00384

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS MATEMÁTICAS FACULTAD DE CIENCIAS

NÚCLEOS POR TRAYECTORIAS MONOCROMÁTICAS EN DIGRÁFICAS M-COLOREADAS

T E S I S

QUE PARA OBTENER EL GRADO ACADÉMICO DE

DOCTORA EN CIENCIAS

(MATEMÁTICAS)

PRESENTA:

MARÍA DEL ROCÍO/ROJAS MONROY

DIRECTORA DE TESIS: DRA. HORTENSIA GALEANA SÁNCHEZ

NOTA: APARECE UNI PUNTO

MEXICO, D.F.

OCTUBRE, 2002

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESTA TESIS NO SALE DE LA BIBLIOTECA

A mis dos grandes tesoros

Regina y Antonio

TESIS CON FALLA DE ORIGEN



Agradecimentos:

A la Dra. Hortensia Galeana Sánchez por su dirección en este trabajo, su paciencia, por compartir sus conocimientos conmigo y su valiosa amistad.

A la Universidad Autónoma del Estado de México por el apoyo brindado para la realización de los estudios de doctorado.

 $\ensuremath{\mathcal{A}}$ mis padres por estar conmigo en todo momento.

Índice General

	0.1	Introducción	3
1	Coi	nceptos Básicos	5
	1.1	Gráficas	5
	1.2	Digráficas	6
	1.3	Núcleos	9
	1.4	Núcleos por Trayectorias Monocromáticas	10
2	Dig	ráficas Pretransitivas y Quasitransitivas	15
	2.1	Digráficas Pretransitivas	16
	. 2.2	Núcleos y Digráficas Pretransitivas	17
	2.3	M-Orientaciones	28
	2.4	Núcleos, M-orientaciones y Orientaciones Pretransitivas	30
	2.5	Digráficas Quasitransitivas	45
	2.6	Núcleos y Digráficas Quasitransitivas	46
	2.7	Núcleos por Trayectorias Monocromáticas y Digráficas Quasitransitivas	60
	2.8	Problemas Abiertos	67
3	Tor	neos Coloreados	69

	3.1	Torneos 4-Coloreados	70
	3.2	Torneos 3-Coloreados	74
	3.3	Problemas Abiertos	89
4	Tor	rneos Bipartitos	91
	4.1	Torneos Bipartitos m -Coloreados con Ciclos de Longitud 4 Monocromáticos	93
	4.2	Otra Condición para la Existencia de Núcleo por Trayectorias Monocromáti-	
		cas en Torneos Bipartitos	102
	4.3	Problemas Abiertos	125
5	Ope	eraciones en Digráficas	127
	5.1	La Digráfica Subdivisión de una Digráfica m-Coloreada	128
		5.1.1 Relaciones de Equivalencia y Órdenes	129
		5.1.2 Núcleos por Trayectorias Monocromáticas de la Digráfica Subdivisión	
		de una Digráfica m-Coloreada.	132
	5.2	Una Generalización de la Digráfica Subdivisión de una Digráfica m-Coloreada	ı 144
	5.3	La Digráfica $R'(D)$	148
	5.4	La Digráfica Media de una Digráfica m-Coloreada	150
	5.5	La Digráfica Total de una Digráfica m -Coloreada	157
	5.6	Extensiones de Digráficas m-Coloreadas	158
	N:1	5.6.1 Sistemas y Extensiones	159
-	.**	5.6.2 Extensiones y Núcleos por Trayectorias Monocromáticas	161
	5.7	Problemas Abiertos	180
	Refe	erencias	181

0.1 Introducción

Si una digráfica D tiene sus flechas coloreadas y se han empleado m colores, diremos que es una digráfica m—coloreada. Un conjunto N de vértices de una digráfica D m—coloreada es un núcleo por trayectorias monocromáticas si entre los vértices del conjunto no existen trayectorias dirigidas monocromáticas y desde cualquier vértice v de D que no esté en N existe una trayectoria dirigida monocromática hacia algún vértice de N. En este trabajo presentamos varios resultados sobre la existencia de núcleos por trayectorias monocromáticas en ciertas digráficas, la mayor parte de éstos es sobre digráficas finitas pero algunos resultados incluyen digráficas infinitas. Los conceptos básicos de gráfica y digráficas que utilizamos a lo largo del trabajo se encuentran en el Capítulo 1.

El concepto de núcleo por trayectorias monocromáticas es una generalización del concepto de núcleo introducido por Von Neumann y Morgenstern [32] en el contexto de Teoría de Juegos. Un núcleo N en una digráfica D es un conjunto independiente de vértices de D tal que para cualquier vértice $v \in V(D) \setminus N$ existe en D una flecha desde v hacia algún vértice de N. Una digráfica es núcleo perfecta si toda subdigráfica inducida tiene núcleo. Con respecto a esto uno de los problemas que se estudian en la actualidad es el de establecer condiciones suficientes para que exista núcleo en una digráfica, entre los trabajos realizados destacan los hechos por Richardson [33, 34], Duchet y Meyniel [12], Duchet [9, 11], Galeana S. [13], así como Galeana S. y Neumann L. [19, 20]. Éstos han dado lugar al desarrollo de muchos resultados más.

En [35], Sands, Sauer y Woodrow demuestran que para una digráfica 2-coloreada sin trayectorias monocromáticas infinitas exteriores siempre existe un conjunto de vértices tales que cualesquiera 2 de ellos no están conectados por medio de trayectorias dirigidas monocromáticas, y desde cualquier vértice fuera del conjunto siempre existe alguna trayectoria dirigida monocromática hacia algún vértice del conjunto. En este mismo artículo prueban en particular que todo torneo 2-coloreado T tiene un vértice v tal que desde cualquier otro vértice v de v0 existe una trayectoria dirigida monocromática hacia v0. También plantean el siguiente problema: Sea v0 un torneo v0 m-coloreado tal que no tiene ciclos dirigidos de longitud 3 tricolores. v1 tiene un vértice que satisface lo anterior?

En [31], S. Minggang prueba que si en el problema planteado por Sands, Sauer y Woodrow se pide además que no tenga subtorneos transitivos tricolores entonces existe tal vértice, además muestra que ésto es lo mejor posible para $m \geq 5$.

Más adelante en [15], H. Galeana Sánchez introduce el concepto de núcleo por

trayectorias monocromáticas y establece condiciones suficientes para la existencia de núcleos por trayectorias monocromáticas en torneos m-coloreados. Otros trabajos realizados por H. Galeana Sánchez sobre la existencia de núcleos por trayectorias monocromáticas en ciertas digráficas m-coloreadas son [16, 17, 18, 25].

Existe una relación muy estrecha entre los conceptos de núcleo y núcleo por trayectorias monocromáticas y está dada por la cerradura transitiva de una digráfica m-coloreada. Dada una digráfica m-coloreada D, se define la cerradura transitiva de D, denotada por $\mathfrak{C}(D)$ como la digráfica tal que: $V(\mathfrak{C}(D)) = V(D)$ y $A(\mathfrak{C}(D)) = A(D) \cup \{(u,v) \text{ de color } i \text{ / existe en } D \text{ una trayectoria dirigida de color } i \text{ desde } u \text{ hacia } v\}$. No es difícil ver que para cualquier color i la subdigráfica de $\mathfrak{C}(D)$ inducida por todas las flechas de color i es una digráfica transitiva. También tenemos que D tiene núcleo por trayectorias monocromáticas si y sólo si $\mathfrak{C}(D)$ tiene núcleo.

Tomando en cuenta lo anterior el resultado de Sands, Sauer y Woodrow puede establecerse como sigue: si D es una digráfica que es unión de 2 digráficas transitivas tales que ninguna de ellas tiene trayectorias infinitas exteriores, entonces tiene núcleo. En el Capítulo 2 damos generalizaciones de este resultado considerando digráficas que son unión de una digráfica pretransitiva derecha y una digráfica pretransitiva izquierda así como digráficas que son unión de digráficas quasitransitivas. En este capítulo también incluímos un resultado sobre gráficas que se pueden orientar como una digráfica pretransitiva derecha o izquierda y un resultado más sobre núcleos por trayectorias monocromáticas de digráficas quasitransitivas.

En el Capítulo 3 mostramos que el problema planteado por Sands, Sauer y Woodrow no es válido para m=4, y probamos que si T es un torneo 3—coloreado tal que todo ciclo dirigido de longitud 3 está coloreado con 2 colores y para cada vértice el número de colores asignados a las flechas que inciden en él es a lo más 2 entonces T tiene núcleo por trayectorias monocromáticas.

En el Capítulo 4 establecemos condiciones suficientes para la existencia de núcleos por trayectorias monocromáticas en torneos bipartitos.

En el Capítulo 5 presentamos varias operaciones en digráficas m—coloreadas que preservan la propiedad de poseer núcleo por trayectorias monocromáticas aunque en algunas de ellas la digráfica resultante siempre tiene núcleo por trayectorias monocromáticas independientemente de que la digráfica original tenga. En este mismo capítulo definimos una extensión de digráficas m—coloreadas que preserva la existencia de núcleos por trayectorias monocromáticas, esta extensión está basada en la definida por H. Galeana Sánchez y V. Neumann Lara en [21] para digráficas núcleo perfectas.

Capítulo 1

Conceptos Básicos

En esta parte presentamos los conceptos y resultados básicos de Gráficas, Núcleos y Núcleos por Trayectorias Monocromáticas que emplearemos a lo largo del trabajo. Para algunos teoremas no hemos incluido su demostración pero puede consultarse [4].

1.1 Gráficas

Definición 1.1 Una gráfica G es una pareja (V(G), A(G)) tal que V(G) es un conjunto no vacío de elementos llamados vértices y A(G) es un conjunto de parejas no ordenadas de vértices distintos llamadas aristas. Decimos que una gráfica es de orden n si tiene n vértices.

Definición 1.2 Si a es una arista de G y a = (u, v) con u y v vértices de G decimos que u y v son los extremos de a, que u y v son adyacentes, y que u y v inciden en a.

Definición 1.3 Una gráfica completa G es una gráfica tal que cualesquiera 2 vértices de G son adyacentes.

Definición 1.4 Una subgráfica H de una gráfica G, es una gráfica tal que $V(H) \subseteq V(G)$ y $A(H) \subseteq A(G)$.

Definición 1.5 Una subgráfica H de una gráfica G es una subgráfica generadora de G si V(H) = V(G).

Definición 1.6 Sea G una gráfica, si $B \subseteq A(G)$, definimos la subgráfica de G inducida por B como la gráfica que tiene como vértices a los extremos de las aristas en B y a B como conjunto de aristas.

Definición 1.7 Sea G una gráfica, si $U \subseteq V(G)$, definimos la subgráfica de G inducida por U como la gráfica que tiene a U como conjunto de vértices y como conjunto de aristas a todas las aristas de G que tienen ambos extremos en U.

Comúnmente nos referiremos a las subgráficas inducidas por un conjunto de vértices simplemente como subgráficas inducidas, en caso de que hagamos referencia a una subgráfica inducida por un conjunto de aristas así lo especificaremos.

Definición 1.8 Sea G una gráfica, un conjunto $U \subseteq V(G)$ decimos que es un conjunto independiente si cualesquiera 2 vértices de U no son adyacentes en G.

Definición 1.9 Una gráfica G es una gráfica bipartita si existe una bipartición $\{U,W\}$ de los vértices de G tal que cualquier arista de G tiene un extremo en U y otro en W.

El siguiente teorema caracteriza a las gráficas bipartitas y es de mucha utilidad en Teoría de Gráficas.

Teorema 1.10 Si G es una gráfica bipartita entonces no tiene ciclos de longitud impar.

1.2 Digráficas

Definición 1.11 Una digráfica D es una pareja (V(D), A(D)) tal que V(D) es un conjunto no vacío de elementos llamados **vértices** y A(D) es un conjunto de parejas ordenadas de vértices distintos llamadas **flechas**. Decimos que una digráfica es de **orden** n si tiene n vértices.

Definición 1.12 Si f es una flecha de D y f = (u, v) con u y v vértices de D decimos que u y v son los extremos de f; u el extremo inicial de f y v el extremo final. También decimos que f se dirige de u a v y que u es adyacente hacia v y v es adyacente desde u.

Definición 1.13 Si D es una digráfica y f = (u, v) es una flecha de D, decimos que f es una flecha simétrica si (v, u) también es una flecha de D.

Definición 1.14 Si D es una digráfica y f = (u, v) es una flecha de D, decimos que f es una flecha asimétrica si (v, u) no es flecha de D.

Definición 1.15 Dada una digráfica D y v un vértice de D, definimos el ingrado o grado interior de v en D como el número de flechas de D que tienen a v como extremo final. Denotamos por $gr_D^-(v)$ al ingrado de v en la digráfica D, en el caso de que sólo trabajemos con una digráfica podemos omitir el subíndice en la notación.

Definición 1.16 Dada una digráfica D y v un vértice de D, definimos el exgrado o grado exterior de v en D como el número de flechas de D que tienen a v como extremo inicial. Denotamos por $gr_D^+(v)$ al exgrado de v en la digráfica D, en el caso de que sólo trabajemos con una digráfica podemos omitir el subíndice en la notación.

Definición 1.17 Decimos que una digráfica D es una digráfica completa si entre cualquier par de vértices distintos de D existe alguna flecha.

Definición 1.18 Una subdigráfica H de una digráfica D es una digráfica tal que $V(H) \subseteq V(D)$ y $A(H) \subseteq A(D)$. Decimos que H es una subdigráfica propia si $V(H) \subsetneq V(D)$ o $A(H) \subsetneq A(D)$.

Definición 1.19 Una subdigráfica H de una digráfica D es una subdigráfica generadora de D si V(H) = V(D).

Definición 1.20 Sea D una digráfica, si $B \subseteq A(D)$, definimos la subdigráfica de D inducida por B como la digráfica que tiene como vértices a los extremos de las flechas en B y a B como conjunto de flechas.

Definición 1.21 Sea D una digráfica, si $U \subseteq V(G)$, definimos la subdigráfica de D inducida por U como la digráfica que tiene a U como conjunto de vértices y como conjunto de flechas a todas las flechas de D que tienen ambos extremos en U. Si $U \subseteq V(D)$ denotamos por D[U] a la subdigráfica de D inducida por U.

Al igual que en gráficas, comúnmente nos referiremos a las subdigráficas inducidas por un conjunto de vértices simplemente como subdigráficas inducidas, en caso de que hagamos referencia a una subdigráfica inducida por un conjunto de flechas así lo especificaremos.

Definición 1.22 Dada una digráfica D definimos su parte simétrica denotada por Sym(D), como la subdigráfica generadora de D cuyo conjunto de flechas es el conjunto de flechas simétricas de D.

Definición 1.23 Dada una digráfica D definimos su parte asimétrica denotada por Asym(D) como la subdigráfica generadora de D cuyo conjunto de flechas es el conjunto de flechas asimétricas de D:

TESIS CON FALLA DE ORIGEN Definición 1.24 Decimos que una digráfica D es una digráfica simétrica si todas sus flechas son flechas simétricas.

Definición 1.25 Decimos que una digráfica D es una digráfica asimétrica si todas sus flechas son flechas asimétricas.

Definición 1.26 Un camino en una digráfica D es una sucesión de vertices $(u_1, u_2, u_3, ..., u_n)$ tal que para cada $i \in \{1, 2, ..., n-1\}$ se tiene $(u_i, u_{i+1}) \in A(D)$ o $(u_{i+1}, u_i) \in A(D)$. En este caso decimos que u_1 y u_n son los extremos del camino y que el camino es un u_1u_{n+1} -camino de la digráfica.

Definición 1.27 Una trayectoria en una digráfica es un camino $(u_1, u_2, u_3, ..., u_n)$ tal que $u_i \neq u_j$ si $i \neq j$.

Definición 1.28 Un camino cerrado en una digráfica es un camino $(u_1, u_2, u_3, ..., u_n)$ tal que $u_1 = u_n$.

Definición 1.29 Un ciclo en una digráfica es un camino cerrado $(u_1, u_2, u_3, ..., u_n, u_1)$ tal que $u_i \neq u_j$ si $i \neq j$.

Definición 1.30 Un camino dirigido en una digráfica D es un camino $(u_1, u_2, u_3, ..., u_n)$ tal que para cada $i \in \{1, 2, ..., n-1\}$ se tiene $(u_i, u_{i+1}) \in A(D)$.

Definición 1.31 Una trayectoria dirigida en una digráfica es un camino dirigido que además es una trayectoria.

Definición 1.32 Un camino dirigido cerrado en una digráfica es un camino dirigido que además es un camino cerrado.

Definición 1.33 Un ciclo dirigido en una digráfica es un camino cerrado dirigido que además es un ciclo. Denotamos por C_n al ciclo dirigido que consta de n vértices.

Definición 1.34 Dada una digráfica D y $C = (u_0, u_1, ..., u_n)$ un camino en D decimos que n es la longitud de C y la denotamos por l(C).

Notación 1.35 Si $C = (u_1, ..., u_n)$ es un camino enuna digráfica D, si $1 \le i < j \le n$ denotamos por (u_i, C, u_j) al $u_i u_j$ -camino contenido en C, es decir $(u_i, C, u_j) = (u_i, u_{i+1}, ..., u_{j-1}, u_j)$.

Los siguientes teoremas son resultados básicos de digráficas que empleraremos a lo largo de la tesis.

Teorema 1.36 Todo uv—camino dirigido en una digráfica contiene una uv—trayectoria dirigida.

Teorema 1.37 Todo camino dirigido cerrado en una digráfica contiene un ciclo dirigido.

Teorema 1.38 Todo camino cerrado dirigido de longitud impar en una digráfica contiene un ciclo dirigido de longitud impar.

Definición 1.39 Una digráfica D es una digráfica bipartita si existe una bipartición $\{U,W\}$ de los vértices de D tal que cualquier flecha de D tiene un extremo en U y otro en W.

Teorema 1.40 Si D es una digráfica bipartita entonces no tiene ciclos de longitud impar.

1.3 Núcleos

Definición 1.41 Sea D una digráfica $y \ N \subseteq V(D)$, N es un conjunto independiente de la digráfica D si para cualesquiera $u \ y \ v$ elementos de N no existen flechas entre ellos en D.

Definición 1.42 Sea D una digráfica $y \ N \subseteq V(D)$, N es un conjunto absorbente de la digráfica D si para cualquier $u \in V(D) \setminus N$ tenemos que u es adyacente hacia algún elemento de N.

Definición 1.43 Sea D una digráfica $y N \subseteq V(D)$, N es un núcleo en la digráfica D si es un conjunto independiente y absorbente de D.

Definición 1.44 Una digráfica D es llamada una digráfica núcleo perfecta si toda subdigráfica inducida de D tiene núcleo.

Definición 1.45 Una digráfica D es llamada una digráfica núcleo imperfecta critica si no tiene núcleo pero toda subdigráfica propia de D sí tiene núcleo.

No todas las digráficas tienen núcleo, por ejemplo los ciclos dirigidos de longitud impar no tienen núcleo. El siguiente teorema dado por Duchet en 1980 es uno de los resultados clásicos sobre la existencia de núcleos en digráficas y nos es de mucha utilidad en los capítulos posteriores.

TESIS CON FALLA DE ORIGEN Teorema 1.46 [9] Si una digráfica satisface que todo ciclo dirigido tiene al menos una flecha simétrica entonces es núcleo perfecta.

El siguiente teorema lo usaremos a lo largo de la tesis para la construcción de ejemplos de digráficas que no tienen núcleo.

Teorema 1.47 Sean \hat{D}_1 y \hat{D}_2 digráficas tales que $V\left(\hat{D}_1\right) \cap V\left(\hat{D}_2\right) = \phi$ y \hat{D}_2 no tiene núcleo. Sea \hat{D} una digráfica tal que: $V\left(\hat{D}\right) = V\left(\hat{D}_1\right) \cup V\left(\hat{D}_2\right) \text{ y } A\left(\hat{D}\right) = A\left(\hat{D}_1\right) \cup A\left(\hat{D}_2\right) \cup \hat{A} \text{ donde}$ $\hat{A} \subseteq \left\{(u,v) \mid u \in V\left(\hat{D}_1\right) \text{ y } v \in V\left(\hat{D}_2\right)\right\}$. Entonces \hat{D} no tiene núcleo.

Demostración. Procederemos por contradicción. Supongamos que $N \subset V\left(\hat{D}\right)$ es un núcleo de \hat{D} . Como desde los vértices de \hat{D}_2 no hay flechas hacia los vértices de \hat{D}_1 y N es un conjunto absorbente, entonces $N \cap V\left(\hat{D}_2\right) \neq \phi$ y $N \cap V\left(\hat{D}_2\right)$ debe ser un conjunto absorbente en \hat{D}_2 . Como $N \cap V\left(\hat{D}_2\right) \subset N$ y N es un conjunto independiente de \hat{D} entonces $N \cap V\left(\hat{D}_2\right)$ es un conjunto independiente de \hat{D}_2 . Por lo tanto $N \cap V\left(\hat{D}_2\right)$ es un núcleo de \hat{D}_2 , pero esto es una contradicción pues por hipótesis \hat{D}_2 no tiene núcleo. Concluímos que \hat{D} no tiene núcleo.

1.4 Núcleos por Trayectorias Monocromáticas

Una generalización del concepto de núcleo es el concepto de núcleo por trayectorias monocromáticas dado por H. Galeana Sánchez [15], en donde se consideran digráficas donde a cada flecha se le ha asignado un color, si para las flechas de una digráfica D se han empleado m colores diremos que D es una digráfica m—coloreada.

Definición 1:48 Sea D una digráfica m—coloreada, una trayectoria dirigida monocromática en una digráfica D es una trayectoria dirigida tal que todas sus flechas tienen asignado el mismo color.

Definición 1.49 Sea D una digráfica m-coloreada $y \ N \subseteq V \ (D)$, N es un **conjunto** independiente por trayectorias monocromáticas de la digráfica D si para cualesquiera $u \ y \ v$ elementos de N no existen en D trayectorias dirigidas monocromáticas entre $u \ y \ v$.

Definición 1.50 Sea D una digráfica m-coloreada y $N \subseteq V(D)$, N es un conjunto absorbente por trayectorias monocromáticas de la digráfica D si para cualquier

MANA DI LUM

 $u \in V(D) \setminus N$ tenemos que existe una uv-trayectoria dirigida monocromática para algún $v \in N$.

Definición 1.51 Sea D una digráfica m-coloreada y $N \subseteq V(D)$, N es un núcleo por trayectorias monocromáticas en la digráfica D si es un conjunto independiente por trayectorias monocromáticas y absorbente por trayectorias monocromáticas de D.

El concepto de núcleo por trayectorias monocromáticas es una generalización del concepto de núcleo ya que a cualquier digráfica podemos asignarle a cada flecha un color diferente y entonces un conjunto de vértices es un núcleo de la digráfica si y sólo si es un núcleo por trayectorias monocromáticas.

Notemos que la definición de digráfica no permite que existan dos flechas o más con los mismos extremos y en la misma dirección, en una multidigráfica es posible tener este tipo de flechas llamadas flechas múltiples.

Existe una relación muy estrecha entre los conceptos de núcleo y núcleo por trayectorias monocromáticas, esta relación está dada mediante el concepto de cerradura transitiva de una digráfica coloreada.

Definición 1.52 Sea D una digráfica m-coloreada, la cerradura transitiva de D, denotada por $\mathfrak{C}(D)$, se define como la siguiente multidigráfica:

$$V(\mathfrak{C}(D)) = V(D) y$$

 $A(\mathfrak{C}(D)) = A(D) \cup \{(u,v) \text{ con color } i \text{ / existe una } uv\text{-trayectoria dirigida monocromática de color } i \text{ en } D\}.$

A continuación demostramos algunas propiedades de la cerradura transitiva de una digráfica coloreada.

Teorema 1.53 Si D es una digráfica m-coloreada y $\mathfrak{C}(D)$ la cerradura transitiva de D entonces $\mathfrak{C}(D)$ es transitiva por colores, es decir si en $\mathfrak{C}(D)$ existen flechas de color i de u a v y de v a w entonces existe flecha de color i de u a w. Más aún $\mathfrak{C}(\mathfrak{C}(D)) = \mathfrak{C}(D)$.

Demostración. Supongamos que en $\mathfrak{C}(D)$ existen flechas de color i de u a v y de v a w entonces por la definición de cerradura transitiva, en D existen T_1 y T_2 trayectorias dirigidas de color i de u a v y de v a w respectivamente, la unión de estas dos trayectorias es un camino dirigido de color i de u a w el cual por el Teorema 1.36 contiene una uw—trayectoria dirigida y es de color i, esto implica que en $\mathfrak{C}(D)$ existe una flecha de color i de u a w. Por lo tanto $\mathfrak{C}(D)$ es transitiva por colores.

Ahora para demostrar que $\mathfrak{C}(\mathfrak{C}(D)) = \mathfrak{C}(D)$, basta con probar que si existe alguna uv-trayectoria dirigida T monocromática de color i en $\mathfrak{C}(D)$ entonces existe una flecha de color i de u a v en $\mathfrak{C}(D)$. Procederemos por inducción sobre l(T) la longitud de la trayectoria. Si l(T) = 2, el resultado es precisamente la propiedad de ser transitiva por colores. Supongamos que el resultado se cumple si l(T) = n, y probémoslo ahora para l(T) = n + 1. Si $T = (u = z_0, z_1, ..., z_n, z_{n+1} = v)$, entonces $T' = (u = z_0, z_1, ..., z_n)$, es una uz_n -trayectoria dirigida monocromática de color i en $\mathfrak{C}(D)$ de longitud n, por hipótesis de inducción existe una flecha de color i de u a z_n en $\mathfrak{C}(D)$. Como $\mathfrak{C}(D)$ es transitiva por colores y existen flechas de color i de u a z_n y de z_n a v entonces en $\mathfrak{C}(D)$ existe una flecha de color i de u a v. Por lo tanto $\mathfrak{C}(\mathfrak{C}(D)) = \mathfrak{C}(D)$.

Finalmente el siguiente teorema muestra la relación entre núcleos y núcleos por trayectorias monocromáticas.

Teorema 1.54 Sea D una digráfica m-coloreada, D tiene núcleo por trayectorias monocromáticas si y sólo si $\mathfrak{C}(D)$ tiene núcleo. Más aún el número de núcleos por trayectorias monocromáticas de D es iqual al número de núcleos de $\mathfrak{C}(D)$.

Demostración. Sea $N \subseteq V(D)$ un núcleo por trayectorias monocromáticas de D. Como $V(D) = V(\mathfrak{C}(D))$ entonces $N \subseteq V(\mathfrak{C}(D))$. Probaremos que N es núcleo de $\mathfrak{C}(D)$.

- 1. N es independiente en $\mathfrak{C}(D)$. Sean $u, v \in N$, supongamos que $(u, v) \in A(\mathfrak{C}(D))$, por definición de la cerradura transitiva tenemos que en D existe alguna uv-trayectoria dirigida monocromática pero esto no es posible ya que N es independiente por trayectorias monocromáticas en D por ser N núcleo por trayectorias
 monocromáticas de D. Por lo tanto entre los elementos de N no existen flechas
 en $\mathfrak{C}(D)$, es decir N es un conjunto independiente en $\mathfrak{C}(D)$.
- 2. N es absorbente en $\mathfrak{C}(D)$. Sea $u \in V(\mathfrak{C}(D)) \setminus N$. Como $V(\mathfrak{C}(D)) = V(D)$ y N es núcleo por trayectorias monocromáticas de D entonces existe en D una uv-trayectoria dirigida monocromática con $v \in N$. Por la definición de la cerradura transitiva hay flecha desde u hacia v en $\mathfrak{C}(D)$ de color i. Por lo tanto N es absorbente en $\mathfrak{C}(D)$.

Por 1 y 2 N es núcleo de $\mathfrak{C}(D)$.

Ahora sea $N \subseteq V\left(\mathfrak{C}(D)\right)$ un núcleo de $\mathfrak{C}(D)$. Como $V\left(D\right) = V\left(\mathfrak{C}(D)\right)$ entonces $N \subseteq V\left(D\right)$. Probaremos que N es núcleo por trayectorias monocromáticas de D.

- 3. N es independiente por trayectorias monocromáticas en D. Sean $u, v \in N$, supongamos que en D existe alguna uv—trayectoria dirigida monocromática, por definición de la cerradura transitiva tenemos que $(u, v) \in A(\mathfrak{C}(D))$, pero esto no es posible ya que N es independiente en $\mathfrak{C}(D)$ por ser N núcleo de $\mathfrak{C}(D)$. Por lo tanto entre los elementos de N no existen trayectorias dirigidas monocromáticas en D, es decir N es un conjunto independiente por trayectorias monocromáticas en D.
 - 4. N es absorbente por trayectorias monocromáticas en D. Sea $u \in V(D) \setminus N$. Como $V(\mathfrak{C}(D)) = V(D)$ y N es núcleo de $\mathfrak{C}(D)$ entonces existe en $\mathfrak{C}(D)$ una flecha desde u hacia v con $v \in N$. Por la definición de la cerradura transitiva existe una uv-trayectoria dirigida monocromática en D. Por lo tanto N es absorbente por trayectorias monocromáticas en D.

Por 3 y 4 N es núcleo por trayectorias monocromáticas de D.

Por lo anterior todo núcleo por trayectorias monocromáticas de D es un núcleo de $\mathfrak{C}(D)$ y todo núcleo de $\mathfrak{C}(D)$ es núcleo por trayectorias monocromáticas de D, por lo tanto el número de núcleos por trayectorias monocromáticas de D es igual al número de núcleos de $\mathfrak{C}(D)$.

El siguiente teorema es análogo al Teorema 1.47 para núcleos por trayectorias monocromáticas y será útil para la construcción de ejemplos de digráficas coloreadas que no tienen núcleo por trayectorias monocromáticas.

Teorema 1.55 Sean \hat{D}_1 y \hat{D}_2 digráficas coloreadas tales que $V\left(\hat{D}_1\right) \cap V\left(\hat{D}_2\right) = \phi$ y \hat{D}_2 no tiene núcleo por trayectorias monocromáticas. Sea \hat{D} una digráfica coloreada tal que:

(i)
$$V\left(\hat{D}\right) = V\left(\hat{D}_1\right) \cup V\left(\hat{D}_2\right)$$
,

$$(ii) \ A\left(\hat{D}\right) = A\left(\hat{D}_1\right) \cup A\left(\hat{D}_2\right) \cup \hat{A} \ donde \ \hat{A} \subseteq \left\{(u,v) \ / \ u \in V\left(\hat{D}_1\right), \ y \ v \in V\left(\hat{D}_2\right)\right\},$$

- (iii) si $(u, v) \in A(\hat{D}_i)$ para alguna $i \in \{1, 2\}$ entonces el color de la flecha (u, v) en \hat{D} es el mismo que tiene asignada en \hat{D}_i y
- (iv) las flechas en \hat{A} están coloreadas en forma indistinta.

Entonces \hat{D} no tiene núcleo por trayectorias monocromáticas.

Demostración. Procederemos por contradicción. Supongamos que $N \subset V\left(\hat{D}\right)$ es un núcleo por trayectorias monocromáticas de \hat{D} . Como desde los vértices de \hat{D}_2

no hay flechas hacia los vértices de \hat{D}_1 entonces desde los vértices de \hat{D}_2 no hay trayectorias dirigidas monocromáticas hacia los vértices de \hat{D}_1 , como además N es un conjunto absorbente por trayectorias monocromáticas, entonces $N \cap V\left(\hat{D}_2\right) \neq \phi$ y $N \cap V\left(\hat{D}_2\right)$ debe ser un conjunto absorbente por trayectorias monocromáticas en \hat{D}_2 . Como $N \cap V\left(\hat{D}_2\right) \subset N$ y N es un conjunto independiente por trayectorias monocromáticas de \hat{D} entonces $N \cap V\left(\hat{D}_2\right)$ es un conjunto independiente por trayectorias monocromáticas de \hat{D}_2 . Por lo tanto $N \cap V\left(\hat{D}_2\right)$ es un núcleo por trayectorias monocromáticas de \hat{D}_2 , pero esto es una contradicción pues por hipótesis \hat{D}_2 no tiene núcleo por trayectorias monocromáticas. Concluímos que \hat{D} no tiene núcleo por trayectorias monocromáticas.

Algunas de las condiciones que se presentan en este trabajo para que una digráfica coloreada tenga núcleo por trayectorias monocromáticas se refieren a que en la digráfica ciertas subdigráficas tengan una coloración especial a la que llamaremos casimonocromática y que definimos a contiuación.

Definición 1.56 Sea D una digráfica m-coloreada, decimos que D es casimonocromática si todas sus flechas son del mismo color excepto a lo más una.

Capítulo 2

Digráficas Pretransitivas y Quasitransitivas

En este capítulo consideramos digráficas posiblemente infinitas. Sands, Sauer y Woodrow, demuestran en [35]: una digráfica que es unión de 2 digráficas transitivas tales que en ninguna de ellas existen trayectorias infinitas exteriores tiene núcleo. En este capítulo, con respecto a digráficas pretransitivas, demostramos una generalización de este resultado: si D es una digráfica que es unión de una digráfica pretransitiva derecha con una pretransitiva izquierda tal que en ninguna de ellas existen trayectorias infinitas exteriores, entonces D tiene núcleo.

Por otro lado usando la técnica de Sands, Sauer y Woodrow en el resultado mencionado antes, C. Champetier demuestra en [8] que si G es una gráfica de comparabilidad (gráficas que tienen alguna orientación transitiva) entonces toda orientación de G donde todo triángulo dirigido tiene al menos 2 flechas simétricas tiene núcleo, aquí demostramos un resultado similar para gráficas infinitas: si una gráfica G tiene alguna orientación pretransitiva derecha o izquierda que no tenga trayectorias infinitas exteriores ni interiores entonces toda orientación de G donde todo triángulo dirigido tiene al menos 2 flechas simétricas tiene núcleo. También hacemos notar que este resultado para el caso finito incluye gráficas que no son perfectas.

Con respecto a digráficas quasitransitivas, también demostramos una generalización del resultado de Sands, Sauer y Woodrow: si D es una digráfica donde todo triángulo dirigido tiene al menos 2 flechas simétricas y es unión de 2 digráficas quasitransitivas entonces D tiene núcleo. También incluimos un resultado sobre la existencia de núcleos por trayectorias monocromáticas en digráficas quasitransitivas coloreadas donde todo triángulo dirigido es monocromático.

2.1 Digráficas Pretransitivas

Definición 2.1 Una digráfica D es transitiva si para cualesquiera u, v, w vértices de D tales que $(u, v) \in A(D)$ y $(v, w) \in A(D)$ se tiene que $(u, w) \in A(D)$.

Generalizaciones de este concepto son los de digráfica pretransitiva derecha y pretransitiva izquierda, conceptos dados por P. Duchet [9].

Definición 2.2 (P. Duchet [9]). Una digráfica D es llamada pretransitiva derecha (resp. pretransitiva izquierda) si cualquier subconjunto no vacío B de V(D) posee un vértice t(B) = b tal que: $(x,b) \in A(D)$ $y(b,y) \in A(D)$ implica $(x,y) \in A(D)$ o $(y,b) \in A(D)$ (resp. $(x,b) \in A(D)$ $y(b,y) \in A(D)$ implica $(x,y) \in A(D)$ o $(b,x) \in A(D)$).

Claramente tomando $B = \{b\}$ para cada $b \in V(D)$ (tomando todos los posibles subconjuntos de un solo elemento de V(D)) en la definición anterior obtenemos que ésta es equivalente a la Definición 2.3 (resp. a la definición 2.4) que damos en seguida. Por razones técnicas usaremos a lo largo del capítulo las definiciones 2.3 y 2.4.

Definición 2.3 Una digráfica D es pretransitiva derecha si para cualesquiera u, v, w vértices de D tales que $(u, v) \in A(D)$ $y(v, w) \in A(D)$ implica $(u, w) \in A(D)$ o $(w, v) \in A(D)$.

Definición 2.4 Una digráfica D es pretransitiva izquierda si para cualesquiera u, v, w vértices de D tales que $(u, v) \in A(D)$ $y(v, w) \in A(D)$ implica $(u, w) \in A(D)$ o $(v, u) \in A(D)$.

En este capítulo consideraremos ciertas digráficas posiblemente infinitas que no tienen trayectorias infinitas exteriores, este tipo de trayectorias las definimos a continuación.

Definición 2.5 Sea D una digráfica, decimos que una sucesión de vértices, $(u_i)_{i\in\mathbb{N}}$, es una trayectoria infinita exterior de D si para cada $i\in\mathbb{N}$ se tiene que $(u_i,u_{i+1})\in A(D)$ y para cualesquiera $i,j\in\mathbb{N}$ tales que $i\neq j$ se tiene que $u_i\neq u_j$.

El siguiente teorema se refiere a la existencia de núcleos en digráficas pretransitivas derechas e izquierdas.

Teorema 2.6 (P. Duchet [9]). Una digráfica pretransitiva derecha (resp. pretransitiva izquierda) tiene núcleo.

Sands, Sauer y Woodrow, demuestran el siguiente resultado en [35].

Teorema 2.7 (Sands, Sauer y Woodrow [35]). Sea D una digráfica 2-coloreada. Si D no contiene trayectorias monocromáticas infinitas exteriores, entonces existe un conjunto S de vértices de D tal que ningún par de vértices de S están conectados por una trayectoria dirigida monocromática y, para cualquier vértice x que no está en S existe una trayectoria dirigida monocromática desde x hacia algún vértice en S.

Notemos que el teorema anterior queda establecido en términos de núcleos como sigue: Si D es una digráfica 2-coloreada tal que no contiene trayectorias monocromáticas infinitas exteriores entonces la cerradura transitiva de D, $\mathfrak{C}(D)$, tiene núcleo, más aún $\mathfrak{C}(D)$ es núcleo perfecta. Así el teorema anterior puede ser establecido como sigue:

Teorema 2.8 Sea D una digráfica, sean D_1 y D_2 subdigráficas transitivas de D tales que $D = D_1 \cup D_2$, $A(D_1) \cap A(D_2) = \phi$. Si para cada $i \in \{1, 2\}$ D_i no tiene trayectorias infinitas exteriores entonces D tiene núcleo.

2.2 Núcleos y Digráficas Pretransitivas

El resultado prinicipal de esta sección es el Teorema 2.11 que es una generalización de los teoremas 2.6 y 2.8, la demostración de este teorema sigue una técnica similar a la empleada por Sands, Sauer y Woodrow en [35]. Antes de demostrar el Teorema 2.11 mencionamos 2 lemas útiles para dicha demostración que se refieren a propiedades de las digráficas pretransitivas.

Lema 2.9 Sea D una digráfica pretransitiva izquierda o derecha y sea $(v_1, v_2, ..., v_n)$ una sucesión de vértices tal que $(v_i, v_{i+1}) \in A(D)$ y $(v_{i+1}, v_i) \notin A(D)$ para toda $i \in \{1, ..., n-1\}$. Entonces la sucesión es una trayectoria dirigida y para cada $i \in \{1, ..., n-1\}$, $(v_i, v_j) \in A(D)$ y $(v_j, v_i) \notin A(D)$ para toda $j \in \{i+1, ..., n\}$.

Demostración. Procederemos por inducción sobre n. El resultado es inmediato para $n \leq 2$. Supongamos que el resultado es válido para una sucesión de n vértices que satisface las condiciones del lema. Consideremos ahora una sucesión $T = (v_1, v_2, ..., v_n, v_{n+1})$ de n+1 vértices tal que para cada $i \in \{1, ..., n\}$, $(v_i, v_{i+1}) \in A(D)$ y $(v_{i+1}, v_i) \notin A(D)$. Notemos que la sucesión T' de los n primeros vértices de T satisface las hipótesis del Lema 2.9 entonces por hipótesis de inducción T' es una trayectoria dirigida y para cada $i \in \{1, ..., n-1\}$, $(v_i, v_j) \in A(D)$ y

1310

 $(v_j, v_i) \notin A(D)$ para toda $j \in \{i+1, ..., n\}$. Por lo tanto solo falta probar que para cada $i \in \{1, ..., n-1\}$ $v_i \neq v_{n+1}, (v_i, v_{n+1}) \in A(D)$ y $(v_{n+1}, v_i) \notin A(D)$.

Procediendo por contradicción supongamos que $v_{n+1} = v_i$ para algún $i \in \{1, ..., n-1\}$, por hipótesis de inducción $(v_i, v_n) \in A(D)$, es decir $(v_{n+1}, v_n) \in A(D)$ lo cual contradice la hipótesis que se tiene de T, por lo tanto T es una trayectoria dirigida. Por otro lado, para cada $i \in \{1, ..., n-1\}$ considerando las flechas (v_i, v_n) y (v_n, v_{n+1}) , como la digráfica es pretransitiva izquierda o derecha, y en D no existen las flechas (v_n, v_i) ni (v_{n+1}, v_n) entonces $(v_i, v_{n+1}) \in A(D)$, figura 2.1. Por último, si suponemos que $(v_{n+1}, v_i) \in A(D)$, entonces tendríamos que $(v_{n+1}, v_n) \in A(D)$ o $(v_n, v_i) \in A(D)$, considerando las flechas (v_n, v_{n+1}) y (v_{n+1}, v_i) si D es una digráfica pretransitiva izquierda, o considerando las flechas (v_{n+1}, v_i) y (v_i, v_n) si D es una digráfica pretransitiva derecha, figura 2.2, pero esto no ocurre, por lo tanto $(v_{n+1}, v_i) \notin A(D)$. Concluímos que T es una trayectoria dirigida y para cada $i \in \{1, ..., n\}$, $(v_i, v_j) \in A(D)$ y $(v_j, v_i) \notin A(D)$ para toda $j \in \{i+1, ..., n+1\}$.

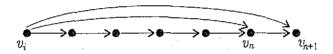


Figura 2.1

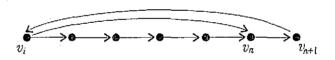


Figura 2.2

Lema 2.10 Sea D una digráfica pretransitiva izquierda o derecha tal que no tiene trayectorias infinitas exteriores. Si $U \subseteq V(D)$ y $U \neq \phi$ entonces existe $x \in U$ tal que: $(x,y) \in A(D)$ con $y \in U$ implica $(y,x) \in A(D)$.

Demostración. Procederemos por contradicción. Supongamos que para cada $x \in U$, existe $y \in U$ tal que $(x,y) \in A(D)$ y $(y,x) \notin A(D)$. Sea $x_1 \in U$ entonces existe $x_2 \in U$ tal que $(x_1,x_2) \in A(D)$ y $(x_2,x_1) \notin A(D)$. Así, para cada $n \in \mathbb{N}$, dado $x_n \in U$, existe $x_{n+1} \in U$ tal que $(x_n,x_{n+1}) \in A(D)$ y $(x_{n+1},x_n) \notin A(D)$, por el Lema 2.9, $T_{n+1} = (x_1,x_2,...,x_{n+1})$ es una trayectoria dirigida. Consideremos la

lakin ni adda

sucesión $T = (x_n)_{n \in \mathbb{N}}$, para cada $n \in \mathbb{N}$ tenemos $x_n \in V(T_{n+1})$ y $x_{n+1} \in V(T_{n+1})$, como T_{n+1} es una trayectoria dirigida entonces $(x_n, x_{n+1}) \in A(D)$, por otro lado, sean $n, m \in \mathbb{N}$, $n \neq m$, supongamos sin pérdida de generalidad que n < m, entonces $x_n, x_m \in V(T_m)$, como T_m es una trayectoria dirigida entonces $x_n \neq x_m$, por lo tanto T es una trayectoria infinita exterior en D, lo cual es una contradicción. Concluímos que existe el vértice x con la propiedad pedida.

Teorema 2.11 Sea D una digráfica que es unión de dos digráficas D_1 , D_2 tales que en ninguna de ellas existen trayectorias infinitas exteriores. Si D_1 es una digráfica pretransitiva derecha y D_2 es una digráfica pretransitiva izquierda entonces D tiene núcleo.

Demostración. Denotamos por $x \to y$ si $(x,y) \in A(D)$. Por $x \to^{D_1} y$ si $(x,y) \in A(D_1)$, $x \nrightarrow^{D_1} y$ si $(x,y) \notin A(D_1)$, si $S \subseteq V(D)$ denotamos por $x \to^{D_1} S$ si existe alguna flecha en D_1 desde x hacia algún vértice de S, y $x \nrightarrow^{D_1} S$ si no existen en D_1 flechas desde x hacia S. Análogamente para la digráfica D_2 .

Si S y T son conjuntos independientes de vértices de D, decimos que $S \leq T$ si para cada $s \in S$ existe $t \in T$ tal que

$$s = t \circ (s \rightarrow^{D_1} t y t \nrightarrow^{D_1} s).$$

Observemos que si S y T son conjuntos independientes con $S \subseteq T$, entonces $S \subseteq T$.

- 1. Veamos que \leq es un orden parcial en la familia de conjuntos independientes de D.
 - $1.1 \le$ es reflexiva. Como $S \subseteq S$, de la observación anterior se sigue $S \le S$ para cualquier conjunto independiente de vértices $S \subseteq V(D)$. Por lo tanto \le es reflexiva.
 - $1.2 \le$ es transitiva. Sean S, T y R conjuntos de vértices independientes tales que $S \le T$ y $T \le R$, veamos que $S \le R$. Sea $s \in S$, como $S \le T$ entonces existe $t \in T$ tal que

$$s = t \circ (s \rightarrow^{D_1} t \vee t \rightarrow^{D_1} s)$$
 (I)

where y como $T \leq R$ para esta $t \in T$ existe $r \in R$ tal que

$$t = r \circ (t \rightarrow^{D_1} r y r \rightarrow^{D_1} t)$$
 (II)

Si s = t o t = r, por (II) δ (I) respectivemente, tenemos s = r δ ($s \rightarrow^{D_1} r$ y $r \not\rightarrow^{D_1} s$) con $r \in R$. Supongamos que $s \neq t$ y $t \neq r$, entonces ($s \rightarrow^{D_1} t$

- y $t
 ightharpoonup^{D_1} s$) y $(t
 ightharpoonup^{D_1} r y r
 ightharpoonup^{D_1} t)$, como D_1 es una digráfica pretransitiva derecha, por el Lema 2.9 aplicada a la sucesión (s, t, r) se tiene que $s
 ightharpoonup^{D_1} s$. Por lo tanto S
 leq R. En consecuencia leq es transitiva.
- 1.3 ≤ es antisimétrica. Sean S y T conjuntos de vértices independientes tales que $S \le T$ y $T \le S$ veamos que S = T. Sea $s \in S$, veamos que $s \in T$. Como $S \le T$ entonces existe $t \in T$ tal que s = t ó $(s \to^{D_1} t \text{ y } t \to^{D_1} s)$. Supongamos que $s \ne t$ entonces $s \to^{D_1} t \text{ y } t \to^{D_1} s$. Como $T \le S$, para t existe $s' \in S$, tal que t = s' ó $(t \to^{D_1} s' \text{ y } s' \to^{D_1} t)$. Si t = s' entonces $s \to^{D_1} s'$ pero esto es una contradicción pues $s, s' \in S$ y S es un conjunto independiente, entonces $t \ne s'$ y por lo tanto $t \to^{D_1} s'$ y $s' \to^{D_1} t$. Como D_1 es una digráfica pretransitiva derecha, por el Lema 2.9 aplicada a la sucesión (s, t, s') tenemos que $s \to^{D_1} s'$, lo cual contradice que S sea un conjunto independiente. Por lo tanto t = s, y en consecuencia $s \in T$. Por lo tanto $S \subset T$. Análogamente tenemos la otra contención. Concluímos que S es antisimétrica.

Por 1.1, 1.2 y $1.3 \le \text{es un orden parcial.}$

Sea \Im la familia de todos los conjuntos no vacíos de vértices S independientes, tales que $S \hookrightarrow^{D_2} y$ implica $y \to S$.

- 2. Veamos que (\mathfrak{I}, \leq) tiene elementos maximales.
 - 2.1 $\Im \neq \phi$. Como D_2 es una digráfica pretransitiva izquierda y no tiene trayectorias infinitas exteriores, por el Lema 2.10 (tomando $D = D_2$ y $U = V(D_2)$), existe un vértice x tal que $x \to^{D_2} y$ implica $y \to x$, así $\{x\} \in \Im$.
 - 2.2 Toda cadena en (\mathfrak{I},\leq) está acotada superiormente. Sea \mathfrak{C} una cadena en (\mathfrak{I},\leq) . Sea $S^{\infty}=\{s\in\bigcup_{S\in\mathfrak{C}}S \ / \ \text{existe}\ S\in\mathfrak{C}\ \text{tal que}\ s\in T\ \text{para todo}\ T\in\mathfrak{C},$ $T\geq S\}$, veamos que S^{∞} es cota superior de \mathfrak{C} .
 - 2.2.1 S^{∞} es un conjunto independiente. Sean $s_1, s_2 \in S^{\infty}$ veamos que en D no existen flechas entre s_1 y s_2 . Como $s_1, s_2 \in S^{\infty}$ entonces existe S_1 y S_2 en $\mathfrak C$ tales que $s_i \in T$, para todo $T \in \mathfrak C$ tal que $T \geq S_i, i \in \{1, 2\}$. Sea $S = \max\{S_1, S_2\}$, entonces $s_1, s_2 \in S$ y como S es un conjunto independiente entonces en D no existen flechas entre s_1 y s_2 . Por lo tanto S^{∞} es un conjunto independiente.
 - 2.2.2 $S^{\infty} \neq \phi$ y para cada $S \in \mathfrak{C}$, $S^{\infty} \geq S$. Sea $S \in \mathfrak{C}$ y sea $t_0 \in S$ veamos que existe $t \in S^{\infty}$ tal que $t_0 = t$ ó $(t_0 \to^{D_1} t \text{ y } t \to^{D_1} t_0)$.

Si $t_0 \in S^{\infty}$ entonces tomamos $t = t_0$. Supongamos que $t_0 \notin S^{\infty}$, procederemos por contradicción, supongamos que si para $t \in V(D)$ se tiene $(t_0 \to^{D_1} t \ y \ t \to^{D_1} t_0)$ entonces $t \notin S^{\infty}$. Sea $T_0 = S$, como $t_0 \notin S^{\infty}$ esto implica que $t_0 \notin T_1$ para algún $T_1 \in \mathfrak{C}, T_1 \geq T_0$, de esto último tenemos que existe $t_1 \in T_1$ tal que $t_0 \to^{D_1} t_1$ y $t_1 \to^{D_1} t_0$, por nuestra suposición $t_1 \notin S^{\infty}$. Entonces $t_1 \notin T_2$ para algún $T_2 \in \mathfrak{C}$, $T_2 \geq T_1$, esto implica que existe $t_2 \in T_2$ tal que $t_1 \rightarrow^{D_1} t_2$ y $t_2 \not\rightarrow^{D_1} t_1$, como D_1 es una digráfica pretransitiva derecha, aplicando el Lema 2.9 a la sucesión $\tau_2 = (t_0, t_1, t_2)$ tenemos que τ_2 es una trayectoria dirigida y $t_0 \rightarrow^{D_1} t_2$ y $t_2 \rightarrow^{D_1} t_0$, por nuestra suposición $t_2 \notin S^{\infty}$. Así, para cada $n \in \mathbb{N}$, dados t_n y T_n , tales que $T_n \in \mathfrak{C}$, $t_n \in T_n$, $t_{n-1} \to^{D_1} t_n$, $t_n \rightarrow^{D_1} t_{n-1}, t_0 \rightarrow^{D_1} t_n, t_n \rightarrow^{D_1} t_0 \text{ y } t_n \notin S^{\infty}, \text{ entonces tenemos que}$ $t_n \notin T_{n+1}$ para algún $T_{n+1} \in \mathfrak{C}$, $T_{n+1} \geq T_n$, de esto último tenemos que existe $t_{n+1} \in T_{n+1}$ tal que $t_n \to^{D_1} t_{n+1}$ y $t_{n+1} \to^{D_1} t_n$. Como D_1 es una digráfica pretransitiva derecha y $(t_n \to^{D_1} t_{n+1} \text{ y } t_{n+1} \to^{D_1} t_n)$ para todo $n \in \mathbb{N}$, por el Lema 2.9, $\tau_{n+1} = (t_0, t_1, ..., t_{n+1})$ es una trayectoria dirigida en D_1 y $(t_0 \rightarrow^{D_1} t_{n+1}$ y $t_{n+1} \not\rightarrow^{D_1} t_0)$, por nuestra suposición $t_{n+1} \notin S^{\infty}$. Consideremos la sucesión $\tau = (t_n)_{n \in \mathbb{N}}$; para cada $n \in \mathbb{N}$ tenemos $t_n \to^{D_1} t_{n+1}$, por otro lado, sean $n, m \in \mathbb{N}$, $n \neq m$, supongamos sin pérdida de generalidad que n < m, entonces $t_n, t_m \in V(\tau_m)$, como τ_m es una trayectoria dirigida en D_1 entonces $t_n \neq t_m$, por lo tanto τ es una trayectoria infinita exterior en D_1 , lo cual es una contradicción. Por lo tanto existe $t \in S^{\infty}$ tal que $(t_0 \to^{D_1} t \ y \ t \to^{D_1} t_0)$. Con esto hemos demostrado que $S^{\infty} \geq S$ y que $S^{\infty} \neq \phi$.

71

14

2.2.3 $S^{\infty} \in \mathfrak{I}$. Supongamos que $S^{\infty} \to^{D_2} y$, es decir $s \to^{D_2} y$ para algún $s \in S^{\infty}$ veamos que $y \to S^{\infty}$. Sea $S \in \mathfrak{C}$ tal que $s \in T$, para todo $T \in \mathfrak{C}$, $T \geq S$. Como $S \in \mathfrak{I}$ y $s \in S$ entonces $y \to S$, es decir $y \to s'$ para algún $s' \in S$, supongamos que $s' \notin S^{\infty}$. Tenemos dos posibilidades $y \to^{D_2} s'$ o $y \to^{D_1} s'$, analizaremos cada una de ellas. Si $y \to^{D_2} s'$, como $s \to^{D_2} y$ y D_2 es una digráfica pretransitiva izquierda entonces $s \to^{D_2} s'$ o $y \to^{D_2} s$, como S es un conjunto independiente y $s, s' \in S$ entonces $s \to^{D_2} s'$ por lo tanto $y \to^{D_2} s$, en consecuencia $y \to S^{\infty}$, figura $s' \to s'$ tal que $s' \to s' \to s'$ como $s' \to s' \to s'$ entonces existe $s' \to s' \to s'$ en consecuencia $s' \to s' \to s'$ entonces $s' \to s' \to s'$ entonces existe $s' \to s' \to s'$

y tenemos $y \to^{D_1} t$, figura 2.3(b), por lo tanto $y \to S^{\infty}$. Concluímos que $S^{\infty} \in \mathfrak{I}$.

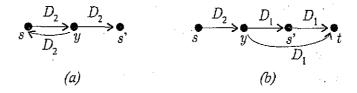


Figura 2.3

Por 2.2.1-2.2.3 S^{∞} es cota superior de \mathfrak{C} y por lo tanto toda cadena de (\mathfrak{I}, \leq) está acotada superiormente.

Por 2.1 y 2.2 y aplicando el Lema de Zorn, (\mathfrak{I}, \leq) tiene elementos maximales. Sea S un elemento maximal de (\mathfrak{I}, \leq) .

- 3. S en un núcleo de D.
 - 3.1~S es un conjunto independiente. Como $S\in \Im$, se sigue que es un conjunto independiente.
 - 3.2 S es absorbente. Procederemos por contradicción. Supongamos que $x \nrightarrow S$ para algún vértice $x \notin S$, de estos vértices elijamos x_0 como sigue: sea $U = \{x \in V(D_2) \setminus S \mid x \nrightarrow S\}$, si $U \neq \phi$, sea x_0 el vértice que existe al aplicar el Lema 2.10 a D_2 y U, si $U = \phi$ entonces $x \nrightarrow S$ para algún vértice $x \in V(D_1) \setminus (S \cup V(D_2))$, sea x_0 alguno de estos vértices. Notemos que si $U \neq \phi$ entonces x_0 satisface: $x_0 \rightarrow^{D_2} y$ e $y \nrightarrow S$ implica $y \rightarrow^{D_2} x_0$. Sea $T = \{s \in S \mid s \rightarrow^{D_1} x_0\}$. Sobre $T \cup \{x_0\}$ tenemos lo siguiente:
 - 3.2.1 T∪{x₀} es un conjunto independiente. Como T⊆S y S es un conjunto independiente pues S∈ ℑ, entonces T es un conjunto independiente, solo falta ver que entre T y x₀ no hay flechas. Como x₀ → S y T⊆S entonces x₀ → T Por la definición de T, T → D₁ x₀. Supongamos que T → D₂ x₀, como T⊆S entonces S → D₂ x₀, como S∈ ℑ entonces x₀ → S, pero esto es una contradicción. Por lo tanto entre T y x₀ no hay flechas. Concluimos que T ∪ {x₀} es un conjunto independiente.
 - $3.2.2~T \cup \{x_0\} \in \mathcal{I}$. Supongamos que $T \cup \{x_0\} \to \mathcal{I}_2$ y, veremos que $y \to T \cup \{x_0\}$. Supongamos que $y \to T \cup \{x_0\}$ La siguiente observación será de utilidad.

Observación. Bajo las condiciones anteriores, veremos que si $y \to^{D_1}$ $(S \setminus T)$ entonces $y \to^{D_1} x_0$. Sea $s \in (S \setminus T)$ tal que $y \to^{D_1} s$, por la definición de T tenemos que $s \to^{D_1} x_0$, aplicando que D_1 es una digráfica pretransitiva derecha tenemos $y \to^{D_1} x_0$ o $x_0 \to^{D_1} s$, como $x_0 \to S$ entonces $y \to^{D_1} x_0$, figura 2.4.

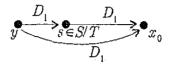


Figura 2.4

Ahora procederemos considerando los siguientes dos casos.

Caso a. Supongamos que $T \to^{D_2} y$. Como $T \subseteq S$ entonces $S \to^{D_2} y$, como $S \in \mathcal{I}$ entonces $y \to S$. Como $y \not\to T$ entonces $y \to (S \backslash T)$, de esto tenemos dos posibilidades, $y \to^{D_2} (S \backslash T)$ o $y \to^{D_1} (S \backslash T)$. Si $y \to^{D_2} (S \backslash T)$, como $T \to^{D_2} y$, aplicando que D_2 es una digráfica pretransitiva izquierda tenemos $y \to^{D_2} T$ o $T \to^{D_2} (S \backslash T)$, como S es un conjunto independiente $y T \subseteq S$ entonces $T \not\to^{D_2} (S \backslash T)$ y en consecuencia $y \to^{D_2} T$, figura 2.5(a), pero esto contradice que $y \not\to T$, por lo tanto $y \to^{D_2} (S \backslash T)$, es decir $y \to^{D_1} (S \backslash T)$ y por la observación anterior $y \to^{D_1} x_0$.

Caso b. Supongamos que $x_0 oup^{D_2} y$, para y tenemos dos posibilidades y oup S ó y oup S, analizaremos cada una de ellas. Supongamos que y oup S, como $x_0 oup^{D_2} y$ entonces $x_0 \in V(D_2)$ es decir $x \notin V(D_1) \setminus (S \cup V(D_2))$ y en consecuencia la elección de x_0 fué determinada por el hecho de que $U \neq \phi$, por lo tanto $x_0 oup^{D_2} y$ e y oup S implica $y oup^{D_2} x_0$. Supongamos ahora que y oup S. Como y oup T entonces $y oup (S \setminus T)$, tenemos dos posibilidades: $y oup^{D_2} (S \setminus T)$ o $y oup^{D_1} (S \setminus T)$. Si $y oup^{D_2} S \setminus T$ como $x_0 oup^{D_2} y$, aplicando que D_2 es una dígráfica pretransitiva izquierda entonces $x_0 oup^{D_2} S \setminus T$ o $y oup^{D_2} x_0$, como $x_0 oup S$ entonces $x_0 oup^{D_2} S \setminus T$ y en consecuencia $y oup^{D_2} x_0$, figura 2.5(b). Si $y oup^{D_1} (S \setminus T)$ por la observación hecha anteriormente $y oup^{D_1} x_0$.

Por último veamos que $S \leq T \cup \{x_0\}$. Para cualquier $s \in S$ tenemos que $s \in T$ ó $s \notin T$. Si $s \notin T$, por definición de T, $s \to^{D_1} x_0$, por otro lado como $x_0 \nrightarrow S$ entonces $x_0 \nrightarrow s$, en particular $x_0 \nrightarrow^{D_1} s$. Así, para cualquier $s \in S$ tenemos que $(s \in T)$ ó $(s \to^{D_1} x_0 y x_0 \nrightarrow^{D_1} s)$, por lo tanto existe $t \in T \cup \{x_0\}$ tal que (s = t) ó $(s \to^{D_1} t y t \nrightarrow^{D_1} s)$. Concluímos que

Figura 2.5

 $S \le T \cup \{x_0\}.$

Como $x_0 \notin S$ entonces $S < T \cup \{x_0\}$ pero esto contradice que S sea un elemento maximal de (\mathfrak{I}, \leq) . Por lo tanto S es un conjunto absorbente.

Por 3.1 y 3.2 S es un núcleo de la digráfica D.

A continuación hacemos notar que la hipótesis de que no existan trayectorias infinitas exteriores en D_1 ni en D_2 es necesaria para el resultado anterior. También mostramos que el resultado no es válido si D_1 y D_2 son ambas digráficas pretransitivas derechas o pretransitivas izquierdas.

