## UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

### DESARROLLO PARA LA PRODUCCION A ESCALA RUTINARIA DE YODO-131

# TESISQue para obtener el título de:INGENIEROUIMICOpresentaFERNANDOLUISELIZALDEVALDES

México, D. F.



Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

#### DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Tesis ne 1 e



QUIMICA

FRESIDENTE MANUEL NAVARRETE TEJERO VCCAL JUAN LERTIGUE GORDILLO SECRETARIO MARCOS ROSENBAUM PITLUK ler. SUFLENTE SOFIA G. BURILLO AMEZCUA 20. SUPLENTE LUIS CABRERA MOSQUEDA

1

CENTRO NUCLEAR DE MEXICO

SALAZAR, EDO. DE MEXICO

SUSTENTENTE

FERNANDO LUIS ELIZALDE VALDES

ASESOR DEL TEMA MARCOS ROSENBAUM PITLUK

SUPERVISOR TECNICO ENRIQUE PARRA MATEOS

#### AGRADECILIENTOS

Agradezco al Instituto Nacional de Energía Nuclear la beca que me brindó para realizar este trabajo en el Departamento de Producción de Radioisótopos del Centro Nuclear de México.

También quiero agradecer la orientación y colaboración que me dispensaron las siguientes personas:

> M.C. Enrique Parra Mateos M.C. Ana María Martínez Leal Dr. Marcos Rosenbaum Pitluk Ing. Rafael Alvarado Saldaña Ing. Luis Pablos Hach

así como a todos los empleados y personal del Centro Nuclear de México que directa o indirectamente cooperaron en la elaboración de este trabajo.

Gracias.

#### CONTENTIO

#### INTRODUCTION

- 131 METODOS DE PRODUCCION DE I CAPITULO I
- CAPITULO II METODOS DI SEPARACION DE I DEL TELERIO IRRADI.DO

- CAPITULO III EVALUACION DE LOS METODOS DE SERMACIÓN DEL I DEL TE IRRADIADO
- CAPITULO IV CONCLUCIONES

REFERENCIAS

APENDICE

#### INTRODUCCION

En vista del gran desarrollo que ha alcanzado el uso de los radioisótopos tanto en la Fedicina como en la Industria e Investigación, es deseable desarrollar en México métodos adecuados para producirlos a escala rutinaria de acuerdo con las Normas de Control de Calidad que requieren los consumidores. Los principales radioisótopos que se consumen en el país se dan en la tabla J.

| Tabla | T |
|-------|---|
|       |   |

| Radici <b>só</b> topo | Curios Consumidos<br>1972 |
|-----------------------|---------------------------|
| 131<br>I              | 62.387                    |
| 99<br>Mo              | 40.350                    |
| 198<br>Au             | 31.545                    |

131 Como se puede apreciar en esta tabla, el I es el radioisótopo que mayor consumo ha tenido, por lo que se debe de tratar de producir en el país, a menor costo que el producto de importación.

131 La cantidad que se desea producir de 1 es de 6 Ci/mes, o sea, 1.5 Ci/semana. con lo cual se abastecerá la demanda existente. La producción futura depende del incremento en el consumo de este producto.

La producción anual de I<sup>131</sup> en el país desde 1962 hasta 1972 está indicada en la tabla II.

| Año  | 131<br>Consumo de I<br>(C1) | Año  | 131<br>Consumo de I<br>(Ci) |
|------|-----------------------------|------|-----------------------------|
| 1962 | 0.670                       | 1968 | 37.509                      |
| 1963 | 3,985                       | 1969 | 22.800                      |
| 1964 | 13.158                      | 1970 | 44.000                      |
| 1965 | 24.850                      | 1971 | 53.924                      |
| 1966 | 26.566                      | 1972 | 62.387                      |
| 1967 | 27.434                      |      | 1                           |

Tabla II

groximidamente el 95% del rodo que se importa se emplea en la Medicina y el resto tiene aplicaciones en la Investigación. 131

Usos del I en la iedicina:

a,- Aplicaciones del I como isótopo primerio:

al.- Tratamica a de hipertiroidismo

a2 .- Cáncar en la tiroides

1.31

b.- Aulicación de moléculas marcadas con I , por ejemplo:

bl.- Albúmina (volumen sanguíneo, pruebas de circulación, placentografía)

b2.- hacroagregados de albúmina (gama gramas de pulmón)

b3.- Rosa de bengala (pruebas funcionales hepáticas, gama gramas del hígado)

b4.- Acido oléico (digestion de rasas)

b5.- Tricleina (digestión de grasas)

06.- Yodotalamoto de sodio (pruebas renales)

b7.- Hipurán (pruebas renales)

b6.- Yodo antipirina (localización de varices)

b9.- Bromo sulftaleína (gama gramas del hígado, pruebas funcionales hepáticas)

bl0.- Dicloro-difenil-dicloroetano (gama grama de cápsulas suprarrenales) Aplicaciones a la Tecnología:

a.- Hidrología

b.- Investigación en celulosa y papel

Actualmente, el Departamento de Dilución del Instituto Nacional de Energía Nu-131 clear (INEN) está importando alrededor de 5 Ci/mes de I , de los cuales 200 mCi/semana son enviados al Departamento de Moléculas Marcadas en donde se marcan los compuesto citados en la tabla III así como las cantidades utilizadas 131 de I para marcar estos compuestos. 121 Debido al gran uso que tiene el I , en este trabajo se describe el desarrollo 131 experimental de tres metodos de separación de I del telurio irradiado. Una vez desarrollados estos métodos y teniendo los resultados experimentales, 26 compar.ron con el fin de ver cual de ellos presentaba mejor rendimiento en

| bLa                           | 111                                        |
|-------------------------------|--------------------------------------------|
| Compuesto Larcado             | 131<br>Cantidad de I<br>Utilızada<br>(mCi) |
| Albůmina                      | 287.20                                     |
| Hipurán                       | 282.55                                     |
| Yodotalamato<br>de sodio      | 152.50                                     |
| kacroagregados<br>de albúmina | 110.55                                     |
| Rosa de bengala               | 53.20                                      |
| Tricleina                     | 6.60                                       |

Estos datos comprenden del día 2 de abril al 22 de mayo de 1:73.

la separacion, mayor facilidad del proceso, menor tiempo de operación, menor cantidad de reactivos y menor tamaño del equipo.

Estos criterios sirvieron para establecer el método seco como el que servirá 131 para producir el I .

Finalmente, para este método se propone un equipo experimental, actualmente en fabricación y cuyas condiciones óptimas de operación deberán determinarse 131 mediante análisis estadístico para posteriormente producir el I pudiendo así abastecer su consumo actual y futuro.

#### CAPITULO I

#### MITCHOS DE PRODUCCION DE 1<sup>131</sup>

Entre los principales métodos de producción de I<sup>131</sup> se encuentran los siguientes: 1.- Bombardeo de telurio (Te) con deuterones por medic de la reacción nuclear (1):

En forma desarrollada esta reacción se expresa como:

Este método resulta bajo en producción de  $I^{131}$  ya que una partícula cargada como el deuterón encontrará una gran fuerza de repulsión que le impide penetrar al núcleo. 2.- Producción de  $I^{131}$  por fisión directa del uranio 235, la reacción nuclear es <sup>(1)</sup>:

y cuyo rendimiento de fisión es de 3%, o sea, se forman 3 átomos de I<sup>131</sup> por cada 100 átomos de Uranio que se fisionan (2).

Este método es poco usado ya que se forman muchas impurezas en la serie de decaimiento de los productos de fisión, lo cual hace más difícil la separación del I<sup>131</sup> requiriendo equipo y técnicas más elaboradas.

3.- El I<sup>131</sup> se puede producir por la irradiación de Te natural bajo un flujo de neutrones térmicos <sup>(3)</sup> formándose el Te<sup>131m</sup> (estado metaestable) y el Te<sup>131</sup>. El Te<sup>131m</sup> decae por dos caminos diferentes: uno es por emisión de partículas beta ( $\hat{\boldsymbol{\beta}}$ ) formando el I<sup>131</sup> y el otro es por transición isomérica (TI), compitiendo con una conversión interna de electrones, formándose el Te<sup>131</sup>.

El Te<sup>131</sup> que se formó por reacción directa del Te<sup>130</sup> con neutrones y por el decaimien to del Te<sup>131m</sup> decae por emisión de partículas beta a I<sup>131</sup>, el cual, a su vez decae a Xe<sup>131</sup> estable también por emisión de partículas beta.



donde G, y  $G_2$  son las secciones efficices (usualmente expresades en birns, l barn es 10<sup>-24</sup> cm<sup>2</sup>) de captura neutrónica para formar el Te<sup>131</sup>m y el Te<sup>131</sup> respectivamente.

 $\lambda$ ,  $\lambda_2$  y  $\lambda_3$  son las constantes de decaimiento del Te<sup>131</sup>, Te<sup>131</sup> y I<sup>151</sup> respectivemente,  $\lambda = \ln 2/t_1/2$ .

 $t_{1/2}$  es el tiempo de vida media del radioisótopo (tiempo necesario para que la actividad inicial se reduzca a la mitad).

a y b son las fracciones de actividad del Te<sup>131m</sup> que decaen por TI y por  $\beta$  respectivamente, a + b = 1.

Este método de producción es el más usado y por tanto el que se siguió en este trabajo. El material blanco usado fue telurio metálico (irol.bo), pero se pueden usar compuestos de Te tales como: ácido ortotelórico  $(H_6 TeO_6)$ , dióxido de telurio  $(TeO_2)$  o ácido metatelórico  $(H_2 TeO_4)$ .

Al ser irradiado el Te bajo un flujo neutrónico,  $\emptyset$  (neutrones/cm<sup>2</sup> seg), sus isótopos estables, que están dados en la tabla IV, son transformados a isótopos inestables conocidos como radicisótopos y cuya velocidad de formación está en función del número de átomos iniciales de blanco (No), del flujo neutrónico ( $\emptyset$ ) y de la sección eficaz microscópica de captura neutrónica ( $\mathfrak{G}$ ). Tanto el número de átomos iniciales de material blanco como el flujo neutrónico se consideran constantes durante el tiempo de irradiación.

#### Tabla IV

| Isótopo Estable | Abundancia<br>K |
|-----------------|-----------------|
| 120<br>Te       | 0.089           |
| 122<br>Te       | 2.460           |
| 124<br>Te       | 4.610           |
| 126<br>Te       | 18.710          |
| 128<br>Te       | 51,790          |
| 130<br>Te       | :4.490          |

.

Composición Isotópica del Telurio(4)

Los esquemas de formación y decaimiento para los radioisótopos de la tabla V son:



| Tal | 61 | а | v |
|-----|----|---|---|
|     |    | - |   |

(4) Formación y decaimiento de los radioisótopoas del telurio

| Isótopo<br>Estable<br>Irradiado | Masa del<br>Elemento<br>base: 1 (g)<br>(g) | ba <b>rns</b> | Isótopo<br>Radiactivo<br>Formado                           | t1/2                      | Tipo de<br>Decai-<br>miento | Decae<br>a                                                | <sup>t</sup> 1/2              |
|---------------------------------|--------------------------------------------|---------------|------------------------------------------------------------|---------------------------|-----------------------------|-----------------------------------------------------------|-------------------------------|
| 120<br>Te                       | 0 <b>0000</b> 0                            | 2.00<br>0.30  | Tel21m<br>Tel21<br>Te                                      | 154 d<br>17 d             | TI<br>Ce                    | Te <sup>121</sup><br>Sb <sup>121</sup>                    | l7 d<br>estable               |
| 122<br>Te                       | 0.0246                                     | 1.00          | Te <sup>l23m</sup>                                         | 104 d                     | TI                          | Te <sup>123</sup>                                         | estable                       |
| 124<br>Te                       | 0.0461                                     | 5.00          | Te <sup>125m</sup>                                         | 58 d                      | TI                          | Te <sup>125</sup>                                         | estable                       |
| 126<br>Te                       | 0.1871                                     | 0.10<br>0.90  | 127m<br>Te <sub>127</sub><br>Te                            | 105 d<br>9,35 h           | τι,β<br>β                   | Te <sup>127</sup><br>1 <sup>127</sup>                     | 9.35 h<br>estable             |
| 128<br>Te                       | 0.3179                                     | 0.017<br>0.14 | 129m<br>Tel29<br>Te                                        | 33 d<br>74 (m)            | TI,β<br>β                   | 129<br>Te<br>1129                                         | 74 (m)<br>estable             |
| 130<br>Te                       | 0.3449                                     | 0.04<br>0.20  | Te <sup>131m</sup><br>Te <sup>131</sup><br>I <sup>31</sup> | 30 h<br>24.8 (m<br>8.05 d | TI,β<br>β                   | Te <sup>131</sup><br>1 <sup>31</sup><br>Xe <sup>131</sup> | 24.8 (m)<br>8.05 d<br>estable |

donde d (dias); h (horas); m (minutos) y CE (captura electrónica).

De estos esquemas se puede establecer el siguiente mecanismo general de formación y decaimiento:



donde N<sub>1</sub>, N<sub>2</sub> y N<sub>3</sub> representan a las especies radiactivas formadas. Para el caso particular del esquema de formación del I<sup>131</sup>, N<sub>1</sub>, N<sub>2</sub> y N<sub>3</sub> representan al Te<sup>131m</sup>, Te<sup>131</sup> y I<sup>131</sup> respectivamente.

Analizando este mecanismo se pueden obtener las ecuaciones que lo rigen para N1, N2 y N3.

La rapidez de formación de radioisótopos en un momento dado será igual al número de átomos que se están formando (No $\emptyset$ G) menos los que se están desintegrando ( $\lambda$ N). Desde que se inicia la irradiación de un material blanco hasta que ésta se termina (tiempo de irradiación), el material se va a activar constantemente produciendo especies radiactivas según la velocidad de formación No $\emptyset$ G, una vez que la irradiación se suspende (cuando el flujo neutrónico es cero) el material activado que se formó va a decaer constantemente de acuerdo a su velocidad de decaimiento  $\lambda$ N. Fara tratar simultaneamente el caso de activación y el de decaimiento de las especies radiactivas N<sub>1</sub>, N<sub>2</sub> y N<sub>3</sub> se hizo uso de la función escalón<sup>(5)</sup>  $\mathcal{E}(to,t)$  cuya representación está dada en la siguiente figura;



En base a lo anterior, la rapidez de formación de N1 se expresa matemáticamente co-

$$\frac{dN_{i}}{dt} = H_{0} \not\otimes G, \ \mathcal{E}(t_{0}, t) - \lambda, N,$$

substituvendo R = NoØG, se tiene

$$\frac{dN_{i}}{dt} = R_{i} \mathcal{E}(t_{0}, t) - \lambda_{i} N_{i}$$
(1)

Esta ecuación se resuelve facilmente mediante la aplicación de la transformación de Laplace $^{(5)}$ . Haciendo uso de

$$\left[ \left[ \frac{dN_{i}}{dt} \right] = sn_{i}(s) - N_{i}(o) ,$$

$$\left[ \left[ N_{i} \right] = \Lambda_{i}(s) ,$$

$$(2)$$

donde  $\int denota el operador de transformación de Laplace <math>\int e^{-3L}$ , y substituyendo estas transformadas en (1) queda:

$$sn_{i}(s) - N_{i}(o) = R_{i} \downarrow \lfloor \ell(to, t) \rfloor - \lambda_{i} n_{i}(s)$$
Notando que N<sub>i</sub>(o)=0, se obtiene:  

$$sn_{i}(s) + \lambda_{i}n_{i}(s) = R_{i} \downarrow \lfloor \ell(tu, t) \rfloor$$
6  

$$n_{i}(s) (s+\lambda_{i}) = R_{i} \downarrow \lfloor \ell(tu, t) \rfloor,$$
i.e.

$$N_{1}(s) = R_{1} \left\{ \frac{\left[ \xi(t_{0}, t) \right]}{s + \lambda_{1}} \right\}$$
Poniendo: 
$$f_{1}(s) = \frac{1}{s + \lambda_{1}} \quad y \quad f_{2}(s) = \left\{ \left[ \xi(t_{0}, t) \right] \right\}$$
(3)

tenemos que:

$$\Lambda_{1}(s) = \mathcal{R}_{1}f_{1}(s)f_{2}(s)$$
 (4)

