras cámaras, debido principalmente a las características de biodegradabilidad de los substratos mas que al proceso tipo de reactor.

Otro factor se fonó en cuenta es la concentración inicial y la composición de la materia orgánica soluble a remover que presenta el efluente, ya que se observó que debe incrementarse la cantidad de oxígeno disuelto presente si se desea mantener una tasa de remoción constante. En caso de que esta variable se mantenga constante, la remoción disminuye conforme se aumenta la concentración de substrato orgánico inicial.

Se propusieron una serie de expresiones matemáticas, que pudieran representar el comportamiento de los RBRs experimentales. De todas esas expresiones matemáticas, se escogió a la que mejor representó el proceso de remoción de la materia orgánica.

A pesar de haber escogido la mejor expresión, se puede apreciar que todavía existen desviaciones con respecto a los datos obtenidos experimentalmente. Estas desviaciones se pueden atribuir al hecho de que en el sistema de tratamiento de aguas, los microorganismos que son los responsables de la degradación de la materia orgánica, son afectados por innumerables variables (no solamente las señaladas aquí), especialmente, los llamados factores abióticos como el pH, la alcalinidad, la composición de la materia orgánica disuelta en el efluente a tratar, etc.

Todos estos factores alteran grandemente el comportamiento de los microoganismos y, si a esto se le aunan los errores inherentes a la forma de las expresiones matemática propuestas, que se derivan de un modelo de tipo exponencial (que no necesariamente refleja los fenómenos de metabolismo de la materia orgánica entre la primera cámara o etapa y las subsiguientes), los errores se incrementan grandemente.

Para tratar de incluir estas variables se requiere de metodologías experimentales más complejas, además de obtener expresiones matemáticas más complicadas que no necesariamente garantizan la reproducibilidad de los efectos de estas variables en sistemas a máyor escala.

La ecuación propuesta es bastante sencilla, considerando estas limitaciones y da resultados que no difieren grandemente con lo que se obtuvieron en los experimentos. Por otro lado, las desviaciones se reducen cuando se trabaja a condiciones intermedias de temperatura, es decir entre 15 y 25 grados centigrados. Esta es la siguiente:

 $S = So exp - (T^a TRH^b N^c w^d) D k$

donde T es la temperatura en Kelvin, TRN es el tiempo de residencia hidráulico que está dado en minutos. N es el número de cámara, etapas o reactores perfectamente mezolados comectados en o pistón), W son las revoluciones por minuto con las que gira el tren de discos del RBR, D es el diámetro de los discos y está dado en metros, k es una constante de proporcionalidad para convertir el exponente en adimensional, los exponentes a, b, c, d son los exponentes que afectan a las variables de operación seleccionadas. Dichos exponentes varían conforme cambian las condiciones de operación. Así por ejemplo, a=[22/(333-T)], b=[TRN+7.6 E-5], c=N/21, d=[M*0.0006] y k=166. Estos exponentes

La ecuación óbtenida da sus mejores resultados bajo condiciones de temperatura entre 13-25°C. Adenás, se ha visto que para tiempos de residencia hidráulica grandes existe aumento en el error con respecto a lo que se tiene experimentalmente. Un resultado importante de esta ecuación es que se pudieron modelar de forma adecuada diferentes condiciones de operación y diferentes capacidades de tratamiento de efluentes, por lo que se abre la posibilidad de utilizarla para escalar reactores a niveles prototipo e industrial.

3

2. Introducción

A últimas fechas ha crecido la preocupación y la concientización acerca de la importancia de la preservación y la calidad de los recursos naturales, tales como agua, aire y suelo; que son severamente contaminados por desechos tanto de indole industrial como domésticos. Este proceso de contaminación tuvo en la revolución industrial un aceleramiento, que se ha ido aumentando constantemente con el desarrollo, tanto industrial como agrícola y de población. Se ha llegado a una saturación equilibrio ecológico y que pone en peligro el desarrollo de la vida humana en la tierra.

El problema de la contaminación se puede dividir en dos, el industrial (incluyendo las actividades agropecuarias y pesqueras en el esquema global) y el doméstico. los cuales deben ser resueltos. Por lo que se refiere al problema de la industria, algunos giros utilizan grandes volúmenes de agua en sus procesos y ésta, es contaminada de muy diversas formas, tanto física, como guínica y biológicamente.

La materia orgánica al ser metabolizada por las bacterias presentes en las fuentes acuíferas, acaban con las reservas de oxígeno y las condicienes se vuelven anaerobías, ocasionando un desequilibrio en el sistema ya que el nivel de oxígeno que está disuelto en las fuentes acuíferas, combinado con otros factores determinan la vida de la flora y fauna del sistema.

La demanda quínica de oxígeno, conocida con sus siglas en español como DQO, es una medida del contenido de materia orgánica total, sea o no biodegradatle. La demanda bioquínica de oxígeno, comocida como DBO, por el contrario, representa la cantidad de oxígeno realmente consumido por los microorganismos durante el metabolismo de materia orgánica (evidentemente biodegradable). Una suposición generalmente aceptada es que es una reacción equímolecular, esto es, que por cada mol de oxígeno consumida hay una mol de materia orgánica metabolizada. Esta última prueba puede hacerse a diferentes temperaturas y por ello se le encuentra en ocasionés con un superíndice o exponente que indica la temperatura a la que fue medida la cantidad de oxígeno consumida y con un subindice que indica el número de días que duró el experimento respironétrico (DBOU²), sería la demanda bioquínica de oxígeno última, esto es hasta que ya no hay más

El problema es grave ya que, además de contaminar los cuerpos receptores de estas aguas usadas, muy seriamente (suelo o fuentes hídricas), se están contaminando mantos freáticos e incluso mantos profundos. Para tratar de disminuir el efecto negativo de la contaminación se están introduciendo lo que se conocen como tecnologías limpias, que se refieren, no solamente a cambios en los procesos sino a una serie de cambios de mentalidad para recuperar, reciclar y reutilizar insumos y productos obteniendo procesos menos contaminantes y eficientes con ahorros substanciales en costos de operación.

Existen sin embargo, casos en los que a pesar de buscar todas las opciones posibles, se generan efluentes y por más que se trate de disminuir su emisión de contaninantes, ésta sigue presente o se requieren muy grandes inversiones para resolver el problema. Así que otra coción viable es la instalación de sistemas de tratamiento de aquas residuales que logren procesar los efluentes contaminados resultantes del proceso, buscando la minimización de subproductos del tratamiento, su estabilización y adecuada disposición, así como una calidad aceptable en el agua tratada, concoida como renovada, para poder reutilizarla dentro proceso, lo que implicaría la disminución de 105 del requerimientos de aqua de proceso y abatiendo un poco los costos de operación. El agúa tratada se puede utilizar también como agua de riego o, simplemente, dado que se obtienen efluentes menos contaminados, dentro de los intervalos permisibles que dictan las nuevas leves de protección del medio ambiente, pueden vertirse sin ningún problema al entorno.

Además de la concientización de la preservación de los recursos naturales, las industrias están siendo obligadas, mediante legislaciones específicas, a tener un máximo de contaminantes específicos a su giro en sus efluentes de proceso, los cuales si se vician, dan como resultado muy serias sanciones (econômicas y legales).

Estas plantas de tratamiento de aguas pueden operar con diversos sistemas, los cuales presentan ventajas y desventajas, dependiendo del tipo de contaminantes, de las condiciones en que se encuentran los efluentes (temperatura, pH, etc) y de innumerables factores más.

Para la selección idónea del sistema de tratamiento de efluentes, se escoge aquél o aquéllos los que mejor se adecuen a las necesidades propias del proceso, así como a las características particulares de cada empresa.

Para los giros industriales que generan efluentes que contienen material orgánico biodegradable, los procesos biológicos, que initan a los sistenas naturales de depuración en recursos hídricos, son los más adecuados, tanto per su costo como por las posibilidades de reciclar y estabilizar los subproductos generados de manera relativamente simple. La figura 1 presenta un ciclo ecológico natural en el que puede observarse que los microorganismos que utilizan los residuos orgánicos contaminates, especialmente los solubles, pueden ser separados de manera simple por medio de otros predadores o con métodos

Estos conjuntos de microorganismos (bacterias, protozoarios, micrometazoarios, metazoarios, etc) se encuentran generalmente en forma aglutinada y, a su vez, pueden estar flotantes en el agua (conociêndose como sistemas homogéneos o floculados) o adheridos a alguna superfície inerte formando una película (se conocen como sistemas heterogéneos o de biopelícula).

Para optimizar el diseño de esas plantas de tratamiento para desechos biodegradables se nan tomado esencialmente dos factores: La cinética quínica de conversión de los compuestos orgánicos a nuevos microorganismos y la transferencia de masa de los reactivos y los productos en el medio acuoso. Esto es particularmente aplicable a los reactores usados para convertir el material soluble a material insoluble empleando reacciones bioguímicas.

Sin embargo, para encontrar experimentalmente las constantes cinéticas y de transferencia de mass, se tienen muchas variables que no pueden ser todavía medidas con el estado actual del conocimiento. Por ello, se han generado innumerables modelos empíricos para correlacionar las variables medibles experimentalmente con los factores de diseño de los reactores involucrados.

Entonces, la idea de obtener correlaciones matemáticas, que asocien resultados experimentales con ecuaciones simplificadas derivadas de los desarrollos teóricos y que estén dentro de un intervalo de confiabilidad es una metodología muy usada actualmente. Su principal objetivo es el de que, con el modelo obtenido, se minimicen el número de experimentos y, por lo tanto, sus costos asociados, así como la implantación de modelos con los datos obtenidos a nivel de laboratorio para otros casos partículares.

Objetivos de este trabajo es la de poder obtener una correlación matemática para poder modelar el comportamiento del RER a diferentes condiciones de operación, con el fin de poder entender y controlar el proceso de remoción de contaminantes disueltos en efluentes. Asi cono tambien poder utilizar dicha correlación para minimizar la realización de experimentos, abatiendo asi tiempo y costos de experimentación, ademas de utilizarla como un parametro para el escalamiento de la capacidad de tratamiento a niveles mas industriales, y encontrar las condiciones mas optimas de coeración

Por lo tanto uno de los objetivos de obtener un modelo matemático es minimizar el número de experimentos y los costos asociados a su realización.

En el siguiente capítulo se presenta un breve bosquejo de los sistemas de biopelícula que serán los que se emplearán como ejemplo para la realización de la correlación matemática objeto de este trabajo.

Figura 1. Ciclo ecológico natural

AGUA TRATADA

Figura 2

SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES EMPLEANDO SISTEMAS BIOLOGICOS.

3. Reactores de biopelícula

3.1 Generalidades

Son aquellos donde los microsrganismos responsables de la conversión de la materia orgánica y otros contaminantes disueltos de las aguas residuales a gases y tejido celular, están fijos en algún medio de soporte inerte, como serían rocas o materiales plásticos o cerámicos.

En la biopelícula activa fija es donde se realiza la transferencia de masa entre las fases gas-líquido-sólido para la conversión de los substratos (materia orgánica disuelta y otros contaminantes que están presentes en las aguas residuales), a bióxido de carbono y agua y nuevos microorganismos. A partir de esta conversión es posible que los microorganismos presentes obtengan la energía suficiente para mantener su metabolismo basal y, mediante la reproducción, incorporar nuevos microorganismos a medio de soporte aumentando, tanto el espesor de la biopelícula como la cantidad de microorganismos en forma floculada en la fase líquida.

Los sistemas de película fija se pueden clasificar en sistemas de medio de soporte estacionario y en sistemas de soporte en movimiento.

En los sistemas de soporte estacionario, el agua de desecho pasa a través del medio de soporte y en los sistemas de soporte en movimiento, el medio de soporte se nueve a través del agua en tratamiento. En antos casos el agua de desecho se mueve en relación a la película de microorganismos y el soporte sólido a la que se fija.

Estos sistemas tienen la capacidad de transformar, mediante el metabolismo microbiano, el material orgánico disuelto a sólidos biológicos suspendidos, generalmente aglomeraciones de comunidades mixtas de organismos que pueden ser separados del agua mediante sistemas físicos.

El área disponible para el crecimiento de **los** microorganismos es un parámetro importante de diseño y generalmente se trata de desarrollar sistemas que provean un área de contacto máxima con el menor volumen.

El material orgánico disuelto en las aguas es adsorbido en la biopelícula. Este fenoneno de difusión de los nutrientes y el oxígeno del aire al líquido y del líquido hacia adentro para ser metabolizado por ésta es de suma importancia en el proceso de metabolización de la materia orgánica, por lo que la resistencia de las fases gas-líquido y líquido-sólido (biopélicula) son parámetros que deben de tomarse en cuenta.

La biopelícula se forma debido a que las bacterias se comportan como particulas cargadas y son adsorbidas y ancladas en interfaces sólido-liquido, para después multiplicarse y crear una biopelícula de microorganismos, donde se realiza el proceso de conversión de la materia orgánica (Williams, 1986; Metcalf, 1979).

La biopelícula va formada empieza a aumentar en espesor al multiplicarse los microorganismos que la constituyen, hasta llegar a un punto en que el cxigeno que se difunde en la biomasa, es consumido antes de penetrar el espesor total de la biopelícula. Este fenómeno hace que se establezca una condición anaerobia en la parte próxima al medio de soporte inerte.

Conforme el espesor de la biopelícula aumenta, la materia orgánica es también matabolizada antes de que llegue a lo más profundo de la biopelícula, teniendo como resultado que los microorganismos cercanos al medio de soporte, pasen de una fase de crectimiento exógeno a una de crecimiento endógeno, perdiendo la habilidad de anclaje al material de soporte y, debido a los esfuertos cortantes ocasionados por el biodisco cuando penetra al efluente a tratar, favorece que se vaya paulatinamente desprendiendo del biodisco (Winkler,1980).

La anaerobiosis se ha propuesto como la causa de la iniciación del proceso de desprendimiento de la biopelícula, debido a que, por el crecimiento endógeno, hay un deterioro o muerte de las capas más profundas y, por lo tanto, ocurre un desprendimiento de la biopelícula. Las condiciones anaerobias también dan ocasión a la formación de burbujas de gases anaerobios (metano, ácido sulfhidrico, etc), que provocan que la biopelícula se empiece a desprenderse del soporte inerte. Ya debilitada la película en su adherencia al medio inerte de soporte, el esfuerzo cortante que sufre la biopelícula al

Dada la importancia que radica en el conocimiento del comportamiento de la biopelícula, se han realizado diversos trabajos experimentales, para determinar el efecto del espesor de la biopelícula en la eficiencia de remoción de contaminantes de la fase líquida, así como los modelos propuestos para determinarla (Gantzer, 1987; Metzger, I.1976; Mikula, W.J., 1979).

Estos nodelos han resultado bastante complejos, además de que no han proporcionado resultados satisfactorios, puesto que se han realizado bajo la suposición de condiciones de régimen permanente (Gantzer, 1987). También se han ideado modelos para condiciones no estacionarias.

Se ha encontrado que las limitaciones en el transporte, tanto de la materia orgánica que lleva el agua residual como la transferencia de oxígeno, es sumamente importante para el comportamiento del sistema (Wagner, 1988).

Dado que los responsables de la conversión química de los contaminantes son los propios microorganismos, su rol es crucial para la eficiencia del sistema. Factores ambientales (tenperatura, FH, etc) y factores guínicos (conpuestos tóxicos, exceso de sales, etc; alteran su comportamiento (Turakhia, 1989). El efecto del calcio, por ejemplo, en el cual un incremento en la concentración de calcio durante el crecimiento, significa un incremento en la velocidad y extensión de la concentración del polímero aglutinante que promueve la adhesión de los organismos al soporte y a otros organismos.

También se han realizado estudios para biopelículas anóxicas, con nitrato de potasio como el aceptor de electrones y se ha experimentado con diferentes donadores de electrones durante las reacciones de desnitrificación (Hu, 1987).

La purificación anaerobia de la fracción orgánica soluble en aguas residuales industriales, se puede llevar a cabo en este sistema también modificando solamente las variables que conciernen a la difusión del oxígeno hacia la biopelícula por las de los gases generados anaerobiamente en la biopelícula hacia afuera (Gorris, 1959).