Nota 2.12 Si en el Teorema 2.11 se elimina la hipótesis de que no existan trayectorias infinitas exteriores en D_1 ni en D_2 , el resultado no es válido. Consideremos la siguiente digráfica $D: V(D) = \{u_n \ / n \in \mathbb{N}\}\ y\ A(D) = \{(u_n, u_m) \ / n, m \in \mathbb{N}\ y\ n < m\}$, figura 2.6. Sea $D_1 = D\ y\ D_2 = D$. D es la unión de $D_1\ y\ D_2$. En D tenemos que si $(u_n, u_m) \in A(D)\ y\ (u_m, u_l) \in A(D)$, por la definición de D, n < m $y\ m < l$ esto implica que $n < l\ y$ en consecuencia $(u_n, u_l) \in A(D)$, por lo tanto D es tanto pretransitiva derecha como pretransitiva izquierda, así D es unión de dos digráficas pretransitivas, una derecha y otra izquierda. La sucesión $(u_n)_{n \in \mathbb{N}}$ es una trayectoria infinita exterior. Veamos que D no tiene núcleo, de la definición de D se desprende que es una digráfica completa, es decir cualesquiera dos vértices de D son adyacentes, esto implica que en caso de tener D núcleo éste constaría de un solo elemento, pero es claro que para cualquier $u_n \in V(D)$ $(u_m, u_n) \notin A(D)$ si m > n, es decir $\{u_n\}$ no es núcleo de D, por lo tanto D no tiene núcleo.

Ahora veamos que existe una familia infinita de digráficas que satisface lo anterior, es decir que no tienen núcleo y cada una de ellas es unión de una digráfica pretransitiva derecha y una pretransitiva izquierda, donde alguna de ellas tiene trayectorias infinitas exteriores. Sea H cualquier digráfica pretransitiva derecha (resp. pretransitiva izquierda) tal que $V(H) \cap V(D) = \phi$, existe una familia infinita de digráficas pretransitivas derechas (resp. izquierdas) por ejemplo las digráficas simétricas son

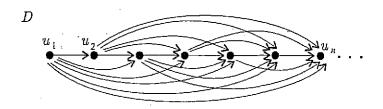


Figura 2.6

tanto pretransitivas derechas como izquierdas. Sean D_1 y D_2 la siguientes digráficas: $V(D_1) = V(H) \cup V(D), A(D_1) = A(H) \cup \{(u, v) / u \in V(H) \mid y \mid v \in V(D)\}$ (figura 2.7) y $D_2 = D$. Como ya habiamos mencionado D_2 es una digráfica pretransitiva izquierda (también pretransitiva derecha) que tiene trayectorias infinitas exteriores. Veamos ahora que D_1 es una digráfica pretransitiva derecha (resp. izquierda), sean $u,v,w \in V(D_1)$ tales que $(u,v),(v,w) \in A(D_1)$, veamos que $(u,w) \in A(D_1)$ o $(w,v) \in A(D_1) \ (resp. \ (u,w) \in A(D_1) \ o \ (v,u) \in A(D_1)). \ Si \ w \in V(H), \ por$ la definición de D_1 , $u,v \in V(H)$, como H es una digráfica pretransitiva derecha (resp. pretransitiva izquierda) entonces $(u, w) \in A(H)$ o $(w, v) \in A(H)$ (resp. $(u,w) \in A(H)$ o $(v,u) \in A(H)$, esto implica que $(u,w) \in A(D_1)$ o $(w,v) \in A(D_1)$ (resp. $(u, w) \in A(D_1)$ o $(v, u) \in A(D_1)$). Si $w \notin V(H)$ entonces $w \in V(D)$, por la definición de D_1 , $v \in V(H)$ y en consecuencia $u \in V(H)$, considerando nuevamente la definición de D_1 , tenemos que $(u, w) \in A(D_1)$ (igualmente para el caso en que H es pretransitiva izquierda). Concluímos que D_1 es una digráfica pretransitiva derecha (resp. izquierda). Consideremos la digráfica D_0 la unión de D_1 y D_2 , figura 2.8, D_1 es una digráfica pretransitiva derecha (resp. izquierda) y D₂, una digráfica pretransitiva izquierda (que también es derecha) con trayectorias infinitas exteriores. Veamos que D_0 no tiene núcleo. Aplicando el Teorema 1.47 tomando $\hat{D}_1 = H$, $\hat{D}_2 = D$ y $\hat{A}=\left\{ \left(u,v
ight) / u \in V\left(H
ight), \ v \in V\left(D
ight)
ight\} \ enemos \ \hat{D}=D_{0} \ y \ por \ lo \ tanto \ D_{0} \ no \ tiene$ núcleo.

Antes de las siguientes notas probamos un Lema útil para éstas.

Lema 2.13 Si D es una digráfica pretransitiva derecha (resp. pretransitiva izquierda) entonces la digráfica H definida a partir de D aumentando un nuevo vértice z y todas las flechas desde z hacia los vértices de D, también es pretransitiva derecha (resp. pretransitiva izquierda).

TESIS CON FALLA DE ORIGEN

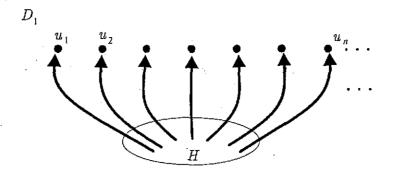


Figura 2.7: Las flechas gruesas indican que todos los vértices de H son adyacentes hacia el vértice indicado.

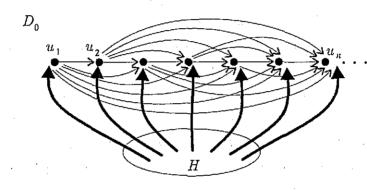


Figura 2.8: Las flechas gruesas indican que todos los vértices de H son adyacentes hacia el vértice indicado.

Demostración. Sean $u_1, u_2, u_3 \in V(H)$ tales que $(u_1, u_2), (u_2, u_3) \in A(H)$, veamos que $(u_1, u_3) \in A(H)$ o $(u_3, u_2) \in A(H)$ (resp. $(u_1, u_3) \in A(H)$ o $(u_2, u_1) \in A(H)$). Si $z \notin \{u_1, u_2, u_3\}$ entonces $\{u_1, u_2, u_3\} \subset V(D)$ y $(u_1, u_2) \in A(D)$ así como $(u_2, u_3) \in A(D)$ como D es una digráfica pretransitiva derecha (resp. pretransitiva izquierda) entonces $(u_1, u_3) \in A(D)$ o $(u_3, u_2) \in A(D)$ (resp. $(u_1, u_3) \in A(D)$ o $(u_2, u_1) \in A(D)$), como $A(D) \subset A(H)$ entonces $(u_1, u_3) \in A(H)$ o $(u_3, u_2) \in A(H)$ (resp. $(u_1, u_3) \in A(H)$ o $(u_2, u_1) \in A(H)$). Si $z \in \{u_1, u_2, u_3\}$ entonces por la definición de H, z tiene ingrado 0 en H, por lo tanto $z = u_1$, así $\{u_2, u_3\} \subset V(D)$, considerando nuevamente la definición de H, tenemos que $(z = u_1, u_3) \in A(H)$ (igualmente para el caso en que D es pretransitiva izquierda). Por lo tanto $(u_1, u_3) \in A(H)$ o $(u_3, u_2) \in A(H)$ (resp. $(u_1, u_3) \in A(H)$ o $(u_2, u_1) \in A(H)$), concluímos que H es una digráfica pretransitiva derecha (resp. pretransitiva izquierda). ■

Nota 2.14 La unión de dos digráficas pretransitivas derechas no necesariamente

tiene núcleo. Sean D_1 y D_2 las siguientes digráficas:

 $V(D_1) = V(D_2) = \{u, v, w, x\}, \ A(D_1) = \{(x, u), (u, w), (w, u), (v, w)\} \ y \ A(D_2) = \{(u, v), (x, v), (v, x), (w, x)\}.$ Es fácil ver que D_1 y D_2 son digráficas pretransitivas derechas, sea D la unión de estas dos digráficas, figura 2.9. Como D es una digráfica completa es decir cualesquiera dos vértices son adyacentes, si hubiera núcleo en D, éste constaría de un solo vértice el cual debería tener grado interior 3, pero en D ningún vértice cumple con esto, por lo tanto D no tiene núcleo.

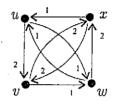


Figura 2.9: Las flechas marcadas con el número 1 corresponden a la digráfica D_1 , y las flechas marcadas con el número 2 corresponden a la digráfica D_2 .

A partir de D podemos construir una familia infinita de digráficas sin núcleo que son unión de dos digráficas pretransitivas derechas sin trayectorias infinitas exteriores. Sea $D_0 = D$. Ahora para cada entero positivo n y dada D_{n-1} digráfica sin núcleo que es unión de dos digráficas pretransitivas derechas $D_{n-1,1}$ y $D_{n-1,2}$, consideramos un nuevo vértice z_n y definimos D_n la unión de $D_{n,1}$ y $D_{n,2}$, donde $D_{n,1} = D_{n-1,1}$, $V(D_{n,2}) = V(D_{n-1,2}) \cup \{z_n\}$ y $A(D_{n,2}) = A(D_{n-1,2}) \cup \{(z_n,u) \mid u \in V(D_{n-1,2})\}$, figura 2.10. Claramente $D_{n,1}$ es una digráfica pretransitiva derecha y por el Lema 2.13 $D_{n,2}$ también lo es. Ahora veamos que D_n no tiene núcleo. Aplicando el Teorema 1.47 tomando $\hat{D}_1 = D_n[\{z_1,...,z_n\}]$, $\hat{D}_2 = D$ y $\hat{A} = \{(z_i,v) \mid i \in \{1,...,n\}, v \in V(D)\}$ tenemos $\hat{D} = D_n$ y por lo tanto D_n no tiene núcleo. Así $\{D_n \mid n \in \mathbb{N}\}$ es una familia infinita de digráficas sin núcleo que son unión de dos digráficas pretransitivas derechas sin trayectorias infinitas exteriores.

Nota 2.15 La unión de dos digráficas pretransitivas izquierdas no necesariamente tiene núcleo. Sean D_1 y D_2 las siguientes digráficas:

 $V(D_1) = V(D_2) = \{u, v, w, x\}, A(D_1) = \{(u, v), (u, w), (w, u), (w, x)\} \ y \ A(D_2) = \{(x, u), (x, v), (v, x), (v, w)\},$ figura 2.11. Es fácil ver que D_1 y D_2 son digráficas pretransitivas izquierdas, la unión de ellas es la digráfica D de la Nota 2.14 que como ya vimos no tiene núcleo.

A partir de D podemos construir una familia infinita de digráficas sin núcleo que son unión de dos digráficas pretransitivas izquierdas sin trayectorias infinitas exte-

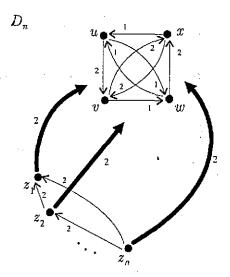


Figura 2.10: Las flechas marcadas con el número 1 corresponden a la digráfica D_1 , y las flechas marcadas con el número 2 corresponden a la digráfica D_2 . Las flechas gruesas indican que los vértices z_1 , z_2 ,..., z_n son adyacentes hacia los vértices u, v, w y x.

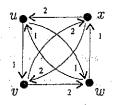


Figura 2.11: Las flechas marcadas con el número 1 corresponden a la digráfica D_1 , y las flechas marcadas con el número 2 corresponden a la digráfica D_2 .

riores. Sea $D_0 = D$, $D_{0,1} = D_1$, $D_{0,2} = D_2$. Ahora para cada entero positivo n y dada D_{n-1} digráfica sin núcleo que es unión de dos digráficas pretransitivas izquierdas $D_{n-1,1}$ y $D_{n-1,2}$, consideramos un nuevo vértice z_n y definimos D_n la unión de $D_{n,1}$ y $D_{n,2}$, donde $D_{n,1} = D_{n-1,1}$, $V(D_{n,2}) = V(D_{n-1,2}) \cup \{z_n\}$ y $A(D_{n,2}) = A(D_{n-1,2}) \cup \{(z_n,u) \mid u \in V(D_{n-1,2})\}$, figura 2.12. Claramente $D_{n,1}$ es una digráfica pretransitiva izquierda y por el Lema 2.13 $D_{n,2}$ también lo es. Notemos que $\{D_n \mid n \in \mathbb{N}\}$ es la misma familia infinita de digráficas sin núcleo obtenidas en la nota anterior que también son unión de dos digráficas pretransitivas izquierdas.

2.3 M-Orientaciones

Definición 2.16 Sea D una digráfica, la gráfica subyacente de D es la gráfica que se obtiene al reemplazar cada flecha de D por la correspondiente arista (no dirigida).

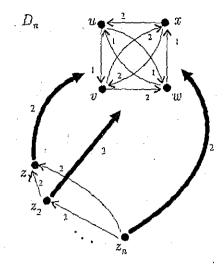


Figura 2.12: Las flechas marcadas con el número 1 corresponden a la digráfica D_1 , y las flechas marcadas con el número 2 corresponden a la digráfica D_2 . Las flechas gruesas indican que los vértices z_1 , z_2 ,..., z_n son adyacentes hacia los vértices u, v, w y x.

Definición 2.17 Sea G una gráfica, una orientación D de G es una digráfica tal que su gráfica subyacente es G.

Definición 2.18 Una gráfica G se dice que es de comparabilidad si existe una orientación asimétrica D de G que sea una digráfica transitiva.

Definición 2.19 Sea G una gráfica, una orientación D de G se dice que es una orientación de Meyniel o una M-orientación si todo triángulo dirigido de D tiene al menos dos flechas simétricas.

Dada una gráfica G se define el número cromático de G, $\chi(G)$, como el mínimo número de colores necesarios para colorear los vértices de G de tal forma que si 2 vértices son adyacentes entonces tengan asignados diferentes colores, por otro lado se define el número de clan de G, $\omega(G)$, como el máximo entero r tal que G tiene una subgráfica con r vértices que es una gráfica completa. Una gráfica G es perfecta si para cualquier subgráfica inducida H de G se tiene $\chi(H) = \omega(H)$. El problema de conocer la estructura de las gráficas perfectas ha motivado el desarrollo de trabajos importantes, puede consultarse [5]. Berge demostró que las gráficas de comparabilidad son gráficas perfectas [3], estas gráficas son de las llamadas gráficas perfectas clásicas, en [10] se presenta una recopilación de resultados importantes acerca de estas gráficas.

Usando la técnica de Sands, Sauer y Woodrow en [35], C. Champetier demuestra en [8] el siguiente resultado:

TESIS CON FALLA DE ORIGEN Teorema 2.20 Toda M-orientación de una gráfica de comparabilidad tiene núcleo.

Decimos que una digráfica D es una **orientación por pozos** de una gráfica G si toda subdigráfica completa de D tiene núcleo. Una gráfica G es **núcleo soluble** si cualquier orientación por pozos de G tiene núcleo. En 1996 [7], E. Boros y V. Gurvich demuestran el Teorema 2.21 que habían establecido como una conjetura Berge y Duchet en 1983.

Teorema 2.21 Toda gráfica perfecta es núcleo soluble.

El Teorema 2.20 es un caso particular del Teorema 2.21 ya que no es difícil probar que una M-orientación de una gráfica es una orientación por pozos.

2.4 Núcleos, M-orientaciones y Orientaciones Pretransitivas

En esta sección demostramos un resultado similar al Teorema 2.20 para gráficas infinitas enunciado en el Teorema 2.24. Éste Teorema para el caso finito, Teorema 2.25, es una generalización del Teorema 2.20 pero además abarca gráficas que no son perfectas.

Definición 2.22 Sea D una digráfica, decimos que una sucesión de vértices, $(u_i)_{i\in\mathbb{N}}$, es una trayectoria infinita interior de D si para cada $i\in\mathbb{N}$ se tiene que $(u_{i+1},u_i)\in A(D)$ y para cualesquiera $i,j\in\mathbb{N}$ tales que $i\neq j$ se tiene que $u_i\neq u_j$.

Definición 2.23 Dada una digráfica D definimos D^{-1} la inversa de D como la digráfica que tiene los mismos vértices que D y (u,v) es una flecha de D^{-1} si y solo si (v,u) es una flecha de D.

Observemos que D es una digráfica pretransitiva izquierda si y solo si D^{-1} es pretransitiva derecha.

Teorema 2.24 Sea G una gráfica (posiblemente infinita) y sea D una M-orientación de G. Si existe alguna orientación T de G que sea una digráfica pretransitiva izquierda o derecha que no tenga trayectorias infinitas exteriores ni interiores y tal que Sym(T) = Sym(D) entonces D tiene núcleo.

Demostración. Sea T una orientación pretransitiva izquierda o derecha de G tal que no tiene trayectorias infinitas exteriores ni interiores y Sym(T) = Sym(D). Podemos suponer que T es una digráfica pretransitiva izquierda, entonces T^{-1} es una

orientación de G que es una digráfica pretransitiva derecha, notemos que tanto T como T^{-1} no tienen trayectorias infinitas exteriores. Observemos que $Sym(T) = Sym(T^{-1})$ y por lo tanto $Sym(T^{-1}) = Sym(D)$.

Denotamos por $x \to y$ si $(x,y) \in A(D)$. Supongamos que $x \to y$, si $(x,y) \in A(T)$ escribimos $x \to^{rojo} y$ y si $(x,y) \in A(T^{-1})$ escribimos $x \to^{azul} y$. Si $S \subseteq V(D)$ denotamos por $x \to S$ si existe alguna flecha en D desde x hacia algún vértice de S, y $x \nrightarrow S$ sì no existen en D flechas desde x hacia S. Denotamos por $x \to^T y$ si $(x,y) \in A(T)$, si $S \subseteq V(D)$ las notaciones $x \to^T S$ y $x \nrightarrow^T S$ son analogas a las anteriores. De la misma forma se tiene la notación para la digráfica T^{-1} .

Notemos que si $x \to y$ entonces $x \to^{rojo} y$ o $x \to^{azul} y$, por otro lado si (x, y) es una flecha simétrica de D entonces $x \to^{rojo} y$, $x \to^{azul} y$, $y \to^{rojo} x$ y $y \to^{azul} x$, finalmente si $x \to^T y$ (resp. $x \to^{T^{-1}} y$) y $x \to^{rojo} y$ (resp. $x \to^{azul} y$) entonces $y \to^{azul} x$ (resp. $y \to^{rojo} x$).

Sea $\mathfrak A$ la familia de conjuntos independientes de vértices S de G tales que $S \to^{rojo} x$ implica $x \to S$. Definimos en $\mathfrak A$ la siguiente relación \leq :

 $S \leq R$ si y sólo si para cada $s \in S$ existe $r \in R$ tal que

$$s = r \circ (s \to^{T^{-1}} r y r \to^{T^{-1}} s).$$

Observemos que si S y R son conjuntos independientes con $S \subseteq R$, entonces $S \le R$.

- 1. Veamos que \leq es un orden parcial en \mathfrak{A} .
 - $1.1 \le$ es reflexiva. Como $S \subseteq S$, de la observación anterior se sigue $S \le S$ para cualquier $S \in \mathfrak{A}$. Por lo tanto \le es reflexiva.
 - 1.2 Si S, Q y R son conjuntos en $\mathfrak A$ tales que $S \leq Q$ y $Q \leq R$ entonces $S \leq R$. Sea $s \in S$ entonces existe $q \in Q$ tal que

$$s = q \circ (s \rightarrow^{T^{-1}} q \neq q \not\rightarrow^{T^{-1}} s)...(I)$$

y entonces existe $r \in R$ tal que

TESIS CON FALLA DE ORIGEN

$$q = r \circ (q \rightarrow^{T^{-1}} r y r \not\rightarrow^{T^{-1}} q)...(II)$$

Si s = q o q = r, por (II) δ (I) respectivamente, tenemos s = r δ ($s \rightarrow^{T^{-1}} r$ y $r \nrightarrow^{T^{-1}} s$), con $r \in R$. De otro modo, tenemos ($s \rightarrow^{T^{-1}} q$ y $q \nrightarrow^{T^{-1}} s$) y ($q \rightarrow^{T^{-1}} r$ y $r \nrightarrow^{T^{-1}} q$), como T^{-1} es una digráfica pretransitiva derecha

- por el Lema 2.9 aplicada a la sucesión (s, q, r) se tiene que $s \to^{T^{-1}} r$ y $r \to^{T^{-1}} s$. Por lo tanto $S \leq R$. En consecuencia \leq es transitiva.
- 1.3 \leq es antisimétrica. Sean S y R conjuntos en $\mathfrak A$ tales que $S \leq R$ y $R \leq S$ veamos que S = R. Sea $s \in S$, veamos que $s \in R$. Como $S \leq R$ entonces existe $r \in R$ tal que satisface (I). Supongamos que $s \neq r$ entonces $s \to^{T^{-1}} r$ y $r \to^{T^{-1}} s$. Como $R \leq S$, para r, existe $s' \in S$, tal que r = s' ó $(r \to^{T^{-1}} s' y s' \to^{T^{-1}} r)$. Si r = s' entonces $s \to^{T^{-1}} s'$ pero esto es una contradicción pues $s, s' \in S$ y S es un conjunto independiente de G, entonces $r \neq s'$ y por lo tanto $r \to^{T^{-1}} s'$ y $s' \to^{T^{-1}} r$, como T^{-1} es una digráfica pretransitiva derecha, por el Lema 2.9 aplicada a la sucesión (s, r, s') tenemos que $s \to^{T^{-1}} s'$ y $s' \to^{T^{-1}} s$, lo cual contradice que S sea un conjunto independiente de G. Por lo tanto r = s, es decir $S \subset R$, análogamente tenemos la otra contención.

Por 1.1, 1.2 y 1.3 \leq es un orden parcial.

- 2. Veamos que $(\mathfrak{A}, <)$ tiene elementos maximales.
 - 2.1 $\mathfrak{A} \neq \phi$. Como T es pretransitiva izquierda y no tiene trayectorias infinitas exteriores, por el Lema 2.10 (tomando D = T y U = V(T)) existe un vértice y tal que $y \to^T x$ implica que $x \to^T y$, en este caso (x,y) es una flecha simétrica de T. Si $y \to^{rojo} x$ entonces $y \to^T x$, por lo anterior $(x,y) \in Sym(T)$ y como $Sym(T) \subset Sym(D)$ entonces (x,y) también es una flecha simétrica de D. Así, existe un vértice y tal que $y \to^{rojo} x$ implica que $x \to y$, entonces $\{y\} \in \mathfrak{U}$ por lo tanto $\mathfrak{U} \neq \phi$.
 - 2.2 Toda cadena en (\mathfrak{A},\leq) está acotada superiormente. Sea \mathfrak{C} una cadena en (\mathfrak{A},\leq) . Sea $S^{\infty}=\{s\in\bigcup_{S\in\mathfrak{C}}S\ / \text{ existe }S\in\mathfrak{C}\text{ tal que }s\in R\text{ para todo }R\in\mathfrak{C},\,R\geq S\}$, veamos que S^{∞} es cota superior de \mathfrak{C} .
 - 2.2.1 S^{∞} es un conjunto independiente. Sean $s_1, s_2 \in S^{\infty}$ veamos que en D no existen flechas entre s_1 y s_2 . Como $s_1, s_2 \in S^{\infty}$ entonces existe S_1 y S_2 en $\mathfrak C$ tales que $s_i \in R$, para todo $R \in \mathfrak C$ tal que $R \geq S_i$, $i \in \{1, 2\}$. Sea $S = \max\{S_1, S_2\}$, entonces $s_1, s_2 \in S$ y como S es un conjunto independiente entonces en D no existen flechas entre s_1 y s_2 . Por lo tanto S^{∞} es un conjunto independiente.
 - $2.2.2 S^{\infty} \neq \phi$ y para cada $S \in \mathfrak{C}$, $S^{\infty} \geq S$. Sea $S \in \mathfrak{C}$ y sea $t_0 \in S$ veamos que existe $t \in S^{\infty}$ tal que $t_0 = t$ ó $(t_0 \to^{T^{-1}} t \text{ y } t \to^{T^{-1}} t_0)$. Si $t_0 \in S^{\infty}$

entonces tomamos $t = t_0$. Supongamos que $t_0 \notin S^{\infty}$, procederemos por contradicción, supongamos que si para $t \in V(D)$ se tiene $(t_0 \rightarrow^{T^{-1}} t$ y $t \rightarrow^{T^{-1}} t_0$ entonces $t \notin S^{\infty}$. Sea $R_0 = S$, como $t_0 \notin S^{\infty}$ esto implica que $t_0 \notin R_1$ para algún $R_1 \in \mathfrak{C}, R_1 \geq R_0$, de esto último tenemos que existe $t_1 \in R_1$ tal que $t_0 \rightarrow^{T^{-1}} t_1$ y $t_1 \rightarrow^{T^{-1}} t_0$, por nuestra suposición $t_1 \notin S^{\infty}$. Entonces $t_1 \notin R_2$ para algún $R_2 \in \mathfrak{C}$, $R_2 \geq R_1$, esto implica que existe $t_2 \in R_2$ tal que $t_1 \to^{T^{-1}} t_2$ y $t_2 \to^{T^{-1}} t_1$, como T^{-1} es una digráfica pretransitiva derecha, aplicando el Lema 2.9 a la sucesión $\tau_2 = (t_0, t_1, t_2)$ tenemos que τ_2 es una trayectoria dirigida y $t_0 \rightarrow^{T^{-1}} t_2$ y $t_2 \rightarrow^{T^{-1}} t_0$, por nuestra suposición $t_2 \notin S^{\infty}$. Así, para cada $n \in \mathbb{N}$, dados t_n y R_n , tales que $R_n \in \mathfrak{C}$, $t_n \in R_n$, $t_{n-1} \to^{T^{-1}} t_n$, $t_n \nrightarrow^{T^{-1}} t_{n-1}, t_0 \longrightarrow^{T^{-1}} t_n, t_n \nrightarrow^{T^{-1}} t_0 \text{ y } t_n \notin S^{\infty}, \text{ entonces tenemos}$ que $t_n \notin R_{n+1}$ para algún $R_{n+1} \in \mathfrak{C}$, $R_{n+1} \geq R_n$, de esto último tenemos que existe $t_{n+1} \in R_{n+1}$ tal que $t_n \to^{T^{-1}} t_{n+1}$ y $t_{n+1} \to^{T^{-1}} t_n$. Como T^{-1} es una digráfica pretransitiva derecha y $(t_n \to^{T^{-1}} t_{n+1})$ y $t_{n+1} \nrightarrow^{T^{-1}} t_n$) para todo $n \in \mathbb{N}$, por el Lema 2.9, $\tau_{n+1} = (t_0, t_1, ..., t_{n+1})$ es una trayectoria dirigida en T^{-1} y $(t_0 \rightarrow^{T^{-1}} t_{n+1} \text{ y } t_{n+1} \rightarrow^{T^{-1}} t_0)$, por nuestra suposición $t_{n+1} \notin S^{\infty}$. Consideremos la sucesión $\tau = (t_n)_{n \in \mathbb{N}}$, para cada $n \in \mathbb{N}$ tenemos $t_n \to^{T^{-1}} t_{n+1}$, por otro lado, sean $n, m \in \mathbb{N}$, $n \neq m$, supongamos sin pérdida de generalidad que n < m, entonces $t_n, t_m \in V(\tau_m)$, como τ_m es una trayectoria dirigida en T^{-1} entonces $t_n \neq t_m$, por lo tanto τ es una trayectoria infinita exterior en T^{-1} , lo cual es una contradicción. Por lo tanto existe $t \in S^{\infty}$ tal que $(t_0 \to^{T^{-1}} t$ y $t \to^{T^{-1}} t_0$). Con esto hemos demostrado que $S^{\infty} \geq S$ y que $S^{\infty} \neq \phi$.

- 2.2.3 $S^{\infty} \in \mathfrak{A}$. Supongamos que $S^{\infty} \to^{rojo} y$, veamos que $y \to S^{\infty}$. Procederemos por contradicción, supongamos que $y \nrightarrow S^{\infty}$. Sea $s \in S^{\infty}$ tal que $s \to^{rojo} y$, ahora sea $S_1 \in \mathfrak{C}$ tal que $s \in R$ para todo $R \in \mathfrak{C}$, $R \geq S_1$. Primero probaremos lo siguiente:
- 2.2.3.1 Si $y \to^{azul} s'$ para algún $s' \in R$ con $R \in \mathfrak{C}, R \geq S_1$ entonces existe $t \in S^{\infty}$ tal que

(i) $t \rightarrow^{rojo} s'$.

(ii) Si $R' \in \mathbb{C}$ es tal que $R' \geq R$ y $t \in R'$ entonces para algún $s'' \in R'$ tenemos $s' \to^{azul} s''$, $s'' \to^{T^{-1}} s'$ y $y \to^{azul} s''$.

Para (i), como estamos suponiendo que $y \to S^{\infty}$ entonces $s' \notin S^{\infty}$, por $2.2.2 \ S^{\infty} \ge R$ entonces existe $t \in S^{\infty}$ tal que $s' \to^{T^{-1}} t \ y \ t \to^{T^{-1}} s'$,

veamos que t satisface (i) y (ii). Para (i), como $y \to^{azul} s'$ entonces $y \to^{T^{-1}} s'$, aplicando que T^{-1} es una digráfica pretransitiva derecha y que $t \to^{T^{-1}} s'$ tenemos $y \to^{T^{-1}} t$, figura 2.13(a). Como $y \to S^{\infty}$ entonces $y \to^{azul} t$ entonces $t \to^{rojo} y$. Si $s' \to t$ entonces (y, s', t, y) es un triángulo dirigido en D, figura 2.13(b), por otro lado (s', t) no es flecha simétrica de T^{-1} y por lo tanto no lo es de D y $y \to^{azul} t$ es decir (t, y) tampoco es flecha simétrica de D, así este triángulo a lo más tiene una flecha simétrica pero esto contradice la hipótesis de que todo triángulo dirigido de D tiene al menos 2 flechas simétricas, por lo tanto $s' \to t$ así $s' \to^{azul} t$ y en consecuencia $t \to^{rojo} s'$, figura 2.13(c).

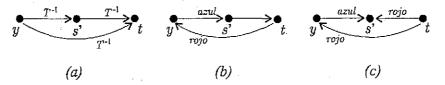


Figura 2.13

Para (ii) Sea $R' \in \mathfrak{C}$ tal que $R' \geq R$ y $t \in R'$ como $t \to^{rojo} s'$ entonces $R \to^{rojo} s'$, como $R' \in \mathfrak{U}$ entonces $s' \to R'$, es decir $s' \to s''$ para algún $s'' \in R'.$ Si $s' \to^{rojo} s''$ entonces tenemos $s' \to^T s''$ y como $t \to^T$ s' aplicando que T es una digráfica pretransitiva izquierda tenemos $t \to^T s''$ o $s' \to^T t$, como $t, s'' \in R'$ y R' es un conjunto independiente entonces $t \to^T s''$ por lo tanto $s' \to^T t$, figura 2.14(a), como $t \to^T s'$ entonces (t, s') es una flecha simétrica de T y por lo tanto de D pero esto es una contradicción pues en (i) teníamos $s' \rightarrow t$, por lo tanto $s' \rightarrow s''$ y en consecuencia $s' \rightarrow azul$ s''. Ahora supongamos que $s'' \rightarrow^{T^{-1}} s'$, entonces (s', s'') es una flecha simétrica de T^{-1} y por lo tanto de D esto implica que $s' \to^{rojo} s''$ pero esto es una contradicción pues ya teníamos $s' \rightarrow^{rojo} s''$, por lo tanto $s'' \rightarrow^{T^{-1}} s'$. Por último como $y \to azul s' y s' \to azul s''$ entonces $y \to T^{-1} s' y s' \to T^{-1} s''$, aplicando que T^{-1} es una digráfica pretransitiva derecha y que $s'' \rightarrow T^{-1}$ s' tenemos $y \to^{T^{-1}} s''$, figura 2.14(b). Aquí tenemos 2 posibilidades $y \to s''$ o $s'' \to y$. Si $s'' \to y$ entonces (y, s', s'', y) es un triángulo dirigido de D, por hipótesis este triángulo tiene al menos 2 flechas simétricas, como $s'' \nrightarrow^{T^{-1}} s'$ entonces (s'',s')no es flecha simétrica de T^{-1} y por lo tanto tampoco es flecha simétrica de D, en consecuencia (y, s') y (s'', y) son flechas simétricas de D. Así en cualquier caso tenemos $y \rightarrow s''$ y como

 $y \to^{T^{-1}} s''$ entonces $y \to^{azul} s''$, figura 2.14(c), con esto concluímos la prueba de 2.2.3.1 (ii).

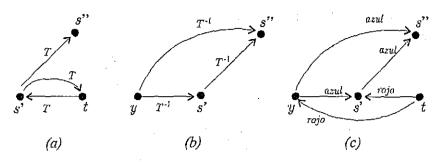


Figura 2.14

Ahora, como $s \to^{rojo} y$ y $s \in S_1$ entonces $S_1 \to^{rojo} y$, como $S_1 \in \mathfrak{C}$ entonces $S_1 \in \mathfrak{A}$, esto implica que $y \to S_1$. Sea $s_1 \in S_1$ tal que $y \to s_1$. Supongamos que $y \to^{rojo} s_1$, como $s \to^{rojo} y$ entonces $y \to^T s_1$ y $s \to^T y$, como T es una digráfica pretransitiva izquierda entonces $s \to^T s_1$ o $y \to^T s$, como S_1 es un conjunto independiente $y s, s_1 \in S_1$ entonces $s \to^T s_1$ por lo tanto $y \to^T s$, así (y,s) es una flecha simétrica de T y en consecuencia de D, por lo tanto $y \to s$ y como $s \in S^\infty$ tenemos $y \to S^\infty$ lo cual es una contradicción, figura 2.15(a). Por lo tanto $y \to^{azul} s_1$. Por 2.2.3.1 tomando $s' = s_1$ y $R = S_1$ existe $t_1 \in S^\infty$ tal que:

2.2.3.2 (i) $t_1 \to^{rojo} s_1$.

Ahora, como $t_1 \in S^{\infty}$ existe $S_2 \in \mathfrak{C}$ tal que $t_1 \in R$ para todo $R \in \mathfrak{C}$ tal que $R \geq S_2$, podemos suponer que $S_2 \geq S_1$, entonces por 2.2.3.1 (ii) tomando $R' = S_2$ y $t = t_1$ tenemos:

2.2.3.2 (ii) existe $s_2 \in S_2$ tal que $s_1 \to^{azul} s_2$, $s_2 \to^{T^{-1}} s_1$ y $y \to^{azul} s_2$, figura 2.15(b).

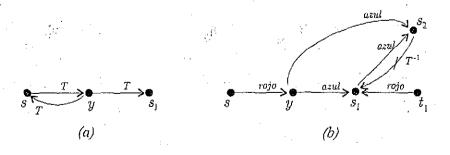


Figura 2.15

TESIS CON FALLA DE ORIGEN Análogamente a lo anterior, por 2.2.3.1 tomando $s'=s_2$ y $R=S_2$ existe $t_2\in S^\infty$ tal que:

2.2.3.3 (i) $t_2 \rightarrow^{rojo} s_2$, figura 2.16.

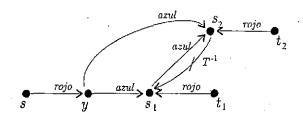


Figura 2.16

Como $t_2 \in S^{\infty}$ existe $S_3 \in \mathfrak{C}$ tal que $t_2 \in R$ para todo $R \in \mathfrak{C}$ tal que $R \geq S_3$, podemos suponer que $S_3 \geq S_2$ y por lo tanto $S_3 \geq S_1$, entonces por 2.2.3.1 (ii) tomando $R' = S_3$ y $t = t_2$ tenemos:

2.2.3.3 (ii) existe $s_3 \in S_3$ tal que $s_2 \rightarrow^{azul} s_3$, $s_3 \nrightarrow^{T^{-1}} s_2$ y $y \rightarrow^{azul} s_3$, figura 2.17.

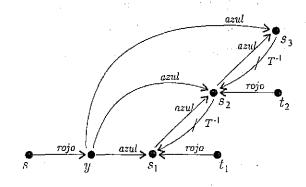


Figura 2.17

Así, si suponemos que para $n \in \mathbb{N}$ se tienen $\{t_1, t_2, ..., t_n\} \subset S^{\infty}$, $\{S_1, S_2, ..., S_{n+1}\} \subset \mathfrak{C}$ con $S_1 \leq S_2 \leq ... \leq S_{n+1}$, $\{s_1, s_2, ..., s_{n+1}\} \subset V(D)$ tales que para cada $i \in \{1, ..., n\}$:

2.2.3.4 (i)
$$t_i \rightarrow^{rojo} s_i$$

(ii)
$$\{t_i, s_{i+1}\} \subset S_{i+1}, s_i \to^{azul} s_{i+1}, s_{i+1} \to^{T^{-1}} s_i \ y \ y \to^{azul} s_{i+1}.$$

Entonces por 2.2.3.1 tomando $s'=s_{n+1},\ R=S_{n+1}$ existe $t_{n+1}\in S^\infty$ tal que:

$$2.2.3.5$$
 (i) $t_{n+1} \rightarrow^{rojo} s_{n+1}$.

Como $t_{n+1} \in S^{\infty}$ existe $S_{n+2} \in \mathfrak{C}$ tal que $t_{n+1} \in R$ para todo $R \in \mathfrak{C}$ tal que $R \geq S_{n+2}$, podemos suponer que $S_{n+2} \geq S_{n+1}$ y por lo tanto $S_{n+2} \geq S_1$, entonces por 2.2.3.1 (ii) tomando $s' = s_{n+1}$, $R = S_{n+1}$, $R' = S_{n+2}$ y $t = t_{n+1}$ tenemos:

(ii) existe $s_{n+2} \in S_{n+2}$ tal que $s_{n+1} \to^{azul} s_{n+2}$, $s_{n+2} \to^{T^{-1}} s_{n+1}$ y $y \to^{azul} s_{n+2}$, figura 2.18.

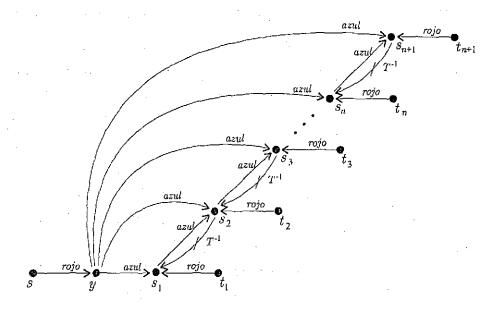


Figura 2.18

Así $(s_n)_{n\in\mathbb{N}}$ es una sucesión de vértices de D tal que $s_{n+1} \to^{T^{-1}} s_{n+2}$ y $s_{n+2} \to^{T^{-1}} s_{n+1}$, como T^{-1} es una digráfica pretransitiva derecha entonces por el Lema 2.9, para cada $k \in \mathbb{N}$ la suceción $(s_1, s_2, ..., s_k)$ es una trayectoria dirigida en T^{-1} , esto implica que $(s_n)_{n\in\mathbb{N}}$ es una trayectoria infinita exterior en T^{-1} lo cual es una contradicción. Por lo tanto $y \to S^{\infty}$ y en consecuencia $S^{\infty} \in \mathfrak{U}$.

Por 2.2.1-2.2.3 S^{∞} es cota superior de $\mathfrak C$ y por lo tanto toda cadena de $(\mathfrak A,\leq)$ está acotada superiormente.

Por 2.1 y 2.2 y aplicando el Lema de Zorn, (X, ≤) tiene elementos maximales.

Sea S un elemento maximal de (\mathfrak{A},\leq) .

3. S en un núcleo de D.

- 3.1 S es un conjunto independiente de G. Como $S \in \mathfrak{A}$, se sigue que es un conjunto independiente de G.
- 3.2 S es absorbente. Procederemos por contradicción. Supongamos que x oup S para algún vértice $x \notin S$, de estos vértices elijamos x_0 como sigue: sea $U = \{x \in V(D) \setminus S \mid x oup S\}$, por nuestra suposición $U \neq \phi$, sea x_0 el vértice que existe al aplicar el Lema 2.10 (tomando D = T y U). Notemos que x_0 satisface: $x_0 \to^T y$ e $y \to S$ implica $y \to^T x_0$.

Sea $P = \{s \in S \mid s \rightarrow^{azul} x_0\}$. Sobre $P \cup \{x_0\}$ tenemos lo siguiente:

- 3.2.1 P∪ {x₀} es un conjunto independiente de G. Como P⊆ S y S es un conjunto independiente de G pues S ∈ U, entonces P es un conjunto independiente de G, solo falta ver que entre P y x₀ no hay flechas en D. Como x₀ → S y P⊆ S entonces x₀ → P. Por la definición de P, P → azul x₀. Supongamos que P → rojo x₀, como P⊆ S entonces S → rojo x₀, como S ∈ U entonces x₀ → S, pero esto es una contradicción, entonces P → rojo x₀. Por lo tanto entre P y x₀ no hay flechas en D. Concluimos que P∪ {x₀} es un conjunto independiente de G.
- 3.2.2 $P \cup \{x_0\} \in \mathfrak{A}$. Supongamos que $P \cup \{x_0\} \rightarrow^{rojo} y$, veremos que $y \rightarrow P \cup \{x_0\}$. Supongamos que $y \rightarrow P$ y probemos que $y \rightarrow x_0$. Procederemos considerando los siguientes 2 casos.
- Caso a. Supongamos que $P \to^{rojo} y$. Como $P \subseteq S$ entonces $S \to^{rojo} y$, como $S \in \mathfrak{A}$, $y \to S$. Como $y \nrightarrow P$ entonces $y \to (S \backslash P)$, de esto tenemos dos posibilidades, $y \to^{rojo} (S \backslash P)$ o $y \to^{azul} (S \backslash P)$. Si $y \to^{rojo} S \backslash P$ como $P \to^{rojo} y$, sea $p \in P$ tal que $p \to^{rojo} y$ aplicando que T es una digráfica pretransitiva izquierda tenemos $y \to^T p$ o $p \to^T (S \backslash P)$, figura 2.19(a), como S es un conjunto independiente de G y $P \subseteq S$ entonces $p \to^T (S \backslash P)$ así $y \to^T p$ y esto implica que (p, y) es una flecha simétrica en T y por lo tanto también lo es en D, así $y \to P$, pero esto es una contradicción, por lo tanto $y \rightarrow^{rojo} S \backslash P$. Si $y \rightarrow^{azul} S \backslash P$, sea $s \in S \backslash P$ tal que $y \rightarrow^{azul} s$, por la definición de P tenemos $s \rightarrow^{azul} x_0$, como T^{-1} es una digráfica pretransitiva derecha entonces $x_0 \to^{T^{-1}} s$ o $y \to^{T^{-1}} x_0$, figura 2.19(b), si $x_0 \to^{T^{-1}} s$ entonces (x_0, s) es una flecha simétrica de T^{-1} , pero las flechas simétricas de T^{-1} también son flechas simétricas de D entonces $x_0 \rightarrow s$ pero esto es una contradicción ya que $s \in S$ y $x_0 \longrightarrow S$, por lo tanto $y \to T^{-1}$ x_0 . Entonces $y \to x_0$ o $x_0 \to y$, si $x_0 \to y$ entonces (x_0, y, s, x_0) es un triángulo dirigido en D, por hipótesis debe

tener este triángulo al menos dos flechas simétricas en D, como $x_0 \nrightarrow S$ entonces (x_0, y) es una flecha simétrica de D y por lo tanto $y \mapsto x_0$.

Figura 2.19

Caso b. Supongamos que $x_0 oup^{rojo} y$. Para y tenemos dos posibilidades y oup S ó y oup S, analizaremos cada una de ellas. Supongamos que y oup S, por la elección de x_0 tenemos que y oup T x_0 , entonces (x_0, y) es una flecha simétrica en T y por lo tanto en D, así $y oup x_0$. Supongamos que y oup S, como y oup P entonces $y oup S \setminus P$, sea $s \in S \setminus P$ tal que y oup S, por la definición de P oup S oup S oup S oup S, así tenemos un triángulo dirigido (x_0, y, s, x_0) en D, análogamente al caso anterior este triángulo tiene al menos dos flechas simétricas en D, como $x_0 oup S$ entonces (x_0, y) es una flecha simétrica de D y por lo tanto $y oup x_0$. Concluímos que $P \cup \{x_0\} \in \mathfrak{A}$

Por último veamos que $S \leq P \cup \{x_0\}$. Para cualquier $s \in S$ tenemos que $s \in P$ ó $s \notin P$. Si $s \notin P$, por definición de P, $s \to^{azul} x_0$, por otro lado como $x_0 \nrightarrow S$ entonces $x_0 \nrightarrow s$, en particular $x_0 \nrightarrow^{azul} s$. Así, para cualquier $s \in S$ tenemos que $(s \in P)$ ó $\left(s \to^{T^{-1}} x_0 \ y \ x_0 \nrightarrow^{T^{-1}} s\right)$, por lo tanto existe $t \in P \cup \{x_0\}$ tal que (s = t) ó $\left(s \to^{T^{-1}} t \ y \ t \nrightarrow^{T^{-1}} s\right)$. Concluímos que $S \leq T \cup \{x_0\}$.

Como $x_0 \notin S$ entonces $S < T \cup \{x_0\}$ pero esto contradice que S sea un elemento maximal de (\mathfrak{I}, \leq) . Por lo tanto S es un conjunto absorbente.

Por 3.1 y 3.2 S es un núcleo de la digráfica D.

Observemos que la hipótesis Sym(T) = Sym(D) del teorema anterior sólo se usa en la demostración en la parte donde se prueba que toda cadena de (\mathfrak{A}, \leq) está acotada superiormente, en el resto de la demostración solo se usa la contención $Sym(T) \subseteq Sym(D)$, esto implica que para el caso de gráficas finitas basta pedir dicha contención, quedando así el siguiente teorema.

Teorema 2.25 Sea G una gráfica finita y sea D una M-orientación de G. Si existe alguna orientación T de G que sea una digráfica pretransitiva izquierda o derecha tal que $Sym(T) \subseteq Sym(D)$ entonces D tiene núcleo.

A continuación hacemos notar que las hipótesis del Teorema 2.24 son necesarias.

Nota 2.26 Si en el Teorema 2.24 se elimina la hipótesis de que la digráfica T no tenga trayectorias infinitas exteriores ni interiores entonces no necesariamente D tiene núcleo. Sea G la gráfica con vértices $\{u_n/n \in \mathbb{N}\}$ y con aristas $\{(u_n, u_m)/n, m \in \mathbb{N}, n \neq m\}$, figura 2.20. Sea D la orientación de G tal que $A(D) = \{(u_n, u_m)/n, m \in \mathbb{N}, n < m\}$, la digráfica D es la misma a la que se refiere la Nota 2.12 y mostrada en la figura 2.6. D es una digráfica transitiva, asimétrica y no tiene triángulos dirigidos, así D es una M-orientación de G. Otra consecuencia de que D es transitiva es que es tanto pretransitiva derecha como pretransitiva izquierda, por lo tanto consideremos T = D. La sucesión $(u_n)_{n \in \mathbb{N}}$ es una trayectoria infinita exterior en T. Como ya vimos en la Nota 2.12 D no tiene núcleo.

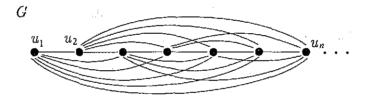


Figura 2.20

Ahora veamos que existe una familia infinita de gráficas que satisface lo anterior, es decir que tienen alguna M-orientación que no tiene núcleo y tienen una orientación pretransitiva derecha o izquierda con la misma parte simétrica que posee trayectorias infinitas exteriores o interiores. Sea H cualquier ciclo de longitud par $(v_1, v_2, ..., v_{2m}, v_1)$ tal que $V(H) \cap V(G) = \phi$. Sea H' la siguiente gráfica: $V(H') = V(H) \cup V(G)$, $A(H') = A(H) \cup A(G) \cup \{(u,v) \mid v \in V(H) \mid v \in V(G)\}$. Sea D' la siguiente orientación de H', figura 2.21:

$$A(D') = \{(v_i, v_{i+1}) / i \in \{1, ..., 2m\}, i \equiv 1 \pmod{2}\} \cup \{(v_{i+1}, v_i) / i \in \{1, ..., 2m\}, i \equiv 0 \pmod{2}\} \cup A(D) \cup A(D)$$

 $\{(u,v) \mid u \in V(H) \mid y \mid v \in V(G)\}$ la suma es tomada módulo 2m. Veamos que D' es una digráfica transitiva, sean $u,v,w \in V(D')$ tales que $(u,v),(v,w) \in A(D')$ veamos que $(u,w) \in A(D')$. Si $w \in V(H)$, por la definición de D', $u,v \in V(H)$ pero en

D' los vértices de H inducen una subdigráfica que no tiene trayectorias dirigidas de longitud 2 por lo tanto $w \notin V(H)$, entonces $w \in V(G)$, si $u \in V(H)$ por la definición de D', $(u,w) \in A(D')$, si $u \notin V(H)$ entonces $u \in V(G)$ y por la definición de D', $v \in V(G)$, es decir $\{u,v,w\} \subset V(D)$ y como D es una digráfica transitiva entonces $(u,w) \in A(D)$ y por lo tanto $(u,w) \in A(D')$. Concluímos que D' es una digráfica transitiva, como además D' es asimétrica entonces no tiene triángulos dirigidos y por lo tanto es una M-orientación de H'. Otra consecuencia de que D' sea una digráfica transitiva es que es una digráfica pretransitiva derecha y también izquierda, consideremos T' = D', entonces Sym(T') = Sym(D'). En T' la sucesión $(u_n)_{n\in\mathbb{N}}$ es una trayectoria infinita exterior. Veamos que D' no tiene núcleo. Aplicando el Teorema 1.47 tomando $\hat{D}_1 = D'[V(H)]$, $\hat{D}_2 = D$ y $\hat{A} = \{(u,v) / u \in V(H)$, $v \in V(D)\}$ tenemos $\hat{D} = D'$ y por lo tanto D' no tiene núcleo.

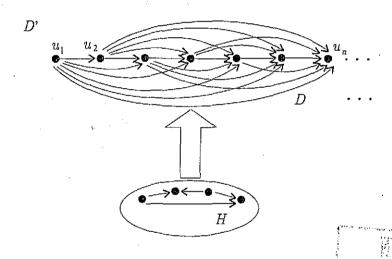


Figura 2.21: La flecha gruesa indica que todos los vértices de H son advacentes hacia los vértices de D.

Nota 2.27 Si en el Teorema 2.24 se elimina la hipótesis de que la digráfica D sea una M-orientación entonces no necesariamente D tiene núcleo. Sea G la gráfica completa con 4 vértices. Si $V(G) = \{u, v, w, x\}$ sea D la orientación de G tal que $A(D) = \{(u, v), (v, w), (w, x), (x, u), (u, w), (w, u), (v, x), (x, v)\}$, D es la misma digráfica mostrada en la figura 2.9, que como vimos en la Nota 2.14 no tiene núcleo. En D todo triángulo dirigido tiene una sola flecha simétrica es decir D no es una M-orientación de G. Sea T la siguiente orientación de G: $A(T) = \{(u, v), (w, v), (w, x), (u, x), (u, w), (w, u), (v, x), (x, v)\}$, figura 2.22. No es difícil ver que T es una digráfica tanto pretransitiva derecha como izquierda y $Sym(T) = \{(u, v), (w, v), (w,$

TESIS CON FALLA DE ORIGEN Sym(D).

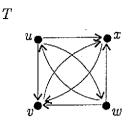


Figura 2.22

Ahora veamos que a partir de G podemos construir una familia infinita de gráficas donde cada una de ellas tiene alguna orientación que no tiene núcleo y no es una M-orientación y además cada gráfica de la familia tiene alguna orientación pretransitiva derecha que no tiene trayectorias infinitas exteriores ni interiores, ambas orientaciones con la misma parte simétrica. Sean $G_0 = G$, $D_0 = D$ y $T_0 = T$, para cada entero positivo n y dadas G_{n-1} , D_{n-1} , T_{n-1} que satisfacen lo anterior, consideramos un nuevo vértice z_n y definimos G_n , D_n , T_n como sigue (figuras 2.23 y 2.24):

$$V(G_n) = V(G_{n-1}) \cup \{z_n\} \ y \ A(G_n) = A(G_{n-1}) \cup \{(z_n, u) \ / u \in V(G_{n-1})\},$$

$$V(D_n) = V(D_{n-1}) \cup \{z_n\} \ y \ A(D_n) = A(D_{n-1}) \cup \{(z_n, u) \ / u \in V(D_{n-1})\} \ y$$

$$V(T_n) = V(T_{n-1}) \cup \{z_n\} \ y \ A(T_n) = A(T_{n-1}) \cup \{(z_n, u) \ / u \in V(T_{n-1})\}.$$

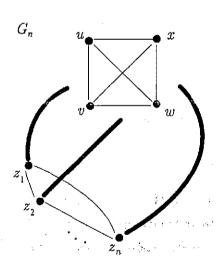


Figura 2.23: Las aristas gruesas indican que los vértices $z_1, z_2, ..., z_n$ son adyacentes hacia los vértices u, v, w y x.

Es claro que D_n y T_{n-1} son orientaciones de G_n . Como D es subdigráfica de D_n y D tiene triángulos dirigidos con solo una flecha simétrica entonces D_n no es una

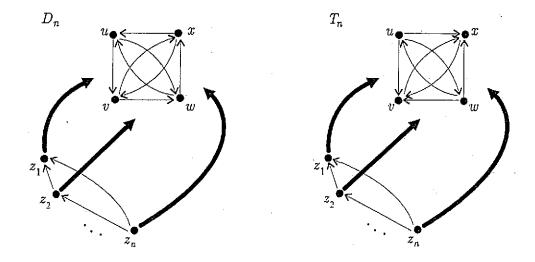


Figura 2.24: Las flechas gruesas indican que los vértices z_1 , z_2 ,..., z_n son adyacentes hacia los vértices u, v, w y x.

M-orientación de G_n . Por el Lema 2.13 T_n es una digráfica pretransitiva derecha y como es finita no tiene trayectorias infinitas exteriores ni interiores. Como las flechas que se añaden a D_{n-1} (resp. T_{n-1}) para obtener D_n (resp. T_n) son asimétricas, entonces $Sym(D_n) = Sym(D_{n-1})$ y $Sym(T_n) = Sym(T_{n-1})$, y como $Sym(D_{n-1}) = Sym(T_{n-1})$ entonces $Sym(D_n) = Sym(T_n)$. Por último veamos que D_n no tiene núcleo. Aplicando el Teorema 1.47 tomando $\hat{D}_1 = D_n[\{z_1,...,z_n\}], \, \hat{D}_2 = D$ y $\hat{A} = \{(z_i,v) \ / \ i \in \{1,...,n\}, \ v \in V(D)\}$ tenemos $\hat{D} = D_n$ y por lo tanto D_n no tiene núcleo. Así $\{G_n \ / \ n \in \mathbb{N}\}$ es una familia infinita de gráficas donde cada una de ellas tiene alguna orientación D_n que no tiene núcleo, D_n no es una M-orientación y G_n tiene alguna orientación T_n pretransitiva derecha que no tiene trayectorias infinitas exteriores ni interiores.

Nota 2.28 Para el caso finito, si se elimina la hipótesis $Sym(T) \subset Sym(D)$ el resultado puede fallar. Sea G cualquier ciclo de longitud impar mayor o igual que S. Sea D el ciclo dirigido correspondiente, D no tiene triángulos dirigidos, por lo tanto D es una M-orientación de G pero no tiene núcleo. Si $V(G) = \{v_1, v_2, ..., v_{2n+1}\}$ sea T la siguiente orientación de G:

 $A(T) = \{(v_1, v_2), (v_2, v_1)\} \cup \{(v_{2i+1}, v_{2i}), (v_{2i+1}, v_{2i+2}) / i \in \{1, 2, ..., n\}$ la suma es tomada mod $2n+1\}$, figura 2.25. No es difícil ver que T es una digráfica pretransitiva derecha y $Sym(T) \nsubseteq Sym(D)$.

Por último veremos que el Teorema 2.25 generaliza al Teorema 2.20 probado por C. Champetier, pero además el Teorema 2.25 abarca gráficas que no son gráficas de

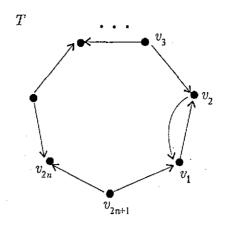


Figura 2.25

comparabilidad, es decir gráficas que no están consideradas en el Teorema 2.20, más aún abarca gráficas que no son perfectas.

Nota 2.29 Sea G una gráfica de comparabilidad y D cualquier M-orientación de G. Si T es una orientación transitiva de G entonces T es una orientación pretransitiva derecha de G y también izquierda, como G es finita, T también lo es y no tiene entonces trayectorias infinitas exteriores ni interiores. Ya que T es una digráfica asimétrica, entonces $Sym(T) \subset Sym(D)$. Por todo lo anterior y aplicando el Teorema 2.25 D tiene núcleo. Por lo tanto el Teorema 2.25 generaliza al Teorema 2.20.

Nota 2.30 Consideremos la gráfica G_n , $n \geq 2$, mostrada en la figura 2.26, G_n no es una gráfica de comparabilidad, Gallai [26], más aún no es perfecta pues para C_{2n+1} el ciclo de longitud 2n+1 se tiene $\chi(C_{2n+1})=3$ y $\omega(C_{2n+1})=2$. Sea D_n la orientación de G_n tal que: $A(D_n)=\{(v_i,v_{i+1})\ /\ i\in\{1,2,...,2n+1\}\$ la suma es tomada mod $2n+1\}\cup\{(u_i,u_{i+1})\ /\ i\in\{1,2,...,2n+1\}\$ la suma es tomada mod $2n+1\}\cup\{(u_{2n},u_{2n-1}),(v_2,v_1),(u_{2n},v_1)\}$, figura 2.27. El único triángulo dirigido de D_n es (v_1,v_2,u_{2n},v_1) que tiene 2 flechas simétricas, por lo tanto D_n es una M-orientación de G_n . Sea T_n la orientación de G_n tal que:

 $A(T_n) = \{(u_{2n}, v_1)\} \cup \{(v_1, v_2), (v_2, v_1)\} \cup \{(v_{2i+1}, v_{2i}), (v_{2i+1}, v_{2i+2}) / i \in \{1, 2, ..., n\}\} \cup \{(u_{2n-1}, u_{2n}), (u_{2n}, u_{2n-1})\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i+1}) / i \in \{1, 2, ..., n-1\}\} \cup \{(u_{2i}, u_{2i-1}), (u_{2i}, u_{2i$

 $\{(u_{2n+1},u_{2n}),(u_{2n+1},u_1)\}$, la suma es tomada mod 2n+1, figura 2.28. No es dificil ver que T_n es una orientación pretransitiva derecha de G_n y es inmediato que $Sym(T_n) = Sym(D_n)$. Por lo tanto G_n es una gráfica que no es perfecta y a la cual puede aplicarse el Teorema 2.25.

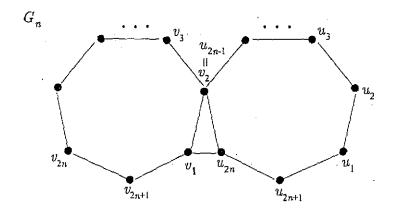


Figura 2.26

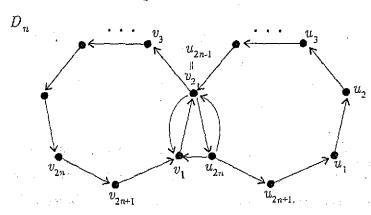


Figura 2.27

2.5 Digráficas Quasitransitivas

Otra generalización del concepto de digráfica transitiva es el de digráfica quasitransitiva dada por Ghouilá-Houri [27].

Definición 2.31 Una digráfica D es quasitransitiva si para cualesquiera u, v, w vértices de D tales que $(u, v) \in A(D)$ y $(v, w) \in A(D)$ implica $(u, w) \in A(D)$ o $(w, u) \in A(D)$.

Las digráficas quasitransitivas han sido estudiadas en [1, 28, 29, 36]. Las digráficas quasitransitivas son importantes por su estrecha relación con las gráficas de comparabilidad (gráficas que tienen una orientación transitiva). Específicamente Ghouilá-Houri [27] demostró que una gráfica puede ser orientada como una digráfica quasitransitiva si y sólo si es una gráfica de comparabilidad, para mayor información de las gráficas de comparabilidad se puede recurrir a [26, 30]. También son de interés

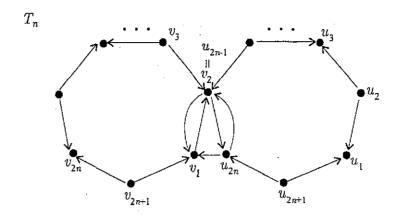


Figura 2.28

las digráficas quasitransitivas ya que comparten muchas de las propiedades de los torneos [2], un torneo es una digráfica tal que entre cada par de vértices existe una y solo una flecha, debido a esto los torneos tienen una estructura muy rica. Claramente los torneos son digráficas quasitransitivas.