Haciendo ahora la observación (5) que  $\int (s) \int z(s) ds$  la transformada de Laplace de una convolución, i.e., t

$$\left[ f_1(s) f_2(s) \right] = \left\{ \left[ \overline{f}_1(t) * \overline{f}_2(t) \right] = \int \left[ \int_{0}^{\infty} \overline{f}_1(c) \overline{f}_2(t-c) dc \right]$$
 (5)

e invirtiendo las transformadas, tenemos que

$$\begin{aligned} & \int_{-1}^{-1} \left[ n_{1}(s) \right] = H_{1}(t) \\ & \overline{F}_{1}(t) = \int_{-1}^{-1} \left[ f_{1}(s) \right] = \int_{-1}^{-1} \left[ \frac{1}{(s+\lambda_{1})} \right] = e^{-\lambda_{1}t} \\ & \overline{F}_{2}(t) = \int_{-1}^{-1} \left[ f_{2}(s) \right] = \int_{-1}^{-1} \left[ \int_{0}^{1} \left[ E(tu_{1}t) \right] \right] = E(tu_{1}t) \\ & y \quad \int_{-1}^{-1} \left[ f_{1}(s) f_{2}(s) \right] = \overline{F}_{1}(t) * \overline{F}_{2}(t) = \int_{0}^{t} e^{-\lambda_{1}G} E(tu_{1}t-G) dG \end{aligned}$$

Haciendo la substitución X=t-6 en la expresión anterior, obtenemos

$$\overline{f}_{1}(t) * \overline{f}_{2}(t) = \int_{0}^{t} e^{-\lambda_{1}(t-x)} \mathcal{E}(t_{0},x) dx ,$$

$$\delta$$

$$\overline{f}_{1}(t) * \overline{f}_{2}(t) = e^{-\lambda_{1}t} \int_{0}^{t} e^{\lambda_{1}x} \mathcal{E}(t_{0},x) dx .$$

El efecto de la función escalón en la integral equivale a poner en los límites otra función escalón  $\epsilon_{\perp}(t-t_0)$ , la cual se representa según la figura:

$$\varepsilon_{+}(\zeta) = 1 \qquad \qquad \varepsilon_{+}(\zeta) \begin{cases} 1, \zeta > 0 \\ 0, \zeta < 0 \end{cases}$$

Consecuentemente

$$\overline{T}_{1}(t) * \overline{T}_{2}(t) = e^{\lambda t} \int_{0}^{t-(t-t_{0})} e^{\lambda t} dx = \frac{e^{-\lambda t}}{\lambda_{1}} \left[ e^{\lambda_{1} \left[ t - (t-t_{0}) \in (t-t_{0}) \right]} - 1 \right].$$
(6)

Utilizando estos resultados en la inversión de la ecuación (4) obtenemos

$$N_{i}(t) = R_{i} \frac{e^{-\lambda_{i}t}}{\lambda_{i}} \left[ e^{\lambda_{i} \left[ t - (t - t_{0}) \epsilon_{+} (t - t_{0}) \right]} - 1 \right]$$
(7)

Similarmente podemos proceder para determinar en forma matemática la rapidez de formación de  $N_2$ , tenemos que

1 1. 4 1. 1. 1. 1. 1

substituyendo 
$$R_2 = N_0 \delta \delta_{2,sc}$$
 tiene:  

$$\frac{dH_2}{dt} = R_2 \xi(t_0,t) + \alpha \lambda_1 N_1 - \lambda_2 N_2$$
(8)  

$$\frac{dH_2}{dt} = R_2 \xi(t_0,t) + \alpha \lambda_1 N_1 - \lambda_2 N_2$$
(8)  

$$\frac{dH_2}{dt} = R_2 \xi(t_0,t) - H_2 (0)$$

$$\frac{dH_2}{dt} = N_1 (s)$$

$$\frac{dH_2}{dt} = N_2 (s), \quad H_2 (0)$$

$$\frac{dH_2}{dt} = N_2 (s), \quad H_2 (0)$$

$$\frac{dH_2}{dt} = N_2 (s), \quad H_2 (0)$$

$$\frac{dH_2}{dt} = N_2 (s), \quad H_2 (0) = R_2 \int [\xi(t_0,t_1)] + \alpha \lambda_1 N_1 (s) - \lambda_2 N_2 (s) \\ Notando que N_2 (0) = R_2 \int [\xi(t_0,t_1)] + \alpha \lambda_1 N_1 (s), \quad H_2 (s) = R_2 \int [\xi(t_0,t_1)] + \alpha \lambda_1 N_1 (s), \quad H_2 (s) = R_2 \int [\xi(t_0,t_1)] + \alpha \lambda_1 N_1 (s), \quad H_2 (s) = R_2 \int [\xi(t_0,t_1)] + \alpha \lambda_1 N_1 (s), \quad H_2 (s) = \frac{1}{s + \lambda_2}$$
Haciendo las substituciones
$$\frac{f_1(s)}{s + \lambda_2} = \frac{1}{s + \lambda_2}, \quad f_2(s) = \frac{1}{s + \lambda_2}, \quad (h_0)$$

$$\frac{g_1(s)}{g_2(s)} = R_2 \int [\xi(s) + \alpha \lambda_1 g_1 (s) g_2(s)] . \quad (h_1)$$

Invirtiendo las transformadas e introduciendo las convoluciones respectivas, se tieпе

$$\int_{-1}^{1} \left[ n_{2}(s) \right] = N_{2}(t)$$

$$\int_{-1}^{1} \left[ f_{1}(s) f_{2}(s) \right] = \left[ f_{1}(t) \# F_{2}(t) \right] = \int_{0}^{t} f_{1}(t) F_{2}(t-6) dG \qquad (12)$$

$$\int_{-1}^{1} \left[ g_{1}(s) g_{2}(s) \right] = \left[ G_{1}(t) \# G_{2}(t) \right] = \int_{0}^{t} G_{1}(t) G_{2}(t-6) dG \qquad (13)$$

...

Utilizando las ecuaciones (9) y (10) encontramos que

$$\begin{aligned} \overline{F}_{1}(t) &= \int_{0}^{t} \left[ f_{1}(s) \right] = \int_{0}^{t} \left[ \frac{1}{(s+\lambda_{2})} \right] = e^{-\lambda_{2}t} \\ \overline{F}_{2}(t) &= \int_{0}^{t} \left[ f_{2}(s) \right] = \int_{0}^{t} \left[ \int_{0}^{t} \left[ E(t_{0}, t) \right] \right] = E(t_{0}, t_{0}) \\ \overline{F}_{1}(t) &= \int_{0}^{t} \left[ g_{1}(s) \right] = \int_{0}^{t} \left[ N_{1}(s) \right] = N_{1}(t_{0}) \\ \overline{F}_{2}(t) &= \int_{0}^{t} \left[ g_{2}(s) \right] = \int_{0}^{t} \left[ N_{1}(s) \right] = N_{1}(t_{0}) \\ \overline{F}_{2}(t) &= \int_{0}^{t} \left[ g_{2}(s) \right] = \int_{0}^{t} \left[ \frac{1}{(s+\lambda_{2})} \right] = e^{-\lambda_{2}t} \end{aligned}$$

Por lo tanto la convolución en la ecuación (12) tiene la forma

$$\bar{T}_{1}(t) * \bar{T}_{2}(t) = \int_{0}^{t} e^{-\lambda_{2} c} \mathcal{E}(t_{0}, t_{0}) dc$$
 (14)

Esta convolución es igual a la desarrollada para el caso anterior de N<sub>1</sub>, lo único que cambia es la  $\lambda$ , por  $\lambda_2$  en la ecuación (6). Podemos, por consiguiente, escribir de inmediato

$$\overline{F}_{1}(t) * \overline{F}_{2}(t) = \frac{e^{-\lambda_{2}t}}{\lambda_{2}} \left[ e^{\lambda_{2} \overline{t} t - (t-t_{0})\epsilon_{+}(t-t_{0})} - 1 \right].$$

Para G(1)\* (52(1) se tiene:

$$(3, (4) = \int_{c}^{c} 2^{-\lambda_{2}(t-c)} N_{1}(c) dc$$

Substituyendo el valor de N.(6) encontramos que

$$G_{1}(t) * G_{2}(t) = R_{1} \frac{e^{-\lambda_{2}t}}{\lambda_{1}} \begin{cases} e^{-\lambda_{2}C} \left[ e^{-\lambda_{1}(C-t_{0})} e_{+}(C-t_{0}) - e^{-\lambda_{1}C} \right] dC \\ = R_{1} \frac{e^{-\lambda_{2}t}}{\lambda_{1}} \left\{ \int_{0}^{t} e^{-\lambda_{1}(C-t_{0})} e_{+}(C-t_{0}) \frac{\lambda_{2}C}{\lambda_{2}C} dC - \int_{0}^{t} e^{(\lambda_{2}-\lambda_{1})C} dC \right\}$$
(15)

después de hacer las substituciones

Resorriendo por partes la integral

$$I = \int_{0}^{L} e^{-\lambda_{1}(c-t_{0})} \epsilon_{+}(c-t_{0}) \frac{\lambda_{2}}{c} dc$$

$$= \frac{\lambda_{1}(-t_{0})}{c} \epsilon_{+}(c-t_{0}) \frac{\lambda_{2}}{c} \frac{e^{\lambda_{2}}}{\lambda_{2}}$$

$$M = e^{-\lambda_{1}(-t_{0})} \epsilon_{+}(c-t_{0}) \frac{\lambda_{2}}{c} \frac{e^{\lambda_{2}}}{\lambda_{2}}$$

tenemos

$$\frac{du}{d\varepsilon} = -\lambda_{1} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} \left[\varepsilon_{+} (\varepsilon - t_{0}) + (\varepsilon - t_{0}) \frac{d}{d\varepsilon} \varepsilon_{+} (\varepsilon - t_{0})\right]$$

$$\frac{du}{d\varepsilon} = e^{\lambda_{2}\varepsilon} d\varepsilon$$
Consecuentemente  $I = \left[uv\right]_{0}^{1} - \int_{0}^{t} v du = \frac{e^{-\lambda_{2}\varepsilon}}{\lambda_{2}} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})}\right]_{0}^{1} + \frac{\lambda_{1}}{\lambda_{2}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} \left[\varepsilon_{+} (\varepsilon - t_{0}) + (\varepsilon - t_{0}) \frac{d}{d\varepsilon} \varepsilon_{+} (\varepsilon - t_{0})\right] d\varepsilon = \frac{1}{\lambda_{2}} \left[e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\xi - t_{0})\varepsilon_{+} (\varepsilon - t_{0})}\right]_{0}^{1} + \frac{\lambda_{1}}{\lambda_{2}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} \left[\varepsilon_{+} (\varepsilon - t_{0}) \frac{d}{d\varepsilon} \varepsilon_{+} (\varepsilon - t_{0})\right] d\varepsilon = \frac{1}{\lambda_{2}} \left[e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\xi - t_{0})\varepsilon_{+} (\varepsilon - t_{0})}\right]_{0}^{1} + \frac{\lambda_{1}}{\lambda_{2}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} \left[\varepsilon_{+} (\varepsilon - t_{0}) \frac{d}{d\varepsilon} + (\varepsilon - t_{0}) \frac{d}{d\varepsilon} + (\varepsilon - t_{0}) \frac{d}{d\varepsilon} + \frac{\lambda_{1}}{\varepsilon_{+}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}} \int_{0}^{t} e^{\lambda_{2}\varepsilon} e^{-\lambda_{1} (\varepsilon - t_{0})\varepsilon_{+} (\varepsilon - t_{0})} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}} \int_{0}^{t} e^{\lambda_{1}\varepsilon_{+}} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}} d\varepsilon + \frac{\lambda_{1}}{\varepsilon_{+}}$ 

en esta última integral el símbolo  $\delta$  denota a la función delta<sup>(6)</sup> de Dirac que tiene como propiedades  $\delta (c-t_0)_{\pm} \begin{cases} 0 \quad \text{Para} \quad c \neq t_0 \\ \infty \quad \text{Para} \quad c = t_0 \end{cases}$ 

$$\int_{0}^{t} (c-t_0) dc = \begin{cases} 0 & \text{para } t \neq t_0 \\ 1 & \text{para } t \neq t_0 \end{cases}, \quad (c-t_0) \leq (c-t_0) = 0$$

De aquí que la segunda integral en la ecuación anterior será igual a cero; y siguiendo muestro desarrollo, la otra integral se resuelve de la siguiente manera:

$$\int_{0}^{t} \frac{\lambda_{2}}{e} e^{-\lambda_{1}(\varepsilon-t_{0})} \frac{\varepsilon_{+}(\varepsilon-t_{0})}{\varepsilon_{+}(\varepsilon-t_{0})} \frac{d\varepsilon_{-}}{d\varepsilon_{-}} \frac{\varepsilon_{+}(t-t_{0})}{\varepsilon_{0}} \int_{\varepsilon_{0}}^{t} \frac{\lambda_{2}}{e} \frac{\varepsilon_{-}}{\varepsilon_{-}} \frac{\lambda_{1}(\varepsilon-t_{0})}{d\varepsilon_{-}} \frac{d\varepsilon_{-}}{\varepsilon_{0}} \frac{d\varepsilon_{-}}{\varepsilon_{-}} \frac{d\varepsilon$$

$$I = \frac{1}{\lambda_{z}} \begin{bmatrix} e^{\lambda_{z} t} e^{-\lambda_{i} (t-t_{0}) \epsilon_{4} (t-t_{0})} \\ e^{\lambda_{z} t} e^{-\lambda_{z} t} \end{bmatrix} + \frac{\lambda_{i}}{\lambda_{z}} \epsilon_{4} (t-t_{0}) \frac{e^{\lambda_{i} t_{0}}}{\lambda_{z} - \lambda_{i}} \begin{bmatrix} e^{(\lambda_{z} \cdot \lambda_{i}) t} \\ e^{(\lambda_{z} - \lambda_{i}) t} \end{bmatrix}$$

$$= e^{(\lambda_{z} - \lambda_{i}) t_{0}} \end{bmatrix} .$$
(16)

Resolviendo la otra integral de la ecuación (15) se tiene

$$\int_{0}^{1} e^{(\lambda_{2},\lambda_{1})\delta} d\delta = \frac{1}{\lambda_{2},\lambda_{1}} \left[ e^{(\lambda_{2},\lambda_{1})t} - 1 \right]$$
(17)

Substituyendo las ecuaciones (16) y (17) en (15) obtenemos

$$G_{i}(t) * G_{2}(t) = \frac{R_{ie}}{\lambda_{i}} \left\{ \frac{1}{\lambda_{2}} \left[ e^{\lambda_{2}t} e^{-\lambda_{i}(t-t_{0})\epsilon_{+}(t-t_{0})} - 1 \right] + \frac{\lambda_{i}}{\lambda_{2}} \epsilon_{+}(t-t_{0}) \right\} \\ = \frac{e^{\lambda_{1}t_{0}}}{\lambda_{2}-\lambda_{i}} \left[ e^{(\lambda_{2}-\lambda_{i})t} e^{(\lambda_{2}-\lambda_{i})t} - 1 \right] \left\{ e^{(\lambda_{2}-\lambda_{i})t} - 1 \right] \left\{ e^{(\lambda_{2}-\lambda_{i})t} - 1 \right\}$$

where bien, come:  $M_2(t) = R_2 \overline{f_1(t)} # \overline{f_2(t)} + \alpha \lambda \cdot G_1(t) # G_2(t)$ , finalmente se tiene que  $M_2(t) = R_2 \frac{\alpha}{\lambda_2} \left[ \alpha^{\lambda_2} \left[ t - (t - t_0) \epsilon_+ (t - t_0) \right]_{-1} \right]_{+} \alpha R_1 \alpha^{\lambda_2} \left\{ \frac{1}{\lambda_2} \left[ \alpha^{\lambda_2} t - \lambda_1 (t - t_0) \epsilon_+ (t - t_0) - 1 \right] \right\}_{+} \alpha R_1 \alpha^{\lambda_2} \left\{ \frac{1}{\lambda_2} \left[ \alpha^{\lambda_2} t - \lambda_1 (t - t_0) \epsilon_+ (t - t_0) - 1 \right] \right\}_{+} \frac{\lambda_1}{\lambda_2} \left\{ \frac{1}{\lambda_2} \left[ \alpha^{\lambda_2} t - \lambda_1 (t - t_0) \epsilon_+ (t - t_0) - 1 \right] \right\}_{+} \left\{ \frac{\lambda_1}{\lambda_2} \left\{ \frac{1}{\lambda_2} \left[ \alpha^{\lambda_2} t - \lambda_1 (t - t_0) \epsilon_+ (t - t_0) \epsilon_+ (t - t_0) - 1 \right] \right\}_{+} \left\{ \frac{\lambda_1}{\lambda_2} \left\{ \frac{1}{\lambda_2} \left[ \alpha^{\lambda_2} t - \lambda_1 (t - t_0) \epsilon_+ (t - t_$ 

Para el cálculo de N<sub>5</sub> (I ) procedemos analogamente a los casos considerados anteriormente.