Como se puede ver existe nuchos trabajos experimentales, en los cuales se busca observar el comportamiento de la biopelícula. Estos trabajos se han realizado, tanto a diferentes condiciones de operación, régimen estacionario y no estacionario, así como para organismos aerobios, anaerobios y facultativos.

En las zonas donde se deprende la biopelícula, comienza de nuevo un crecimiento de una nueva. Por esta serie de fenómenos se puede considerar al espesor dela biopelícula como autorregulable (Winkler, 1981).

Varios investigadores han demostrado que la remoción de los sustratos por la biopelícula aumenta linealmente al aumentar el espesor de ésta, hasta un nivel máximo. La eficiencia de purificación de la biopelícula alcanza ese máximo cuando se mantienen las condiciones de aerobiosis (experimentalmente se ha encontrado que, para aguas residuales domésticas, debe ser menor o igual a 250 micras) y la eficiencia de ésta puede decaer con el crecimiento de su espesor, todo esto para los sistemas aerobios.

Para los sistemas anaerobios, el factor limitante se dirige hacia la difusión de los gases hacia afuera de la biopelícula y del líquido. El espesor de la biopelícula depende de las características del agua de desecho y de las condiciones ambientales (carqo de nutrientes en el sistema y de la actividad metabólica de los organismos de la biopelícula). En el caso de los sistemas aerobios velocidades a las que el oxígeno y nutrientes orgánicos se difunden en la biopelícula, dependerá de sus respectivas concentraciones en la capa liquida que esta en contacto con la biopelícula.

Cuando la concentración de nutrientes es alta en el líquido, el gradiente de concentración causará una rápida difusión de nutrientes en la biopelícula, por lo que penetrarán más profundamente en la biopelícula, antes de ser consumidos. La capa de biopelícula, mas allá de la capa activa, no es del todo irrevelante, ya que actúa como un amortiguador y da al sístema la habilidad para moderar los efectos en los cambios en las condiciones de operación, como la temperatura y la carga inicial.

Un entendimiento mejor del comportamiento de la biopelícula, como un ecosistema integrado puede llevar a tener un mejor control del reactor. Se puede jugar con algunas variables, con el fin de obtener el espesor óptimo de biopelícula para cada caso particular.

Como ya se dijo, los sistemas biológicos pueden tener condiciones aerobias o anaerobias. Cada una de ellas presentan ventajas y desventajas. En el sistema anaerobio, la eficiencia de tratamiento no está limitada por la rapidez o velocidad de tranferencia del oxígeno al sistema.

En los sistemas de biopelícula se pueden tratar desechos con alta concentración de contaminantes. Particularmente en los aerobios se tiene un ahorro de energía al no requerirse una fuente específica de aeración u oxígenación, ya que ésta se obtiene a partir de la transferencia de masa a través del aire ambiente y las películas de líquido formadas sobre la biopelícula. En el caso de los anaerobios, la transferenmeia de masa se vuelve menos limitante que la reacción química.

En ambos sistemas, aerobios y anarobios, se generan gases, como ya se mencionó, principalmente CO., En el caso de los sistemas anaerobios, además se obtiene, cômo producto metabólico de la actividad microbiana, metano y otros gases (principalmente ácido sulfhídrico, si existe una cantidad apreciable de compuestos azufrados en los residuos). El metano puede utilizarse como combustible. Los compuestos que son muy lentamente biodegradados en los sistemas aerobios, como son la celulosa y materiales grasos, en el anaerobio son factibles de ser biodegradados más eficientemente, Debido al olor desagradable del metano y el ácido sulfidrico y a la necesidad de mantener la anaerobiosis, los reactores deben estar herméticamente cerrados.

El rendimiento de la bionasa es naturalmente más bajo en los sistemas anaerobios que en los aerobios y esto puede representar una ventaja cuando se piensa en la estabilización y disposición de los subproductos del tratamiento, ya que se manejan menores cantidades de lodos.

Los tiempos de residencia hidráulica en los dos sistemas (anaerobios y aerobios) pueden ser optimizados en función del tiempo de retención de los consorcios microbianos. Sin embargo, en general, los sistemas anaerobios necesitan tiempos de residencia más largos, ya que las rapideces de reacción de los complejos enzimáticos de los sistemas anaerobios son menores que las de los sistemas gerobios.

Consecuentemente, las unidades de tratamiento anaerobio

deben ser de mayor capacidad que las de tratamiento aerobio en la mayor parte de los casos. Aderás, las unidades requieren de hermeticidad, lo que hace aumentar la inversión.

Ejemplos de sistemas de película adherida son los siguientes: reactores empacados (filtros intermitentes de arena, filtros percoladores) y reactor de contacto rotatorio. Existe numerosa literatura que describe las bases de diseño y la operación de estos sistemas, tanto aerobios como anaerobios (Steel, 1979; Benefield, 1980; Winkler, 1981).

3.2 Reactor biológico rotatorio o de biodiscos

Uno de estos sistemas de biopelícula es el conocido como reactor biológico rotatorio (RBR) que se ha implantado en sistemas de tratamiento de efluentes líquidos provenientes, principalmente, de pequeñas comunidades o de industrias que no tienen volúmenes muy elevados de aguas residuales y que contengan material orgánico biodegradable.

El reactor biológico rotatorio (RBR) es un sistema compacto implatado para el tratamiento biológico de aguas contaminadas por materia orgánica disuelta. El sistema emplea microorganismos aerobios que metabolizan la materia orgánica y la transforman en nuevos microorganismos, los cuales pueden, posteriormente, separarse de manera mecánica. Está formado por varias cámaras unidas en forma secuencial e intercomunicada entre si por conexiones de de material inerte y flexible, como silicón, cada camara cuenta con un sistema rotatorio de soporte para la biopelícula activa, acoplado a una flecha y un motor que hace girar a la biopelícula. Tanto el sistema rotatorio como las tinas contenedoras estan hechas de acero inoxidable. Al recibir el reactor el agua a tratar se accionan los motares que hacen girar la unidad rotatoria de soporete de la biopelícula, la cual se а encuentra sumergida en un 40 % en el agua residual, la velocidad de rotación es constante y se genera un flujo axial. El 60 💲 restante está en contacto con el aire atmosférico para absorber oxígeno que los microorganismos requieren para su metabolismo.

Necesita tienpos de residencia hidráulicos cortos debido a su gran área superficial expuesta; pueden operar en un intervalo amplio de gastos; no requieren tuberías de recirculación y sus costos de operación y mantenimiento son bajos, presenta sencillez de operación.

Sin embargo, se requieren períodos largos para alcanzar la estabilidad y la inversión de capital inicial para su arranque es alta.

Este reactor funciona de manera contínua ya que los nuevos microorganismos producidos se desprenden del sistema de soporte debido a los esfuerzos de corte que sufre la biopelícula al introducirse en el agua y son arrastrados por la gravedad y el movimiento rotatorió de una cámara a otra junto con las aguas a tratar. El reactor está colocado con una inclinación de 6 grados con respecto a la horizontal para garantizar asi el flujo de las aguas en tratamiento y la biomasa microbiana en suspensión.

La última cámara está conectada a un tanque sedimentador en donde se separa por gravedad los microorganismos (lodos) y el agua tratada. El principio de operación es la conversión de materia orgánica soluble (agente contaminante) a material orgánico insoluble (lodos) que pueden separarse de manera simple por medio de un sedimentador o clarificador,

El RBR encuentra su mayor aplicación en el tratamiento de aguas negras (domésticas) y de efluente líquidos industriales que contienen material biodegradable en disolución. Su diseño compacto le da ventaja sobre otros sistemas tradicionales, sobre todo en consumo energético (el sistema de lodos activados requiere de S a 11 HP/mil mJ/d mientras que para el RBR se requiere solamente 2.65 HP/mil mJ/d) y además resultan ideales para plantas que procesan volúmenes entre 4.000 y 75,000 mJ/d.

Se requieren 0.15 m2 de medio inerte para tratar 0.004 m3/d para tratar aguas residuales domésticas.

Además, con el RBR se nan obtenido buenos resultados, tanto en efluentes domésticos como en industriales que posean altos contenidos de materia orgánica disuelta y que, tiene además bajos costos de operación, requerimientos limitados de espacio y simplicidad en su manejo; se han venido estudiando desde finales de la década de los setentas.

Esta información ha servido para tratar de entender con mayor profundidad el proceso y así, poderlo controlar e implantarlo de forma más amplia y eficaz.

Este estudio, como se mencionó en el capítulo anterior, se ha abocado a la elaboración de una correlación que dé el modelamiento de un RBR a diferentes condiciones de operación y de diseño, con el fin de minimizar los costos de experimentación y tener una base para realizar un escalamiento de la capacidad de tratamiento y usarlo a escalas industriales o municipales.

Este sistema consta de una serie de discos de plastico que son los que actúan como medio de soporte. Están montados sobre una flecha, la cual,a su vez está conectada a un motor. Figura 3. Los discos rotan lentamente y, para los sistemas aerobios, generalmente alrededor de un 40% del área superficial de estos se encuentra sumergida en al aqua de desecho.

Cuando el reactor arranca, inmediatamente los microorganismos que se encuentran en forma natural en el agua de descho, empiezan a adherirse en la superfície del disco y empiezan a multiplicarse hasta que en un período de aproximadamente una semana, toda la superfície del disco se encuentra cubierta por una biopelícula de un espesor de 1 a 4 mm. La bionasa adherida contiene de 50 000 a 100 000 mg/L de solidos supendidos. Esta alta población de microorganismos permite altos grados de tratamiento en tiempos de retención relativamente cortos.

Fara los reactores aerobios, al rotar los discos, una parte de la biopelícula es expuesta al aire y ésta, a su vez, arrastra una película de agua en tratamiento, que escurre sobre la biopelícula, absorbiendo exígeno del aire. Los microorganismos de la biopelícula consumen este exígeno disuelto y los materiales orgánicos de la película de aqua.

La biopelícula expuesta al aire, también consume materia orgánica y oxígeno disuelto al encontrarse sumergida en el agua a tratar. El oxígeno disuelto que no es consumido en la película de agua de desecho se mercla con los componentes del licor, lo que mantiene una concentración determinada de zxígeno disuelto en el líquido, la cual es una medida indirecta de la aerobicsis del sistema.

Los esfuerzos cortantes generados al volver a entrar la biopelícula al aqua y pasar a través de ella, causan que el exceso de bionasa sea arrancada del medio de soporte y pase a formar parte de la mezcla de licor. Este fenómeno, como ya se mencionó, mantiene una población microbiana relativamente constante sobre los biodiscos. El mezclado generado por la rotación de los biodiscos, provoca que la biomasa desprendida se se mantenga en suspensión y el flujo de agua en tratamiento encarga de sacarla del sistema para, posteriormente, ser separada del agua tratada en un sedimentador, que es justamente el principio de depuración.

El medio de soporte, operando de esta manera, tiene las siguientes funciones :

- Proveer el área superficial para el desarrollo de cultivos biologicos fijos.
- Implantar un contacto vigoroso entre la biopelícula y el agua a tratar.
- 3.- Airear eficientemente al agua de desecho.
- 4.- Lograr un mecanismo eficiente para el desprendimiento constante del exceso de biomasa en los biodiscos.
- 5.- Impartir un mezclado para mantener los sólidos generados en supensión y lograr un mezclado adecuado en cada etapa de tratamiento.

La biopelícula.tiene un aspecto afelpado y presenta muchos filamentos microscópicos, hacia afuera de la biopelícula. Esto representa una área superficial más grande, por lo tanto da una porción más grande de biomasa aerobia activa. La rugosidad se debe a la acción de la rotación de los biodiscos que, al hacer pasar la bionasa por el agua y el aire, ocasiona la formación de los filamentos. Este efecto se hace más pronunciado en las etapas iniciales, donde el crecimiento de los microorganismos es mayor por la mayor concentración de compuestos orgánicos disueltos disponibles.

La capacidad depuradora de la biopelícula activa, alcanza su máximo cuando existe una capa delgada completamente aerobia, disminuyendo su eficiencia al incrementarse el espesor, tranformandose las condiciones en anaerobias. (Kornegay, 1975; Escarcega y Fulido, 1986).

Durante el proceso de remoción se llevan acabo fenómenos de difusión de substratos y metabolitos disueltos de manera recíproca entre el líquido y la biopelícula fluculos suspendidos.

El crecimiento filamentoso es limitado por la resistencia de la biopelícula al esfuerco cortante causado por la rotación, por lo tanto, se tiene un espesor relativamente homogéneo.

La primera unidad de RBR fue inventada en Alemania por Neigand en 1900. El reactor era de forma semicilíndrica y los discos eran láminas de madera pero, desafortunadamente, se hinchaban y partían en un tiempo muy corto. Por ello, no fue muy exitoso. Esta idea idea no fue retomada sino hasta la decada de los treintas, en que Bach e Imhoff, también en Alemanía, hicieron pruebas con la idea de Weigand. Estas primera unidades sufrían de problemas de taponamiento en las láminas y la investigación de este equipo se detuvo nuevamente.

En 1929, en los Estados Unidos, Allen reportó la invención de la "rueda biológica". Esta "rueda" consistía de una serie de ruedas de paletas que rotaban. En el mismo año, Doman reportó resultados obtenidos en un equipo que utilizaba discos rotatorios metálicos. Sin embargo los resultados no fueron muy alentadores.

En la segunda mitad de la decada de los cincuentas, la idea fue considerada seriamente en Alemania y en el año de 1955 comenzó una investigación extensiva en la Universidad de Stuttgart, por Hans Hartmann y Franz Pöpel, quienes experigentaron con discos de madera y discos de plástico de un metro de diámetro, en moviniento rotacional en el aqua de desecho. Casi al mismo tienpo, empezó a utilizarse el poliestireno expandido como material de construcción del biodisco, el cual era barato. Los trabajos de Pöpel y Hartmann, junto con el nuevo material, dieron como rsultado un nuevo proceso comercial para el tratamiento de aguas, patentado y comercializado por Stengelin.

En 1957, Stengelin empezó a fabricar discos de poliestireno expandido de 2 a 3 metros de diámetro para plantas de tratamiento de aguas. La primera instalación comercial entró en operación en 1960 y el uso del proceso el uso del proceso fue aceptado en Europa, por su simplicidad y su bajo costo de operación. Entre 1960 y 1965, Allis Chalmers introdujo nuevamente el sistema en Estados Unidos. En 1969 se llevó a cabo la primera instalación comercial en una pequeña fabrica de queso. El primer nombre usado para el sistema, en Estados Unidos, fué el de "biodúscos".

En 1970, Allis-Chalmers creó una filial, Autotrol Corp., para comercializar esta tecnología. En esas fachas, los discos de poliestireno todavia no eran competitivos con el proceso de lodos activados. Hasta 1972, Autotrol había vendido solo unos cuantos reactores de "biodiscos" para el tratamiento de aguas pero, en 1972, Autotrol anunció el desarrollo de un nuevo soporte, construido con placas corrugadas de polietileno, conocido como "biosurf". Esto incrementó el area superficial. A raiz de esta modificación, el uso comercial de los reactores rotatorios aumentó de forma constante. En 1976 ya existían en Estados Unidos y Canada más de So instalaciones.

 En Europa existen nás de bil instalaciones, principalmente en Alemania, Austria, Gran Bretaña y países escandinavos. Su uso ha aumentado debido^{*}a los crecientes problemas de costos en la utilización de energía, además de su simplicidad y su poca necesidad mantenimiento.

En los RBRs, se pueden encontrar dos tipos de sistemas, sumergido y no sumergido.

El RBR sumergido se utiliza en la desnitrificación o en sistemas anaerobios. No está muy difundida esta operación.

El RER no sumergido o aerobio es el más comun y se usa principalmente en la remoción de material orgánico rico en compuestos carbonosos, pero tambien se puede utilizar en la desnitrificación.