2.6 Núcleos y Digráficas Quasitransitivas

En esta sección probamos que si D es una digráfica tal que todo triángulo dirigido tiene al menos 2 flechas simétricas y que es unión de dos digráficas quasitransitivas tales que en ninguna de ellas existen trayectorias infinitas exteriores entonces D tiene múcleo. Este resultado es una generalización del Teorema 2.8 y en la demostración se usa una técnica similar a la dada en [35]. Como un corolario al resultado obtenido tenemos que toda digráfica quasitransitiva tal que todo triángulo dirigido tiene al menos 2 flechas simétricas y que no tiene trayectorias infinitas exteriores tiene núcleo.

Análogamente a las propiedades de digráficas pretransitivas mencionadas en los lemas 2.9 y 2.10 tenemos dos propiedades para digráficas quasitransitivas donde cada triángulo dirigido tiene al menos 2 flechas simétricas, estas propiedades se enuncian en los lemas 2.32 y 2.33.

Lema 2.32 Sea D una digráfica tal que cada triángulo dirigido tiene al menos dos flechas simétricas, si D_1 es una subdigráfica de D que es quasitransitiva $y(v_1, v_2, ..., v_n)$ es una sucesión de vértices de D_1 tal que $(v_i, v_{i+1}) \in A(D_1)$ pero $(v_{i+1}, v_i) \notin A(D)$ entonces la sucesión es una trayectoria dirigida en D_1 y para cada i = 1, ..., n - 1, $(v_i, v_j) \in A(D_1)$ y $(v_j, v_i) \notin A(D)$ para toda $j \in \{i+1, ..., n\}$.

Demostración. Procederemos por inducción sobre n. El resultado es inmediato

para n=1. Supongamos que el resultado es válido para una sucesión de n vértices que satisface las condiciones del Lema 2.32. Consideremos ahora una sucesión T= $(v_1, v_2, ..., v_n, v_{n+1})$ de n+1 vértices tal que para cada $i \in \{1, ..., n\}, (v_i, v_{i+1}) \in$ $A(D_1)$ y $(v_{i+1}, v_i) \notin A(D)$. Notemos que la sucesión T' de los n primeros vértices de T satisface las hipótesis del Lema 2.32 entonces por hipótesis de inducción T' es una trayectoria dirigida y para cada $i \in \{1, ..., n-1\}, (v_i, v_j) \in A(D_1)$ y $(v_j, v_i) \notin$ A(D) para toda $j \in \{i+1,...,n\}$. Por lo tanto solo falta probar que para cada $i \in \{1, ..., n-1\}$ $v_i \neq v_{n+1}, (v_i, v_{n+1}) \in A(D_1)$ y $(v_{n+1}, v_i) \notin A(D)$. Procediendo por contradicción supongamos que $v_{n+1} = v_i$ para algún $i \in \{1,...,n-1\}$, por lo anterior $(v_i, v_n) \in A(D_1)$, es decir $(v_{n+1}, v_n) \in A(D_1)$ esto implica que $(v_{n+1}, v_n) \in A(D)$ lo cual contradice la hipótesis que se tiene de T, por lo tanto T es una trayectoria dirigida. Por otro lado, para cada $i \in \{1, ..., n-1\}$ considerando las flechas (v_i, v_n) y (v_n, v_{n+1}) , como D_1 es una digráfica quasitransitiva entonces $(v_i, v_{n+1}) \in A(D_1)$ o $(v_{n+1},v_i)\in A(D_1)$. Supongamos que $(v_{n+1},v_i)\in A(D)$, entonces (v_i,v_n,v_{n+1},v_1) es un triángulo dirigido en D que por hipótesis tiene al menos dos flechas simétricas pero esto no es posible pues por hipótesis $(v_{n+1}, v_n) \notin A(D)$ y por hipótesis de inducción $(v_n, v_i) \notin A(D)$ por lo tanto $(v_{n+1}, v_i) \notin A(D)$, esto implica que $(v_{n+1}, v_i) \notin A(D_1)$ y por lo tanto $(v_i, v_{n+1}) \in A(D_1)$. Concluímos que T es una trayectoria dirigida y para cada $i \in \{1, ..., n\}, (v_i, v_j) \in A(D_1)$ y $(v_j, v_i) \notin A(D)$ para toda $j \in \{i + 1, ..., n + 1\}$.

15

ij.

Lema 2.33 Sea D una digráfica tal que cada triángulo dirigido tiene al menos dos flechas simétricas y sea D_1 una subdigráfica de D que es quasitransitiva y no tiene trayectorias infinitas exteriores. Si $U \subset V(D_1)$ y $U \neq \phi$, entonces existe $x \in U$ tal que si $(x,y) \in A(D_1)$ con $y \in U$, entonces $(y,x) \in A(D)$.

Demostración. Procederemos por contradicción. Supongamos que para cada $x \in U$, existe $y \in U$ tal que $(x, y) \in A(D_1)$ y $(y, x) \notin A(D)$. Sea $x_1 \in U$ entonces existe $x_2 \in U$ tal que $(x_1, x_2) \in A(D_1)$ y $(x_2, x_1) \notin A(D)$. Así, para cada $n \in \mathbb{N}$, dado $x_n \in U$, existe $x_{n+1} \in U$ tal que $(x_n, x_{n+1}) \in A(D_1)$ y $(x_{n+1}, x_n) \notin A(D)$, por el Lema 2.32, $T_{n+1} = (x_1, x_2, ..., x_{n+1})$ es una trayectoria dirigida en D_1 . Consideremos la sucesión $T = (x_n)_{n \in \mathbb{N}}$, para cada $n \in \mathbb{N}$ tenemos $x_n, x_{n+1} \in V(T_{n+1})$, como T_{n+1} es una trayectoria dirigida en D_1 entonces $(x_n, x_{n+1}) \in A(D_1)$, por otro lado, sean $n, m \in \mathbb{N}$, $n \neq m$, supongamos sin pérdida de generalidad que n < m, entonces $x_n, x_m \in V(T_m)$, como T_m es una trayectoria dirigida en D_1 entonces $x_n \neq x_m$, por lo tanto T es una trayectoria infinita exterior en D_1 , lo cual es una contradicción. Concluímos que existe el vértice x con la propiedad pedida.

Teorema 2.34 Sea D una digráfica que es unión de dos digráficas quasitransitivas D_1 y D_2 tales que en ninguna de ellas existen trayectorias infinitas exteriores. Si en D cada triángulo dirigido tiene al menos dos flechas simétricas entonces D tiene núcleo.

Demostración. Denotamos por $x \to y$ si $(x,y) \in A(D)$ y por $x \not\to y$ si $(x,y) \notin A(D)$. Por $x \to^{D_1} y$ si $(x,y) \in A(D_1)$, $x \to^{D_1} y$ si $(x,y) \notin A(D_1)$, si $S \subset V(D)$ denotamos por $x \to^{D_1} S$ si existe alguna flecha en D_1 desde x hacia algún vértice de S, y $x \to^{D_1} S$ si no existen en D_1 flechas desde x hacia S. Análogamente para la digráfica D_2 .

Si S y T son conjuntos independientes de vértices de D, decimos que $S \leq T$ si para cada $s \in S$ existe $t \in T$ tal que

$$s = t \circ (s \rightarrow^{D_1} t y t \nrightarrow s).$$

Observemos que si S y T son conjuntos independientes con $S \subseteq T$, entonces $S \leq T$.

- 1. Veamos que \leq es un orden parcial en la familia de todos los conjuntos independientes de D.
 - $1.1 \le$ es reflexiva. Como $S \subseteq S$, de la observación anterior se sigue $S \le S$ para cualquier $S \subseteq V(D)$. Por lo tanto \le es reflexiva.
 - $1.2 \le$ es transitiva. Sean S, T y R conjuntos de vértices independientes tales que $S \le T$ y $T \le R$, veamos que $S \le R$. Sea $s \in S$, como $S \le T$ entonces existe $t \in T$ tal que

$$s = t \circ (s \rightarrow^{D_1} t y t \nrightarrow s)$$
 (I)

y como $T \leq R$ para esta $t \in T$ existe $r \in R$ tal que

$$t = r \circ (t \rightarrow^{D_1} r y r \nrightarrow t)$$
 (II)

Si s=t o t=r, por (II) ó (I) respectivamente, tenemos s=r ó $(s \to^{D_1} r$ y $r \to s)$ con $r \in R$. Supongamos que $s \neq t$ y $t \neq r$, entonces $(s \to^{D_1} t$ y $t \to s)$ y $(t \to^{D_1} r$ y $r \to t)$, como D_1 es una digráfica quasitransitiva, por el Lema 2.32 aplicada a la sucesión (s,t,r) se tiene que $s \to^{D_1} r$ y $r \to s$. Por lo tanto $S \leq R$. En consecuencia \leq es transitiva.

 $1.3 \le$ es antisimétrica. Sean S y T conjuntos de vértices independientes tales que $S \le T$ y $T \le S$ veamos que S = T. Sea $s \in S$, veamos que $s \in T$.

Como $S \leq T$ entonces existe $t \in T$ tal que s = t ó $(s \to^{D_1} t \ y \ t \nrightarrow s)$. Supongamos que $s \neq t$ entonces $s \to^{D_1} t \ y \ t \nrightarrow s$. Como $T \leq S$, para t existe $s' \in S$, tal que t = s' ó $(t \to^{D_1} s' \ y \ s' \nrightarrow t)$. Si t = s' entonces $s \to^{D_1} s'$ pero esto es una contradicción pues $s, s' \in S$ y S es un conjunto independiente, entonces $t \neq s'$ y por lo tanto $t \to^{D_1} s' \ y \ s' \nrightarrow t$. Como D_1 es una digráfica quasitransitiva, por el Lema 2.32 aplicada a la sucesión (s,t,s') tenemos que $s \to^{D_1} s'$, lo cual contradice que S sea un conjunto independiente. Por lo tanto t = s, y en consecuencia $s \in T$. Por lo tanto $S \subset T$. Análogamente tenemos la otra contención. Concluímos que \leq es antisimétrica.

Por 1.1, 1.2 y 1.3 \leq es un orden parcial en la familia de todos los conjuntos independientes de D.

Sea \Im la familia de todos los conjuntos no vacíos de vértices S independientes de D tales que $S \to^{D_2} y$ implica $y \to S$.

- 2. Veamos que (\mathfrak{I}, \leq) tiene elementos maximales.
 - 2.1 $\Im \neq \phi$. Como D_2 es una digráfica quasitransitiva izquierda y no tiene trayectorias infinitas exteriores, por el Lema 2.33, existe un vértice x tal que $x \to^{D_2} y$ implica $y \to x$, así $\{x\} \in \Im$.
 - 2.2 Toda cadena en (\mathfrak{I}, \leq) está acotada superiormente. Sea \mathfrak{C} una cadena en (\mathfrak{I}, \leq) . Sea $S^{\infty} = \{s \in \bigcup_{S \in \mathfrak{C}} S \mid \text{existe } S \in \mathfrak{C} \text{ tal que } s \in T \text{ para todo } T \in \mathfrak{C}, T \geq S\}$, veamos que S^{∞} es cota superior de \mathfrak{C} .
 - 2.2.1 S^{∞} es un conjunto independiente. Sean $s_1, s_2 \in S^{\infty}$ veamos que en D no existen flechas entre s_1 y s_2 . Como $s_1, s_2 \in S^{\infty}$ entonces existe S_1 y S_2 en \mathfrak{C} tales que $s_i \in T$, para todo $T \in \mathfrak{C}$ tal que $T \geq S_i$, $i \in \{1, 2\}$. Sea $S = \max\{S_1, S_2\}$, entonces $s_1, s_2 \in S$ y como S es un conjunto independiente entonces en D no existen flechas entre s_1 y s_2 . Por lo tanto S^{∞} es un conjunto independiente.
 - 2.2.2 $S^{\infty} \neq \phi$ y para cada $S \in \mathfrak{C}$, $S^{\infty} \geq S$. Sea $S \in \mathfrak{C}$ y sea $t_0 \in S$ veamos que existe $t \in S^{\infty}$ tal que $t_0 = t$ ó $(t_0 \to^{D_1} t \text{ y } t \to t_0)$. Si $t_0 \in S^{\infty}$ entonces tomamos $t = t_0$. Supongamos que $t_0 \notin S^{\infty}$, procederemos por contradicción, supongamos que si para $t \in V(D)$ se tiene $(t_0 \to^{D_1} t \to t_0)$ entonces $t \notin S^{\infty}$. Sea $T_0 = S$, como $t_0 \notin S^{\infty}$ esto implica que $t_0 \notin T_1$ para algún $T_1 \in \mathfrak{C}$ con $T_1 \geq T_0$, de esto último tenemos

que existe $t_1 \in T_1$ tal que $t_0 \to^{D_1} t_1$ y $t_1 \nrightarrow t_0$, por nuestra suposición $t_1 \notin S^{\infty}$. Entonces $t_1 \notin T_2$ para algún $T_2 \in \mathfrak{C}$ con $T_2 \geq T_1$, esto implica que existe $t_2 \in T_2$ tal que $t_1 \to^{D_1} t_2$ y $t_2 \nrightarrow t_1$, como D_1 es una digráfica quasitransitiva, aplicando el Lema 2.32 a la sucesión $\tau_2 = (t_0, t_1, t_2)$ tenemos que τ_2 es una trayectoria dirigida y $t_0 \rightarrow^{D_1} t_2$ y $t_2 \nrightarrow t_0$, por nuestra suposición $t_1 \notin S^{\infty}$. Así, para cada $n \in \mathbb{N}$, dados t_n y T_n , tales que $T_n \in \mathfrak{C}$, $t_n \in T_n$, $t_{n-1} \to^{D_1} t_n$, $t_n \nrightarrow t_{n-1}$, $t_0 \to^{D_1} t_n, t_n \nrightarrow t_0 \text{ y } t_n \notin S^{\infty}$, entonces tenemos que $t_n \notin T_{n+1}$ para algún $T_{n+1} \in \mathfrak{C}$ con $T_{n+1} \geq T_n$, de esto último tenemos que existe $t_{n+1} \in T_{n+1}$ tal que $t_n \to^{D_1} t_{n+1}$ y $t_{n+1} \nrightarrow t_n$. Como D_1 es una digráfica quasitransitiva y $(t_n \to^{D_1} t_{n+1} \text{ y } t_{n+1} \nrightarrow t_n)$ para todo $n \in \mathbb{N}$, por el Lema 2.32, $\tau_{n+1} = (t_0, t_1, ..., t_{n+1})$ es una trayectoria dirigida en D_1 y $(t_0 \to^{D_1} t_{n+1}$ y $t_{n+1} \not\to t_0)$, por nuestra suposición $t_{n+1} \notin S^{\infty}$. Consideremos la sucesión $\tau=(t_n)_{n\in\mathbb{N}}$, para cada $n\in\mathbb{N}$ tenemos $t_n\to^{D_1}$ t_{n+1} , por otro lado, sean $n, m \in \mathbb{N}$, $n \neq m$, supongamos sin pérdida de generalidad que n < m, entonces $\{t_n, t_m\} \subset V(\tau_m)$, como τ_m es una trayectoria dirigida en D_1 entonces $t_n \neq t_m$, por lo tanto τ es una trayectoria infinita exterior en D_1 , lo cual es una contradicción. Por lo tanto existe $t \in S^{\infty}$ tal que $(t_0 \to^{D_1} t y t \to t_0)$. Con esto hemos demostrado que $S^{\infty} \geq S$ y que $S^{\infty} \neq \phi$.

 $2.2.3 \ S^{\infty} \in \mathcal{I}$. Supongamos que $S^{\infty} \to^{D_2} y$, es decir $s \to^{D_2} y$ para algún $s \in S^{\infty}$ veamos que $y \to S^{\infty}$. Sea $S \in \mathfrak{C}$ tal que $s \in T,$ para todo $T \in \mathfrak{C}$ tal que $T \geq S$. Como $S \in \mathfrak{I}$, $s \in S$ y $s \to^{D_2} y$ entonces $y \to S$, es decir $y \to s'$ para algún $s' \in S$, supongamos que $s' \notin S^{\infty}$. Tenemos dos posibilidades $y \to^{D_2} s'$ o $y \to^{D_1} s'$, analizaremos cada una de ellas. Si $y \to^{D_2} s'$, como $s \to^{D_2} y$, figura 2.29(a), y D_2 es una digráfica quasitransitiva entonces $s \to^{D_2} s'$ o $s' \to^{D_2} s$, pero esto no es posible pues S es un conjunto independiente y $s, s' \in S$, por lo tanto $y \rightarrow^{D_2} s'$ y en consecuencia $y\mapsto^{D_1}s'$, como $S\leq S^\infty$ y $s'\in S$ entonces existe and the second secon $t \in S^{\infty}$ tal que s' = t o $(s' \rightarrow D_1 t y t \rightarrow s')$, como $s' \notin S^{\infty}$ entonces $s' \neq t$ y en consecuencia $(s' \rightarrow^{D_1} t \text{ y } t \rightarrow s')$, figura 2.29(b), con esto último y considerando que $y \rightarrow^{D_1} s'$ aplicamos que D_1 es una digráfica quasitransitiva y tenemos $y \to^{D_1} t$ o $t \to^{D_1} y$. Si $y \to^{D_1} t$ entonces $y \to S^{\infty}$. Si $t \to^{D_1} y$ entonces (y, s', t, y) es un triángulo dirigido en D que por hipótesis tiene al menos dos flechas simétricas, como $t \nrightarrow s' = 0$ entonces $s' \to y$ y $y \to t$, así $y \to S^{\infty}$. Concluímos que $S^{\infty} \in \mathfrak{I}$.

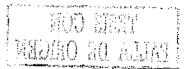


Figura 2.29

Por 2.2.1-2.2.3 S^{∞} es cota superior de \mathfrak{C} .

Por 2.1 y 2.2 toda cadena de (\mathfrak{I}, \leq) está acotada superiormente. Por el Lema de Zorn, (\mathfrak{I}, \leq) tiene elementos maximales. Sea S un elemento maximal de (\mathfrak{I}, \leq) .

- 3. S en un núcleo de D.
 - 3.1~S es un conjunto independiente. Como $S\in \Im$, se sigue que es un conjunto independiente.
 - 3.2 S es absorbente. Procederemos por contradicción. Supongamos que $x \nrightarrow S$ para algún vértice $x \notin S$, de estos vértices elijamos x_0 como sigue: sea $U = \{x \in V(D_2) \setminus S \mid x \nrightarrow S\}$, si $U \neq \phi$, sea x_0 el vértice que existe al aplicar el Lema 2.33 a D_2 y U, si $U = \phi$ entonces $x \nrightarrow S$ para algún vértice $x \in V(D_1) \setminus (S \cup V(D_2))$, sea x_0 alguno de estos vértices. Notemos que si $U \neq \phi$ entonces x_0 satisface: $x_0 \rightarrow^{D_2} y$ e $y \nrightarrow S$ implica $y \rightarrow x_0$. Sea $T = \{s \in S \mid s \nrightarrow^{D_1} x_0\}$. Sobre $T \cup \{x_0\}$ tenemos lo siguiente:
 - 3.2.1 $T \cup \{x_0\}$ es un conjunto independiente. Como $T \subseteq S$ y S es un conjunto independiente pues $S \in \mathcal{I}$, entonces T es un conjunto independiente, solo falta ver que entre T y x_0 no hay flechas. Como $x_0 \nrightarrow S$ y $T \subseteq S$ entonces $x_0 \nrightarrow T$. Por la definición de T, $T \nrightarrow^{D_1} x_0$. Supongamos que $T \to^{D_2} x_0$, como $T \subseteq S$ entonces $S \to^{D_2} x_0$, como $S \in \mathcal{I}$ entonces $x_0 \to S$, pero esto es una contradicción. Por lo tanto entre T y x_0 no hay flechas. Concluimos que $T \cup \{x_0\}$ es un conjunto independiente.
 - 3.2.2 $T \cup \{x_0\} \in \mathcal{F}$. Supongamos que $T \cup \{x_0\} \to^{D_2} y$, veremos que $y \to T \cup \{x_0\}$. Supongamos que $y \to T \cup \{x_0\}$ Supongamos que $y \to T \cup \{x_0\}$ Deservación será de utilidad.

Observación. Bajo las condiciones anteriores, veremos que si $y \to^{D_1}$ $(S \setminus T)$ entonces $y \to^{D_1} x_0$. Sea $s \in (S \setminus T)$ tal que $y \to^{D_1} s$, como $s \notin T$ tenemos que $s \to^{D_1} x_0$, aplicando que D_1 es una digráfica quasitransitiva tenemos $y \to^{D_1} x_0$ o $x_0 \to^{D_1} y$, si $x_0 \to^{D_1} y$, figura 2.30, entonces (y, s, x_0, y) es un triángulo dirigido en D que por hipótesis

TESIS CON FALLA DE ORIGEN tiene al menos 2 flechas simétricas, como $x_0 \rightarrow S$ entonces $s \rightarrow^{D_1} y$ e $y \rightarrow^{D_1} x_0$. Ahora procederemos considerando los siguientes dos casos.

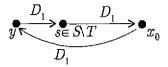


Figura 2.30

Caso a. Supongamos que $T \to^{D_2} y$. Como $T \subseteq S$ entonces $S \to^{D_2} y$, como $S \in \mathcal{I}$ entonces $y \to S$. Como $y \to T$ entonces $y \to (S \backslash T)$, de esto tenemos dos posibilidades, $y \to^{D_2} (S \backslash T)$ o $y \to^{D_1} (S \backslash T)$. Si $y \to^{D_2} (S \backslash T)$, como $T \to^{D_2} y$, figura 2.31, aplicando que D_2 es una digráfica quasitransitiva tenemos $T \to^{D_2} (S \backslash T)$ o $(S \backslash T) \to^{D_2} T$, pero esto no es posible pues S es un conjunto independiente $y T \subseteq S$, por lo tanto $y \to^{D_2} (S \backslash T)$, es decir $y \to^{D_1} (S \backslash T)$ y por la observación anterior $y \to^{D_1} x_0$.

$$\underbrace{\begin{array}{c}D_2\\t\in T\end{array}}_{}\underbrace{\begin{array}{c}D_2\\y\end{array}}_{}\underbrace{\begin{array}{c}D_2\\s\in S\backslash T\end{array}}$$

Figura 2.31

Caso b. Supongamos que $x_0 \to^{D_2} y$, para y tenemos dos posibilidades $y \nrightarrow S$ ó $y \to S$, analizaremos cada una de ellas. Supongamos que $y \nrightarrow S$, como $x_0 \to^{D_2} y$ entonces $x_0 \in V(D_2)$ es decir $x \notin V(D_1) \setminus (S \cup V(D_2))$ y en consecuencia la elección de x_0 fué determinada por el hecho de que $U \neq \phi$, por lo tanto $x_0 \to^{D_2} y$ e $y \nrightarrow S$ implica $y \to^{D_2} x_0$ por lo tanto $y \to x_0$. Supongamos ahora que $y \to S$. Como $y \nrightarrow T$ entonces $y \to (S \setminus T)$, tenemos dos posibilidades: $y \to^{D_2} (S \setminus T)$ o $y \to^{D_1} (S \setminus T)$. Si $y \to^{D_2} S \setminus T$ como $x_0 \to^{D_2} y$, aplicando que D_2 es una digráfica quasitransitiva entonces $x_0 \to^{D_2} S \setminus T$ o $S \setminus T \to^{D_2} x_0$, como $x_0 \nrightarrow S$ entonces $x_0 \to^{D_2} S \setminus T$ y en consecuencia $S \setminus T \to^{D_2} x_0$, figura 2.32, esto implica que $S \to^{D_2} x_0$, como $S \in T$ entonces $x_0 \to S$ pero esto no es posible, por lo tanto $y \to^{D_2} S \setminus T$. Así tenemos que $y \to^{D_1} (S \setminus T)$ por la observación hecha anteriormente $y \to^{D_1} x_0$.

Por último veamos que $S \leq T \cup \{x_0\}$. Para cualquier $s \in S$ tenemos que $s \in T$ ó $s \notin T$. Si $s \notin T$, por definición de T, $s \mapsto^{D_1} x_0$, por otro lado como $x_0 \nrightarrow S$ entonces $x_0 \nrightarrow s$. Así, para cualquier $s \in S$ tenemos que $(s \in T)$

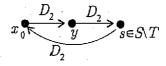


Figura 2.32

ó $(s \to^{D_1} x_0 \text{ y } x_0 \nrightarrow s)$, por lo tanto existe $t \in T \cup \{x_0\}$ tal que (s = t) ó $(s \to^{D_1} t \text{ y } t \nrightarrow s)$. Concluímos que $S \leq T \cup \{x_0\}$.

Como $x_0 \notin S$ entonces $S < T \cup \{x_0\}$ pero esto contradice que S sea un elemento maximal de (\mathfrak{I}, \leq) . Por lo tanto S es un conjunto absorbente.

Por 3.1 y 3.2 S es un núcleo de la digráfica D.

t

Corolario 2.35 Si D es una digráfica quasitransitiva tal que todo triángulo dirigido tiene al menos 2 flechas simétricas y no tiene trayectorias infinitas exteriores entonces D tiene núcleo.

A continuación hacemos notar que la hipótesis de que no existan trayectorias infinitas exteriores en D_1 ni en D_2 es necesaria para el resultado anterior, así como la hipótesis de que todo triángulo dirigido de D tenga al menos 2 flechas simétricas. También mostramos que el resultado es diferente al Teorema 2.11 probado anteriormente, es decir existen digráficas que son unión de una digráfica pretransitiva derecha con una pretransitiva izquierda y no son unión de 2 digráficas quasitransitivas, y viceversa, existen digráficas donde todo triángulo dirigido tiene al menos 2 flechas simétricas, son unión de 2 digráficas quasitransitivas y no son unión de una digráfica pretransitiva derecha y una pretransitiva izquierda.

Nota 2.36 Si en el Teorema 2.34 se elimina la hipótesis de que no existan trayectorias infinitas exteriores en D_1 ni en D_2 , el resultado no es válido. Consideremos la digráfica D de la Nota 2.12. D es una digráfica transitiva y por lo tanto es quasitransitiva, así D es unión de dos digráficas quasitransitivas. D no tiene triángulos dirigidos, por lo tanto todo triángulo dirigido de D satisface que tiene al menos 2 felchas simétricas. La sucesión $(u_n)_{n\in\mathbb{N}}$ es una trayectoria infinita exterior y como se vió anteriormente D no tiene núcleo. Análogamente a lo hecho en la Nota 2.12, existe una familia infinita de digráficas donde cada una de ellas no tiene núcleo, todo triángulo dirigido tiene al menos 2 flechas simétricas y es unión de 2 digráficas

quasitransitivas donde alguna de éstas tiene trayectorias infinitas exteriores. Sea H cualquier digráfica quasitransitiva $V(H) \cap V(D) = \phi$, existe una familia infinita de digráficas quasitransitivas por ejemplo las orientaciones quasitransitivas de gráficas de comparabilidad. Sean D_1 y D_2 la siguientes digráficas: $V\left(D_1\right) = V\left(H\right) \cup V\left(D\right)$, $A(D_1) = A(H) \cup \{(u, v) \mid u \in V(H) \mid y \mid v \in V(D)\} \mid y \mid D_2 = D$. Como ya habiamos mencionado D_2 es una digráfica quasitransitiva que tiene trayectorias infinitas exteriores. Veamos ahora que D_1 es una digráfica quasitransitiva, sean $u, v, w \in V(D_1)$ tales que $(u,v),(v,w)\in A(D_1)$, veamos que $(u,w)\in A(D_1)$ o $(w,u)\in A(D_1)$. Si $w \in V(H)$, por la definición de D_1 , $u, v \in V(H)$, como H es una digráfica quasitransitiva entonces $(u, w) \in A(H)$ o $(w, u) \in A(H)$, esto implica que $(u, w) \in A(D_1)$ $o(w,u) \in A(D_1)$. Si $w \notin V(H)$ entonces $w \in V(D)$, por la definición de D_1 , $v \in V(H)$ y en consecuencia $u \in V(H)$, considerando nuevamente la definición de D_1 , tenemos que $(u,w) \in A(D_1)$. Concluímos que D_1 es una digráfica quasitransitiva. Consideremos la digráfica D_0 la unión de D_1 y D_2 , D_1 y D_2 son digráficas quasitransitivas y D_2 tiene trayectorias infinitas exteriores. Veamos que D_0 no tiene núcleo. Aplicando el Teorema 1.47 tomando $\hat{D}_1 = H, \; \hat{D}_2 = D \; y \; \hat{A} = \{(u,v) \; / \; \}$ $u \in V(H)$, $v \in V(D)$ } tenemos $\hat{D} = D_0$ y por lo tanto D_0 no tiene núcleo.

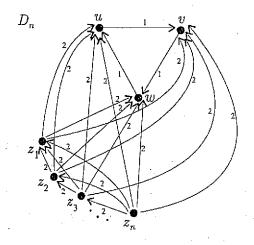
Antes de las siguientes notas probamos un lema útil para éstas, este lema es análogo al Lema 2.13 probado para digráficas pretransitivas.

Lema 2.37 Si D es una digráfica quasitransitiva entonces la digráfica H definida a partir de D aumentando un nuevo vértice z y todas las flechas desde z hacia los vértices de D, también es quasitransitiva.

Demostración. Sean $u_1, u_2, u_3 \in V(H)$ tales que $(u_1, u_2), (u_2, u_3) \in A(H)$, veamos que $(u_1, u_3) \in A(H)$ o $(u_3, u_1) \in A(H)$. Si $z \notin \{u_1, u_2, u_3\}$ entonces $\{u_1, u_2, u_3\} \subset V(D)$ y $(u_1, u_2), (u_2, u_3) \in A(D)$ como D es una digráfica quasitransitiva entonces $(u_1, u_3) \in A(D)$ o $(u_3, u_1) \in A(D)$, como $A(D) \subset A(H)$ entonces $(u_1, u_3) \in A(H)$ o $(u_3, u_1) \in A(H)$. Si $z \in \{u_1, u_2, u_3\}$ entonces por la definición de H, z tiene ingrado 0 en H, por lo tanto $z = u_1$, así $\{u_2, u_3\} \subset V(D)$, considerando nuevamente la definición de H, tenemos que $(z = u_1, u_3) \in A(H)$. Por lo tanto $(u_1, u_3) \in A(H)$ o $(u_3, u_1) \in A(H)$, concluímos que H es una digráfica quasitransitiva.

Nota 2.38 Si en el Teorema 2.34 eliminamos la hipótesis de que todo triángulo dirigido de D tenga al menos dos flechas simétricas, entonces D no necesariamente tiene núcleo. Sea H_1 el triángulo dirigido (u, v, w, u), y sea H_2 la digráfica vacía con

vértices $\{u,v,w\}$. H_1 y H_2 son digráficas quasitransitivas finitas y por lo tanto no tienen trayectorias infinitas exteriores. Sea D la unión de H_1 y H_2 , es decir D es el triángulo (u, v, w, u) que no tiene flechas simétricas y no tiene núcleo. A partir de D podemos construir una familia infinita de digráficas tales que: no todo triángulo dirigido tiene al menos dos flechas simétricas, son unión de dos digráficas quasitransitivas sin trayectorias infinitas exteriores, y no tienen núcleo. Sea $D_0 = D$, $D_{0,1} = H_1$ $y D_{0,2} = H_2$. Ahora para cada entero positivo n y dada D_{n-1} digráfica sin núcleo que es unión de dos digráficas quasitransitivas $D_{n-1,1}$ y $D_{n-1,2}$ que no tienen trayectorias infinitas exteriores, consideramos un nuevo vértice z_n y definimos D_n la unión de $D_{n,1}$ y $D_{n,2}$, donde $D_{n,1} = D_{n-1,1}$, $V(D_{n,2}) = V(D_{n-1,2}) \cup \{z_n\}$ y $A(D_{n,2}) =$ $A(D_{n-1,2}) \cup \{(z_n, u) \mid u \in V(D_{n-1,2})\}, \text{ figura 2.33. Claramente } D_{n,1} \text{ es una digrá-}$ fica quasitransitiva y por el Lema 2.37 $D_{n,2}$ también lo es. D_n contiene al triángulo (u,v,w,u) que no tiene flechas simétricas. Ahora veamos que D_n no tiene núcleo. Aplicando el Teorema 1.47 tomando $\hat{D}_1 = D_n[\{z_1, ..., z_n\}], \hat{D}_2 = D \ y \ \hat{A} = \{(z_i, v) \ / \ \}$ $i \in \{1,...,n\}, v \in V(D)\}$ tenemos $\hat{D} = D_n$ y por lo tanto D_n no tiene núcleo. Así $\{D_n / n \in \mathbb{N}\}$ es una familia infinita de digráficas sin núcleo donde no todo triángulo tiene al menos dos flechas simétricas y que son unión de dos digráficas quasitransitivas sin trayectorias infinitas exteriores.



TESIS CON FALLA DE ORIGEN

Figura 2.33: Las flechas marcadas con el número 1 corresponden a la digráfica $D_{n,1}$ y las flechas marcadas con el número 2 corresponden a la digráfica $D_{n,2}$.

Nota 2.39 Existen digráficas donde todo triangulo dirigido tiene al menos 2 flechas simétricas que son unión de una digráfica pretransitiva derecha con una pretransitiva izquierda sin trayectorias infinitas exteriores y no son unión de 2 digráficas quasitran-

sitivas. Sea D un ciclo de longitud impar mayor o igual que 5, simétrico, sea $V(D) = \{u_1, u_2, ..., u_{2n+1}, u_1\}$. En D no existen triángulos dirigidos, por lo tanto satisface por vacuidad que todo triangulo dirigido tiene al menos 2 flechas simétricas. D es unión de las siguientes digráficas D_1 y D_2 donde D_1 es pretransitiva derecha y D_2 es pretransitiva izquierda. $V(D_1) = V(D_2) = V(D)$, $A(D_1) = \{(u_{2i-1}, u_{2i}), (u_{2i}, u_{2i-1})/i \in \{1, ..., n\}\} \cup \{(u_{2n+1}, u_1), (u_1, u_{2n+1})\}$ y $A(D_2) = \{(u_{2i}, u_{2i+1}), (u_{2i+1}, u_{2i})/i \in \{1, ..., n\}\}$, en la figura 2.34 se muestra el caso n = 3.

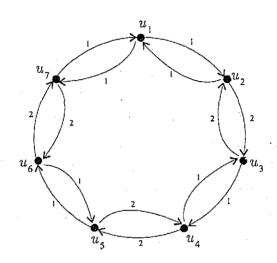


Figura 2:34: Las flechas marcadas con el número 1 corresponden a la digráfica D_1 y las flechas marcadas con el número 2 corresponden a la digráfica D_2 .

No es difícil ver que si una digráfica es simétrica entonces es tanto pretransitiva derecha como pretransitiva izquierda, como D_1 y D_2 son digráficas simétricas entonces D es unión de una digráfica pretransitiva derecha con una pretransitiva izquierda. Veamos que D no es unión de dos digráficas quasitransitivas. Procederemos por contradicción, supongamos que D es la unión de H_1 y H_2 donde H_1 y H_2 son digráficas quasitransitivas. Sin pérdida de generalidad supongamos que $(u_1,u_2) \in A(H_1)$, como H_1 es una digráfica quasitransitiva, $(u_1,u_3) \notin A(H_1)$ y $(u_3,u_1) \notin A(H_1)$ entonces $(u_2,u_3) \notin A(H_1)$ y en consecuencia $(u_2,u_3) \in A(H_2)$, análogamente como H_2 es una digráfica quasitransitiva, $(u_2,u_4) \notin A(H_2)$ y $(u_4,u_2) \notin A(H_2)$ entonces $(u_3,u_4) \notin A(H_2)$ y por lo tanto $(u_3,u_4) \in A(H_1)$, así sucesivamente $(u_{2i-1},u_{2i}) \in A(H_1)$ para toda $i \in \{1,...,n\}$, $(u_{2n+1},u_1) \in A(H_1)$ y $(u_{2i},u_{2i+1}) \in A(H_2)$ para toda $i \in \{1,...,n\}$, entonces $\{(u_{2n+1},u_1),(u_1,u_2)\} \subset A(H_1)$, aplicando que H_1 es una digráfica quasitransitiva tenemos que $(u_{2n+1},u_2) \in A(H_1)$ o $(u_2,u_{2n+1}) \in A(H_1)$ pero esto no ocurre, por lo tanto D no es unión de dos digráficas quasitransitivas. Así el

Teorema 2.11 abarca digráficas que no están incluidas en el Teorema 2.34.

Nota 2.40 Existen digráficas donde todo triangulo dirigido tiene al menos 2 flechas simétricas que son unión de 2 digráficas quasitransitivas sin trayectorias infinitas exteriores y no son unión de una digráfica pretransitiva derecha con una pretransitiva izquierda. Sea D la digráfica mostrada en la figura 2.35. D es unión de las digráficas D_1 y D_2 mostradas en la misma figura.

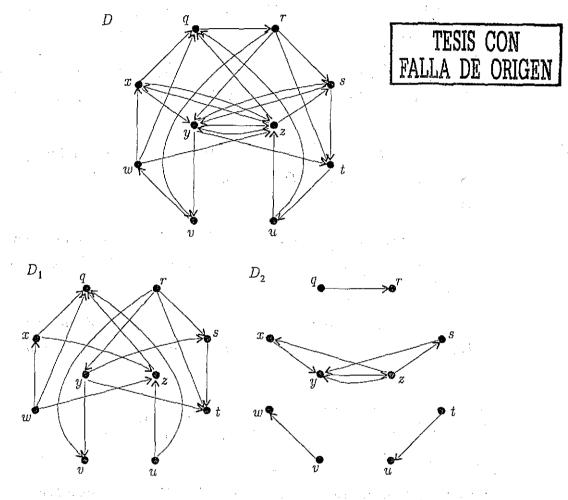


Figura 2.35

En D los únicos triángulos dirigidos son (x, y, z, x) y (s, y, z, s) y cada uno de ellos tiene 2 flechas simétricas. No es difícil ver que D_1 y D_2 son digráficas quasitransitivas. Veamos que D no es unión de una digráfica pretransitiva derecha con una izquierda. Procederemos por contradicción, supongamos que D es la unión de H_1 y H_2 donde H_1 es una digráfica pretransitiva derecha y H_2 es una digráfica pretransitiva izquierda, como $\{(y,v),(v,w)\}\subset A(D)$ y $\{(v,y),(w,v),(y,w)\}\cap A(D)=\phi$ entonces $\{(y,v),(v,w)\}\not\subseteq A(H_i)$ para $i\in\{1,2\}$. Sea $H_1'\in\{H_1,H_2\}$ tal que $(y,v)\in A(H_1')$

 $y \text{ sea } H'_2 \in \{H_1, H_2\} \text{ tal que } (v, w) \in A(H'_2).$ Entonces:

- $(x,y) \in A(H'_2)$. Como $(y,v) \in A(H'_1)$, H'_1 es una digráfica pretransitiva $y \in \{(y,x),(v,y),(x,v)\} \cap A(D) = \phi$, entonces $(x,y) \notin A(H'_1)$, por lo tanto $(x,y) \in A(H'_2)$.
- $(w,z) \in A(H_1')$. Como $(v,w) \in A(H_2')$, H_2' es una digráfica pretransitiva $y \in \{(z,w),(w,v),(v,z)\} \cap A(D) = \phi$, entonces $(w,z) \notin A(H_2')$, por lo tanto $(w,z) \in A(H_1')$.
- $\{(s,z),(z,w),(w,s)\}\cap A(D)=\phi,\ entonces\ (z,s)\notin A(H_1'),\ por\ lo\ tanto\ (z,s)\in A(H_2').$
 - $(s,t) \in A(H'_1)$. Como $(z,s) \in A(H'_2)$, H'_2 es una digráfica pretransitiva $y \in \{(t,s),(s,z),(z,t)\} \cap A(D) = \phi$, entonces $(s,t) \notin A(H'_2)$, por lo tanto $(s,t) \in A(H'_1)$.
 - $(t,u) \in A(H'_2)$. Como $(s,t) \in A(H'_1)$, H'_1 es una digráfica pretransitiva $y \in \{(u,t),(t,s),(s,u)\} \cap A(D) = \phi$, entonces $(t,u) \notin A(H'_1)$, por lo tanto $(t,u) \in A(H'_2)$.
 - $(u,z) \in A(H'_1)$. Como $(t,u) \in A(H'_2)$, H'_2 es una digráfica pretransitiva $y \in \{(z,u),(u,t),(t,z)\} \cap A(D) = \phi$, entonces $(u,z) \notin A(H'_2)$, por lo tanto $(u,z) \in A(H'_1)$.
 - $(w,q) \in A(H'_1)$. Como $(v,w) \in A(H'_2)$, H'_2 es una digráfica pretransitiva $y \{(q,w),(w,v),(v,q)\} \cap A(D) = \phi$, entonces $(w,q) \notin A(H'_2)$, por lo tanto $(w,q) \in A(H'_1)$.
 - $(q,r) \in A(H'_2)$. Como $(w,q) \in A(H'_1)$, H'_1 es una digráfica pretransitiva $y \in \{(r,q),(q,w),(w,r)\} \cap A(D) = \phi$, entonces $(q,r) \notin A(H'_1)$, por lo tanto $(q,r) \in A(H'_2)$.
 - $(z,q) \in A(H'_1)$. Como $(q,r) \in A(H'_2)$, H'_2 es una digráfica pretransitiva $y \in \{(q,z),(r,q),(z,r)\} \cap A(D) = \phi$, entonces $(z,q) \notin A(H'_2)$, por lo tanto $(z,q) \in A(H'_1)$.
 - $(z,y) \in A(H'_2)$. Procediendo por contradicción supongamos que $(z,y) \in A(H'_1)$ como $(u,z) \in A(H'_1)$, H'_1 es una digráfica pretransitiva, $(u,y) \notin A(D)$ $y(y,z) \in A(D)$, entonces H'_1 es pretransitiva derecha, aplicando esto último a las flechas

(z,y) y (y,v), ambas en H_1' , tenemos que $(z,v) \in A(H_1')$ o $(v,y) \in A(H_1')$ pero esto no es posible ya que $\{(z,v),(v,y)\}\cap A(D)=\phi$, por lo tanto $(z,y)\notin A(H_1')$ y en consecuencia $(z,y)\in A(H_2')$.

• $(y,z) \in A(H'_2)$. Como $(z,q) \in A(H'_1)$, H'_1 es una digráfica pretransitiva, $\{(q,z),(y,q)\} \cap A(D) = \phi \ y \ (z,y) \notin A(H'_1)$, entonces $(y,z) \notin A(H'_1)$, por lo tanto $(y,z) \in A(H'_2)$.

En la figura 2.36 se indican con el número 1 las flechas que pertenecen a H_1' y con el número 2 las flechas que pertenecen a H_2' .

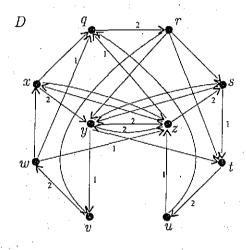


Figura 2.36

Continuamos ahora con los siguientes dos casos.

Caso (a). Supongamos que $(y,s) \in A(H'_2)$. Como $(x,y) \in A(H'_2)$, H'_2 es una digráfica pretransitiva, $\{(y,x),(x,s)\} \cap A(D) = \phi \ y \ (s,y) \in A(D)$ entonces H'_2 es pretransitiva derecha, no es pretransitiva izquierda, $y \ (s,y) \in A(H'_2)$. Esto implica que H'_1 es pretransitiva izquierda. Ahora $(x,z) \in A(H'_1)$ pues de lo contrario $(x,z) \in A(H'_2)$ y como $(z,s) \in A(H'_2)$, aplicando que H'_2 es pretransitiva derecha tenemos que $(x,s) \in A(H'_2)$ $o \ (s,z) \in A(H'_2)$ pero $\{(x,s),(s,z)\} \cap A(D) = \phi$, por lo tanto $(x,z) \notin A(H'_2)$ y en consecuencia $(x,z) \in A(H'_1)$. También tenemos $(z,x) \in A(H'_1)$ pues de lo contrario $(z,x) \in A(H'_2)$ y como $(y,z) \in A(H'_2)$, aplicando que H'_2 es pretransitiva derecha tenemos que $(y,x) \in A(H'_2)$ o $(x,z) \in A(H'_2)$ pero $(y,x) \notin A(D)$ y por lo anterior $(x,z) \notin A(H'_2)$, por lo tanto $(z,x) \in A(H'_1)$. Ahora aplicando que H'_1 es pretransitiva izquierda y que $\{(u,z),(z,x)\} \subset A(H'_1)$ tenemos que $(u,x) \in A(H'_1)$ o $(z,u) \in A(H'_1)$ pero esto no es posible pues $\{(u,x),(z,u)\} \cap A(D) = \phi$. Por lo tanto

 $(y,s) \notin A(H_2').$

Caso (b). Supongamos que $(y,s) \in A(H'_1)$. Como $\{(y,z),(z,s)\} \subset A(H'_2)$, H'_2 es una digráfica pretransitiva, $(y,s) \notin A(H'_2)$ $y(z,y) \in A(H'_2)$ entonces H'_2 es pretransitiva izquierda, no es pretransitiva derecha, y en consecuencia H'_1 es pretransitiva derecha. Ahora $(s,y) \in A(H'_1)$ pues de lo contrario $(s,y) \in A(H'_2)$, como $(y,z) \in A(H'_2)$ $y \in A(H'_2)$ es pretransitiva izquierda entonces $(y,s) \in A(H'_2)$ o $(s,z) \in A(H'_2)$ pero por el caso anterior $(y,s) \notin A(H'_2)$ $y(s,z) \notin A(D)$, por lo tanto $(s,y) \in A(H'_1)$. Ahora aplicando que H'_1 es pretransitiva derecha y que $\{(s,y),(y,v)\} \subset A(H'_1)$ tenemos que $(s,v) \in A(H'_1)$ o $(v,y) \in A(H'_1)$ pero esto no es posible pues $\{(s,v),(v,y)\} \cap A(D) = \phi$. Por lo tanto $(y,s) \notin A(H'_1)$.

Como ninguno de los casos anteriores es posible, concluímos que D no es unión de una digráfica pretransitiva derecha con una izquierda. Así el Teorema 2.34 abarca digráficas que no están incluidas en el Teorema 2.11. A partir de D podemos construir una familia infinita de digráficas incluídas en el Teorema 2.34 pero no en el Teorema 2.11. Sea $D_0 = D$, $D_{0,1} = H_1$ y $D_{0,2} = H_2$. Ahora para cada entero positivo n y dada D_{n-1} digráfica donde todo triángulo dirigido tiene al menos 2 flechas simétricas, que es unión de dos digráficas quasitransitivas $D_{n-1,1}$ y $D_{n-1,2}$ que no tienen trayectorias infinitas exteriores, y que no es unión de una digráfica pretransitiva derecha y una pretransitiva izquierda, consideramos dos nuevos vértices z_n y w_n , definimos D_n la unión de $D_{n,1}$ y $D_{n,2}$, donde $V(D_{n,1}) = V(D_{n-1,1}) \cup \{z_n\}$, $A(D_{n,1}) = \sum_{n=1}^{\infty} a_n (D_{n,1}) + \sum_{n=$ $A(D_{n-1,1}) \cup \{(z_n, u) \mid u \in V(D_{n-1,1})\}, \ y \ V(D_{n,2}) = V(D_{n-1,2}) \cup \{w_n\}, \ A(D_{n,2}) = V(D_{n,2}) \cup \{w_n$ $A(D_{n-1,2}) \cup \{(w_n, u) / u \in V(D_{n-1,2})\}, figura 2.37. Por el Lema 2.37 <math>D_{n,1} y D_{n,2}$ son digráficas quasitransitivas y no tienen trayectorias infinitas exteriores. D es una subdigráfica inducida de D_n . Los únicos triángulos dirigidos de D_n son los que tiene D, los cuales tienen 2 flechas simétricas. Por otro lado D_n no es unión de una digráfica pretransitiva derecha con una pretransitiva izquierda ya que si lo fuera toda subdigráfica inducida de D_n también tendría esta propiedad en particular la digráfica D, pero esto no es posible. Por lo tanto $\{D_n / n \in \mathbb{N}\}$ es una familia infinita de por la companya de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya de l digráficas para las cuales se puede aplicar el Teorema 2.34 pero no el Teorema 2.11.

2.7 Núcleos por Trayectorias Monocromáticas y Digráficas Quasitransitivas

En esta sección consideramos digráficas finitas y probamos el siguiente resultado sobre digráficas quasitransitivas coloreadas y núcleos por trayectorias monocromáticas:

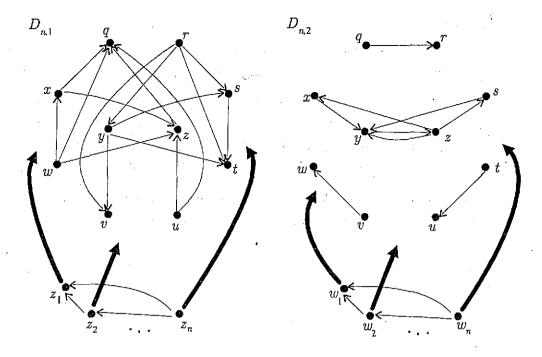


Figura 2.37: Las flechas gruesas indican que los vértices z_1 , z_2 ,..., z_n son adyacentes hacia los vértices de $D_{n-1,1}$, y los vértices w_1 , w_2 ,..., w_n son adyacentes hacia los vértices de $D_{n-1,2}$.

Si D es una digráfica quasitransitiva m—coloreada tal que todo triángulo dirigido es monocromático entonces la cerradura transitiva de D es núcleo perfecta y en consecuencia D tiene núcleo por trayectorias monocromáticas.

Lema 2.41 . Sea D una digráfica quasitransitiva m-coloreada tal que todo triángulo dirigido es monocromático. Si $u, v \in V(D)$ son tales que existe T en D una uv-trayectoria dirigida monocromática y no existe ninguna vu-trayectoria dirigida monocromática, entonces $(u, v) \in A(D)$.

Demostración. Sin pérdida de generalidad supongamos que T es de color 1. Procederemos por inducción sobre l la longitud de T. Si l=1, entonces $(u,v) \in A(D)$. Supongamos que el resultado es válido si $l \le n$. Supongamos ahora que l=n+1 y que $T=(u=u_0,u_1,...,u_{n+1}=v)$. Como D es quasitransitiva entonces para cada $i \in \{0,1,...,n-1\}, (u_i,u_{i+2}) \in A(D)$ o $(u_{i+2},u_i) \in A(D)$.

- 4. Primero probaremos que el resultado se cumple si $(u_i, v) \in A(D)$ para alguna $i \in \{0, ..., n-1\}$.
 - Procediendo por contradicción supongamos que $(u,v) \notin A(D)$. Sea $i_0 = \min\{i \in \{0,...,n-1\} / (u_i,v) \in A(D)\}$, como $(u=u_0,v) \notin A(D)$ entonces $i_0 \ge 1$

1.1(44

1, como $(u_{i_0-1}, u_{i_0}) \in A(D)$ aplicando que D es quasitransitiva tenemos que $(u_{i_0-1},v)\in A(D)$ o $(v,u_{i_0-1})\in A(D)$, pero por la elección de i_0 , tenemos que $(v, u_{i_0-1}) \in A(D)$. Ahora, i_0-1 no puede ser 0 pues no existen vu-trayectorias monocromáticas en D, por lo tanto $i_0 \geq 2$, figura 2.38. Entonces $(u_{i_0-1}, u_{i_0}, v, v)$ u_{i_0-1}) es un triángulo dirigido de D que por hipótesis es monocromático, como (u_{i_0-1}, u_{i_0}) es una flecha de T es de color 1, así el triángulo es de color 1. Sea $T' = (u, T, u_{i_0}) \cup (u_{i_0}, v), T'$ es una uv-trayectoria monocromática de longitud menor que T, por hipótesis de inducción $(u = u_0, v) \in A(D)$ pero esto contradice que $i_0 \ge 2$, por lo tanto $i_0 = 0$ y así $(u, v) \in A(D)$.

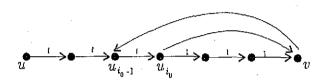


Figura 2.38

Ahora analizaremos los siguientes dos casos.

- Caso (a) Supongamos que para alguna $i \in \{0, 1, ..., n-1\}$ $(u_i, u_{i+2}) \in A(D)$. Sea $j_0 = 0$ $\max\{j \in \{i+2,...,n+1\} / (u_i,u_j) \in A(D)\}$. Si $j_0 = n+1$, entonces $(u_i,v) \in A(D)$ A(D), por (1) tenemos que $(u = u_0, v) \in A(D)$. Supongamos que $j_0 \leq n$. Como $(u_{j_0}, u_{j_0+1}) \in A(D)$ y D es quasitransitiva entonces $(u_i, u_{j_0+1}) \in A(D)$ o $(u_{j_0+1}, u_i) \in A(D)$, por la elección de u_{j_0} tenemos que $(u_{j_0+1}, u_i) \in A(D)$, figura 2.39. Entonces $(u_i, u_{j_0}, u_{j_0+1}, u_i)$ es un triángulo dirigido de D que por hipótesis es monocromático, como (u_{j_0}, u_{j_0+1}) es una flecha de T es de color 1, así el triángulo es de color 1. Sea $T' = (u, T, u_i) \cup (u_i, u_{j_0}) \cup (u_{j_0}, T, v), T'$ es una uv-trayectoria monocromática de longitud menor que T, por hipótesis de inducción $(u, v) \in A(D)$.
- Caso (b) Supongamos que para toda $i \in \{0, 1, ..., n-1\}$ $(u_{i+2}, u_i) \in A(D)$. Entonces $(u_i, u_{i+1}, u_{i+2}, u_i)$ es un triángulo dirigido de D que por hipótesis es monocromático, como (u_i, u_{i+1}) es una flecha de T es de color 1, así el triángulo es de color 1, por lo tanto (u_{i+2}, u_i) es una flecha de color 1 para toda $i \in \{0, 1, ..., n-1\}$. Si $n+1 \equiv 0 \mod 2$, entonces $(v=u_{n+1},u_{n-1},...,u_2,u_0=u)$ es una vu-trayectoria monocromática en D, contradiciendo la hipótesis, figura 2.40. Si $n+1 \equiv 1 \mod n$

(S, |x|)

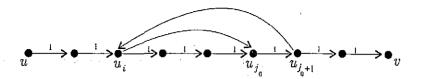


Figura 2.39

2, entonces $(v = u_{n+1}, u_{n-1}, u_{n-3}, ..., u_3, u_1, u_2, u_0 = u)$ es una vu-trayectoria monocromática en D, contradiciendo la hipótesis, figura 2.41. Por lo tanto este caso no sucede.

Figura 2.40

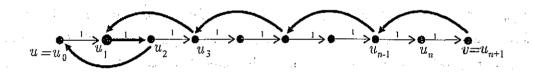


Figura 2.41

Por lo tanto si l = n + 1, $(u, v) \in A(D)$. Con esto se concluye la prueba.

Teorema 2.42 Sea D una digráfica quasitransitiva m-coloreada tal que todo triángulo dirigido es monocromático entonces $\mathfrak{C}(D)$ es núcleo perfecta y por lo tanto D tiene núcleo por trayectorias monocromáticas.

Demostración. Utilizaremos el Teorema 1.46 así que probaremos primero que todo ciclo dirigido de $\mathfrak{C}(D)$ tiene al menos una flecha simétrica. Procediendo por contradicción, supongamos que $C = (u_0, u_1, ..., u_n, u_0)$ es un ciclo dirigido de $\mathfrak{C}(D)$ que no tiene flechas simétricas. Sea $i \in \{0, 1, ..., n\}$, como $(u_i, u_{i+1}) \in A(\mathfrak{C}(D))$ (la suma es tomada módulo n+1) entonces existe en D alguna u_iu_{i+1} -trayectoria monocromática, como C no tiene flechas simétricas entonces en D no existen $u_{i+1}u_i$ -trayectorias monocromáticas, por el Lema 2.41 $(u_i, u_{i+1}) \in A(D)$, entonces C es un ciclo dirigido de D. Si n=2, entonces C es un triángulo dirigido de D, por hipótesis C es

TESIS CON FALLA DE ORIGEN monocromático y por lo tanto es simétrico en $\mathfrak{C}(D)$ lo cual es una contradicción. Supongamos que $n \geq 3$ entonces tenemos:

- 1. $(u_0, u_2) \in A(D)$. Como (u_0, u_1) y (u_1, u_2) son flechas de D y D es quasitransitiva entonces (u_0, u_2) es una flecha de D o lo es (u_2, u_0) , si $(u_2, u_0) \in A(D)$ entonces (u_0, u_1, u_2, u_0) es un triángulo dirigido de D que por hipótesis es monocromático y esto implica que en $\mathfrak{C}(D)$ es simétrico, así tenemos que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición, por lo tanto $(u_0, u_2) \in A(D)$.
- 2. $(u_{n-1}, u_0) \in A(D)$. Como (u_{n-1}, u_n) y (u_n, u_0) son flechas de D y D es quasitransitiva entonces (u_{n-1}, u_0) es una flecha de D o lo es (u_0, u_{n-1}) , si $(u_0, u_{n-1}) \in A(D)$ entonces (u_0, u_{n-1}, u_n, u_0) es un triángulo dirigido de D que por hipótesis es monocromático y esto implica que en $\mathfrak{C}(D)$ es simétrico, así tenemos que (u_n, u_0) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición, por lo tanto $(u_{n-1}, u_0) \in A(D)$.
- 3. $n \geq 4$. Si n = 3, por 1 tenemos que (u_0, u_2, u_3, u_0) es un triángulo dirigido de D que por hipótesis es monocromático y esto implica que en $\mathfrak{C}(D)$ es simétrico, así tenemos que (u_2, u_3) es una flecha simétrica de C contradiciendo nuestra suposición por lo tanto $n \geq 4$.

Sea $i_0 = \min\{i \in \{2, ..., n-1\} / (u_i, u_0) \in A(D)\}$, i_0 existe por 2, y por 1 $i_0 \geq 3$, figura 2.42. Así $(u_{i_0}, u_0) \in A(D)$, como $(u_{i_0-1}, u_{i_0}) \in A(D)$, aplicando que D es quasitransitiva y por la elección de i_0 tenemos que $(u_0, u_{i_0-1}) \in A(D)$, entonces $(u_0, u_{i_0-1}, u_{i_0}, u_0)$ es un triángulo dirigido de D que por hipótesis es monocromático y esto implica que en $\mathfrak{C}(D)$ es simétrico, así tenemos que (u_{i_0-1}, u_{i_0}) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición. Por lo tanto todo ciclo dirigido de $\mathfrak{C}(D)$ tiene una flecha simétrica, por el Teorema 1.46 $\mathfrak{C}(D)$ es núcleo perfecta y en consecuencia por el Teorema 1.54 D tiene núcleo por trayectorias monocromáticas.

Ahora veremos que en el Teorema 2.42 las hipótesis de que la digráfica sea quasitransitiva así como la de que todo triángulo dirigido sea monocromático son esenciales, es decir, si se elimina cualquiera de estas hipótesis no necesariamente existe núcleo por trayectorias monocromáticas.

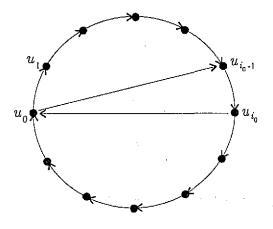


Figura 2.42

Nota 2.43 Si en el Teorema 2.42 eliminamos la hipótesis de que D se una digráfica quasitransitiva entonces D no necesariamente tiene núcleo por trayectorias monocromáticas. Sea D cualquier ciclo dirigido de longitud impar mayor o igual que 5 y supongamos que cada flecha tiene asignado un color diferente. D no tiene triángulos dirigidos por lo tanto todo triángulo dirigido de D es monocromático. D no tiene núcleo por trayectorias monocromáticas pues como cada flecha tiene un color diferente, tener núcleo por trayectorias monocromáticas es equivalente a que tener núcleo, pero se sabe que los ciclos dirigidos de longitud impar no tienen núcleo.

Nota 2.44 Si en el Teorema 2.42 eliminamos la hipótesis de que todo triángulo dirigido de D sea monocromático entonces D no necesariamente tiene núcleo por trayectorias monocromáticas, más aún no se puede cambiar dicha hipótesis a que todo triángulo dirigido sea bicolor, esto se muestra con la digráfica de la figura 2.43, esta digráfica aparece en [31] y nos referiremos a ella en el Capítulo 3. No es difícil ver que D es quasitransitiva pues es una digráfica completa. Los únicos triángulos dirigidos de D son: (v_1, v_2, v_4, v_1) , (v_2, v_3, v_5, v_2) , (v_3, v_4, v_1, v_3) , (v_4, v_5, v_2, v_4) y (v_5, v_1, v_3, v_5) ; todos ellos son bicolores. D no tiene núcleo por trayectorias monocromáticas ya que como es una digráfica completa, cualquier núcleo de D debería constar de un solo vértice, pero para cada $i \in \{1, 2, 3, 4, 5\}$ no existe ninguna $v_{i+1}v_i$ —trayectoria monocromática en D (la suma es tomada módulo 5).

A partir de D podemos construir una familia infinita de digráficas coloreadas que son quasitransitivas donde todo triángulo dirigido es bicolor y sin núcleo por trayectorias monocromáticas. Sea $D_0 = D$, para cada entero positivo n y dada D_{n-1} digráfica quasitransitiva que satisface lo anterior, sea z_n un nuevo vértice y definimos la digráfica

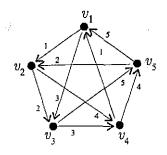


Figura 2.43: El número que aparece en cada flecha representa el color asignado a la flecha.