Tenemos así que la rapidez de formación de N<sub>3</sub> se expresa matemáticamente como  $\frac{dN_3}{dN_3} = b \lambda_1 N_1 + \lambda_2 N_2 - \lambda_3 N_3$ (19) dt

Nótese que en esta ecuación no aparece el término de activación (No  $\emptyset$   $\emptyset$  ) ya que el I<sup>131</sup> es un descendiente radiactivo del Te<sup>131m</sup> y del Te<sup>131</sup>. Aplicando transformadas de Laplace en la ecuación (19) tenemos:

$$\left[ \frac{dH_3}{dt} \right] = \frac{dH_3}{dt} = \frac{dH_3}{dt} = \frac{H_3}{dt} = \frac{H_3}$$

Substituyendo estos valores y observando que  $H_3(o) = 0$  se tiene:

$$5n_{s}(s) + \lambda_{3}n_{3}(s) = b\lambda_{1}n_{1}(s) + \lambda_{2}n_{2}(s),$$
  
8

n3(s) = bh n.(s) + h2 n2(s) s+h3 s+h3

Invirtiendo las transformadas, obtenemos

$$H_{3}(t) = b\lambda_{i} \left( \begin{bmatrix} \underline{n_{i}(s)} \\ \overline{s+\lambda_{3}} \end{bmatrix} + \lambda_{2} \left( \begin{bmatrix} \underline{n_{2}(s)} \\ \overline{s+\lambda_{3}} \end{bmatrix} \right)$$

Haciendo las substituciones

$$\begin{cases} I(S) = \frac{1}{S + \lambda_3} \quad y \quad f_2(S) = N_1(S) \end{cases},$$

así como

$$g_1(S) = \frac{1}{S+\lambda_3} \quad y \quad g_2(S) = N_2(S),$$

tenemos que

$$N_{3}(t) = b \lambda_{1} \int \left[ f_{1}(s) f_{2}(s) \right] + \lambda_{2} \int \left[ g_{1}(s) g_{2}(s) \right]$$
(20)
Observando nuevamente que

$$\int_{-1}^{1} \left[ f_1(s) f_2(s) \right] = f_1(t) * f_2(t) = \int_{0}^{1} e^{-\lambda_3(t-6)} H_1(6) d6,$$

$$\int_{0}^{t} \left[ g_{1}(s) g_{2}(s) \right] = G_{1}(t) * G_{2}(t) = \int_{0}^{t} e^{\lambda_{3}(t-\epsilon)} N_{2}(\epsilon) d\epsilon$$

y substituyendo en la ecuación (20) resulta que

y

$$H_{3}(t) = b\lambda_{1}\int_{0}^{t} e^{-\lambda_{3}(t-\epsilon)} H_{1}(\epsilon_{0}) d\epsilon_{+} \lambda_{2}\int_{0}^{t} e^{-\lambda_{3}(t-\epsilon_{0})} H_{2}(\epsilon_{0}) d\epsilon \qquad (21)$$

Las convoluciones  $\overline{T}_{i}(l) * \overline{T}_{2}(t) + \overline{T}_{2}(t) + \overline{T}_{2}(t) + \overline{T}_{2}(t) + \overline{T}_{2}(t)$  pueden evaluarse en forma análoga a la seguida en los casos anteriores.

En forma final obtenemos la siguiente ecuación para  $N_{3}(t)$ :

$$\begin{aligned} \mathsf{H}_{3}(\mathsf{t}) &= \mathsf{b}\mathcal{R}_{i} e^{-\lambda_{3} \mathsf{t}} \begin{cases} \frac{1}{\lambda_{3}} \left[ e^{\mathsf{h} \mathsf{s}} e^{-\lambda_{1}(\mathsf{t}-\mathsf{t}_{0}) \mathsf{e}_{+}(\mathsf{t}-\mathsf{t}_{0}) - \mathsf{L} \right] + \frac{\lambda_{1}}{\lambda_{3}}}{\lambda_{3} \mathsf{L}_{i}} \mathsf{e}_{+}(\mathsf{t}-\mathsf{t}_{0}) \frac{e^{\mathsf{h}(\mathsf{t}_{0})}}{\lambda_{3} \mathsf{L}_{i}} \left[ e^{(\mathsf{h}_{3},\mathsf{h}_{i}) \mathsf{t}} - \frac{(\mathsf{h}_{3},\mathsf{h}_{i}) \mathsf{t}}{\lambda_{3} \mathsf{L}_{i}} \right] \\ &- \frac{\left[ \frac{e^{(\mathsf{h}_{3},\mathsf{h}_{i}) \mathsf{t}}}{\lambda_{3} \mathsf{L}_{i}} \right] + \mathsf{R}_{2} e^{-\lambda_{3} \mathsf{t}} \left\{ \frac{1}{\lambda_{3}} \left[ e^{\mathsf{h} \mathsf{s}} e^{-\lambda_{2} (\mathsf{t}-\mathsf{t}_{0}) \mathsf{e}_{+}(\mathsf{t}-\mathsf{t}_{0}) - \mathsf{L} \right] + \frac{\lambda_{2}}{\lambda_{3}} \mathsf{e}_{+}(\mathsf{t}-\mathsf{t}_{0}) \frac{e^{\mathsf{h}(\mathsf{t}_{0})}}{\lambda_{3} \mathsf{L}_{i}} \mathsf{e}_{+}(\mathsf{t}-\mathsf{t}_{0}) \frac{e^{\mathsf{h}(\mathsf{t}_{0},\mathsf{h}_{0}) \mathsf{t}}}{\lambda_{3} \mathsf{L}_{i}} \right] \\ &= \frac{\left[ e^{(\mathsf{h}_{3},\mathsf{h}_{2}) \mathsf{t}} - \frac{\mathsf{h}_{2}}{\lambda_{3} \mathsf{L}_{i}} \right] + \mathsf{R}_{2} e^{-\lambda_{3} \mathsf{t}} \left\{ \frac{1}{\lambda_{3}} \left[ e^{\mathsf{h}(\mathsf{s},\mathsf{h}_{0}) \mathsf{t}} - \mathsf{L} \right] + \frac{\lambda_{2}}{\lambda_{3}} \mathsf{e}_{+}(\mathsf{t}-\mathsf{t}_{0}) \frac{e^{\mathsf{h}(\mathsf{t}_{0},\mathsf{h}_{0}) \mathsf{t}}}{\lambda_{3} \mathsf{L}_{i}} \right] \\ &= \left[ e^{(\mathsf{h}_{3},\mathsf{h}_{2}) \mathsf{t}} - e^{(\mathsf{h}_{3},\mathsf{h}_{2}) \mathsf{t}} \right] - \left[ \frac{e^{(\mathsf{h}_{3},\mathsf{h}_{2}) \mathsf{t}}}{\lambda_{3} \mathsf{L}_{i}} \right] + \mathsf{a}\mathcal{R}_{i} \mathsf{a}_{i} \mathsf{e}_{i} \mathsf{a}_{i} \mathsf{e}_{i} \mathsf{$$

$$H_{i}(t) = R_{i} \frac{e^{-\lambda_{i}t}}{\lambda_{i}} \left( e^{\lambda_{i}to} - 1 \right) = \frac{R_{i}}{\lambda_{i}} e^{-\lambda_{i}(t-to)} \left[ 1 - e^{-\lambda_{i}to} \right]$$

Si llamamos a t-to = t $\epsilon$  (tiempo de espera después de haber irradiado) y to (tiempo de irradiación), podemos escribir

$$N_{i}(t) = \frac{R_{i}}{\lambda_{i}} \left( 1 - e^{-\lambda_{i} t_{0}} \right) e^{-\lambda_{i} t_{0}}$$
(23)

Ilamando  $A = \lambda_1 N_1$  a la actividad debida al radioisótopo  $N_1$ , y recordando que  $R_r = N_0 \not \otimes \sigma_r$ , obtenemos que  $A_{\perp} = N_0 \not \otimes \sigma_r$  (1- $e^{-\lambda_1 t_0}$ )  $e^{-\lambda_1 t_0}$ 

(74)

Haciendo arreglos semejantes en las ecuaciones (18) y (22) e introduciendo en las exponenciales el tiempo te, se obtienen las siguientes ecuaciones de actividad para las especies radiactivas No y No

$$A_{2} = No\beta \left\{ G_{2}(1-e^{-\lambda_{2}t_{0}})e^{-\lambda_{2}t_{0}} + \frac{\alpha G_{1}}{\lambda_{2}-\lambda_{1}} \left[ \lambda_{2}(1-e^{-\lambda_{1}t_{0}})e^{-\lambda_{1}t_{0}} - \lambda_{1}(1-e^{-\lambda_{2}t_{0}})e^{-\lambda_{2}t_{0}} \right] \right\} (25)$$

$$A_{3} = No\beta \left\{ \left( b_{+} \frac{\alpha \lambda_{2}}{\lambda_{2}-\lambda_{1}} \right) \left[ \frac{G_{1}\lambda_{3}}{\lambda_{3}-\lambda_{1}} \left( 1-e^{-\lambda_{1}t_{0}} \right)e^{-\lambda_{1}t_{0}} - \frac{G_{1}\lambda_{1}}{\lambda_{3}-\lambda_{1}} \left( 1-e^{-\lambda_{3}t_{0}} \right)e^{-\lambda_{3}t_{0}} \right] + \left( G_{2} - \frac{\alpha G_{1}\lambda_{1}}{\lambda_{2}-\lambda_{1}} \right) \left[ \frac{\Lambda_{3}}{\lambda_{3}-\lambda_{1}} \left( 1-e^{-\lambda_{2}t_{0}} \right)e^{-\lambda_{3}t_{0}} - \frac{\Lambda_{2}}{\lambda_{3}-\lambda_{1}} \left( 1-e^{-\lambda_{3}t_{0}} \right)e^{-\lambda_{3}t_{0}} \right] + \left( G_{2} - \frac{\alpha G_{1}\lambda_{1}}{\lambda_{2}-\lambda_{1}} \right) \left[ \frac{\Lambda_{3}}{\lambda_{3}-\lambda_{2}} \left( 1-e^{-\lambda_{2}t_{0}} \right)e^{-\lambda_{3}t_{0}} - \frac{\Lambda_{2}}{\lambda_{3}-\lambda_{2}} \left( 1-e^{-\lambda_{3}t_{0}} \right)e^{-\lambda_{3}t_{0}} \right] \right\}$$

$$(26)$$

Para obtener resultados de estas ecuaciones se elaboró un programa de cómputo en lenguaje Fortran IV (ver Apéndice), y los datos que se emplearon se encuentran en las tablas IV, V y VI.

Desarrello matemátice de las ecuaciones de desis para los radicisótopos del Te: El programa de cómputo también calculó los índices de exposición esperados o dosis para los radicisótopos de nuestro interés, para lo cual se hizo el siguiente desarrollo:

La emisión constante de radiación debida al decaimiente de los radioisótepos formados es un factor importante que se debe tomar en cuenta para efectos de seguridad radiológica.

Supongamos que se tiene un haz colimado de rayos X y que esta radiación pasa a través de un material dado sufriendo una absorción debida a la interacción con los átomos del material absorbente, principalmente por efectos Fotceléctrico, Compton y por Producción de Pares.

El resultado de esta absorción se traduce en el decremento de la intensidad de la radiación en forma exponencial según lo expresa la Ley de Lambert<sup>(8)</sup>:

$$I = I_0 e^{-ZX}$$
(24)

donde I es la intensidad de la radiación que se tiene después de pasar a través de un material absorbente (mR/h mCi).

Lo es la intensidad inicial (mR/h mCi).

 $\Sigma$  es la sección eficaz macroscópica en cm<sup>-1</sup> ( $\Sigma = G NA \rho / A$ ).

NA es el número de Avogadro (6.023 x 10<sup>23</sup> moláculas/g mol).

ρ es la densidad del material absorbente (g/cm<sup>5</sup>).

A es el mímero de masa.

mos:

V es la sección eficaz microscópica de captura (cm<sup>2</sup>).

X es el espesor del material absorbente o blindaje (cm).

Para el caso en que se tiene un radioisótopo que emite más de un rayo y con energía definida (rayo monoenergótico), como es el muestro, cada una de las energías de la y va a tener un valor de  $l_0$  y une de z, introduciendo este en la ecuación (27) tene-

$$I = \sum_{i=1}^{N} I_{o_i} e^{-\Sigma_i K} \qquad n = 1, 2, 3, ..., k.$$
 (28)

Esta ecuación es satisfactoria para calcular la intensidad de la radiación que pasa por un material absorbente relativamente delgado.

Si se aumenta el espesor del material, algunos de los fotones que habían sido dispersados pueden, por repetidas dispersiones, volver al haz incidente por lo que se toma un factor de corrección conocido como factor "B" de Incremento (Build-up), el cual es una función del material absorbente, de su espesor y de la energía de los rayos  $\chi$ . Fara un blindaje de plomo este factor (7) es

$$B = 1 + \frac{\Sigma X}{2}$$

Haciendo la corrección por el factor de Incremento en la ecución (28), ésta queda:

$$I = \sum_{i=1}^{n} I_{o_i} (1 + \Sigma_i X/_2) e^{-\Sigma_i X}$$
(29)

Para el caso de la emisión de partículas  $\beta$  hay que considerar que éstas en su paso por el material van a sufrir una deflección en las inmediaciones de los núcleos de éste produciendo constantemente radiación de frenamiento electromagnética ( $\gamma$ ) conocida con el nombre de Bremsstrahlung.

El Bremsstrahlung es radiación  $\gamma$  monoenergética por lo que la fórmula para calcular la dosis que produce es:

$$I_{b} = I_{ob} \left( 1 + z \times z \right) e^{-z \times}$$
(30)

donde los subíndices b significan que son debidos al Bremsstrahlung.

Ahora bien, las ecuaciones (29) y (30) se multiplican por la actividad del radioisótopo, y si se introduce en la ecuación de la el factor de corrección  $f = 1.1 \times 10^3$  k wáx 2, el cual nos da la fracción de la energía de la  $\beta$  que se convierte en Bremsstrahlung (9) y tomando la suma de las ecuaciones como la dosis total producida por radioisótopo, se tiene que

$$I_{T} = Actividad \left\{ \left[ \sum I_{0i} \left( 1 + \overline{z} i x/2 \right) e^{-\overline{z} i x} \right] + \overline{F} I_{0b} \left( 1 + \overline{z} x/2 \right) e^{-\overline{z} x} \right\}$$
(31)

donde  $I_T$  es la dosis total (mR/h)

d es la

 $\mathbf{Z}$  es el número atómico efectivo del material en donde se absorben las  $\beta$  (3.6 para el polietileno)

 $\mathcal{E}_{\text{máx}}$  es la energía máxima de la  $\beta$  (Nev)

Hasta ahora se ha supuesto un haz colimado de fotones, si se toma en cuenta que se tiene una fuente puntual emitiendo radiaciones isotrópicamente, se necesita incluir un fac tor geométrico que en nuestro caso consiste en dividir la intensidad por  $4 \, \widetilde{n} \, d^2$  donde

distancia de la fuente al detector en metros:  

$$S_{=} I_{T} / 4\pi d^{2}$$
(32)

S es la dosis producida por una fuente que emite radiaciones isotrópicamente.

En las tablas VII y VIII se dan los datos que sirvieron para obtener resultados de las ecuaciones (31) y (32).

En el Apéndice, también se incluyen los resultados obtenidos del programa para las siguientes condiciones:

Tiempo de irradiación: 48 horas Flujo neutrónico: 2 x 10<sup>13</sup> neutrones/cm<sup>2</sup> seg Tiempos de espera: 0, 24, 48, 72 y 384 horas Espesores del blindaje: 0, 5 y 10 cm

De estos resultados se pudo observar que para una fuente puntual de I , dentro de una cápsula de irradiación, produciendo una actividad de 2.34 Ci, la intensidad de la radiación se reduce de ~59,712.6269 mil/h (sin blindaje) a ~246.2349 mR/h (dentro de un blindaje de 5 cm de espesor de la pared de plomo), y si se mide la intensidad de esta fuente (dentro del blindaje) a 1 metro de distancia, será de ~ 0.0309 mR/h. Las actividades con las que se trabajó fueron del orden de  $\mu$  Ci, por lo que el uso de un contenedor de plomo de 5 cm de espesor dió un buen margen de seguridad.

| Tabla | IV |
|-------|----|

(4) Valores de a y b para los radioisótopos del Te

| Radioisótopo | a<br>% | b<br>%        |  |
|--------------|--------|---------------|--|
| l2lm<br>Te   | 0.9    | 0.1           |  |
| 123m<br>Te   | 1.0    |               |  |
| 125m<br>Te   | 1.0    |               |  |
| 127m<br>Te   | 0.992  | 0.008         |  |
| 120m<br>Te   | 0.64   | 0.36          |  |
| 131m<br>Te   | 0.18   | 0 <b>.</b> 82 |  |

.

| ladioisótopo | E <sub>máx</sub><br>(Nev) | F 10 <sup>3</sup> | ∑<br>cm <sup>-1</sup> | Iob<br>mR/n mCi<br>alcm |
|--------------|---------------------------|-------------------|-----------------------|-------------------------|
| l27m<br>Te   | 0.73                      | 2.89              | 1.135                 | 4000                    |
| 127<br>Te    | 0.70                      | 2.772             |                       | 3950                    |
| 129m<br>Te   | 1.60                      | 6.236             | 49.713                | 7400                    |
| 129<br>Te    | 1.45                      | 5.742             | 47.443                | 7000                    |
| 131m<br>Te   | 0.90                      | 8.563             | 87.395                | 4700                    |
| 131<br>Te    | 2.14                      | ٤.474             | 0.499                 | 8700                    |
| 131<br>I     | 0.606                     | 2,399             | 1.418                 | 3500                    |

Tabla VII

D tos empleados pura calcular las dosis de los radioisótopos de Te que emiten  $\beta$ 

Los valores para el factor F se calcularon  $_{\rm P} {\rm or}$  medio de la expresión dada anteriormente.