El RBR, por su gran área superficial, requiere de períodos más cortos de contacto que sus homólogos floculados para la misma carga orgánica, puede manejar gastos en un gran intervalo aunque siempre menores a 4.4 mJ/seg, ya que si son mayores se requiere de un número muy grande unidades y ya resulta antieconômico. Existen unidades comerciales sencillas con diámetro de discos de 3.7 metros y una longitud de 7.6 metros.

Se ha descrito el desarrollo de la biopelícula, especialmente para los sistemas aerobios, de la forma siguiente:

(a) La película se muestra en las primeras de crecimiento. Esta es de forma gelatinosa que está fijada al soporte y la población de microorganismos se encuentra en forma dispersa, en esta fase la densidad de población es baja.

(b) y (c) El crecimiento de los microorganismos se lleva acabo aceleradamente y no existen limitaciones de oxígeno o de nutrientes. En este caso la densidad empieza aumentar rápidamente. (d) Los microorganismos de las capas interiores conlenzan a destruirse cuando el oxígeno se torna en factor limitante. Los microorganismos enpiezan a cesar sus funciones aerobias y comienzan a ocurrir reacciones de fermentación o anaerobias. Entonces las condiciones cambian y se hacen propicias para el crecimiento de algunos microorganismos anaerobios. Y los organismos aerobios muertos empiezan a constituirse como los nutrientes que son consumidos por los microorganismos sobrevivientes, por lo que empieza a disminuir su densidad de población.

(e) Los organismos anaerobios se ajustan a las nuevas condiciones del medio y empieza a aumentar su densidad de población rapidamente.

(f) Se llega a unas condiciones estables.

(g) La condición de estabilidad persiste hasta que los nutrientes adheridos al soporte se agotan.

En este mozento, los microorganismos de las capas interiores mueren, lo cual hace que se pierda el anclaje y, por lo tanto que exista un desprendimiento de la biopelícula. El oxígeno del aire ambiente se disuelve en la superficie de la capa líquida en movimiento y es transferido a la biopelícula. Su capacidad de disolución depende principalmente de la temperatura. Esto debe tomarse en cuentra principalmente para la operación de estos sistemas en clinas templados y cálidos.

El medio de soporte usado en estos sistemas de tratamiento, como ya se dijo, está diseñado para presentar una gran superficie de contacto entre la capa líquida y el aire, mejorando la absorción de oxígeno en la capa líquida, y una gran área de contacto entre el líquido y la biopelícula asegurando la transferencia de nutrientes y oxígeno a los microorganismos.

De aquí se desprende que las resistencias a la transferencia de masa de la película y la biopelícula son significativas y generalmente controlan el comportamiento del sistema figura 4.

Las variables principales, consecuentemente, que afectan el proceso son:

1.- Temperatura,

- 2.- Carga orgánica.
- 3.- Velocidad rotacional.
- 4.- Número de etapas (acercando el comportamiento del reactor de un reactor perfectamente mezclado a un reactor de flujo pístón o tapón)
- 5.- Tiempo de residencia.

La temperatura es un factor muy importante por sus efectos sobre los microorganismos. En general, bajas temperaturas causan que las reacciones de degradación sean un poco más lentas. Por otro lado, la viscosidad del líquido aumenta al disminuir la temperatura, lo cual origina un mayor gasto de energía del sistema y una disminución en la rapidez de difusión de nutrientes (Rittann, B.E., 1983) Muck, R.E., 1974).

Se ha visto experimentalmente, que variaciones de temperatura entre 12.7 y 12°C, no afectan mayormente el comportamiento del RBR. Temperaturas mayores de 12 centigrados modifican la composición microbiana, aumentando el numero de microorganismos termofílicos y disminuyendo los mesofílicos. Los organismos mesofílicos son más eficientes en los procesos de degradación de materia orgánica que los termofílicos.

Por tanto, temperaturas abajo de 12.7 centigrados y arriba de 32°C generarán una baja remoción del material orgánico.

Además, como ya se mencionó, la temperatura afecta también a la solubilidad del oxígeno, ya que a temperaturas mayores disminuye su solubilidad, ocasionando que el sistema, opere en condiciones de limitación de oxígeno.

Figura J. Diagrama esquematico de las resistencias de transferencia de masa en un RBR.

La carga orgànica debe de utilitarse como parámetro de diseño. Debe de tomarse en cuenta que en un proceso aerobio, se requiere 1 kg oxigeno/kg materia orgànica soluble, medida como demanda bioquímica de oxígeno (DBO₅), para satisfacer la demanda bioquímica de oxígeno (DBO₅), para satisfacer la demanda de de cuidarse la cantidad de material orgànico biodegradable (DBO₅) que llega a la primera etapa con relación a la cantidad de oxígeno que es posible transferir en ésta. Se debe de tener, por etapa, la máxima carga orgánica por unidad de área para tener el maror desperdicio de área activa en las últimas etapas del reactor (Ito, K. y Matsuo, T. 1980).

Al aumentar la velocidad de rotación, el contacto entre la biomasa y los substratos, la airación y el mezclado aumentan y, por lo tanto, se obtiene una mayor eficiencia, pero tambien el consumo de energía se incrementa más rápidamente que los beneficios derivados de un aumento de velocidad (Friedman y Robbins, 1980).

Además, se generan esfuerzos de corte altos que incrementan el desprendimiento de la biopelícula. Se debe utilizar la velocidad de transferencia de oxígeno por unidad de superfície de disco, como base de escalamiento, ya que es favorecida con el aumento de la velocidad rotacional.

Para propósitos prácticos, el criterio de la velocidad rotacional para escalaniento, es correcto. Es decir, mientras mayor sea ésta, mayor será la transferencia de oxígeno, el "barrido" de la biomasa por el agua de desecho aumentará y la reducción del contenido de material biodegradable diseulto también se incrementará. Sin embargo, como todo, tiene un máximo, ya que si resulta excesiva desprende totalmente la película y no deja que se forme una nueva. Finalmente, ese máximo también depende del consumo energético, por lo que debe existir un compromiso entre estos tres factores.

Por lo que respecta al número de etapas, se ha encontrado experinentalmente que la eficiencia de remoción de materia orgánica soluble es mayor en las primeras cuatro etapas. La remoción decrece en las etapas posteriores como resultado de la composición de la materia orgánica remanente ya que los microorganismos consumen el material más fácilmente metabolizable en los primeros estadios.

Sin embargo, el uso de un número mayor de etapas tiene un efecto estabilizador en la consistencia de la calidad del agua tratada, ya que se tiene más capacidad amortiguadora para variaciones en la corposición y concentración de materia orgánica disuelta en las aguas a tratar, lo que dará como efecto global, una minimización en las desviaciones del promedio de calidad del tratamiento. Evidentemente, el límite al número de etapas de estabilización está dado por el costo de estas "etapas excedentes" versus su capacidad amortiguadora. Otros factores que deben de tomarse en cuenta son las características de pH, alcalinidad, etc. ya que se ha observado que, para un funcionamiento adecuado del RBR, el pH debe estar entre 6.5 y 8.5 ya que los óptimos de crecimiento de la mayoría de los microorganismos se encuentran en este intervalo. La alcalinidad es una medida de la acción amortiguadora del Co formado por los propios microorganismos y el que solubiliza del alcalinidad permite prevenir cambios bruscos de pH debido a las reacciones que ocurren durante la degradación del material orgánico (Norouzian, 1983).

El pH, puede considerarse también como un indicador del funcionamiento del sistema, es decir, si hay un descenso del pH en las primeras etapas del sistema, significa que el RBR está operando bajo condición limitante de oxígeno (formación de ácidos orgánicos por bacterias acidogénicas anaerobias). Una caída del pH en las estadios finales, indica que está ocurriendo una nitrificación.

Aunque muchos aspectos de la estructura celular y del funcionamiento están influenciados por el pH, es la actividad catalítica de las enzimas la que es especialmente sensible a este factor.

Por lo tanto, para realizar el modelamiento de un RBR se deben tomar en cuenta las variables de operación mencionadas arriba: la temperatura del sistema, la velocidad de rotación del soporte, la carga orgánica inicial, el número de etapas y el tiempo de residencia. Estas variables son las que nás influyen en el proceso de remoción. En general, las otras condiciones se consideran constantes en los diversos experimentos realizados, por lo que casi nunca se incluyen en el modelamiento.

En este trabajo, como se mencionó en el primer capítulo, se buscará una correlación empírica entre estas variables para diferentes experimentos realizados en reactores biológicos rotatorios.

En el siguiente capítulo se presentan las bases en las que se sustentó este trabajo.

3. Metodologia

Para poder obtener una correlación acerca del comportamiento de un RBR, para el tratamiento de efluentes, se procedió a obtener información experimental que han realizado diversos investigadores, con objeto de definir el efecto de las diferentes variables en el proceso. Este sería el primer paso de un proyecto global cuyo objetivo final será el de modelar el sistema para, posteriormente, optimizar su operación, reduciendo consumos energéticos y aumentando la eficiencia de remoción de

De los trabajos publicados en la literatura, se encontraron algunos en los que se nodificaban, tanto el volumen del reactor como la temperatura del sistema, la velocidad rotacional de los biodiscos, el tiempo de residencia hidráulica del efluente a tratar, así como la concentración inicial de contaminantes presentes en el efluente.

Con estos datos experimentales se empezó la labor de definir una ecuación que pudiera representar esos resultados y que, simultáneamente, tenga un número de constantes empíricas reducido.

Los términos que se incluyeron en esta ecuación fueron escogidos como aquellos que, de acuendo con los investigadores, fueron críticas para la operación del RBR. Estas fueron, como ya se mencionó, la capacidad del RBR (relación área:volumen), la temperatura del sistema en operación, la velocidad rotacional de los biodiscos, el tiempo de residencia hidráulica del efluente en el sistema, el número de etapas del sistema y la concentración inicial de contaminantes en el efluente.

Se emplearon datos experimentales obtenidos en **tres** diferentes reactores de biodiscos. Uno de 20 litros, uno de 50 litros y uno de 250 litros, cada uno de ellos operando a condiciones de operación específicas (tablas 1-3).

Al observar el comportaniento de estos resultados se encontró que, sistenáticamente, en las primeras etapas existía una gran rencción de contaminantes disueltos, pero que esto contrastaba con que el hecho de que la remoción disminuía notablemente después de éstas y se hacía casi insignificante en las últimas etapas del RBR. Se hizo un intento anterior de modelar estos sistemas empleando ecuaciones de tipo exponencial entre la concentración de contaminantes con respecto del área de transferencia o del número de etapas pero la desviación era demasiado grande (Pedrota y Durán, 1986; Escárcega y Fulido, 1986; Durán, 1988).

Asimismo, se estudió el efecto de la temperatura con respecto de la remoción de contaminantes disuelto empleando un modelo tipo Arrhenius (Bekris y col., 1992), pero también hay una cierta dispersión de los datos por este mismo efecto de rápido decaimiento de la concentración en la primera etapa, aún cuando es claro que un aumento en la temperatura beneficia la conversión de contaminantes especialmente en el intervalo 10-30°C (que es el predominante en estos sistemas).

Es claro que, a temperaturas mayores de 30°C, aumenta el número de microorganismos termofilicos y disminuye el número de los mesofilicos, que son los microorganismos más eficientes en el proceso de degradación de la materia orgánica (al menos más que los termofilicos).

Además, la viscosidad del efluente disminuye al aumentar la temperatura, lo que permite suministrar un menor gasto de energía al sistema.

For lo que respecta a la velocidad de rotación de los biodiscos, diferentes investigadores han encontrado que la remoción de contaminantes aumenta cuando se aumenta la velocidad de rotación, pero que, a velocidades de rotación superiores a 18 m/min no existen mejorias en el sistema ya que las fuerzas de corte no permiten a los microorganismos adheridos mantenerse en la biopelícula, además del consumo excesivo de energía.

Por lo que se refiere al tiempo de residencia hidraúlica, se ha encontrado que si se tiene más tiempo de contacto entre el efluente y la biopelícula presente sobre los discos, se da más tiempo para la transferencia de la materia orgánica y del oxígeno disuelto a través de la película. Aquí también hay un valor limitante, que es el econômico, ya que mientras mayor sea el tiempo de residencia menor será el volumen de aguas tratadas por unidad de tiempo, lo cual hace que la operación sea poco práctica (Durán, 1987).

Respecto del número de etapas del RBR, como se mencionò anteriormente, la rencoicón de materia orgánica disuelta en las Oltimas etapas de los RBRS es casi inexistente. Sin embargo, cuando se tienen más etapas, se tiene un efecto estabilizador en la consistencia en la calidad del agua tratada ya que éstas tienen un efecto amortiguador de cambios súbitos en la composición y concentración de los contaminantes. Consecuentemente, conforme aumenta el número de etapas también aumenta la remción. Esto naturalmente debe considerar un criterio econômico de combinar eficiencia de remoción versus costo por etapa para alcanzar un óptimo.

Se define a So como la cantidad inicial de materia orgánica contaminante disuelta en el agua residual en tratamiento y Se la cantidad de materia orgánica disuelta remanente después del tratamiento, ambas en mg de materia orgánica disuelta medida como demanda (química de oxígeno (DQO) por litro de agua en tratamiento.

Con estos criterios se propone una ecuación que correlacione estas variables de operación escogidas con la capacidad de remoción, empleando la forma exponencial :

$$S = So exp - (T * TRH * N * Vp)$$
(3-1)

donde la temperatura (T) está en Kelvin, la velocidad rotacional se tomó como la velocidad periférica que toma en cuenta e1 diámetro (D) de los discos (Vp) en n/min, el tiempo de residencia hidráulica (TRH) en minutos y el número de etapas o reactores conectados en serie (N), adimensional. Se introducen desde սո principio las variables de operación con estas unidades va convertidas, para evitar problemas de factores de conversión ÿa que como se vera mas adelante los exponentes a los que 80 elevado cadavariable resultan ser cambiantes encuentra . diferentes condiciones de operación.

La relación de D con Vp está dada por:

$$Vp = (pi * D * W)$$
 (3-2)

Y si se sustituye Vp en la ecuación (3-1) se obtiene:

S = So exp - [T * TRH * N * pi * W * D] (3-3)

Se introduce una constante de proporcionalidad k la cual permite ajustar mejor los datos teóricos obtenidos con los reportados en los diferentes trabajos experimentales.

Substituyendo dicha constante de proporcionalidad k en la ecuación (3-3) se llega a:

$$S = SO exp - (T * TRH * N * W] * D * k$$
 (3-4)

donde el valor de k se dará después de que se haya elegido la ecuación que dé los mejores resultados (constante empírica).

La parte que se encuentra afectada por el exponencial debe de ser adimensional, por lo que la constante empírica k deberá de tener unidades tales que hagan adimensional dicha parte.

Se realizaron múltiples ensayos con la ecuación (3-4), llegando a la conclusión de que las variables seleccionadas debian de estar afectadas por un exponente, ya que por si solas y cambiando la constante de proporcionalidad no se llegó a tener nunca una buena aproximación con respecto a los datos experimentales. Consecuentemente, para poder modificar el efecto de cada variable sobre la eficiencia depurativa del sistema se decidió emplear exponentes empíricos para cada una de las variables.

Estos exponentes tienen la característica de que no son constantes, ya que van cambiando según las condiciones de operación que se tengan presentes en cada sistema. Además, estos exponentes son adimensionales y dan, como ya se dijo, la dependencia de cada variable con respecto de las condiciones de operación del RBR. Estos exponentes empfricos a,b,c,d, respectivamente, deben ajustarse de acuerdo con los datos experimentales obtenidos. Esto, evidentemente, afectará la dimensionalidad de la constante empírica de proporcionalidad k:

 $S = So exp - [T^{a} * TRH^{b} * N^{c} * W^{d}] * D * k \qquad (3-5)$ donde (mgS/L)[=](mgS/L)exp - [K Ea * min Eb * 1/min Ed] * m * k

Por lo tanto, para tener congruencia en las unidades de k, ésta tendrá unidades de metro E-1 Kelvin E-a * min E-b * min E+d.

Los ajustes de estos exponentes se hicieron por ensayo y error tratando de lograr una convergencia entre los datos experimentales y los calculados.