 D_n tal que $V(D_n) = V(D_{n-1}) \cup \{z_n\}$ y $A(D_n) = A(D_{n-1}) \cup \{(z_n, u) \ / \ u \in V(D_{n-1})\}$, los colores de las flechas de D_{n-1} quedan igual en D_n y a la flecha (z_n, u) le asignamos color 1, figura 2.44. Por Lema 2.37 D_n es una digráfica quasitransitiva, los únicos triángulos dirigidos de D_n son los mismos que tiene D que son bicolores. Por último veamos que D_n no tiene núcleo. Aplicando el Teorema 1.55 tomando $\hat{D}_1 = D_n[\{z_1, ..., z_n\}], \ \hat{D}_2 = D, \ \hat{A} = \{(z_i, v) \ / \ i \in \{1, ..., n\}, \ v \in V(D)\}$ donde las flechas de \hat{D}_1 y las que están en \hat{A} todas son de color 1 y las flechas de \hat{D}_2 quedan con el mismo color que tienen en D, tenemos que $\hat{D} = D_n$ y por lo tanto D_n no tiene núcleo por trayectorias monocromáticas. Así $\{D_n \ / \ n \in \mathbb{N}\}$ es una familia infinita de digráficas coloreadas que son quasitransitivas tales que todo triángulo dirigido es bicolor y no tienen núcleo por trayectorias monocromáticas.

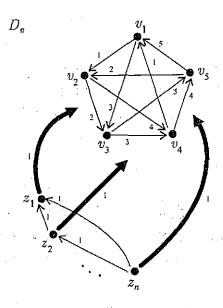


Figura 2.44: Las flechas gruesas indican que los vértices z_1 , z_2 ,..., z_n son advacentes hacia los vértices v_1 , v_2 , v_3 , v_4 y v_5 ; todas estas flechas son de color 1.

2.8 Problemas Abiertos

- 1. En el Teorema 2.24 ¿no basta que $Sym\left(T\right)\subset Sym\left(D\right)$ para el caso infinito?
- 2. ¿Si G es una gráfica infinita y es de comparabilidad entonces cualquier M—orientación de G tiene núcleo?
- 3. ¿Qué otras digráficas coloreadas, además de las quasitransitivas, satisfacen que si todo triángulo es monocromático entonces tienen núcleo por trayectorias monocromáticas?

TALLIA DE CONCENT

Capítulo 3

Torneos Coloreados

Un torneo es una digráfica tal que entre cada par de vértices existe una y sólo una flecha. Consideremos T un torneo m—coloreado tal que todo ciclo dirigido de longitud 3 es casimonocromático. En este capítulo mostramos que si m=4 entonces no necesariamente T tiene núcleo por trayectorias monocromáticas. Si m=3 demostramos el siguiente resultado: si en T para cada vértice el número de colores que aparecen en las flechas que inciden en él son a lo más 2, entonces T tiene núcleo por trayectorias monocromáticas.

Denotamos por T_3 al torneo transitivo de orden 3 y por C_3 al ciclo dirigido de orden 3, no es difícil ver que T_3 y C_3 son los únicos torneos de orden 3 que no son isomorfos.

En [35] se prueba que cualquier digráfica D 2-coloreada tiene núcleo por trayectorias monocromáticas. En particular se prueba que cualquier torneo T 2-coloreado posee un vértice v tal que para cualquier otro vértice x de T existe una trayectoria monocromática dirigida desde x hacia v, (es decir $\{v\}$ es un núcleo por trayectorias monocromáticas de T). En este mismo artículo se plantea el siguiente problema:

Problema 3.1 Sea T un torneo m-coloreado tal que todo C_3 es casimonocromático. ¿Debe T tener núcleo por trayectorias monocromáticas?

Con respecto al problema anterior, en [31], Shen Minggang demuestra el siguiente resultado:

Teorema 3.2 Si T es un torneo m-coloreado tal que todo C_3 y todo T_3 es casimonocromático entonces T tiene núcleo por trayectorias monocromáticas.

TALLIA DE CONCENT

Capítulo 3

Torneos Coloreados

Un torneo es una digráfica tal que entre cada par de vértices existe una y sólo una flecha. Consideremos T un torneo m—coloreado tal que todo ciclo dirigido de longitud 3 es casimonocromático. En este capítulo mostramos que si m=4 entonces no necesariamente T tiene núcleo por trayectorias monocromáticas. Si m=3 demostramos el siguiente resultado: si en T para cada vértice el número de colores que aparecen en las flechas que inciden en él son a lo más 2, entonces T tiene núcleo por trayectorias monocromáticas.

Denotamos por T_3 al torneo transitivo de orden 3 y por C_3 al ciclo dirigido de orden 3, no es difícil ver que T_3 y C_3 son los únicos torneos de orden 3 que no son isomorfos.

En [35] se prueba que cualquier digráfica D 2-coloreada tiene núcleo por trayectorias monocromáticas. En particular se prueba que cualquier torneo T 2-coloreado posee un vértice v tal que para cualquier otro vértice x de T existe una trayectoria monocromática dirigida desde x hacia v, (es decir $\{v\}$ es un núcleo por trayectorias monocromáticas de T). En este mismo artículo se plantea el siguiente problema:

Problema 3.1 Sea T un torneo m-coloreado tal que todo C_3 es casimonocromático. ¿Debe T tener núcleo por trayectorias monocromáticas?

Con respecto al problema anterior, en [31], Shen Minggang demuestra el siguiente resultado:

Teorema 3.2 Si T es un torneo m-coloreado tal que todo C_3 y todo T_3 es casimonocromático entonces T tiene núcleo por trayectorias monocromáticas.

También Shen Minggang muestra que para $m \geq 5$ si sólo se pide que todo C_3 sea casimonocromático entonces no necesariamente T tiene núcleo por trayectorias monocromáticas, figura 2.43, deja como problemas abiertos los casos m = 3 y m = 4.

En la sección 3.1 presentamos un contraejemplo para el caso m=4 y en la sección 3.2 se demuestra el caso m=3 para ciertas coloraciones, Teorema 3.7.

Otros resultados sobre núcleos por trayectorias monocromáticas en torneos son los obtenidos por H. Galeana Sánchez [15, 16, 17, 18]. De estos resultados algunos involucran condiciones similares a la mencionadas en los teoremas 3.2 y 3.7. A continuación mencionamos estos resultados.

Teorema 3.3 [15] Sea T un torneo m-coloreado. Si todo ciclo dirigido de T de longitud a lo más 4 es casimonocromático entonces $\mathfrak{C}(T)$ es núcleo perfecta.

Teorema 3.4 [15] Sea T un torneo m-coloreado tal que todo ciclo dirigido de longitud 3 contenido en T es monocromático. Entonces $\mathfrak{C}(T)$ es núcleo perfecta.

Para el teorema siguiente necesitamos la siguiente definición.

Definición 3.5 Sea D una digráfica m-coloreada y $\gamma_n = (u_0, u_1, ..., u_{n-1}, u_0)$ un ciclo dirigido de D. Decimos que γ_n es $\mathfrak{C}(D)$ -monocromático si existe un conjunto $\{f_i = (u_i, u_{i+1}) \in A(\mathfrak{C}(D)) / i \in \{0, 1, ..., n-1\}$ notación mod $n\}$ de flechas coloreadas con el mismo color.

Teorema 3.6 [15] Sea T un torneo m-coloreado tal que todo ciclo dirigido de longitud 3 contenido en T es $\mathfrak{C}(T)$ -monocromático. Entonces $\mathfrak{C}(T)$ es núcleo perfecta.

Al final de la Sección 3.2 vemos que el Teorema 3.7 es un resultado diferente a los antes mencionados que involucran hipótesis parecidas (teoremas 3.2, 3.3, 3.4 y 3.6).

3.1 Torneos 4-Coloreados

En esta sección mostramos un contraejemplo al Problema 3.1 para el caso m=4, esta decir presentamos un torneo 4 coloreado donde todo C_3 es casimonocromático y sin núcleo por trayectorias monocromáticas.

Sea T el torneo de la figura 3.1, el número en cada flecha representa el color asignado a la misma, así el torneo está coloreado con 4 colores.

was with the properties of the analysis of the entire of the properties.

T satisface lo siguiente: $x = x_0 + x_$

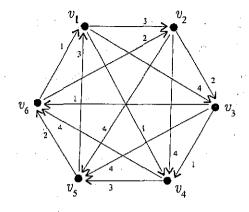


Figura 3.1

- 1. Todo C_3 de T es casimonocromático. Sea C el ciclo dirigido $(v_1, v_2, v_3, v_4, v_5, v_6, v_1)$ contenido en T. Es inmediato que todo C_3 de T contiene alguna flecha que no está en C. Por lo tanto para cada una de las 9 flechas que no están en C veremos que todos los C_3 que la contienen son casimonocromáticos.
 - (a) Flecha (v_1, v_3) . v_3 es adyacente hacia v_5 y v_6 . Como $\{(v_5, v_1), (v_6, v_1)\} \subset A(D)$, entonces (v_1, v_3) pertenece a los siguientes triángulos dirigidos:
 - i. Triángulo (v_1, v_3, v_5, v_1) . Como las flechas (v_1, v_3) y (v_3, v_5) son de color 4, éste C_3 es casimonocromático.
 - ii. Triángulo (v_1, v_3, v_6, v_1) . Como las flechas (v_3, v_6) y (v_6, v_1) son de color 1, éste C_3 es casimonocromático.
- (b) Flecha (v_1, v_4) . v_4 es adyacente hacia v_5 y v_6 . Como $\{(v_5, v_1), (v_6, v_1)\} \subset A(D)$, entonces (v_1, v_4) pertenece a los siguientes triángulos dirigidos:
 - i. Triángulo (v_1, v_4, v_5, v_1) . Como las flechas (v_4, v_5) y (v_5, v_1) son de color 3, este C_3 es casimonocromático.
 - ii. Triángulo (v_1, v_4, v_6, v_1) . Como las flechas (v_1, v_4) y (v_6, v_1) son de color 1, éste C_3 es casimonocromático.
- (c) Flecha (v_2, v_4) . v_4 es adyacente hacia v_5 y v_6 . Como $(v_5, v_2) \notin A(D)$ v_6 . v_6 v_6 v_7 v_8 v_8
- i. Triángulo (v_2, v_4, v_6, v_2) . Como las flechas (v_2, v_4) y (v_4, v_6) son de color 4, éste C_3 es casimonocromático.
- (d) Flecha (v_2, v_5) . v_5 es adyacente hacia v_6 y v_1 . Como $\{(v_6, v_2), (v_1, v_2)\} \subset A(D)$, entonces (v_2, v_5) pertenece a los siguientes triángulos dirigidos.

- i. Triángulo (v_2, v_5, v_6, v_2) . Como las flechas (v_5, v_6) y (v_6, v_2) son de color 2, éste C_3 es casimonocromático.
- ii. Triángulo (v_2, v_5, v_1, v_2) . Como las flechas (v_5, v_1) y (v_1, v_2) son de color 3, éste C_3 es casimonocromático.
- (e) Flecha (v_3, v_5) . v_5 es adyacente hacia v_6 y v_1 . Como $(v_6, v_3) \notin A(D)$ y $(v_1, v_3) \in A(D)$, entonces (v_3, v_5) sólo pertenece al siguiente triángulo dirigido:
 - i. Triángulo (v_3, v_5, v_1, v_3) . Por 1(a)(i) éste C_3 es casimonocromático.
- (f) Flecha (v_3, v_6) . v_6 es adyacente hacia v_1 y v_2 . Como $\{(v_1, v_3), (v_2, v_3)\} \subset A(D)$, entonces (v_3, v_6) pertenece a los siguientes triángulos dirigidos:
 - i. Triángulo (v_3, v_6, v_1, v_3) . Por 1(a)(ii) éste C_3 es casimonocromático.
 - ii. Triángulo (v_3, v_6, v_2, v_3) . Como las flechas (v_6, v_2) y (v_2, v_3) son de color 2, éste C_3 es casimonocromático.
- (g) Flecha (v_4, v_6) . v_6 es adyacente hacia v_1 y v_2 . Como $\{(v_1, v_4), (v_2, v_4)\} \subset A(D)$, entonces (v_4, v_6) pertenece a los siguientes triángulos dirigidos:
 - i. Triángulo (v_4, v_6, v_1, v_4) . Por 1(b)(ii) éste C_3 es casimonocromático.
 - ii. Triángulo (v_4, v_6, v_2, v_4) . Por 1(c)(i) este C_3 es casimonocromático.
- (h) Flecha (v_5, v_1) . v_1 es adyacente hacia v_2 , v_3 y v_4 . Como $\{(v_2, v_5), (v_3, v_5), (v_4, v_5)\} \subset A(D)$, entonces (v_4, v_6) pertenece a los siguientes triángulos dirigidos:
 - i. Triángulo (v_5, v_1, v_2, v_5) . Por 1(d)(ii) éste C_3 es casimonocromático.
 - ii. Triángulo (v_5, v_1, v_3, v_5) . Por 1(a)(i) éste C_3 es casimonocromático.
 - iii. Triángulo (v_5, v_1, v_4, v_5) . Por 1(b)(i) éste C_3 es casimonocromático.
- (i) Flecha (v_6, v_2) . v_2 es adyacente hacia v_3 , v_4 y v_5 . Como $\{(v_3, v_6), (v_4, v_6), (v_5, v_6)\} \subset A(D)$, entonces (v_6, v_2) pertenece a los siguientes triángulos dirigidos:
 - i. Triángulo (v_6, v_2, v_3, v_6) . Por 1(f)(ii) éste C_3 es casimonocromático.
 - ii. Triángulo (v_6, v_2, v_4, v_6) . Por 1(c)(i) éste C_3 es casimonocromático.
 - iii. Triángulo (v_6, v_2, v_5, v_6) . Por 1(d)(i) éste C_3 es casimonocromático.
- 2. T no tiene núcleo por trayectorias monocromáticas. Como T es una digráfica completa, entonces cualquier núcleo por trayectorias monocromáticas de T debería constar de un solo vértice. La figura 3.2 muestra la cerradura transitiva

 $\mathfrak{C}(T)$ de T. En $\mathfrak{C}(T)$ el ciclo dirigido C es asimétrico, esto implica que para caulquier v_i , $\{v_{i+1}\}$ no absorbe por trayectorias monocromáticas a v_i (la suma es tomada módulo 6), por lo tanto ningun vértice de T puede formar un núcleo por trayectorias monocromáticas de T.

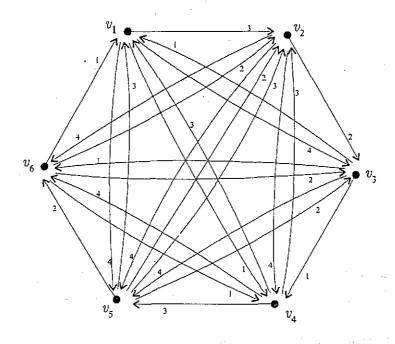


Figura 3.2

A partir de T podemos construir una familia infinita de torneos 4-coloreadas donde todo C_3 es casimonocromático y sin núcleo por trayectorias monocromáticas. Sea $T'_0 = T$, para cada entero positivo n y dado T'_{n-1} torneo que satisface lo anterior, consideramos un nuevo vértice z_n y definimos el torneo T'_n tal que $V\left(T'_n\right) = V\left(T'_{n-1}\right) \cup$ $\{z_n\}$ y $A(T'_n) = A(T'_{n-1}) \cup \{(z_n, u) \mid u \in V(T'_{n-1})\}$, los colores de las flechas de T'_{n-1} quedan igual en T'_n y a la flecha (z_n, u) le asignamos color 1, figura 3.3. Como T'_{n-1} es un torneo y z_n es adyacente hacia todos los vértices de T_{n-1}' entonces T_n' es un torneo. Los únicos C_3 de T_n son los mismos que tiene T que son casimonocromáticos. Por último veamos que T_n no tiene núcleo. Aplicando el Teorema 1.55 tomando $\hat{D}_{1} = T_{n}'[\{z_{1},...,z_{n}'\}], \ \hat{D}_{2} = T, \ \hat{A} = \{(z_{i},v) \ / \ i \in \{1,...,n\}, \ v \in V(D)\} \ ext{donde las}$ flechas de \hat{D}_1 y las que están en \hat{A} todas son de color 1 y las flechas de \hat{D}_2 quedan con el mismo color que tienen en T, tenemos que $\hat{D} = T'_n$ y por lo tanto T'_n no tiene núcleo por trayectorias monocromáticas. Así $\{T'_n \mid n \in \mathbb{N}\}$ es una familia infinita de torneos 4-coloreadas donde todo C_3 es casimonocromático y no tienen núcleo por trayectorias monocromáticas. and the second of the second o

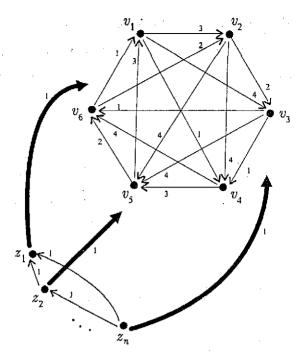


Figura 3.3: Las flechas gruesas indican que los vértices z_1 , z_2 ,..., z_n son adyacentes hacia los vértices v_1 , v_2 , v_3 , v_4 , v_5 y v_6 ; todas estas flechas son de color 1.

3.2 Torneos 3-Coloreados

Sea T un torneo m-coloreado, si v es un vértice de T, denotamos por $\zeta(v)$ al conjunto de colores asignados a las flechas que inciden en v. Decimos que en T un vértice v tiene vecindad a lo mas bicolor si $|\zeta(v)| \leq 2$. En esta sección resolvemos en el Teorema 3.7 el problema 3.1 para ciertos torneos 3-coloreados donde todo C_3 es casimonocromático.

Observemos que como T es un torneo entonces $\mathfrak{C}(T)$ es una multidigráfica completa, es decir entre cualesquiera dos vértices de $\mathfrak{C}(T)$ existe alguna flecha. Usaremos la siguiente notación en la demostración del Teorema 3.7:

- $u \mapsto^{a} v \text{ si } (u, v) \in A(T) \text{ y es de color } a$,
- How $u \to ^c v$ si en $\mathfrak{C}(T)$ existe alguna flecha de u a v de color $a, b \in \mathfrak{C}(T)$
 - $u \rightarrow a v$ si en $\mathfrak{C}(T)$ no hay flechas de u a v de color a, y
- •• $u \Rightarrow^a v$ si $u \rightarrow^a v$ y en $\mathfrak{C}(T)$ todas las flechas de u de a v son de color a.

De acuerdo a lo anterior $u\mapsto^a v$ implica $u\to^a v$, también tenemos que si $u\Rightarrow^a v$. $y(u,v)\in A(T)$ entonces $u\mapsto^a v$. En la demostración del Teorema 3.7 usaremos que

la cerradura transitiva de una digráfica coloreada es transitiva por colores, propiedad probada en el Teorema 1.53, así $u \to^a v$ y $(v \to^a w \circ v \Rightarrow^a w)$ implica $u \to^a w$.

Teorema 3.7 Sea T un torneo 3-coloreado tal que todo C_3 es casimonocromático y cada vértice de T tiene vecindad a lo más bicolor. Entonces $\mathfrak{C}(T)$, la cerradura transitiva de T, es núcleo perfecta y por lo tanto T tiene núcleo por trayectorias monocromáticas.

Demostración. Supongamos que T está coloreado con los colores 1, 2 y 3. Observemos que si en un vértice de T sólo inciden flechas de colores a y b entonces las trayectorias monocromáticas que contengan a dicho vértice solo pueden ser de estos dos colores, así también se cumple que en $\mathfrak{C}(T)$ todo vértice tiene vecindad a lo más bicolor y más aún para cada vértice las vecindades en T y $\mathfrak{C}(T)$ son iguales.

Demostraremos que todo ciclo C de $\mathfrak{C}(T)$ tiene al menos una flecha simétrica para luego aplicar el Teorema 1.46 y concluir que $\mathfrak{C}(T)$ es núcleo perfecta.

Si C es un ciclo dirigido de $\mathfrak{C}(T)$ y no es un ciclo dirigido de T entonces alguna flecha (u,v) de C es flecha de $\mathfrak{C}(T)$ pero no de T, entonces la flecha (v,u) es flecha del torneo y por lo tanto también de su cerradura. Así C tiene al menos una flecha simétrica.

Supongamos entonces que C es un ciclo dirigido del torneo, procederemos por inducción sobre n la longitud de C.

Para n=3, C es un C_3 en T que por hipótesis es casimonocromático, entonces al menos dos de sus flechas deben ser del mismo color. Supongamos que $C=(u_0,u_1,u_2,u_0)$ y sin perder generalidad que (u_0,u_1) y (u_1,u_2) son del mismo color, esto implica que (u_0,u_1,u_2) es en T una u_0u_2 —trayectoria dirigida monocromática, por lo tanto $(u_0,u_2) \in A(\mathfrak{C}(T))$, así C tiene al menos una flecha simétrica en $\mathfrak{C}(T)$.

Supongamos que si C es de longitud a lo más n, entonces tiene al menos una flecha simétrica en $\mathfrak{C}(T)$.

Ahora supongamos que C tiene longitud n+1, $n \geq 3$. Sea $C = (u_0, u_1, ..., u_n, u_0)$. Procederemos por contradicción. Supongamos que en $\mathfrak{C}(T)$, C no tiene flechas simétricas. Entonces:

- 1. En C aparecen al menos dos colores. Pues si C es monocromático entonces es simétrico en $\mathfrak{C}(T)$ lo cual es una contradicción.
- 2. Para cualesquiera dos vértices u y v no consecutivos en el ciclo, (u,v) es una flecha simétrica en $\mathfrak{C}(T)$. Si u y v son vértices no consecutivos en el ciclo, como v

son vértices adyacentes en el torneo, supongamos sin pérdida de generalidad que $(u,v)\in A(T)$, entonces esta flecha junto con la parte del ciclo que va de v a u es un ciclo dirigido del torneo de longitud menor que n+1, por hipótesis de inducción este ciclo tiene al menos una flecha simétrica en $\mathfrak{C}(T)$. Como C no tiene en $\mathfrak{C}(T)$ flechas simétricas entonces (u,v) es una flecha simétrica en $\mathfrak{C}(T)$.

3. Si para algún $i \in \{0, ..., n\}$, $u_{i-1} \to^a u_i$ y $u_i \to^b u_{i+1}$ $a \neq b$ entonces $u_{i+1} \Rightarrow^c u_{i-1}$ y $u_{i-1} \Rightarrow^c u_{i+1}$ con $c \neq a$ y $c \neq b$ (las sumas son tomadas módulo n+1). Por 2 (u_{i-1}, u_{i+1}) es una flecha simétrica en $\mathfrak{C}(T)$, si $u_{i+1} \to^a u_{i-1}$, como $u_{i-1} \to^a u_i$ y $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_{i+1} \to^a u_i$ y por lo tanto (u_i, u_{i+1}) es una flecha simétrica en $\mathfrak{C}(T)$, lo cual no es posible. Si $u_{i+1} \to^b u_{i-1}$, como $u_i \to^b u_{i+1}$ y $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_i \to^b u_{i-1}$ y esto implica que (u_{i-1}, u_i) es una flecha simétrica en $\mathfrak{C}(T)$, lo cual tampoco es posible. Por lo tanto $u_{i+1} \Rightarrow^c u_{i-1}$ con $c \neq a$ y $c \neq b$. Así tenemos $\zeta(u_{i-1}) = \{a, c\}$ y $\zeta(u_{i+1}) = \{b, c\}$ y como $a \neq b$ entonces $u_{i-1} \Rightarrow^c u_{i+1}$.

Por 1 existen en T dos flechas consecutivas en el ciclo con diferente color, sin pérdida de generalidad supongamos:

4.
$$u_n \mapsto^1 u_0 y u_0 \mapsto^2 u_1$$
.

Entonces:

5. $u_n \Rightarrow^3 u_1 \text{ y } u_1 \Rightarrow^3 u_n$. Por 4 $(u_n \mapsto^1 u_0 \text{ y } u_0 \mapsto^2 u_1)$ esto implica $(u_n \to^1 u_0 \text{ y } u_0 \to^2 u_1)$, aplicando 3 para i = n concluímos que $u_n \Rightarrow^3 u_1 \text{ y } u_1 \Rightarrow^3 u_n$.

Así tenemos:

6.
$$\zeta(u_n) = \{1, 3\},\$$

7.
$$\zeta(u_0) = \{1, 2\}$$
 y

8.
$$\zeta(u_1) = \{2,3\}.$$

Como $\zeta(u_1)=\{2,3\}$ entônces $u_1\mapsto^2 u_2$ ó $u_1\mapsto^3 u_2$, analizaremos estos dos casos

Caso a. $u_1 \mapsto^3 u_2$. Sea $j_0 = \min\{j = 2, ..., n \mid u_j \mapsto^3 u_{j+1} \text{ (la suma es tomada mod } n+1)\}$, como $\xi(u_0) = \{1, 2\}$, entonces $u_n \mapsto^3 u_0$ y por lo tanto j_0 existe. Así tenemos las afirmaciones 1(a)-9(a):

1(a) $u_i \to^3 u_{i+1}$ para toda $i \in \{1,...,j_0-1\}$ y $u_{j_0} \to^3 u_{j_0+1}$. Esto es por la elección de j_0 .

- 2(a). $u_i \to^3 u_j$ para cada $1 \le i < j \le j_0$. Esto es por 1(a) y aplicando que $\mathfrak{C}(T)$ es transitiva por colores.
- 3(a). $j_0 \leq n-2$. Procediendo por contradicción supongamos que $j_0 > n-2$, es decir $j_0 \geq n-1$ entonces por 1(a) $u_1 \to^3 u_{n-1}$, como $u_n \Rightarrow^3 u_1$ por 5 y $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_n \to^3 u_{n-1}$. Así (u_{n-1}, u_n) es una flecha simétrica de C en $\mathfrak{C}(T)$, lo cual no es posible. Por lo tanto $j_0 \leq n-2$.
- 4(a). $u_{j_0+1} \Rightarrow^1 u_n$. Por 6 $\zeta(u_n) = \{1,3\}$ entonces $u_{j_0+1} \to^1 u_n$ o $u_{j_0+1} \to^3 u_n$. Supongamos que $u_{j_0+1} \to^3 u_n$, como $u_n \Rightarrow^3 u_1$ por 5 y $u_1 \to^3 u_{j_0}$ por 2(a), aplicando que $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_{j_0+1} \to^3 u_{j_0}$. Esto implica que (u_{j_0}, u_{j_0+1}) es una flecha simétrica de C en $\mathfrak{C}(T)$, pero esto contradice nuestra suposición. Por lo tanto $u_{j_0+1} \Rightarrow^1 u_n$.
- 5(a). $u_0 \Rightarrow^2 u_{j_0}$. Por $7 \zeta(u_0) = \{1, 2\}$ entonces $u_0 \to^1 u_{j_0}$ o $u_0 \to^2 u_{j_0}$. Supongamos que $u_0 \to^1 u_{j_0}$, como $u_{j_0+1} \Rightarrow^1 u_n$ por 4(a) y $u_n \mapsto^1 u_0$ por 4, aplicando que $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_{j_0+1} \to^1 u_{j_0}$. Así (u_{j_0}, u_{j_0+1}) es una flecha simétrica de C en $\mathfrak{C}(T)$, pero esto es una contradicción. Por lo tanto $u_0 \Rightarrow^2 u_{j_0}$.
- 6(a). $u_0 \Rightarrow^1 u_2$. Por 4 $u_0 \mapsto^2 u_1$ y por nuestra suposición en este caso $u_1 \mapsto^3 u_2$, aplicando 3 para i=1 tenemos $u_0 \Rightarrow^1 u_2$.
- 7(a). $j_0 \ge 3$. Por 1(a) $u_{j_0-1} \to^3 u_{j_0}$ y por 5(a) $u_0 \Rightarrow^2 u_{j_0}$ entonces $\zeta(u_{j_0}) = \{2, 3\}$, por otro lado por 6(a) $1 \in \zeta(u_2)$ entonces $u_{j_0} \ne u_2$, así $j_0 \ge 3$.
- 8(a). $\zeta(u_{j_0+1}) = \{1,2\}$. Por lo anterior $\zeta(u_{j_0}) = \{2,3\}$ y por 1(a) $u_{j_0} \not\rightarrow^3 u_{j_0+1}$ entonces $u_{j_0} \Rightarrow^2 u_{j_0+1}$. Por 4(a) $1 \in \zeta(u_{j_0+1})$, por lo tanto $\zeta(u_{j_0+1}) = \{1,2\}$.
- 9(a). $u_2 \Rightarrow^1 u_{j_0+1}$. Por 6(a) $u_0 \Rightarrow^1 u_2$ y por nuestra suposición en este caso $u_1 \mapsto^3 u_2$ entonces $\zeta(u_2) = \{1,3\}$, por 8(A) $\zeta(u_{j_0+1}) = \{1,2\}$ entonces $u_2 \Rightarrow^1 u_{j_0+1}$.
- Por 6(a) $u_0 \Rightarrow^1 u_2$, por 9(a) $u_2 \Rightarrow^1 u_{j_0+1}$ y por 4(a) $u_{j_0+1} \Rightarrow^1 u_n$, aplicando que $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_0 \to^1 u_n$. Por lo tanto (u_n, u_0) es una flecha simétrica de C en $\mathfrak{C}(T)$, pero esto contradice nuestra suposición, figura 3.4. Por lo tanto este caso no es posible.
- Caso b. $u_1 \mapsto^2 u_2$. Sea $j_0 = \min\{j = 2, ..., n 1 / u_j \not\rightarrow^2 u_{j+1}\}$, por 6 $\zeta(u_n) = \{1, 3\}$, entonces $u_{n-1} \not\rightarrow^2 u_n$ y por lo tanto j_0 existe. Así tenemos las afirmaciones 1(b) y 2(b):
 - 1 (b). $u_i \rightarrow^2 u_{i+1}$ para toda $i \in \{0,1,...,j_0-1\}$ y $u_{j_0} \not\rightarrow^2 u_{j_0+1}.$ Por la eleción de j_0

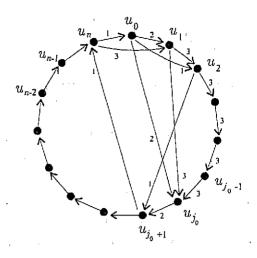


Figura 3.4

2(b). $u_i \to^2 u_j$ para cada $1 \le i < j \le j_0$. Esto es por 1(b) y aplicando que $\mathfrak{C}(T)$ es transitiva por colores.

Subcaso b.1 $j_0 \ge 3$. Entonces tenemos las afirmaciones 1(b.1), 2(b.1) y 3(b.1):

- 1(b.1). $\zeta(u_i) = \{1, 2\}$ para $i \in \{j_0 1, j_0\}$. Por $7 \zeta(u_0) = \{1, 2\}$, sea $i \in \{j_0 1, j_0\}$, entonces $u_i \to^1 u_0$ o $u_i \to^2 u_0$. Supongamos que $u_i \to^2 u_0$, por 2(b) $u_1 \to^2 u_i$, aplicando que $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_1 \to^2 u_0$, pero esto implica que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(T)$ lo cual es una contradicción. Por lo tanto $u_i \to^2 u_0$ y $u_i \Rightarrow^1 u_0$, así $1 \in \zeta(u_i)$. Por $1(b) u_{i-1} \to^2 u_i$ entonces $\zeta(u_i) = \{1, 2\}$.
- 2(b.1). $u_{j_0} \Rightarrow^1 u_{j_0+1}$. Por 1(b.1) $\zeta(u_{j_0}) = \{1, 2\}$, por 1(b) $u_{j_0} \Rightarrow^2 u_{j_0+1}$ entonces $u_{j_0} \Rightarrow^1 u_{j_0+1}$.
- 3(b.1). $u_{j_0-1} \Rightarrow^3 u_{j_0+1}$. Por 1(b) $u_{j_0-1} \to^2 u_{j_0}$ y por 2(b.1) $u_{j_0} \Rightarrow^1 u_{j_0+1}$, aplicando 3 para $i = j_0$ tenemos $u_{j_0-1} \Rightarrow^3 u_{j_0+1}$.

Por 3(b.1) tenemos que $3 \in \zeta(u_{j_0-1})$ pero esto contradice a 1(b.1), figura 3.5. Por lo tanto este subcaso no es posible.

Subcaso b.2 $j_0 = 2$ entonces tenemos las afirmaciones 1(b.2) y 2(b.2):

1(b.2). $u_2 \mapsto^1 u_3$, $u_1 \Rightarrow^3 u_3$, $u_3 \Rightarrow^3 u_1$ y $\zeta(u_3) = \{1,3\}$. Como $j_0 = 2$ entonces por 1(b) $u_2 \mapsto^2 u_3$, sea $a \in \{1,3\}$ tal que $u_2 \mapsto^a u_3$, por nuestra suposición en este caso $u_1 \mapsto^2 u_2$, aplicando 3 para i = 2 tenemos $u_1 \Rightarrow^c u_3$ y $u_3 \Rightarrow^c u_1$ con

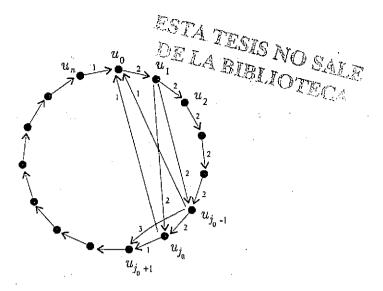


Figura 3.5

 $c \neq a$ y $c \neq 2$, por 8 $\zeta(u_1) = \{2,3\}$, esto implica que c = 3 y en consecuencia a = 1. Por lo tanto $u_2 \mapsto^1 u_3$, $u_1 \Rightarrow^3 u_3$, $u_3 \Rightarrow^3 u_1$ y $\zeta(u_3) = \{1,3\}$.

2(b.2). $n \geq 4$. Procederemos por contradicción, supongamos que n = 3 por 1(b.2) $u_1 \Rightarrow^3 u_3$ y $u_3 \Rightarrow^3 u_1$. Por otro lado $(u_1, u_3) \in A(T)$ ó $(u_3, u_1) \in A(T)$. Supongamos que $(u_1, u_3) \in A(T)$ entonces $u_1 \mapsto^3 u_3$, por $4 u_3 \mapsto^1 u_0$ y $u_0 \mapsto^2 u_1$ lo que implica que (u_0, u_1, u_3, u_0) es un C_3 tricolor en T, pero esto es una contradicción. Supongamos que $(u_3, u_1) \in A(T)$ entonces $u_3 \mapsto^3 u_1$, por nuestra suposición en este caso $u_1 \mapsto^2 u_2$, por $1(b.2) u_2 \mapsto^1 u_3$ lo que implica que (u_1, u_2, u_3, u_1) es un C_3 tricolor en T, lo cual es una contradicción. Por lo tanto $n \geq 4$.

Por 1(b.2) $\zeta(u_3) = \{1,3\}$ entonces $u_3 \mapsto^1 u_4$ ó $u_3 \mapsto^3 u_4$. Si $u_3 \mapsto^3 u_4$, por nuestra suposición en este caso $u_1 \mapsto^2 u_2$ y por 1(b.2) $u_2 \mapsto^1 u_3$ entonces se tienen en T tres flechas consecutivas en el ciclo de diferente color y la prueba se reduce al caso (a), por lo tanto podemos suponer:

3(b.2). $u_3 \mapsto^1 u_4$.

Entonces tenemos las afirmaciones 4(b.2), 5(b.2) y 6(b.2):

- 4(b.2). $u_n \Rightarrow^1 u_2$. Por nuestra suposición en este caso $u_1 \mapsto^2 u_2$ y por 1(b.2) $u_2 \mapsto^1 u_3$ entonces $\zeta(u_2) = \{1, 2\}$, por 6 tenemos que $\zeta(u_n) = \{1, 3\}$ por lo tanto $u_n \Rightarrow^1 u_2$.
- 5(b.2), $n \ge 5$. Si n = 4, por 3(b.2) $u_3 \mapsto^1 u_4$ y por 4(b.2) $u_4 \Rightarrow^1 u_2$, aplicando que $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_3 \mapsto^1 u_2$ esto implica que

 (u_2, u_3) es una flecha simétrica de C en $\mathfrak{C}(T)$ lo cual no es posible, por lo tanto $n \geq 5$.

6(b.2). $u_4 \Rightarrow^3 u_n$. Por 6 $\zeta(u_n) = \{1,3\}$ entonces $u_4 \to^1 u_n$ ó $u_4 \to^3 u_n$. Supongamos $u_4 \to^1 u_n$, por 3(b.2) $u_3 \mapsto^1 u_4$ y por 4(b.2) $u_n \Rightarrow^1 u_2$ entonces aplicando que $\mathfrak{C}(T)$ es transitiva por colores $u_3 \to^1 u_2$, esto implica que (u_2, u_3) es una flecha simétrica de C en $\mathfrak{C}(T)$ lo cual es una contradicción. Por lo tanto $u_4 \Rightarrow^3 u_n$.

Finalmente por 6(b.2) $u_4 \Rightarrow^3 u_n$, por 5 $u_n \Rightarrow^3 u_1$ y por 1(b.2) $u_1 \Rightarrow^3 u_3$ entonces aplicando que $\mathfrak{C}(T)$ es transitiva por colores tenemos que $u_4 \to^3 u_3$ lo que implica que (u_3, u_4) es una flecha simétrica de C en $\mathfrak{C}(T)$, pero esto contradice nuestra suposición, figura 3.6. Así este subcaso no es posible.

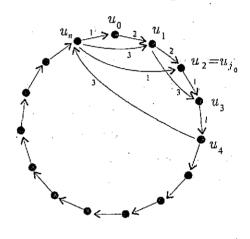


Figura 3.6

Por lo tanto no es posible el caso (b). Por lo tanto C tiene al menos una flecha simétrica en $\mathfrak{C}(T)$. Con esto concluimos que todo ciclo dirigido de $\mathfrak{C}(T)$ tiene al menos una flecha simétrica, lo que implica aplicando el Teorema 1.46 que $\mathfrak{C}(T)$ es núcleo perfecta. Aplicando el Teorema 1.54 concluímos que T tiene núcleo por trayectorias monocromáticas:

A continuación demostramos en el Teorema 3.9 que para $m \ge 4$ es suficiente la condición de vecindades a lo más bicolores para la existencia de núcleo por trayectorias monocromáticas en un torneo m-coloreado, más aún esta condición implica que todo C_3 y C_3 es casimonocromático y por lo tanto el Teorema 3.9 se sigue del Teorema 3.2.

Lema 3.8 Si T es un torneo m-coloreado con $m \ge 4$, tal que para todo vértice v de T se tiene que $|\zeta(v)| \le 2$, entonces en T-todo C_3 y T_3 es casimonocromático. Además

bajo esta hipótesis tenemos que existe un color que pertenece a todas las vecindades.

Demostración. Observemos que para cualesquiera dos vértices u, v de T, como en T hay flecha entre ellos, entonces el color de esta flecha pertenece tanto a $\zeta(u)$ como a $\zeta(v)$, es decir, $\zeta(u) \cap \zeta(v) \neq \phi$.

Supongamos que los vértices u, v, w inducen un C_3 ó un T_3 que no es casimonocromático. Supongamos sin perder generalidad que la flecha entre u y v es de color 1, la flecha entre v y w es de color 2 y que la flecha entre w y u es de color 3, entonces $\zeta(u) = \{1,3\}, \zeta(v) = \{1,2\}$ y $\zeta(w) = \{2,3\}$. Sea x un vértice de T tal que $4 \in \zeta(x)$, por lo mencionado al principio, $\zeta(x) \cap \zeta(u) \neq \phi$ y $\zeta(x) \cap \zeta(v) \neq \phi$, así $1 \in \zeta(x)$ y por lo tanto $\zeta(x) = \{1, 4\}$, pero entonces $\zeta(x) \cap \zeta(w) = \phi$ lo cual es una contradicción, por lo tanto en T todo C_3 y T_3 es casimonocromático.

Para la segunda parte, consideremos u y v vértices de T, tales que $\zeta(u) \neq \zeta(v)$, como $\zeta(u) \cap \zeta(v) \neq \phi$, supongamos sin perder generalidad que $\zeta(u) = \{1, 2\}$ y $\zeta(v) = \{1, 2\}$ $\{1,3\}$. Supongamos que existe un vértice w tal que $1 \notin \zeta(w)$, como $\zeta(w) \cap \zeta(u) \neq \phi$ y $\zeta(w) \cap \zeta(v) \neq \phi$ entonces $\zeta(w) = \{2,3\}$. Sea x un vértice de T tal que $4 \in \zeta(x)$, como $\zeta(x) \cap \zeta(u) \neq \phi$ y $\zeta(x) \cap \zeta(v) \neq \phi$ entonces $\zeta(x) = \{1, 4\}$, pero esto implica que $\zeta(x) \cap \zeta(w) = \phi$ lo cual es una contradicción, por lo tanto el color 1 pertenece a toda vecindad.

Teorema 3.9 Si T es un torneo m-coloreado con $m \geq 4$, tal que para todo vértice vde T se tiene que $|\zeta(v)| \leq 2$, entonces T tiene núcleo por trayectorias monocromáticas.

En las notas 3.10 y 3.11 vemos la importancia de la hipótesis de las vecindades a lo más bicolores para los teoremas 3.7 y 3.9. Por otro lado si eliminamos del Teorema 3.7 la hipótesis sobre las vecindades a lo más bicolores obtenemos el Problema 3.1 que sigue siendo un problema abierto. Por último en las notas 3.12-3.19 hacemos ver a final que el teorema 3.7 es diferente a cada uno de los teoremas 3.2, 3.3, 3.4 y 3.6.

, y

Section 1

Nota 3.10 En el teorema 3.2 no podemos eliminar la hipótesis de que en el torneo de la comencia de la composição de la compos $todo\ C_3$ sea casimonocromático, pues si T es un C_3 $tricolor\ cumple\ con\ tener\ todas$ las vecindades a lo más bicolores y no tiene núcleo por trayectorias monocromáticas. A partir de T podemos construir una familia infinita de torneos 3-coloreados tales que: no todo C_3 sea casimonocromático, todo vértice tenga vecindad a lo más bicolor y sin núcleo por trayectorias monocromáticas. Supongamos que $V\left(T\right):=\left\{ u,v,w\right\}$ $y \mid A(T) = \{(u,v),(v,w),(w,u)\}$ donde (u,v) es de color 1, (v,w) es de color 2

ricker fiele.

y (w,u) es de color 3, figura 3.7(a). Sea $T'_0 = T$. Ahora para cada entero positivo n y dado T'_{n-1} torneo 3-coloreado sin núcleo por trayectorias monocromáticas y tal que todo vértice tiene vecindad a lo más bicolor, consideramos un nuevo vértice z_n y definimos T'_n como sigue: $V(T'_n) = V(T'_{n-1}) \cup \{z_n\}$ y $A(T'_n) = A(T'_{n-1}) \cup \{(z_n, x) \mid x \in V(T'_{n-1})\}$, los colores de las flechas de T'_{n-1} quedan igual en T'_n y asignamos color 2 a todas las flechas que salen de z_n excepto a la flecha (z_n, u) que le asignamos color 1, figura 3.7(b).

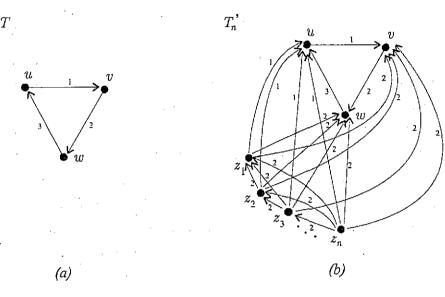


Figura 3.7

Claramente T'_n es un torneo 3-coloreado donde cada vértice tiene vecindad a lo más bicolor. Veamos que T'_n no tiene núcleo por trayectorias monocromáticas. Aplicando el Teorema 1.55 tomando \hat{D}_1 la digráfica que sólo consta del vértice z_n , $\hat{D}_2 = T'_{n-1}$ y $\hat{A} = \{(z_n, v) \ / \ v \in V(T'_{n-1})\}$ tenemos $\hat{D} = T'_n$ y por lo tanto T_n no tiene núcleo por trayectorias monocromáticas. Así $\{T'_n \ / \ n \in \mathbb{N}\}$ es una familia infinita de torneos 3-coloreados sin núcleo por trayectorias monocromáticas y la vecindad de cada vértice es a lo más bicolor.

Nota 3.11 En el Tercema 3.9 no podemos cambiar la hipóteis de que todas las vecindades sean a lo más bicolores por la hipóteis de que las vecindades sean a lo más tricolores pues puede no existir núcleo por trayectorias monocromáticas, un ejemplo de esto es el torneo T de la figura 3.1 que como ya vimos no tiene núcleo por trayectorias monocromáticas y no es difícil ver que todas las vecindades son a lo más tricolores. A partir de T podemos construir una familia infinita de torneos 4-coloreados sin núcleo por trayectorias monocromáticas tal que cada vértice tenga

台湾

100

引起知识数据(图)

vecindad a lo más tricolor. Observemos primero que para cualquier vértice u de T tenemos que $1 \in \zeta(u)$ o $2 \in \zeta(u)$. Sea $T_0' = T$, para cada entero positivo n y dado T'_{n-1} torneo 4-coloreado sin núcleo por trayectorias monocromáticas tal que para cada vértice u se tiene que $|\zeta(u)| \leq 3$ y $\{1,2\} \cap \zeta(u) \neq \phi$, consideramos dos nuevos vértices z_n y definimos el torneo T'_n tal que $V(T_n) = V(T'_{n-1}) \cup \{z_n, w_n\}$ $y \ A(T'_n) = A(T'_{n-1}) \cup \{(z_n, u), (w_n, u) \ / \ u \in V(T'_{n-1})\} \cup \{(z_n, w_n)\}, \ los \ colores \ de$ las flechas de T_{n-1}' quedan igual en T_n' , a las flechas (z_n,u) y (w_n,u) le asignamos color 1 si $1 \in \zeta(v)$ o color 2 en caso contrario, a la flecha (z_n, w_n) le asignamos cualquiera de los 4 colores, figura 3.8. Así T'_n es un torneo 4-coloreado tal que para cualquier $u \in V\left(T_n'\right)$ se tiene que $|\zeta(u)| \leq 3$ y $\{1,2\} \cap \zeta(u) \neq \phi$. Veamos que T_n' no tiene núcleo por trayectorias monocromáticas. Aplicando el Teorema 1.55 tomando $\hat{D}_1 = T'_n[\{z_1, ..., z_n, w_1, ..., w_n\}], \ \hat{D}_2 = T, \ \hat{A} = \{(z_i, v) / i \in \{1, ..., n\}, \ v \in V(D)\},$ los colores de las flechas son los descritos antes. Así $\hat{D} = T'_n$ y por lo tanto T'_n no tiene núcleo por trayectorias monocromáticas. Por lo tanto $\{T'_n / n \in \mathbb{N}\}$ es una familia infinita de torneos 4-coloreados sin núcleo por trayectorias monocromáticas donde cada vértice tiene vecindad a lo más tricolor. También podemos obtener torneos m-coloreados para cualquier $m \geq 4$ con las características anteriores si vamos agregando cada vez un color nuevo entre z_n y w_n . Por último observemos que estos torneos además cumplen que todo C_3 es casimonocromático, pues los únicos C_3 de estos torneos son los que ya existían en T.

Nota 3.12 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.7 pero no las hipótesis del Teorema 3.2, por ejemplo sea T un torneo transitivo de orden 3 tricolor. A partir de T podemos construir una familia infinita de torneos con las características anteriores. Supongamos que $V(T) = \{u, v, w\}$ y que (u, v) es una flecha de color 2, que (w, u) es una flecha de color 3. figura 3.9(a). Sea $T'_0 = T$. Ahora para cada entero positivo n y dado T'_{n-1} torneo 3-coloreado tal que todo C_3 es casimonocromático y todo vértice tiene vecindad a lo más bicolor, sea T'_n el torneo que se obtiene aumentando a T'_{n-1} un nuevo vértice z_n y las flechas entre z_n y $V(T'_{n-1})$ como sigue: si $v \in V(T'_{n-1}) \setminus \{w\}$ ponemos una flecha entre z_n y v en cualquier sentido y de color 1, entre w y z_n ponemos la flecha (w, z_n) de color 2, figura 3.9(b). Así en el torneo obtenido se tiene que $\zeta(u) = \{1, 3\}$, $\zeta(v) = \{1, 2\}$, $\zeta(w) = \{2, 3\}$ y $\zeta(z_j) = \{1, 2\}$ para $j \in \{1, ..., n\}$, es decir todo vértice de T'_n tiene vecindad bicolor. Como la única flecha T'_n que tiene color 3 es (w, u) entonces cualquier C_3 de T'_n que no sea casimonocromático debe contener dicha flecha, pero como a w no entran flechas, w no petenece a ningún ciclo, por lo tanto

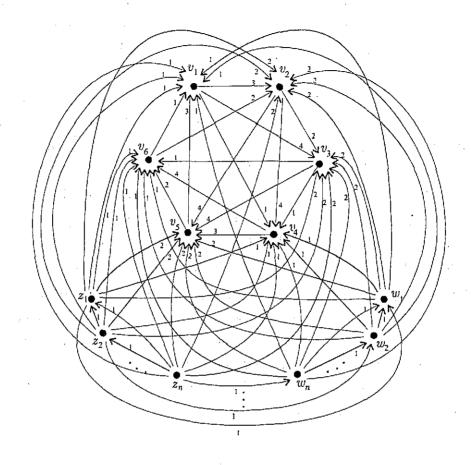


Figura 3.8

en T'_n todo C_3 es casimonocromático. Por último T'_n contiene a T que es un T_3 que no es casimonocromático. Así $\{T'_n \mid n \in \mathbb{N}\}$ es una familia infinita de torneos que satisface las hipótesis del Teorema 3.7 pero no las del Teorema 3.2.

Nota 3.13 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.2 pero no las hipótesis del Teorema 3.7. Sea T el siguiente torneo transitivo con cuatro vértices: $V(T) = \{v_1, v_2, v_3, v_4\}$ y flechas (v_2, v_1) de color 1, (v_3, v_1) de color 2, (v_4, v_1) de color 3, (v_4, v_2) de color 3 y (v_4, v_3) de color 3, figura 3.10(a). Las vecindades de v_1 y v_2 son tricolores, T no tiene ciclos lo que implica que todo C_3 es casimonocromático, por otro lado, todas las flechas de color 3 en T salen de v_4 , por lo tanto cualquier T_3 que contenga a v_4 tiene dos flechas de color 3 es decir es casimonocromático y los T_3 que no contienen a v_4 tienen colores 1 y

er Nijerio i

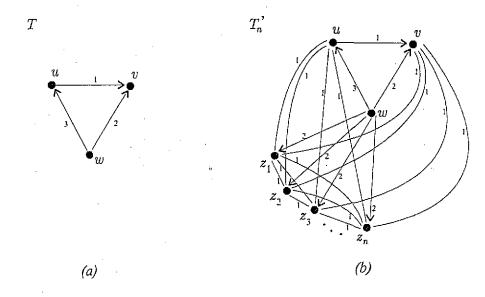


Figura 3.9

2, en consecuencia también son casimonocromáticos. Por lo tanto todo T_3 de T es casimonocromático. Así T satisface las hipótesis del Teorema 3.2 pero no las del Teorema 3.7. A partir de T podemos construir una familia infinita de torneos con las características anteriores. Sea $T_4' = T$. Ahora para cada entero positivo $n \geq 5$ y dado T_{n-1}' torneo 3-coloreado tal que todo C_3 y T_3 es casimonocromático y no todo vértice tiene vecindad a lo más bicolor, sea T_n' el torneo que se obtiene aumentando a T_{n-1}' un nuevo vértice v_n y las flechas entre v_n y $V\left(T_{n-1}'\right)$ las ponemos cualquier sentido y de color 1, figura 3.10(b). De esta forma las vecindades de v_1 , v_2 y v_3 son tricolores, y si v_i , v_j y v_l son tres vértices del torneo con i < j < l, entonces las flechas entre v_l y los otros dos vértices son del mismo color, es decir estos tres vértices inducen un C_3 ó un C_3 casimonocromático. Así C_n' c_n' c_n' es una familia infinita de torneos que satisfacen las hipótesis del Teorema 3.2 pero no las del Teorema 3.7.

Nota 3.14 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.7 pero no las hipótesis del Teorema 3.3. Sea T el torneo con vértices v_1, v_2, v_3, v_4 y las flechas (v_1, v_2) de color 1; (v_2, v_3) de color 2, (v_3, v_4) de color 2, (v_4, v_1) de color 3, (v_4, v_2) de color 2 y (v_1, v_3) de color 3, figura 3.11(a). T es un torneo 3-coloreado tal que $\zeta(v_1) = \{1, 3\}, \zeta(v_2) = \{1, 2\}, \zeta(v_3) = \{2, 3\}$ y $\zeta(v_4) = \{2, 3\}$, es decir toda vecindad es bicolor, además en T todo C_3 es casimonocromático, pues (v_1, v_2) que es la única flecha de color 1 no pertenece a ningún C_3 . Por otro lado $(v_1, v_2, v_3, v_4, v_1)$ es un ciclo dirigido de longitud 4 que no es casimonocromático. Así T es un torneo

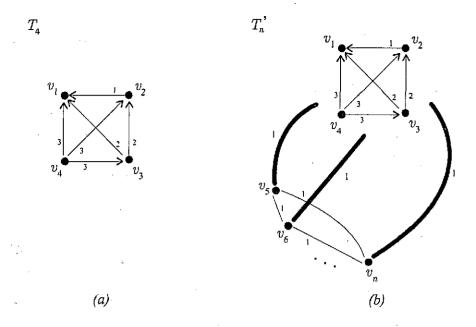


Figura 3.10: Las aristas gruesas indican que hay flechas entre cada v_i con $i \geq 5$ y cada v_j con $1 \leq j \leq 4$, estas flechas pueden ir en cualquier dirección. Las aristas entre los v_i con $i \geq 5$ indican flechas en cualquier dirección.

3-coloreado que satisface las hipótesis del Teorema 3.7 pero no las hipótesis del Teorema 3.3. A partir de T podemos construir una familia infinita de torneos con las características anteriores. Sea $T_4' = T$. Ahora para cada entero positivo $n \geq 5$ y dado T_{n-1}' torneo 3-coloreado tal que todo C_3 contenido en T_{n-1}' es casimonocromático, todo vértice tiene vecindad a lo más bicolor y no todo ciclo dirigido de longitud 4 es casimonocromático, sea T_n' el torneo que resulta de T_{n-1}' al aumentar un nuevo vértice v_n y las flechas: (v_n, v_1) de color 1 y para $i \in \{2, ..., n-1\}$ (v_n, v_i) de color 2, figura 3.11(b). En T_n' todas las vecindades son bicolores. Las únicas flechas de color 3 en T_n' son (v_1, v_3) y (v_4, v_1) , por otro lado el único C_3 que tiene a la flecha (v_1, v_3) también es el único C_3 que contiene a la flecha (v_4, v_1) , es decir el único C_3 donde aparece el color 3 es casimonocromático, por lo tanto en T_n' todo C_3 es casimonocromático. Por último $(v_1, v_2, v_3, v_4, v_1)$ sigue siendo en T_n' un ciclo dirigido de longitud 4 que no es casimonocromático: Así $\{T_n' / n \geq 4\}$ es una familia infinita de torneos que satisfacen las hipótesis del Teorema 3.7 pero no las hipótesis del Teorema 3.3.

Nota 3.15 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.3 pero no las hipótesis del Teorema 3.7. Sea T el torneo con vértices v_1, v_2, v_3, v_4 y las flechas (v_2, v_1) de color 1, (v_3, v_2) de color 2, (v_3, v_1) de color 3, (v_4, v_i) de color 1 para $i \in \{1, 2, 3\}$, figura 3.12(a). Ties un torneo 3-coloreado tal que $\zeta(v_3) = \{1, 2, 3\}$ y T

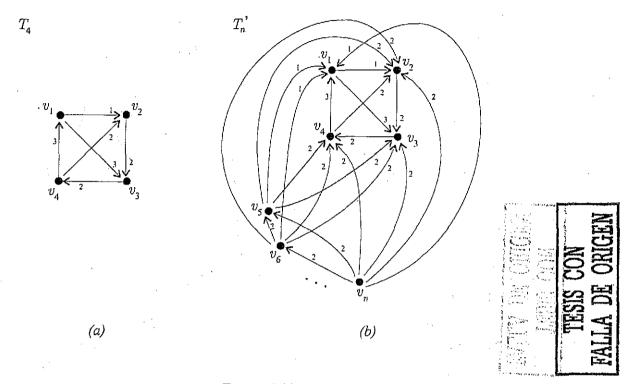


Figura 3.11

no tiene ciclos dirigidos entonces todo C_3 y todo C_4 es casimonocromático. Así T es un torneo 3-coloreado que satisfacen las hipótesis del Teorema 3.7 pero no las hipótesis del Teorema 3.7. A partir de T podemos construir una familia infinita de torneos con las características anteriores. Sea $T_4' = T$. Ahora para cada entero positivo $n \geq 5$ y dado T_{n-1}' torneo 3-coloreado tal que todo ciclo dirigido de longitud a lo más 4 contenido en T_{n-1}' es casimonocromático y no todo vértice tiene vecindad a lo más bicolor, sea T_n' el torneo que resulta de T_{n-1}' al aumentar un nuevo vértice v_n y para $i \in \{2, ..., n-1\}$ las flechas (v_n, v_i) de color 1, figura 3.12(b). En T_n' la vecindad de v_3 es tricolor, por otro lado T_n' no tiene ciclos dirigidos así que todo ciclo dirigido de longitud a lo más 4 es casimonocromático. Por lo tanto $\{T_n' / n \geq 4\}$ es una familia infinita de torneos que satisfacen las hipótesis del Teorema 3.3 pero no las hipótesis del Teorema 3.7.

Nota 3.16 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.4. La familia de torneos $\{T'_n/n \ge 4\}$ mostrada

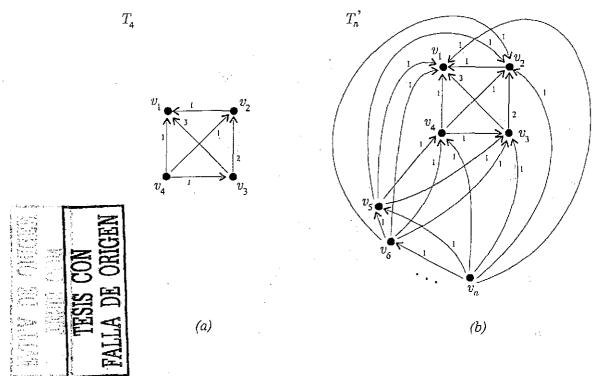


Figura 3.12

en la Nota 3.14, como se vió en dicha nota, es una familia de torneos que satisfacen las hipótesis del Teorema 3.7. Por otro lado en cada T'_n el ciclo dirigido (v_1, v_3, v_2, v_1) es un C_3 que no es monocromático, así la familia de torneos $\{T'_n/n \geq 4\}$ no satisface las hipótesis del Teorema 3.4.

Nota 3.17 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.4 pero no las hipótesis del Teorema 3.7. La familia de torneos $\{T'_n/n \geq 4\}$ mostrada en la Nota 3.15, como se vió en dicha nota, es una familia de torneos que no satisfacen las hipótesis del Teorema 3.7. Como ya vimos en la nota 3.15 cada T'_n es un torneo que no tiene ciclos dirigidos por lo tanto todo C_3 contenido en T'_n es monocromático, por lo tanto la familia de torneos $\{T'_n/n \geq 4\}$ satisface las hipótesis del Teorema 3.4.

Nota 3.18 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.7 pero no las hipótesis del Teorema 3.6. La familia de torneos $\{T'_n/n \geq 4\}$ mostrada en la Nota 3.14, como se vió en dicha nota, es una familia de torneos que satisfacen las hipótesis del Teorema 3.7. Como ya vimos en la nota 3.16 en cada T'_n el ciclo

dirigido $C = (v_1, v_3, v_2, v_1)$ es un C_3 que no es monocromático, como $\zeta(v_1) = \{1, 3\}$, $\zeta(v_2) = \{1, 2\}$, $\zeta(v_3) = \{2, 3\}$ entonces $\zeta(v_1) \cap \zeta(v_2) \cap \zeta(v_3) = \phi$ entonces en $\mathfrak{C}(T'_n)$ no puede existir algún ciclo dirigido monocromático de longitud 3 que contenga a estos tres vértices, es decir C no es $\mathfrak{C}(T'_n)$ -monocromático, así la familia de torneos $\{T'_n/n \geq 4\}$ no satisface las hipótesis del Teorema 3.6.

Nota 3.19 Existen torneos 3-coloreados que satisfacen las hipótesis del Teorema 3.6 pero no las hipótesis del Teorema 3.7. La familia de torneos $\{T'_n/n \geq 4\}$ mostrada en la Nota 3.15, como se vió en dicha nota, es una familia de torneos que no satisfacen las hipótesis del Teorema 3.7. Como ya vimos en la nota 3.15 cada T'_n es un torneo que no tiene ciclos dirigidos. Si en $\mathfrak{C}(T'_n)$ existiera algún ciclo dirigido, este ciclo induciría un camino dirigido cerrado en T'_n , por el Teorema 1.37 T'_n tendría un ciclo dirigido lo cual no es posible. Por lo tanto para cada $n \geq 4$ tenemos que $\mathfrak{C}(T'_n)$ no tiene ciclos dirigidos, así todo C_3 contenido en T'_n es $\mathfrak{C}(T'_n)$ —monocromático, en consecuencia la familia de torneos $\{T'_n/n \geq 4\}$ satisface las hipótesis del Teorema 3.6.