Los valores de Z y de lob se obtuvieron gráficamente según la referencia (10).

#### Tabla VIII

| Radicisótopo | Eγ<br>(Nev)                               | Æ                                            | ∑<br>cm <sup>-l</sup>                        | Io<br>mR/hmCi<br>alcm             |
|--------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------|
| l21m<br>Te   | 0.0818<br>0.2140                          | 1.00<br>1.00                                 | 26.105<br>9.534                              | 380<br>1200                       |
| 121<br>Te    | 0.575<br>0.506                            | 0.87<br>0.13                                 | 1.475<br>1.816                               | 2960<br>390                       |
| 123m<br>Te   | 0.0887<br>0.159                           | 1.00<br>1.00                                 | 30.000<br>19.295                             | 420<br>840                        |
| 125m<br>Te   | 0.11<br>0.0354                            | 1.00<br>1.00                                 | 49.713<br>212.245                            | 510<br>620                        |
| 127m<br>Te   | 0.089<br>0.0585                           | 0.98<br>0.015                                | 34.05<br>60.155                              | 410<br>5.4                        |
| 127<br>Te    | 0.418<br>0.37<br>0.17                     |                                              | 2.44<br>3.098<br>17.025                      | 2400<br>2100<br>780               |
| 129m<br>Te   | 0.106                                     | 1.00                                         | 54.78                                        | 490                               |
| 129<br>Te    | 1.12<br>0.21<br>0.72<br>0.475<br>0.027    | 0.104<br>0.017<br>0.02<br>0.171<br>0.98      | 56.75<br>1191.75<br>976.1<br>1.135<br>0.817  | 640<br>20<br>85<br>480<br>1010    |
| 131m<br>Te   | 0.18<br>0.239<br>1.12<br>0.099<br>0.446   | 0.217<br>0.7<br>0.9<br>0.84<br>0.5           | 14.755<br>76.612<br>71.505<br>61.29<br>2.156 | 220<br>960<br>5540<br>390<br>1330 |
| 131<br>. Te  | 0.773<br>0.446<br>0.147<br>0.099<br>0.051 | 0.05<br>0.45<br>0.60<br>0.40<br>0.40<br>0.40 | 1.021<br>2.156<br>23.835<br>31.29<br>56.26   | .230<br>1190<br>450<br>180<br>160 |
|              |                                           |                                              | ļ                                            |                                   |

Datos para calcular las dosis de los radioisótopos del Te que emiten X

| Radicisótopo | E<br>(liev)                              | 24                                        | Z<br>cm-l                                 | Io<br>mR/h mCi<br>a l cm        |  |
|--------------|------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|--|
| 131<br>I     | 0.08<br>0.284<br>0.364<br>0.637<br>0.723 | 0.026<br>0.054<br>0.820<br>0.068<br>0.016 | 29.51<br>5.107<br>3.178<br>1.328<br>1.123 | 10.4<br>89<br>1640<br>227<br>64 |  |

Tabla VIII (continuación)

Los valores de E<sub>0</sub> y % se obtuvieron según la referencia (11) Los valores de  $\Sigma$  por la referencia (10) Los valores de L<sub>0</sub> por la referencia (11), excepto para el Te<sup>127</sup> que se encon-

traron en la referencia (10).

#### CAPITULO II

131

METODOS DE SEPARACION DE I DEL TELURIO IRRADIADO Los métodos que se desarrollaron en esta tésis para separar al I del telurio irradiado fueron:

1.- Destilación via húmeda:

a.- Disolución de Te en medio básico y posterior destilación del I

b.- Disolución de Te en medio ácido y posterior destilación del I<sup>131</sup>.

2.- Destilación vía seca:

131

131

a .- Calentamiento del Te sólido y arrastre del I .

El procedimiento general que se siguió en el desarrollo de estos métodos se mues tra en el siguiente diagrama de flujo:



I) Pesar muestra de Te metálico: Se pesó l g de Te metálico (Prolabo)/experimento.

II) Encapsular la muestra: Este gramo de Te se introdujo a una capsula cilíndrica de polietileno (altura = 5.4 cm y diámetro = 1.5 cm), la cual se selló con calor y se introdujo a una segunda cápsula también de polietileno (altura = 11.6 cm y diámetro = 1.7 cm) pero con tapa de rosca.

III) Irradiación de la muestra: La muestra de Te así encapsulada se introdujo al SINCA (Sistema de Irradiación Neumático de Cápsulas) del Reactor Experimental Triga Mark III del Centro Nuclear de México. 31

El tiempo de irradiación fue de media hora para cada experimento y se irradió bajo un flujo de neutrones térmicos de  $\sim 7 \times 10^{12}$  neutrones/cm<sup>2</sup> seg. La actividad obtenida de I<sup>131</sup> a la salida del SINCA fue de  $\sim 35.776 \,\mu$ Ci/g de material blanco.

IV) Transporte de la muestra irradiada: Al salir la cápsula del SINCA, se colocó dentro de un contenedor cilíndrico de plomo (2.5 cm de espesor) y se llevó al Laboratorio de Froducción de Radioisótopos, dejándose en el interior de un castillo de tabiques de plomo de 10 cm de espesor.

V) Decaimiento de la muestra irradiada: La muestra se dejó decaer dentro del castillo de plomo durante 48 horas para permitir que el Te<sup>131m</sup> con vida media de 30 horas decayera a I<sup>131</sup>, después de este tiempo la actividad de I<sup>131</sup> fue de  $\sim$ 107.059 MCi/g de blanco.

VI)Desencapsulado: La muestra ya decaída se llevó a la campana de proceso y se abrió la cápsula de tapa de rosca, la otra cápsula se cortó con una navaja y el Te se virtió dentro del equipo de proceso.

VII) Proceso Químico: El desarrollo del proceso es diferente en cada uno de los métodos estudiados, y se verá con detenimiento más adelante.

VIII) Conteo de las muestras: Antes de que se iniciara la separación se tomó una muestra del material irradiado, y al terminar la destilación se tomaron dos muestras, una del destilado y otra de los residuos.

Estas muestras se contaron en un analizador multicanal y se obtuvieron los espectros correspondientes a la energía de la del I<sup>131</sup> de 0.364 Mev. Para esta energía se sacó el área que se encontraba debajo del pico según la relación: Area del pico = Suma de todas las cuentas - Fondo que componen al pico

y el fondo está dado por la siguiente relación:

Fondo <u>Valor de la primera cuenta + Valor de la última cuenta </u>Número de canales 2 Número de canales en los que se encuentra comprendido el pico

IX) dendimiento del proceso: Las áreas calculadas en el punto anterior se corri-

gieron por los totales (ya que eran partes alícuotas) y se obtuvo el rendimiento de los diferentes procesos según: Area antes \_ Area del , Area de los , Pérdidas del proceso destilado \* residuos Area antes del proceso =100% 151 % de I destilado <u>= Area del destilado \_ x</u> 100 151 % de I en los residuos<u>= Area de los residuos</u> x 100 Area antes del proceso x 100 % en pérdidas =100% - % de I<sup>131</sup> destilado - % de I<sup>151</sup> en los residuos Métodos de separación: 1a.= Disolución de Te radiactivo en medio básico y destilación del I . Disolución de Te: Se estudió la sisolución de telurio con dos factores (variables) y cinco niveles

de investigación para cada uno de ellos, éstos son:

| Factores    | Niveles de Investigación |
|-------------|--------------------------|
| Naoh        | 5,10,15,20 y 25 %        |
| H202 al 30% | 1,3,5,7 y 9 ml           |

Se seleccionaron 13 combinaciones de estos factores, resultantes del diseño de tratamientos conocido como "Guadrado Doble" , cada tratamiento se repitió 4 veces. Los rendimientos medios de los tratamientos se tomaron como variables dependientes para obtener una ecuación de regresión múltiple, en la que sólo se incluyeron los parámetros lineal, cuadrático y la interacción lineal.

La ecuación de regresión múltiple es:

Yc = 0.150196 + 0.00595 X<sub>1</sub> + 0.098199 X<sub>2</sub> - 0.0003 X<sub>1</sub><sup>2</sup> - 0.007666 X<sub>2</sub><sup>2</sup> + 0.000525 X<sub>1</sub> X<sub>2</sub> e indicé que la máxima disolución de Te (Yc) se obtiene con NaOH (X<sub>1</sub>) al 16% y con 7 ml de H<sub>2</sub>O<sub>2</sub> (X<sub>2</sub>). Las condiciones que se mantuvieron constantes en estos tratamientos fueron: Cantidad de Te a disolver: 0.5 g/tratamiento

Volumen de NaOH: 2 ml

Tiempo de disolución: media hora con agitación magnética

Una vez que se conocieron las condiciones de disolución (éstas se realizaron con Te sin activar), se irradiaron 5 muestras de Te metálico (completamente al azar) tal como se indica en el diagrama de flujo.

Proceso Químico:

La muestra se virtió al matraz de disolución (M1) (ver Fig. 1), en donde se adicionaron 4 ml de NaOH al 16% y 14 ml de H2O, al 30% (condiciones de disolución para 1 g de Te). El H.O. se adicionó lentamente y con agitación magnética du-(13) rante media hora, así el telurio pasó a la forma de telurato Esta solución se transfirió al matraz (M2) y se adicionaron 4 ml de HoSO4 concentrado, este matraz tiene adaptado un condensador de reflujo (C1) en cuya parte superior se encuentra un filtro de carbón activado (P) que retiene los vapores de I que pudiera escapar, el tiempo de reflujo fue de 30 minutos, al cabo de éste, se abrió 131 la llave (L1) y el I empezó a destilar pasando a través del condensador (C2) y finalmente se recibió en el matraz (M3), el cual contenía una solución buffer de Na<sub>o</sub>CO<sub>z</sub> M/40 NaHCO<sub>3</sub> M/5 con tiosulfato de sodio (1 g) para asegurarse de que el I<sup>131</sup> queda en la forma de yoduro.

Durante la destilación, la línea de vacío se conectó al matraz (M3), habiendo así un ligero flujo de aire, el cual arrastró a los vapores de  $I^{131}$  que destilaron. Los residuos que quedaron en el matraz (M2) se transfirieron al embudo (R) y de ahí se enviaron al Departamento de Desechos Radiactivos.

El tiempo total de operación para estos 5 procesos fue de 3 horas 5 minutos. Los resultados experimentales que se obtuvieron se dan en la tabla IX.

| Tabla | IX |
|-------|----|

| Muestra | Rendimiento                |                                  |            |  |
|---------|----------------------------|----------------------------------|------------|--|
|         | 131<br>% de I<br>destilado | 131<br>i de I en<br>los residuos | 🗧 pérdidas |  |
| l       | 92.1                       | 1.445                            | 6.455      |  |
| 2       | 92.5                       | 10.20                            |            |  |
| 3       | 99.5                       | 6.49                             |            |  |
| 4       | 82.4                       | 5.82                             | 11.78      |  |
| 5       | 81.6                       | 1.18                             | 17.22      |  |


Fig. 1 Aparato Utilizado en la separación de I<sup>131</sup> del Te irradiado, por el método básico.

lb.- Disolución de Te radiactivo en medio ácido y destilación del I . Disolución de Te:

En este caso también se buscó la cantidad óptima de reactivos para disolver el Te natural.

El Te se puede disolver en una mezcla sulfocrómica que contenga  $H_2SO_4$  18N y una solución de  $CrO_3$  al 50% en la proporción 2:1<sup>(1)</sup>, teniéndose así una sola variable de experimentación.

Se tomaron cinco volúmenes diferentes de esta mezcla, a saber: 1,3,5,7 y 9 ml, se disolvió el telurio y con cada volumen se hicieron 3 observaciones.

Los resultados de los rendimientos medios para cada nivel de investigación contra los niveles, dieron la siguiente gráfica:



131

De esta gráfica se puede observar que más allá de los 5 ml de mezcla sulfocrómica, la disolución permanece constante, por lo que se tomó el valor de 6 ml de esta mez cla para lograr la máxima disolución del Te.

Para 1 g de Te se necesitarán 12 ml de esta mezcla .

Las condiciones que permanecieron constantes para estas pruebas de disolución fueron:

Cantidad de Te a disolver; 0.5 g/nivel de experimentación

Tiempo de disolución: media hora con agitación magnética, a baño María y con reflujo. Igual que en el método básico se irradiaron 5 muestras de Te metálico, las cuales se procesaron de acuerdo con la siguiente técnica:

La muestra de Te se colocó en el matraz (L1) (ver Fig. 2), el cual tiene un condensador de reflujo (C1) en su parte superior, se adicienaron 12 ml de mezcla sulfocrómica 2:1 y esta solución se dirigió en baño María Durante 30-40 minutos. En este paso el Te se disolvió y el yodo radiactivo (1) pasó al estado de oxidación IO $\overline{3}$ . Después de enfriarse la solución a la temperatura ambiente (30 minutos), ésta se transfirió al matraz (E2) en donde se agregaron 5 ml de H<sub>2</sub>SO<sub>4</sub> al 50% y 4 g de ácido oxálico para reducir el ión yodato a yodo elemental y así under destilar.

Cuando la reducción se completó (color verde fuerte), se destiló el  $I^{131}$  y se recogió en el matraz (M3) que contenía una solución buffer igual a la del método básico.

El tiempo de operación de estos procesos fue de 2 horas/proceso. Los resultados experimentales se dan en la tabla X.

|                            | Rendimiento                                                 |                                                                                                   |  |  |  |  |  |  |
|----------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 131<br>% de I<br>lestilado | 131<br>∦ de I en<br>los residuos                            | % pérdidas                                                                                        |  |  |  |  |  |  |
| 78.6                       | 7.69                                                        | 13.71                                                                                             |  |  |  |  |  |  |
| 87.0                       | 3,31                                                        | 9.69                                                                                              |  |  |  |  |  |  |
| 96.5                       | 1.845                                                       | 1.65                                                                                              |  |  |  |  |  |  |
| 70.0                       | 5.69                                                        | 24.31                                                                                             |  |  |  |  |  |  |
| 73.1                       | 5.94                                                        | 22.96                                                                                             |  |  |  |  |  |  |
|                            | % de I<br>testilado<br>78.6<br>87.0<br>96.5<br>70.0<br>73.1 | 131  131    testilado  105    78.6  7.69    87.0  3.31    96.5  1.845    70.0  5.69    73.1  3.94 |  |  |  |  |  |  |

Tabla X



Fig. 2 Aparato utilizado en la separación de I<sup>13</sup> del Te irradiado, por el método ácido.

2a.- Calentamiento del Te sólido y arrastre del I<sup>131</sup>.

El Te irradiado bajo las condiciones ya citadas se introdujo a la campana de proceso y se virtió dentro del tubo (Tl) (ver Fig. 3), el cual se calentó durante 3 horas (tiempo de operación) a una temperatura de 400°C permitiendo así el desprendimiento de I<sup>131</sup> de la malla del Te. Los vapores de yodo que se liberaron se arrastraron con aire precalentado (para evitar tener partes frías en el equipo) y se pasaron a través del matraz (ml) en donde se tenía una solución de H<sub>2</sub>SO<sub>4</sub> 2N para atrapar al Te que se pasara, los vapores de I<sup>131</sup> se recibieron en el frasco luvador (Fl) que tenía una solución buffer igual a la usada en los métodos anteriores.