A partir de Ios datos experientales encontrados en la literatura se tocaron valores arbitrarios basando la decisión en el efecto de esa variable sobre la depuración. Por ejemplo, en el caso de la temperatura, se puede apreciar de los diferentes trabajos experimentales que la temperatura ejerce una gran influencia en el proceso de remoción. Se pudo observar que manteniendo constantes las demás variables y variando solamente la temperatura en un intervalo entre 10 y 30°C, se encontró que la remoción de contaninantes es directamente proporcional a ella (Luna-Pabello y col., 1990, 1992, Bekris, 1992), por lo que se ció un peso importante a la influencia de esta variable, proponiéndose un exponente más grande manteniendo los demás constantes. Esto se hizo para que la ecuación fuese más flexible y poderse usar a diferntes temperatura. Dado que no se contaba con un ordenador (máquina computadora) de mayor capacidad no pudo aplicarse un algoritmo más riguroso para optimizar simultáneamente las cuatro variables. Más adelante se detallarán estos puntos.

También pudo observarse en la información de la literatura, que la velocidad de rotación también tenía gran influencia en el proceso de remoción. En estos trabajos la velocidad de rotación varíaba entre 16 y 30 rpm. Sobre esta base también se le asignó un peso determinado a esta variable (Durán de Bazda, 1983).

Con respecto de los tiempos de residencia hidraúlica del efluente a tratar, debido a la cantidad de contaminantes disueltos estudiados experimentalmente, su intervalo estaba entre 1 y 2.5 días, con una influencia relativa sobre la remoción no tan significativa como las anteriores.

For su parte, el número de etapas, tiene influencia solamente desde el punto de vista que la primera es la más significativa en lo que a remoción de contaminantes se refiere y que después de la cuarta o quinta, la remoción disminuye sensiblemente y es casí nula en las últimas etapas. Dado que se tienen cuatro variables (T,TRH,N,W), - cuatro exponentes (a.b.c.d) y una constante enpirica (k), se propuso el ajuste de los datos experimentales a la ecuación (3-5) para encontrar la mejor correlación posible ya tomando en cuenta esas modificaciones succesivas en los exponentes.

Es pertinente volver a enfatizar que los diversos trabajos experimentales presentan distintas condiciones de operación, los reactores tienen diferente capacidad (volumen de trabajo), así como diferentes concentraciones iniciales de materia orgánica soluble por lo que, en estudios preliminares realizados, la asignación de valores constantes de los exponentes hacía que el intervalo de factibilidad de la operación fuese estrecho y no cumpliese con los objetivos priordiales de poder realizar una modelación materiatica de los diferentes experimentos.

For ello, en este acercaniento, se trató de llegar a una ecuación empírica única que modelara los diferentes resultados experimentales.

Esto hizo que se propusiera el manejo de exponentes variables, como se mencionó anteriormente, tratando de darle flexibilidad al modelo. Es decir, se postuló la variación de los exponentes de acuerdo a la situación que se estuviese modelando, generando exponentes dináricos y buscando una funcionalidad entre el exponente y los résultados experimentales. Naturalmente, este accensiento da como resultado una expresión más compleja, pero se trataría de lograr que el modelo se acerque más a los resultados experimentales.

Para analizar la desviación que existe entre la curva experimental y al matemática se procedio a utilizar una herramienta de estadística la cual es llamada diferencia estadísticamente significativa la cual consiste en sacar la desviación estandar de los experimentos y a su vez la media. Despues se utilizó la siguiente formula.

$$z = \underline{1 \times - U \mid}_{S}$$

Donde x es el valor ottenido nateniticamente y U es el valor promedio los diferentes experimentos, S es la desviación estandar de dicha muestra. Este tratamiento se realizó para cada punto de los diferentes experimentos. Entonces se comparó el valor de Z con el máximo tolerable que era de 5 % donde Z = 1.96, en el anexo se presentan las tablas de 2 para cada punto y diferente experimento, donde se puede apreciar que el valor Z obtenido en ocaciones es superior al limite máximo, por la que la desviación en ese punto es ayor a la que se puede tolerar y se puede decir que entonces no cumplio el modelo con lo que se esperaba. Para realizar esté procedimiento se consideró que la desviación con estos criterios se generó una expresión matemática que se investigadores. En el capítulo siguiente se presentan los resultados obtenidos.

TABLAS DE DATOS EXPERIMENTALES UTILIZADOS

, de 250 litros de nedida como demanda	volumen d quàmica	les para un le trabajo, de oxàgeno	con una So con una TRE	cuatro e = 2000 pg [= 1.17 d	tapas /L, , con
una W = 16 rpm, c (Esc?rcega y Pulido	con una T 5, 1986)	= 289 K Y (con un D = C	1.5 m	
ETAPAS	1	2	3	•	
Dato experimental	524	859	856	76	7
Datos exp de 250 litros de v medida como demanda una W = 16 rpm, c (Esc?rcega y Pulido	perimental volumen de quàmica con una T o, 1986)	les para un trabajo, de oxàgeno = 289 K y o	reactor de con una So = , con un TRE con un D = C	cuatro e 5000 mg/ I = 1.17 d .5 m	tapas, L, , CON
ETAPAS	1	2	а.	4	
Dato experimental 1	620	1568	1516	1504	
Datos obt tales para un reac trabajo, con una oxágeno, con un TRH con un D = 0.5 p (E	enidos co tor de co So = 800 = 2.5 d sc?rcega	on diez ecu latro etapa: 00 mg/L, mee con una W y Pulido,	aciones y lo , de 250 li lida como d = 23 rpm, c 1986)	os datos tros de v lemanda q con una T	experimen- olumen de uÅmica de = 288 K y
ETAPAS	1	2	3	4	
Dato experimental	2451	2469	2447	2304	

Tabla .. Datos experimentales para un reactor de diez etapas, de 50 litros de volumen de trabajo, con una So = 4134 mg/L, medida como demanda quAmica de oxAgeno, con un TRH = 1.17 d, con una M = 16 rpm, con una T = 256 K y con un D = 0.3 m (Esc?rceqa y Pulldo, 1986)

4314 2908 2632 2562 2398 2391 2391 2133 2240 2306	етара	1	2	3	4	5	6	7	8	9	10	Ż
		4314	2908	2632	2562	2398	2391	2391	2133	2240	230	6

Tabla 5. Datos experimentales para un reactor de diez etapas, de 50 litros de volumen de trabajo, con una So = 6525 mg/L, medida coto denanda guànica de oxágeno, con un TRM = 1.118 d, con una W = 16 rpm, con una T = 286 K y con un D = 0.3 m (Esc?recga y Pulldo, 1986)

ЕТАРА	1	2	3	4	5	6		7	8	9	1	0
DATO EXPERIMENTAL	4814	4400	4333	4283	3963	38	00 3	700	3600	355	0]4	20

Datos experimentales para un reactor de diez etapas, de 50 litros de volumen de trabajo, con una So = 5000 mg/L, medida como demanda quámica de oxágeno, con un TRH = 2.5 d, con una W = 23 rpm, con una T = 287 K y con un D = 0.3 m (Esc?receq y Pullo, 1986)

етара	1	2	3	4	5	6	7	8 9	10
DATO EXPERIMENTAL	3217	3057		2882		2690		2433	2265

Datos experimentales para un reactor de diez etapas, de 50 litros de volumen de trabajo, con una So = 6406 mg/L, medida como demanda quàmica de oxàgeno, con un TRH = 2.5 d, con una W = 16 rpm, con una T = 266 K y con un D = 0.3 m (Pedroza, 1985)

етара	1	2	3	4	5	6	7.	8 9 10	
DATO EXPERIMENTAL	3191	2267	1796	1725	1667	1567	1346 1	357 1218 985	;

Tabla . Datos experimentales para un reactor de dies etapas, de 2C litros de volumen de trabajo, con una so = 2010 mg/L, medida como demanda quánica de oxágeno, con un TRN = 1 d, con una W = 30 rpm, con una T = 283 K y con un D = 0.3 m (Luna, 1990)

ETAPA 1 2 3 4 5 6 7 8 9 10 DATO 1860 1620 1560 1340 1200 1170 1160 1120 1110 1110 EXPERIMENTAL

Datos experimentales para un reactor de diez etapas, de 20 litros de volumen de trabajo, con una So = 2040 mg/L, medida como demanda quAnica de oxfogeno, con un TRH = 1 d, con una W = 30 rpm, con una T = 293 K y con un D = 0.3 m (Luna, 1990)

етара	1	. 2	э	4	5	6	7	8	9	10
DATO EXPERIMENTAL	1760	1600	1470	1420	1290	1259	1200	1160	1080	1040

Datos experimentales para un reactor de diez etapas, de 20 litros de volumen de trabajo, con una So = 2050 mg/L, medida como demanda quAmica de oxÁgeno, con un TRH = 1 d, con una W = 30 rpm, con una T = 303 K y con un D = 0.3 m (Luna, 1990)

етара	. 3	1.	2			Zasta		6	7	8 9	1	0
DATO EXPERIMENTAL		1130	81	0	80 5	50 4	70	410	400	340 3	20 2	70

4. Resultados

Como se mencionó en el capítulo anterior, los datos experimentales empleados en este trabajo están tabulados en las tablas 1 a la J y servirán para probar la ecuación empírica propuesta.

Se generaron una serie de expresiones matemáticas y se probaron cada una de ellas para los datos experimentales, se tabularon los resultados, se compararon con los datos experimentales tomados y se obtuvo la diferencia entre ambos (error).

También se construyeron gráficas de cada una de las expresiones con su correspondiente curva para los datos experimentales, ya que la ayuda visual permitió jugar un poco con los exponentes de los variables escogidas para tratar de acercar más los datos teóricos a los experimentales. En el apéndice se presentan las tablas y gráficas generadas.

Se encontraron dos formas de ecuaciones que se acercaban a lo registrado en los resultados experimentales. Las constantes empíricas obtenidas de estas dos expresiones fueron las siguientes:

	expresión 1	expresión 2
a	= 25/(334 - T)	a = 27/(331 - T)
ь	= TRH * 0.8 - 0.5	b = TRH + E - 04
c	= (50 - N)/80	c = (N + 10)/300
đ	≈ 1.6 - (₩/30)	d = W + 7E - 04
k	= 2098.76	k = 658.83

Se realizaron Dúltiples modelaciones con las expresiones anteriores y después se compararon con los resultados experimentales. Al observar su tendencia en las gráficas respecto a la curva experimental, de las dos expresiones anteriores se escogió la que se acercaba más a la curva experimental.

A continuación se presentan en la tabla 4 las diversas ecuaciones propuestas a partir de la ecuación (3-5), que se desprenden del análisis del efecto que tienen las variables estudiadas sobre el proceso de renoción, así como el valor de la constante de proporcionalidad & determinada.

Con las expresiones presentadas y los resultados experimentales, se procedió a evaluar cada una de las ecuaciones con cada uno de los juegos de datos experimentales, con respecto de la remoción que ocurre dentro del RBR. En el anexo se presentan las tablas de resultados para cada una de las ecuaciones propuestas en la tabla 4 para los diferentes experimentos, así como su error experimental, escogiendo la que tuvo el menor error promedio para cada trabajo experimental.

Con cada ecuación seleccionada se realizaron nuevas iteraciones tratando de ajustar lo mejor posible todos los datos experimentales para seleccionar la ecuación que presente el menor error global.

En las gráficas presentadas en el apéndice se nuestran, tanto el comportamiento experimental como el comportamiento que proporcionan las diferentes ecuaciones que representaban a la modelación matemática. En ellas se denota a los resultados experimentales con la serie 1 y las diferentes ecuaciones con una seriación ascendente, esto es, la serie 2 representa la ecuación 8, la serie 3 e la ecuación 9, la serie 4 es la 10, la serie 5 es la 6, la serie 6 es la 11, la serie 7 es la 4 y la serie 8 es la 12.

Aplicando los criterios esbozados en el capítulo anterior, se consiguió una expresión que se ajustaba mejor que las otras a los resultados experimentales.

Sin embargo, al analizar las diferencias entre los valores experimentales y los calculados se encontraron los siguientes inconvenientes al modelar de esta manera:

- 1.- En general, como ya se había mencionado, los datos experimentales exhiben un comportamiento de una gran remoción en la primera etapa o cámara y este comportamiento no sígue estrictamente un modelo exponencial, lo que da como resultado que, conforme se avanzaba en el número de etapas se vió que, matemáticamente, la remoción era mucho más alta que la experimental. El valor del exponente, consecuentemente, conforme aumentába el número de etapas, debería hacerse más pequeño, con el fin de amortiguar su menor efecto en el grado de remoción.
- 2.- Por lo que se respecta al tiempo de residencia hidrafica, las eficiencias de remoción son directamente proporcionales a los tiempos de residencia hidraúlica pero, dado que la diferencia entre los datos experimentales estudiados sólo va de la 2.5 días, se buscó un exponente que se ajustara a ese comportamiento del tiempo de residencia hidraúlico sobre el grado de remoción.
- 3.- Con respecto a los valores fijados de los exponentes a,b,c,d se encontró que era necesario modificar el valor de la constante de proporcionalidad k para subir o bajar todo el conjunto de datos calculados con objeto de acercarlos a los
datos experimentales minimitando el error (ya que se puede mover toda la curva, ya sea para arriba o para abajo por medio de la constante de proporcionalidad, k).

Es importante mencionar que estas modificaciones no podían hacerse indiscriminadamente, ya que las expresiones encontradas deben representar diversas condiciones de operación y si se trata de ajustar muy a detalle cada curva con respecto a su contraparte experimental que estaba a ciertas condiciones de operación, se desequilibraba la curva de la modelación con respecto a otras curvas experimentales que estaban a otras condiciones. Esto se debe a la forma que presenta la expresión matemática que es muy suceptible a los cambios y con facilidad se pueden aumentar las diferencias para determinadas condiciones.

For consiguiente, la ecuación seleccionada fue aquella que, de manera global, dió mejores resultados para todos los trabajos experimentales procesados.

La ecuación final, del tipo de la ecuación (3-5) tiene los siguientes valores para los exponentes:

EXPONENTE	•	EXPRESION
a		22/(333-T)
		TRH*7.6E-5
c		N/21
d ·		W*6.8E-4
k		166.11

Las tablas y gráficas de los resultados finales arrojados para cada uno de los diversos modelamientos obtenidos a partir de la expresión matemática seleccionada que mejor resultado proporciona se presenta en las tablas 5 a la 15 y en las gráficas A a la J ver anexo.

ECUACION	EXPONENTE	EXPRESION
1	a = b = C =	$\frac{25/(334 - T)}{(TRH * 0.8) - 0.5}$ $\frac{50 - N}{600}$
2	••• = k = a =	1180.55 25/(334 - T)
	d = k =	(10 - 0.8) (50 - 0)/80 1.6 - (W/30) 1180.55
	a = b = c = d = k =	25/(334 - T) (TRH * 0.8) - 0.7 (50 - N)/80 1.6 - (W/30) 1180.55
	a = b = c = c = k =	25/(334 - T) (TRN * 0.8) - 0.7 (50 - N)/80 1.6 - (W/30) 1527.77
5	• a = b = c = d = k =	25/(334 - T) (TRH * 0.8) - 0.7 (50 - N)/80 1.7 - (W/30) 2916.66
6	a = b = c = d = k =	27/(337 - T) (TRH * 0.8) - 0.7 (50 - N)/80 1.9 - (W/30) 2915.66
7	a = b = c = d = k =	$\begin{array}{c} 26/(334 - T) \\ (TRM * 0.8) - 0.7 \\ (50 - N)/60 \\ 1.7 - (W/30) \\ 2013.88 \end{array}$
8	a = b = c = d = k =	27/(331 - T) (TRH * 0.8) - 0.7) (N * 10)/300 1.9 - (W/30) 3472.22

• 26/(311 - T) а (TRH * 0.8) -0.7 ь c (N + 10)/180 1.7 - (W/30) à k 3229.16 -10 a 27/(331 - T) (TRH * 0.6) ь 0.5 (N + 10)/300 ċ _ ā 1.9 - (W/32)3472.22 ĸ -11 27/(331 - T) а -(TRH * 0.6) -0.55 ъ c (N * 10)/300 ā 1.9 - (W/32)-5200000 k = 22/(333 - T) 12 a -TRH*7.6E-5 b N+21 C . d W*6.84E-4 k = 166

Análisis de resultados

De las gráficas de los datos obtenidos experimentalmente se observa que, para el reactor de 250 L, en la primera etapa existe una alta remoción de materia orgánica y que, en las tres subsecuentes, prácticamente ya no hay remoción. Este comportamiento no puede modelarse fácilmente con ecuaciones de tipo exponencial y por ello, resultó sumamente difícil encontrar valores de los exponentes y de k que pudieran representar los fenómenos de depuración encontrados en ese sistema. De hecho, los investigadores que realizaron esa fase experimental probaron varios modelos empíricos sin obtener resultados adecuados (Pulido y col., 1987).