3.3 Problemas Abiertos

1. ¿En qué otro tipo de digráficas m—coloreadas tales que todo vértice tiene vecindad a lo más bicolor y todo C_3 es casimonocromático existe núcleo por trayectorias monocromáticas?

Digráficas muy parecidas a los torneos son los torneos menos una arista y las digráficas quasitransitivas, así podemos plantearnos la preguna anterior para este tipo de digráficas.

- 2. Sea D una digráfica m—coloreada que resulta de eliminar una arista de un torneo, si en D todo vértice tiene vecindad a lo más bicolor y todo C_3 es casimonocromático entonces ¿existe núcleo por trayectorias monocromáticas?
- 3. Sea D una digráfica quasitransitiva m—coloreada, si en D todo vértice tiene vecindad a lo más bicolor y todo C_3 es casimonocromático entonces ¿existe núcleo por trayectorias monocromáticas?

TESIS CON FALLA DE ORIGEN

Capítulo 4

Torneos Bipartitos

Una digráfica D es un torneo bipartito si existe una bipartición $\{V_1, V_2\}$ de V (D) tal que toda flecha de D tiene un extremo en V_1 y el otro en V_2 , y entre cualquier vértice de V_1 y cualquier vértice de V_2 existe una y solo una flecha. Los torneos bipartitos tienen cierta similitud con los torneos debido a la gran cantidad de flechas que poseen. Como mencionamos en el Capítulo 3 la existencia de núcleo por trayectorias monocromáticas en torneos ha sido estudiada por varios autores: Sands, Sauer y Woodrow [35], S. Mingang [31], H. Galeana Sánchez [15, 16, 17, 18]. El tipo de condiciones en algunos de estos resultados (teoremas 3.2, 3.3, 3.4, 3.6) son sobre la coloración de ciertas subdigráficas pequeñas como son los ciclos dirigidos de longitud a lo más 4 y torneos transitivos de orden 3.

En la Sección 4.1 de este Capítulo probamos que si D es un torneo bipartito donde todo ciclo dirigido de longitud 4 es monocromático entonces D tiene núcleo por trayectorias monocromáticas, también mostramos que este resultado es lo mejor posible. En la demostración del resultado anterior se implementa una técnica que también es utilizada en la sección 4.2.

En la sección 4.2 probamos la existencia de núcleo por trayectorias monocromáticas en torneos bipartitos que cumplen ciertas condiciones de coloración en los ciclos dirigidos de longitud 4 y 6 pero además también pedimos condiciones similares para ciertos subtorneos bipartitos de orden 5 llamados torneos cíclicamente 4-partitos, quedando el resultado de la siguiente manera. Sea D un torneo bipartito m-coloreado tal que todo C_4 es casimonocromático, todo subtorneo cíclicamente 4-partito de orden 5 todas sus flechas tienen el mismo color salvo a lo más 2 y todo C_6 es monocromático, entonces D tiene núcleo por trayectorias monocromáticas.

A continuación demostramos algunas propiedades de los torneos bipartitos que usaremos en las secciones siguientes.

Lema 4.1 Sea D un torneo bipartito, si $C = (u_0, u_1, ..., u_n)$ es un camino en D entonces para $i \in \{0, 1, ..., n\}$ $y \in \{0, 1, ..., n\}$, $(u_i, u_j) \in A(D)$ o $(u_j, u_i) \in A(D)$ si y solo si $j - i \equiv 1 \pmod{2}$.

Demostración. Sea $\{V_1, V_2\}$ una bipartición de V(D) tal que:

- 1. toda flecha de D tiene un extremo en V_1 y el otro en V_2 , y
- 2. entre cualquier vértice de V_1 y cualquier vértice de V_2 existe una y sólo una flecha en D.

Supongamos sin pérdida de generalidad que $u_0 \in V_1$. Entonces:

3. Para cada $i \in \{0, 1, ..., n\}$ $u_i \in V_1$ si $i \equiv 0 \pmod{2}$ ó $u_i \in V_2$ si $i \equiv 1 \pmod{2}$. Procederemos por inducción sobre i.

Para i = 0, por hipótesis $u_0 \in V_1$.

Suponamos que para i < n, $u_i \in V_1$ si $i \equiv 0 \pmod{2}$ ó $u_i \in V_2$ si $i \equiv 1 \pmod{2}$. Para i+1, como $(u_i, u_{i+1}) \in A(D)$ ó $(u_{i+1}, u_i) \in A(D)$, por hipótesis de inducción y por 1 $u_{i+1} \in V_2$ si $i \equiv 0 \pmod{2}$ ó $u_{i+1} \in V_1$ si $i \equiv 1 \pmod{2}$, es decir $u_{i+1} \in V_2$ si $i+1 \equiv 1 \pmod{2}$ ó $u_i \in V_1$ si $i \equiv 0 \pmod{2}$.

Por lo tanto para cualquier $i \in \{0, 1, ..., n\}$ $u_i \in V_1$ si $i \equiv 0 \pmod{2}$ ó $u_i \in V_2$ si $i \equiv 1 \pmod{2}$.

Ahora sean $i \in \{0, 1, ..., n\}$ y $j \in \{0, 1, ..., n\}$, supongamos que $(u_i, u_j) \in A(D)$ ó $(u_j, u_i) \in A(D)$, por 1 $(u_i \in V_1 \text{ y } u_j \in V_2)$ ó $(u_i \in V_2 \text{ y } u_j \in V_1)$, por 3 $(i \equiv 0 \pmod 2)$ y $j \equiv 1 \pmod 2$) ó $(i \equiv 1 \pmod 2)$ y $j \equiv 0 \pmod 2$), es decir $j - i \equiv 1 \pmod 2$. Inversamente supongamos que $j - i \equiv 1 \pmod 2$ esto implica que $(i \equiv 0 \pmod 2)$ y $j \equiv 1 \pmod 2$) ó $(i \equiv 1 \pmod 2)$ y $j \equiv 0 \pmod 2$), por 3 $(u_i \in V_1 \text{ y } u_j \in V_2)$ ó $(u_i \in V_2 \text{ y } u_j \in V_1)$, por 2 $(u_i, u_j) \in A(D)$ ó $(u_j, u_i) \in A(D)$. Así $(u_i, u_j) \in A(D)$ ó $(u_j, u_i) \in A(D)$ si y solo si $j - i \equiv 1 \pmod 2$.

Lema 4.2 Sea D un torneo bipartito entonces todo camino dirigido cerrado de longitud a lo más 6 contenido en D es un ciclo dirigido.

Demostración. Sea C un camino dirigido cerrado en D de longitud a lo más 6, como D es un torneo bipartito, por los teoremas 1.38 y 1.40 tenemos que L la longitud de C es par. Sea $\{V_1, V_2\}$ una bipartición de V(D) que corresponda con la definición de torneo bipartito.

Supongamos que l=4, sea $C=(u_1,u_2,u_3,u_4,u_1)$, como D es un torneo bipartito podemos suponer sin pérdida de generalidad que $\{u_1,u_3\}\subset V_1$ y $\{u_2,u_4\}\subset V_2$, esto implica que $u_i\neq u_j$ para $i\in\{1,3\}$ y $j\in\{2,4\}$. Si $u_1=u_3$, como $(u_1,u_2)\in A(D)$ y $(u_2,u_3)\in A(D)$ entonces tendríamos que (u_1,u_2) es una flecha simétrica de D, pero esto contradice la definición de torneo bipartito, por lo tanto $u_1\neq u_3$. Análogamente $u_2\neq u_4$. Por lo tanto C es un ciclo dirigido de D.

Supongamos que l=6, sea $C=(u_1,u_2,u_3,u_4,u_5,u_6,u_1)$, como D es un torneo bipartito podemos suponer sin pérdida de generalidad que $\{u_1,u_3,u_5\}\subset V_1$ y $\{u_2,u_4,u_6\}\subset V_2$, esto implica que $u_i\neq u_j$ y $(u_i,u_j)\in A(D)$ para $i\in\{1,3,5\}$ y $j\in\{2,4,6\}$. Análogamente al caso anterior tenemos:

- 1. $(u_1, u_2) \in A(D)$ y $(u_2, u_3) \in A(D)$ implies $u_1 \neq u_3$,
- 2. $(u_3, u_4) \in A(D)$ y $(u_4, u_5) \in A(D)$ implies $u_3 \neq u_5$,
- 3. $(u_5, u_6) \in A(D)$ y $(u_6, u_1) \in A(D)$ implies $u_1 \neq u_5$,
- 4. $(u_2, u_3) \in A(D)$ y $(u_3, u_4) \in A(D)$ implica $u_2 \neq u_4$,
- 5. $(u_4, u_5) \in A(D)$ y $(u_5, u_6) \in A(D)$ implies $u_4 \neq u_6$ y
- 6. $(u_6, u_1) \in A(D)$ y $(u_1, u_2) \in A(D)$ implies $u_2 \neq u_6$.

Por lo tanto C es un ciclo dirigido de D.

4.1 Torneos Bipartitos m-Coloreados con Ciclos de Longitud 4 Monocromáticos

En el Teorema 4.4 demostramos que un torneo bipartito coloreado donde todo cicló de longitud 4 es monocromático tiene núcleo por trayectorias monocromáticas. En el Lema 4.3 mostramos una propiedad de los torneos bipartitos coloreados que hace die éstos se parezcan a los torneos: si 2 vértices son adyacentes (en sólo un sentido) en la cerradura transitiva de un torneo bipartito entonces están conectados en el torneo bipartito por una trayectoria dirigida corta (en el mismo sentido de la flecha).

Lema 4.3 Sea D un torneo bipartito m-coloreado tal que todo C_4 es monocromático. Si $u, v \in V(D)$ son tales que existe T en D una uv-trayectoria dirigida monocromática v no existe ninguna vu-trayectoria dirigida monocromática, entonces $(u, v) \in A(D)$ o existe en D una uv-trayectoria dirigida de longitud 2.

TESIS CON FALLA DE ORIGEN **Demostración.** Sin pérdida de generalidad supongamos que T es de color 1. Procederemos por inducción sobre l la longitud de T. Si $l \leq 2$, entonces $(u, v) \in A(D)$ o T es una uv—trayectoria dirigida de longitud 2. Supongamos que el resultado es válido si $3 \leq l \leq n$. Supongamos ahora que l = n+1 y que $T = (u = u_0, u_1, ..., u_{n+1} = v)$. Entonces tenemos:

1. Si $i, j \in \{0, 1, ..., n + 1\}$ entonces $(u_i, u_j) \in A(D)$ ó $(u_j, u_i) \in A(D)$ si y sólo si $i \neq j$ tienen diferente paridad. Esto es por el Lema 4.1.

Observemos que:

2. El resultado se cumple si $(u_i, v) \in A(D)$ para alguna $i \in \{0, ..., n-2\}$. Sea $i_0 = \min \{i \in \{0, ..., n-2\} / (u_i, v) \in A(D)\}$, por 1 i_0 y n+1 tienen diferente paridad. Si $i_0 = 0$ entonces $(u, v) \in A(D)$, si $i_0 = 1$ entonces $(u = u_0, u_1, v)$ es una uv-trayectoria dirigida en D de longitud 2. Supongamos entonces que $i_0 \in \{2, ..., n-2\}$, en particular $(u, v) \notin A(D)$, así que probaremos que existe en D una uv-trayectoria dirigida de longitud 2. Como i_0 e $i_0 - 2$ tienen la misma paridad entonces $i_0 - 2$ y n + 1 tienen diferente paridad, por 1 $(u_{i_0-2}, v) \in A(D)$ o $(v, u_{i_0-2}) \in A(D)$, pero por la elección de i_0 tenemos que $(v, u_{i_0-2}) \in A(D)$, notemos que por hipótesis $i_0 - 2$ no puede ser 0 así $i_0 \geq 3$, figura 4.1. Entonces $(u_{i_0-2}, u_{i_0-1}, u_{i_0}, v, u_{i_0-2})$ es un C_4 de D que por hipótesis es monocromático, como (u_{i_0-1}, u_{i_0}) es una flecha de T, es de color 1, así el C_4 es de color 1. Sea $T' = (u, T, u_{i_0}) \cup (u_{i_0}, v)$, T' es una uv-trayectoria dirigida monocromática de longitud menor que T, por hipótesis de inducción y como $(u, v) \notin A(D)$ entonces existe en D una uv-trayectoria dirigida de longitud 2.

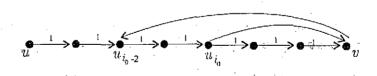


Figura 4.1

Ahora, como i e i+3 tienen diferente paridad, por 1 $(u_i,u_{i+3}) \in A(D)$ ó $(u_{i+3},u_i) \in A(D)$, para toda $i \in \{0,1,\ldots,n-2\}$. Analizaremos los siguientes dos casos.

Caso a. Supongamos que para alguna $i \in \{0, 1, ..., n-2\}$ $(u_i, u_{i+3}) \in A(D)$. Sea $j_0 = \max\{j \in \{i+3, ..., n+1\} / (u_i, u_j) \in A(D)\}$, en particular por 1 tenemos que $i \neq j_0$ tienen diferente paridad.

Subcaso a.1 $j_0 = n + 1$. Entonces el resultado se sigue de 2.

Subcaso a.2 $j_0 = n e i = 0$. Entonces $(u_0 = u_i, u_{j_0} = u_n, u_{n+1} = v)$ es una uv-trayectoria dirigida de longitud 2 en D.

Subcaso a.3 $j_0 = n$ e $i \ge 1$. Como i y j_0 tienen diferente paridad entonces i-1 y $j_0+1=n+1$ tienen diferente paridad, por 1 $(u_{i-1},u_{n+1}=v) \in A(D)$ δ $(u_{n+1}=v,u_{i-1}) \in A(D)$. Si $(u_{i-1},u_{n+1}=v) \in A(D)$ el resultado se sigue de 2. Si $(u_{n+1}=v,u_{i-1}) \in A(D)$ entonces $(u_{i-1},u_i,u_{j_0}=u_n,u_{n+1}=v,u_{i-1})$ es un C_4 de D que por hipótesis es monocromático, figura 4.2, como (u_{i-1},u_i) es una flecha de T, es de color 1, así el C_4 es de color 1. Sea $T'=(u,T,u_i)\cup(u_i,u_{j_0}=u_n)\cup(u_n,u_{n+1}=v)$, T' es una uv-trayectoria dirigida monocromática de longitud menor que T, por hipótesis de inducción $(u,v)\in A(D)$ o existe en D una uv-trayectoria dirigida de longitud uv-trayectoria dirigida uv-trayectoria dirigida de longitud uv-trayectoria dirigida uv-trayectoria uv-trayectoria dirigida uv-trayectoria uv-trayectoria

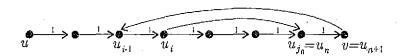


Figura 4.2

Subcaso a.4 $j_0 \leq n-1$. Como $i \neq j_0$ tienen diferente paridad entonces $i \neq j_0 + 2$ -tienen diferente paridad, por 1 $(u_i, u_{j_0+2}) \in A(D)$ ó $(u_{j_0+2}, u_i) \in A(D)$, por la elección de j_0 tenemos $(u_{j_0+2}, u_i) \in A(D)$. Entonces $(u_i, u_{j_0}, u_{j_0+1}, u_{j_0+2}, u_i)$ es un C_4 de D que por hipótesis es monocromático, como (u_{j_0}, u_{j_0+1}) es una flecha de T_i es de color 1, así el C_4 es de color 1, figura 4.3. Sea $T' = (u, T, u_i) \cup (u_i, u_{j_0}) \cup (u_{j_0}, T, v)$, T' es una uv-trayectoria dirigida monocromática de longitud menor que T, por hipótesis de inducción $(u, v) \in A(D)$ o existe en D una uv-trayectoria dirigida de longitud 2.

Caso b. Supongamos que para toda $i \in \{0, 1, ..., n-2\}$ $(u_{i+3}, u_i) \in A(D)$. Entonces $(u_i, u_{i+1}, u_{i+2}, u_{i+3}, u_i)$ es un C_4 de D que por hipótesis es monocromático, como (u_i, u_{i+1}) es una flecha de T, es de color 1, así el C_4 es de color 1. Por lo tanto,

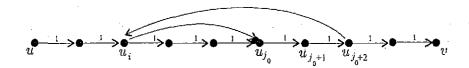


Figura 4.3

para toda $i \in \{0, 1, ..., n-2\}$ (u_{i+3}, u_i) es de color 1. Sea $k \in \{1, 2, 3\}$ tal que $k \equiv n+1 \pmod{3}$, entonces $(v = u_{n+1}, u_{n-2}, u_{n-5}, ..., u_k) \cup (u_k, T, u_3) \cup (u_3, u_0)$ es una vu-trayectoria dirigida monocromática en D, lo cual es una contradicción, figuras 4.4, 4.5 y 4.6. Por lo tanto este caso no es posible.

Concluímos que existe en D la flecha (u,v) o una uv-trayectoria dirigida de longitud 2. \blacksquare

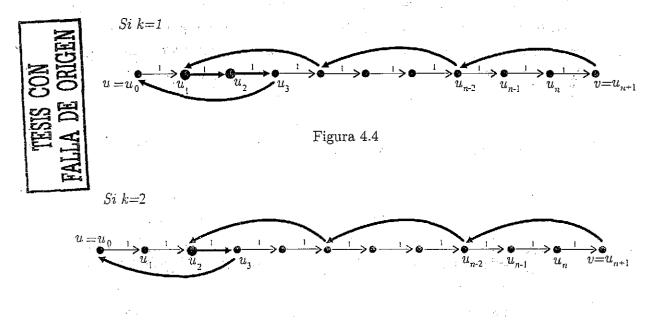


Figura 4.5

Teorema 4.4 Sea D un torneo bipartito m—coloreado tal que todo C_4 es monocromático. Entonces $\mathfrak{C}(D)$ es núcleo perfecta y por lo tanto D tiene núcleo por trayectorias monocromáticas.

Demostración. A lo largo de la demostración, cada vez que aparezca un camino de dirigido cerrado en D de longitud a lo más 6, inmediatamente nos referiremos a él como un ciclo dirigido, esto en virtud del Lema 4.2 de la como un ciclo dirigido.

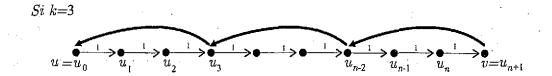


Figura 4.6

Demostraremos que todo ciclo dirigido de $\mathfrak{C}(D)$ tiene al menos una flecha simétrica para luego aplicar el Teorema 1.46 y concluir que $\mathfrak{C}(T)$ es núcleo perfecta. Procederemos por contradicción, supongamos que $C = (u_0, u_1, ..., u_n, u_0)$ es un ciclo dirigido de $\mathfrak{C}(D)$ que no tiene flechas simétricas. Entonces:

Para cada i ∈ {0,1,...,n} (u_i, u_{i+1}) ∈ A(D) o existe en D una u_iu_{i+1}-trayectoria dirigida de longitud 2 (la suma es tomada módulo n + 1). Sea i ∈ {0,1,...,n}, como (u_i, u_{i+1}) ∈ A(C(D)) entonces existe en D alguna u_iu_{i+1}-trayectoria dirigida monocromática, como C no tiene flechas simétricas tenemos que en D no existen u_{i+1}u_i-trayectorias dirigidas monocromáticas, por el Lema 4.3 (u_i, u_{i+1}) ∈ A(D) o existe en D una u_iu_{i+1}-trayectoria dirigida de longitud 2. Continuamos analizando los siguientes casos:

Caso a. n=2. Como D es un torneo bipartito entonces por el Teorema 1.40 no tiene ciclos de longitud impar, esto implica que para alguna $i \in \{0,1,2\}$ $(u_i,u_{i+1}) \notin A(D)$ (la suma es tomada módulo 3). Supongamos sin pérdida de generalidad que $(u_0,u_1) \notin A(D)$, entonces por 1 existe v_0 vértice de D tal que (u_0,v_0,u_1) es una u_0u_1 —trayectoria dirigida de longitud 2 en D, figura 4.7.

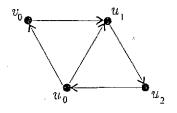


Figura 4.7

Caso a.1 (u_1, u_2) , $(u_2, u_0) \in A(D)$. Entonces $(u_0, v_0, u_1, u_2, u_0)$ es un C_4 de D que por hipótesis es monocromático, así (u_1, u_2, u_0) es una u_1u_0 —trayectoria dirigida monocromática en D lo que implica que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición.

7

Caso a.2 $(u_1, u_2) \notin A(D)$. Entonces por 1 existe v_1 vértice de D tal que (u_1, v_1, u_2) es una u_1u_2 -trayectoria dirigida de longitud 2 en D. Si $(u_2, u_0) \in A(D)$, figura 4.8(a), entonces $(u_0, v_0, u_1, v_1, u_2, u_0)$ es un ciclo dirigido de longitud 5 en D pero esto no es posible por el Teorema 1.40, por lo tanto $(u_2, u_0) \notin A(D)$. Entonces por 1 existe v_2 vértice de D tal que (u_2, v_2, u_0) es una u_1u_2 -trayectoria dirigida de longitud 2 en D, figura 4.8(b). Así $(u_0, v_0, u_1, v_1, u_2, v_2, u_0)$ es un ciclo dirigido de longitud 6 en D, por el Lema 4.1 tenemos que $(u_0, v_1) \in A(D)$ ó $(v_1, u_0) \in A(D)$. Si $(u_0, v_1) \in A(D)$ entonces $(u_0, v_1, u_2, v_2, u_0)$ es un C_4 de D que por hipótesis es monocromático, así (u_0, v_1, u_2) es una u_0u_2 —trayectoria dirigida monocromática en D lo que implica que (u_2, u_0) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Si $(v_1, u_0) \in A(D)$ entonces $(u_0, v_0, u_1, v_1, u_0)$ es un C_4 de D que por hipótesis es monocromático, así (u_1, v_1, u_0) es una u_1u_0 -trayectoria dirigida monocromática en D lo que implica que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(D)$, así obtenemos la contradicción final para este caso.

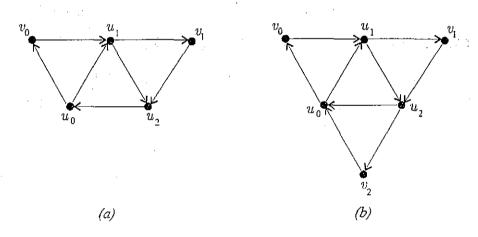


Figura 4.8

Caso b. $n \geq 3$. En el resto de la prueba las sumas serán tomadas módulo n + 1.

Por 1, para cada $i \in \{0,1,\dots,n\}$ podemos definir

$$T_{i} = \begin{cases} (u_{i}, u_{i+1}) & \text{si } (u_{i}, u_{i+1}) \in A(D) \\ \text{una } u_{i}u_{i+1} - \text{trayectoria de longitud 2 si } (u_{i}, u_{i+1}) \notin A(D) \end{cases}$$

Sea $C' = \bigcup_{i=0}^{n} T_{ii}$. C' es un camino dirigido cerrado en D. Sea $C' = (z_0, z_1, ..., z_k, z_0)$ y definamos la función $\varphi : \{0, 1, ..., k\} \longrightarrow V(C)$ de la siguiente manera: si

en en til til en ha skriveren

 $u_i = z_{i_0}$ entonces $\varphi(i_0) = z_{i_0}$, y $\varphi(i_0 + 1) = z_{i_0}$ si la longitud de T_i es 2. Decimos que el índice i del vértice z_i de C' es principal si $z_i = \varphi(i)$, denotemos por I_p al conjunto de índices principales. Supongamos sin perder generalidad que $u_0 = z_0$. Como D es un torneo bipartito entonces por los teoremas 1.38 y 1.40 $k \equiv 1 \pmod{2}$. Por otro lado, por el Lema 4.1 para $i \in \{1, ..., \frac{k-3}{2}\}$, $(z_0, z_{2i+1}) \in A(D)$ ó $(z_{2i+1}, z_0) \in A(D)$. Tenemos los siguientes subcasos.

Subcaso b.1 Supongamos que $(z_3, z_0) \in A(D)$. Entonces $(z_0, z_1, z_2, z_3, z_0)$ es un C_4 de D que por hipótesis es monocromático, figura 4.9. Por la construcción de C' tenemos que $z_1 = u_1$ ó $z_2 = u_1$. Si $z_1 = u_1$ entonces $(u_1 = z_1, z_2, z_3, z_0 = u_0)$ es una u_1u_0 —trayectoria dirigida monocromática en D lo que implica que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Por lo tanto $z_1 \neq u_1$ y en consecuencia $z_2 = u_1$, así $(u_1 = z_2, z_3, z_0 = u_0)$ es una u_1u_0 —trayectoria dirigida monocromática en D lo que implica que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición.

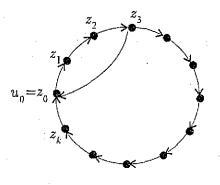


Figura 4.9

TESIS CON FALLA DE ORIGEN

Subcaso b.2 Supongamos que $(z_0, z_{k-2}) \in A(D)$, figura 4.10. Entonces $(z_0, z_{k-2}, z_{k-1}, z_k)$, z_0) es un C_4 de D que por hipótesis es monocromático. Por construcción de C' tenemos que $z_k = u_n$ ó $z_{k-1} = u_n$. Si $z_k = u_n$ entonces $(u_0 = z_0, z_{k-2}, z_{k-1}, z_k = u_n)$ es una u_0u_n -trayectoria dirigida monocromática en D lo que implica que (u_n, u_0) es una flecha simétrica de C en C(D), contradiciendo nuestra suposición. Por lo tanto $z_k \neq u_n$ y en consecuencia $z_{k-1} = u_n$, así $(u_0 = z_0, z_{k-2}, z_{k-1} = u_n)$ es una u_0u_n -trayectoria dirigida monocromática en D lo que implica que (u_n, u_0) es una flecha simétrica de C en C(D), contradiciendo nuestra suposición.

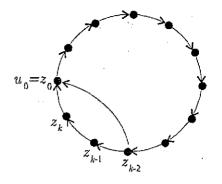


Figura 4.10

Subcaso b.3 Supongamos que $(z_0, z_3) \in A(D)$ y que $(z_{k-2}, z_0) \in A(D)$. Entonces $k-2 \ge 1$ 5 y por lo tanto $k \geq 7$. Sea $i_0 = \min\{i \in \{1, ..., \frac{k-5}{2}\} / (z_0, z_{2i+1}) \in A(D)$ y $(z_{2i+3}, z_0) \in A(D)$. Entonces $C^1 = (z_0, z_{2i_0+1}, z_{2i_0+2}, z_{2i_0+3}, z_0)$ es un C_4 de D que por hipótesis es monocromático, supongamos que es de color 1. Si $2i_0 + 1 \in I_p$ entonces $z_{2i_0+1} = u_j$ para algún $j \in \{2, ..., n-2\}$, figura 4.11(a). Por construcción de C' tenemos que $z_{2i_0+2}=u_{j+1}$ ó $z_{2i_0+3}=$ u_{j+1} . Si $z_{2i_0+2} = u_{j+1}$ entonces $(u_{j+1} = z_{2i_0+2}, z_{2i_0+3}, z_0, z_{2i_0+1} = u_j)$ es una $u_{i+1}u_i$ -trayectoria dirigida monocromática en D lo que implica que (u_i, u_{i+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Por lo tanto $z_{2i_0+2} \neq u_{j+1}$ y en consecuencia $z_{2i_0+3} =$ u_{j+1} , así $(u_{j+1} = z_{2i_0+3}, z_0, z_{2i_0+1} = u_j)$ es una $u_{j+1}u_j$ -trayectoria dirigida monocromática en D lo que implica que (u_j, u_{j+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Supongamos que $2i_0 + 1 \notin I_p$, entonces por construcción de C' tenemos que $\{2i_0, 2i_0 + 2\} \subset I$ I_p , es decir $z_{2i_0} = u_{j-1}$ y $z_{2i_0+2} = u_j$ para algún $j \in \{2, ..., n-2\}$. por el Lema 4.1 tenemos que $(z_{2i_0}, z_{2i_0+3}) \in A(D)$ ó $(z_{2i_0+3}, z_{2i_0}) \in A(D)$. Si $(z_{2i_0+3}, z_{2i_0}) \in A(D)$ entonces $(z_{2i_0}, z_{2i_0+1}, z_{2i_0+2}, z_{2i_0+3}, z_{2i_0})$ es un C_4 de Dque por hipótesis es monocromático, figura 4.11(b), esto implica que ($u_j =$ $z_{2i_0+2}, z_{2i_0+3}, z_{2i_0} = u_{j-1}$) es una $u_j u_{j-1}$ —trayectoria dirigida monocromática en D lo que implica que (u_{j-1}, u_j) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Supongamos que $(z_{2i_0}, z_{2i_0+3}) \in A(D)$, por la elección de i_0 tenemos que $(z_0, z_{2i_0-1}) \in A(D)$, figura 4.12, entonces $C^2 = (z_0, z_{2i_0-1}, z_{2i_0}, z_{2i_0+3}, z_0)$ es un C_4 de D que por hipótesis es monocromático, como (z_{2i_0+3},z_0) es una flecha común en C^1 y C^2 entonces. C^1 y C^2 son del mismo color, así $(u_j=z_{2i_0+2},z_{2i_0+3},z_0,z_{2i_0+1},z_{2i_0}=u_{j-1})$ ves una u_iu_{i-1} – trayectoria dirigida monocromática en D do que implica que v_iv_i

 (u_{j-1}, u_j) es una flecha simétrica de C en $\mathfrak{C}(D)$, llegando a la contradicción final de la prueba.

Por lo tanto todo ciclo de $\mathfrak{C}(D)$ tiene una flecha simétrica, lo que implica por el Teorema 1.46 que $\mathfrak{C}(D)$ es núcleo perfecta y de aquí se sigue por el Teorema 1.54 que D tiene núcleo por trayectorias monocromáticas.

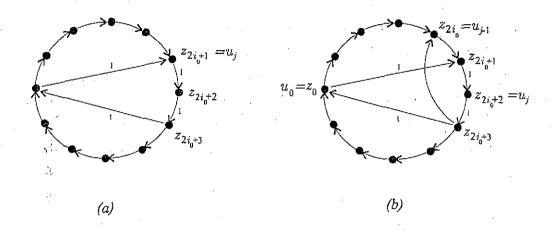
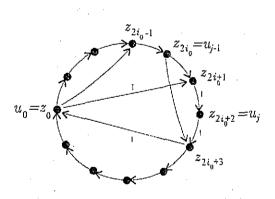


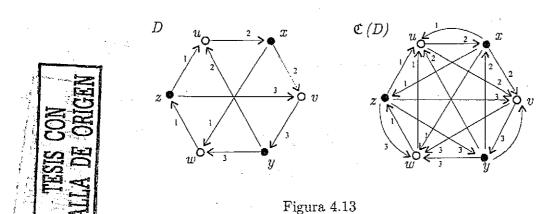
Figura 4.11



Por último mostramos que si en el Teorema 4.4 cambiamos la hipótesis de que todo C_4 sea monocromático por que todo C_4 sea casimonocromático entonces la cerradura transitiva de D no necesariamente es núcleo perfecta.

Nota 4.5 Sea D el torneo bipartito 3-coloreado tal que $V(D) = \{u, v, w, x, y, z\}$ y A(D) = ((u, x), (x, v), (v, y), (y, w), (w, z), (z, u), (x, w), (y, u), (z, v)). Las flechas de D están coloreadas como sigue: son de color 1 las flechas (x, w), (w, z), y, (z, u), (z, u)

son de color 2 las flechas (y,u), (u,x) y(x,v), son de color 3 las flechas (z,v), (v,y) y(y,w). Los únicos C_4 que posee D son (u,x,w,z,u), (v,y,u,x,v) y(w,z,v,y,w) y son casimonocromáticos. En $\mathfrak{C}(D)$ se tiene el triángulo dirigido (u,v,w,u) y es una subdigráfica inducida de $\mathfrak{C}(D)$ que no tiene núcleo, por lo tanto $\mathfrak{C}(D)$ no es núcleo perfecta, figura 4.13. A partir de esta digráfica construimos la siguiente familia infinita de torneos bipartitos D_n tales que en ellos todo C_4 es casimonocromático y cuya cerradura transitiva no es núcleo perfecta. Para cada $n \in \mathbb{N}$, sea D_n la digráfica que se obtiene a partir de D al aumentar n vértices nuevos $z_1, z_2, ..., z_n$ y las flechas de color 3 desde éstos vértices hacia u, v, y, w, figura 4.14. D_n es un torneo bipartito donde la bipartición correspondiente es $\{V_1, V_2\}$ con $V_1 = \{u, v, w\}$ y $V_2 = \{x, y, z, z_1, z_2, ..., z_n\}$, al igual que D, los únicos C_4 que posee D son (u, x, w, z, u), (v, y, u, x, v) y (w, z, v, y, w) y son casimonocromáticos. Así como $\mathfrak{C}(D)$, $\mathfrak{C}(D_n)$ contiene como subdigráfica inducida al triángulo dirigido (u, v, w, u) que no tiene núcleo, por lo tanto $\mathfrak{C}(D_n)$ no es núcleo perfecta.



4.2 Otra Condición para la Existencia de Núcleo por Trayectorias Monocromáticas en Torneos Bipartitos

En esta sección presentamos en el Teorema 4.9 otra condición que implica la existencia

A lo largo de esta sección, cada vez que aparezca un camino dirigido cerrado en D de longitud a lo más 6, inmediatamente nos referiremos a él como un ciclo dirigido, esto en virtud del Lema 4.2.

Definición 4.6 Una digráfica D es un torneo cíclicamente 4-partito si existe una partición $\{V_1, V_2, V_3, V_4\}$ de V (D) tal que para toda $i \in \{1, 2, 3, 4\}$ cualquier vértice

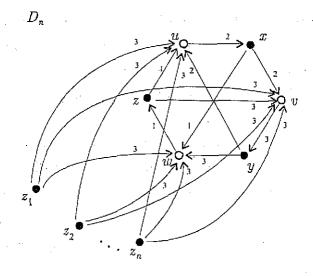


Figura 4.14

de V_i es adyacente hacia cualquier vértice de V_{i+1} (la suma es tomada módulo 4), y toda flecha de D es de la forma anterior.

Definición 4.7 Una digráfica D m-coloreada decimos que es k-casimonocromática si todas sus flechas son del mismo color salvo a lo más k de ellas.

Lema 4.8 Sea D un torneo bipartito m-coloreado tal que todo C_4 es 1-casimonocromático y todo C_6 es monocromático. Si $u, v \in V(D)$ son tales que existe T en D una uv-trayectoria dirigida monocromática y no existe ninguna vu-trayectoria dirigida monocromática, entonces se tiene alguna de las siguientes posibilidades

- $(i) (u,v) \in A(D),$
- (ii) existe una uv-trayectoria dirigida de longitud 2,
- (iii) existe una uv-trayectoria dirigida monocromática de longitud 4.

Demostración. Sin pérdida de generalidad supongamos que T es de color 1. Si T es de longitud impar por el Lema 4.1 tenemos que $(u,v) \in A(D)$ ó $(v,u) \in A(D)$, como por hipótesis no existe vu—trayectoria dirigida monocromática en D, entonces $(u,v) \in A(D)$. Así supongamos que l la longitud de T es par y procederemos por inducción sobre l. El resultado es inmediato si $l \le 4$. Supongamos que el resultado es válido si $0 \le l \le 2n$. Supongamos ahora que 0 = 2(n+1) y que 0 = 10. Por el Lema 4.1 para cada $0 \in \{0,1,...,2(n+1)-5\}$ tenemos que $0 \in \{0,1,...,2(n+1)-5\}$ tenemos que 0

Caso a. Supongamos que para toda $i \in \{0, 1, ..., 2(n+1)-5\}$ $(u_{i+5}, u_i) \in A(D)$. Entonces $(u_i, u_{i+1}, u_{i+2}, u_{i+3}, u_{i+4}, u_{i+5}, u_i)$ es un C_6 de D que por hipótesis es monocromático, como (u_i, u_{i+1}) es una flecha de T. es de color 1, así el C_6 es de color 1. Por lo tanto, para toda $i \in \{0, 1, ..., 2(n+1)-5\}$ (u_{i+5}, u_i) es de color 1. Sea $k \in \{1, 2, 3, 4, 5\}$ tal que $k \equiv 2(n+1) \pmod{5}$, entonces $(v = u_{2(n+1)}, u_{2(n+1)-5}, u_{2(n+1)-10}, ..., u_k) \cup (u_k, T, u_5) \cup (u_5, u_0)$ es una vu-trayectoria dirigida monocromática en D, lo cual es una contradicción (la figura 4.15 muestra el caso en el que k = 1). Por lo tanto este caso no es posible.

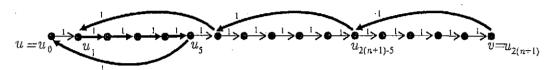


Figura 4.15

Caso b. Supongamos que para alguna $i \in \{0, 1, ..., 2(n+1) - 5\}$ $(u_i, u_{i+5}) \in A(D)$. Notemos que por el Lema 4.1 en D existe flecha entre u_1 y $u_{2(n+1)}$ así como entre u_0 y u_{2n+1} . Si $(u_1, u_{2(n+1)}) \in A(D)$ o $(u_0, u_{2n+1}) \in A(D)$ entonces obtenemos en D una uv-trayectoria de longitud 2. Supongamos entonces que $(u_{2(n+1)}, u_1) \in A(D)$ y $(u_{2n+1}, u_0) \in A(D)$. Observemos que si para alguna $i \in \{1, ..., 2(n+1) - 5\}$ $(u_{2(n+1)}, u_i) \in A(D)$ y las flechas $(u_{2(n+1)}, u_i)$ y (u_{2n+1}, u_0) son de color 1, entonces $(v = u_{2(n+1)}, u_i) \cup (u_i, T, u_{2n+1}) \cup (u_{2n+1}, u_0 = u)$ es una vu-trayectoria dirigida de color 1 contradiciendo la hipótesis. Por lo tanto tenemos:

(a) si $i \in \{1,...,2(n+1)-5\}$ y $(u_{2(n+1)},u_i) \in A(D)$ entonces $(u_{2(n+1)},u_i)$ no es de color 1, o

 (u_{2n+1},u_0) no es de color 1.

Analizaremos estos subcasos adar esta.

Subcaso b.1 Supongamos que $i \in \{1, ..., 2(n+1) - 5\}$ y $(u_{2(n+1)}, u_i) \in A(D)$ implication $(u_{2(n+1)}, u_i)$ no es de color 1. Como $(u_{2(n+1)}, u_1) \in A(D)$ entonces $(u_{2(n+1)}, u_1)$ no es de color 1. Por el Lema 4.1, $(u_{2(n+1)}, u_{2(n+1)-5}) \in A(D)$ of $(u_{2(n+1)-5}, u_{2(n+1)}) \in A(D)$. Si $(u_{2(n+1)}, u_{2(n+1)-5}) \in A(D)$ entonces $(u_{2(n+1)-5}, u_{2(n+1)-4}, u_{2(n+1)-3}, u_{2(n+1)-2}, u_{2(n+1)-1}, u_{2(n+1)-5})$ es un C_6 en D que por hipótesis es monocromático, como $(u_{2(n+1)-5}, u_{2(n+1)-4}) \in A(D)$

 $V\left(T\right)$ entonces este ciclo es de color 1 y por lo tanto $(u_{2(n+1)},u_{2(n+1)-5})$ es de color 1 contradiciendo nuestra suposición, por lo tanto $(u_{2(n+1)},u_{2(n+1)-5})\notin A\left(D\right)$ es decir $(u_{2(n+1)-5},u_{2(n+1)})\in A\left(D\right)$. Como $(u_{2(n+1)},u_1)\in A\left(D\right)$ podemos elegir $i_0=\max\{i\in\{0,1,...,2\,(n+1)-7\}/\,(u_{2(n+1)},u_i)\in A\left(D\right)\}$, entonces $(u_{2(n+1)},u_{i_0})\in A\left(D\right)$ y $(u_{i_0+2},u_{2(n+1)})\in A\left(D\right)$, además $(u_{2(n+1)},u_{i_0})$ no es de color 1, esto implica que $((u_{2(n+1)},u_{i_0},u_{i_0+1},u_{i_0+2},u_{2(n+1)})$ es un C_4 que por hipótesis es 1-casimonocromático, como $\{(u_{i_0},u_{i_0+1}),(u_{i_0+1},u_{i_0+2})\}\subset A\left(T\right)$ entonces son flechas de color 1 y como $(u_{2(n+1)},u_{i_0})$ no es de color 1 entonces $(u_{i_0+2},u_{2(n+1)})$ es de color 1. Así $(u=u_0,T,u_{i_0+2})\cup (u_{i_0+2},u_{2(n+1)}=v)$ es una uv-trayectoria dirigida de color 1 de longitud menor que T y por hipótesis de inducción se sigue el resultado, figura 4.16.

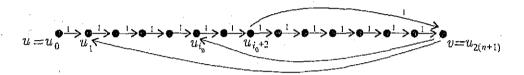


Figura 4.16

Subcaso b.2 (u_{2n+1}, u_0) no es de color 1. Sabemos que para alguna $i \in \{0, 1, ..., 2 (n+1) - 5\}$ $(u_i, u_{i+5}) \in A(D)$. Sea $\{i_0, j_0\} \subset \{0, 1, ..., 2 (n+1)\}$ tal que $j_0 - i_0 = \max \{j-i \ / \ \{i,j\} \subset \{0, 1, ..., 2 (n+1)\}$ y $(u_{i_0}, u_{j_0}) \in A(D)\}$, por lo anterior $j_0 - i_0 \geq 5$. Supongamos que $i_0 \geq 2$ y $j_0 \leq 2n$, como $(u_{i_0}, u_{j_0}) \in A(D)$ entonces por el Lema 4.1 $j_0 - i_0 \equiv 1 \mod 2$, así $(j_0 + 2) - (i_0 - 2) \equiv 1 \mod 2$, aplicando nuevamente el Lema 4.1 tenemos que $(u_{i_0-2}, u_{j_0+2}) \in A(D)$ ó $(u_{j_0+2}, u_{i_0-2}) \in A(D)$, por la elección de $\{i_0, j_0\}$ tenemos que $(u_{j_0+2}, u_{i_0-2}) \in A(D)$. Entonces $(u_{i_0-2}, u_{i_0-1}, u_{i_0}, u_{j_0}, u_{j_0+1}, u_{j_0+2}, u_{i_0-2})$ es un C_6 de D que por hipótesis es monocromático, lo que implica que (u_{i_0}, u_{j_0}) es de color 1. Así $(u = u_0, T, u_{i_0}) \cup (u_{i_0}, u_{j_0}) \cup (u_{i_0}, T, u_{2(n+1)} = v)$ es una uv-trayectoria dirigida de color 1 de longitud menor que T y por hipótesis de inducción se sigue el resultado, figura 4.17.

Supongamos que $i_0 \le 1$ o $j_0 \ge 2n + 1$, es decir $i_0 \in \{0,1\}$ o $j_0 \in \{2n + 1, 2n + 2\}$. Analizaremos los 4 casos posibles.

b.2.1 $i_0 = 0$. Supongamos que $j_0 \le 2n - 3$. Ya habíamos mencionado que $j_0 = i_0 \equiv 1 \mod 2$ entonces $(j_0 + 4) - i_0 \equiv 1 \mod 2$, aplicando el Lema 4.1 tenemos que $(u_{i_0}, u_{j_0+4}) \in A(D)$ ó $(u_{j_0+4}, u_{i_0}) \in A(D)$, pero por la elec-

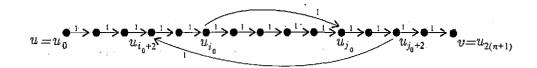
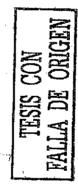


Figura 4.17

ción de $\{i_0,j_0\}$ tenemos que $(u_{j_0+4},u_{i_0}=u_0)\in A(D)$. Entonces $(u_0=u_{i_0},u_{j_0},u_{j_0+1},u_{j_0+2},u_{j_0+3},u_{j_0+4},u_{i_0})$ es un C_6 de D que por hipótesis es monocromático, lo que implica que (u_{i_0},u_{j_0}) es de color 1. Así $(u=u_0,T,u_{i_0})\cup (u_{i_0},u_{j_0})\cup (u_{i_0},T,u_{2(n+1)}=v)$ es una uv-trayectoria dirigida de color 1 de longitud menor que T y por hipótesis de inducción se sigue el resultado, figura 4.18. Supongamos que $j_0\geq 2n-1$, como $j_0-i_0\equiv 1$ mod 2 e $i_0=0$ entonces $j_0\in\{2n-1,2n+1\}$, como $(u_{2n+1},u_0)\in A(D)$ entonces $j_0=2n-1$. Así $(u_0=u_{i_0},u_{j_0}=u_{2n-1},u_{2n},u_{2n+1},u_0)$ es un C_4 de D que por hipótesis es 1-casimonocromático, como (u_{2n+1},u_0) no es de color 1 entonces (u_{i_0},u_{j_0}) es de color 1. Por lo tanto $(u=u_{i_0},u_{j_0}=u_{2n-1},u_{2n},u_{2n+1},u_{2n+2}=v)$ es una uv-trayectoria dirigida de color 1 de longitud 4, figura 4.19.



......

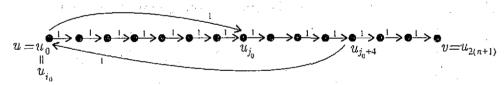


Figura 4.18

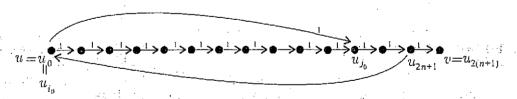


Figura 4:19

b.2.2 $i_0=1$. Supongamos que $j_0\leq 2n-2$, por los mismos argumentos usados en el subcaso anterior tenemos que $(u_{j_0+4},u_{i_0}=u_1)\in A(D)$ entonces $(u_1=u_{i_0},u_{j_0},u_{j_0+1},u_{j_0+2},u_{j_0+3},u_{j_0+4},u_{i_0})$ es un C_6 de D que por hipótesis es monocromático, lo que implica que (u_{i_0},u_{j_0}) es

de color 1. Así $(u=u_0,T,u_{i_0}) \cup (u_{i_0},u_{j_0}) \cup (u_{i_0},T,u_{2(n+1)}=v)$ es una uv-trayectoria dirigida de color 1 de longitud menor que T y por hipótesis de inducción se sigue el resultado, figura 4.20. Supongamos que $j_0 \geq 2n$, como $j_0 - i_0 \equiv 1 \mod 2$ e $i_0 = 1$ entonces $j_0 \in \{2n, 2n+2\}$, como $(u_{2n+2}, u_1) \in A(D)$ entonces $j_0 = 2n$. Así $(u_1 = u_{i_0}, u_{j_0} = u_{2n}, u_{2n+1}, u_0, u_1)$ es un C_4 de D que por hipótesis es 1-casimonocromático, como (u_{2n+1}, u_0) no es de color 1 entonces (u_{i_0}, u_{j_0}) es de color 1. Por lo tanto $(u_0, u_1 = u_{i_0}, u_{j_0} = u_{2n}, u_{2n+1}, u_{2n+2} = v)$ es una uv-trayectoria dirigida de color 1 de longitud 4, figura 4.21.

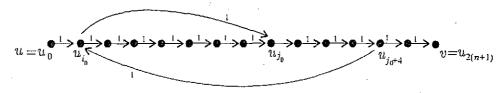


Figura 4.20

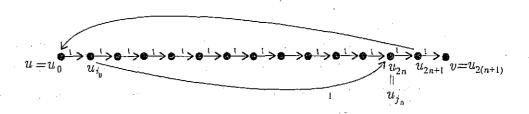


Figura 4.21

b.2.3 $j_0=2n+1$. Supongamos que $i_0\geq 4$. Como $j_0-i_0\equiv 1 \mod 2$ entonces $j_0-(i_0-4)\equiv 1 \mod 2$, aplicando el Lema 4.1 tenemos que $(u_{i_0-4},u_{j_0})\in A(D)$ ó $(u_{j_0},u_{i_0-4})\in A(D)$, pero por la elección de $\{i_0,j_0\}$ tenemos que $(u_{2n+1}=u_{j_0},u_{i_0-4})\in A(D)$. Entonces $(u_{i_0},u_{j_0}=u_{2n+1},u_{i_0-4},u_{i_0-3},u_{i_0-2},u_{i_0-1},u_{i_0})$ es un C_6 de D que por hipótesis es monocromático, lo que implica que (u_{i_0},u_{j_0}) es de color 1. Así $(u=u_0,T,u_{i_0})\cup (u_{i_0},u_{j_0})\cup (u_{i_0},T,u_{2(n+1)}=v)$ es una uv-trayectoria dirigida de color 1 de longitud menor que T y por hipótesis de inducción se sigue el resultado, figura 4.22. Supongamos que $i_0\leq 2$, como $j_0-i_0\equiv 1 \mod 2$ y $j_0=2n+1$ entonces $i_0\in\{0,2\}$, como $(u_{2n+1},u_0)\in A(D)$ entonces $i_0=2$. Así $(u_2=u_{i_0},u_{j_0}=u_{2n+1},u_{0},u_{1},u_{2})$ es un C_4 de D que por hipótesis es 1-casimonocromático, como (u_{2n+1},u_0) no es

de color 1 entonces (u_{i_0}, u_{j_0}) es de color 1. Por lo tanto $(u_0, u_1, u_2 = u_{i_0}, u_{j_0} = u_{2n+1}, u_{2n+2} = v)$ es una uv-trayectoria dirigida de color 1 de longitud 4, figura 4.23.

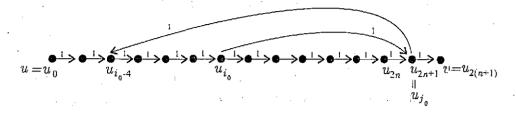


Figura 4.22

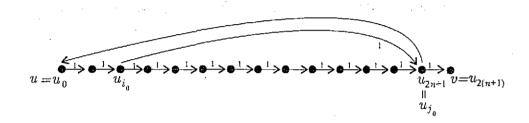


Figura 4.23

b.2.4 $j_0 = 2n + 2$. Supongamos que $i_0 \ge 5$, por los mismos argumentos usados en el subcaso anterior tenemos que $(u_{2n+2} = u_{j_0}, u_{i_0-4}) \in A(D)$ entonces $(u_{i_0}, u_{j_0} = u_{2n+2}, u_{i_0-4}, u_{i_0-3}, u_{i_0-2}, u_{i_0-1}, u_{i_0})$ es un C_6 de Dque por hipótesis es monocromático, lo que implica que (u_{i0}, u_{j0}) es de color 1. Así $(u = u_0, T, u_{i_0}) \cup (u_{i_0}, u_{j_0}) \cup (u_{i_0}, T, u_{2(n+1)} = v)$ es una uv-trayectoria dirigida de color 1 de longitud menor que T y por hipótesis de inducción se sigue el resultado, figura 4.24. Supongamos que $i_0 \le 3$, como $j_0 - i_0 \equiv 1 \mod 2$ y $j_0 = 2n + 2$ entonces $i_0 \in \{1,3\}$, como $(u_{2n+2},u_1) \in A(D)$ entonces $i_0 = 3$. Por lo tanto $(u_3=u_{i_0},u_{j_0}=u_{2n+2},u_1,u_2,u_3)$ es un C_4 de D que por hipótesis es 1the ballic recasimonocromático. Si (u_{i_0},u_{2n+2}) es de color 1 entonces (u_0,u_1,u_2,u_3) $u_{i_0}, u_{2n+2} = v$) es una uv-trayectoria dirigida de color 1 de longitud 4, in the figure 4.25. Supongamos que (u_{i_0}, u_{2n+2}) no est de color 1, entonces las otras tres flechas del C_4 son de color 1, en particular (u_{2n+2}, u_1) es de color 1. Si para alguna $i \in \{3,...,2n+1\}$ $(u_i,u_0) \in A(D)$ y (u_i,u_0) es de color 1 entonces $(v=u_{2(n+1)},u_1)\cup (u_1,T,u_i)\cup (u_i,u_0=u)$ es una ivu-trayectoria dirigida de color 1 contradiciendo la hipótesis. Por lo tanto si $i \in \{3, ..., 2n+1\}$ y $(u_i, u_0) \in A(D)$ entonces (u_i, u_0) no est described. color 1. Si $(u_5, u_0) \in A(D)$ entonces $(u_0, u_1, u_2, u_3, u_4, u_5, u_0)$ es un C_6 de D que por hipótesis es monocromático, entonces (u_5, u_0) es de color 1 lo cual es una contradicción. Por lo tanto $(u_5, u_0) \notin A(D)$ es decir $(u_0, u_5) \in A(D)$. Sea $k_0 = \max\{i \in \{5, ..., 2n-1\} / (u_0, u_i) \in A(D)\}$, entonces $(u_0, u_{k_0}) \in A(D)$ y $(u_{k_0+2}, u_0) \in A(D)$ además (u_{k_0+2}, u_0) no es de color 1, esto implica que $(u_0, u_{k_0}, u_{k_0+1}, u_{k_0+2}, u_0)$ es un C_4 que por hipótesis es 1-casimonocromático, como $\{(u_{k_0}, u_{k_0+1}), (u_{k_0+1}, u_{k_0+2})\} \subset A(T)$ entonces son flechas de color 1 y como (u_{k_0+2}, u_0) no es de color 1 entonces (u_0, u_{k_0}) es de color 1. Así $(u = u_0, u_{k_0}) \cup (u_{k_0}, T, u_{2(n+1)} = v)$ es una uv-trayectoria dirigida de color 1 de longitud menor que T y por hipótesis de inducción se sigue el resultado, figura 4.26.

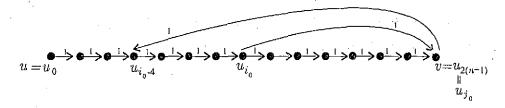


Figura 4.24

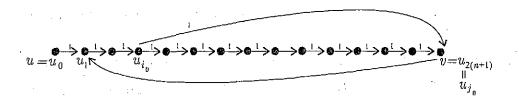


Figura 4.25

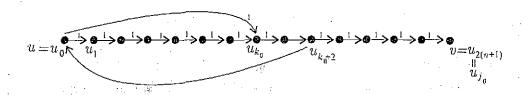


Figura 4.26

Teorema 4.9 Sea D un torneo bipartito m—coloreado tal que todo \mathcal{O}_4 es 1-casimono-cromático, todo subtorneo cíclicamente 4-partito de orden 5 es 2-casimonocromático

y todo C_6 es monocromático. Entonces $\mathfrak{C}(D)$ es núcleo perfecta y por lo tanto D tiene núcleo por trayectorias monocromáticas.

Demostración. Demostraremos que todo ciclo dirigido de $\mathfrak{C}(D)$ tiene al menos una flecha simétrica para después aplicar el Teorema 1.46 y concluir que $\mathfrak{C}(D)$ es núcleo perfecta. Procederemos por contradicción, supongamos que $C=(u_0,u_1,...,u_n,u_0),\ n\geq 2$, es un ciclo dirigido de $\mathfrak{C}(D)$ que no tiene flechas simétricas. Sea $i\in\{0,1,...,n\}$, como $(u_i,u_{i+1})\in A(\mathfrak{C}(D))$ (la suma es tomada módulo n+1) entoces existe en D alguna u_iu_{i+1} —trayectoria dirigida monocromática, como C no tiene flechas simétricas entonces en D no existen $u_{i+1}u_i$ —trayectorias dirigidas monocromáticas, por el Lema 4.8 $(u_i,u_{i+1})\in A(D)$ o existe en D una u_iu_{i+1} —trayectoria dirigida de longitud 2 o existe en D una u_iu_{i+1} —trayectoria dirigida monocromática de longitud 4. En el resto de la prueba la suma sobre los índices de los vértices de C serán tomadas módulo n+1.

Para cada $i \in \{0, 1, ..., n\}$ sea

$$T_i = \begin{cases} (u_i, u_{i+1}) & \text{si } (u_i, u_{i+1}) \in A(D), \\ \text{una } u_i u_{i+1} - \text{trayectoria dirigida de longitud 2 si } (u_i, u_{i+1}) \notin A(D) \text{ y} \\ \text{existe tal trayectoria,} \\ \text{una } u_i u_{i+1} - \text{trayectoria dirigida monocromática de longitud 4, en otro caso.} \end{cases}$$

Sea $C^1 = \bigcup_{i=0}^n T_i$, C^1 es un camino dirigido cerrado en D. Sea $C^1 = (z_0, z_1, ..., z_k, z_0)$ y definamos la función $\varphi : \{0, 1, ..., k\} \to V(C)$ de la siguiente manera: si $T_i = (u_i = z_{i_0}, z_{i_0+1}, ..., z_{i_0+r} = u_{i+1})$ con $r \in \{1, 2, 4\}$ entonces $\varphi(j) = z_{i_0}$ para toda $j \in \{i_0, i_0 + 1, ..., i_0 + r - 1\}$. Decimos que el índice i del vértice z_i de C^1 es **principal** si $z_i = \varphi(i)$, denotemos por I_p al conjunto de índices principales. De acuerdo a la definición de C^1 y de índice principal tenemos la siguiente afirmación.

I. Para cualquier $i \in \{0, 1, ..., k\}$ se tiene $\{i, i+1, i+2, i+3\} \cap I_p \neq \phi$, es decir, en C^1 no puede haber 4 vértices consecutivos sin que el índice de ninguno de ellos sea prinicipal.

Supongamos sin perder generalidad que $0 \in I_p$ y que $z_0 = u_0$, de aquí en adelante la suma sobre los índices de los vértices de C^1 serán tomadas módulo k+1. Como D es un torneo bipartito por los teoremas 1.38 y 1.40 tenemos que $k \ge 4$ y $k \equiv 1$ (mod 2) y para cualesquiera $i,j \in \{1,\dots,k\}$ tales que $j+i \equiv 1 \pmod{2}$ por el Lema 4.1 tenemos que $(z_i,z_j) \in A(D)$ of $(z_j,z_i) \in A(D)$. Tenemos los siguientes casos.

Caso a. Supongamos que k=3. Entonces C^1 es un C_4 de D que por hipótesis es casimonocromático y como $n \geq 2$ entonces $u_1 \in \{z_1, z_2\}$ y $u_n \in \{z_3, z_2\}$, figura 0.13.

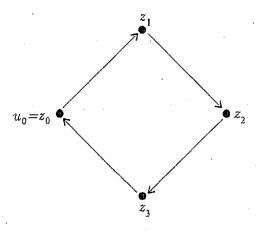


Figura 4.27

Subcaso a 1 Si C^1 es monocromático ó la flecha que es de diferente color que el resto del ciclo es (z_0, z_1) , como $u_1 \in \{z_1, z_2\}$ entonces existe una u_1u_0 -trayectoria dirigida monocromática en D lo que implica que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición.

Subcaso a.2 Supongamos que la flecha que es de diferente color que el resto del ciclo es (z_1, z_2) , entonces (z_2, z_3, z_0, z_1) es una trayectoria dirigida monocromática en D. Si $u_1=z_1$ entonces $u_2\in\{z_2,z_3\}$, en cualquier caso tenemos que existe una u_2u_1 —trayectoria dirigida monocromática en D lo que implica que (u_1, u_2) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición. Si $u_1 = z_2$ entonces existe una u_1u_0 -trayectoria dirigida monocromática en D lo que implica que (u_0, u_1) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición.

i sukis dimensi,

Subcaso a.3 Supongamos que la flecha que es de diferente color que el resto del ciclo es (z_2, z_3) , entonces (z_3, z_0, z_1, z_2) es una trayectoria dirigida monocromática en D. Si $u_n = z_3$ entonces existe una $u_n u_{n-1}$ -trayectoria dirigida monocromática en D lo que implica que (u_{n-1}, u_n) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición. Si $u_n=z_2$ entonces n=2y existe una u_0u_2 -trayectoria dirigida monocromática en D lo que implica que (u_2, u_0) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra The second state of the control of the control of the second state of suposición.