Los resultados experimentales se dan en la tabla XI.

| Muestra | lendimiento                |                                  |            |  |  |  |  |  |
|---------|----------------------------|----------------------------------|------------|--|--|--|--|--|
|         | 131<br>% de I<br>destilado | 131<br>% de I en<br>los residuos | 3 pérdidas |  |  |  |  |  |
| 1       | 86.9                       | 7.50                             | 5.6        |  |  |  |  |  |
| 2       | 70.5                       | 3.05                             | 26.45      |  |  |  |  |  |
| 3       | 98.0                       | 2.00                             |            |  |  |  |  |  |
| 4       | 80.0                       | 8,00                             | 12,00      |  |  |  |  |  |
| 5       | 78.3                       | 5.00                             | 16.70      |  |  |  |  |  |

Tabla XI

En el aparato usado para este método el matraz (MO) contenía glicerina, la cual se calentó y sus vapores pasaron a través del serpentín (3), por el cual fluía aire, y su salida se conectó al tubo (T1), el refrigerante de arriba sirvió para condensar los vapores de glicerina.



Fig. 3 Aparato utilizado en la separación de I'del Te irradiado, por el método se co.

#### CAPITULO III

131 EVALUACION DE LOS METODOS DE SEPARACION DEL I DEL TE IRRADIADO Los resultados experimentales, que se dan en las tablas IX, X y XI del capítulo anterior, fueron sometidos a pruebas de Análisis de Varianza para un diseño experimental con una sola variable de clasificación<sup>(14)</sup>, en estos casos el rendimiento. El objeto de realizar estas pruebas es encontrar diferencia o igualdad estadística entre los métodos desarrollados.

En un análisis de varianza de este tipo se asume que los datos se distribuyen normalmente, y que las observaciones realizadas en cada uno de los tratamientos (métodos) se tomaron, al azar, de poblaciones que tienen aproximadamente la misma varianza (homogeneidad).

Para homogeneizar las varianzas, los resultados originales de  $\$  de I<sup>131</sup> destilado y  $\$  de I<sup>151</sup> en los residuos se transformaron por la raíz cuadrada  $\$  , en tanto que los resultados de  $\$  de pérdidas se transformaron por  $\$  loo - ( $\$ ).

La prueba de hipótesis que se usó fue la de igualdad entre las medias de las poblaciones.

El estadístico usado fue F y se trabajó con un nivel de significancia  $\alpha = 0.05$ . La hipótesis de igualdad entre las medias se acepta cuando el valor de la F calculada es menor que el de la F tabulada, y se rechaza cuando F calculada es mayor que la F tabulada.

Los cálculos que se realizaron para obtener los cuadros de análisis de varianza son: Suma de cuadrados(SC): entre medias =  $\sum \frac{T_{i+1}^2}{N_i} - \frac{T_{i+1}^2}{N}$ en los grupos (observaciones) =  $\sum \sum \chi_{ij}^2 - \sum \frac{T_{i+1}^2}{N_i}$ totales =  $\sum \sum \chi_{ij}^2 - \frac{T_{i+1}^2}{N}$ Grados de libertad (GL): entre medias = K-1en los grupos = N-ktotales = N-1 Cuadrado medio (CM):

entre medias<u>SC entre medias</u> k - 1 en los grupos SC en los grupos

F (calculada) <u>CM entre medias</u> GM en los grupos

la notación en estas ecuaciones es:

Tiv total de las observaciones de la iésima columna.

T++, total de todas las observaciones.

Mi, mimero de observaciones en cada tratamiento (5).

N, observaciones totales (15)

Xi;, observación j tomada del tratamiento i.

K, número de tratamientos (3).

El valor de la F tabuleda<sup>(14)</sup> para un nivel de significancia de 0.05 con 2 grados de libertad en el numerador y 12 en el denominador es 3.89.

Los resultados del análisis de varianza para estos metodos se dan a continuación. La tabla XII muestra los resultados transformados para el % de destilado en los métodos A(ácido), B(básico) y C(seco).

|     | A    | B    | С    |
|-----|------|------|------|
| I   | 8,86 | 9.59 | 9.32 |
| II  | 9.33 | 9.62 | 8.39 |
| III | 9,82 | 9.97 | 9,89 |
| IV  | 8.36 | 9.07 | 8.94 |
| v   | 8.55 | 9.03 | 8.85 |

Tabla XII

Realizando con estos valores el análisis de varianza, se obtuvo el siguiente cuadro:

| Fuente de Variación | Grados de<br>Libertad | Suma de<br>Cuadrados | Cuadrado<br>Medio | F calculada |
|---------------------|-----------------------|----------------------|-------------------|-------------|
| Entre medias        | 2                     | 0.61668              | 0.30813           | 1.1174      |
| En los grupos       | 12                    | 3,30888              | 0.27574           |             |
| Total               | 14                    | 3,92556              |                   |             |

De este cuadro se observa que el valor de F calculada (1.1174) es menor que el de la F tabulada (3.89), por lo que se deduce que estos métodos son estadísticamente iguales.

Los resultados transformados para el % de residuos se dan en la siguiente tabla:

Tabla XIII

|     | A    | в    | C    |
|-----|------|------|------|
| I   | 2.77 | 120  | 2.74 |
| II  | 1.82 | 3.19 | 1.74 |
| III | 1.35 | 2.54 | 1.41 |
| IV  | 2,38 | 2,41 | 2.83 |
| v   | 1,98 | 1,08 | 2.23 |

Realizando el análisis de varianza para estos datos se obtuvo el cuadro:

Cuadro de Análisis de Varianza

| Fuente de Variación | Grados de<br>Libertad | Suma de<br>Cuadrados | Cuadrado<br>Medio | F calculada |  |
|---------------------|-----------------------|----------------------|-------------------|-------------|--|
| Entre medias        | 2                     | 0.04785              | 0.02392           | 0.0476      |  |
| En los grupos       | 12                    | 6.02612              | 0.50217           |             |  |
| Total               | 14                    | 6.07397              | 0,43385           |             |  |

De aquí se observó que 0.0476 14 3.89, : los métodos son iguales.

Los resultados transformados para el 5 en pérdidas se dan en la tabla XIV:

|     | (m   |       |       |
|-----|------|-------|-------|
|     | A    | В     | С     |
| I   | 9,29 | 9.67  | 9.71  |
| II  | 9.50 | 10.00 | 8.57  |
| III | 9,91 | 10.00 | 10.00 |
| IV  | 8.70 | 9,39  | 9.38  |
| v   | 8.77 | 9.09  | 9.13  |

Tabla XIV

Los resultados del análisis de varianza para los datos de la tabla XIV son:

| Fuente de Variación | Grados de<br>Libertad | Suma de<br>Cuadrados | Cuadrado<br>Medio | F calculada |
|---------------------|-----------------------|----------------------|-------------------|-------------|
| Entre medias        | 2                     | 0.41029              | 0.20514           | 0.8591      |
| En los grupos       | 12                    | 2,86540              | 0.23878           |             |
| Total               | 14                    | 3.27569              |                   |             |

Cuadro de Análisis de Varianza

Comparando el valor de 0.8591 con 3.89, se ve que en este caso los métodos también son iguales.

En estos análisis se consideró que los datos se distribuían en forma normal, lo cual no puede asegurarse, y como a pesar de estos resultados se cree que si hay diferencia entre los 3 métodos, los valores originales de los experimentos se sometieron a la prueba No-Paramétrica de Kruskall-Wallis (15) la cual se acepta si Q es menor que  $\chi^2$ , y se rechaza si Q es mayor que  $\chi^2$ .

$$Q = \frac{12}{N(N+L)} \sum_{j=1}^{R} \frac{1}{N_{j}} \left( \sum_{i=N_{j-1}+L}^{N_{j}} 2i \right)^{2} - 3(N+L)$$

N es el múmero de observaciones total (15) N; es el múmero de observaciones para cada tratamiento (5) R; es el valor de las observaciones ennumeradas en orden ascendente del 1 al 15  $\overset{2}{X}$  es la Chi cuadrada (se calcula en tablas de porcentajes<sup>(14)</sup> para esta distribución).

Los valores de Ri para los datos originales de % de I destilado en cada uno de los métodos estudiados serán:

| Método | Valor Original | Valor de Ri |
|--------|----------------|-------------|
|        | 78,6           | 5           |
|        | 87.0           | 10          |
| Å      | 96.5           | 13          |
|        | 70.0           | l           |
|        | 73.1           | 3           |
|        | 92.1           | 11          |
|        | 92.5           | 1.2         |
| в      | 99.5           | 15          |
|        | 82.4           | 8           |
|        | 81.6           | 7           |
|        | 86.9           | 9           |
|        | 70.5           | 2           |
| C      | 98.0           | 14          |
|        | 80.0           | 6           |
|        | 78.3           | 4           |

| Tubra 14 | abla XV |  |
|----------|---------|--|
|----------|---------|--|

Substituyendo los valores de Ri en la ecuación de Q, se obtuvo el valor de Q=2.58 y siendo el valor de  $\chi^2$ , para un nivel de significancia de 0.05 con 2 grados de libertad 5.99, aceptamos la hipótesis de igualdad entre los métodos. Para el caso de los residuos y de las pérdidas, los valores de se obtuvieron en forma análoga a ésta y los resultados para Q fueron: En los residuos Q = 0.1404

En las pérdidas Q= 0.7200

Comparando estos valores de Q con 5.99, éstos son menores y por consiguiente se acepté la igualdad estadística entre los métodos.

Como se aceptó la igualdad entre los métodos en la prueba paramétrica (análisis de varianza) y en la no-paramétrica, los criterios que sirvieron para evaluarlos son cualitativos y se discuten en el siguiente capítulo.

## CAFITULO IV

#### CONCLUCIONES

En vista de que estadísticamente no se encontró diferencia entre los métodos, los criterios que sirvieron para escoger uno de ellos se basaron en las observaciones bechas al realizarlos.

131 Hay que recordar que la cantidad que se desea producir de I es de 1.5 Ci/semana, lo cual implica un aumento del tiempo de irradiación, del flujo neutrônico y de la cantidad de material blanco.

El aumento en la cantidad de material blanco hace que los volúmenes en la disolución, destilación y desechos radiactivos sean mayores para los métodos húmedos que para el método seco.

En el método seco la operación es más sencilla ya que basta con introducir el telurio irradiado al equipo y calentar, por otra parte, en los métodos húmedos hay que transva\_ sar.

En base a esto el método que se escogió fue el seco y a continuación se propone el equipo experimental que servirá para experimentarlo (ver Fig. 4) hasta encontrar la temperatura óptima de destilación.

Para proponer el equipo experimental se consideraron ciertos factores referentes al sistema con el cual se trabajó.

Se puede considerar que el I<sup>131</sup> queda atrapado dentro de la malla cristalina del telurio (0.019488 x  $10^{-5}$  g de I<sup>131</sup>/ g de Te, en 2 Ci de I<sup>131</sup> y 80 g de Te), y al aumentar la temperatura, los átomos de Te que se encuentran formando la red cristralina, van a adquirir energía vibracional, por lo que las ligaduras se debilitarán permitiendo que el I<sup>131</sup>emane del lecho de telurio.

La emanación de I<sup>IC1</sup> se inicia a partir de los 330°C y se dificulta a temperaturas (16) cercanas al punto de fusión del Te (450°C).

De esto se ve que el rango de temperatura para experimentar será de 330°-430°C, y una vez que se haya determinado la temperatura óptima de operación en este rango, el I<sup>131</sup> podrá ser producido en forma rutinaria.

47

Equipo Experimental para el estudio de la Temperatura Optima de Operación en la Separación del I<sup>131</sup> del Te irradiado (método seco).



Fig. 4

## REFERENCIAS

- Kleimberg, J.; Cowan, G., "The Radiochemistry of Fluorine, Chlorine, Bromine and Iodine", Nuclear Sciencie Series NAS-NS 3005, p. 5, January (1960).
- (2) Nuclear Radiation Center, "Gamma Ray Energy Tables for Neutron Activation Analysis", Report # USUNRC - 97(2), p. 4.5, Washington State University (1970).
- (3) International Atomic Energy Agency, "Radioisotope Production and Quality Control", Technical Reports Series # 128, p. 237-286, Vienna (1971).
- Lederer, C.M.; Hollander, J.M.; and Perlman, I., "Tables of Isotopes", p. 66 70, John Wiley and Sons, Sixth Edition, New York (1967).
- (5) Doetsch, Gustav, "Guide to the Applications of the Laplace and 3 -Transforms",
  p. 15,27,28; Van Nostrand Reinhold Company, London (1971).
- (6) Aseltine, John, A., "Transform Method in Linear System Analysis", p. 24, Electrical and Electronic Engineering Series, Mc Graw Hill Book Company, Inc., New York, Toronto, London (1958).
- U.S. Department of Health and Welfare, "Radiological Health Handbook", p. 158, September (1967).
- (8) Chase, G., D.; Rabinowitz, J.,L., "Principles of Radioisotope Methodology", p.
  224, Burgess Publishing Company, Third Edition, U.S.A. (1967).
- (9) Department of Health, Education and Welfare, "Occupational Radiation Protection", Training Pub. # 36 (3.63), p. 2.
- General Dynamics, Fort Worth Division; "Health Physics Handbook", OSP-379,
  p. 227, 229, 230; April (1963).

# 49

- (11) Von Marth, W., : Atompraxis, 8, vo. 12; p. 392 (1966).
- (12) Escobar Girón, J., A., "Consideraciones sobre la Comparación de Diseños de Tratamientos", Tésis de Maestría, Escuela Nacional de Agricultura, Colegio de Postgraduados, Chapingo, Méx. (1967).
- (13) Pagano, G. Da Silva, C.; Ramaniah, V.M., "Preparação do Iôdo-131 a partir do Telúrio Elementar Irradiado", Publicação IEA # 110, São Paulo, Brasil (1965).
- (14) Dixon, J., W.; Masey, J., F. Jr., "Introduction to Statistical Analysis", p. 145-152, Mc Graw Hill Book Company, Inc., Second Edition, New York, Toronto, London (1957).
- (15) Håjek, Jaroslav, "Non Parametric Statistics", Holden Day, U.S.A. (1969).
- (16) Bardy, André; Beydon, Jacqueline., "Production de L'Iode 131 par voie seche a partir de Tellure Elementaire Irradie a la Pile", l ére Partie - "Etude Des Conditions Pour obtenir L'Emanation de L'IODE et le Capter", CEA-R 3153, Centre D'Etudes Nucléaires de Saclay (1967).

# APENDICE

PROGRAMA PARA CALCULAR LAS ACTIVIDADES Y LAS DOSIS PRODUCIDAS POR LOS RADIGISOTOPOS DEL TELURIO AL SER IRRADIADO BAJO UN FLUJO DE NEUTRONES TERMICOS Este programa calcula las actividades y las dosis que producen cada uno de los radicisótopos del telurio de acuerdo con las ecuaciones (24), (25), (26), (27) y (28) del Capítulo I.

Los datos que utiliza el programa los lee según se indica en el listado, y hace iteraciones con los datos comunes a todos los radioisótopos que son variables, siendo en este caso:  $TAO(J)_J l_{,5}$  (tiempo de espera) y  $X(M)_{,M} l_{,3}$  (espesor del blindaje). Los datos constantes para cada radioisótopo son: (T) (tiempo de irradiación), (FI) (flujo neutrónico), (PAT) (peso etómico del blanco) y (Z) (número atómico del material en donde se absorben las

Los datos particulares son los 23 que se dan en el EQUIVALENCE y que se designan como vectores V(J), J 1,23, si el número de radioisótopos es de ll, se van a tener ll juegos de 23 datos y esto permite tener una matriz de datos de la forma iA(I,J) donde I ll y J 23. La forma matricial de los datos particulares se presenta a continuación:

| Radicisótopo<br>en clave del<br>programa | Número de<br>Juegos<br>(NJ) | Arreglo Matricial de los datos V(J) |
|------------------------------------------|-----------------------------|-------------------------------------|
| 1, 121                                   | l                           | V(1) $V(2)$ $V(3) V(23)$            |
| 2. 121                                   | 2                           | V(1) $V(2)$ $V(3) = V(23)$          |
| 1. 123                                   | 3                           |                                     |
| 1, 125                                   | 4                           |                                     |
| 1. 127                                   | 5                           |                                     |
| 2. 127                                   | 6                           |                                     |
| 1, 129                                   | 7                           |                                     |
| 2. 129                                   | 8                           |                                     |
| 1. 131                                   | 9                           |                                     |
| 2. 131                                   | 10                          | 1                                   |
| 3. 131                                   | 11                          | V(1)  V(2)  V(3) = V(.23)           |
|                                          | 12                          | y(7)                                |

Hay un juego extra (12) que sirve de salida al programa y presenta solamente el dato de (XN,V(7)) 4 .