Ellos trataron de incorporar en sus modelos factores bióticos como la cantidad de microorganismos presentes en el sistema, así como otras variables que pudieran dar una acercamiento de los fenómenos cinéticos y de transferencia de masa. Sin embargo, la falta de datos experimentales suficientes para corroborar el peso de esas variables hico que las ecuaciones obtenidas no modelaran adecuadamente los fenómenos que ocurren en el reactor.

En este caso no se intentó buscar el efecto de esas variables, sino exclusivamente estudiar las de tipo abiótico (con excepción del pH) y de manera totalmente empirica. Por ello, el modelo que se presenta no cuantifica el tipo de microorganismos presentes en el RBR, ni la cantidad y diversidad de poblaciones que, de hecho, varían grandemente con los cambios de esas características abióticas (temperatura, carga orgánica, velocidad rotacional, grado de alcalimidad, etc).

Además, se ha encontrado que al variar la concentración inicial de contaminantes, sin modificar las otras variables (velocidad rotacional, tiempo de residencia, etc), el comportamiento del sistema cambia, como se puede ver en la gráficas, donde a una concentración inicial mayor de contaminantes y condiciones semejantes de operación se tiene una remoción eventualmente menor ya que el oxígeno se vuelve el substrato limitante del sistema. Estos comportamientos debieran poderse reflejar en el modelo, pero dada la complejidad de los fenómenos es sumamente difícil hacerlo.

También se observa que a tiempos de residencia más altos, existe una pequeña diferencia entre la curva que se obtuvo experimentalmente y la curva que se obtiene matemáticamente. Nuevamente, dada la empiricidad del modelo no puede pretenderse un mayor alcance de la ecuación propuesta.

Es claro que este comportamiento puede deberse a que la materia orgánica disuelta el agua a tratar está más tiempo en contacto con la pobláción de nicroorganismos, lo que favorece que estos puedan metabolitar los nutrientes. Sin embargo, un modelo tan simple como el aquí presentado no puede irse al estudio de las relaciones de las poblaciones microbianas y sus etapas de sucesión alimento-presa. Para estudiar estos fenómenos secuenciales de metabolización de la materia orgánica, debe tozarse en cuenta cada reacción ya que es un proceso de múltiples reacciones en serie y/o en paralelo. Además, debe determinarse el orden de reacción de cada una de ellas conociéndose las concentraciones de reactivos y productos. Y si se habla de un tratamiento cinético, debe también tozarse en cuenta las constantes de velocidad o rapidez de reacción, que estén influenciadas por diversos paránetros, cono la temperatura, la concentración de la materia orgánica, de los productos del proceso de metabolización. Debe también considerarse il las las reacciones llegan al equilibrio y si se presentan irreversibilidades. Esto implica la realización de estudios muy complejos con determinaciones experimentales complicadas.

Por otro lado, los fenômenos de transferencia de masa son cruciales para este sistema, dado que la transferencia de substratos y productos a través de las películas de gas-líquidosólido son pasos limitantes para los fenômenos que ocurren en el sistema. Para ello se requeriría de deterninar concentraciones en cada película, tanto de substratos como de productos y determinar las resistencias que se ofrecen a la transferencia, así como para encontrar los coeficientes de transferencia de nasa de cada fase. Esto significaría el diseño de exprimentos muy particulares y de metodologías analíticas también muy especiales que permitieran la determinación de todas estas variables y concentraciones, lo cual, con las facilidades disponibles en los laboratorios de la

Con respecto del comportamiento de los microorganismos, como estos varian significativamente con las condiciones de operación del proceso, se están realizando estudios específicos con comunidades conocidas como indicadoras para reducir la complejidad de su análisis (Luna-Pabello, 1987, 1990, 1992) para tratar de cuantificar su contribución en los procesos depuradores. Postefiormente, se tratará de representar matemáticamente este comportamiento, así como de reproducírlo para otros efluentes y sistemas buscando su generalización.

También pudo observarse que la velocidad de rotación de los biodiscos, da un efecto sobre la aireación del sistema y los fenómenos de mezclado y, consecuentemente, es una variable muy En importante para la depuración de las aguas en tratamiento. general, se encontró que la capacidad de remoción aumentaba sensiblemente al aumentar la velocidad de rotación, debido a la transferencia de oxigeno y como la rapidez de reproducción de los microorganismos aerobios es mucho mayor que la de los anaerobios, el consumo de substratos es mayor cuando el sistema se encuentra con exceso de oxígeno disuelto. El mezclado también favorece la transferencia de masa, por lo que esta variable es sumamente importante.

Cabe mencionar que la rapidez de rotación tiene un máximo ya que si es excesiva, los esfuerzos cortantes acaban con la biopelícula o hacen muy difícil su regeneración, además de que el consumo energético resulta poco práctico.

For lo que respecta a la tenperatura se observa a que al aumentar ésta, la capacidad de remoción también aumenta, como ya se dijo anteriomente. Sin embargo, al ajustar la ecuación se observa que a tenperaturas extremas, es decir, muy bajas o muy altas, las desviaciones aumentan. Esto se debe a la forma exponencial de la expresión, ya que al variar la temperatura, los datos calculados no reproducen los experimentales.

A continuación, se realizará un análisis individual de los resultados obtenidos para cada uno de las condiciones experientales bajo las cuales se llevaron a cabo.

De la gráfica 1, en la cual se introdujeron las curvas obtenidas del experimento y de la modelación, para un RBR de 250 L (a 2000 mg DQO/L, T=269K, W=16 rpm, TRH=1.17 d), se puede apreciar que existe una desviación entre los datos experimentales y los obtenidos con la ecuación 12. Realizando un tratamiento estadístico se encontró que la desviación es significativa entre los datos (fue superior al estadística 51 de significancia) las tablas se presentan en el anexo. Para las cuatro etapas del RBR se aprecia que la mayor remoción se da en la primera etapa y disminuye hasta hacerse casi imperceptible en las otras tres. Esta desviación entre las curvas es atribuible a que la ecuación no presenta un mayor peso en el exponente oue afecta al de tiempo de residencia hidraúlico, además de que los otros exponentes no se pudieron hacer más flexibles. La tendencia que presenta el modelo es relativamente similar a la que se sique experimentalmente, pero no se pudo minimizar la diferencia entre las dos curvas moviendo la k debido a que se desajustaba bastante para otras modelaciones.

For otro lado, se puede apreciar en la gráfica 2 (250 L, 5000 mg DQO/L, T=289K, W=16 rpm, TRH=1.17 d), que aquí existe una desviación un poco más marcada que en el caso anterior (diferencia estadísticamente significativa mayor al 51). Además, se observa que al variar la concentración inicial de materia orgánica, es decir, al aumentar la cantidad de nutrientes que son metabolizados por los microorganismos todavía pueden mantener la velocidad rotacional y, por ende, el contenido de oxigeno disuelto al sistema, los microorganismos todavía pueden mantener la misma eficiencia de remoción lo que indica que hubo un aumento de la capacidad de remoción del sistema. Se observa que la curva del modelamiento matemático, se encuentra por encima de la curva del modelamiento matemático, se ducuente las cuatro etapas del RBR.

En la gráfica J (250 L, 8000 mg DQO/L, T=288%, W=23 ppm, TRH=2.5 d), se puede ver que existe una desviación entre la curva de operación y la de la expresión matemática presentando una diferencia una diferencia significativa bastate menor que en los casos anteriores (pero está diferencia estadisticamente significativa al 5% todavia estuvo un poco por arriba). De acuerdo con los autores, en experimentos preliminares se incrementó solamente la carga orgánica, pero se dieron condiciones de anaerobiosis y por ello se aumentaron las revoluciones por minuto al máximo permisible de acuerdo con la construcción del equipo (de 17 a 23 rpm) pero siguieron las condiciones de anaerobiosis y por ello se tuvo que incrementar el tiempo de residencia (de 1.17 a 2.5 d).

Con estas nuevas condiciones de operación, la remoción obtenida en el sistema era mayor que en los anteriores, pero al modelar este cambio, los datos calculados fueron mayores que los experimentales para las cuatro etapas del RSR. Y es que el efecto de las contribuciones, tanto de la velocidad de rotación de los biodiscos ocno del tiemo de residencia hidráulica, es mayor que el de la carga orgánica en la expresión matemática y, por ende, supera el efecto que en realidad existe. Al tratar de disminuir dicho efecto, se obtiene que en otros experimentos las darla más flexibilidad a la expresión matemática para poder incorporar este efecto.

En la gràfica 4 se presentan todas las curvas anteriores juntas y se incorpora una curva de renoción para estos experimentos. Puede observarse que la predicción de la ecuación es mejor para velocidades rotacionales mayores esto es, una mejor aireación) dando un error bastante menor. lo que daría la pauta para entender los dos experimentos en los que solamente varía la carga orgánica (se duplica) sin tener aeración adicional. Probablemente, el tiempo de residencia también ejerza alguna influencia pero no se tiene información suficiente para especular a este respecto.

De la gráfica 5, para un RBR de 50 L (a 4134 mg DQO/L, T=286K, W=16 rpa, TRH=1.17 d), se puede ver que existe una buena aproximación, en todas las etapas del RBR, excepto un poco en la parte intermedia del RBR, con una tendencia a dar resultados más altos que los obtenidos experimentalmente, ya que la curva de la modelación es más suave que la curva experimental. Esta sufre cambios drásticos, los cuales poco a poco van disminuyendo hasta que ambas curvas se encuentran. Por esta razón, los menores errores se encuentran en los extremos.

La diferencia significativa estadística entre datos calculados y experimentales fue aceptable, estando todos dentro del 5% pero existierón dos datos que se salieron del limite.

En la gráfica 6 (50 L, 6526 mg DQO/L, T=286K, W=16 rpm, TRH=1.18 d), la concentración de materia orgánica inicial es más alta, pero entre la anterior y ésta existe una buena aproximación entre los resultados experimentales y los obtenidos matemáticamente. Al igual que en el caso anterior, se puede observar que las desviaciones en los extremos son pequeñas, debido al carácter suave que presenta la ecuación, a diferencia del comportamiento cambiante de la curva experimental. Presentando en esta ocasión que todos las desviaciones estadísticamente significativas estuvierón dentro del limite del 5%.

En la gráfica 7 (50 L, 5000 mg DQO/L, T=287K, W=23 rpm, TRH=2.5 d), se puede observar que existe una desviación de consideración, así que al realizar el tratamiento estadístico de las diferencias significativas estas estuvierón muy por encima del linite del 51 Como en el tercer caso del reactor de 250L, se modificaron la velocidad de rotación y el tiempo de residencia del efuente, pero, en este experimento, la concentración inicial de materia orgánica se mantuvo en el intervalo de la anterior. Como la expresión matemática, a través de los exponentes de TRH y W, les da un peso nayor, los datos calculados son menores a los que se obtienen experimentalmente. Por ello, si se trata de modificarlos se dan cambios mucho mayores en los otros experimentos y, consecuentemente, este experimento no puede reproducirse tan adecuadamente como se desearía.

En la gráfica S (50 L, 6406 mg DQO/L, T=286K, W=16 rpm, TRH=2.5 d), se observa que existe una buena correlación entre los datos experimentales y los del modelamiento. Presentando una desvlación realatiavamente pequeña, presentandose está como en los casos anteriorés en la etapa intermedia. Existiendo una diferencia estadística significativa dentro de los limites del 54, pero con la presencia de algunas que se salierón de limites.

En esta gráfica se puede apreciar que las condiciones de operación son similares a las gráficas 5, 6, 7 a excepción del tiempo de residencia hidraúlica, el cual aumentó a 2.5 días, pero se puede observar que la expresión matemática pudo modelar adecuadamente esas condiciones. Se podría decir que el tiempo de residencia hidraúlica no es un factor muy de peso en comparación con la temperatura o velocidad de rotación.

Consecuentemente, la disponibilidad de oxígeno disuelto parece ser un factor limitante en las condiciones de modelación.

En la gráfica 9 se presentan todas las curvas anteriores juntas y se incorpora una curva de remoción para estos experimentos. Puede observarse que el modelo se pudo ajustar adecuadamente para las diversas condiciones de operación. Pero este buen acercamiento no se puede apreciar para la grafica 7, donde sus condiciones de operación son extremas, es decir altos tiempos de residencia hidráulicos y altas velocidades de rotación, por lo tanto los exponentes que afectan a dichas variables no fueron tan flexibles como para absorber el incremento de esas condiciones, ya que en la grafica 5, ve que tos datos experimentales están por arriba de lo que se obtiene teoricamente. Pero adiferencia quen la grafica 1, donde se obtuvierón buenos resultados, las condiciones de operación son similares salvo para la concentración inicial de materia orgánica que en la grafica 3 es tá concentración es alta a (S000mg/L DQO) diferencia con la grafica 7 es relativamente baja (S000mg/L DQO)

para así poder tener un modelamiento mas completo.

Cuando se analiza la gráfica 10, las curvas experimental y calculada, para el caso del RER de 20 L (2010 mg DOO/L, T=281K, W=30 rpm, TEH=1 d/, se puede observar que a 10°C, la desviación entre ambas curvas es poca. Se puede apreciar que los resultados obtenidos por la ecuación se encuentran, en general, por arriba de los datos experimentales, salvo para la etapa 1, en la cual los datos datos calculados quedan abajo de los experimentales. Esto podría ser atribuido a la variación en la temperatura. Como el exponente no fue muy flexible no pudo ajustarse a la temperaturas máyores (20 y 30°C) y, por la forma exponencial de la ecuación, se chtuvieron desviaciones significativas por arriba del 5% pero no en todas las etapas.

En las gráficas 11 y 12 se dan los datos para 20 y 30°C (20L, 2040-50 mg QCO/L, T=257 y 300K, W=30 rpm, TRH=1 d). Puede verse que los datos calculados con el modelamiento matemático, dieron una gran aproximación, presentándose para la gráfica 11 una una ruy fuena aproximación igualmente para la gráfica 12. Se puede apreciar que-el error máximo se encuentra en la primera etapa. Es decir, mediante la ecuación se obtuvieron valores menores que los obtenidos experimentalmente. Esa tendencia se acentía en la primera que se dió un peso importante a la temperatura, la cual al aumentar hace que se obtengan

También puede regularse por medio del exponente que afecta al número de etapas. Sin embargo, no pudo encontrarse un exponente que dosificara la tendencia a lo largo del RBR y que hiciera un poco más suave ese cambio sin afectar los resultados con los otros experimentos. Por ejemplo, en las gráficas 5 y 6, donde experimentalmente se presenta una tendencia en la primera etapa más brusca que lo que se obtiene con la ecuación, se presenta una diferencia significativa por arriba de lo esperado como se puede ver en las tablas.

En esta serie de experimentos se varió únicamente la tempertura, permaneciendo constantes las demás variables por lo que se pudo ver el efecto de la temperatura en el proceso de remoción y, por lo tanto, el desempeño de la ecuación a diferentes temperaturas.