- Subcaso a.4 Supongamos que la flecha que es de diferente color que el resto del ciclo es (z_3, z_0) , entonces (z_0, z_1, z_2, z_3) es una trayectoria dirigida monocromática en D. Como u_n es z_3 ó z_2 entonces existe una u_0u_n -trayectoria dirigida monocromática en D lo que implica que (u_n, u_0) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición.
- Caso b. Supongamos que k=5. Entonces C^1 es un C_6 de D que por hipótesis es monocromático, esto implica que C es simétrico en $\mathfrak{C}(D)$ contradiciendo nuestra suposición.
- Caso c. Supongamos que $k \geq 7$. Entonces tenemos lo siguiente:
 - 1(c) Sea $i \in \{0, ..., k\} \cap I_p$ entonces $(z_i, z_{i+5}) \in A(D)$. Como $(i+5) i \equiv 1 \mod 2$, entonces $(z_i, z_{i+5}) \in A(D)$ ó $(z_{i+5}, z_i) \in A(D)$. Procediendo por contradicción, supongamos que $(z_{i+5}, z_i) \in A(D)$, entonces $(z_i, z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}, z_{i+5}, z_i)$ es un C_6 de D que por hipótesis es monocromático, sea $j \in \{0, ..., n\}$ tal que $u_j = z_i$ entonces por la definición de índice principal, $u_{j+1} \in \{z_{i+1}, z_{i+2}, z_{i+4}\}$, esto implica que existe una $u_{j+1}u_j$ -trayectoria dirigida monocromática en D y por lo tanto (u_j, u_{j+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición. Por lo tanto $(z_i, z_{i+5}) \in A(D)$.
 - 2(c) Sea $i \in \{0, ..., k\}$ tal que $i + 5 \in I_p$ entonces $(z_i, z_{i+5}) \in A(D)$. Procederemos por contradicción, supongamos que $(z_{i+5}, z_i) \in A(D)$, entonces $(z_i, z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}, z_{i+5}, z_i)$ es un C_6 de D que por hipótesis es monocromático, sea $j \in \{0, ..., n\}$ tal que $u_j = z_{i+5}$ entonces por la definición de índice principal, $u_{j-1} \in \{z_{i+1}, z_{i+3}, z_{i+4}\}$, esto implica que existe una $u_j u_{j-1}$ —trayectoria dirigida monocromática en D y por lo tanto (u_{j-1}, u_j) es una flecha simétrica de C en $\mathfrak{C}(D)$ contradiciendo nuestra suposición. Por lo tanto $(z_i, z_{i+5}) \in A(D)$.
- 3(c) $(z_0, z_i) \in A(D)$ para cualquier $i \in \{5, ..., k-2\}$ tal que $i \equiv 1 \pmod{4}$.

 Procederemos por contradicción, supongamos que $(z_i, z_0) \in A(D)$ para alguna $i \in \{5, ..., k-2\}$ tal que $i \equiv 1 \pmod{4}$. Como $0 \in I_p$ por 1(c) $(z_0, z_5) \in A(D)$, entonces $i \geq 9$. Sea $i_0 = \min\{i \in \{5, ..., k-6\}/i \equiv 1 \pmod{4}\}$ y $(z_{i+4}, z_0) \in A(D)\}$, entonces $(z_0, z_{i_0-4}) \in A(D)$, $(z_0, z_{i_0}) \in A(D)$ Sea $C^2 = (z_0, z_{i_0}, z_{i_0+1}, z_{i_0+2}, z_{i_0+3}, z_{i_0+4}, z_0)$, C^2 es un C_6 de D que por hipótesis es monocromático, supongamos que es de color 1, figura 4.28. Si $i_0 \in I_p$ entonces $z_{i_0} = u_j$ para algún

11.00

araran da j

 $j \in \{5, ..., n-6\}$ y por construcción de C^1 $u_{j+1} \in \{z_{i_0+1}, z_{i_0+2}, z_{i_0+4}\}$, en cualquier caso C^2 contiene una $u_{i+1}u_i$ —trayectoria dirigida monocromática en D lo que implica que (u_j, u_{j+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Supongamos que $i_0 \notin I_p$, por I $\{i_0-3,i_0-2,i_0-1,i_0\}\cap I_p\neq \phi, \text{ entonces } \{i_0-3,i_0-2,i_0-1\}\cap I_p\neq \phi,$ sea $l \in \{i_0 - 3, i_0 - 2, i_0 - 1\} \cap I_p$ y sea $u_i \in V(C)$ tal que $u_i = z_l$, entonces por 1(c) $(z_l, z_{l+5}) \in A(D)$ y $l+5 \in \{i_0+2, i_0+3, i_0+4\}$, esto implica que $C^3 = (z_{i_0-4}, C^1, z_l) \cup (z_l, z_{l+5}) \cup (z_{l+5}, C^1, z_{i_0+4}) \cup (z_{i_0+4}, z_0, z_{i_0-4})$ es un C_6 de D pues $(z_{i_0-4}, C^1, z_{i_0+4}) \cup (z_{i_0+4}, z_0, z_{i_0-4})$ es un camino dirigido cerrado de D de longitud 10, por hipótesis C^3 es monocromático, como $(z_{i_0+4}, z_0) \in A(C^2) \cap A(C^3)$ entonces C^3 es de color 1 (en la figura 4.29 se muestra el caso en el que $l = i_0 - 3$). Ahora por construcción de C^1 $u_{j+1} \in \{z_{l+1}, z_{l+2}, z_{l+4}\} \subset \{z_{i_0-2}, z_{i_0-1}, z_{i_0}, z_{i_0+1}, z_{i_0+2}, z_{i_0+3}\},$ si $u_{j+1} \in \{z_{i_0}, z_{i_0+1}, z_{i_0+2}, z_{i_0+3}\}$ entonces $(z_{i_0}, C^2, z_0) \cup (z_0, C^3, z_l = u_j)$ contiene una $u_{j+1}u_j$ -trayectoria dirigida monocromática en D lo que implica que (u_i, u_{i+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Supongamos entonces que $u_{j+1} \in \{z_{i_0-2}, z_{i_0-1}\}$, sea $i_1 \in \{i_0-2, i_0-1\}$ tal que $u_{j+1} = z_{i_1}$, entonces por 1(c) $(z_{i_1}, z_{i_1+5}) \in$ A(D) donde $z_{i_1+5} \in \{z_{i_0+3}, z_{i_0+4}\}$, así $C^4 = (z_{i_0-4}, C^1, z_{i_1}) \cup (z_{i_1}, z_{i_1+5}) \cup$ $(z_{i_1+5}, C^1, z_{i_0+4}) \cup (z_{i_0+4}, z_0, z_{i_0-4})$ es un C_6 de D pues $(z_{i_0-4}, C^1, z_{i_0+4}) \cup$ $(z_{i_0+4}, z_0, z_{i_0-4})$ es un camino dirigido cerrado de D de longitud 10, por hipótesis C^4 es monocromático y como $(z_{i_0+4}, z_0) \in A(C^4) \cap A(C^3)$ entonces C^4 es de color 1 (en la figura 4.30 se muestra el caso en el que i_1 = $i_0 - 1$ con $l = i_0 - 3$). Notemos que $u_i \in V(C^4)$, por lo tanto existe una $u_{i+1}u_i$ —trayectoria dirigida monocromática en D lo que implica que (u_j, u_{j+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición.

4(c) $(z_i, z_0) \in A(D)$ para cualquier $i \in \{3, ..., k-4\}$ tal que $i \equiv k \mod 4$. Si $i \equiv k \pmod 4$, como $k \equiv 1 \mod 2$ entonces $i = 0 \equiv 1 \mod 2$, por el Lema 4.1 tenemos que $(z_0, z_i) \in A(D)$ ó $(z_i, z_0) \in A(D)$. Procediendo por contradicción, supongamos que $(z_0, z_i) \in A(D)$ para alguna $i \in \{3, ..., k-4\}$ tal que $i \equiv k \mod 4$. Como $(z_{k-4}, z_0) \in A(D)$ entonces $i \leq k-8$. Sea $i_0 = \max\{i \in \{7, ..., k-4\} / i \equiv k \pmod 4$ y $(z_0, z_{i-4}) \in A(D)\}$, entonces $(z_0, z_{i_0-4}) \in A(D)$, $(z_{i_0}, z_0) \in A(D)$ y $(z_{i_0+4}, z_0) \in A(D)$. Sea $C^2 = (z_0, z_{i_0-4}, z_{i_0-3}, z_{i_0-2}, z_{i_0-1}, z_{i_0}, z_0)$, C^2 es un C_6 de D que por hipótesis es monocromático, supongamos que es de color 1,

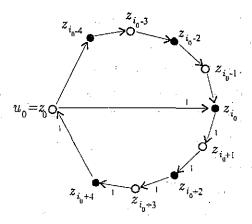


Figura 4.28

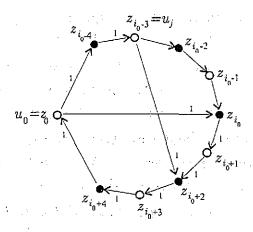


Figura 4.29

figura 4.31. Si $i_0 \in I_p$ entonces $z_{i_0} = u_j$ para algún $j \in \{3, ..., n-4\}$ y por construcción de C^1 $u_{j-1} \in \{z_{i_0-1}, z_{i_0-2}, z_{i_0-4}\}$, en cualquier caso C^2 contiene una u_ju_{j-1} —trayectoria dirigida monocromática en D lo que implica que (u_{j-1}, u_j) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Supongamos que $i_0 \notin I_p$, entonces por I $\{i_0 - 3, i_0 - 2, i_0 - 1\} \cap I_p$ es decir $u_j = z_l$ para algún $u_j \in V(C)$, entonces por I(c) $(z_l, z_{l+5}) \in A(D)$ y $l+5 \in \{i_0+2, i_0+3, i_0+4\}$, esto implica que $C^3 = (z_{i_0-4}, C^1, z_l) \cup (z_l, z_{l+5}) \cup (z_{l+5}, C^1, z_{i_0+4}) \cup (z_{i_0+4}, z_0, z_{i_0-4})$ es un C_6 de D pues $(z_{i_0-4}, C^1, z_{i_0+4}) \cup (z_{i_0+4}, z_0, z_{i_0-4})$ es un camino cerrado de D de longitud 10, por hipótesis C^3 es monocromático, como $(z_0, z_{i_0-4}) \in A(C^2) \cap A(C^3)$ entonces C^3 es de color 1, la figura 4.32 muestra el caso en el que $l = i_0 - 3$. Ahora $u_{j+1} \in \{z_{l+1}, z_{l+2}, z_{l+4}\} \subset \{z_{i_0-2}, z_{i_0-1}, z_{i_0}, z_{i_0+4}, z_{i_0+2}, z_{i_0+3}\}$, si $u_{j+1} \in \{z_{i_0-2}, z_{i_0-1}, z_{i_0}\}$ entonces C^2

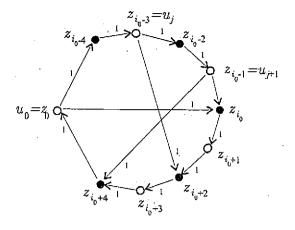


Figura 4.30

contiene una $u_{j+1}u_j$ —trayectoria dirigida monocromática en D lo que implica que (u_j,u_{j+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición. Supongamos entonces que $u_{j+1} \in \{z_{i_0+1},z_{i_0+2},z_{i_0+3}\}$, sea $i_1 \in \{i_0+1,i_0+2,i_0+3\}$ tal que $u_{j+1}=z_{i_1}$, entonces por (2) $(z_{i_1-5},z_{i_1}) \in A(D)$ donde $z_{i_1-5} \in \{z_{i_0-4},z_{i_0-3},z_{i_0-2}\}$, así $C^4=(z_{i_0-4},C^1,z_{i_1-5}) \cup (z_{i_1-5},z_{i_1}) \cup (z_{i_1},C^1,z_{i_0+4}) \cup (z_{i_0+4},z_0,z_{i_0-4})$ es un C_6 de D pues $(z_{i_0-4},C^1,z_{i_0+4}) \cup (z_{i_0+4},z_0,z_{i_0-4})$ es un camino dirigido cerrado de D de longitud 10, por hipótesis C^4 es monocromático, como $(z_0,z_{i_0-4}) \in A(C^4) \cap A(C^2)$ entonces C^4 es de color 1, la figura 4.33 muestra el caso en el que $i_1=i_0+1$ con $l=i_0-3$. Entonces $(u_{j+1}=z_{i_1},C^4,z_{i_0-4}) \cup (z_{i_0-4},C^2,z_l=u_j)$ contiene una $u_{j+1}u_j$ —trayectoria dirigida monocromática en D lo que implica que (u_j,u_{j+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición.

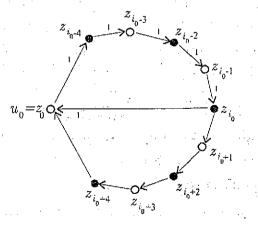


Figura 4.31

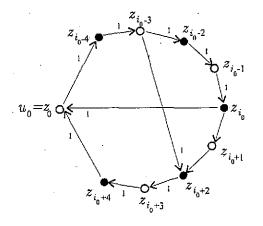


Figura 4.32

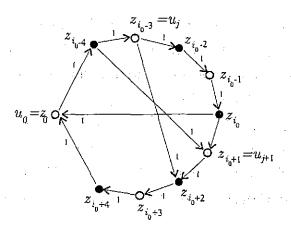


Figura 4.33

Ahora analicemos los siguientes casos:

Subcaso c.1 Supongamos que $k \equiv 1 \pmod{4}$. Como $0 \in I_p$ por 2(c) $(z_{k-4}, z_0) \in A(D)$, por otro lado $k-4 \equiv 1 \pmod{4}$ entonces por 3(c) $(z_0, z_{k-4}) \in A(D)$ pero esto es una contradicción pues D es un torneo bipartito y por lo tanto no tiene flechas simétricas.

Subcasole 2 Supongamos que $k \equiv 3 \pmod{4}$. Entonces tenemos:

5(c.2) $(z_i, z_0) \in A(D)$ para cualquier $i \in \{3, ..., k-4\}$ tal que $i \equiv 3 \pmod{4}$. Si $i \equiv 3 \pmod{4}$ como $k \equiv 3 \pmod{4}$ entonces $i \equiv k \pmod{4}$, aplicando el 4(c) tenemos que $(z_i, z_0) \in A(D)$.

Análogamente a lo demostrado para z_0 en los incisos 3(c) y 5(c.2) tenemos:

6(c.2) $(z_i, z_j) \in A(D)$ para cualesquiera $i, j \in \{0, ..., k\}$ tales que $i \in I_p$ y $j - i \equiv 1$ (mod 4). Sea $r \in \{0, 1, ..., n\}$ tal que $u_r = z_i$, renombramos los vértices

de C de tal forma que el ciclo inicie en u_r , uniendo las correspondientes trayectorias entre los vértices de C obtenemos un camino dirigido cerrado $\overline{C^1}=(\overline{z}_0,\overline{z}_1,...,\overline{z}_k,\overline{z}_0)$ que es igual a C^1 con los vértices renombrados de la siguiente manera: para cada $t\in\{0,...,k\}$ tenemos $\overline{z}_t=z_{t+i}$, así $\overline{z}_0=z_i$. Aplicamos 3(c) y obtenemos que $(\overline{z}_0,\overline{z}_t)\in A(D)$ si $t\equiv 1\pmod 4$. Sea $j\in\{0,...,k\}$ tal que $j-i\equiv 1\pmod 4$ entonces $(\overline{z}_0,\overline{z}_{j-i})\in A(D)$, como $\overline{z}_0=z_i$ y $\overline{z}_{j-i}=z_j$ entonces $(z_i,z_j)\in A(D)$.

- 7(c.2) $(z_j, z_i) \in A(D)$ para cualesquiera $i, j \in \{0, ..., k\}$ tales que $i \in I_p$ y $j-i \equiv 3 \pmod 4$. Procediendo de la misma manera que en 6(c.2) para obtener $\overline{C^1}$ y aplicando 5(c.2) obtenemos $(\overline{z}_t, \overline{z}_0) \in A(D)$ si $t \equiv 3 \pmod 4$. Sea $j \in \{0, ..., k\}$ tal que $j i \equiv 3 \pmod 4$ entonces $(\overline{z}_{j-i}, \overline{z}_0) \in A(D)$, como $\overline{z}_0 = z_i$ y $\overline{z}_{j-i} = z_j$ entonces $(z_j, z_i) \in A(D)$.
 - Ahora probaremos:
- 8(c.2) $(z_i, z_{i-3}) \in A(D)$ para cualquier $i \in \{0, ..., k\}$. Procederemos por contradicción, supongamos que $(z_{i-3}, z_i) \in A(D)$ para algún $i \in \{0, ..., k\}$. Como $i (i 3) \equiv 3 \pmod{4}$ por 7(c.2) $i 3 \notin I_p$, y como $(i 3) i \equiv 1 \pmod{4}$ por 6(c.2) $i \notin I_p$. Ahora por I $\{i 3, i 2, i 1, i\} \cap I_p \neq \phi$, por lo anterior $\{i 2, i 1\} \cap I_p \neq \phi$, de aquí se desprenden 2 casos.
- Caso 8(c.2)a. Supongamos que $i-2 \in I_p$. Sea $j \in \{0,...,n\}$ tal que $z_{i-2}=u_i$. Como $i + 1 - (i - 2) \equiv 3 \pmod{4}$ entonces por 7(c.2) $(z_{i+1}, z_{i-2} = u_i) \in$ A(D), por otro lado $(i-5)-(i-2)\equiv 1\pmod{4}$ entonces por 6(c.2) $(z_{i-2}, z_{i-5}) \in A(D)$. Sea $C^2 = (u_j = z_{i-2}, z_{i-5}, z_{i-4}, z_{i-3}, z_i, z_{i+1}, z_{i-2} = z_{i-2}, z_{i-5}, z_{$ u_i), C^2 es un C_6 de D que por hipótesis es monocromático supongamos que es de color 1. Por construcción de C^1 $u_{j-1} \in \{z_{i-6}, z_{i-4}, z_{i-3}\}.$ Como $i-3 \notin I_p$ entonces $u_{j-1} \neq z_{i-3}$. Si $u_{j-1} = z_{i-4}$, entonces $\{u_{j-1}, u_j\} \subset V(C^2)$ y por lo tanto existe una $u_j u_{j-1}$ -trayectoria dirigida monocromática en D y en consecuencia (u_{j-1}, u_j) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición, figura 4.34. Entonces $u_{i-1} = z_{i-6}$, como $(i+1) - (i-6) \equiv 3 \pmod{4}$ entonces por $7(c.2) (z_{i+1}, z_{i-6} = u_{j-1}) \in A(D)$. Sea $C^3 = (u_{j-1} = z_{i-6}, z_{i-5}, z_{i-4}, z_{i-3}, z_{i-4}, z_{i-5}, z_{i-6}, z_{i-6$ $z_i, z_{i+1}, z_{i-6} = u_{i-1}$), C^3 es un C_6 de D que por hipótesis es monocromático, y como $(z_{i-3}, z_i) \in A(C^2) \cap A(C^3)$ entonces C^3 es de color 1, figura 4.35... Entonces $(u_j) = z_{i-2}, C^2, z_{i+1} \cup (z_{i+1}, z_{i-6}) = u_{j-1})$ es una $u_j u_{j-1}$ —trayectoria dirigida monocromática en D y por lo tanto (u_{j-1},u_j) es una flecha simétrica de C en $\mathfrak{C}(D),$ contradiciendo nuestra

suposición, por lo tanto este caso no es posible.

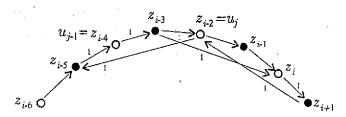


Figura 4.34

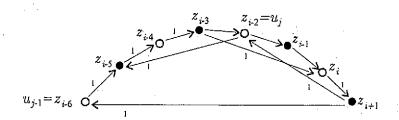


Figura 4.35

Caso 8(c.2)b Supongamos que $i-1 \in I_p$. Sea $j \in \{0,...,n\}$ tal que $z_{i-1} = u_j$. Como $i+2-(i-1)\equiv 3\pmod 4$ entonces por 7(c.2) $(z_{i+2},z_{i-1}=u_j)\in$ A(D), por otro lado $(i-4)-(i-1)\equiv 1\pmod{4}$ entonces por 6(c.2) $(z_{i-1}, z_{i-4}) \in A(D)$. Sea $C^2 = (u_j = z_{i-1}, z_{i-4}, z_{i-3}, z_i, z_{i+1}, z_{i+2}, z_{i-1})$ u_i), C^2 es un C_6 de D que por hipótesis es monocromático supongamos que es de color 1. Por construcción de C^1 $u_{j+1} \in \{z_i, z_{i+1}, z_{i+3}\}$. Como $i \notin I_p$ entonces $u_{j+1} \neq z_i$. Si $u_{j+1} = z_{i+1}$, entonces $\{u_j, u_{j+1}\} \subset V(C^2)$ y por lo tanto existe una $u_{i+1}u_i$ -trayectoria dirigida monocromática en D y en consecuencia (u_i, u_{i+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición, figura 4.36. Entonces $u_{i+1} = z_{i+3}$, como $(i-4) - (i+3) \equiv 1 \pmod{4}$ entonces por 6(c.2) $(u_{j+1} = z_{i+3}, z_{i-4}) \in A(D)$. Sea $C^3 = ((u_{j+1} = z_{i+3}, z_{i-4}, z_{i-3}, z_i, z_{i+1}, z_{i+1}$ $(z_{i+2}, z_{i+3} = u_{j+1}), C^3$ es un C_6 de D que por hipótesis es monocromáticos co, y como $(z_{i-3}, z_i) \in A(C^2) \cap A(C^3)$ entonces C^3 es de color 1, figura 4.37. Entonces $(u_{j+1} = z_{i+3}, z_{i-4}) \cup (z_{i-4}, C^2, z_{i-1} = u_j)$ es una $u_{j+1}u_j$ —trayectoria dirigida monocromática en D y por lo tanto (u_i, u_{i+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra. suposición, por lo tanto este caso tampoco es posible. Concluímos que $(z_i, z_{i-3}) \in A(D)$ para cualquier $i \in \{0, ..., k\}$

Terminamos la prueba con los siguientes incisos.

536 .

1:17 (5

1. 2.4

1.58

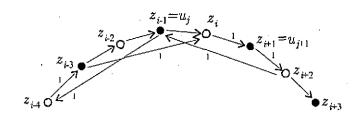


Figura 4.36

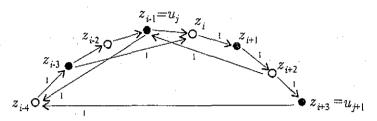


Figura 4.37

- 9(c.2) En C^1 debe existir algún cambio de color, es decir para algún $i \in \{0, ..., k\}$, (z_{i-1}, z_i) y (z_i, z_{i+1}) son de colores distintos. En caso contrario C^1 sería monocromático y por lo tanto todas las flechas de C serían simétricas en $\mathfrak{C}(D)$, contradiciendo nuestra suposición.
- 10(c.2) Si $i \in \{0,...,k\}$ y son de colores distintos (z_{i-1},z_i) y (z_i,z_{i+1}) entonces $i \in I_p$. Por I $\{i-3, i-2, i-1, i\} \cap I_p \neq \phi$, sea $r_0 = \min\{r \in \{0, 1, 2, 3\} / 1\}$ $i-r \in I_p$ }. Sea $j \in \{0,1,...,n\}$ tal que $z_{i-r_0} = u_j$, tenemos entonces $u_i \in \{z_{i-3}, z_{i-2}, z_{i-1}, z_i\}$. Por construcción de C^1 tenemos que $u_{i+1} \in$ $\{z_{i-r_0+1}, z_{i-r_0+2}, z_{i-r_0+4}\} \subset \{z_{i-2}, z_{i-1}, z_i, z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}\}.$ Consideremos $l \in \{i - r_0 + 1, i - r_0 + 2, i - r_0 + 4\}$ tal que $u_{j+1} = z_l$, por la elección de r_0 y como $l \in I_p$ $l \notin \{i-2, i-1, i\}$ es decir $u_{j+1} \in \{z_{i+1}, z_{i+2}, z_{i+3}, z_{i+4}\}$ Si la trayectoria T_i es de longitud 4 entonces es monocromática y en consecuencia no puede contener a la vez a las flechas (z_{i-1}, z_i) y (z_i, z_{i+1}) esto implica que $z_i = u_j$ y $z_{i+4} = u_{j+1}$, por lo tanto $i \in I_p$. Si T_j es de longitud 1 entonces $z_i = u_j$, es decir $i \in I_p$. Supongamos que T_j es de longitud 2, entonces $u_j \in \{z_{i-1}, z_i\}$, si $u_j = z_{i-1}$ entonces $u_{j+1} =$ z_{i+1} , por 8(c.2) $(z_{i+2}, z_{i-1}) \in A(D)$, sea $C^2 = (u_j = z_{i-1}, z_i, z_{i+1} = z_i)$ $u_{i+1}, z_{i+2}, z_{i-1} = u_i$, C^2 es un C_4 que por hipótesis es 1-casimonocromático, figura 4.38, como las flechas (z_{i-1}, z_i) y (z_i, z_{i+1}) son de diferente color entonces $(u_{j+1} = z_{i+1}, z_{i+2})$ y $(z_{i+2}, z_{i-1} = u_j)$ son del mismo color, esto implica que existe una $u_{j+1}u_j$ -trayectoria monocromática en D y por lo tanto (u_j,u_{j+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra

suposición, por lo tanto $u_j = z_i$ y en consecuencia $i \in I_p$.

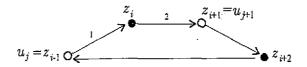


Figura 4.38

Supongamos que (z_{i-1}, z_i) y (z_i, z_{i+1}) son de colores distintos digamos 1 y 2 respectivamente, entonces:

- $11(c.2) \{i-1,i+1\} \cap I_p = \phi$. Por $10(c.2) i \in I_p$, supongamos que $z_i = u_i$ para algún $j \in \{0, 1, ..., n\}$. Supongamos que $i - 1 \in I_p$ entonces por construcción de C^1 $z_{i-1} = u_{i-1}$. Por 8(c.2) $(z_{i+2}, z_{i-1}) \in A(D)$, sea $C^2 = (z_{i-1} = u_{j-1}, z_i = u_j, z_{i+1}, z_{i+2}, z_{i-1}), C^2$ es un C_4 que por hipótesis es 1-casimonocromático, como las flechas (z_{i-1},z_i) y (z_i,z_{i+1}) son de color 1 y 2 respectivamente, entonces (z_{i+1}, z_{i+2}) y (z_{i+2}, z_{i-1}) son del mismo color a con $a \in \{1, 2\}$, figura 4.39, si a = 2 entonces $(z_i = u_j, z_{i+1}, z_{i+2}, z_{i+2}, z_{i+1}, z_{i+2}, z_{i+2$ $z_{i-1} = u_{j-1}$) es una $u_j u_{j-1}$ -trayectoria dirigida monocromática en D y por lo tanto (u_{j-1}, u_j) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo $\mathfrak{C}(D)$ nuestra suposición, por lo tanto a=1, por 10(c.2) $i+1 \in I_p$ entonces por construcción de C^1 $z_{i+1} = u_{j+1}$, entonces $(u_{j+1} = z_{i+1}, z_{i+2}, z_{i-1}, z_i = u_j)$ es una $u_{j+1}u_j$ -trayectoria dirigida monocromática en D y por lo tanto (u_i, u_{i+1}) es una flecha simétrica de C en $\mathfrak{C}(D)$, contradiciendo nuestra suposición, por lo tanto $i-1 \notin I_p$. Supongamos ahora que $i+1 \in I_p$ entonces por construcción de C^1 $z_{i+1} = u_{j+1}$. Por 8(c.2) $(z_{i+1}, z_{i-2}) \in A(D)$, sea $C^3 = (z_{i-1}, z_{i-1}, z_i = u_i, z_{i+1} = u_{i+1}, z_{i-2}), C^3$ es un C_4 que por hipótesis es 1-casimonocromático, como las flechas (z_{i-1}, z_i) y (z_i, z_{i+1}) son de color 1 y z_i 2 respectivamente entonces (z_{i+1}, z_{i+2}) y (z_{i+2}, z_{i+1}) son del mismo color bcon $b \in \{1, 2\}$, figura 4.40, si b = 1 entonces $(u_{j+1} = z_{i+1}, z_{i-2}, z_{i-1}, z_i = u_j)$ is the same z_{i+1} and z_{i+1} and z_{i+1} is the same z_{i+1} and z_{i+1} and z_{i+1} is the same z_{i+1} is the same z_{i+1} and z_{i+1} is the same z_{i+1} is the same z_{i+1} in the same z_{i+1} is the same z_{i+1} in the same z_{i+1} in the same z_{i+1} is the same z_{i+1} in the same z_{i+1} in the same z_{i+1} is the same z_{i+1} in the same z_{i+1} in the same z_{i+1} is the same z_{i+1} in the same z_{i+1} es una $u_{j+1}u_j$ —trayectoria dirigida monocromática en D y por lo tanto v_j (a) v_j (u_i, u_{i+1}) es una flecha simétrica de C en $\mathcal{C}(D)$, contradiciendo nuestra suposición, por lo tanto b=2, por 10(c.2) $i-1 \in I_p$ pero esto no es posible pues acabamos de obtener que $i-1 \notin I_p$, por lo tanto $\{i-1,i+1\} \cap I_p = \phi$.
- (z_{i+1}, z_{i+2}) es de color 2. En caso contrario (z_i, z_{i+1}) y (z_{i+1}, z_{i+2}) serían de diferente color y por 10(c.2) tendríamos que $i+1 \in I_p$ pero esto contradice 11(c.2).
- 13(c.2) (z_{i-2}, z_{i-1}) es de color 1. En caso contrario (z_{i-2}, z_{i-1}) y (z_{i-1}, z_i) serían de

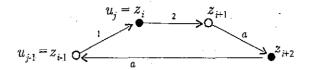


Figura 4.39

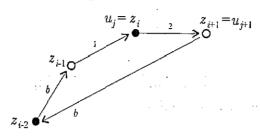


Figura 4.40

diferente color y por 10(c.2) tendríamos que $i-1 \in I_p$ pero esto contradice 11(c.2).

14(c.2) El subtorneo H generado por el conjunto de vértices $\{z_{i-2}, z_{i-1}, z_i, z_{i+1}, z_{i+2}\}$ es un torneo cíclicamente 4-partito. Sean $V_1 = \{z_{i-2}, z_{i+2}\}$, $V_2 = \{z_{i-1}\}$, $V_3 = \{z_i\}$ y $V_4 = \{z_{i+1}\}$. Por definición de C^1 existen en D las flechas: (z_{i-2}, z_{i-1}) , (z_{i-1}, z_i) , (z_i, z_{i+1}) y (z_{i+1}, z_{i+2}) . Por otro lado por 8(c.2) existen en D las flechas: (z_{i+2}, z_{i-1}) y (z_{i+1}, z_{i-2}) . Entonces todo vértice de V_i es adyacente hacia todo vértice de V_{i+1} , la suma es tomada módulo 4, por lo tanto H es un torneo cíclicamente 4-partito.

Finalmente observemos que H es la unión de los ciclos C^2 y C^3 mencionados en 11(c.2). En C^2 tenemos que (z_{i-1}, z_i) es de color 1 y son de color 2 las flechas (z_i, z_{i+1}) y (z_{i+1}, z_{i+2}) , como C^2 es 1-casimonocromático entonces la flecha (z_{i+2}, z_{i-1}) es de color 2. Por otro lado en C^3 tenemos que (z_i, z_{i+1}) es de color 2 y son de color 1 las flechas (z_{i-2}, z_{i-1}) y (z_{i-1}, z_i) , como C^3 es 1-casimonocromático entonces la flecha (z_{i+1}, z_{i-2}) es de color 1, figura 4.41. Así H tiene 3 flechas de color 1 y 3 flechas de color 2, pero esto contradice la hipótesis de que todo subtorneo cíclicamente 4-partito de orden 5 de D es 2-casimonocromático. Con esta contradicción finalizamos la prueba, por lo tanto todo ciclo de $\mathfrak{C}(D)$ tiene al menos una flecha simétrica y esto implica que $\mathfrak{C}(D)$ es núcleo perfecta. Aplicando el Teorema 1.54 obtenemos que D tiene núcleo por trayectorias monocromáticas.

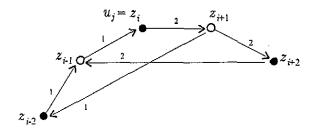


Figura 4.41

Por último mostraremos la importancia de las hipótesis del Teorema anterior, algunas de ellas resultan ser esenciales.

Nota 4.10 El siguiente torneo bipartito muestra que si en el Teorema 4.9 eliminamos la hipótesis de que todo C_4 sea 1-casimonocromático entonces la cerradura transitiva de D no necesariamente es núcleo perfecta. Sea D el ciclo dirigido (u, v, w, x, u)donde las flechas (u,v) y (v,w) tienen asignado el color 1, la flecha (w,x) el color 2 y la flecha (x,u) el color 3. D es un C_4 que no es 1-casimonocromático y satisface por vacuidad que todo subtorneo cíclicamente 4-partito de orden 5 es 2-casimonocromático y todo C_6 es monocromático. $\mathfrak{C}(D)$, la cerradura transitiva de D es igual a D unión la flecha (u,w) de color 1. El triángulo dirigido (u,w,x,u) es una subdigráfica inducida de $\mathfrak{C}(D)$ que no tiene núcleo, por lo tanto $\mathfrak{C}(D)$ no es núcleo perfecta, figura 4.42. A partir de esta digráfica construimos la siguiente familia infinita de torneos bipartitos D_n tales que en ellos todo subtorneo cíclicamente 4-partito de orden 5 es 2-casimonocromático, todo C_6 es monocromático y cuya cerradura transitiva no es núcleo perfecta. Para cada $n \in \mathbb{N}$, sea D_n la digráfica que se obtiene a partir de D al aumentar n vértices nuevos $z_1, z_2, ..., z_n$ y las flechas de color 3 desde éstos vértices hacia u y w, figura 4.43. D_n es un torneo bipartito donde la bipartición correspondiente es $\{V_1, V_2\}$ con $V_1 = \{u, w\}$ y $V_2 = \{x, v, z_1, z_2, ..., z_n\}$, D es el único C_4 que posee D_n y no es 1-casimonocromático además D_n satisface por vacuidad que todo subtorneo cíclicamente 4-partito de orden 5 es 2-casimonocromático $y\ todo\ C_6$ es monocromático. La cerradura transitiva de D_n contiene como subdigráfica inducida al triăngulo dirigido (u, w, x, u) que no tiene núcleo, por lo tanto $\mathfrak{C}(D_n)$ no es núcleo perfecta.

Nota 4.11 En esta nota mostramos que si en el Teorema 4.9 eliminamos la hipótesis de que todo C_6 sea monocromático, entonces la cerradura transitiva de D no necesariamente es núcleo perfecta. Sea D el torneo bipartito 3-coloreado considerado en la

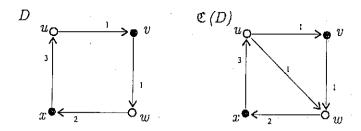
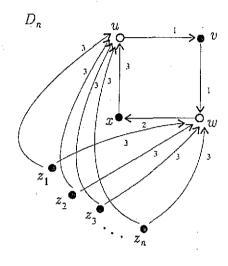


Figura 4.42



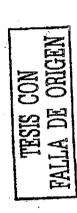


Figura 4.43

Nota 4.5. En D el ciclo (u, x, v, y, w, z, u) es un C_6 que no es monocromático. Todo C_4 de D es 1-casimonocromático. Es fácil ver que los torneos cíclicamente 4-partitos no contienen torneos bipartitos transitivos de orden 4 (T es un torneo bipartito transitivo si $\{(v_1, v_2), (v_2, v_3), (v_3, v_4)\} \subset A(D)$ implica $(v_1, v_4) \in A(D)$), en D tenemos que la eliminación de cualquier vértice produce un subtorneo bipartito de orden 5 que posee un torneo bipartito transitivo de orden 4 y por lo tanto no es cíclicamente 4-partito, así, por vacuidad tenemos que todo subtorneo de D cíclicamente 4-partito de orden 5 es 2-casimonocromático. Como vimos en la Nota 4.5 $\mathfrak{C}(D)$ no es núcleo perfecta. La familia infinita de torneos bipartitos D_n descritos en dicha nota también satisface que en ellos todo C_4 es 1-casimonocromático, todo subtorneo de D cíclicamente 4-partito de orden 5 es 2-casimonocromático, no todo C_6 es monocromático y cuya cerradura transitiva no es núcleo perfecta.

Nota 4.12 El siguiente torneo bipartito muestra que si en el Teorema 4.9 eliminamos la hipótesis de que todo subtorneo cíclicamente 4-partito de orden 5 sea 2-casimonocromático entonces no todo ciclo dirigido de la cerradura transitiva de D

tiene alguna flecha simétrica por lo que no es posible demostrar que $\mathfrak{C}(D)$ sea núcleo perfecta usando el mismo procedimiento que en la demostración del Teorema 4.9. Así queda como una pregunta abierta si las condiciones de que todo C_4 en D sea $^{\circ}$ 1-casimonocromático y todo C_6 en D sea monocromático son suficientes para concluir que $\mathfrak{C}(D)$ es núcleo perfecta. Sea D el torneo cíclicamente 4-partito tal que $V(D) = V_1 \cup V_2 \cup V_3 \cup V_4$, para cada $i \in \{1, 2, 3, 4\}$ $V_i = \{u_i, v_i\}$ y desde cualquier vértice de V_i existe flecha hacia cualquier vértice de V_{i+1} , la suma es tomada módulo 4. A las flechas de D les asignamos los colores 1 y 2 como se muestra en la figura 4.44. No es difícil ver que en D todo C_4 es 1-casimonocromático y como en <math>D no hay ciclos dirigidos de orden 6 entonces por vacuidad todo C_6 de D es monocromático. El subtorneo de D generado por $\{u_1, u_2, u_3, u_4, v_1\}$ es un torneo cíclicamente 4-partito de orden 5 que tiene 3 flechas de color 1 y 3 flechas de color 2, por lo tanto no es 2casimonocromático. Ahora, en $\mathfrak{C}(D)$ el ciclo dirigido $C=(u_1,u_3,v_1,v_3)$ es asimétrico. Análogamente a los contraejemplos anteriores es posible construir una familia infinita de torneos bipartitos D_n tales que en ellos todo C_4 es 1-casimonocromático, todo C_6 de D es monocromático, no todo subtorneo cíclicamente 4-partito de orden 5es 2-casimonocromático y no todo ciclo dirigido de $\mathfrak{C}(D)$ tiene al menos una flecha simétrica.

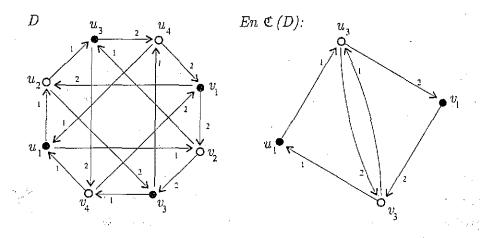


Figura 4.44. En la figura se muestra en $\mathfrak{C}(D)$ la subdigráfica inducida por V(C) donde $C=(v_1,v_3,u_1,u_3,v_1)$.

4.3 Problemas Abiertos

- 1. ¿Qué otras digráficas coloreadas, además de los torneos bipartitos, con todo C_4 monocromático satisfacen que su cerradura transitiva es núcleo perfecta?
- 2. ¿Qué otras digráficas coloreadas, además de los torneos bipartitos, bajo las hipótesis del Teorema 4.9 satisfacen que su cerradura transitiva es núcleo perfecta?
- 3. Si D es un torneo bipartito m-coloreado tal que todo C_4 es casimonocromático y todo C_6 es monocromático, ¿entonces $\mathfrak{C}(D)$ es núcleo perfecta?
- 4. Para los torneos bipartitos coloreados y tratando de usar una técnica similar a la empleada en los teoremas 4.4 y 4.9 ¿qué otras condiciones pueden pedirse sobre sus ciclos dirigidos pequeños y/o subtorneos pequeños que impliquen que su cerradura transitiva sea núcleo perfecta?

Capítulo 5

Operaciones en Digráficas

En este capítulo presentamos varias operaciones en digráficas m—coloreadas y su relación con la existencia de núcleo por trayectorias monocromáticas. En la mayoría de los casos, la existencia de núcleo por trayectorias monocromáticas se preserva bajo la operación, en algunos casos existe núcleo por trayectorias monocromáticas aún cuando la digráfica original no lo tiene.

En [37], J. Topp estudia la existencia de núcleos en digráficas obtenidas a partir de otras aplicando ciertas operaciones. Las operaciones que contempla dicho artículo son: la digráfica subdivisión, la digráfica media, la digráfica total y la digráfica de líneas.

En [25], H. Galeana Sánchez y L. Pastrana Ramírez definen para la digráfica de líneas de una digráfica m—coloreada un tipo de m—coloración y prueban que bajo ciertas condiciones de la digráfica, el número de núcleos por trayectorias monocromáticas de la digráfica de líneas bajo esa m—coloración es igual al número de núcleos por trayectorias monocromáticas de la digráfica original.

En la sección 5.1, a partir de una digráfica m-coloreada D (posiblemente infinita) definimos la digráfica subdivisión de D, S(D), y probamos que la digráfica subdivisión siempre tiene núcleo por trayectorias monocromáticas si D no contiene trayectorias infinitas exterioes. En la sección 5.2 generalizamos el concepto de disgráfica subdivisión obteniendo la digráfica S'(D), y en la sección 5.3 a partir de S'(D) definimos la digráfica m-coloreada R'(D), probamos que ambas digráficas exteriores usando el primer resultado. En las secciones 5.4 y 5.5 definimos las digráficas m-coloreadas digráfica media y digráfica total respectivamente de una digráfica m-coloreada, probamos que el número de núcleos por trayectorias monocromáticas de una digráfica m-coloreada es menor o igual al número de núcleos por trayectorias

monocromáticas de la digráfica media y la digráfica total. Además damos condiciones suficientes para que estos números sean iguales.

En [21] H. Galeana Sánchez y V. Neumann Lara prueban que cualquier gráfica núcleo perfecta es una subdigráfica inducida de una digráfica núcleo imperfecta crítica (digráfica sin núcleo pero que toda subdigráfica propia inducida tiene núcleo), más aún de un número infinito de ellas. Tomando como referencia el trabajo anterior, en la sección 5.6 definimos una extensión de digráficas m-coloreadas que preserva núcleos por trayectorias monocromáticas.

Varios autores más han estudiado operaciones con digráficas y su relación con la existencia de núcleos como son: M. Blidia, P. Duchet, H. Jacob, F. Maffray y H. Meyniel [6]; H. Galeana Sánchez [14] y H. Galeana Sánchez y V. Neumann Lara [22, 23, 24].

5.1 La Digráfica Subdivisión de una Digráfica m-Coloreada

En [37] se demuestra que la digráfica subdivisión de cualquier digráfica siempre tiene núcleo, en esta sección definimos la digráfica subdivisión de una digráfica m-coloreada y probamos que tiene núcleo por trayectorias monocromáticas si la digráfica original no contiene trayectorias dirigidas monocromáticas infinitas exteriores.

Si D = (V(D), A(D)) es una digráfica m-coloreada, definimos las funciones Γ_D , $\Gamma_{D,i}$, Γ_D^{-1} , $\Gamma_{D,i}^{-1}$ de V(D) a $\mathcal{P}(V(D))$ (conjunto potencia de V(D)) de la siguiente forma:

para cualquier $u \in V(D)$,

$$\Gamma_{D}(u) = \{v \in V(D)/(u,v) \in A(D)\}$$

$$\Gamma_{D,i}(u) = \{v \in V(D)/(u,v) \in A(D) \text{ y } (u,v) \text{ es de color } i\}$$

$$\Gamma_{D}^{-1}(u) = \{v \in V(D)/(v,u) \in A(D)\}$$

$$\Gamma_{D,i}^{-1}(u) = \{v \in V(D)/(v,u) \in A(D) \text{ y } (v,u) \text{ es de color } i\}.$$

Notemos que una digráfica D queda totalmente definida describiendo su conjunto de vértices y la función Γ_D ó la función $\Gamma_{D,i}$ en el caso en que la digráfica esté coloreada

$$\operatorname{Si} U \subset V\left(D\right), \operatorname{definimos} \Gamma_D\left(U\right) = \bigcup_{u \in U} \Gamma_D\left(u\right).$$

Definición 5.1 Dada D una digráfica m-coloreada, definimos la digráfica subdi-

visión S(D) de D, como la digráfica m-coloreada tal que

$$V(S(D)) = V(D) \cup A(D) y$$

$$\Gamma_{S(D),i}(x) = \begin{cases} \{x\} \times \Gamma_{D,i}(x) & \text{si } x \in V(D), \\ \{v\} & \text{si } x = (u,v) \in A(D) \ y \ v \in \Gamma_{D,i}(u). \end{cases}$$

Observemos que si x es un vértice de la digráfica subdivisión y x corresponde a un vértice de D entonces x es adyacente hacia las flechas que inciden desde x en D conservando el color de éstas, y que si x corresponde a una flecha de D entonces x sólo es adyacente hacia el vértice que es el extremo final de x en D conservando el color de x. Considerando la representación gráfica de D podemos considerar que S(D) se obtiene a partir de D cambiando cada flecha por una trayectoria de longitud dos del mismo color que la flecha, es decir cada flecha se divide en dos flechas del mismo color, en la figura 5.1 mostramos un ejemplo.

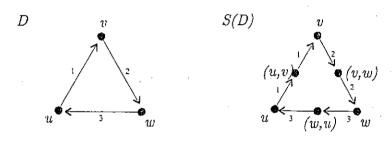


Figura 5.1

En el ejemplo anterior vemos que D es una digráfica que no tiene núcleo por trayectorias monocromáticas sin embargo, la digráfica subdivisión de D, S(D), sí tiene núcleo por trayectorias monocromáticas, más aún A(D) es el único núcleo por trayectorias monocromáticas de S(D).

5.1.1 Relaciones de Equivalencia y Órdenes

...)

Para la prueba de nuestro resultado principal hacemos uso de los conceptos de orden parcial, a continuación mecionamos las definiciones y resultados necesarios con respecto a esto, algunos de los resultados se incluyen sin demostración por ser de uso común.

Definición 5.2 Una relación binaria R en A, que es una relación reflexiva, antisimétrica, y transitiva es llamada un orden parcial de A. El par (A,R) es llamado un conjunto parcialmente ordenado.

aRb puede leerse "a es menor o igual que b", o "b es mayor o igual que a" en el orden parcial R. Así, todo elemento de A es menor o igual que el mismo. Si a es menor o igual que b, y, al mismo tiempo b es menor o igual que a, a = b. Finalmente, si a es menor o igual que b y b es menor o igual que c, a tiene que ser menor o igual que c.

Los simbolos \leq o \leq se usan frecuentemente para denotar ordenes.

En algunos casos es conveniente una descripción diferente de orden. Por ejemplo, en lugar de la relación \leq entre números, preferimos la relación < (menor estricto). Cualquier orden puede ser descrito en cualquiera de estas dos formas.

Definición 5.3 Una relación binaria S en A es asimétrica si para cualesquiera $a, b \in A$, aSb implica que bSa no se cumple en A. Esto es, aSb y bSa nunca pueden ser ambas verdaderas.

Definición 5.4 Una relación binaria S en A, es un **orden estricto** si es asimétrica y transitiva.

El siguiente teorema establece relaciones entre órdenes y órdenes estrictos.

Teorema 5.5

(a) Sea R un orden parcial de A; entonces la relación S definida en A por

aSb si y sólo si aRb y $a \neq b$

es un orden estricto de A.

(a) Sea S un orden estricto de A; entonces la relación R definida en A por

 $aRb \ si \ y \ solo \ si \ aSb \ o \ a = b$

es un orden parcial de A

Decimos que un orden estricto S corresponde al orden R y viceversa:

El siguiente teorema hace uso del Lema de Zorn.

Teorema 5.6 Sea (X, \leq) un conjunto parcialmente ordenado tal que toda cadena está acotada inferiormente, entonces X tiene elementos minimales y para cualquier $x \in X$, existe y un elemento minimal tal que $y \leq x$.

Demostración. Definimos \leq la siguiente relación entre los elementos de X, sean $x,y\in X$, decimos que $x\leq y$ si y solo si $y\leq x$. Veamos que \leq es un orden parcial en X. Como \leq es un orden parcial en X, entonces \leq es una relación reflexiva, antisimétrica y transitiva.

- 1. \preccurlyeq es reflexiva. Como \leq es reflexiva entonces $x \leq x$ para todo $x \in X$, entonces por definición de \preccurlyeq , $x \preccurlyeq x$ para todo $x \in X$, por lo tanto \preccurlyeq es reflexiva.
- 2. \leq es antisimétrica. Sean $x, y \in X$ tales que $x \leq y$ y $y \leq x$, por definición de \leq , $y \leq x$ y $x \leq y$, como \leq es antisimétrica, entonces y = x, es decir x = y, por lo tanto \leq es antisimétrica.
- 3. \preccurlyeq es transitiva. Sean $x, y, z \in X$ tales que $x \preccurlyeq y$ y $y \preccurlyeq z$, por definición de \preccurlyeq , $y \leq x$ y $z \leq y$, es decir $z \leq y$ y $y \leq x$, como \leq es transitiva, entonces $z \leq x$, por definición de \preccurlyeq , $x \preccurlyeq z$, por lo tanto \preccurlyeq es transitiva.

Así, por (a), (b) y (c), \leq es un orden parcial en X.

Ahora veamos que toda cadena de (X, \preccurlyeq) , está acotada superiormente. Sea C una cadena de (X, \preccurlyeq) , sean $x, y \in C$ entonces $x \preccurlyeq y \circ y \preccurlyeq x$, por definición de \preccurlyeq tenemos que $y \le x$ o $x \le y$, esto implica que C también es una cadena de (X, \le) , por hipótesis C está acotada inferiormente, es decir, existe $y \in X$ tal que $y \le x$ para todo $x \in C$, por definición de \preccurlyeq , $x \preccurlyeq y$ para todo $x \in C$, esto implica que y es una cota superior de C. Por lo tanto toda cadena de (X, \preccurlyeq) , está acotada superiormente.

Con lo anterior y por el Lema de Zorn, (X, \preceq) tiene elementos maximales. Sea y un elemento maximal de (X, \preceq) , esto es, no existe $x \in X$ tal que $y \prec x$, por la definición de \preceq , tenemos que no existe $x \in X$ tal que x < y, entonces y es un elemento minimal de (X, \leq) . Por lo tanto en (X, \leq) existen elementos minimales.

Ahora sea $x \in X$, veamos que existe un elemento minimal y de (X, \leq) tal que $y \leq x$. Sea $B = \{z \in X | z \leq x\}$, (B, \leq) es un conjunto parcialmente ordenado. Sea C una cadena de (B, \leq) , C también es una cadena de (X, \leq) , entonces C está acotada inferiormente en X, sea $x' \in X$ una cota inferior de C, esto es $x' \leq c$ para todo $c \in C$, como para todo $c \in C$, $c \leq x$, por la transitividad de \leq , $x' \leq x$, esto implica que $x' \in B$, por lo tanto C está acotada inferiormente en B. Entonces toda cadena de (B, \leq) está acotada inferiormente, por la primera parte de este teorema, B tiene elementos minimales, sea y un elemento minimal de B. Supongamos que y no es elemento minimal de X, entonces existe $x'' \in X$ tal que x'' < y, como $y \in B$, entonces $y \leq x$, por la transitividad de \leq , $x'' \leq x$, entonces $x'' \in B$, pero esto es una

contradicción pues x'' < y e y es un elemento minimal de B, por lo tanto y es un elemento minmal de X tal que $y \le x$.

5.1.2 Núcleos por Trayectorias Monocromáticas de la Digráfica Subdivisión de una Digráfica m-Coloreada.

En esta parte consideramos digráficas posiblemente infinitas. También hacemos referencia a la definición de trayectoria infinita exterior dada en el Capítulo 2, Definición 2.5. El siguiente lema resulta útil para la demostración del Teorema 5.8.

Lema 5.7 Sea D una digráfica m-coloreada y sea S(D) la digráfica subdivisión de D. Sean $a, b, c \in V(S(D))$ tales que $b \in A(D)$, $a \neq b$ y $b \neq c$, supongamos que existen en S(D), T_1 una ab-trayectoria dirigida monocromática y T_2 una bc-trayectoria dirigida monocromática, entonces T_1 y T_2 son del mismo color.

Demostración. Supongamos que b es la flecha (u, v) de D. Por construcción de S(D), $\Gamma_{S(D)}^{-1}(b) = \{u\}$ y $\Gamma_{S(D)}(b) = \{v\}$, como $a \neq b$ y $b \neq c$, entonces T_1 y T_2 son de longitud positiva, entonces $(u, b) \in A(T_1)$ y $(b, v) \in A(T_2)$, por definición de S(D) ambas flechas son del mismo color, entonces T_1 y T_2 son del mismo color.

Teorema 5.8 Sea D una digráfica m—coloreada y sea S(D) la digráfica subdivisión de D. Supongamos que en D no existen trayectorias dirigidas monocromáticas infinitas exteriores, entonces S(D) tiene núcleo por trayectorias monocromáticas.

Demostración. Primero demostraremos que en S(D) no existen trayectorias monocromáticas infinitas exteriores. Procederemos por contradicción, supongamos que $T = (x_n)_{n \in \mathbb{N}}$ es una trayectoria infinita exterior de color i de S(D). Por definición de S(D), T es una sucesión alternada de vértices y aristas de D, por lo tanto T contiene una subsucesión de vértices de D y una subsucesión de aristas de D. Sea $J = \{n \in \mathbb{N} \mid x_n \in A(D)\}$ y sea $T' = (T \setminus \{x_n/n \in J\})$, T' es la subsucesión de T que contiene a $V(T) \cap V(D)$, que como ya dijimos es infinita, y como por definición de S(D) para cada $n \in J$, $n \geq 2$ x_n es la flecha (x_{n-1}, x_{n+1}) de D y es de color i, entonces T' es una trayectoria infinita exterior de color i de D, lo cual no es posible. Por lo tanto en S(D) no existen trayectorias monocromáticas infinitas exteriores.

En el resto de la prueba nos encontraremos frecuentemente con uniones de trayectorias que resultan un camino dirigido, por el Teorema 1.36 el cual dice que todo de la cunicipa de la camino dirigido contiene una un trayectoria dirigida, itenemos que tal camino escapa.

dirigido contiene una trayectoria dirigida que conecta a sus extremos, este hecho lo mencionaremos sin tanto detalle diciendo que la unión de trayectorias de este tipo contiene una trayectoria dirigida.

Supongamos ahora que $A(D) \neq \phi$. Definimos en A(D) las siguientes relaciones binarias, $\preceq y \sim$. Sean $a, b \in A(D)$, decimos que $a \preceq b$ si en S(D) existe alguna ba—trayectoria dirigida monocromática, $y \ a \sim b$ si $a \preceq b \ y \ b \preceq a$, es decir si en S(D) existe alguna ba—trayectoria dirigida monocromática y alguna ab—trayectoria dirigida monocromática. Demostraremos que \preceq es reflexiva y transitiva, y que \sim es una relación de equivalencia en A(D).

- 1. \preceq es reflexiva. Sea $a \in A(D)$, (a) es una aa-trayectoria dirigida monocromática en S(D), por lo tanto $a \preceq a$, es decir \preceq es reflexiva.
- 2. \preceq estransitiva. Sean $a,b,c\in A(D)$, tales que $a\preceq b$ y $b\preceq c$. Si a=b o b=c entonces $a\preceq c$. Supongamos que $a\neq b$ y $b\neq c$, entonces existen en S(D), T_1 una ba-trayectoria dirigida monocromática y T_2 una cb-trayectoria dirigida monocromática. Por el Lema 5.7, T_1 y T_2 son del mismo color. Por lo tanto $T_2\cup T_1$ contiene una ca-trayectoria dirigida monocromática, lo que implica que $a\preceq c$, por lo tanto \preceq es transitiva.
- 3. \sim es reflexiva. Sea $a \in A(D)$, como \lesssim es reflexiva, entonces $a \lesssim a$, así $a \sim a$, por lo tanto \sim es reflexiva.
- 4. \sim es simétrica. Sean $a,b\in A(D)$, tales que $a\sim b$, esto implica que $a\precsim b$ y que $b\precsim a$, entonces $b\precsim a$ y $a\precsim b$, así $b\sim a$, por lo tanto \sim es simétrica.
- 5. \sim es transitiva. Sean $a,b,c\in A(D)$, tales que $a\sim b$ y $b\sim c$, esto implica que $a\precsim b,b\precsim a,b\precsim c$, y $c\precsim b$, como \precsim es transitiva, $a\precsim b$ y $b\precsim c$ implican que $a\precsim c$, por otro lado $c\precsim b$ y $b\precsim a$ implican que $c\precsim a$, así por definición de \sim tenemos que $a\sim c$. Por lo tanto \sim es transitiva.

Por 3, 4 y 5 \sim es una relación de equivalencia.

Consideremos ahora el conjunto $A(D)/\sim$ de todas las clases de equivalencia de A(D) módulo \sim , denotaremos por \overline{a} a la clase de equivalencia de a módulo \sim . Definamos la siguiente relación binaria \leq en este conjunto:

$$\overline{a} \leq \overline{b}$$
 si y solo si $a \lesssim b$.

Es decir $\overline{a} \leq \overline{b}$ si y solo si existe en S(D) una ba—trayectoria dirigida monocromática. Veamos que esta relación está bien definida (es decir no depende de los representantes de las clases que se tomen) y que es un orden parcial en A(D)/ \sim C

- 6. \leq está bien definida. Supongamos que $a \lesssim b$ y sea a', b' tales que $a' \sim a$ y $b' \sim b$. Como $b' \sim b$, entonces $b \lesssim b'$ y como $a \lesssim b$, por la transitividad de \lesssim , $a \lesssim b'$. Como $a' \sim a$ entonces $a' \lesssim a$, esto último junto con $a \lesssim b'$ y la transitividad de \lesssim implican que $a' \lesssim b'$. Por lo tanto \leq está bien definida.
- 7. \leq es reflexiva. Sea $\overline{a} \in A(D) / \sim$, \lesssim es reflexiva, es decir $a \lesssim a$, entonces $\overline{a} \leq \overline{a}$, por lo tanto \leq es reflexiva.
- 8. \leq es transitiva. Sean $\overline{a}, \overline{b}, \overline{c} \in A(D) / \sim$, tales que $\overline{a} \leq \overline{b}$ y $\overline{b} \leq \overline{c}$, entonces $a \preceq b$ y $b \preceq c$, como \preceq es transitiva, $a \preceq c$, entonces $\overline{a} \leq \overline{c}$, por lo tanto \leq es transitiva.
- 9. \leq es antisimétrica. Sean $\overline{a}, \overline{b} \in A(D) / \sim$, tales que $\overline{a} \leq \overline{b}$ y $\overline{b} \leq \overline{a}$, entonces $a \lesssim b$ y $b \lesssim a$, por definición de \sim , $a \sim b$, entonces $\overline{a} = \overline{b}$, por lo tanto \leq es antisimétrica.

Por 7, 8 y 9 \leq es un orden parcial en A(D).

Denotamos por < al orden estricto correspondiente a \leq . Es decir $\overline{a} < \overline{b}$ si y sólo si $\overline{a} \leq \overline{b}$ y $\overline{a} \neq \overline{b}$, esto es si y sólo si existe en S(D) una ba-trayectoria dirigida monocromática y $a \nsim b$, es decir existe en S(D) una ba-trayectoria dirigida monocromática y no existen ab-trayectorias dirigidas monocromáticas.

Ahora probaremos que toda cadena en $A(D)/\sim$ está acotada inferiormente, más aún tiene mínimo. Sea C una cadena en $A(D)/\sim$, procederemos por contradicción. Supongamos que C no tiene mínimo. Sea $\overline{a} \in C$, entonces existe $\overline{a_1} \in C$ tal que $\overline{a_1} < \overline{a}$, como C no tiene mínimo existe $\overline{a_2} \in C$ tal que $\overline{a_2} < \overline{a_1}$, así existe una sucesión $(\overline{a_n})_{n \in \mathbb{N}}$ en C tal que para cada $n \in \mathbb{N}$, $\overline{a_{n+1}} < \overline{a_n}$ y $\overline{a_1} < \overline{a}$, esto implica que para cada $n \in \mathbb{N}$, existe T'_{n+1} en S(D) una $a_n a_{n+1}$ —trayectoria dirigida monocromática y T'_1 una aa_1 —trayectoria dirigida monocromática. Probaremos primero que todas estas trayectorias son del mismo color. Como $\overline{a_1} < \overline{a}$ entonces $\overline{a_1} \neq \overline{a}$ y esto implica que $a_1 \neq a$, análogamente para cada $n \in \mathbb{N}$ $a_{n+1} \neq a_n$, como además a_n es el vértice final de T'_n y el vértice inicial de T'_{n+1} , entonces para cada $n \in \mathbb{N}$ por el Lema 5.7, T'_n y T'_{n+1} son del mismo color. Por lo tanto todas las trayectorias T'_n son del mismo color.

Supongamos que i es el color de las trayectorias T_n' . Probaremos por inducción que para cada $n \in \mathbb{N}$ se tiene:

- 10. existe $y_n \in V(S(D))$ y existen en S(D) T_n y T''_{n+1} tales que:
 - (a) T_n es una ay_n -trayectoria dirigida de color i,

TESIS CON FALLA DE ORIGEN

- (b) T''_{n+1} es una $y_n a_{n+1}$ —trayectoria dirigida de color i contenida en T'_{n+1} ,
- (c) $y_n \in V(T_n) \cap V(T'_n)$,
- (d) $T_n \cup \, T_{n+1}''$ es una trayectoria dirigida ,
- (e) si $n \ge 2$, $y_n \ne y_j$ para toda $j \le n 1$ y
- (f) si $n \geq 2$, T_n contiene a T_{n-1} .

Para n=1, supongamos que $T_2'=(a_1=z_{1,1},z_{1,2},...,z_{1,k_1}=a_2)$ y sea $i_1=\max\{j\in\{1,2,...,k_1\}\,/z_{1,j}\in V\left(T_1'\right)\}$. Sea $y_1=z_{1,i_1}$, figura 5.2.