Para poder leer estos datos, el programa utilizó la Sub-rutina "EXTRA", la cual extrae los datos de cada renglón (V(J)) en la forma en que se muestra por el siguiente diagrama de flujo:

52

Diagrama de flujo que muestra la entrada y salida al programa principal de la Sub-rutina "EXTRA"



Con estos datos se inician los cálculos los cálculos para el radioisótopo (s) deseado (s), posteriormente el programa llega a la FUNCION "EXPO", la cual se utiliza como se muestra en el siguiente diagrama de flujo:



Diagrama de flujo de la Funcion "EXPO"

Los valores de EXFO (U) presentan los límites que se indican en este diagrama y una vez que se hayan corregido por los límites, el programa continua con los cálculos.

A

ø

ŧ.

ø

Ø

15

150

Ð

Ø

ø

5

F4Ø PAGE 1 V26(14) 10-AUG-73 14124 Ċ PROGRAMA PARA CALCULAR LAS ACTIVIDADES Y LAS DOSIS PRODUCIDAS POR ILOS RADICISCTOPOS DEL TELURIO AL SER IRRADIADO BAJO UN FLUJO DE 2MEUTROMES TERMICOS DIMENSION DOG(5), AA(12,23), V(23), TAO(5), CO(5), X(3) EQUIVALENCE (ABUND, V(1)), (SG1, V(2)), (SG2, V(3)), (D1, V(4)), (D2, V(5)) 1, (D3, V(6)), (XN, V(7)), (XNUP, V(8)), (DAG(1), V(9)), (DAG(2), V(10)), (DAG 2(3), V(11)), (DOG(4), V(12)), (DOG(5), V(13)), (CO(1), V(14)), (CO(2), V(15) 3)), (CO(3), V(16)), (CO(4), V(17)), (CO(5), V(18)), (EBETA, V(19)), (DBR, V( 420)),(CE,V(21)),(A,V(22)),(B,V(23)) APUND ES LA ABUUDANCIA DE CADA ISOTOPO ESIABLE S C ư. SG1 Y SG2 SON LAS SECCIONES EFICACES DE CAPTUPA NEUTRONICA PARA 2LAS ESPECIES 1 Y 2. BARMS; 18ARM=10E-24 CME2 C D1, D2 Y D3 SON LAS CONSTAUTES DE DECAMMIENTO PARA LAS ESPECIES 1, 1 2 Y 3. HOPASE-1 . DE0.693/TIENPO DE VIDA MEDIA X. ES EL NUMERO DE LA ESPECIE (1.2 0 3) C XANNA ES EL NUMERO DE MASA (121,123,125,127,129 D 131) Ċ TOG COSIS PRODUCIDA POP LA ENERGIA DE LA GAMA DEL PADICISOTOPO r. 1 MR/HR MCI A 1 CM 1 .CO CORFICTENTE DE ARGOSCION LINEAL DERIDO A LA FURDGIA DE LA GAMA 1 官学 充し がみ平知戸調算す わ肥乳 存れ手がわたけに、 CME-1。 ÷C. FRETA FREPGIA MAXIMA DF LA SFIA. NEV. DER DOSIS PRODUCIDA POR EL BREMSSTRANDUNG, MR/HP MCT A 1 CM. C CA CORFICIENTE DE ABSORCION LINEAL DEBIDO AL EPEMSSTRAHLUNG Ċ 1 CME-1. A FRACCION DE LA ACTIVIDAD ONE DECAE POR TRANSTOION ISOMERICA, &. B FRACCION OF LA ACTIVIDAD QUE DECAE POR BETAS. 9. Ċ, 120 FORMAT (F6.2) 105 FORMAT(SF8.0) 110 FORMAT(E8.1.3F5.0.F6.1.F4.1) 120 FORMATCIAL 130 FORMATIFE.4.5E10.0.J.F2.0.F10.0.5E10.3./.5E10.3./.F10.3.F10.0.F10. 13,2F5.31 200 FORMATENNA SEX. 205\_21 259 FORMAT(36X, " TIEMPOS", 73X, " DOSTS", ///10X, " FLUJO", 10X, " IPRADIACI 10N1,9x,4 ESPERA1,10x,4 ACTIVIDAD4,10x,1 ESPESOR1,10x,4 SUPERFICIE1 2.5X." A 1 METERS', //9X. " M/CNZ~SEG', 9X, " HOPAS', 14X. " HOPAS', 11X." 3 CT/GR4, 15x, 4 CM4, 15y, 4 MR/HR1, 10x, 4 MR/HR1, 1///) 300 FORMAT (10%, ER. 1, 10%, F7. 3) 470 TODMAR (497, F6.0, 5X, F15.6, 13X, F4.0, 6X, F18.6, 3X, F13.6)

C TIEMPO DE IRRADIACION, MOPAS.

1 READ(2,100) T

C

C.

 $\mathbf{r}$ 

TAG TIEMPO DE ESPERA DESPUES DEL TIEMPO T \_ HORAS\_ 2 PEAD(2,195) (TAO(J),J=1.5)

FI FLUJO DE NEUTROMES TERMICOS. NEUTROMES/CME2 SEG.

C FI FLUJO DE WENTROMES TERMICO C X ESPESOR DEL BLINDAJE. CM.

C PAT PESO ATOMICO DEL MATERIAL BLANCO (TELURIO)

Z MUMERO ATOMICO EFECTIVO DEL MATERIAL EN DONDE SE ABSORBEM LAS 1 BETAS (POLIETILENO)

3 READ(2,110) FI.(X(M),M=1.3),PAT.E

NJ NUMERO DE JUEGOS DE DATOS CONTENIDOS EN LA MATRIZ AALI,J), 1 CADA JUEGO TIENE 23 DATOS QUE SON LOS CONTENIDOS EN EL EQUIVA 2 LENCE, PARA EL CASO DEL TELURIO EN QUE SE TIEMEN 11 ISOTOPOS 3 ACTIVOS NJ=11 MAS 1 JUEGO QUE CORRESPONDE A LA SALIDA DEL PRO DECEAS, FA F 4.3 V26(14) 10-AUG-73 14104 PAGE 2 4 GRAHA CON XHE4. 1 0F31-12,122) 4J DO 5 1=1.0J 5 PEAD(2,130) (AA(I,T),J=1,23) Do 72 ) TI=1.0J CALL EXTRA (V, NA, IT) TF(31.E0.4.) Go TO 62 PRINT 200,XV, XNUM DRINT 253 8021=02+01 P031=03=01 2032=03-D2 0332=03/PD32 7232=72/2732 320=5402/0021 AS+P=AssG1st1/BD21 AS28=3#SG1#02/9021 8426=4+A2P SASIP=SG2=ASIP SUR3#901403/RD31 sta1=361401/0031 WHE AS RY UNVERD OF ATOMOS INICIALES DE BLANCO. 0 E E=1.6734E16#ABUND/(PAT) RETER IPAFT ○12年前1年前 EDID=SXPO(D1T) 881=(1.-FD17) 02T=02#T \$0,7-="XPA(D7T) RE2=(:,-P021) 037=D3&P ED31=FX20(03T) RE3=(1,=FD37) DRTYT 3AM.FT.T nc 52 J=1,5 DirA=019TAP(-7) FOITE=FXPO(D1TA) 02TA=02+TA0(J) HID2TA=FXPO(P2TA) 73TA=03#TACCJ) ED3TAGEXPOID3TA) IE(X#=2) 10,15,20 ACT ACTIVIDAD PRODUCIDA, NCI/ GP OF BLANCE. Ċ. 13 ACTERFT#PF1#SG1#ED1TA GA TO 17 15 ACT=FFJ#fAS2P#PEt#FD1TA+SAS1B#PF2#FD2TA) GO TO 17 20 ACT=EFI#(BA28#(S103#8F1#ED1TA=STR1#8E3#ED3+A)+SAS10#(0332#8E2# 1ED22A+D232#RE3#ED3TA)) 17 DO 50 4=1,3 SDOG ES LA SUMATORIA DE LAS FOG. n SDOG=/. DO 25 1=1,5

1

(

,

|          |         | ,        | Saltar St                              | W C . A   |           |             |         |            |               |            |        |       |
|----------|---------|----------|----------------------------------------|-----------|-----------|-------------|---------|------------|---------------|------------|--------|-------|
|          |         | c .      | APPLICED P                             | PAD NO H  | UTID DE   | DLOTTIC B   | 7.0     |            |               |            |        |       |
|          |         |          | neriji, eniji<br>Nortemati             | CY IN .   | offen fie | 118910 4    | U.∎     |            |               |            |        |       |
|          |         | 56 .     | 1010121212-                            | NAZZ 1    |           |             |         |            |               |            |        |       |
|          |         | t        | CX=EXPO                                |           |           |             |         |            |               |            |        |       |
|          |         |          | IRX=C的日本。                              | c(M)      |           |             |         |            |               |            |        |       |
|          |         | C F      | ADIA FACI                              | ICP DE H  | NITO NB   | DEBIDO A    | CHB.    |            |               |            |        |       |
|          |         | ŕ        | 371200=(1.1                            | -CSX/2.1  |           |             |         |            |               |            |        |       |
|          |         | τ        | CBX=FXPI                               | V(CRX)    |           |             |         |            |               |            |        |       |
|          |         | C F      | FRACCT                                 | ). UL LV  | FRGIA PE  | TA TOTAL    | ORE SE  | CONVIENTE  | EN SPE.       | SSTRAP     |        |       |
|          |         | 1        | Files:                                 |           |           |             |         |            |               |            |        |       |
|          |         | F        | F=1.1F'-34                             | ¥7₩ЕНЕ.¶А |           |             |         |            |               |            |        |       |
|          |         | T        | ABENEKAUL                              | *ATLUA*8. | ECEX      |             |         |            |               |            |        |       |
|          |         | 5        | shoG≢st of                             | +906(t)   | *PUIL*FC  | X           |         |            |               |            |        |       |
|          |         | 25 (     | •. • • • • • • • • • • • • • • • • • • |           |           |             |         |            |               |            |        |       |
|          |         | r :      | r ente Due                             | STS FA L  | A SUPERF  | TOTE DEL    | BUINDAL | IS. MR/HR. |               |            |        |       |
|          |         | r        | .0805=70.                              | "#(SDCG+  | PREMI     |             |         |            |               |            |        |       |
|          |         | C 7      | judia Jud                              | TS A 1    | T DE LA   | ST DE FI    | CIE DEL | BI INDAJE. | WENES.        |            |        |       |
|          |         | 22 1     | -0.5.1. \$306                          | StPat.Fr  | 4/471     |             |         |            |               |            |        |       |
|          |         | F        | RIAT 400                               | , 19 (1)  | +ACT+XCS  | ), nosue,   | DOSMT   |            |               |            |        |       |
|          |         | 50 (     | CONTINCE.                              |           |           |             |         |            |               |            |        |       |
|          |         | 3 - 2. 0 | 的过去式和意义                                |           |           |             |         | Ĩ          |               |            |        |       |
|          |         | 58 (     | art, PXII                              | r         |           |             |         |            |               |            |        |       |
|          |         | ŧ        | th th                                  |           |           |             |         |            |               |            |        |       |
| CONSTAN  | T'S     |          |                                        |           |           |             |         |            |               |            |        |       |
|          |         |          |                                        |           |           |             |         |            |               |            |        |       |
| 9        | 265716  | 543305   | ,                                      | 167648    | 26/443    | 2           | 10304   | 3334212    |               |            |        |       |
| EQUIVAL  | EVCE    |          |                                        |           |           |             |         |            |               |            |        |       |
|          |         |          |                                        |           |           |             |         |            |               |            |        |       |
| 3        | 622     |          | А                                      | 621       |           | C a         | 62.9    |            | DBB           | 617        | FBFTA  | 616   |
| CO       | 611     |          | DOG                                    | 614       |           | XHIN        | 693     |            | Xw            | 682        | 03     | 691   |
| ס2       | 6.2     |          | D1                                     | 577       |           | SG2         | 576     |            | \$61          | 575        | v      | 574   |
| ABUND    | 574     |          |                                        |           |           |             |         |            |               |            |        |       |
|          |         |          |                                        |           |           |             |         |            |               |            |        |       |
| SUBPRING | 14 A 18 |          |                                        |           |           |             |         |            |               |            |        |       |
| FORSE    | THEF    | FLOUT.   | FLTPT.                                 | ThTO.     | INTI.     | EXTPA       | EXPO    | FXIT       |               |            |        |       |
|          |         |          |                                        |           |           |             |         |            |               |            |        |       |
| SCALARS  |         |          |                                        |           |           |             |         |            |               |            |        |       |
|          | 6.0.7   |          | ,                                      | 501       |           | E T         | 695     |            | м             | 676        | DAT    | 627   |
| T        | 023     |          |                                        | 574       |           | <b>F</b> 1  | 620     |            |               | 633        | YN     | 602   |
| 6        | 630     |          | 10                                     | 631       |           | 50          | 637     |            | 5. 5.<br>F2.4 | 533        | PD31   | 635   |
| XNRA     | 5.4     |          | 81/23                                  | 5.34      |           | Dana .      | 6.5.7   |            | Deec          | 517        | Nop    | 6 4 1 |
| 23       | 611     |          | 91132                                  | 636       |           | 0337        | 53/     |            | 2.32          | 543        | Blan   | 644   |
| A        | 621     |          | 4516                                   | 547       |           | 501         | 010     |            | HS2H<br>EUDD  | 545        | CH ZH  | 617   |
| в        | 522     |          | SASIP                                  | 545       |           | 203         | 212     |            | DIRS          | 740        |        | 683   |
| ENE      | 652     |          | DHIND                                  | 574       |           | EFC<br>EDD- | 651     |            | חבים          | 552        | E.01.) | 660   |
| RE1      | 654     |          | 0.27                                   |           |           | N.D.N.L     | 000     |            | FD4mb         | ng/        | 1.3]   | 66F   |
| ED3T     | 651     |          | DF q                                   | 662       |           | 123.TA      | 603     |            | ACT A         | 574<br>574 | CDAC.  | 670   |
| EDZTA    | 666     |          | 5377                                   | hh /      |           | FUSTA       | 010     |            | AL.T          | 576        | Cav    | 673   |
| Г        | 673     |          | CX                                     | 574       |           | ROTE        | 5/5     |            | C.I. A        | 723        | 1 A A  | 616   |
| COR      | 749     |          | billb                                  | 103       |           | ECRX        | 141     |            | r             | 1.4.3      | CEPTA  | 910   |
|          |         |          |                                        |           |           |             |         | 1          |               |            |        |       |

Dicenciat 4

đ.

(

#40 V20(14) 10=APG+73 14#24 PAGE 3

£

| a | DECSAG_F4                   | F 4 Ø | 126(14) | 15-AUG-73 | 16824 | PAGE 4 |
|---|-----------------------------|-------|---------|-----------|-------|--------|
| ٢ | BEE ' 724                   |       | פר ר    | 6†7       | Poste | 765    |
| 4 | Анрамя<br>DOG брі<br>X 1341 |       | 2 A     | 7 87      | γ     | 574    |

.

FUNCTION EXPO(7) IF(U.GF%22.) GO TO 14 TF(CLUT.LEF=10) GO TO 15 EXPO=EXP(-1) RETURM 14 EXPO=C. RET IPN 15 EXPO=1. RETURM FND

CONSTANTS

EXPO

0 137667633765 GD0441, RHOMTES Ф 44 SURDDOCRANS EXP SCALARS

4%

4.4

Ø.

| ( | DECKAC. | F' 4    | F - 9 | V24(14)          | 10-41G-73         | 14:04 | PAGE 6 |
|---|---------|---------|-------|------------------|-------------------|-------|--------|
| ¢ |         |         |       | Shappingray      | EXTRA(V.AA.II)    |       |        |
|   |         |         |       | FIME'SION        | V(231, AA(12, 23) |       |        |
|   |         |         |       | DC 3. J=1        | ,23               |       |        |
|   |         |         |       | V(J)=AA(I)       | I.J)              |       | ş      |
|   |         |         | 30    | COMPTNIE         |                   |       |        |
|   |         |         |       | FATI KA          |                   |       | 1      |
|   |         |         |       | 12.17 ( <i>i</i> |                   |       |        |
|   | GLCBAL  | DUMMIES |       |                  |                   |       |        |
|   | v       | 34      |       | AA               | 35                | II    | 36     |
|   | SCALARS |         |       |                  |                   |       |        |
|   | EXTRA   | 37      |       | .7               | 40                | IT    | 36     |
|   | ADDAVC  |         |       |                  |                   |       |        |
|   | NUUN10  |         |       | 1.0              |                   |       |        |
|   | v       | 34      |       | AA               | 35                |       |        |
|   |         |         |       |                  |                   |       | 1      |
|   |         |         |       |                  |                   |       |        |

1

. .