En lo que se refiere a la gráfica para la temperatura de 30°C, se observa, una buena aproximación. Las desviaciones son bajas, existiendo la más grande en la primera etapa. Esto ya se explicó en el párrafo anterior pero, además, se pudo observar que la diferencia va siendo nenor hasta que en la etapa J es cero. En las subsiguientes va creciendo un poco el error, debido a que experimentalmente bajo estas condiciones de temperatura se obtiene una buena remoción. Como se explicó en un principio, la ecuación (sobre todo en la parte intermedia) no pudo reproducir adecuadamente los datos experimentales. De aquí puede decirse que, a temperaturas extremas, es decir, temperaturas bajas o altas, el modelamiento tiene problemas. A temperaturas medias se obtienen los mejores resultados. En la grafica 11 se introdujeron las tres curvas anteriores y se puede apreciar que existe una muy buena aproximación de los datos teoricos con los experimentales, esto se observa a lo largo de las lo camaras y para el todo el intervalo de temperaturas (10, 20,30), así que para varias temperaturas la expression seleccionada da buenos resultados.

En general, se puede ver que la expresión matemática que finalmente se seleccionó, da resultados cercanos a los experimentales. También se ve el efecto de algunas de las condiciones de operación, por lo que no es recomendable usarla a temperaturas menores de li y mayores de 25°C, ya que fuera de este intervalo, debe considerarse que esta ecuación pierde confiabilidad.

Además, debe mencionarse que a velocidades de rotación intermedias se obtiene buenes resultados, así como a timpos de residencia hidraúlica bajo-medico. Como se puede apreciar, son condiciones intermedias, debido a la propia forma de la expresión matemática, que es máy sensible a los cambios de estas variables.

Otro aspecto que debe de considerarse es el efecto de la concentración inicial de tateria orgánica, ya que se ha visto que existe un intervalo en el cual, su variación requiere de tayor o penor suministro de oxígeno y por ello debe tomarse en cuenta.

Después de este análisis de resultados se puede ver que si se incluyen más factores para tratar de disminuir las desviaciones entre la curva experimental y la del modelamiento matemático, estos serían de tipo cinético, de transferencia de microcrganismos presentes en el RSR. El problema de incluir una forma cinética y/o de transferencia de masa y/o de organismos presentes a esta expresión es que, occo se dijo antes, se complica enormemente la expresión generándose una serie de constantes espíricas poco vajidables analíticamente.

Ademas de que la velocidad de reacción esta influenciada como por ejemplo por la temperatura, y ademas la temperatura cabia las características poblacionales de microorganismos, y tambien la velocidad de metacolización de la materia orgánica, lo que implica que cambia la capacidad de remoción.

Las poblaciones de microorganismos que estan localizados en la biopelícula, son muy sensibles a cambios de varias variables y con efecto que son muy grandes, es decir si varia un poco una cierta variable, esto hara un cambio hastante grande.

Y como ya se dijo los microorganismos son muy suceptibles a cambios de temperatura, alcalinidad, transferencia de oxígeno, características del efluente a tratar, etc. Si se introdujera estos nuevos paranetros a la expresición matenática seleccionada, se obtendria un nodelo bastante complejo, el cual perderia su practicidad para usarse, ademas que el incluir estos parametros no nos daria mucho mejores resultados que los que se obtiene originalmente. Así que el lograr un poco mas de presición, se necesitaria mucho mas dificultad de operación de la expresión ratematica obtenida.

Asi que por lo que se ve el modelar sistemas biológicos no es una labor sencilla, aqui es donde cobra importancia el poder obtener una expresión no compleja pero que a la vez se obtenga resultados no lejos de la realidad, que sea confiable, para asi poder minimizar el realizar experimentos y poder lograr un escalamiento del RSR, a nivel planta piloto o nivel industrial.

So=5000mgDQO/L,T=289K,W=16rpm,TRH=1.17d.

c.

τ.

So=4134mgDQO/L,T=286K,W=16rpm,TRH=1.17d.

Reactor de biodiscos de 50 L DQO 5 (mg/L) (Miles) 7 6 5 -4 -3 -2 · 1 -0 --E 2 3 10 1 6 7 8 9 5 **ETAPAS** Serie 2 MATEMATICAMENTE EXPERI Grafica 6

2

So=6525mgDQO/L,T=286K,W=16rpm,TRH=1.18d.

So=5000mgDQO/L,T=287K,W=23rpm,TRH=2.5d.

So=6406mgDQO/L,T=286K,W=16rpm,TRH=2.5d.

Grafica 9

GRAFICAS EXPERIMENTALES Y MATEMATICAS PARA DIFERENTES CONDICIONES DE OPERACION La serie impar es experimental y la par es matematicamente

3

So=2010mgDQO/L,T=283K,W=30rpm,TRH=1d.

So=2050mgDQO/L,T=303K,W=30rpm,TRH=1d.

Grafica 13

GRAFICAS EXPERIMENTALES Y MATEMATICAS PARA DIFERENTES CONDICIONES DE OPERACION La serie impar es experimental y la par es matematicamente

6. Conclusiones y recomendaciones

Despues de haber analizado los resultados anteriores, 88 pude concluir que la expresión matemática seleccionada, 68 obtienen resultados dentro de un intervalo aceptable, es decir la curva que se obtiene del modelamiento matemática, casi presenta el mismo corportamiento que la experimental, pero tambien presentan algunas desviaciones que se trataron de minimizar lo posible, pero de todas manaras persístieron algunas más desviaciones, pero en general si hubo una adecuada correlación de los datos experimentales y los obtenidos por el modelamiento, ademas estos resultados se obtuvierón con una ecuación que presenta bastante sencillez de manejo lo cual es otra ventaja. y las desviaciones que persisten se pueden atribuir en general dos causas:

1. De origen experimental.

2. Debido a la misma expresión matematica

Dentro de las causas de la presencia de las desviaciones debido a la experimentación, se puede decir que se debe a la dificultad de llegar a las condiciones de regimen permanente, es decir, cuando el RBR se encuentra en condiciones en bajo las cuales no está estable, y por lo tanto se obtendran resultados que diferirán a otros que tengan diferente grado de condiciones estables, la razón por la cual la condición de estabilidad es importante, es que como se está apenas creandose la biopelícula en el soporte inerte, las poblaciones de microorganismos que son responsables del proceso de metabolización de la materia orgánica se estan multiplicandose y por lo tanto la cantidad de remoción variara, hasta que los microorganismos llegen a un estado bajo las cuales sean constantes y no existan fluctuaciones, y los datos puedan ser comparados de forma mas real.

Otra fuente pára que existan esas desviaciones, es las condiciones de alcalinidad que presentaba el sistema en los diferentes experimentos, como se sabe los microorganismos son muy sensibles a las fluctuaciones del pH, ya que alterar este factor llevara a que se altera el tipo y cantidad de microorganismos que son responsables de la degradación de la materia orgánica y por lo tanto tambien se vera afectada la capacidad de remoción, lo que ocasionara que existan discrepancias y no se puedan comparar los experimentos, ya que se llevaron acabo bajo otras condiciones. Ademas tambien se debe de tomar en cuenta que el aspesor de la biopelícula, que es tambien otro factor importante, así al variar espesor se nos vera afectada sensiblemente la capacidad de remoción.

Y el espesor de la biopelícula varia de acuerdo a una serie de factores, tales como la temperatura, la velocidad de rotación, la concentración inicial de materia orgánica presente en el efluente a tratar, etc. Como se ve existen muchos factores que alteran el espesor y que en la realización de los experimentos variaron, y por lo tanto esto podría ser una gran fuente de error, si comparamos entre si los diversos experimentos

En la expresión matemática propuesta, aunque se incluyerón algunos de estos factores, que alteran el conportamiento, se asumio que la la alcalinidad estaba dentro de un rango en la cual no presentaba cambios sensibles, ademas tambien se considero que la población de microorganismos era siempre definida, es decir no variara mucho el tipo de microorganismo.

Tambien debe de considerarse el error involucrado que existe en todos los experimentos.

For lo que respecta a la otra fuente de error, la que viene implicito, por la forma de la expresión matematica, ya que la forma que nejor ajusto a los datos reales es de forma exponencial, lo que implica que a cambios chicos la expresión nos dara grandes desviaciones, y si se observa que por ejemplo, se trabaja a temperaturas que estaban dentro de un rango de 10 a Jo grados centigrados, esto acareo problemas, ya que si se trata de ajustar la expresión matemática a temperaturas bajasmedias, se obtendria desviaciones muy grandes a altas temperaturas, y viceversa, por lo que se trato de trabajar dentro de un intervalo de temperaturas medias, por eso la expresión matemática brinda mejores resultados a temperaturas temperaturas.

Y es que como se ha visto con anterioridad las poblaciones de microorganismos que son mas eficientes en el proceso de degradación de la materia organica varianconforme aumenta la temperatura, por encina de los 28 grados centigrados, y abajas temperaturas en general las velocidades de reacción tambien son menores, y por lo tanto disminuye la capacidad de remoción, ademas de que la velocidad de transferencia de oxigeno varia con los cambios de la temperatura.

Tambien se puede concluir de las observaciones hechas, que el tiempo de retención hidráulico, es tambien un factor que nos ha 'dado un poco de problemas para la realización del modelamiento, y es que para cuantíficar adecuadamente este factor, se tendria que incluir en la expresión matemática, un modelo que exprese con que velocidad se transfiere el oxígeno atraves de la biofelícula, ya que el oxígeno es de vital importancia para los microorganismos aerobios que son responsables de la metabolización de la materia orgánica, ademas de que tenemos que incluir un parametro que cuantifique la velocidad con que se captan los nutrientes los microorganismos y como la degradan. Así que se tendria que incluir un modelo biológico a la expresión. Lo que complicaria bastante la modelación matemática.

Otro aspecto que tambien se debe de tomar encuenta es la concentración inicial de materia orgánica que presenta el efluente, como ya se habia visto que al variar dicho factor, se obtienen diferentes grados de renoción, con condiciones de operación semejantes, lo que nos lleva a sugerir que este es otro factor que se debe de tomar encuenta en futuras modelaciones

Cuando aumenta la concentración de la materia orgánica, entonces se va a teger tambien mas cantidad de nutrimentos que seran metabolizados por los microorganismos y por lo tanto al haber mas materia a metabolizar, tambien se tendra una mejor capacidad de remoción, como se ha visto experimentalmente, que otro que tenda menor cantidad materia orgánica.

Así se ve que aunque la expresión matemática es relativamente sencilla, esta da resultados con no muy grandes desviaciones con respecto a lo que se obtiene experimentalmente, y está exactitud se ve aumentada si se trabaja bajo condiciones no extremas, es decir ni a temperaturas mas altas o muy bajas, es decir en un intervalo de 15 a 25 grados centigrados, tambien se debe de mantenerse un grado de alcalinida dadecuado.

Con la expresión matematica propuesta, se realizo una seria de modelamiento de RBRS de diferentes capacidades de tratamiento, por lo con esta expresión, es un primer paso para el proceso de escalación de la capacidad, para asi poder llevar al RBR opere a capacidades industriales.

Y asi poder brindar otra opción para el control de contaminantes que producen las diferentes industrias.

Reconocimientos

- Al departamento de ambiental de la Facultad de Química por las facilidades para la elaboración de este trabajo de tesis.
- A la Dra-Ing. Maria del Carmen Durán de Bazúa, por las facilidades para obtener la bibliografía experimental.

- A Victor Luna Pabello por 'sus recomendaciones.

Bibliografía

Antonie, L. 1976. Fixed biological surfaces wastewater treatment. The rotating biological contactor. Ed. CRC Press. Boca Raton, USA

Arvin, E. 1991. Biodegration kinetics of chlorinated aliphatic hydrocarbons with methane oxidizing bacteria in an aerobic fixed biofilm reactor. Water Res., 12:873-881.

Benefield, L.D. y Råndal, C.W. 1980. Biological process design for wastewater treatment. Prentice Hall, USA.

Bilbo, C.M. y Arvin, E. 1992. Modelling the growth of methaneoxidizig bacteria in a fixed biofilm. Water Res., 26(3):301-309.

Blenkinsopp, S.A. y Lock, M.A. 1990. The measurement of electron transport system activity in river biofilms. Water Res., 24(3):441-445.

Braha, A. y Hafner, F. 1967. Use of lab batch reactors to model biokinetics. Water Res., 21(1):73-81.

Chang, T.K. y Lim, H.C. 1989. Experimental and simulation studies of multivariable adaptive optimization of continuous bioreactors using bilevel forgetting factors. Biotechnol. Bjoeng., 34:577-591.

Durán de Bazúa, C. 1983. Tratamiento de los efluentes de la industria del maíz. Versi⁴n en español de la tesis doctoral presentada en la Facultad de Ingeniería Civil y Mediciones de la Universidad de Karlsruhe. Pub. Facultad de Química, UNAM. México.

Escárcega, C. y Pulido, R. 1986. Modelación matemáticamente del comportamiento de un reactor biológico rotatorio usado en el tratamiento de aguas residuales de molinos de nixtamal. Tesis profesional. Facultad de Química, UNAM. México.

Gantzer, C.J y Kollig, H.P. 1988. Predicting the rate of traceorganic compound removal by natural biofilms. Water Res., 22(2):191-200.

Gantzer, C.J. y Rittmann, B.E. 1988. Mass transport to streambed biofilms. Water Res., 22(6):709-722.

Gantzer, C.J. y Rittman B.E. 1991. Effect of long-term water velocity changes on streambed biofilm activity. Water Res., 25(1):15-20.

Gönenc, E. y Harremoës, P. 1990. Nitrification in rotating disc systems, criteria for simultaneus mineralization and nitrification. Water Res. 24(4):499-505.

Gorris, L.G.M. y Van Deursen, J.M.A. 1989. Biofilm development in laboratory methanogenic fluidized bed reactors. Biotechnol. Bioeng. 33:687-693.

Hamoda, M.F.1957. Operating characteristics of The aerated submerged fixed-film bioreactor.Water Res., Vol 21 (8): 939-947.

Hamoda, M.F. 1989. Kinetic analisys of aerated submerged fixed film bioreactors. Water Res., Vol 23 (9) :1147-1154.

Hickey, C.W. 1988.River oxygen uptake and respiratory decay of sewage fungus biofilms. Water Res., Vol 22 (11): 1375-1380.

Hoen, R.C. & Ray, A.D. 1973. Effects of thickness on bacterial film. Journal WPCF 45 (11) : 2302-2320

Hu, L.Z. & Shien, W.K. 1987. Anoxic biofilm degradation of monocyclic aromatic compounds. Biotechnol. and Bioefield. 30 (1987): 1077-1083.

Kim, B.R. & Suidan, M.T.1989. Approximate algebraic solution for a biofilm model with the Mond kinetic expression Water Res., 23 (12) : 1491-1498.

Koch, B. & Ostermann, M.1991. Sand and activated Carbon as biofilm carriers for microbial degradation of phenols an nitrogen- containing aromatic compounds. Water Res., 25 (1): 1-8.

Linek, V. & Benes, P.1959. Dynamic pressure method for ka measurement in large-scale bioreactors. Biotechnol. and Bioeng., 33 (1989) :1406-1412.

Luna, V. 1990. Efecto de la temperatura en las poblaciones de protozoarios ciliados en un reactor de biodiscos. Tesis de maestria. Facultad de Quinica UNAM.

Metcalf & Eddy Inc.1979. Wastewater engineering treatment disponsal reuse. Ed. Mc Graw Hill. N.Y. ,USA.

Miller, J.F. y Almond, E.L. 1988. High-pressure-temperature bioreactor for studying pressure-temperature relationships in bacterial growth and productivity. Biotechnol. and bioeng., J1 : 407-413.

Monbouquette H.G.1987. Models for high cell density bloreactors must consider blomass volume fraction: cell recycle example. Blotechnol. and Bloeng., 29 :1075-1080.

Pano, A. 6 Middlebrooks, E.J. The Kinetics of rotating biological contactors at temperatures: 5, 15 and 20 C. First International Conference of Fixed Film Biological Process. Vol. 1 pp 261-305. Pedroza, R. 1985 Estudio de la degradación biológica aerobia de los efluentes de nixtanalización. Tesís de maestría. Depto. Ciencias de la Nutrición y los Alimentos. Universidad Iberoamericana. México.