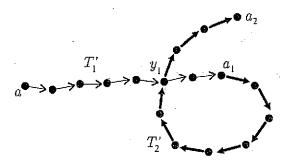


Figura 5.2

Sean $T_1 = (a, T'_1, y_1)$ y $T''_2 = (y_1, T'_2, a_2)$, figura 5.3, entonces

- (a) T_1 es una ay_1 -trayectoria dirigida de color i. Por definición T_1 es una trayectoria dirigida que está contenida en T'_1 y como T'_1 es de color i, entonces T_1 es una ay_1 -trayectoria dirigida de color i.
- (b) T_2''' es una y_1a_2 —trayectoria dirigida de color i contenida en T_2'' . Esto es por definición de T_2'' .
- (c) $y_1 \in V(T_1) \cap V(T_1')$. Esto es por la elección de y_1 y por la definición de T_1 .
- (d) $T_1 \cup T_2''$ es una trayectoria dirigida. Esto es por la elección de y_1 , y como T_1 está contenida en T_1' y T_2'' está contenida en T_2' , $T_1 \cup T_2''$ es una trayectoria dirigida de color i.

Para n=2, supongamos que $T_3'=(a_2=z_{2,1},z_{2,2},...,z_{2,k_2}=a_3)$ y sea $i_2=\max\{j\in\{1,2,...,k_2\}/z_{2,j}\in V(T_2'')\}$, sea $y_2=z_{2,i_2}$, figura 5.4.

Sean $T_2 = T_1 \cup (y_1, T_2'', y_2)$ y $T_3'' = (y_2, T_3', a_3)$, figura 5.5, entonces

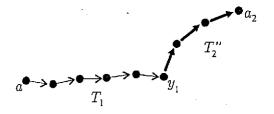


Figura 5.3

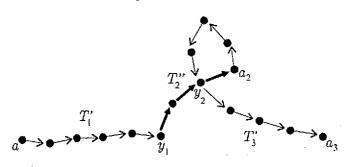


Figura 5.4

- (a) T_2 es una ay_2 —trayectoria dirigida de color i. Como $T_1 \cup T_2''$ es una trayectoria dirigida de color i por el caso n = 1, entonces T_2 es una trayectoria dirigida de color i.
- (b) T_3'' es una y_2a_3 —trayectoria de dirigida color i contenida en T_3' . Esto es por definición de T_3'' .
- (c) $y_2 \in V(T_2) \cap V(T_2')$. Por la elección de $y_2, y_2 \in V(T_2'')$, por (b) del caso $n = 1, T_2''$ está contenida en T_2' , por otro lado, por la definición de T_2 , $y_2 \in V(T_2)$, por lo tanto $y_2 \in V(T_2) \cap V(T_2')$.
- (d) $T_2 \cup T_3''$ es una trayectoria dirigida. Por la elección de y_2 , $V(y_1, T_2'', y_2) \cap V(T_3'') = \{y_2\}$. Supongamos que $V(T_1) \cap V(T_3'') \neq \phi$, sea $z \in V(T_1) \cap V(T_3'')$, entonces $(a_2, T_3', y_2) \cup (y_2, T_3'', z) \cup (z, T_1, y_1) \cup (y_1, T_1', a_1)$ contiene una a_2a_1 —trayectoria dirigida de color i, pero esto es una contradicción pues $\overline{a_2} < \overline{a_1}$, por lo tanto $V(T_1) \cap V(T_3'') \neq \phi$ y en consecuencia $T_2 \cup T_3''$ es una trayectoria dirigida y de color i, pues T_2 y T_3'' son trayectorias dirigidas de color i.
- (e) $y_2 \neq y_1$. Supongamos que $y_1 = y_2$, entonces $(a_2, T_3', y_2 = y_1) \cup (y_1, T_1', a_1)$ contiene una a_2a_1 -trayectoria dirigida de color i, pero esto es una contradicción pues $\overline{a_2} < \overline{a_1}$, por lo tanto $y_1 \neq y_2$.
- (f) T_2 contiene a T_1 . Esto es por definición de T_2 .

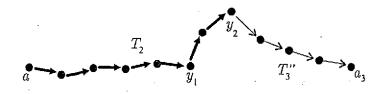


Figura 5.5

Supongamos ahora que si $n \geq 2$, entonces para toda j = 1, ..., n, existe $y_j \in V(S(D))$ y existen en S(D) T_j y T''_{j+1} tales que (figura 5.6):

- (a) T_j es una ay_j —trayectoria dirigida de color i,
- (b) T''_{j+1} es una $y_j a_{j+1}$ -trayectoria dirigida de color i contenida en T'_{j+1} ,
- (c) $y_j \in V(T_j) \cap V(T'_j)$,
- (d) $T_j \cup T''_{j+1}$ es una trayectoria dirigida,
- (e) si $j \geq 2$, $y_j \neq y_k$ para toda $k \leq j-1$ y
- (f) si $j \geq 2$, T_j contiene a T_{j-1} .

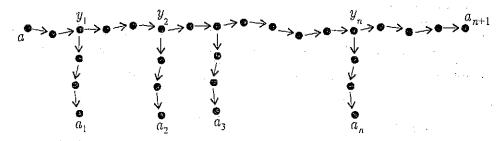


Figura 5.6

Probaremos lo correspondiente para n+1.

Supongamos que $T'_{n+2} = (a_{n+1} = z_{n+1,1}, z_{n+1,2}, ..., z_{n+1,k_{n+1}} = a_{n+2})$ y sea $i_{n+1} = \max \{j \in \{1, 2, ..., k_{n+1}\} / z_{n+1,j} \in V(T''_{n+1})\}$. Sea $y_{n+1} = z_{n+1,i_{n+1}}$, figura 5.7. Sean $T_{n+1} = T_n \cup (y_n, T''_{n+1}, y_{n+1})$ y $T''_{n+2} = (y_{n+1}, T'_{n+2}, a_{n+2})$, figura 5.8, entonces

(a) T_{n+1} es una ay_{n+1} —trayectoria dirigida de color i. Como $T_n \cup T''_{n+1}$ es una trayectoria dirigida de color i, por (d) de la hipótesis de inducción para j = n tenemos que T_{n+1} es una trayectoria dirigida de color i y por definición va de a a y_{n+1} .

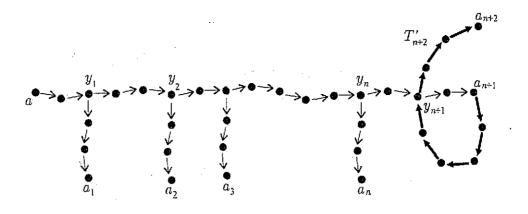


Figura 5.7

- (b) T''_{n+2} es una $y_{n+1}a_{n+2}$ -trayectoria dirigida de color i contenida en T'_{n+2} . Esto es por definición de T''_{n+2} .
- (c) $y_{n+1} \in V(T_{n+1}) \cap V(T'_{n+1})$. Por la elección de $y_{n+1}, y_{n+1} \in V(T''_{n+1})$, por (b) de la hipótesis de inducción T''_{n+1} está contenida en T'_{n+1} , por otro lado por la definición de $T_{n+1}, y_{n+1} \in V(T_{n+1})$, por lo tanto $y_{n+1} \in V(T_{n+1}) \cap V(T'_{n+1})$.
- (d) $T_{n+1} \cup T''_{n+2}$ es una trayectoria dirigida. Por la elección de y_{n+1} tenemos que $V\left(y_n, T''_{n+1}, y_{n+1}\right) \cap V\left(T''_{n+2}\right) = \{y_{n+1}\}$. Supongamos que $V\left(T_n\right) \cap V\left(T''_{n+2}\right) \neq \phi$, sea $z \in V\left(T_n\right) \cap V\left(T''_{n+2}\right)$, entonces $\left(a_{n+1}, T'_{n+2}, y_{n+1}\right) \cup \left(y_{n+1}, T''_{n+2}, z\right) \cup \left(z, T_n, y_n\right) \cup \left(y_n, T'_n, a_n\right)$ contiene una $a_{n+1}a_n$ —trayectoria dirigida de color i, pero esto es una contradicción pues $\overline{a_{n+1}} < \overline{a_n}$, por lo tanto $V\left(T_n\right) \cap V\left(T''_{n+2}\right) \neq \phi$ y en consecuencia $T_{n+1} \cup T''_{n+2}$ es una trayectoria dirigida y de color i, pues T_{n+1} y T''_{n+2} son trayectorias dirigidas de color i.
- (e) $y_{n+1} \neq y_j$ para toda $j \leq n$. Procederemos por contradicción, supongamos que $y_j = y_{n+1}$ para alguna $j \leq n$. El inciso (f) de la hipótesis de inducción implica que T_n contiene a T_j , por (c) de la hipótesis de inducción $y_j \in V(T_j)$ y $y_n \in V(T_n)$, entonces $y_j, y_n \in V(T_n)$. Así $(a_{n+1}, T'_{n+2}, y_{n+1} = y_j) \cup (y_j, T_n, y_n) \cup (y_n, T'_n, a_n)$ contiene una $a_{n+1}a_n$ —trayectoria dirigida de color i, pero esto es una contradicción pues $\overline{a_{n+1}} < \overline{a_n}$, por lo tanto $y_j \neq y_{n+1}$ para toda $j \leq n$.
- (f) T_{n+1} contiene a T_n . Esto es por definición de T_{n+1} .

Por lo tanto para toda $n \in \mathbb{N}$, se satisface 10.

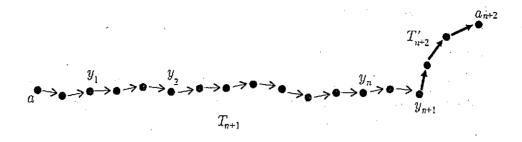


Figura 5.8

Sea $T = \bigcup_{n=1}^{\infty} T_n$, T es una trayectoria dirigida de color i en S(D) que contiene a y_n para toda $n \in \mathbb{N}$, es decir una trayectoria monocromática exterior infinita en S(D), lo cual es una contradicción. Concluímos que C tiene elemento mínimo. Por lo tanto toda cadena de $A(D) / \sim$ tiene elemento mínimo. Una consecuencia de esto y del Teorema 5.6 es la existencia de elementos minimales en $A(D) / \sim$.

Consideremos los elementos minimales de $A(D)/\sim$ en el orden parcial \leq , y sea N' el conjunto formado por un representante de cada una de estas clases. Sea $N=\{v\in V(D)/\Gamma_D(v)=\phi\}\cup\{a\in N'/\Gamma_D(\Gamma_{S(D)}(a))\neq\phi\}$, es decir N está formado por todos los vértices que son terminales en D (y por lo tanto en S(D)) unión el conjunto de elementos de N' cuyos vecinos exteriores en S(D) no son vértices terminales de D. Mostraremos que N es un núcleo por trayectorias dirigidas monocromáticas de S(D).

Observemos primero que:

11. Si $a \in A(D)$ y $\Gamma_D(\Gamma_{S(D)}(a)) = \phi$ entonces $\overline{a} = \{a\}$ y \overline{a} es minimal de $A(D) / \sim$. Sea $a \in A(D)$ y supongamos que existe en S(D), T una ax-trayectoria dirigida monocromática de longitud al menos dos. Por definición de S(D), $|\Gamma_{S(D)}(a)| = 1$ y $\Gamma_{S(D)}(a) \subset V(D)$, sea $v \in V(D)$ tal que $\Gamma_{S(D)}(a) = \{v\}$, como la longitud de T es al menos dos entonces T contiene internamente a v, esto implica que $|\Gamma_{S(D)}(v)| \geq 1$; entonces $|\Gamma_D(v)| \geq 1$, es decir $\Gamma_D(\Gamma_{S(D)}(a)) \neq \phi$. Por lo tanto si $a \in A(D)$ es tal que $\Gamma_D(\Gamma_{S(D)}(a)) = \phi$ entonces en S(D) no existen desde a trayectorias dirigidas monocromáticas de longitud mayor que dos, en particular si $b \in A(D)$ y $b \neq a$ entonces no existen ab-trayectorias dirigidas monocromáticas, por lo tanto $\overline{a} = \{a\}$ y \overline{a} es minimal de $A(D) / \sim$.

Por definición de N, tenemos que $N \subset V(D) \cup A(D) = V(S(D))$.

12. N es independiente por trayectorias dirigidas monocromáticas. Sean $x, y \in N$, veamos que no existen en S(D) xy—trayectorias dirigidas monocromáticas.

A. 网络中华

MARKET NOW

(2) (植物类)等(物)等

Tenemos 3 casos para $x \in y$:

- Caso 12(a) $x, y \in A(D)$. En este caso $x, y \in N'$ entonces $\overline{x} \in \overline{y}$ son elementos minimales de $A(D) / \sim y$ son diferentes clases de equivalencia. Si existiera alguna xy-trayectoria dirigida monocromática en S(D), esto implicaría que $\overline{y} \leq \overline{x}$, como \overline{x} es minimal entonces $\overline{x} = \overline{y}$ lo cual es una contradicción, por lo tanto no existen xy-trayectorias dirigidas monocromáticas en S(D).
- Caso 12(b) $x \in V(D)$. Por definición de N, $\Gamma_D(x) = \phi$, esto implica que $\Gamma_{S(D)}(x) = \phi$. Entonces no existen en S(D) trayectorias dirigidas que salgan de x, por lo tanto no existen en S(D) xy-trayectorias dirigidas monocromáticas.
- Caso 12(c) $x \in A(D)$ e $y \in V(D)$. Como $y \in N \cap V(D)$ entonces $\Gamma_D(y) = \phi$. Supongamos que en S(D) existe T una xy-trayectoria dirigida monocromática, $T = (x = x_1, x_2, ..., x_k = y)$, por definición de S(D), como $y \in V(D)$, $x_{k-1} \in A(D)$ además $\Gamma_{S(D)}(x_{k-1}) = \{y\}$, entonces $\Gamma_D(\Gamma_{S(D)}(x_{k-1})) =$ ϕ , por 11, $\overline{x_{k-1}} = \{x_{k-1}\}$ y $\overline{x_{k-1}}$ es un minimal de $A(D)/\sim$. Ahora, (x, T, x_{k-1}) es una xx_{k-1} -trayectoria dirigida monocromática entonces $\overline{x_{k-1}} \leq \overline{x}$, como \overline{x} es un minimal de $A(D) / \sim \text{pues } x \in N \cap A(D)$, entonces $\overline{x_{k-1}} = \overline{x}$, como $\overline{x_{k-1}} = \{x_{k-1}\}$ tenemos que $x_{k-1} = x$. Entonces $\Gamma_{D}\left(\Gamma_{S(D)}\left(x\right)\right) = \Gamma_{D}\left(y\right) = \phi$ pero esto es una contradicción pues $x \in N$ y por lo tanto $\Gamma_D\left(\Gamma_{S(D)}(x)\right) \neq \phi$. Concluimos que no existen en S(D)xy-trayectorias dirigidas monocromáticas.

 \sim Por lo tanto N es independiente por trayectorias dirigidas monocromáticas.

- 13. N es absorbente por trayectorias dirigidas monocromáticas. Consideremos $z \in$ $V(S(D)) \setminus N$ veamos que existe alguna zN—trayectoria dirigida monocromática en S(D). Tenemos dos casos para z:
- A = A = Caso 13(a) $z \in A(D)$. Si \overline{z} es minimal de $A(D) \neq -\infty$, por definición de N', existe $a \in \overline{z} \cap N'$. Si $a \in N$, entonces $z \neq a$ y como $z \sim a$ entonces existe en S(D) una za-trayectoria dirigida monocromática y por lo tanto una zN-trayectoria dirigida monocromática. Si $a \notin N$, entonces por definición de $N \Gamma_D(\Gamma_{S(D)}(a)) = \phi$, por 11 $\overline{a} = \{a\}$, por lo tanto z = a. Sea $v \in$ V(D) tal que $\Gamma_{S(D)}(a) = \{v\}$. Por definición de $N, v \in N$ y por otro lado (z = a, v) es una trayectoria dirigida monocromática en S(D), por lo tanto existe en S(D) una zN-trayectoria dirigida monocromática. Si \bar{z} no es minimal de $A(D)/\sim$, por el Lema 5.6 existe $a \in A(D), a \neq z$,

tal que \overline{a} es minimal de $A(D)/\sim y$ $\overline{a}\leq \overline{z}$, esto implica que existe T en S(D) una za-trayectoria dirigida monocromática, si $a\in N$, entonces T es una zN-trayectoria dirigida monocromática en S(D). Si $a\notin N$ argumentando como en el paso anterior T'=(a,v) es una aN-trayectoria dirigida monocromática en S(D) donde $v\in V(D)$ y es tal que $\Gamma_{S(D)}(a)=\{v\}$, en particular $a\neq v$. Por el Lema 5.7 T y T' son del mismo color, por lo tanto $T\cup T'$ contiene una zN-trayectoria dirigida monocromática en S(D).

Caso 13(b) $z \in V(D)$. Como $z \notin N$ por definición de N, $\Gamma_D(z) \neq \phi$ y esto implica que $\Gamma_{S(D)}(z) \neq \phi$. Sea $a \in \Gamma_{S(D)}(z)$, por definición de S(D), $a \in A(D)$. Si $a \in N$ entonces (z,a) es una zN-trayectoria dirigida monocromática en S(D). Supongamos que $a \notin N$, por el caso anterior existe T en S(D) una ax-trayectoria dirigida monocromática para algún $x \in N$, notemos que $a \neq x$. Por el Lema 5.7 T y la trayectoria (z,a) son del mismo color en S(D), así $(z,a) \cup T$ contiene una zx-trayectoria dirigida monocromática en S(D) con $x \in N$.

Por lo tanto N es absorbente por trayectorias monocromáticas.

Concluimos que N es un núcleo por trayectorias monocromáticas de S(D).

A continuación mostramos que no todo núcleo por trayectorias monocromáticas de la digráfica subdivisión es de la forma descrita en la demostración del teorema anterior. Sin embargo una condición suficiente para que esto ocurra, Teorema 5.10 es que la digráfica D no tenga ciclos dirigidos monocromáticos, más aún en este caso el núcleo de $S\left(D\right)$ es único.

Nota 5.9 Consideremos un ciclo dirigido de longitud n monocromático como la digráfica D, S(D) la digráfica subdivisión correspondiente es un ciclo dirigido de longitud n monocromático. El número de núcleos en S(D) que se obtienen según la demostración del Teorema 5.8 es 3, uno por cada flecha de D, ya que todo el conjunto A(D) es la única clase de equivalencia módulo \sim . Sin embargo el número total de núcleos de S(D) es n pues cada vértice de S(D) forma un núcleo. En la figura 5.9 se muestra el caso n=3.

Teorema 5.10 Sea D una digráfica m-coloreada y sea S(D) la digráfica subdivisión de D. Supongamos que en D no existen trayectorias monocromáticas infinitas exte-

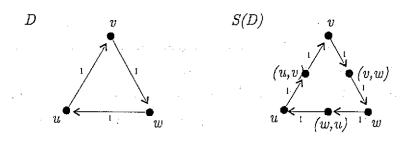


Figura 5.9

riores ni ciclos dirigidos monocromáticos, entonces $S\left(D\right)$ tiene un único núcleo por trayectorias monocromáticas.

Demostración. Consideremos las relaciones \sim y \leq definidas en la demostración del Teorema 5.8.

Veamos primero que toda clase de equivalencia de A módulo \sim tiene exactamente un elemento. Procederemos por contradicción, supongamos que existen $a,b \in A(D)$ tales que $a \neq b$ y $a \sim b$, entonces existen en S(D), T_1 una ab—trayectoria monocromática y T_2 una ba—trayectoria monocromática, por el Lema 5.7 T_1 y T_2 tienen el mismo color, entonces $T_1 \cup T_2$ es un camino dirigido cerrado monocromático que por el Teorema 1.37 contiene un ciclo C dirigido que es monocromático. Sea

$$C' = \left(C \setminus \left\{a \in V\left(C\right) / a \in A\left(D\right)\right\}\right) \bigcup_{a \in V\left(C\right) \cap A\left(D\right)} \left(\Gamma_{S\left(D\right)}^{-1}\left(a\right) \times \Gamma_{S\left(D\right)}\left(a\right)\right),$$

es decir a C le quitamos todos los vértices que corresponden a flechas de D, quedando así solo los extremos de estas flechas y añadimos para cada a la flecha desde el vecino interior de a cn S(D) hacia su vecino exterior, ésta flecha del mismo color que a, resultando así C' un ciclo dirigido monocromático en D. Con esto obtenemos una contradicción. Por lo tanto cada clase de equivalencia de A módulo \sim tiene exactamente un elemento.

Lo anterior implica que se obtiene un único núcleo por trayectorias monocromáticas de S(D) siguiendo la técnica de la demostración del Teorema 5.8, sea N éste núcleo.

Supongamos que N' también es núcleo por trayectorias monocromáticas de S(D), probaremos que N'=N. Observemos primero que:

1. Si v es un vértice de D tal que $\Gamma_D(v) = \phi$, entonces v pertenece a cualquier núcleo de S(D). Como $\Gamma_D(v) = \phi$ entonce $\Gamma_{S(D)}(v) = \phi$ y por lo tanto v. pertenece a cualquier núcleo de S(D).

Sea $x \in N$. Si $x \in V(D)$, como N es un núcleo de S(D) obtenido como se describe en el Teorema 5.8, entonces $\Gamma_D(x) = \phi$, por $1 \ x \in N'$. Si $x \in A(D)$, por la construcción de N, \overline{x} la clase de equivalencia de x módulo \sim , es una clase minimal de $(A(D)/\sim, \leq)$. Supongamos que $x \notin N'$, como N' es núcleo por trayectorias monocromáticas de S(D), existe una xx'-trayectoria monocromática en S(D) para algún $x' \in N'$, esto implica que $\overline{x'} \leq \overline{x}$, como \overline{x} es una clase minimal de $(A(D)/\sim, \leq)$, entonces $\overline{x'} = \overline{x}$, como cada clase de equivalencia solo tiene un elemento, entonces x' = x, pero esto es una contradicción pues habíamos supuesto que $x \notin N'$. Por lo tanto $x \in N'$. Con esto concluímos que $N \subset N'$.

Ahora sea $x' \in N'$. Supongamos que $x' \notin N$, entonces existe una x'x-trayectoria monocromática en S(D) para algún $x \in N$. Como $N \subset N'$, entonces $x \in N'$, así tenemos que $x, x' \in N'$ pero esto no es posible pues N' es independiente por trayectorias monocromáticas en S(D) por ser núcleo por trayectorias monocromáticas. Por lo tanto $x' \in N$. Concluímos que $N' \subset N$.

Por lo tanto N' = N.

El siguiente contraejemplo muestra que el regreso del teorema anterior no es válido.

Nota 5.11 La digráfica D de la figura 5.10 contiene un ciclo dirigido monocromático. Veamos que la digráfica subdivisión correspondiente tiene un único núcleo por trayectorias monocromáticas, a saber $\{(v,x),(x,v)\}$. No es difícil ver que $N=\{(v,x),(x,v)\}$ es núcleo por trayectorias monocromáticas de S(D). Supongamos que N' es cualquier otro núcleo por trayectorias monocromáticas de S(D). Si N' no contiene a (v,x), como la única trayectoria dirigida monocromática desde (v, x) es hacia x, entonces xdebe pertenecer a N'. Como desde cualquier vértice del ciclo hay trayectoria dirigida monocromática hacia x, y desde x hay trayectoria dirigida monocromática hacia (x,v) entonces $N'=\{x\}$, pero N' no es absorbente por trayectorias monocromáticas pues desde (x,v) no hay trayectorias dirigidas monocromáticas hacia x. Por lo tanto N' debe contener a (v,x). $\{(v,x)\}$ absorbe por trayectorias monocromáticas a todos los vértices de S(D) excepto a x y (x,v). $x \notin N'$ pues hay trayectoria dirigida $monocromática \ desde\ (v,x)\ hacia\ x.\ (x,v)\ debe\ pertenecer\ a\ N'\ pues\ de\ otro\ modo\ N'$ no absorbería por trayectorias monocromáticas a x. Por lo tanto N' = N. Concluímos que S(D) tiene un único núcleo. Por lo tanto la condición de la no existencia de ciclos dirigidos monocromáticos en D en el Teorema 5.10 no es necesaria para que S(D) tenga un único núcleo por trayectorias monocromáticas.

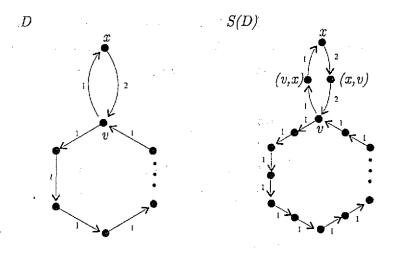


Figura 5.10

5.2 Una Generalización de la Digráfica Subdivisión de una Digráfica m-Coloreada

En esta parte presentamos una generalización de la digráfica subdivisión de una digráfica m—coloreada y demostramos que siempre tiene núcleo por trayectorias monocromáticas si la digráfica original no tiene trayectorias monocromáticas infinitas exteriores.

Definición 5.12 Sea D una digráfica m-coloreada y sea S(D) la digráfica subdivisión de D. Definimos la digráfica m-coloreada S'(D) como sigue:

$$S'(D) = S(D) \setminus \{(u, a) / a \in A(D) \ y \ u \ es \ extremo \ inicial \ de \ a\} \cup \bigcup_{a \in A(D)} \beta_a$$

donde $\{\beta_a/a \in A(D)\}\$ es un sistema de trayectorias dirigidas monocromáticas tales que si $a \in A(D)$ y a = (u, v) entonces:

(i) β_a es una ua-trayectoria del mismo color de la flecha (u,a) en S(D),

(ii)
$$(V(\beta_a) \setminus \{u\}) \cap V(S(D)) = \{u, a\}, y$$

(iii) si
$$b \neq a$$
, $(V(\beta_a) \setminus \{u\}) \cap V(\beta_b) = \phi$.

Es decir S'(D) se obtiene a partir de S(D) eliminando para cada $a \in A(D)$ la flecha que incide hacia a y en su lugar ponemos una trayectoria dirigida del mismo color que la flecha eliminada. Esto es lo mismo que a partir de D se sustituya cada flecha de D por una trayectoria dirigida de longitud al menos dos del mismo color que la flecha, en el caso de que cada una de estas trayectorias sea de longitud dos, se

obtiene la digráfica S(D). La figura 5.11 muestra un ejemplo de una digráfica S'(D) correspondiente a la digráfica D de la figura 5.1. La definición de S'(D) la hemos presentado de la forma anterior para facilitar su manejo.

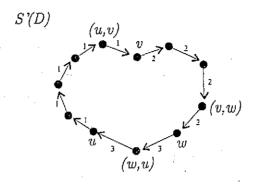


Figura 5.11

v.

Teorema 5.13 Sea D una digráfica m—coloreada. Si D no tiene trayectorias monocromáticas infinitas exteriores, entonces la digráfica S'(D) tiene núcleo por trayectorias monocromáticas.

Demostración. Por el Teorema 5.8 la digráfica subdivisión de D, S(D), tiene núcleo por trayectorias monocromáticas. Sea N un núcleo por trayectorias monocromáticas de S(D). Probaremos que N es un núcleo por trayectorias monocromáticas de S'(D). Si $a = (u, v) \in A(D)$ y la longitud de β_a es al menos dos, definimos la trayectoria $\beta'_a = \beta_a \setminus \{u, a\}$, notemos que $V(\beta'_a) \cap V(S(D)) = \phi$.

1. N es independiente por trayectorias monocromáticas en S'(D). Sean $x,y\in N$, supongamos que exite T' en S'(D) una xy-trayectoria dirigida monocromática. Como N es independiente por trayectorias monocromáticas en S(D), entonces T' no es una trayectoria dirigida en S(D), entonces existe $a=(u,v)\in A(D)$, tal que la longitud de β_a es al menos dos y $V(T')\cap V(\beta_a')\neq \phi$. Como $\{x,y\}\subset V(S(D))$ entonces $(V(T')\setminus \{x,y\})\cap V(\beta_a')\neq \phi$. Sea $z\in (V(T')\setminus \{x,y\})\cap V(\beta_a')\neq \phi$, como $z\notin \{x,y\}$ entonces $|\Gamma_{T'}^{-1}(z)|=1=|\Gamma_{T'}(z)|$, de la definición de S'(D) tenemos que $|\Gamma_{S'(D)}^{-1}(z)|=|\Gamma_{\beta_a}^{-1}(z)|=1=|\Gamma_{\beta_a}(z)|=|\Gamma_{S'(D)}(z)|$ entonces $\Gamma_{\beta_a}^{-1}(z)\cup \Gamma_{\beta_a}(z)\subset V(T')$, esto implica que toda la trayectoria β_a está contenida en T'. Sea $A'=\{a\in A(D)/\text{ la longitud de }\beta_a\text{ es al menos}$ dos y $V(T')\cap V(\beta_a')\neq \phi\}$ y sea $T=\left(T'\setminus\left(\bigcup_{a\in A'}V(\beta_a')\right)\right)\cup\{(u,a)\text{ de color}$ $i/a=(u,v)\in A'$ e i es el color de $\beta_a\}$, T es una xy-trayectoria dirigida monocromática en S(D), lo cual es una contradicción pues $x,y\in N$ y N es un

núcleo por trayectorias monocromáticas de S(D). Entonces en S'(D) no existen xy—trayectorias dirigidas monocromáticas. Por lo tanto N es independiente por trayectorias monocromáticas en S'(D).

2. N es absorbente por trayectorias monocromáticas en S'(D). Consideremos $z \in V(S'(D)) \setminus N$, veamos que existe alguna zN—trayectoria dirigida monocromática en S'(D). Si $z \in V(S(D))$, entonces por ser N un núcleo por trayectorias monocromáticas de S(D) existe T una zN—trayectoria dirigida monocromática en S(D). Sea $T' = T \setminus \{(u,b) \mid b \in A(D) \cap V(T)\} \cup \bigcup_{b \in A(D) \cap V(T)} \beta_b$, T' es una zN—trayectoria dirigida monocromática en S'(D). Supongamos entonces que $z \notin V(S(D))$, entonces existe $a = (u,v) \in A(D)$, tal que la longitud de β_a es al menos dos y $z \in V(\beta'_a)$. Tenemos que $a \in V(S(D))$, si $a \in N$, entonces (z,β_a,a) es una zN—trayectoria dirigida monocromática en S'(D). Si $a \notin N$, como N es núcleo por trayectorias monocromáticas de S(D), entonces existe T una aN—trayectoria dirigida monocromática en S(D), sea $T' = T \setminus \{(u,b) \mid b \in A(D) \cap V(T)\} \cup \bigcup_{b \in A(D) \cap V(T)} \beta_b$, T' es una zN—trayectoria dirigida monocromática en S'(D), entonces $(z,\beta_a,a) \cup T'$ es una zN—trayectoria dirigida monocromática en S'(D). Por lo tanto N es absorbente por trayectorias monocromáticas.

Concluímos que N es un núcleo por trayectorias monocromáticas de S'(D). \blacksquare Análogamente al Teorema 5.10, una digráfica S'(D) tiene un único núcleo por trayectorias monocromáticas si D no tiene ciclos dirigidos monocromáticos.

Teorema 5.14 Sea D una digráfica m-coloreada. Si D no tiene trayectorias monocromáticas infinitas exteriores ni ciclos dirigidos monocromáticos, entonces S'(D) tiene un único núcleo por trayectorias monocromáticas.

Demostración. Mostraremos primero que si D no contiene ciclos dirigidos inenecromáticos, entonces S'(D) tampoco. Procederemos por contradicción, supongamos que C' es un ciclo dirigido monocromático en S'(D). Sea

$$C = \left(C' \setminus \bigcup_{a \in V(C') \cap A(D)} V\left(\beta_a^*\right)\right) \bigcup_{a \in V(C') \cap A(D)} \left(\Gamma_{S(D)}^{-1}\left(a\right) \times \Gamma_{S(D)}\left(a\right)\right),$$

donde $\beta_a^* = \beta_a \setminus u$ si a = (u, v) para algún $v \in V(D)$, es decir, si $a = (u, v) \in V(C') \cap A(D)$, a C' le quitamos la trayectoria β_a excepto el vértice inicial, quedando así sólo u y v, y añadimos una flecha desde u hacia v, ésta flecha del mismo color que β_a .

resultando así C un ciclo dirigido monocromático en D, lo cual es una contradicción, por lo tanto S'(D) no contiene ciclos dirigidos monocromáticos.

Por el Teorema 5.10 S(D) tiene un único núcleo por trayectorias monocromáticas N. Por el Teorema 5.13 N también es núcleo por trayectorias monocromáticas de S'(D).

Primero mostraremos que:

- 1. Todo núcleo por trayectorias monocromáticas de S'(D) también lo es de S(D). Sea N' un núcleo por trayectorias monocromáticas de S'(D).
 - 1.1 $N' \subset V(S(D)) = V(D) \cup A(D)$. Supongamos que existe $x \in N' \setminus (V(D) \cup A(D))$, entonces existe $a = (u, v) \in A(D)$, tal que $x \in V(\beta_a) \setminus \{u, a\}$. Sea i el color de a en D, entonces β_a es de color i. Sea $T_1 = (x, \beta_a, a)$, T_1 es una xa—trayectoria dirigida de color i en S'(D), como $x \in N'$ y N' es un núcleo por trayectorias monocromáticas de S'(D), entonces $a \notin N'$. Entonces existe $x' \in N'$ y T_2 una ax'—trayectoria dirigida monocromática en S'(D), en particular $a \neq x'$, como $\Gamma_{S'(D)}(a) = \{v\}$ entonces $(a, v) \in A(T_2)$ y esta flecha es de color i, así T_2 es de color i. Si x = x' entonces $T_1 \cup T_2$ es un camino dirigido cerrado monocromático que por el Teorema 1.37 contiene un ciclo dirigido y éste es monocromático, pero esto es una contradicción. Supongamos que $x \neq x'$, entonces $T_1 \cup T_2$ es una camino dirigido que por el Teorema 1.36 contiene una xx'—trayectoria dirigida y ésta es de color i, pero esto es una contradicción pues $x \in N'$, $x' \in N'$ y N' es un núcleo por trayectorias monocromáticas de S'(D). Por lo tanto $N' \subset V(D) \cup A(D)$.
 - 1.2 N' es independiente por trayectorias monocromáticas en S(D). Sean $x, y \in N'$ y supongamos que existe T una xy—trayectoria dirigida monocromática en S(D). Sea $T' = T \setminus \{(u, a) / a \in A(D) \cap V(T)\} \cup \bigcup_{\substack{a \in A(D) \cap V(T) \\ T'}} \beta_a$, T' es una xy—trayectoria dirigida monocromática en S'(D), pero esto no es posible pues N' es independiente por trayectorias monocromáticas en S'(D).
- 1.3 N' es absorbente por trayectorias monocromáticas en S(D). Sea $z \in V(S(D)) \setminus N'$, como $V(S(D)) \subset V(S'(D))$ y N' es absorbente por trayectorias monocromáticas en S'(D) entonces existe T' una zN'-trayectoria dirigida monocromática en S'(D). Sea $T = \left(T' \setminus \left(\bigcup_{a \in A'} V(\beta'_a)\right)\right) \cup \left\{(u, a) \in C(D) : Sea T = \left(T' \setminus \left(\bigcup_{a \in A'} V(\beta'_a)\right)\right) \cup \left\{(u, a) : C(D) : Sea T = \left(T' \setminus \left(\bigcup_{a \in A'} V(\beta'_a)\right)\right) \cup \left\{(u, a) : C(D) : Sea T = \left(T' \setminus \left(\bigcup_{a \in A'} V(\beta'_a)\right)\right) \cup \left\{(u, a) : C(D) : Sea T = \left(T' \setminus \left(\bigcup_{a \in A'} V(\beta'_a)\right)\right) \cup \left\{(u, a) : C(D) : C($

1.

dirigida monocromática en S(D). Por lo tanto N es un conjunto absorbente por trayectorias monocromáticas en S(D).

Por 1.2 y 1.3 tenemos que N' es núcleo por trayectorias monocromáticas de S(D). Es decir todo núcleo por trayectorias monocromáticas de S'(D) también lo es de S(D).

Ahora, como N es el único núcleo por trayectorias monocromáticas de S(D) entonces cualquier núcleo por trayectorias monocromáticas de S'(D) es igual a N. Por lo tanto S'(D) tiene un único núcleo por trayectorias monocromáticas.

5.3 La Digráfica R'(D)

En [37] se define a partir de una digráfica D, una nueva digráfica denotada por R(D) y se prueba que siempre tiene núcleo. En esta parte definimos la digráfica R'(D) que es una generalización de la digráfica anterior para una digráfica D m—coloreada y probamos que tiene núcleo por trayectorias monocromáticas si D no contiene trayectorias monocromáticas infinitas exteriores, esto como una consecuencia inmediata del Teorema 5.13.

Definición 5.15 Sea D una digráfica m-coloreada. Dada una digráfica S'(D) de D, definimos la correspondiente digráfica R'(D) de D, como la digráfica m-coloreada tal que

$$R'(D) = S'(D) \cup D \cup \bigcup_{a \in A(D)} \Lambda_a$$

donde para cada $a \in A(D)$ si a = (u, v) y es de color i entonces Λ_a es un conjunto de Bv-flechas de color i donde $B = V(\beta_a) \setminus \{u, a\}$.

Es decir R'(D) se obtiene a partir de S'(D) añadiendo una copia de D, y si $a \in A(D)$, a = (u, v) y es de color i, se añaden algunas flechas de color i o ningunal desde los vértices de la respectiva trayectoria $\beta_a \setminus \{u, a\}$ hacia v. En la figura 5.12 mostramos un ejemplo de una digráfica R'(D) obtenida a partir de la digráfica S'(D) de la figura 5.11.

Mostraremos que la cerradura transitiva de la digráfica R'(D) es isomorfa a la cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) de la cual se obtiene y por lo tanto si D no cerradura transitiva de la digráfica S'(D) tiene núcleo por trayectorias monocromáticas

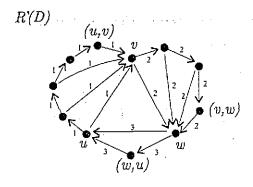


Figura 5.12

Teorema 5.16 Consideremos una digráfica S'(D) de una digráfica m-coloreada D. Si R'(D) es obtenida a partir de S'(D) entonces $\mathfrak{C}(S'(D)) = \mathfrak{C}(R'(D))$.

Demostración. Como $R'(D) = S'(D) \cup D \cup \bigcup_{a \in A(D)} \Lambda_a$ entonces $\mathfrak{C}(S'(D))$ es una subdigráfica de $\mathfrak{C}(R'(D))$. Ahora veamos que $\mathfrak{C}(R'(D))$ es una subdigráfica de $\mathfrak{C}(S'(D))$.

Mostraremos primero que R'(D) es una subdigráfica de $\mathfrak{C}(S'(D))$. De la definición de R'(D) basta mostrar que $\Delta \cup \bigcup_{a \in A(D)} \Lambda_a \subset A(\mathfrak{C}(S'(D)))$ donde $\Delta = \{a \in A(R'(D)) \mid A \in A(D)\}$. Sea $a \in A(R'(D))$ tal que $a \in A(D)$, supongamos que a = (u, v) es de color i, y que $\beta_a = (u = x_0, ..., x_k = a)$, sea $j \in \{0, ..., k-1\}$, entonces $(x_j, \beta_a, a) \cup (a, v)$ es una $x_j v$ -trayectoria dirigida de color i en S'(D), por lo tanto $(x_j, v) \in A(\mathfrak{C}(S'(D)))$, en particular $\{a\} \cup \Lambda_a \subset A(\mathfrak{C}(S'(D)))$, así $\Delta \cup \bigcup_{a \in A(D)} \Lambda_a \subset A(\mathfrak{C}(S'(D)))$. Por lo tanto R'(D) es una subdigráfica de $\mathfrak{C}(S'(D))$. Por el Teorema 1.53 la cerradura transitiva de la digráfica, esto implica que $\mathfrak{C}(R'(D))$ es una subdigráfica de $\mathfrak{C}(S'(D))$. Por lo tanto $\mathfrak{C}(S'(D)) = \mathfrak{C}(R'(D))$.

Corolario 5.17 Sea D una digráfica m-coloreada. Si R'(D) es obtenida a partir de S'(D), entonces S'(D) y R'(D) tienen el mismo número de núcleos por trayectorias monocromáticas. En particular si D no tiene trayectorias infinitas exteriores entonces R'(D) tiene núcleo por trayectorias monocromáticas.

Demostración. De acuerdo al Teorema 1.54 el número de núcleos por trayectorias monocromáticas de una digráfica coloreada es igual al número de núcleos de su cerradura transitiva y dado que $\mathfrak{C}(S'(D)) = \mathfrak{C}(R'(D))$ por el Teorema 5.16, entonces S'(D) y R'(D) tienen el mismo número de núcleos por trayectorias monocromáticas. Ahora, si D no tiene trayectorias infinitas exteriores, por el Teorema 5.13 S'(D)

18.137

tiene núcleo por trayectorias monocromáticas, por lo anterior R'(D) tiene núcleo por trayectorias monocromáticas.

Por último, otra consecuencia del Teorema 5.16 es la unicidad del núcleo por trayectorias monocromáticas de una digráfica R'(D) cuando D no tiene ciclos dirigidos monocromáticos además de no tener trayectorias monocromáticas infinitas exteriores.

Corolario 5.18 Sea D una digráfica m-coloreada. Supongamos que D no tiene trayectorias monocromáticas infinitas exteriores ni ciclos dirigidos monocromáticos. Consideremos una digráfica S'(D) de la digráfica D, si R'(D) es obtenida a partir de S'(D), entonces R'(D) tiene un único núcleo por trayectorias monocromáticas.

Demostración. Por el Teorema 5.13, S'(D) tiene un único núcleo por trayectorias monocromáticas entonces por el Corolario 5.17 R'(D) tiene un único núcleo por trayectorias monocromáticas.

5.4 La Digráfica Media de una Digráfica m-Coloreada

En [37] se demuestra que la digráfica media de cualquier digráfica siempre tiene núcleo, en esta sección definimos la digráfica media de una digráfica m-coloreada y probamos que tiene núcleo por trayectorias monocromáticas si la digráfica original lo tiene.

En [25] se define la digráfica de líneas de una digráfica y la coloración interna de la digráfica de líneas de una digráfica m-coloreada.

Definición 5.19 La digráfica de líneas de una digráfica D es la digráfica L(D) tal que V(L(D)) = A(D), y para cualesquiera $h, k \in V(L(D))$ existe la flecha (h, k) en L(D) si y sólo si los correspondientes arcos h y k inducen una trayectoria dirigida en D; es decir el extremo final de h es el extremo inicial de k.

Definición 5.20 Sea D una digráfica m-coloreada y L(D) su digráfica de líneas; la m-coloración interna de L(D) es la coloración de flechas de L(D) definida a continuación: Si h es una flecha de D de color c entonces cualquier flecha de L(D) de la forma (x,h) en L(D) también tiene color c.

Definición 5.21 Dada D una digráfica m-coloreada, definimos la digráfica media

Andreaguegue energique en la profesional de la profesional de la companyation de la companyation de la company

Q(D) de D, como la digráfica m-coloreada tal que

$$V(Q(D)) = V(D) \cup A(D) y$$

$$\Gamma_{Q(D),i}(x) = \begin{cases} \{x\} \times \Gamma_{D,i}(x) & si \ x \in V(D), \\ \{v\} & si \ x = (u,v) \in A(D) \ y \ v \in \Gamma_{D,i}(u) \\ \{v\} \times \Gamma_{D,i}(v) & si \ x = (u,v) \in A(D). \end{cases}$$

Gráficamente podemos considerar que $Q\left(D\right)$ se obtiene a partir de la digráfica subdivisión $S\left(D\right)$ de D, definida en la sección 5.1, añadiendo sobre los vértices de $S\left(D\right)$ que corresponden a flechas de D la digráfica de líneas de D con la coloración interna. En la figura 5.13 mostramos la digráfica media de la digráfica D de la figura 5.1.

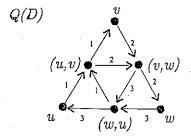
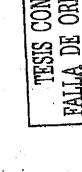


Figura 5.13



40977.3

32:33

En el ejemplo anterior vemos que D y Q(D) no tienen núcleo por trayectorias monocromáticas. En el Teorema 5.26 demostramos que si D tiene núcleo por trayectorias monocromáticas entonces Q(D) también. Para la demostración de éste teorema resultan útiles los siguientes lemas que se refieren a algunas relaciones entre una digráfica m-coloreada y su digráfica media.

Lema 5.22 Sea D una digráfica m-coloreada. Si $a, b \in A(D)$ y T es una ab-trayectoria dirigida de color i de longitud mínima en Q(D) entonces $V(T) \subset A(D)$.

Demostración. Procederemos por contradicción, supongamos que $T = (a = x_1, x_2, ..., x_k = b)$ y que para algún $j \in \{2, ..., k-1\}$ $x_j \notin A(D)$, es decir $x_j \in V(D)$. Por definición de Q(D), x_{j-1} y x_{j+1} corresponden a flechas de D de color i y para algunos $u, v \in V(D)$, $x_{j-1} = (u, x_j)$ y $x_{j+1} = (x_j, v)$, nuevamente por definición de Q(D) tenemos que (x_{j-1}, x_{j+1}) es una flecha de Q(D) de color i. Por lo tanto $T' = (T \setminus x_j) \cup (x_{j-1}, x_{j+1})$ es una ab—trayectoria dirigida de color i en Q(D) de menor longitud que T, lo cual es una contradicción. Por lo tanto $V(T) \subset A(D)$.

• 4

Lema 5.23 Sea D una digráfica m-coloreada y sea T una ab-trayectoria dirigida de color i en Q(D). Supongamos que $V(T) \subset A(D)$, a = (u, s) y b = (t, v) entonces existe en D una sv-trayectoria dirigida de color i.

Demostración. Supongamos que $T = (a = a_1, a_2, ..., a_k = b)$, entonces para cada $j \in \{2, ..., k\}$ tenemos que $a_j \in \Gamma_{Q(D),i}(a_{j-1})$, así por definición de Q(D) a_j es de color i en D. Por otro lado, aplicando nuevamente la definición de Q(D) tenemos que para cada $l \in \{1, 2, ..., k-1\}$, existe $v_l \in V(D)$ tal que para cada $j \in \{2, ..., k-1\}$ $a_j = (v_{j-1}, v_j)$. Como $a_1 = a = (u, s)$ entonces $v_1 = s$ y como $a_k = b = (t, v)$ por la definición de Q(D) $v_{k-1} = t$. Por lo tanto $(s = v_1, v_2, ..., v_{k-1} = t, v)$ es en D un sv—camino dirigido de color i el cual, por el Teorema 1.36, contiene en D una sv—trayectoria dirigida de color i.

Lema 5.24 Sea D una digráfica m-coloreada y sea T una uv-trayectoria dirigida de color i en D, entonces existe en Q(D) una uv-trayectoria dirigida de color i.

Demostración. Supongamos que $T = (u = v_1, v_2, ..., v_k = v)$, para cada $j \in \{2, ..., k\}$ como $(v_{j-1}, v_j) \in A(D)$ sea $a_j = (v_{j-1}, v_j)$. Por definición de Q(D) tenemos que $(a_2, ..., a_k)$ es una trayectoria dirigida de color i en Q(D) así como (u, a_2) , $(a_k, v) \in A(Q(D))$ y son flechas de color i, por lo tanto $(u, a_2, ..., a_k, v)$ es una uv-trayectoria dirigida de color i en Q(D).

Lema 5.25 Sean $u, v \in V(D)$ y T una uv-trayectoria dirigida de color i en Q(D), entonces existe en D una uv-trayectoria dirigida de color i.

Demostración. Supongamos que $T=(u=x_1,x_2,...,x_k=v)$, por definición de Q(D) tenemos que x_2 y x_{k-1} corresponden a flechas de color i de D y existen $s,t\in V(D)$ tales que $x_2=(u,s)$ y $x_{k-1}=(t,v)$. Como (x_2,T,x_{k-1}) es una x_2x_{k-1} —trayectoria dirigida de color i, podemos considerar T' una x_2x_{k-1} —trayectoria dirigida de color i de longitud mínima en Q(D), por el Lema 5.22 $V(T')\subset A(D)$, por el Lema 5.23 existe T'' en D una sv—trayectoria dirigida de color i, entonces en D tenemos que $(u,s)\cup T''$ es un uv—camino dirigido que por el Teorema 1.36 contiene una uv—trayectoria dirigida de color i.

Teorema 5.26 Sea D una digráfica m-coloreada y sea Q(D) la digráfica media de D. Entonces el número de núcleos por trayectorias monocromáticas de D es menor o igual al número de núcleos por trayectorias monocromáticas de Q(D).

Demostración: Sea N un núcleo por trayectorias monocromáticas de D, probaremos que N es un núcleo por trayectorias monocromáticas de Q(D).

- 1. N es independiente por trayectorias monocromáticas en Q(D). Sean $u, v \in N$, supongamos que existe en Q(D) una uv-trayectoria dirigida monocromática. Como N es núcleo por trayectorias monocromáticas de D entonces $u, v \in V(D)$, por el Lema 5.25 existe en D una uv-trayectoria dirigida monocromática, lo cual es una contradicción pues $u, v \in N$ y N es independiente por trayectorias monocromáticas de D. Por lo tanto no existen en Q(D) uv-trayectorias dirigidas monocromáticas. Así N es independiente por trayectorias monocromáticas en Q(D).
- 2. N es absorbente por trayectorias monocromáticas en Q(D). Consideremos $z \in V(Q(D)) \setminus N$, veamos que existe alguna zN-trayectoria dirigida monocromática en Q(D), tenemos dos casos $z \in V(D)$ ó $z \in A(D)$.
- Caso (a) Si $z \in V(D)$, como N es núcleo por trayectorias monocromáticas de D tenemos que existe en D una zv-trayectoria dirigida monocromática para algún $v \in N$, por el Lema 5.24 existe en Q(D) una zv-trayectoria dirigida monocromática. Por lo tanto existe en Q(D) una zN-trayectoria dirigida monocromática.
- Caso (b) Si $z \in A(D)$, sean $u, v \in V(D)$ tales que z = (u, v). Supongamos que $v \in N$, por definición de Q(D) tenemos que $(z, v) \in A(Q(D))$, por lo tanto (z, v) es una zN-trayectoria dirigida monocromática en Q(D). Supongamos que $v \notin N$, por el caso (a) existe T en Q(D) una vw-trayectoria dirigida monocromática para algún $w \in N$, sea i el color de T. Supongamos que $T = (v = x_1, x_2, ..., x_k = w)$, por definición de Q(D), $x_2 \in A(D)$, $x_2 = (v, s)$ para algún $s \in V(D)$ y x_2 es de color i. Como z = (u, v), entonces por definición de Q(D), $(z, x_2) \in A(Q(D))$ y es una flecha de color i. Por lo tanto $(z, x_2) \cup (x_2, T, w)$ es un camino dirigido en Q(D) que por el Teorema 1.36 contiene una zw-trayectoria dirigida que es de color i. Por lo tanto existe en Q(D) una zN-trayectoria dirigida monocromática.

Así N es absorbente por trayectorias monocromáticas en Q(D).

Concluímos que N es un núcleo por trayectorias monocromáticas de Q(D). Por lo tanto todo núcleo por trayectorias monocromáticas de D es núcleo por trayectorias monocromáticas de Q(D), así el número de núcleos por trayectorias monocromáticas de D es menor o igual que el número de núcleos por trayectorias monocromáticas de Q(D).

En la siguiente nota mostramos que la desigualdad mencionada en el teorema anterior puede ser estricta, es decir el número de núcleos de una digráfica m—coloreada puede ser menor estrictamente que el número de núcleos de su digráfica media. Sin embargo una condición suficiente para que se dé la igualdad es que D no tenga ciclos dirigidos monocromáticos, esto es el Teorema 5.31.

Nota 5.27 Consideremos a D un ciclo dirigido monocromático de longitud n, en esta digráfica cada vértice forma un núcleo por trayectorias monocromáticas, por lo tanto tiene n núcleos por trayectorias monocromáticas. Su digráfica media Q(D) consta de 2n vétices y como contiene un ciclo dirigido monocromático de longitud 2n, cada uno de sus vértices también forma un núcleo por trayectorias monocromáticas, figura 5.14. Por lo tanto el número de núcleos por trayectorias monocromáticas de D es estrictamente menor que el número de núcleos por trayectorias monocromáticas de Q(D).

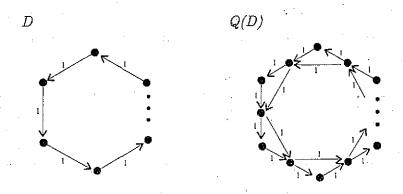


Figura 5.14

Los siguientes lemas resultan útiles para la demostración del Teorema 5.31.

Lema 5.28 Sea D una digráfica m—coloreada y sea Q(D) la digráfica media de D.

Si C es un ciclo dirigido de color i de longitud mínima en Q(D) entonces $V(C) \subseteq A(D)$.

Demostración. Procederemos por contradicción: Supongamos que $C=(x_0,x_1,\ldots,x_{k-1},x_0)$ y que $V(C)\nsubseteq A(D)$. Si k=2, supongamos sin perder generalidad que $x_0\notin A(D)$, es decir $x_0\in V(D)$, por definición de Q(D), x_1 corresponde a una flecha de D de color i. Como $(x_0,x_1)\in A(Q(D))$ y $(x_1,x_0)\in A(Q(D))$ entonces para algunos $u,v\in V(D)$, $x_1=(x_0,u)$ y $x_1=(v,x_0)$, entonces $x_1=(x_0,x_0)$ lo cual no esposible, por lo tanto $V(C)\subset A(D)$. Supongamos que $k\geq 3$ y sea $j\in\{0,\ldots,k-1\}$

tal que $x_j \notin A(D)$, es decir $x_j \in V(D)$, por definición de Q(D) tenemos que x_{j-1} y x_{j+1} corresponden a flechas de D de color i (la suma en los índices es tomada módulo k) y para algunos $u, v \in V(D)$, $x_{j-1} = (u, x_j)$ y $x_{j+1} = (x_j, v)$. Nuevamente aplicando la definición de Q(D) tenemos que (x_{j-1}, x_{j+1}) es una flecha de Q(D) de color i. Por lo tanto $C' = (C \setminus x_j) \cup (x_{j-1}, x_{j+1})$ es un ciclo dirigido de color i en Q(D) de menor longitud que C, lo cual es una contradicción. Por lo tanto $V(C) \subset A(D)$.

Lema 5.29 Sea D una digráfica m-coloreada y sea Q(D) la digráfica media de D. Si D no tiene ciclos dirigidos monocromáticos entonces Q(D) tampoco tiene ciclos dirigidos monocromáticos.

Demostración. Procederemos por contradicción. Supongamos que Q(D) tiene algún ciclo dirigido monocromático, sea de C uno de longitud mínima y sea i el color de C. Por el Lema 5.28 $V(C) \subset A(D)$, supongamos que $C = (a_0, a_1, ..., a_{k-1}, a_0)$. Por definición de Q(D), para cada $l \in \{0, ..., k\}$, existe v_l tal que para cada $j \in \{0, ..., k-1\}$ $a_j = (v_j, v_{j+1})$ y $v_k = v_0$. Como $a_{j+1} \in \Gamma_{Q(D),i}(a_j)$ entonces a_{j+1} es de color i en D (la suma en los índices es tomada módulo k) para toda $j \in \{0, ..., k-1\}$. Entonces $(v_0, v_1, ..., v_k = v_0)$ es en D un camino dirigido cerrado de color i el cual por el Teorema 1.37 contiene un ciclo dirigido de color i, pero esto es una contradicción pues D no tiene ciclos dirigidos monocromáticos. Por lo tanto Q(D) no tiene ciclos dirigidos monocromáticos.

Lema 5.30 Sea D una digráfica m-coloreada y sea Q(D) la digráfica media de D. Supongamos que D no tiene ciclos dirigidos monocromáticos, si N es un núcleo por trayectorias monocromáticas de Q(D) entonces $N \subset V(D)$.

Demostración. Procederemos por contradicción. Supongamos que existe $a \in N \cap A(D)$, sean $u, v \in V(D)$ tales que a = (u, v). Por definición de Q(D) tenemos que $(a, v) \in A(Q(D))$, entonces $v \notin N$. Como N es núcleo por trayectorias monocromáticas de Q(D) existe T una vz-trayectoria dirigida monocromática en Q(D) para algún $z \in N$. Supongamos que $T = (v = x_1, x_2, ..., x_k = z)$ y que T es de color i. Como $v \in V(D)$ por definición de Q(D) tenemos que $x_2 \in A(D)$, $x_2 = (v, w)$ para algún $w \in V(D)$ y es de color i, entonces aplicando nuevamente la definición de Q(D) tenemos que $(a, x_2) \in A(Q(D))$ y es una flecha de color i, figura 5.15. Si $z \neq a$ entonces $(a, x_2) \cup (x_2, T, z)$ es un camino dirigido en Q(D) de color i que por el Teorema 1.36 contiene una az-trayectoria dirigida que es de color i, pero esto no es posible pues $a, z \in N$, y N es independiente por trayectorias monocromáticas. Si

z=a, entonces $(a=z,x_2)\cup(x_2,T,z)$ es un camino dirigido cerrado en Q(D) de color i que por el Teorema 1.37 contiene un ciclo dirigido que es de color i, pero por el Lema 5.29 Q(D) no tiene ciclos dirigidos monocromáticos. Por lo tanto $N\subset V(D)$.

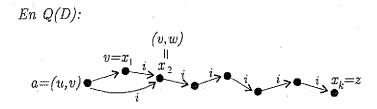


Figura 5.15

Teorema 5.31 Sea D una digráfica m-coloreada y sea Q(D) la digráfica media de D. Supongamos que D no tiene ciclos dirigidos monocromáticos, entonces el número de núcleos por trayectorias monocromáticas de D es igual al número de núcleos por trayectorias monocromáticas de Q(D).

Demostración: En virtud del Teorema 5.31 basta demostrar que todo núcleo por trayectorias monocromáticas de Q(D) es un núcleo por trayectorias monocromáticas de D. Sea N un núcleo por trayectorias monocromáticas de Q(D), por el Lema 5.30 $N \subset V(D)$.

- 1. N es independiente por trayectorias monocromáticas en D. Procederemos por contradicción. Supongamos que existe una uv—trayectoria dirigida monocromática en D con $u,v\in N$, por Lema 5.24 existe en Q(D) una uv—trayectoria dirigida monocromática, pero esto no es posible pues N es independiente por trayectorias monocromáticas en Q(D). Por lo tanto N es independiente por trayectorias monocromáticas en D.
- 2. N es absorbente por trayectorias monocromáticas en D. Sea $u \in V(D) \setminus N$, veamos que existe alguna uN—trayectoria monocromática en D. Como N es absorbente por trayectorias monocromáticas en Q(D) entonces existe en Q(D) una uv—trayectoria dirigida monocromática para algún $v \in N$, como $u, v \in V(D)$ aplicando el Lema 5.25 existe en D una uv—trayectoria dirigida monocromática, por lo tanto existe en D una uN—trayectoria dirigida monocromática. Así N es absorbente por trayectorias monocromáticas en D.

 $(\mathcal{L}^{(i)}(\mathcal{L}^{(i)}))$

A 126 - 12

Concluímos que N es un núcleo por trayectorias monocromáticas de D. Por lo tanto todo núcleo por trayectorias monocromáticas de Q(D) es núcleo por trayectorias monocromáticas de D, esto y el Teorema 5.26 implican que el número de núcleos por trayectorias monocromáticas de D es igual que el número de núcleos por trayectorias monocromáticas de Q(D).

5.5 La Digráfica Total de una Digráfica m-Coloreada

En [37] se define a partir de una digráfica D la digráfica total de D, denotada por T(D), y se dan algunos resultados sobre la existencia de núcleos para esta nueva digráfica. En esta sección definimos la digráfica total para una digráfica D m—coloreada y probamos que el número de núcleos por trayectorias monocromáticas de esta digráfica es igual al número de núcleos por trayectorias monocromáticas de D si D no contiene ciclos dirigidos monocromáticos.

Definición 5.32 Sea D una digráfica m—coloreada. Definimos la digráfica total de D como la digráfica T (D) m-coloreada tal que

$$T(D) = Q(D) \cup D.$$

En la figura 5.16 mostramos la digráfica $T\left(D\right)$ correspondiente a la digráfica D de la figura 5.1.

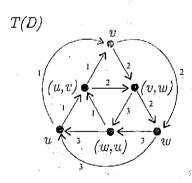


Figura 5.16

Mostraremos que la cerradura transitiva de la digráfica T(D) y la cerradura transitiva de Q(D) son iguales para así tener una relación entre el número de núcleos por trayectorias monocromáticas de D y el número de núcleos por trayectorias monocromáticas de T(D) usando los teoremas 5.26 y 5.31.

Teorema 5.33 Sea D una digráfica m-coloreada, entonces $\mathfrak{C}(T(D)) = \mathfrak{C}(Q(D))$.