Resultados del programa de actividades-dosis para los radioisótopos del telurio

|                         |        |             | -          |            |                              |
|-------------------------|--------|-------------|------------|------------|------------------------------|
|                         |        |             |            |            | +                            |
|                         |        |             |            |            |                              |
| TENOC                   | 1c     | 1. 121.     |            |            | DACTO                        |
| jenio tr                | 1      |             |            |            | 00313                        |
| IPRADIACIO <sup>N</sup> | FROFRA | ACTIVIDAD   | ESPESOR    | SUPERFICIE | A 1 METRO                    |
| HORAS                   | HOPAS  | MCI/GR      | CM         | MR/HR      | MR/HR                        |
|                         |        |             |            |            |                              |
|                         |        |             |            |            |                              |
| 4P.687                  | 0      |             | _          |            |                              |
|                         | v .    | 0.041228    | 9.         | 65,140495  | 0.006514                     |
|                         | · ·    | 0.041728    | 5.         | 0.000000   | a. 000000                    |
|                         | 6 a    | Ø.041228    | 10.        | 0.00000    | 0.000000                     |
|                         | 74.    | (° _ 041043 | 1° .       | 64.847554  | 0.006485                     |
|                         | 24.    | 0.041043    | 5.         | 0.000000   | 0.000000                     |
|                         | 24.    | 0.041043    | 10.        | 6.000000   | 0.000000                     |
|                         | 6.H    | 0.040858    | <i>A</i> . | 64,555931  | 0,005456                     |
|                         | 4      | 0,040858    | 5.         | 7,900000   | <b>6000000</b>               |
|                         | 48.    | Ø_040858    | 10.        | 0.000000   | <i>a</i> ° <i>aaaaaa</i>     |
|                         | 72,    | R.040674    | 0.         | 64,265620  | 0.006427                     |
|                         | 72.    | 0.042574    | 5.         | 0. CONONA  | A. 60000A                    |
|                         | 12.    | 0.040574    | 10,        | 0.000000   | <b><i><b>0.00000</b></i></b> |
|                         | 344.   | e.738360    | Я.         | 50,609261  | 0,006061                     |
|                         | 284    | P.P3836Ø    | 5,         | P. 988698  | 0.000000                     |
|                         | 384.   | P. P38360   | 10.        | 0.00000    | a • 000000                   |
|                         |        |             |            |            |                              |
|                         |        |             |            |            |                              |
|                         |        |             | 1          |            |                              |
|                         |        |             |            |            | e                            |
|                         |        |             |            |            |                              |
|                         |        |             |            |            |                              |

|                         |        |                                       | 1       |            |               |
|-------------------------|--------|---------------------------------------|---------|------------|---------------|
|                         |        |                                       |         |            |               |
|                         |        |                                       |         |            |               |
|                         |        |                                       |         |            |               |
|                         |        |                                       | 10 A    |            |               |
| TENDO                   |        | 2. 121.                               |         |            | Second second |
| TEPPOS                  |        |                                       | -       |            | DOSIS         |
|                         |        |                                       |         |            |               |
| IBRADIACIO <sup>M</sup> | FSPEPA | ACTIVIDAD                             | ESPESOR | SUPERFICIE | A 1 METRO     |
| HCPAS                   | HCRAS  | MCT/GR                                | A 54    | MD /UD     | NO AUD        |
|                         |        |                                       |         | PUR VIII   | PR/RK         |
|                         |        |                                       | 1       |            |               |
| 49 200                  |        |                                       |         |            |               |
|                         | 0.     | P. 055577                             | 0.      | 185,183279 | 0.018618      |
|                         | 0.     | 0.055577                              | 5.      | Ø,496969   | 0,000050      |
|                         | Й.     | P. 055577                             | 1.0 .   | 0.000544   | 0.000000      |
|                         | 24.    | 0,055000                              | Ø.      | 184,251255 | 0.018425      |
|                         | 24     | 0.055000                              | 5.      | 0.491812   | 0.000049      |
|                         | 18     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 10.     | 0.020538   | 0.000000      |
|                         | 48     | 5° 6 6 6 4 9 9                        | 60 e    | 182.3/1639 | 0.018237      |
|                         | 19     | 0.0004439<br>3.054430                 |         | a.485795   | 0.000049      |
|                         | 73     | 0 053003                              | 100     | 9.999533   | 0,000000      |
|                         | 70     | r.003093                              | 9 e     | 180.542444 | 0.018054      |
|                         | 70     | 0.003093                              | 5.      | Ø.481912   | 0.000048      |
|                         | 304    | 9,003893                              | 10.     | a.000528   | A.000000      |
|                         | 294    | 0.047934                              | 0.      | 160,580246 | 0.016058      |
|                         | 304    | 0.047934                              | 5.      | 0,428628   | .A. 000043    |
|                         |        | N. V 4 / 9 3 4                        | 10.     | 0,000459   | 0.000000      |
|                         |        |                                       | ĺ       |            |               |
|                         |        |                                       | 1.00    |            |               |
|                         |        |                                       |         |            |               |
|                         |        |                                       |         |            |               |
|                         |        |                                       |         |            |               |
|                         |        |                                       |         |            |               |
|                         |        | -                                     |         |            |               |

1. 123.

TIEMPOS

DOSIS

.

| IPRADIACION | ESPERA | ACTIVIDAD | ESPESOR | SUPERFICIE              | A 1 METRO |
|-------------|--------|-----------|---------|-------------------------|-----------|
| HOPAS       | HOPAS  | MCT/GR    | CM      | MR/HR                   | MR/HR     |
|             |        |           | 7       |                         |           |
| 49,000      |        | +         |         |                         |           |
|             | (* "   | 0,832276  | 0.      | 1648.667376             | 9.104867  |
|             | Ø      | P.832276  | 5.      | 0.000000                | 0.000000  |
|             | 0.     | P.832276  | 10.     | P. 000000               | 0.000000  |
|             | 21.    | 0.826741  | Ø.      | 1041.693940             | 0.104169  |
|             | 74 .   | 0.826741  | 5.      | 0,000000                | 0,000000  |
|             | 24.    | 0.826741  | 10.     | 6.000000                | 0.000000  |
|             | 48.    | 2.821244  | e.      | 1034.766890             | 0.103477  |
|             | 4P .   | 2.821244  | 5       | 0.000000                | 0.000000  |
|             | A A _  | 0.821244  | 10.     | 2.000000                | 8.000000  |
|             | 72.    | P.815782  | а.      | 1027,885910             | 0,102789  |
|             | 72.    | 0.815782  | 5 .     | 0.000000                | 0,000000  |
|             | 72.    | 0.815782  | 10.     | 2,000000                | 0.000000  |
|             | 394.   | 2.748007  | Ø       | 942.488258              | 0.094249  |
|             | 384.   | 0.748007  | 5.      | 9.000000                | 0.000000  |
|             | 384.   | a.748007  | 10.     | <i><b>a</b></i> ,000000 | 9,000000  |

|                                                 | - and income    |
|-------------------------------------------------|-----------------|
|                                                 |                 |
| 1. 125.                                         | · · ·           |
| TIEMPOS                                         | DOSIS           |
|                                                 | 2               |
| FPRADTACION ESPERA ACTIVIDAD ESPESOR SUPERFICIE | A 1 METRO       |
| HORAS MCI/GR CM MR/HR                           | MR/HR           |
|                                                 |                 |
|                                                 |                 |
| 48 000                                          |                 |
| 0 13_B41229 0 15640_589000                      | 1,564059        |
| 0 13,641229 5. 0 <sup>.</sup>                   | 0,000000        |
| a. 13,841229 10, 0, 0, 00, 0000                 | 0,000000        |
| 24 13,677440 0, 15455,507200                    | 1,545551        |
| 24, 13,677440 5, 0,000000                       | 0.000000        |
| 24, 13,677449 10, 0,000000                      | a.000000        |
| 48, 13,515589 0, 15272,615600                   | 1,527252        |
| 48, 13,515589 5, 0,00000                        | 0,200000        |
| 48, 13,515589 10, 0,00000                       | <b>0,000000</b> |
| 72. 13,355653 0. 15091,088100                   | 1,509189        |
| 72. 13.355653 5. 0.00000                        | 0.000000        |
| 72. 13.355653 10. 0.200000                      | Ø.000000        |
| 384. 11,440821 6. 12928,127800                  | 1,292813        |
| 384. 11 <u>.</u> 440821 5. 0.000000             | 0.000000        |
| 384. 11.440821 10. 0.000000                     | 0,000000        |

|             |                |           | 1       |                      |                                       |   |
|-------------|----------------|-----------|---------|----------------------|---------------------------------------|---|
|             |                |           | 1       | 21.1.1               |                                       |   |
|             |                |           |         |                      |                                       |   |
|             | 1 1. 1         | 27.       | 1       |                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |   |
| TIEMPOS     |                |           | 1       |                      | DOSTS                                 |   |
|             |                |           | 1       |                      |                                       |   |
| IRRADIACION | ESPERA         | ACTIVIDAD | ESPESOR | SUPERFICIE           | A 1 METRO                             |   |
| HOPAS       | HORAS          | MCI/GR    | CM      | MR/HR                | MR/HR                                 |   |
|             |                |           | 1       |                      |                                       |   |
|             |                |           | 1 .     |                      |                                       |   |
| 48.200      |                |           | 1       |                      | 1. 20                                 |   |
|             | ę "            | 0,625991  | Ø.      | 267.27516            | 6 0.026728                            |   |
|             | Q. a           | 0.625991  | 5.      | 7.23846              | 0 0,000724                            |   |
|             | S.             | 0,625991  | 10.     | 7.23846              | 0 0.000724                            |   |
|             | 29.            | 0.621875  | 0.      | 265.51759            | 3 0,026552                            |   |
|             | 24,            | 0.621875  | 5.      | 7.19096              | 1 0.000719                            |   |
|             | AR             | 0 617795  | 10.     | 7.17000<br>263 77469 | 1 9.000/17                            |   |
|             | 48             | 0.617785  | 5.      | 7.14357              | 5 9 000714                            |   |
|             | 48             | 0.617785  | 10.     | 7.14357              | 5 0 000714                            |   |
|             | 72.            | 0.613723  | 0.      | 262.03704            | 8 0.026204                            |   |
|             | 72.            | 0.613723  | 5.      | 7,09659              | 9 0.000710                            |   |
|             | 72             | 0.613723  | 12.     | 7,09659              | 9 0.000710                            |   |
|             | 384,           | 0,563279  | . e.    | 240.49928            | 9.924050                              |   |
|             | 384.           | 0,563279  | 5,      | 6,51330              | 4 0.000651                            | - |
|             | 384.           | 0,563279  | 10.     | 6.51330              | 4 0.000651                            |   |
|             |                |           |         |                      |                                       |   |
|             |                |           |         |                      | · · · · · · · · · · · · · · · · · · · |   |
|             |                |           |         |                      |                                       |   |
|             |                |           |         | ·                    |                                       |   |
|             | and the second | · · ·     |         |                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |   |
|             |                |           |         |                      |                                       |   |

•

.....

|              |                                      |                                                                                                                      |                                                             |                                                                                                                                  | DOSIS                                                                                                     |
|--------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|              |                                      |                                                                                                                      |                                                             |                                                                                                                                  |                                                                                                           |
| IFF ADIACION | FSPFFD                               | ACTIVIDAD                                                                                                            | ESPESOP                                                     | SUPERFICIE                                                                                                                       | A 1 METRO                                                                                                 |
| HORAS        | HCPAS                                | MCI/GR                                                                                                               | СМ                                                          | MR/HR                                                                                                                            | MR/HR                                                                                                     |
| 49 230       |                                      |                                                                                                                      |                                                             |                                                                                                                                  |                                                                                                           |
|              | 0<br>0<br>24<br>24<br>48<br>48<br>48 | 417,921219<br>417,921219<br>417,921219<br>71,273600<br>71,273600<br>71,273600<br>12,577911<br>12,577911<br>12,577911 | с.<br>5.<br>19.<br>9.<br>5.<br>19.<br>9.<br>5.<br>19.<br>9. | 9398,797490<br>7585,022280<br>7585,019350<br>1602,930500<br>1293,573660<br>1293,573670<br>282,863667<br>282,281618<br>228,281618 | 0,939880<br>0,758502<br>0,158502<br>0,160290<br>0,129357<br>0,129357<br>0,228287<br>0,0228287<br>0,022828 |
|              | 72.<br>72.<br>384.<br>384.<br>384.   | 2.636550<br>2.636550<br>2.636550<br>2.560856<br>0.560856<br>0.560856                                                 | 0.<br>5.<br>10,<br>5.<br>10,                                | 59,294435<br>47,851825<br>47,851807<br>17,613315<br>10,179204<br>10,179200                                                       | 0,005929<br>0,004785<br>0,004785<br>0,004785<br>0,001261<br>0,001018<br>0,001018                          |

|             |        |           | · ·     |            |           |
|-------------|--------|-----------|---------|------------|-----------|
|             |        |           |         |            |           |
|             |        |           |         | £, .       |           |
|             |        | 4 4 7 0   |         |            |           |
| TIEMPOS     |        | 1. 129.   |         |            | 00575     |
|             |        |           |         |            | 20010     |
| IRPADIACIÓN | FSPERA | ACTIVIDAD | ESPESOP | SUPERFICIE | A 1 METRO |
| HOPAS       | HCPAS  | MCI/GR    | См      | MB/HP      | MR/HP     |
|             |        |           |         |            |           |
| 49.000      |        |           |         |            |           |
|             | 2.     | 0.573684  | ø.      | 308,003075 | 0.030800  |
|             | ú.     | 2.573684  | 5.      | 26.897972  | 0.007690  |
|             | е.     | 9.573684  | 10.     | 25,897972  | 0.007690  |
|             | 24.    | 0.561627  | P.      | 301.530079 | 0.030153  |
|             | 24.    | 2,561627  | 5.      | 26.332684  | 0.002633  |
|             | 24.    | 0.551627  | 10.     | 26.332684  | 0.002633  |
|             | 40     | 0.549824  | 0.      | 295.193115 | 0.029519  |
|             | 02     | 3.549824  | 5.      | 25.779275  | 0,002578  |
|             | 48     | 9.549824  | 10.     | 25 779275  | 0 002578  |
|             | 72.    | 0.538269  | 0.      | 288.989330 | 0 028899  |
|             | 72.    | 0.538269  | 5.      | 25 237498  | a a02524  |
|             | 72.    | 0.538269  | 10      | 25 237498  | 0 000524  |
|             | 384.   | 0.408397  | 73      | 219 262529 | 0 021926  |
|             | 384.   | 0.408397  | 5       | 19 149242  | 0 001915  |
|             | 384.   | @ 4@8397  | 10.     | 19.148242  | 0.001915  |
|             |        |           |         |            |           |
|             |        | 1 - C     |         |            |           |

. .

|             |                                           |                                                                                                    |   | 1                                         |                                                                                                        |                                                                                              |   |
|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|---|-------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---|
|             |                                           |                                                                                                    |   | 1                                         |                                                                                                        |                                                                                              |   |
|             |                                           |                                                                                                    |   |                                           | · · · · ·                                                                                              |                                                                                              |   |
| TIE D       | 05                                        | 2. 129.                                                                                            |   | -                                         |                                                                                                        | DOSIS                                                                                        | 2 |
| JERADIACION | ESPPEA                                    | ACTIVIDAD                                                                                          | I | SPESOR                                    | SUPERFICIE                                                                                             | A 1 METRO                                                                                    |   |
| HORAS       | HORAS                                     | MCI/GP                                                                                             |   | CM                                        | MR/HR                                                                                                  | MR/HR                                                                                        |   |
| 49,000      | 0.<br>24.<br>24.<br>24.<br>24.<br>45.     | 113,970852<br>113,970862<br>413,970862<br>4,382667<br>4,382667<br>4,382667<br>7,374470<br>4,374470 | • | 0.<br>5,<br>19,<br>0.<br>5.<br>10.<br>0.  | 259305.822000<br>11193.025500<br>4750.903630<br>870.640579<br>37.581501<br>15.951549<br>851.992165     | 25,930582<br>1.119303<br>0.475090<br>0.687264<br>0.003758<br>0.001595<br>0.085199            |   |
|             | ля.<br>72.<br>72.<br>394.<br>364.<br>384. | 0,374470<br>0,374470<br>0,355500<br>0,355500<br>0,278148<br>0,278148<br>0,278148                   |   | 5.<br>10,<br>7,<br>5.<br>10,<br>5.<br>10, | 36,776536<br>15,609879<br>834,086685<br>36,003640<br>15,281622<br>632,839821<br>27,316750<br>11,594653 | 0,003578<br>0,001561<br>0,003609<br>0,003600<br>0,001528<br>0,063284<br>0,002732<br>0,001159 | ž |
|             |                                           |                                                                                                    |   |                                           |                                                                                                        |                                                                                              |   |
|             | 200                                       | e                                                                                                  |   |                                           |                                                                                                        |                                                                                              |   |
|             |                                           |                                                                                                    |   |                                           |                                                                                                        |                                                                                              |   |

1. 131.