Pulido, R., Escárcega, C. y Durán de Bazúa, C. 1987. Tecnol. Ciencia Ed. (IMIQ), .

Reddy, K.J. & Hasfurther, V.R. 1989. Solubility and release off Fluorine and Molybdenum from oil dhale solid wastes. Water Res., 23 (7): 833-836.

Rittmann, B.E. y Souzzo, R.1983. Temperature effects on oxygen transfer to rotating biological contactors. Journal WPCF.155 (3): 270-277.

Rittman B.E. y Crawford, L.A. 1986. In situ determination of kinetic parameters for biofilms: isolation and caracterzation of oligotrophic biofilms. Biotechnol.and Bioeng., 28: 1753-1760.

TuraKhia, M.H. y Charaklis, W.G. 1989. Activity of pseudononas aeruginosa in biofilms: effect of calclum. Biotechnology and Bioengineering. Vol 33 :406-414

Saez, P.B. y Rittmann, B.1990. Error analysis of flimitingcase solutions to the steady -state-biofilm model. Water Res., 24 (10): 1181-1185.

Sagy, M. y Kott, Y.1990. Efficiency of rotating biological contactor in removing pathogenic bacteria from domestic sewage. Water Res., 24 (9): 1125-1125.

Steel, E.W., Terence, J.M.1979. Water supply and severage. Ed Mc Graw Hill International Book., Japon.

Trulear, M.G. y Charaklis, W.G.1982. Dinamics of biofilm process. Journal WPCF., 54 (9) :1288-1301.

Suidan, M.T. y Wang, Y.T.1989. Performance evaluation of biofilm reactors using graphical techniques. Water Res., 23 (7): 837-844.

Szwerinski, H. 6 Arvin, E. 1986. PH-Decrease in nitrifying biofilms. Water Res., 20 (8): 971-976.

Van Der Wende, E. y Charaklis W.G.1989. Biofilms and bacterial drinking water quality. Water Res., 33 (10): 1313-1322.

Williamson, K. & Mc Carty P.L.1989. "A model of substrate utilitazation by bacterial film". Journal WFCF. 48(1): 924-939.

Winkler M.A. Biological treatment of wastewater. Ed. Ellis Honwood Limited.Inglaterra (1981).

APENDICE

1. TABLAS DE DATOS EXPERIMENTALES VERSUS CALCULADOS

Tabla 1. Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de cuatro etapas, de 250 litros de volumen de trabajo, con una So = 2000 mg/L, medida como demanda química de oxígeno, con un TRH = 1.17 d, con una W = 16 rpm, con una T = 289 K y con un D = 0.5 n (Escárcega y Pulido, 1986)

ETAPAS	1	١e	2	1e	3	łe	4	t e
Dato experimental			850				767	
FCUACTON 1	1067	. 20	767	1.	500	30	101	76
FCUACION 2	1055	28	759	11	591	31	484	37
ECUACION 3	1063	29	768	10	600	30	492	35
ECUACION 4	1124	36	835	៍រំ	667	22	557	27
ECUACION 5	1161	41	776	9	553	35	415	46
ECUACION 6	905	10	871	1	825	3	770	0.5
ECUACION 7	1303	58	1259	46	1196	- 39	1117	45
ECUACION 8	842	2	808	5	761	11	706	8
ECUACION 9	876	6	842	2	796	7	741	3
ECUACION 10	1001	21	943	9	862	0.7	764	0.3
ECUACION 12	1302	36	1264	32 5	1210	29	1143	32

TABLA 2

Tabla 2. Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de cuatro etapas, de 250 litros de volumen de trabajo, con una So = 5000 mg/L, medida como demanda química de oxígeno, con un TH = 1.17 d, con una W = 16 rpm, con una T = 289 K y con un D = 0.5 m (Escárcega y Pulido, 1986)

ETAPAS	1	ŧe.	2	\$e	3	ŧe.	4 te	<u>.</u>
Dato experimenta:	1 1620		1568		1516		1504	
ECUACION 1	2657	64	1917	22	1497	1	1229 18	
ECUACION 2	2639	63	1898	21	1479	. 2	1211 19	
ECUACION 3	2659	64	1920	22	1500	1	1232 18	
ECUACION 4	2811	73	2089	33	1668	10	1393 7	38 L (2)
ECUACION 5	2904	79	1942	23	1384	8	1038 31	3. C.
EACUACIO 6	2262	39	2179	39	2063	36	1926 28	
ECUACION 7	3259	101	3149	100	2990	97	2793 85	승규는 것
ECUACION 8	2105	30	2020	29	1903	25	1766 17	94 C.S.
ECUACION 9	2190	35	2106	34	1990	31	1852 23	
ECUACION 10	2504	54	2359	51	2155	42-	1910 27	
ECUACION 12	3255	100	3161	101	3026	120	2859 90	e - 61

Tabla 3. Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de cuatro etapas, de 250 litros de voluzen de trabajo, con una So = 8000 mg/L, medida como denanda química de oxígeno, con un TH = 2.5 d, con una W = 23 rpm. con una T = 288 K y con un D = 0.5 m (Escárcega y Pulido, 1986)

्व वर्षे हुन्दू तुन्हेल देख जन्द्रीय							
ETAPAS		1	e 2	łe	3	te 4	te
Dato experi:	mental 24	51	2469		2447	2304	
ECUACION 1 ECUACION 2 ECUACION 3 ECUACION 4 ECUACION 5 ECUACION 6 ECUACION 7 ECUACION 8 ECUACION 9 ECUACION 10 ECAUCION 12	12 16 20 24 12 31 16 18 23 15 18	32 49 85 31 17 85 14 67 7 94 47 97 30 02 34 26 25 26 25 26 25 26 25 26 25 26 25	469 755 1001 1042 1032 1187 2971 1485 1703 2067 1632	80 79 59 57 58 51 20 39 30 16 33	226 9 410 8 556 7 616 7 496 7 1047 5 2659 1329 4 1538 4 1538 4 1756 2 1403 4	0 126 3 252 6 381 4 405 9 265 7 894 8 2246 5 1156 7 1353 8 1412 2 1152	94 89 83 82 88 61 .3 49 41 38 85

Tabla 4. Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de diez etapas, de 50 litros de volumen de trabajo, con una So = 4134 mg/L, medida como demanda química de oxígeno, con un TRH = 1.17 d, con una W = 16 rpm, con una T = 286 K y con un D = 0.3 m (Escárcega y Pulido, 1986)

			E	CU3	CI	ON	1.1.1				
етара	Exp.	1	2	3	4	5	6	7	8	9	12
1	2908	3032	3022	3034	3117	3174	2853	3377	2758	2810	3338
terror		4.2	3.9	4.3	7.2	9.1	1.8	16	5.1	3.3	14
2	2632	2584	2572	2586	2695	2610	2803	3323	2706	2759	3289
terror	1 (d. 1	1.7 3	2.2	1.7 2	2.4	.8 6	.5	26 2	.8 4	1.8	24
3	2562	2289	2275	2291	2413	2214	2732	3243	2631	2687	3219
terror		10	11.	10 . 1	5.7	13 6	.6	26 2	.7 4	1.8	25
1 4 6	2398	2078	2063	2080	2210	1925	2646	3140	2540	2598	3129
terror.		13	14	13 .	7.8	19	10	31. 5	i.9 8	3.3	30
5	2391	1921	1906	1923	2057	1709	2545	3014	2435	2495	3021
terror		19	20	19	13	28 6	- 4	26 1	.8 4	1.3	26
6.	2391	1802	1786	1804	1941	1547	2431	2864	2317	2379	2893
terror	100 B	24	25	24	18	35 1	. 6	19 3	.1 0	.4	20
. 7 .	2233	1711	1645	1713	1852	1425	2305	2687	2186	2251	2746
terror	-	23	24	23	17	36 3	.2	20 2	1,1 0),8	22
8	2240	1642	1626	1644	1783	1332	2167	2485	2043	2111	2578
<i>lerror</i>		26	27	26	20	40 3	- 2	11 8	1.7 5	5.7	13
9	2306	1590	1574	1592	1731	1263	2018	2255	1890	1960	2389
<pre>terror</pre>	 1.1 	31	32	31	25	45	12	2.1	18	15	0.03
10	2148	1551	1535	1554	1693	1213	1859	2000	1729	1799	2179
terro		28	28 -	28	21	43	13	6.8	19 -	16	0.01

Tabla 5. Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de diez etapas, de 50 litros de volumen de trabajo, con una So = 6525 mg/L, medida como demanda química de oxígeno, con un TRH = 1.18 d, con una W = 16 rpa, con una T = 286 K y con un D = 0.3 m (Escircega y Pulido, 1986)

	Dato			ECI	UAC	IOI	N				
етара	Exp.	1	3	з	4	5	6	7	8	9	12
1	4814	4779	4763	4783	4916	5006	4497	5328	4348	4431	5258
terror		0.7	1.1	0.6	2.1	3.9	6.5	10	9.6	7.9	9
2	4400	4070	4049	4076	4248	4113	4419	5242	4266	4350	5181
terror		7.4	7.9	7.3	3.4	6.5	0.4	19	3.0	1.1	17
. 3	4333	3603	3580	3610	3803	3487	4307	5115	4148	4236	5069
terror	1.14.20	: 17	17	17	12	19	0.5	15	4.2	2.2	16
4	4283	3269	3245	3276	3481	3030	4170	4950	4005	4096	4926
terror	in i trapi	23	24	23	18	29	2.6	15	6.4	4.3	15
. 5	3963	3021	2996	3028	3240	2690	4011	4752	3838	3934	4754
terror :	1.1	24	24	24	18	32	1.2	20	3.1	0.7	19
6	3800	2833	2808	2840	3056	2434	3831	4514	3651	3751	4552
terror		25	26	25	20	36	0.8	19	3.9	1.2	19
7	3700	2689	2664	2697	2915	2241	3631	4236	3444	3548	4318
terror		27	28	27	21	39	1.8	14	6.9	4.1	16
8	3600	2580	2555	2587	2807	2045	3413	3915	3219	3326	4051
terror		28	29	28	22	42	5.1	8.7	10	7.5	12
9	3550	2498	2472	2505	2725	1987	3178	3552	2978	3088	3752
terror		30	30	24	23	44	10	7.2	16	13	5
10	3420	2437	2412	2445	2665	1907	2927	3149	2722	2835	3420
terror		29	29	29	22	44	14	7.9	20	17	Ó

Tabla 6. Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de diez etapas, de 50 litros de volumen de trabajo, con una So = 5000 mg/L, medida como demanda quínica de oxígeno, con un TRM = 2.5 d, con una W = 23 rpm, con una T = 287 K y con un D = 0.3 m (Escárcega y Pulido, 1986)

Dato ECUACION											
ETAPA	Exp.	1	2	3	4	5	6	7	8	9	12
1	3217	1751	2087	2317	2352	2589	1828	3008	1406	2212	2160
terror		45	35	27	27	20	43 (6.4	56	31	32
2	3057	1019	1330	1558	1594	1590	1743	2888	1324	2128	2040
terror		66	56	49	48	48	43 !	5.5	56	30	33
4	2882	487	719	907	938	744	1490	2304	1087	1874	1676
terror		83	75	69	67	74	48	13	62	35	41
6	2690	301	481	637	663	432	1185	1986	814	1556	1232
terror		86	82	76	75	84	56	26	70	42	54
8	2433	219	370	505	528	297	868	1390	549	1208	783
terror		91	85	80	78	87	89	64	42	77	67
10	2265	181	315	439	460	235	572	805	325	862	405
<pre>terror</pre>		92	86	81	80	89	75	64	85	62	82

Tabla 7. Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de diez etapas, de 50 litros de volucen de trabajo, con una So = 6406 gg/L, medida como denanda química de oxígeno, con un TRH = 2.5 d, con una K = 16 rpz, con una T = 286 K y con un D = 0.5 m (Pedroza Islas, 1988)

	Dato			ECI	UAC	IO	N				
ETAPA	Exp.	: 1	2	3	4	5	6	7	5	9	12
1 1	3141	1598	2016	2401	2618	2772	1976	3376	2404	2604	2484
terror		49	35	23	26	11	37	7.4	23	17	7.4
2	2267	781	1111	1448	1650	1490	1869	3207	2295	2495	2796
terror		65	51	36	27	34	17	14	1.2	10	23
3 3	1976	453	.707	986	1163	854	1723	2968	2145	2345	2584
terror		77	64	50	41	55	12	50	8.5	18	30
- 4	1725	294	492	726	879	567	1556	2679	1970	2169	2332
terror		82	71	57	49	67	9.7	55	14	25	35
5	1667	206	367	566	701	389	1376	2358	1778	1974	2052
terror		57	77	66	58	77	17	41	6.6	18	23
6	1567	155	289	462	552	284	1190	2000	1576	1767	1755
terror		90	81	71	63	82	24	27	0.5	12	11
7.	1346	123	238	392	501	215	1005	1635	1369	1552	1451
terror .	9 - CATA	91	82	71	63	84	25	21	1.7	15	7
8 2 3	1357	102	204	344	445	176	826	1276	1163	1336	1154
terror		93.	85	74	66	87	. 39 .	6.1	- 14	1.4	14
9	1215	89	181	311	405	149	659	937	963	1124	875
terror		93	85	- 74	66	87	45	23	21	7.6	28
10	985	79	165	287	375	131	508	640	775	921	627
terror		92	83	71	62	87	48	35	21	6.4	36
Tabla & Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de diez etapas, de 20 litros de volumen de trabajo, con una So = 2010 mg/L, medida como demanda química de oxígeno, con un TRH = 1 d, con una W = 30 rpg, con una T = 263 K y con un D = 0.3 m (Luna Pabello, 1990)

	Dato			ECU	AC	ION			·			
етара	Exp.	1	2	3	4	5	6	7	8	9	12	
1	1860	1822	1822	1807	1800	1837	1749	1879	1693	1704	1709	
terror.		2.0	2.0	2.8	3.1	1.2	5.9	1.0	8.9	8.3	6.7	÷.,
2	1620	1733	1733	1711	1701	1718	1738	1869	1679	1691	1691	17
terror		6.9	6.9	5.6	5.0	6.0	7.2	15	3.6	4.3	4.1	- 54
3	1560	1668	1668	1641	1630	1624	1721	1859	1659	1671	1663	
terror		6.9	6.9	5.2	4.5	4.1	10	18	6.3	7.1	6.6	
4	1340	1617	1617	1588	1576	1549	1701	1834	1635	1648	1628	-17
terror		20	20	28	17	15	26	36	22	23	21	
5	1200	1578	1578	1545	1532	1487	1676	1809	1605	1619	1585	14
terror		32	32	29	27	24	39	50	33	35	32	2004. 1
6	1170	1546	1546	1512	1497	1438	1648	1779	1572	1587	1534	
\$error		32	ЗŽ	28	28	23	41	52	_34 /	35	31	
7	1160	1521	1521	1485	1470	1398	1615	1741	1534	1550	1475	
terror		31	31	28	27	20	39	50	32	34	31	
8	1120	1501	1501	1465	1449	1366	1578	1696	1490	1535	1406	
terror		34	34	31	. 29	22	40	51	33	34	25	 3
. 9	1110	1466	1486	1448	1432	1342	1537	1643	1442	1461	1327	
terror		34	34	30	29	21	.38	48	29	31	19	
10	1110	1475	1475	1436	1420	1323	1490	1578	1388	1408	1238	
terror		33 -	33	30	38	19.	34	42	25	27	11	

Tabla 9 Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de diez etapas, de 20 litros de volumen de trabajo, con una So = 2040 mg/L, medida como demanda química de oxígeno, con un TRH = 1 d, con una W = 30 rpm, con una T = 293 K y con un D = 0.3 m (Luna Pabello, 1990)

.