TIEMPOS

DOSIS

| IPPADIACION | ESPERA | ACTIVIDAD | ESPESOR | SUPERFICIE    | A 1 METRO |
|-------------|--------|-----------|---------|---------------|-----------|
| PORAS       | HORAS  | MCI/GR    | См      | MR/MR         | MR/HR     |
|             |        |           |         |               |           |
| 48,000      |        |           | 1       |               |           |
|             | 9.     | 24,813194 | e .:    | 209839,000000 | 20,983900 |
|             | 8      | 24,813194 | 5.      | 420,029594    | 0.042003  |
|             | n.     | 24,813194 | 10.     | 415,640846    | 0.041564  |
|             | 24.    | 13,484428 | ø.      | 114034,447000 | 11.403445 |
|             | 24.    | 13.484428 | 5.      | 228,259966    | 0,022826  |
|             | 24.    | 13.484428 | 10.     | 225 874954    | 0.022587  |
|             | 48.    | 7.327948  | 0.      | 61970.631300  | 6,197063  |
|             | 48.    | 7.327948  | 5,      | 124.045097    | 0,012495  |
|             | 48.    | 7,327948  | 10.     | 122,748992    | 0.012275  |
|             | 72.    | 3.982284  | О.      | 33677,184100  | 3,367718  |
|             | 72.    | 3,992284  | 5.      | 67.410796     | 0,006741  |
|             | 72.    | 3,982284  | 1.0 .   | 66.706443     | 0,006671  |
|             | 384    | 0,001436  | А.      | 12,141822     | 0.001214  |
|             | 384.   | 0.001436  | 5.      | 0.024304      | 0,000002  |
|             | 384.   | P.001436  | 10.     | P. 424050     | 0,000002  |
| 7.131.     DOSTS       TIF"POS     2.131.     DOSTS       TPRADIACIO"     FSDEPA     ACTIVIDAD     ESPFSOP     SUDERFICIE     A 1 M       MERAS     MEI/GR     CM     MR/HP     MR/       MERAS     MEI/GR     CM     ME/HP     MR/       MERAS     MEI/GR     CM     ME/HP     MR/       MERAS     MERAS     MERAS     MERAS     MERAS                                                                                                                            |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| PIFUPOS     PROFRA     ACTIVIDAD     ESPFSOP     SUDERFICIE     A 1 M       MCRAQ     PODAS     MCI/GR     CM     MR/HP     MR/       MCRAQ     PODAS     MCI/GR     CM     MR/HP     MR/       MS.032     P.     189.498894     S.     14230.920300     41.       MS.033     PODAS     MCI/GR     CM     MR/HP     MR/       MS.0337     PODAS     MCI/GR     MR/HP     MR/       MS.0337     PODA     STATURA     STATURA     MR/HP     MR/       MS.0337     PODA     STATURA     STATURA     MR/     MR/     MR/       MS.0337     PODA     STATURA     STATURA     MR/     MR/     M                                                                                              |        |  |
| 2.131. DOSTS   TIF"FOS 2.131.   TPRADIACION FSDFRA   ACTIVIDAD ESPFSOR   SUPERFICIE A 1 M   MC233 POPAS   MC1/GP CM   MC233 POPAS   MC1/GP CM   MC233 POPAS   MC1/GP CM   MC233 POPAS   MC1/GP CM   MC1/GP MC1/GP   MC1/GP <td< th=""><th></th></td<>                                                                                                                                                                                                                                                                                                                                                  |        |  |
| PIF"POS     P. 131.     DOSTS       TPPADIACION     FSDFR1     ACTIVIDAD     ESPFSOP     SUPERFICIE     A 1 M       MCRAS     MCI/GP     CM     MR/HP     MR/       MCRAS     MCI/GP     CM     MR/HP     MR/       MCRAS     MCI/GP     CM     MR/HP     MR/       MCL     C     183,498804     5.     14230,920300     1.       MCL     C     183,498804     10.     13317.012600     1.       MCL     24.     2.464472     0.     5528.182310     0.       24.     2.464472     0.     194.304373     0.     181.826174     0.       24.     2.464472     0.     181.826174     0.     49.     1.339287     0.     3058.657000     0.       49.     1.339287     0.     195.592344     0.     195.952344     0.       48.     1.339287     10.     98.811218     0.     72.     2.72819     0.     1652.140999.7     0.                                                                                                         |        |  |
| TIFUPOS     2.131.     DOSTS       TPPADIACION     FSOFBA     ACTIVIDAD     ESPFSOP     SUPERFICIE     A 1 M       MTRAG     MORAS     MCI/GP     CM     MR/HP     MR/       42.033     0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       0.188.498804     5.114230.920300     1.       24.2.464472     0.5628.182310     0.       24.2.464472     5.194.304373     0.       24.2.464472     5.194.826174     0.       48.1.339287     0.3058.567800     0.       48.1.339287     0.1652.147992.0     0. |        |  |
| PIFUPOS     P. 13].     DOSTS       TPPADIACION     FSDFRA     ACTIVIDAD     ESPFSOP     SUDERFICIE     A 1 M       UCRAS     PORAS     MCI/GR     CM     MR/HP     MR/       49.002     0.     180.499804     7.     412210.039000     41.       0.     180.499804     7.     412210.039000     41.       0.     180.499804     7.     14230.920300     1.       0.     190.499804     10.     13317.012600     1.       0.     190.498024     5.     194.304373     0.       0.     190.498024     10.     13317.012600     1.       0.     190.498024     5.     194.304373     0.       0.     190.498024     10.     13317.012600     1.       24.     2.464472     0.     5628.192310     0.       24.     2.464472     10.     194.304373     0.       24.     2.464472     10.     196.826174     0.       48.     1.339287     0.     3658.567                                                                            |        |  |
| P. 13J.     DOSTS       TIF"POS     2. 13J.     DOSTS       TPPADIACION     FSDFRA     ACTIVIDAD     ESPFSOR     SUPERFICIE     A 1 M       WCRAG     HORAS     HCI/GR     CM     MR/HP     MR/       MCRAG     PORAS     HCI/GR     CM     MR/HP     MR/       A8.000     0.     189.498804     5.     14230.920300     41.       CM     189.498804     5.     14230.920300     1.       CM     2.464472     0.     161.26174     0.                                                                                             |        |  |
| TIF'F05   2.131.   DOSTS     TPPADIACION   FSDFRA   ACTIVIDAD   ESPFSOP   SUPERFICIE   A 1 M     WCRAG   PORAS   HCI/GR   CM   MR/HP   MR/     48.033   P.   189.498804   9.   412210.939000   41.     0.   189.498804   5.   14230.920300   1.     0.   189.498804   5.   14230.920300   1.     0.   199.498804   5.   14230.920300   1.     0.   199.498804   5.   14230.920300   1.     0.   199.498804   5.   14230.920300   1.     0.   199.498804   5.   14230.920300   1.     0.   199.498804   5.   14230.920300   1.     0.   199.498804   5.   194304373   0.     24.   2.464472   5.   194.304373   0.     24.   2.464472   10.   161.826174   0.     48.   1.339287   5.   195.592344   0.     48.   1.339287   10.   98.811218   0.                                                                                                                                                                                   |        |  |
| TIF**POS     2. 131.     DOSTS       TPPADIACION     FROFEN     ACTIVIDAD     ESPFSOR     SUDERFICIE     A 1 M       MCRAG     POPAS     MCI/GR     CM     MR/HP     MR/       MR.033     POPAS     MCI/GR     CM     MR/HP     MR/       MR.033     POPAS     MCI/GR     G.     412210.039000     41.       MR.033     POPAS     MCI/GR     G.     412210.039000     41.       MR.033     POPAS     MCI/GR     G.     41230.920300     1.       MR.033     POPAS     MCI/GR     G.     41230.920300     1.       MR.033     POPAS     MCI/GR     G.     41230.920300     1.       MR.033     POPAS     MCI/GR     G.     14230.920300     1.       MR.033     POPAS     MCI/GR     G.     14230.920300     1.       MR.033     POPAS     MCI/GR     G.     14230.920300     1.       MR.033     POPAS     MCI/GR     MCI/GR     MCI/GR     MCI/GR       MR                                                                        |        |  |
| TIFUPOS DOSTS   TPPADIACION PSOPRA ACTIVIDAD ESPFSOR SUPERFICIE A 1 M   UCRAS POPAS HCI/GR CM MR/HP MR/   49.033 P. 180.498804 9. 412210.039000 41.   0. 180.498804 5. 14230.920300 1.   0. 190.498804 10. 13317.012600 1.   0. 190.498804 10. 13317.012600 1.   0. 190.498804 10. 13317.012600 1.   0. 190.498804 10. 13317.012600 1.   0. 190.498804 10. 13317.012600 1.   0. 190.498804 10. 13317.012600 1.   0. 190.498804 10. 13317.012600 1.   0. 190.498804 10. 13317.012600 1.   0. 24. 2.464472 0. 5628.192310 0.   24. 2.464472 10. 181.826174 0.   49. 1.339287 5. 105.592344 0.   48. 1.339287 10. 98.811218 0.   72. C.727819 0. 1652.140992 0. </td <td></td>                                                                                                                                                                                                                                                        |        |  |
| TPRADIACION     FSOFRA     ACTIVIDAD     ESPFSOR     SUPERFICIE     A 1 M       MCRAS     MCI/GR     CM     MR/HP     MR/       49.033     MCI/GR     CM     MR/HP     MR/       49.0437     G     14230,920300     1     1       0.199.498804     10.199.49807     1.3317.012600     1     1       24.     2.464472     5.199.19210     0.     161.826174     0.       24.     2.464472     10.199.207     5.199.2344     0.     1.339287     0.195.592344     0.       48.     1.339287     10.99.811218     0.     72.2727819     0.1662.140992.0<                                                                        | DOCTO  |  |
| TpeADIACIon     FREFRA     ACTIVIDAD     ESPFSOR     SUDERFICIE     A 1 M       MCRAS     MCI/GR     CM     MR/HP     MR/       MS.033     MCI/GR     SUDERFICIE     A 1 M       MS.033     MCI/GR     CM     MR/HP     MR/       MS.033     MCI/GR     SUDERFICIE     A 1 M       MS.033     MCI/GR     SUDERFICIE     MS     MS       MS.039887     MCI/GR     SUDERFICIE     MS                                                                                        |        |  |
| HCRAS     HCL/GR     CM     MR/HP     HR/       49.033     0.     180.499804     0.     412210.039000     41.       0.     180.499804     0.     412210.039000     41.       0.     180.499804     5.     14230.920300     1.       0.     180.498804     5.     14230.920300     1.       0.     180.498804     5.     14230.920300     1.       0.     180.498804     5.     14230.920300     1.       0.     180.498804     5.     14230.920300     1.       0.     180.498804     5.     14230.920300     1.       0.     180.498804     5.     14230.920300     1.       0.     180.498804     5.     14230.920300     1.       0.     180.498804     10°.     13317.012600     1.       0.     1.2464472     5.     194.304373     0.       24.     2.4664472     10°.     161.826174     0.       48.     1.339287     0.     3058.5670800                                                                                  | ETRO   |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HP     |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |
| 6.   180.499804   9.   412210.039000   41.     0.   180.498804   5.   14230.920300   1.     0.   180.498804   10.   13317.012600   1.     0.   180.498804   10.   13317.012600   1.     24.   2.464472   0.   5.   194.304373   0.     24.   2.464472   5.   194.304373   0.     24.   2.464472   10.   181.826174   0.     24.   2.464472   10.   181.826174   0.     48.   1.339287   0.   3058.567080   0.     49.   1.339287   0.   195.592344   0.     48.   1.339287   10.   98.811218   0.     72.   0.727819   0.   1662.140992   0.                                                                                                                                                                                                                                                                                                                                                                                       |        |  |
| 0.   180.498804   5.   14230.920300   1.     0.   180.498804   10.   13317.012600   1.     24.   2.464472   0.   5628.182310   0.     24.   2.464472   5.   194.304373   0.     24.   2.464472   10.   181.826174   0.     24.   2.464472   10.   181.826174   0.     48.   1.339287   0.   3058.567080   0.     48.   1.339287   5.   105.592344   0.     48.   1.339287   10.   98.811218   0.     72.   0.727819   0.   1662.140992   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 221004 |  |
| 0.   190.498804   10.   13317.012600   1.     24.   2.464472   0.   5628.182310   0.     24.   2.464472   5.   194.304373   0.     24.   2.464472   10.   181.826174   0.     48.   1.339287   0.   3058.567080   0.     49.   1.339287   5.   10.5592344   0.     48.   1.339287   10.   98.811218   0.     72.   C.727819   0.   1662.140992   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 423092 |  |
| 24.   2.464472   0.   5628.182310   0.     24.   2.464472   5.   194.304373   0.     24.   2.464472   10.   181.826174   0.     48.   1.339287   0.   3058.57080   0.     49.   1.339287   5.   195.592344   0.     48.   1.339287   10.   98.811218   0.     72.   C.727819   0.   1652.140992   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 331701 |  |
| 24.   2.464472   5.   194.304373   0.     24.   2.464472   10.   161.826174   0.     48.   1.339287   0.   3058.567080   0.     49.   1.339287   5.   105.592344   0.     48.   1.339287   10.   98.811218   0.     72.   C.727819   0.   1652.140992   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 562818 |  |
| 24.   2,464472   10.   181.826174   0.     48.   1.339287   0.   3058.567080   0.     48.   1.339287   5.   105.592344   0.     48.   1.339287   10.   98.811218   0.     72.   C.727819   0.   1652.140992   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 019430 |  |
| 48   1.339287   0   3058.567080   0     48   1.339287   5   105.592344   0     48   1.339287   10   98.811218   0     72   C.727819   0   1662.140992   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 018183 |  |
| 48.   1.339287   5.   105.592344   0.     48.   1.339287   10.   98.811218   0.     72.   C.727819   0.   1662.140992   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 305857 |  |
| 48.   1.339287   10.   98.811218   0.     72.   C.727819   0.   1662.140992   0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 010559 |  |
| 72. C.727819 0. 1662.140992 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 009881 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 166214 |  |
| 77. <b>6.727819</b> 5. 57,382872 Ø.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 005738 |  |
| <sup>7</sup> <sup>2</sup> • <sup><i>a</i></sup> .727819 10. 53.697752 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 005370 |  |
| 384, Ø.000262 0. 0.599261 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000069 |  |
| 384. 3.003262 5. 0.020689 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000002 |  |
| 384. 0.000262 Ja. 0.019360 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000002 |  |

. .

|         |       |                   |            | ł            |           |  |
|---------|-------|-------------------|------------|--------------|-----------|--|
| -1      |       | Э, 131.           |            | 00515        |           |  |
|         | FEREN | 5 C T T T T D D D | FEDEROR    |              | A 1 METDO |  |
|         |       | AC . LAT . MO     | (COP COLOR | DODUST TO VO | A 1 - INU |  |
| HUBSE   | HUBTR | MCI/GR            | C ' *      | TRZHR        | MR/HR     |  |
|         |       |                   |            |              |           |  |
| A8, 390 |       | ,                 |            |              |           |  |
|         | ۴.    | 29,874467         | <i>Ch</i>  | 63911.026400 | 6.091103  |  |
|         | ÷.    | 29,874467         | 5.         | 315,785240   | 9,031579  |  |
|         | e -   | 29.874467         | 1.0 .      | 251,176769   | 0,025118  |  |
|         | 24.   | 29,286700         | Ø.         | 59712.628900 | 5,971263  |  |
|         | 24 .  | 29.286700         | . 5.       | 309,572308   | 0.030957  |  |
|         | 24.   | 29,286740         | 10.        | 246.234978   | 0.024623  |  |
|         | 48,   | 27,705307         | 0.         | 56488,326700 | 5,648833  |  |
|         | 4 R . | 27.705327         | 5.         | 292.856335   | 0.029286  |  |
|         | 48.   | 27.705307         | 1.0%       | 232,939030   | P.023294  |  |
|         | 72.   | 25,875235         | 0          | 52756,994100 | 5,275699  |  |
|         | 72.   | 25,875235         | 5.         | 273.511726   | 0.027351  |  |
|         | 72.   | 25,875235         | 19.        | 217,552258   | 0,021755  |  |
|         | 384.  | P.682359          | ° .        | 17702,454100 | 1.770245  |  |
|         | 384.  | 8.682359          | 5.         | 91,776055    | 0,009178  |  |
|         | 384   | P.682359          | 10.        | 72,999020    | e. 907300 |  |
|         |       |                   |            |              |           |  |
|         |       |                   |            |              |           |  |

FE DE ERRATAS

Pag. 4 y 47 dice conclusiones, debe decir conclusiones. Pag. 27 el valor de  $\Sigma$  para el Te<sup>127</sup> es 1.250.