ETAPA	Dato			ECU	JAC	101	4				
	Exp.	1	2	3	4	5	6	7	8	9	12
1	1760	1676	1676	1648	1636	1694	1469	1749	1359	1381	1501
terror		4.7	4.7	6.3	7.0	3.7	16	0.6	22 -	21	14
2	1600	1515	1515	1477	1460	1476	1446	1727	1333	1355	1460
terror		5.2	5.2	7.6	8.6	7.7	9.5	7.9	16	15	8.1
- 3	1470	1515	1515	1359	1340	1315	1414	1695	1297	1319	1425
terror		4.5	4.5	7.5	8.8	10	3.7	15	11	10	3.0
4	1420	1319	1319	1271	1251	1192	1374	1654	1252	1275	1368
terror		7.0	7.0	10	11	16	3.1	16	12	10	3.6
5	1290	1255	1255	1204	1183	1096	1328	1603	1200	1224	1300
terror		2.6	2.6	6.6	8.2	15	2.9	24	6.9	5.0	7.7.
6	1250	1206	1206	1152	1130	1022	1275	1542	1141	1167	1223
terror		3.5	3.5	7.7	9.5	18	2.0	- 23 -	8.6	6.6	2.1
. 7	1200	1167	1167	1112	1089	965	1217	1469	1076	1103	1134
terror		2.7	2.7	7.2	9.1	19	1.4	22	10	8.0	5.5
8	1160	1137	1137	1081	1058	920	1152	1384	1006	1034	1036
terror		1.9	1.9	6.9	8.7	20	0.6	19	13	11	10
. 9	1080	1114	1114	1057	1034	886	1082	1285	931	059	929
terror		3.1	3.1	2.0	4.2	17	0.1	19	14	11	13
10	1040	1097	1097	1040	1016	862	1005	1173	851	880	814
terror	1.1.1	5.4	5:4 3	1.1	2.2	17	3.2	13	18	15	21

Tabla 10 Comparación de los porcientos de error entre los datos obtenidos con diez ecuaciones y los datos experimentales para un reactor de diez etapas, de 20 litros de volumen de trabajo, con una So = 2050 mg/L, medida como demanda química de oxígeno, con un THH = 1 d, con una W = 30 rpa, con una T = 303 K y con un D = 0.3 m (Luna Pabello, 1990)

	Dato			EC	UA	C I O	N				
ETAPA	Exp.	1	2	3	4	5	6	7	8	9	12
1	1130	1107	1107	1050	1026	1113	489	1085	348	373	841
terror		2.0	2.0	7.0	9.1	1.4	56	3.9	69	67	25
2	810	805	805	743	718	708	457	1031	320	344	791
terror		0.5	0.5	8.1	11	12	43	27	60	57	2.3
3	680	633	633	572	548	484	414	955	283	306	723
terror		6.8	6.8	15	19	36	39	40	58	54	6.3
4	550	522	522	464	441	350	366	862	243	264	643
terror		5.0	5.0	15	19	43	33	56	55	51	16
5	470	446	446	392	370	266	315	758	202	221	555
terror		4.9	4.9	16	.21	43	32	61	56	53	18
6	410	393	393	341	321	211	264	645	162	179	464
terror		4.0	4.0	16	21	48 -	35	57	60	56	13
7	400	355	355	305	286	174	215	528	126	140	373
terror		11	11	23	28	56	46	32	68	64	6.7
8	.340	327	327	279	261	149	169	412	93	105	287
terror		3.8	3.8	17	23	55	30	21	72	68	15
9	320	306	306	260	242	132	128	304	67	76	209
terror		4.1	4.1	18	24	58	59	4.9	79	77	34
10	270	292	292	247	229	121	94	208	45	52	92
terror		8.2	8.2	8.4	15	55	65	22	83	80	47

TABLA DEL ANALISIS ESTADISTICO DE LOS DIFERENTES CASOS RBR de 250 L

	1900	c	ASO	1	Ċ	ASO	2	6	ASC	5 B	8
E'	TAPA	Y	ALOF	z	Ý V	ALO	R 2	1	ALC	DR	z
	1	100	11	. 2	1.5	1	3		25.2	1.4	8
	2		<u>े</u> 3	. 7		2	3.1.9			2.4	3
à.	3		8	. 0	1.41	2	1		141 141	2.9	0
9	4	hatilia	6	. 4	91. SP	2	2			1.0	8
	1. S.	189 8 -		6		- Section		GE ().	also.	22.25	90

RBR de 50 L

						10.00		1.000	A-77.8 TT	11.5					2.6.5	1.000		12.84	1. A A A A A	1322	12.94	54.4	- 22										
						- 12		1.00		1.25	1993	21.5		· • ·		1.1		-	See 1.		174	- 1	152		<u> </u>			1.1.1					
				10			÷., i -	i ne	é na				v۵	A.	: L	200		ĸ	9.52	. L	1.1	E.	. i 1. j	5.5	- 2				1000		124		
							·	- 11.25			÷.,		1.82	24.	e i e i	. The second sec	- 6.5	1.9522	-9 i e	5 X X	18 C 1	49.97	1.57	ч <u>с</u> .,	e .	1.82				24			
		12 I. M. P.		- C	- A !	SO.		1227		1 22	· *		1.12		1.1	20.0	2	1.2.2	9221	a 2.	20 B	1.0	197	ιп.	et	. ca 6.	A + 24	- 61	ide . * -		4		
								14 A 4	- C.		3.00		10.2		2.77			1.00	1.000						Sec. 23.		100	a - C	1.1273				
F	· • •	3 7 3	1.12	1000	1.00	1325	Call A					2027	1.22			15.55**	-	577	2110	100	10.0	1.1.	- e	÷.	122					142 B			
				100		0.275		- 1945		1.51	÷	ند دو در ا			e trên	- E		1.14		4.5		A		3store	A 12	* . C		100			1.1		
	41				121.12	1250	- C. C.	σ.			6597	TT 2.	123.5	- 12 C	÷.,		<u>ه م</u>		3 B. A.		24				÷			1.1	ć			-	
	1	1.085.5			1.1	- 195		1.21	υ	60	1.20	S-01 2	1.1	÷		υ.		- 1 - 5	1.613			1 G - 1		č 🖬 🗉	. 4				. C. S.	. U	. /	-	
	-	5 L M		14.5		-1.10		424	2.21		1.1			ée	1.17				متدرك	1.16				- - -	÷			1 m 1	47.7		~ <u>-</u>		
	2.						74.eeC.	1000	12	-1 H-	1.11	29/2	1.1.5	ж		20	. 5							- 21 '	- 7	÷.,		1.02		- 2	. 2		1.1
	-						 1 	 1.17 								-			e 12.					. –	••						7 -		
	ъ.					1 G P 1		- 12	т.	э	2. A T					•	: 9	я.	825.		1.11	6.2					5				. A		
							Sec. 25.	22.2	•••				14.0		- 2	•	•••	۰.	- T.C.	5 an 14		÷.					ini.		· · · ·		• •		-
	A -					1.1		100	9 S.	e -		in – 1	÷ .	81 (e.t.	110	1.1	S 4	•	(** 1) (** 1)			-i			 • 	7		1.22	a, e	· •	്ര		
				10.00		10.00	- Co		**	•• 3	124.5		1943					۰. ک	area.			22.5			•υ	4 . ju		1.8		÷c	• •		
	-							~1S.		- C			1.1	÷.,	12	1.1		~			÷												
	э.	. A		1.11				2/22.	1	8	1.55			46. T	1.8	14	. 3	U.	852		11			1000	1.12		÷	1.4-4	2.55	- 1	. 6		
	-	1.11	÷	1.12					- 61	2.11	2.54	21 A.	1.000		í s es					où:		- 11 C			÷				24.11	· · · ·	- E		- 2
	6	the second h		én é	(41.).	- C		1.1	1.	5 🔅	· · · ·	**. *			1.73	1	- 4	Z.	12.24	41.1		21-1		9	. 7	0			1.1	. 0	. 7		
	-							. N		-			12.0					-;	Q2	÷		0.02		1 T	•••	- U S	ene -	5 e			•••		
	7			197.0		a (14 - 5) e			⊃∴	6	2,58,74		væ	114	2 E.	0	a	7:			- é			- 10		11.00	11.4	in a		~ n	: 5	1227	25
11								Q 24		•	- e -			lan.	he site	•					1.557	1000						· · · · ·		~~	•••		
	2	- 201		0. Cer	25. Č. –	- 10 C		- 100	-	5		63 e 1	- A - A	C. (*		0	- 7	٩.,	-			42.0		1.1	1.1	•				· •	. 0	7	
	•						ST 1	2.4.3		÷.,						•••		•	- 22						÷.,	∍,			Carlor -	•	• •		
	~									A 3			(* e		1.0	-	- -	-	Co. C.				1.55	1.1		e 1.			12.1		· •		
۰.,	э.	144.0		- 2.2			12.5		17	UJ	120	c .			. e.	υ.	. ว	4	19.1											. т	• 8		
14	-	1 A 1 A 14	1.1				2.25					A	- 164	· • •					12.1		- 60			: 2°.	- 1	- 12					·		
-1	О.	- C.				74.J.C.		- 11	ο.	18	1.1			70 A.		ार	σ.		1941					11	э.	8	. e. i			· 1	. 9	A.1	
	-			- C.S.			- T	11.1	72		29.	2.2	200			2.8,7		- 19	212			199 F.		- 7-1		5							
				1.15			22 - A		1000		16.00		12.2	1.676										1.00									

S. 14 98

								- D.,		1.11			2.1		1072			12.2				1.45	1.00		
5.14							1.25	11	2. 8			~ `	n.		97.	n'	° 129			e .					
6 A M.		1.1						v		.		υ.	· rt		1.2.4	υ.	- 5-	197		1.11	4				
		~	-					÷.		. **	e de la	5 B	Ċ.,		`~	. <i>2</i> 1	2.1.3			1.15	usi in	÷			
1.23		C?	120	J			~ 25	1.			a fina	1.00	÷.	÷.,	· 4	et 1	22.5	2.2	S. T.,	1.00		- 3			
		5. Al-	in s		- i-si,			1.5	567	100	- e -	- 12E	1.6		ιż.		200	T							
		- 10	- N		1.2	d				-31.	21.1			ŧΥ.,	200				1				011		1.1
					<u>ه ا</u>		12	177	÷	-93			8 d. s.				201	-0.1		1.12			2.2		
	2.5				÷		· 2	21	1	1.27			205		Ζ.	. a	14						:2	. •	
							_		-	12.15				2.25	_			114							
× 1					- 140		۰n	- 12	20	1.5	1.1		2.50		1	- 4	11			2. ***	C		റ	1.1	10
		10.	Т. н.				. ~	ð.	• •		- 64-5			100	•		•	200						•	
	1.1		1.47		69° 5	10.0	1		4 =	÷.,	3×1			5.3	n	1.5	20						3 1	11	11
		- 51	- i -		12.52			• :			1.41		- Y X	6 A P	•	• •			÷.,		C 27 - 1		. ÷		•••
				÷			- 5	14	nc	1.1		e 19			•	1 C	2.2	93				· · · ·	. 7		20.
		12.5	- 10a			a, e a		•	• •	- 11	22			2. 2	•	• •		156		C 19	12.51			• •	20
	÷		25.1		-34	S	÷	1.1		132	÷94.	- 22	187		•	2 a					1995		1 m.	11	e `
	1.1		1.2.4	÷	- 12 -	2.12		۰.	, ,		1.2.2		201	201	v	• 4	:0						14	• 3	
							'n	зà	-		2000		p > 0	di bel	19.7	1 -	• •		32.5	21.5			. · •	۰.	
					275	2.21	•	•	3		1.11		161	11.1	÷4.	• 4				1.127	10,000		- 1	••	"
12.9	1.00			- 2			÷			1.1	Y		1.55		1.40	1 a		10.0					÷.,	÷	
	1.24		si e i	÷	See.		- A.	41	94					197	-	. c	,0	1.9			1 T.		းပ	• 3	7 3
								1.1		1.00				9 m	· • ·								-		
							8				12.5		1214		-4		iði				1.000		- A		
	1.0.1				1870		- 1	÷.,	Ξ	1.25	e = 46,		224					123							
							- 6	2.1	7	101					3	15	55								
			· . ·	×			- 2	Ξ.						12	- 21			1.6							
							з.	21	רם	100			۰.		з.	10	11	12			$r \rightarrow p$		ി	. 3	2
								•		۰.	- 22			2.1											•

Reactor de biodiscos de 250 L

* Serie 5 + Serie 6 * Serie 7 * Serie 8

Grafica A So=2000mgDQO/L,T=289K,W=16rpm,TRH=1.17d.

Reactor de biodiscos de 250 L

Grafica B So=5000mgDQO/L,T=289K,W=16rpm,TBH=1.17d.

Reactor de biodiscos de 250 L

-- Serie 1 + Serie 2 * Serie 3 -- Serie 4

× Serie 5 + Serie 6 → Serie 7 - Serie 8

Grafica C

So=8000mgDQO/L,T=288K,W=23rpm,TRH=2.5d.

Reactor de biodiscos de 50 L

← Serie 1 + Serie 2 * Serie 3 - Serie 4

× Serie 5 + Serie 6 ▲ Serie 7 - Serie 8

Grafica D So=4314mgDQO/L,T=286K,W=16rpm,TRH=1.17d

Reactor de biodiscos de 50 L

Grafica E So=6525mgDQO/L,T=286K,W=16rpm,TRH=1.17d

Grafica F So=5000mgDQO/L,T=287K,W=23rpm,TRH=2.5d

Reactor de biodiscos de 50 L

--- Serie 1 + Serie 2 * Serie 3 --- Serie 4

* Serie 5 + Serie 6 - Serie 7 - Serie 8

Grafica G

So=6406mgDQO/L,T=286K,W=16rpm,TRH=2.5d

Reactor de biodiscos de 20 L

Grafica H So=2010mgDQO/L,T=283K,W=30rpm,TRH=1d.

Reactor de biodiscos de 20 L

Grafica I So=2040mgDQO/L,T=293K,W=30rpm,TRH=1d.

Reactor de biodiscos de 20 L

- Serie 1 + Serie 2 * Serie 3 - Serie 4

★ Serie 5 ★ Serie 6 ★ Serie 7 ★ Serie 8

Grafica J So=2050mgDQO/L,T=303K,W=30rpm,TRH=1d.

INDICE DE TABLAS Y FIGURAS

Pag

7

20

21

4 *

29

÷

73

Indice de figuras

Figura 1. Ciclo ecológico natural

Figura 2. Sistema de tratamiento de aguas residuales empleando sistemas biológicos

Figura 3. Esquema de un RBR.

Figura 4. Diagrama esquematico de las resistencias de transferencia de masa en un RBR.

Indice de gráficas

Presentación de todas las expresiones propuestas a diferentes condiciones de operación. (A-J)

Presentación de la expresión seleccionada a diferentes condiciones de operación.(1-13)

Indice de tablas

Referente a los datos experimentales recopilados.

Referente a los resultados obtenidos a traves de todas las expresiones propuestas a diferentes condiciones de operación. 65

Referente a la tabla de resultados obtenidos de 2.

		이 다. 바람이 같이 있는 것은 것은 바람들은 가격했다. 것은 것 이 같이 같이 같이 있는 것은 것은 것은 것은 것을 했다. 것은 것은 것은 것은 것은 것은 것은 것은 것은 것을 했다. 것은 것은 것은 것은 것은 것을 했다. 것은 것은 것은 것은 것은 것은 것은 것
		NOMENCLATURA.
	RBR	= Reactor de biodiscos rotatorio.
	S	= Materia orgánica final despues de Cada etapa (mg/L DQO).
	So	= Materia orgánica inicial al entrar al RBR (mg/L DQO).
	T	- Temperatura a la que se encuentra operando el RBR (K).
	W	La velocidad con que gira el biodisco (rpm).
	s	= Desviación estandar de la muestra experimental.
	υ	= Es el valor promedio de la muestra experimantal.
	×	= Es el valor obtenido del modelamiento matemático a comparar.
स्टब्स् विदियः इन्द्रियेद्वान्त्री	z	- El valor que permite cuatificar la diferencia estádistica.
	N	= Numero de etapa del RBR.
	TRH	= Tiempo de residencia hidraúlico (min).
	D	= Diametro del biodisco.
	DQO	= Demanda química de oxígeno.
	DBO	= Demanda bioquímica de oxígeno.
	DBO	= Demanda bioquínica de oxígeno.