Demostración. Como $T(D) = Q(D) \cup D$ entonces $\mathfrak{C}(Q(D))$ es una subdigráfica de $\mathfrak{C}(T(D))$. Ahora veamos que $\mathfrak{C}(T(D))$ es una subdigráfica de $\mathfrak{C}(Q(D))$. Mostraremos primero que T(D) es una subdigráfica de $\mathfrak{C}(Q(D))$. De la definición de T(D) y como $V(D) \subset V(Q(D))$ basta mostrar que $A(D) \subset A(\mathfrak{C}(Q(D)))$. Sea $a \in A(D)$, supongamos que a = (u, v) es de color i, por definición de Q(D), (u, a, v) es una uv-trayectoria dirigida de color i en Q(D), entonces $a = (u, v) \in A(\mathfrak{C}(Q(D)))$ y es de color i. Así $A(D) \subset A(\mathfrak{C}(Q(D)))$ y por lo tanto T(D) es una subdigráfica de $\mathfrak{C}(Q(D))$. Esto y el Teorema 1.53 implican que $\mathfrak{C}(T(D))$ es una subdigráfica de $\mathfrak{C}(Q(D))$. Por lo tanto $\mathfrak{C}(T(D)) = \mathfrak{C}(Q(D))$.

Corolario 5.34 Sea D una digráfica m-coloreada. El número de núcleos por trayectorias monocromáticas de D es menor o igual al número de núcleos por trayectorias monocromáticas de T(D). Y si D no tiene ciclos dirigidos monocromáticos entonces T(D) y D tienen el mismo número de núcleos por trayectorias monocromáticas.

Demostración. Por el Teorema 1.54 el número de núcleos por trayectorias monocromáticas de Q(D) es igual al número de núcleos de $\mathfrak{C}(Q(D))$, entonces por el Teorema 5.33 este número corresponde al número de núcleos de $\mathfrak{C}(T(D))$ y por lo tanto, aplicando nuevamente el Teorema 1.54, corresponde al número de núcleos por trayectorias monocromáticas de T(D), por lo tanto Q(D) y T(D) tienen el mismo número de núcleos por trayectorias monocromáticas. Así, aplicando el Teorema 5.26 tenemos que el número de núcleos por trayectorias monocromáticas de D es menor o igual al número de núcleos por trayectorias monocromáticas de T(D). Por otro lado, si D no tiene ciclos dirigidos monocromáticos entonces aplicando el Teroema 5.31 T(D) y D tienen el mismo número de núcleos por trayectorias monocromáticas.

4-5.6 Extensiones de Digráficas m-Coloreadas Anglesia de Santa de Coloreadas

En [21] H. Galeana Sanchez y V. Neumann Lara prueban que cualquier digráfica núcleo perfecta es una subdigráfica inducida de una digráfica núcleo imperfecta crítica, más aun de un número infinito de ellas. Tomando como referencia el trabajo anterior, en la sección 5.6 definimos una extensión de digráficas m—coloreadas que preserva núcleos por trayectorias monocromáticas. Otro trabajo de extensiones de digráficas núcleo perfectas a digráficas núcleo imperfectas críticas es [14] de H. Galeana Sánchez.

. . .

3.17

 $\sum_{i=1}^{N} (i,j)$

14.923

5.6.1 Sistemas y Extensiones

Definición 5.35 Sea D_0 una digráfica m-coloreada. Una cuadrupla $\widetilde{S}_0 = (\mathfrak{C}(D_0), U, U_+, U_-)$ es llamada un \widetilde{s}_0 -sistema (sobre D_0) si satisface:

- (i) U, U_+ y U_- son conjuntos de vértices con la misma cardinalidad y $U \subseteq V(D_0)$,
- (ii) $V(D_0)$, U_+ y U_- son conjuntos mutuamente ajenos,
- (iii) $\mathfrak{C}(D_0)$ es la cerradura transitiva de D_0 ,

Per la College de Michigan

(iv) Si $u \in U$, no existen ciclos monocromáticos en D_0 que contengan a u.

Con respecto al último inciso de esta definición es equivalente pedir esta condición en D_0 que en $\mathfrak{C}(D_0)$ como se muestra en los siguientes lemas. Por esto último utilizaremos la propiedad en D_0 ó en $\mathfrak{C}(D_0)$ según nos convenga.

Lema 5.36 Sea D una digráfica y sea C un camino dirigido cerrado dirigido en D. Entonces para cada $u \in V(C)$ existe un ciclo dirigido contenido en C que pasa por u.

Demostración. Sea $u \in V(C)$, procederemos por inducción sobre l(C), la longitud de C. Si l(C) = 2 entonces C es el ciclo dirigido que andamos buscando. Supongamos que el resultado se cumple si $l(C) \le n$. Supongamos ahora que l(C) = n + 1. Podemos considerar a C como $C = (u = z_0, z_1..., z_{n+1} = u)$, si $z_j \ne z_k$ para cualesquiera $j, k \in \{1, 2, ..., n+1\}$, tales que $j \ne k$, entonces C es el ciclo dirigido buscado. Supongamos que existen $j, k \in \{1, 2, ..., n+1\}$, tales que $j \ne k$, y $z_j = z_k$. Sea $j_0 = \min\{j / 1 \le j \le n \text{ y } z_j = z_k \text{ para algún } k > j\}$, sea $k > j_0$ tal que $z_{j_0} = z_k$, entonces $C' = (u = z_0, ..., z_{j-1}, z_{j_0} = z_k, z_{k+1}, ..., z_n = u)$ es un camino cerrado dirigido contenido en C y de longitud menor que la longitud de C, por hipótesis de inducción C' contiene un ciclo dirigido que pasa por u y este mismo ciclo está contenido en C.

Lema 5.37 Supongamos que D es una digráfica m-coloreada y $\mathfrak{C}(D)$ su cerradura transitiva. Sea $u \in V(D)$ entonces existe en D un ciclo dirigido de color i que pasa por u si y sólo si existe en $\mathfrak{C}(D)$ un ciclo dirigido de color i que pasa por u.

Demostración. Supongamos que existe en D un ciclo dirigido de color i que pasa por u, entonces por la definición de $\mathfrak{C}(D)$ este mismo ciclo dirigido existe en $\mathfrak{C}(D)$. Ahora supongamos que existe en $\mathfrak{C}(D)$ un ciclo dirigido C de color i que

pasa por u. Si $C = (u = z_0, z_1, ..., z_n = u)$, entonces por definición de la cerradura transitiva, para cada j = 1, 2, ..., n existe en D una $z_{j-1}z_j$ —trayectoria dirigida de color i, la unión de todas estas trayectorias es un camino cerrado dirigido de color i en D que pasa por u, por el lema 5.36 este camino contiene un ciclo dirigido de color i que pasa por u.

Si $\widetilde{S}_0 = (\mathfrak{C}(D_0), U, U_+, U_-)$ es un \widetilde{s}_0 -sistema denotamos por u_+ (resp. u_-) el vértice en U_+ (resp. U_-) que corresponde a $u \in U$ para cualquier biyección fija de U a U_+ (resp. de U a U_-).

Definición 5.38 Si $\widetilde{S}_0 = (\mathfrak{C}(D_0), U, U_+, U_-)$ es un \widetilde{s}_0 -sistema, donde D_0 es una digráfica m-coloreada, definimos la multidigráfica m-coloreada $\widetilde{s}_0(\widetilde{S}_0)$ como sigue:

 $V\left(\widetilde{s}_{0}\left(\widetilde{S}_{0}\right)\right) = (V\left(D_{0}\right)\setminus U) \cup U_{+} \cup U_{-}, \ y \ de \ z \ a \ w \ hay flecha \ de \ color \ i \ si \ y \ sólosi:$

- (i) $z, w \in V(D_0) \setminus U$ y existe una flecha de z a w en $\mathfrak{C}(D_0)$ de color i, ó
- (ii) $z \in V(D_0) \setminus U$, $w = v_-$ para algún $v \in U$ y existe una flecha de z a v en $\mathfrak{C}(D_0)$ de color i, o
- (iii) $z = u_+$ para algún $u \in U$, $w \in V(D_0) \setminus U$ y existe una flecha de u a w en $\mathfrak{C}(D_0)$ de color i, o
- (iv) $z = u_+ \ y \ w = v_- \ para \ algunos \ u, v \in U \ y \ existe una flecha de u a v \ en \mathfrak{C}(D_0)$ de color i.

Definición 5.39 Un \tilde{s} -sistema es una cuadrupla $\tilde{S} = \left(\tilde{S}_0, \tilde{\beta}, \tilde{\mathcal{U}}_+, \tilde{\mathcal{U}}_-\right)$ donde:

- (i) $\widetilde{S}_{0} = (\mathfrak{C}(D_{0}), U, U_{+}, U_{-})$ es un \widetilde{s}_{0} -sistema y \widetilde{U}_{+} y \widetilde{U}_{-} son multidigráficas m-coloreadas tales que $V\left(\widetilde{\mathcal{U}}_{-}\right) = U_{-}, V\left(\widetilde{\mathcal{U}}_{+}\right) = U_{+},$
- (ii) $\widetilde{\beta} = \left\{ \widetilde{\beta}_u / u \in U \right\}$ es un conjunto de trayectorias dirigidas, mutuamente ajenas, donde cada $\widetilde{\beta}_u$ es una u_-u_+ -trayectoria dirigida coloreada de longitud par positiva tal que $V\left(\widetilde{\beta}_u\right) \cap V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right) = \{u_-, u_+\},$
- (iii) para cada $u \in U$ cualesquiera dos flechas consecutivas de $\widetilde{\beta}_u$ tienen diferente color y la flecha de la trayectoria $\widetilde{\beta}_u$ que incide desde u_- (resp. hacia u_+) tiene color diferente de las que inciden hacia u (resp. desde u) en D_0 .

Notemos que posiblemente sean necesarios m+1 colores para las trayectorias en β para que se satisfaga la condición del inciso (iii) de la definición de \tilde{s} —sistema.

Definición 5.40 Sea D_0 una digráfica m-coloreada. Si $\widetilde{S} = \left(\widetilde{S}_0, \widetilde{\beta}, \widetilde{\mathcal{U}}_+, \widetilde{\mathcal{U}}_-\right)$ es un \widetilde{s} -sistema definimos la multidigráfica coloreada $\widetilde{s}\left(\widetilde{S}\right)$ como:

$$\widetilde{s}\left(\widetilde{S}\right) = \widetilde{s}_0\left(\widetilde{S}_0\right) \cup \cup_{u \in U}\widetilde{\beta}_u \cup \widetilde{\mathcal{U}}_+ \cup \widetilde{\mathcal{U}}_-.$$

A la multidigráfica $\widetilde{s}\left(\widetilde{S}\right)$ le llamaremos una extensión de D_0 .

Notemos que si $U = \phi$ entonces $\widetilde{s}_0\left(\widetilde{S}_0\right) \cong \widetilde{s}\left(\widetilde{S}\right) \cong \mathfrak{C}(D_0)$. Y con respecto al inciso (iii) de la definición de \widetilde{s} -sistema, en $\widetilde{s}\left(\widetilde{S}\right)$ tenemos que para cada $u \in U$ la flecha de la trayectoria $\widetilde{\beta}_u$ que incide desde u_- (resp. hacia u_+) tiene color diferente de las que inciden hacia u_- (resp. desde u_+).

5.6.2 Extensiones y Núcleos por Trayectorias Monocromáticas

En esta parte demostramos que bajo ciertas condiciones, una extensión de una digráfica m—coloreada tiene núcleo por trayectorias monocromáticas.

Definición 5.41 Diremos que la multidigráfica $\widetilde{s}\left(\widetilde{S}\right)$ satisface la condición (A) si: de u_+ a v_+ existe flecha de color i en $\widetilde{\mathcal{U}}_+$ o de u_- a v_- existe flecha de color i en $\widetilde{\mathcal{U}}_-$, implica que desde u hacia v existe flecha de color i en $\mathfrak{C}(D_0)$.

Definición 5.42 Definimos una función g que nos regresa los vértices de la extensión a los vértices de D_0 , es decir:

$$g: V(\widetilde{s}_0(\widetilde{S}_0)) \to V(D_0), \ donde$$
 $g(z) = \begin{cases} u \ si \ z = u_- \ ó \ z = u_+ \\ z \ si \ z \notin U_+ \cup U_- \end{cases}$

Nota 5.43 Notemos que si $\widetilde{s}\left(\widetilde{S}\right)$ satisface la condición (A) y f es una zw-flecha en $\widetilde{s}\left(\widetilde{S}\right)$ de color i, con z, $w \notin \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right)$ (es decir z, $w \in V\left(\widetilde{s}_0(\widetilde{S}_0)\right)$), entonces existe en $\mathfrak{C}\left(D_0\right)$ una flecha desde $g\left(z\right)$ hacia $g\left(w\right)$ de color i y por lo tanto en D_0 una $g\left(z\right)$ $g\left(w\right)$ -trayectoria dirigida de color i.

Algunas propiedades de la multidigráfica $\widetilde{s}\left(\widetilde{S}\right)$ con respecto a trayectorias dirigidas monocromáticas se enuncian en la siguiente proposición.

Proposición 5.44 Sea $\widetilde{S} = (\widetilde{S}_0, \widetilde{\beta}, \widetilde{\mathcal{U}}_+, \widetilde{\mathcal{U}}_-)$ un \widetilde{s} -sistema donde $\widetilde{S}_0 = (\mathfrak{C}(D_0), U, U_+, U_-)$. Supongamos que $\widetilde{s}(\widetilde{S})$ satisface la condición (A) entonces:

- 1. Cualquier U_-U_+ trayectoria dirigida en $\widetilde{s}\left(\widetilde{S}\right)$ contiene una trayectoria $\widetilde{\beta}_u$ para algún $u \in U$.
- 2. Si T es una zw-trayectoria dirigida monocromática en $\widetilde{s}\left(\widetilde{S}\right)$ de longitud al menos dos, entonces $V\left(T\right)\cap\left(\bigcup_{u\in U}V\left(\widetilde{\beta}_{u}\right)\setminus\left(U_{+}\cup U_{-}\right)\right)=\phi$.
- 3. Para cualquier $u \in U$ no existen trayectorias dirigidas monocromáticas en $\widetilde{s}\left(\widetilde{S}\right)$ entre u_+ y u_- .
- 4. Si T es una zw-trayectoria dirigida de color i en $\widetilde{s}\left(\widetilde{S}\right)$ de longitud al menos dos, entonces $z, w \in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right)$ y existe una $g\left(z\right)g\left(w\right)$ -trayectoria dirigida de color i en D_0 .
- 5. Si T es una u_-z -trayectoria dirigida monocromática en $\widetilde{s}\left(\widetilde{S}\right)$ y $\widetilde{\beta}_u = (u_- = z_0, z_1, ..., z_n = u_+)$, entonces $z = z_1$ ó $V\left(T\right) \subset U_-$.
- 6. Si T es una zw-trayectoria dirigida de color i en $\widetilde{s}\left(\widetilde{S}\right)$ tal que $z \in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right) \setminus U_-$ entonces $V\left(T\right) \cap \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right) = \phi$ y existe una $g\left(z\right) g\left(w\right)$ -trayectoria dirigida de color i en D_0 .

Demostración.

- 1. Sea T una vv'-trayectoria dirigida en $\widetilde{s}\left(\widetilde{S}\right)$ con $v \in U_-$ y $v' \in U_+$, supongamos que $T = (v = z_0, z_1, ..., z_n = v')$, sea $j_0 = \min\left\{j \mid z_{j+1} \notin U_-\right\}$ y sea $j_1 = \min\left\{j > j_0 \mid z_j \in U_+\right\}$, así, $z_{j_0} \in U_-$, $z_{j_0+1} \notin U_-$, y $z_{j_1} \in U_+$. Consideremos ahora $T_0 = (z_{j_0}, T, z_{j_1})$. Sea $u \in U$ tal que $z_{j_0} = u_-$, por construcción de la multidigráfica $\widetilde{s}\left(\widetilde{S}\right)$ las únicas adyacencias desde u_- son hacia vértices en U_- y hacia el vértice correspondiente en la trayectoria $\widetilde{\beta}_u$, como $z_{j_0+1} \notin U_-$ entonces $z_{j_0+1} \in V\left(\widetilde{\beta}_u\right)$ y como $z_{j_1} \in U_+$, $\widetilde{\beta}_u$ está contenida en T_0 . Por la elección del vértice z_{j_1} , éste debe ser u_+ y por lo tanto $T_0 = \widetilde{\beta}_u$. Así $\widetilde{\beta}_u$ está contenida en T_0 .
- 2. Supongamos que T es una zw-trayectoria dirigida de color i en $\widetilde{s}\left(\widetilde{S}\right)$ de longitud al menos dos, sea $x \in \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right)$, es decir $x \in V\left(\widetilde{\beta}_u\right) \setminus \{u_+, u_-\}$ para algún $u \in U$. Como las únicas flechas que inciden en x pertenecen a la trayectoria $\widetilde{\beta}_u$ y éstas son de diferente color, entonces x no puede ser un vértice interno de T. Si x fuera el vértice z, el siguiente vértice a x en la trayectoria T sería u_+ , el inciso (iii) de la definición de \widetilde{s} -sistema implica que el color de la flecha (x, u_+) es diferente al de las demás flechas que inciden desde u_+ , pero esto contradice que la trayectoria T sea monocromática.

- Si x fuera el vértice w, el anterior vértice a x en la trayectoria T sería u_- , el inciso (iii) de la definición de \widetilde{s} -sistema implica que el color de la flecha (u_-,x) es diferente al de las flechas que inciden hacia u_- , y esto contradice que la trayectoria T sea monocromática. Por lo tanto x no pertenece a la trayectoria T, y esto es para cualquier $x \in \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right)$, es decir, $V(T) \cap \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right) = \phi$.
- 3. Procederemos por contradicción. Supongamos que existen en $\widetilde{s}\left(\widetilde{S}\right)$ trayectorias de este tipo y sea T_0 una de estas trayectorias de longitud mínima, es decir $l(T_0) = \min\{l(T) / T \text{ es una trayectoria dirigida monocromática en } \widetilde{s}(\widetilde{S}) \text{ entre}$ u_+ y u_- para algún $u \in U$, donde l(T) denota la longitud de la trayectoria T. Sea $\widehat{u} \in U$, tal que \widehat{u}_+ y \widehat{u}_- son los extremos de T_0 . Como T_0 es una trayectoria dirigida monocromática, digamos de color i, por la construcción de la multidigráfica $\tilde{s}(\tilde{S})$, esta trayectoria debe ser de longitud al menos dos, entonces por el inciso anterior $V(T_0) \cap \left(\cup_{u \in U} V\left(\widetilde{\beta}_u \right) \setminus (U_+ \cup U_-) \right) = \phi$, esto implica que la función g está definida para todos los vértices de T_0 . Además T_0 no contiene a ninguna trayectoria β_u , así, por (1) T_0 no es una $\widehat{u}_{-}\widehat{u}_{+}$ -trayectoria, por lo tanto es una trayectoria dirigida de \hat{u}_+ a \hat{u}_- . Por las características de T_0 , para cualquier $u \in U \setminus \{\widehat{u}\}, \{u_+, u_-\} \not\subseteq V(T_0),$ así la función g restringida a $V(T_0) \setminus \{\widehat{u}_-\}$ es una función inyectiva. Si $T_0 = (\widehat{u}_+ = z_0, z_1, ..., z_n = \widehat{u}_-)$ por la forma de construir la multidigráfica $\widetilde{s}_0\left(\widetilde{S}_0\right)$, para cada j=1,...n existe en $\mathfrak{C}\left(D_0\right)$ una flecha de color i de $g(z_{i-1})$ a $g(z_i)$, así $C = (u = g(z_0), g(z_1), ..., g(z_n) = u)$ es un ciclo dirigido monocromático en $\mathfrak{C}(D_0)$ que contiene a u, pero esto no es posible ya que $\widetilde{S}_0 = (\mathfrak{C}(D_0), U, U_+, U_-)$ es un \widetilde{s}_0 -sistema. Por lo tanto para cualquier $u \in U$ no existen trayectorias monocromáticas entre u_+ y u_- .
- 4. Supongamos que T es una zw-trayectoria dirigida de color i en \widetilde{s} $\left(\widetilde{S}\right)$ de longitud al menos dos, por (2) $V(T) \cap \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-) \right) = \phi$, así $V(T) \subset V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right)$, entonces la función g está definida para todos los vértices de T. Si $T=(z=z_0,z_1,...,z_n=w)$ por la forma de construir la multidigráfica $\widetilde{s}_0\left(\widetilde{S}_0\right)$ para cada j=1,...n existe en $\mathfrak{C}(D_0)$ una flecha de color i de $g\left(z_{i+1}\right)$ a $g\left(z_i\right)$, así $\widehat{T}=(g\left(z_0\right),g\left(z_1\right),...,g\left(z_n\right))$ es un $g\left(z\right)g\left(w\right)$ —camino dirigido de color i en $\mathfrak{C}(D_0)$. De aquí tenemos que para cada j=1,...n existe en D_0 una $g\left(z_{i-1}\right)g\left(z_i\right)$ —trayectoria dirigida de color i, la unión de estas trayectorias es un $g\left(z\right)g\left(w\right)$ —camino dirigido de color i y éste por el Teorema 1.36 contiene una $g\left(z\right)g\left(w\right)$ —trayectoria dirigida y es de color i.

- 5. Supongamos que T es una u_-z -trayectoria dirigida monocromática en $\widetilde{s}\left(\widetilde{S}\right)$ y que $\widetilde{\beta}_u = (u_- = z_0, z_1, ..., z_n = u_+)$. Por definición de $\widetilde{s}\left(\widetilde{S}\right)$, las únicas adyacencias desde u_- son hacia z_1 o hacia vértices en \widetilde{U}_- . Como en $\widetilde{\beta}_u$ ningún par de flechas consecutivas tiene el mismo color entonces la única trayectoria dirigida monocromática desde u_- pasando por z_1 es $(u_- = z_0, z_1)$. Supongamos que T no es la trayectoria anterior y que $V\left(T\right) \nsubseteq U_-$. Sea $T = (u_- = w_0, w_1, ..., w_m = z)$, entonces $w_1 \in U_-$. Sea $j_0 = \min\{j \ / \ w_{j+1} \notin U_-\}$, así $j_0 \geq 1$, $w_k \in U_-$ para toda $0 \leq k \leq j_0$ y $w_{j_0+1} \notin U_-$. Sea $v \in U$ tal que $w_{j_0} = v_-$, entonces w_{j_0+1} es el vértice que le sigue a v_- en la trayectoria $\widetilde{\beta}_v$, pero el inciso (iii) de la definición de \widetilde{s} -sistema implica que el color de la flecha $(w_{j_0} = v_-, w_{j_0+1})$ es diferente al de la flecha $(w_{j_0-1}, w_{j_0} = v_-)$ lo que contradice que la trayectoria T sea monocromática. Por lo tanto $z = z_1$ ó $V\left(T\right) \subset U_-$.
- 6. Supongamos que T es una zw-trayectoria dirigida de color i en $\widetilde{s}\left(\widetilde{S}\right)$ tal que $z \in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right) \setminus U_-$. Si la longitud de T es al menos dos, entonces el resultado se sigue de los incisos (2) y (4) de esta proposición. Si la longitud de la trayectoria es uno, es decir T es la flecha de z a w, como $z \in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right) \setminus U_-$ entonces $w \notin V\left(\widetilde{\beta}_u\right) \setminus \{u_-\}$ para cualquier $u \in U$, entonces $w \notin \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right)$. Como $z \in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right)$ entonces $V\left(T\right) \cap \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right) = \phi$. Lo anterior implica que la función g está definida para z y w, entonces por definición de $\widetilde{s}_0\left(\widetilde{S}_0\right)$ existe una flecha de color i de $g\left(z\right)$ a $g\left(w\right)$ en $\mathfrak{C}\left(D_0\right)$, por lo tanto existe una $g\left(z\right)g\left(w\right)$ —trayectoria dirigida de color i en D_0 .

12

Nota 5.45 La condición (iv) de la definición de \tilde{s}_0 -sistema solo es utilizada en la prueba del inciso (3) de esta proposición y los demás incisos no dependen de éste.

Teorema 5.46 Sea $\widetilde{S} = \left(\widetilde{S}_0, \widetilde{\beta}, \widetilde{\mathcal{U}}_+, \widetilde{\mathcal{U}}_-\right)$ un \widetilde{s} -sistema donde $\widetilde{S}_0 = (\mathfrak{C}(D_0), U, U_+, U_-)$. Supongamos que $\widetilde{s}\left(\widetilde{S}\right)$ satisface la condición (A). Entonces $\widetilde{s}\left(\widetilde{S}\right)$ tiene núcleo por trayectorias monocromáticas si y sólo si D_0 tiene núcleo por trayectorias monocromáticas.

• Demostración. Supongamos que $U \neq \phi$. Supongamos que D_0 tiene núcleo por trayectorias monocromáticas N_0 . Para cada $u \in U$, sea

$$N_u = \left\{ egin{array}{ll} & ext{núcleo por trayectorias monocromáticas de } \widetilde{eta}_u ext{ si } u \in N_0 \\ & ext{núcleo por trayectorias monocromáticas de } \widetilde{eta}_u - \{u_+\} ext{ si } u
otin N_0 \end{array}
ight.$$

Observemos que como cada $\widetilde{\beta}_u$ es una u_-u_+ —trayectoria monocromática de longitud par positiva tal que cualesquiera dos flechas consecutivas tienen diferente color entonces:

- 1. El núcleo por trayectorias monocromáticas de $\widetilde{\beta}_u$ contiene a $\{u_-,u_+\},$ y
- 2. El núcleo por trayectorias monocromáticas de $\widetilde{\beta}_u \{u_+\}$ no contiene a $u_-.$

Probaremos que $N=(N_0-U)\cup \cup_{u\in U}N_u$ es un núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$.

- 3. Para $u \in U$, $u \in N_0$ si y solo si $\{u_-, u_+\} \subset N$. Supongamos primero que $u \in N_0$, Por la definición de N_u tenemos que N_u es núcleo por trayectorias monocromáticas de $\widetilde{\beta}_u$, por l $\{u_-, u_+\} \subset N_u$, por la definición de N tenemos que $N_u \subset N$, por lo tanto $\{u_-, u_+\} \subset N$. Inversamente, supongamos que $\{u_-, u_+\} \subset N$, por la definición de N y como las trayectorias en $\widetilde{\beta}$ son mutuamente ajenas tenemos que $\{u_-, u_+\} \subset N_u$, entonces por 1, 2 N_u es núcleo por trayectorias monocromáticas de $\widetilde{\beta}_u$, por la definición de N_u concluímos que $u \in N_0$.
- 4. N es independiente por trayectorias monocromáticas en $\widetilde{s}\left(\widetilde{S}\right)$. Sean $z,w\in N$ y supongamos que existe alguna zw—trayectoria dirigida monocromática T entre z y w en $\widetilde{s}\left(\widetilde{S}\right)$.
- Caso 4(a) T es una trayectoria dirigida de longitud al menos 2 ó es de longitud 1 y $z,w\in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right)$. Aplicando (4) de la Proposición 5.44 en el primer caso y la Nota 5.43 para el segundo tenemos que $z,w\in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right)$ y existe en D_0 una $g\left(z\right)g\left(w\right)$ —trayectoria dirigida monocromática. Como $z,w\in N\cap V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right)$, entonces $z,w\in (N_0-U)\cup ((\cup_{u\in U}N_u)\cap (U_+\cup U_-))$. Analizaremos los siguientes tres subcasos.
- Subcaso 4(a.1) Supongamos que $z, w \in (N_0 U)$. Entonces g(z) = z, g(w) = w y entonces existe en D_0 una zw-trayectoria dirigida monocromática lo que contradice que N_0 sea núcleo por trayectorias monocromáticas de D_0 .
- Subcaso 4(a.2) Supongamos que $z \in (N_0 U)$ y $w \in ((\bigcup_{u \in U} N_u) \cap (U_+ \cup U_-))$ (analogamente si $z \in U_+ \cup U_-$ y $w \in (N_0 U)$). Entonces $w = u_+$ 6 $w = u_-$ para algún $u \in U$ y $w \in N_u$. Por 1 y 2 $\{u_-, u_+\} \subset N_u$, por lo tanto $\{u_-, u_+\} \subset N$, y así $u \in N_0$. Entonces g(z) = z, g(w) = u y existe en D_0 una zu-trayectoria dirigida monocromática lo que contradice que N_0 sea núcleo por trayectorias monocromáticas de D_0 .

- Subcaso 4(a.3) Supongamos que $z, w \in ((\bigcup_{u \in U} N_u) \cap (U_+ \cup U_-))$. Por argumentos análogos a los anteriores g(z) = u, g(w) = v para algunas $u, v \in N_0 \cap U$. Si u = v entonces $\{z, w\} = \{u_-, u_+\}$ y entonces existe en $\widetilde{s}\left(\widetilde{S}\right)$ una trayectoria monocromática entre u_- y u_+ , lo cual no es posible por (3) de la Proposición 5.44. Así $u \neq v$ y entonces en D_0 existe una uv-trayectoria dirigida monocromática con $u, v \in N_0$ lo que contradice que N_0 sea núcleo por trayectorias monocromáticas de D_0 .
- Caso 4(b) Supongamos que T es de longitud 1 y $\{z,w\} \nsubseteq V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right)$. Entonces $z,w\in \cup_{u\in U}N_u$ y $\{z,w\}\nsubseteq U_+\cup U_-$. Como cada N_u es un núcleo por trayectorias monocromáticas, entonces $z\in N_u$ y $w\in N_v$ con $u,v\in U$ y $u\neq v$. Esto implica que $z\in V\left(\widetilde{\beta}_u\right)$ y $w\in V\left(\widetilde{\beta}_v\right)$. Supongamos que $z\neq u_-$ y $z\neq u_+$, entonces la única flecha que incide desde z está en $\widetilde{\beta}_u$, entonces $w\in V\left(\widetilde{\beta}_u\right)$ lo cual es una contradicción pues $V\left(\widetilde{\beta}_u\right)\cap V\left(\widetilde{\beta}_v\right)=\phi$. Supongamos ahora que $w\neq v_-$ y $w\neq v_+$, entonces la única flecha que incide hacia w está en $\widetilde{\beta}_v$, entonces $z\in V\left(\widetilde{\beta}_v\right)$ lo cual es una contradicción pues $V\left(\widetilde{\beta}_u\right)\cap V\left(\widetilde{\beta}_v\right)=\phi$.

Por lo tanto entre los elementos de N no existen trayectorias monocromáticas.

- 5. N es independiente por trayectorias monocromáticas. Sea $x \in V\left(\widetilde{s}\left(\widetilde{S}\right)\right) \setminus N$ probaremos que existe una xz-trayectoria dirigida monocromática para algún $z \in N$. Consideraremos los siguientes cuatro casos:
 - 5(a) Si $x \in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right) \setminus (U_+ \cup U_-)$, entonces $g\left(x\right) = x$, así $x \in V\left(D_0\right) \setminus U_-$ Como además $x \notin N$ entonces $x \notin N_0$. Como N_0 es núcleo por trayectorias monocromáticas de D_0 entonces existe en D_0 una xy-trayectoria dirigida monocromática para algún $y \in N_0$, esto implica que en $\mathfrak{C}(D_0)$ existe una flecha desde x hacia y. Si $y \notin U$ entonces en $\widetilde{s}\left(\widetilde{S}\right)$ existe esta flecha desde x hacia y, y por la definición de N, $y \in N$, por lo tanto existe en $\widetilde{s}\left(\widetilde{S}\right)$ la xz-trayectoria dirigida requerida donde z = y. Si $y \in U$ entonces en $\widetilde{s}\left(\widetilde{S}\right)$ existe una flecha desde x hacia y, y como $y \in N_0$ entonces $y \in N$ por lo tanto existe en $\widetilde{s}\left(\widetilde{S}\right)$ la xz-trayectoria dirigida requerida donde $z = y_-$.
- 5(b) Si $x \in V(\widetilde{\beta}_u) \setminus \{u_-, u_+\}$ para algún $u \in U$, como $x \notin N$ entonces $x \notin N_u$. Como N_u es el núcleo por trayectorias monocromáticas de $\widetilde{\beta}_u$ ó de $\widetilde{\beta}_u = \{u_+\}$, entonces existe una xz-trayectoria dirigida monocromática para

- algún $z \in N_u$. Por definición de $N, z \in N$ y por lo tanto existe la trayectoria requerida.
- 5(c) Si $x \in U_+$, es decir $x = u_+$ para algún $u \in U$, como $x \notin N$ entonces $u \notin N_0$. Como N_0 es núcleo por trayectorias monocromáticas de D_0 entonces existe en D_0 una uy—trayectoria dirigida monocromática para algún $y \in N_0$, esto implica que en $\mathfrak{C}(D_0)$ existe una flecha desde u hacia y. Si $y \notin U$ entonces en $\widetilde{s}\left(\widetilde{S}\right)$ existe una flecha desde u_+ hacia y, y por la definición de N, $y \in N$, por lo tanto existe en $\widetilde{s}\left(\widetilde{S}\right)$ la xz—trayectoria dirigida requerida donde z = y. Si $y \in U$ entonces en $\widetilde{s}\left(\widetilde{S}\right)$ existe una flecha desde u_+ hacia y_- , y como $y \in N_0$ entonces $y_- \in N$ por lo tanto existe en $\widetilde{s}\left(\widetilde{S}\right)$ la xz—trayectoria dirigida requerida donde $z = y_-$.
- 5(d) Si $x \in U_-$, es decir $x = u_-$ para algún $u \in U$, como $x \notin N$, por la definción de N, $x \notin N_u$, es decir $u_- \notin N_u$. Entonces N_u no puede ser el núcleo por trayectorias monocromáticas de $\widetilde{\beta}_u$ y por lo tanto lo es de $\widetilde{\beta}_u \{u_+\}$. Como $u_- \in V\left(\widetilde{\beta}_u\right) \setminus \{u_+\}$ entonces existe una u_-z -trayectoria dirigida monocromática para algún $z \in N_u$. Por definición de N, $z \in N$ y por lo tanto existe en $\widetilde{s}\left(\widetilde{S}\right)$ la xz-trayectoria dirigida requerida.

Por lo tanto N es núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$.

Inversamente, supongamos que N es núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$. Primero probaremos:

6. $u_{+} \in N$ si y solo si $u_{-} \in N$. Supongamos que $u_{+} \in N$ y sea $\widetilde{\beta}_{u} = (u_{-} = z_{0}, z_{1}, ..., z_{n} = u_{+})$, como $\widetilde{\beta}_{u}$ es una trayectoria dirigida de longitud par positiva y satisface el inciso (iii) de la definición de \widetilde{s} -sistema, entonces $z_{1} \notin N$. Si $u_{-} \notin N$, como N es núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$ entonces existe T una $u_{-}z$ -trayectoria dirigida monocromática en $\widetilde{s}\left(\widetilde{S}\right)$ para algún $z \in N$, como $z_{1} \notin N$, por (5) de la Proposición 5.44 $V\left(T\right) \subset U_{-}$, entonces la función \widetilde{g} restringida a $V\left(T\right)$ es inyectiva, así tenemos por la condición (A) que existe una $g\left(u_{-}\right)g\left(z\right)$ -trayectoria dirigida monocromática en $\mathfrak{C}\left(D_{0}\right)$, por el Teorema 1.53 $\mathfrak{C}\left(D_{0}\right)$ es transitiva por colores, entonces existe una flecha desde $g\left(u_{-}\right)$ hacia $g\left(z\right)$ en $\mathfrak{C}\left(D_{0}\right)$ y por construcción de $\widetilde{s}\left(\widetilde{S}\right)$ tenemos que existe una flecha desde u_{+} hacia \widehat{u}_{-} en $\widetilde{s}\left(\widetilde{S}\right)$ donde $\widehat{u}\in U$ y $z=\widehat{u}_{-}$. Es decir existe una flecha desde u_{+} hacia z en $\widetilde{s}\left(\widetilde{S}\right)$ donde $\widehat{u}\in U$ y $z=\widehat{u}_{-}$. Es decir existe una flecha desde u_{+} hacia z en $\widetilde{s}\left(\widetilde{S}\right)$ y $u_{+},z\in N$ lo cual es una contradicción pues

N es núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$, por lo tanto $u_{-} \in N$. Inversamente, supongamos que $u_{-} \in N$, si $\widetilde{\beta}_{u} = (u_{-} = z_{0}, z_{1}, ..., z_{n} = u_{+})$, como N es independiente por trayectorias monocromáticas en $\widetilde{s}\left(\widetilde{S}\right)$ entonces $z_{1} \notin N$, como $\widetilde{\beta}_{u}$ es una trayectoria dirigida de longitud par positiva y satisface el inciso (iii) de la definición de \widetilde{s} -sistema entonces $z_{2} \in N$ y así sucesivamente tenemos que $u_{+} \in N$. Por lo tanto $u_{+} \in N$ si y sólo si $u_{-} \in N$.

Ahora probaremos que $N_0 = \left\{ g\left(z\right)/z \in N \setminus \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus \left(U_+ \cup U_-\right) \right) \right\}$ es núcleo por trayectorias monocromáticas de D_0 .

- 7. N_0 es independiente por trayectorias monocromáticas en D_0 . Sean $x, y \in N_0$, veamos que entre estos vértices no hay trayectorias monocromáticas en D_0 . Sean $z, w \in N \setminus \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-) \right)$ tales que g(z) = x y g(w) = y. Supongamos que en D_0 existe alguna xy-trayectoria dirigida monocromática, esto implica que en $\mathfrak{C}(D_0)$ existe una flecha desde x hacia y. Analizaremos los siguientes cuatro casos:
 - 7(a) Supongamos que $x, y \notin U$, entonces z = x y w = y. Por la construcción de $\widetilde{s}\left(\widetilde{S}\right)$, tenemos que existe una flecha desde x hacia y en $\widetilde{s}\left(\widetilde{S}\right)$, es decir una flecha desde z hacia w con $z, w \in N$, lo cual contradice la definición de núcleo por trayectorias monocromáticas.
 - 7(b) Supongamos que $x \in U$ e $y \notin U$, entonces w = y y por 6 podemos considerar a z como x_+ . Por la construcción de $\widetilde{s}\left(\widetilde{S}\right)$, tenemos que existe una flecha desde x_+ hacia y en $\widetilde{s}\left(\widetilde{S}\right)$, es decir una flecha desde z hacia w con $z, w \in N$, lo cual contradice la definición de núcleo por trayectorias monocromáticas.
 - 7(c) Supongamos que $x \notin U$ e $y \in U$, entonces z = x y por 6 podemos considerar a w como y. Por la construcción de $\widetilde{s}\left(\widetilde{S}\right)$, tenemos que existe una flecha desde x hacia y en $\widetilde{s}\left(\widetilde{S}\right)$, es decir una flecha desde z hacia w con $z, w \in N$; lo cual contradice la definición de núcleo por trayectorias monocromáticas.
 - 7(d) Supongamos que $x \notin U$ e $y \notin U$, por 6 podemos considerar a z como x_+ y a w como y_- . Por la construcción de $\widetilde{s}\left(\widetilde{S}\right)$, tenemos que existe una flecha desde x_+ hacia y_- en $\widetilde{s}\left(\widetilde{S}\right)$, es decir una flecha desde z hacia w con $z, w \in N$, lo cual contradice la definición de núcleo por trayectorias monocromáticas.

Por lo tanto entre los elementos de N_0 no existen en D_0 trayectorias dirigidas monocromáticas, es decir N_0 es independiente por trayectorias monocromáticas en D_0 .

- 8. N_0 es absorbente por trayectorias monocromáticas en D_0 . Sea $x \in V(D_0) \setminus N_0$ probaremos que existe una xy-trayectoria dirigida monocromática en D_0 para algún $y \in N_0$. Consideremos los siguientes casos:
 - 8(a) Supongamos que $x \notin U$, entonces $x \in V\left(\widetilde{s}_0\left(\widetilde{S}_0\right)\right) \setminus (U_+ \cup U_-)$, así $g\left(x\right) = x$. Como $x \notin N_0$ entonces $x \notin N$ y como N es núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$, tenemos que existe T una xw-trayectoria dirigida monocromática en $\widetilde{s}\left(\widetilde{S}\right)$ para algún $w \in N$. Como $x \notin U_-$, por el (6) de la Proposición 5.44 $V\left(T\right) \cap \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right) = \phi$ y existe una $g\left(x\right)g\left(w\right)$ -trayectoria dirigida monocromática en D_0 , pero $g\left(x\right) = x$, entonces existe una $xg\left(w\right)$ -trayectoria dirigida monocromática en D_0 . Como $w \in N$ entonces $g\left(w\right) \in N_0$, por lo tanto existe en D_0 una xy-trayectoria dirigida monocromática en D_0 con $y \in N_0$, $y = g\left(w\right)$.
 - 8(b) Supongamos que $x \in U$. Como $x \notin N_0$, entonces $x_+, x_- \notin N$. Como N es núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$, tenemos que existe T en $\widetilde{s}\left(\widetilde{S}\right)$ una x_+w- trayectoria dirigida monocromática para algún $w \in N$. Como $x_+ \notin U_-$, por el (6) de la Proposición 5.44 $V\left(T\right) \cap \left(\bigcup_{u \in U} V\left(\widetilde{\beta}_u\right) \setminus (U_+ \cup U_-)\right) = \phi$ y existe en D_0 una $g\left(x_+\right)g\left(w\right)$ -trayectoria dirigida monocromática, pero $g\left(x_+\right) = x$, entonces existe una $xg\left(w\right)$ -trayectoria dirigida monocromática en D_0 . Como $w \in N$ entonces $g\left(w\right) \in N_0$, por lo tanto existe en D_0 una xy-trayectoria dirigida monocromática en D_0 con $y \in N_0$, $y = g\left(w\right)$.

Así para cualquier $x \in V(D_0) \setminus N_0$ existe una xy-trayectoria monocromática en D_0 para algún $y \in N_0$. Es decir N_0 es absorbente por trayectorias monocromática en cas.

Por lo tanto N_0 es núcleo por trayectorias monocromáticas de D_0 .

Nota 5.47 Notemos que en la prueba del Teorema 5.46, el inciso (3) de la Proposición solo es usado para probar la exsitencia del núcleo por trayectorias monocromáticas de la extensión a partir de la existencia del núcleo en la digráfica original, así la condición de que los elementos del conjunto U no estén contenidos en ningún ciclo monocromático de la digráfica no es necesaria para la prueba de la implicación inversa.

Para definir la extensión de una digráfica m—coloreada nos hemos basado en su cerradura transitiva, además de dar condiciones de longitud y coloración sobre las trayectorias que se añaden para hacer dicha extensión, el propósito de las siguientes notas es mostrar que estas condiciones son necesarias para que el resultado principal de este trabajo, Teorema 5.46, sea válido.

Si los pasos de la extensión no se hacen a través de la cerradura transitiva de la digráfica entonces puede resultar una digráfica coloreada sin núcleo por trayectorias monocromáticas aunque la digráfica original si posea núcleo por trayectorias monocromáticas, Nota 5.48, e inversamente podemos tener una digráfica sin núcleo por trayectorias monocromáticas y que la extensión resulte con núcleo por trayectorias monocromáticas, 5.49.

Nota 5.48 Consideremos a D_0 un ciclo dirigido de longitud impar $(u, u_1, u_2, ..., u_{2n}, u)$ con la siguiente 2-coloración: las flechas (u_{2n}, u) y (u, u_1) con color 1; para cada $i \in \{1,...,n\}$ la flecha (u_{2i-1},u_{2i}) con color 2; y para cada $i \in \{1,...,n-1\}$ la flecha (u_{2i}, u_{2i+1}) con color 1, figura 5.17. D_0 es una digráfica 2-coloreada con núcleo por trayectorias monocromáticas, de hecho $N = \{u_{2i-1}/i \in \{1,...,n\}\}$ es un núcleo por trayectorias monocromáticas de D_0 . Sea $U=\{u\}$ y sea $\tilde{\beta}=\left\{\widetilde{\beta}_u\right\}$ donde $\widetilde{eta}_u = \{u_- = x_0, x_1, ..., x_{2m} = u_+\}$ con $m \geq 1$ es una u_-u_+ -trayectoria de longitud par con la siguiente coloración: para cada $i \in \{0, ..., m-2\}$ la flecha (x_{2i}, x_{2i+1}) con color 2; y para cada $i \in \{1,...,m\}$ la flecha (x_{2i-1},x_{2i}) con color 3. $\widetilde{\beta}_u$ satisface las condiciones (ii) y (iii) de la definición de \widetilde{s} -sistema. $\widetilde{s}\left(\widetilde{S}\right)$ representada en la misma figura es una extensión de la digráfica D_0 que considera a U y $\tilde{\beta}$ definidos anteriormente y que está definida a partir de D_0 y no de su cerradura transitiva, además $\widetilde{s}\left(\widetilde{S}\right)$ satisface la condición (A): \widetilde{s} (\widetilde{S}) es una digráfica 3-coloreada que no tiene núcleo 4por trayectorias monocromáticas, pues como es un ciclo dirigido de longitud imparativo donde cualquier par de flechas consecutivas tienen diferente color, el poseer núcleo por trayectorias monocromáticas es equivalente a poseer núcleo y sabemos que los ciclos distributes de la companya del companya del companya de la companya del la companya de rigidos de longitud impar no tienen núcleo. Observemos que se obtiene una extensión con las mismas características si consideramos como $\widetilde{\beta}_u$ cualquier $u_-u_+-trayectoria$ dirigida de longitud par que satisfaga las condiciones (ii) y (iii) de la definición de \widetilde{s} -sistema.

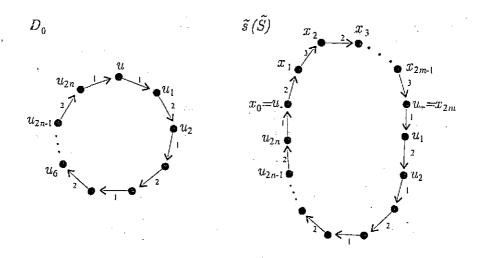


Figura 5.17

Nota 5.49 Consideremos a D_0 un ciclo dirigido de longitud par $(u, u_1, u_2, ..., u_{2n+1}, u)$ con la diagonal (u_{2n}, u) , $n \geq 1$, con la siguiente 3-coloración: las flechas (u_{2n+1}, u) $y(u,u_1)$ con color 1; para cada $i \in \{1,...,n\}$ la flecha (u_{2i-1},u_{2i}) con color 2; para cada $i \in \{1,...,n\}$ la flecha (u_{2i},u_{2i+1}) con color 3; y la flecha (u_{2n},u) con color 3, figura 5.18. D_0 es una digráfica 3-coloreada y no es difícil ver que no tiene núcleo por trayectorias monocromáticas. Sea $U=\{u\}$ y sea $\widetilde{\beta}=\left\{\widetilde{\beta}_u\right\}$ donde $\widetilde{\beta}_u=$ $(u_-=x_0,x_1,...,x_{2m}=u_+)$ con $m\geq 1$ es una u_-u_+ -trayectoria de longitud par con la siguiente coloración: para cada $i \in \{0, ..., m-2\}$ la flecha (x_{2i}, x_{2i+1}) con color 2; y para cada $i \in \{1, ..., m\}$ la flecha (x_{2i-1}, x_{2i}) con color 3. β_u satisface las condiciones (ii) y (iii) de la definición de \widetilde{s} -sistema. \widetilde{s} (\widetilde{S}) representada en la misma figura es una extensión de la digráfica D_0 que considera a U y $\tilde{\beta}$ definidos anteriormente y que está definida a partir de D_0 y no de su cerradura transitiva, además $\widetilde{s}\left(\widetilde{S}\right)$ satisface la condición (A). $\widetilde{s}\left(\widetilde{S}\right)$ es una digráfica 3- coloreada que sí tiene núcleo por trayectorias monocromáticas, de hecho $N = \{u_{2i-1}/i \in \{1,...,n+1\}\} \cup \{x_{2i-1}/i \in \{1,...,m\}\}$ es núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}
ight)$. Observemos que se obtiene una extensión con las mismas características si consideramos como \hat{eta}_u cualquier u_-u_+ -trayectoria dirigida de longitud par que satisfaga las condiciones (ii) y (iii) de la definición de s-sistema.

Si algún elemento del conjunto U utilizado para extender una digráfica está contenido en algún ciclo monocromático de ésta, puede suceder que la extensión no tenga núcleo por trayectorias monocromáticas aunque la digráfica original si posea, esto se muestra en la nota 5.50. Como ya se mencionó en la nota 5.47 esta condición no es necesaria para que la digráfica original tenga núcleo por trayectorias monocromáticas:

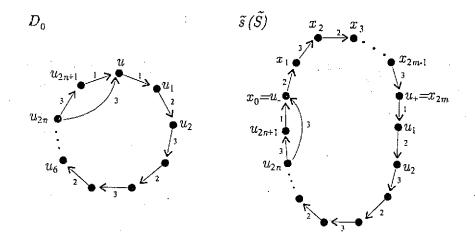


Figura 5.18

si la extensión lo tiene.

Nota 5.50 Consideremos un ciclo dirigido de color 1 $C = (u, u_1, u_2, ..., u_n, u)$ y sea D₀ la digráfica que resulta a partir de C añadiendo un nuevo vértice w y las flechas (u_i, w) de color 2 para $i \in \{1, 2, ..., n\}$. En la figura 5.19(a) se muestra D_0 y su cerradura transitiva. En la figura 5.19(b) $\widetilde{s}\left(\widetilde{S}
ight)$ representa una extensión de la digráfica D_0 donde $U=\{u\}$ y $\widetilde{\beta}_u=(u_-=x_0,x_1,...,x_{2m}=u_+)$ con $m\geq 1$ es una u_-u_+ -trayectoria de longitud par con la siguiente coloración: para cada $i \in \{0,...,m-2\}$ la flecha (x_{2i},x_{2i+1}) con color 2; y para cada $i \in \{1,...,m\}$ la flecha (x_{2i-1}, x_{2i}) con color 3. $\widetilde{\beta}_u$ satisface las condiciones (ii) y (iii) de la definición $de\ \widetilde{s}$ -sistema y $\widetilde{s}\ (\widetilde{S})$ satisface la condición A. Tenemos que el vértice u está contenido en el ciclo C de D_0 que es monocromático. $\{u,w\}$ es núcleo por trayectorias monocromáticas de D_0 . $\widetilde{s}\left(\widetilde{S}\right)$ no tiene núcleo por trayectorias monocromáticas ya que cualquier núcleo por trayectorias monocromáticas debería contener al vértice w y entonces ya ningún vértice u_i , $i \in \{1, 2, ..., n\}$, podría pertenecer al núcleo, así u_+ debería estar en el núcleo y por las características de \hat{eta}_u u_- también debería pertenecer al núcleo pero de u_+ a u_- existen trayectorias de color 1 lo que sería una contradicción con la propiedad del núcleo de ser independiente por trayectorias monocromáticas.

, Si en la extensión no se consideran a las trayectorias en β de longitud par positiva, nuevamente podemos tener digráficas con su extensión donde una de las dos tiene núcleo por trayectorias monocromáticas y la otra no, esto se muestra en las notas 5.51 y 5.52.

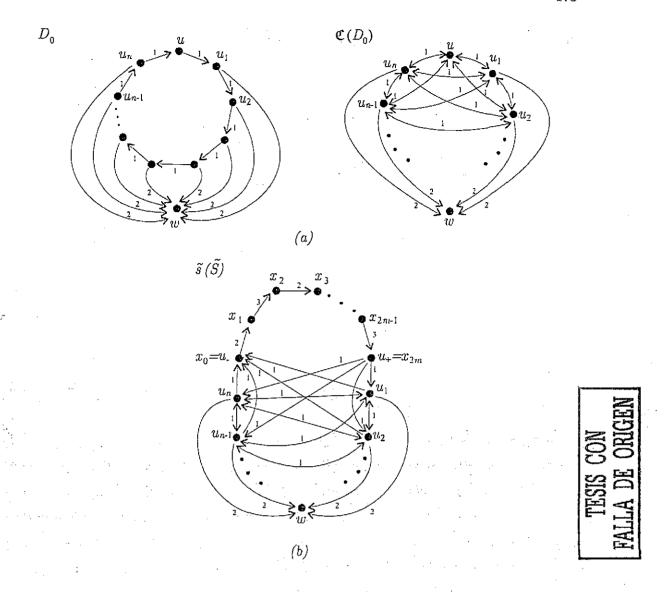


Figura 5.19:

Nota 5.51 Consideremos a D_0 un ciclo dirigido de longitud impar $(u, u_1, u_2, ..., u_{2n}, u)$ con la siguiente 3-coloración: para cada $i \in \{1, ..., n\}$ la flecha (u_{2i-1}, u_{2i}) con color 2; para cada $i \in \{1, ..., n-1\}$ la flecha (u_{2i}, u_{2i+1}) y la flecha (u, u_1) con color 1; y la flecha (u_{2n}, u) de color 3, figura 5.20. $\widetilde{s}\left(\widetilde{S}\right)$ representa una extensión de la digráfica donde $U = \{u\}$ y $\widetilde{\beta}_u = (u_- = x_0, x_1, ..., x_{2m-1} = u_+)$ es cualquier u_-u_+ -trayectoria de longitud impar con la siguiente 2-coloración: para cada $i \in \{0, 1, ..., m-1\}$ la flecha (x_{2i}, x_{2i+1}) con color 2 y para cada $i \in \{1, ..., m-1\}$ la flecha (x_{2i-1}, x_{2i}) con color 1. A excepción de la condición sobre la longitud de la trayectoria $\widetilde{\beta}_u$, se satisfacen las condiciones de la definición de \widetilde{s} -sistema y la condición A. Claramente D_0 no tiene núcleo por trayectorias monocromáticas y $\{u_{2i-1}/i \in \{1, ..., n\}\} \cup \{x_{2j}/j \in \{0, 1, ..., m\}\}$ es

núcleo por trayectorias monocromáticas de $\widetilde{s}\left(\widetilde{S}\right)$.

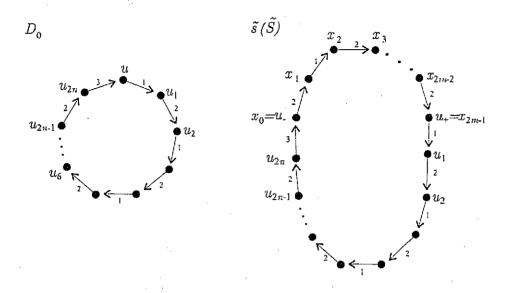


Figura 5.20

Nota 5.52 Consideremos a D_0 un ciclo dirigido de longitud par $(u, u_1, u_2, ..., u_{2n-1}, u)$ con la siguiente 2-coloración: para cada $i \in \{1, ..., n-1\}$ la flecha (u_{2i-1}, u_{2i}) y la flecha (u_{2n-1}, u) con color 2; para cada $i \in \{1, ..., n-1\}$ la flecha (u_{2i}, u_{2i+1}) y la flecha (u, u_1) con color 1, figura 5.21. $\widetilde{s}(\widetilde{S})$ representa una extensión de la digráfica donde $U = \{u\}$ y $\widetilde{\beta}_u = (u_- = x_0, x_1, ..., x_{2m-1} = u_+)$ es cualquier u_-u_+ -trayectoria de longitud impar con la siguiente 2-coloración: para cada $i \in \{0, 1, ..., m-1\}$ la flecha (x_{2i}, x_{2i+1}) con color 3 y para cada $i \in \{1, ..., m-1\}$ la flecha (x_{2i-1}, x_{2i}) con color 1. A excepción de la condición sobre la longitud de la trayectoria $\widetilde{\beta}_u$, se satisfacen las condiciones de la definición de \widetilde{s} -sistema y la condición A. D_0 tiene núcleo por trayectorias monocromáticas, $\{u_{2i-1}/i \in \{1, ..., n\}\}$ es uno de ellos y $\widetilde{s}(\widetilde{S})$ no tiene núcleo por trayectorias monocromáticas.

Si en la extensión no se cumple las condiciones sobre la coloración de las trayectorias en β marcada en el inciso (iii) de la definición de \tilde{s} -sistema, nuevamente podemos tener digráficas con su extensión donde una de las dos tiene núcleo por trayectorias monocromáticas y la otra no, esto se muestra en las notas 5.53, 5.54, 5.55, y 5.56.

Nota 5.53 Consideremos la digráfica coloreada D_0 de la Nota 5.51. En la figura 5.22 \widetilde{s} (\widetilde{S}) representa una extensión de la digráfica donde $U = \{u\}$ y $\widetilde{\beta}_u = (u - x_0, x_1, ..., x_{2m} = u_+)$ es cualquier u_-u_+ -trayectoria de longitud par positiva

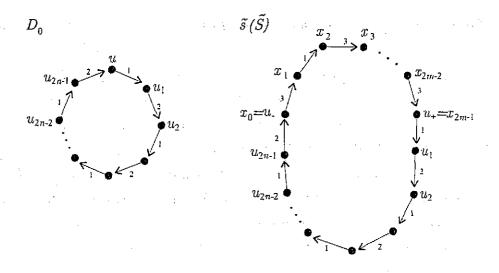


Figura 5.21

donde dos flechas consecutivas tienen el mismo color, digamos las flechas (x_0, x_1) y (x_1, x_2) tienen color 2, en las flechas (x_{j-1}, x_j) con $3 \le j \le 2m$ se van alternando los colores 3 y 2. A excepción de una de las condiciones sobre la coloración de $\widetilde{\beta}_u$ marcada en el inciso (iii) de la definición de \widetilde{s} -sistema, esta extensión satisface las condiciones de la definición de \widetilde{s} -sistema y la condición A. D_0 no tiene núcleo por trayectorias monocromáticas y el núcleo por trayectorias monocromáticas de \widetilde{s} (\widetilde{S}) es $\{x_{2i}/i \in \{1,2,...,2m\}\} \cup \{u_{2i}/i \in \{1,2,...,2n\}\}$.

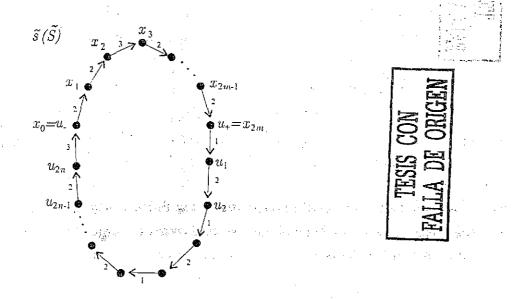


Figura 5.22

con la diagonal (u_{2n+1}, u_1) , $n \geq 1$, con la siguiente 3-coloración: para cada $i \in$ $\{1,...,n\}$ la flecha (u_{2i-1},u_{2i}) y la flecha (u_{2n+1},u) con color 2; para cada $i \in \{1,...,n\}$ la flecha (u_{2i}, u_{2i+1}) y la flecha (u, u_1) con color 1; y la flecha (u_{2n+1}, u_1) con color 3, figura 5.23. D_0 es una digráfica 3-coloreada $y\{u\} \cup \{u_{2i}/i \in \{1,2,...,n\}\}$ es un núcleo por trayectorias monocromáticas de D_0 . Sea $U = \{u\}$ y sea $\tilde{\beta} = \{\tilde{\beta}_u\}$ donde $\widetilde{eta}_u = (u_- = x_0, x_1, ..., x_{2m} = u_+)$ con $m \geq 1$ es una u_-u_+ -trayectoria de longitud par con la siguiente coloración: las flechas (u_-, x_1) y (x_1, x_2) con color 3 y para las demás flechas se van alternando los colores 2 y 3. La extensión correspondiente $\widetilde{s}\left(\widetilde{S}
ight)$ se satisfacen las condiciones de la definición de \widetilde{s} -sistema y la condición Acon excepción de la condición sobre la coloración de $\widetilde{\beta}_u$ que flechas consecutivas de la trayectoria tengan diferente color incluida en el inciso (iii) de la definición de ssistema. $\widetilde{s}(\widetilde{S})$ no tiene núcleo por trayectorias monocromáticas, esto lo veremos a continuación. Procediendo por contradicción, supongamos que N es un núcleo por trayectorias monocromáticas de $\widetilde{s}(\widetilde{S})$. Supongamos que $u_+ \in N$ entonces por las características de $\widetilde{\beta}_n$ tenemos que $\{x_2, x_4, x_{2m-2}, x_{2m} = u_+\} \subset N$, como las flechas (u_-,x_1) y (x_1,x_2) tienen color 3, entonces $\{u_-,x_1\}\cap N=\phi$. Por otro lado como $u_+ \in N \ y \ (u_+, u_1) \in A(D_0)$ entonces $u_1 \notin N$, como la única flecha que sale de u_1 es hacia u_2 , entonces $u_2 \in N$, así sucesivamente tenemos que $\{u_2, u_4, \dots, u_{2n-2}, u_{2n}\} \subset N$ $y \ u_{2n+1} \notin N$. Como $\{u_-, u_1, u_{2n+1}\} \cap N = \phi \ y$ las únicas flechas que salen de u_{2n+1} son hacia u_- y u_1 tenemos que N no absorbe por trayectorias monocromáticas a u_{2n+1} lo cual es una contradicción. Supongamos que $u_+ \notin N$, entonces por las características de $\widetilde{\beta}_u$ tenemos que $\{x_1, x_{3,...}, x_{2m-3}, x_{2m-1}\} \subset N$ y $u_- \notin N$, como las flechus (u_-, x_1) y (x_1, x_2) tienen color 3, entonces $\{u_-, x_1\} \cap N = \phi$. Por otro lado como $u_+ \notin N$ y la única flecha que sale de u_+ es hacia u_1 entonces $u_1 \in N$. Como $\{(u_{2n+1},u_1),(u_1,u_2)\}\subset A(D_0)$ entonces $\{u_{2n+1},u_2\}\nsubseteq N$. Como la única flecha que sale de u_2 es hacia u_3 , entonces $u_3 \in N$, así sucesivamente tenemos que $\{u_3,u_5,...,u_{2n-1}\}\subset N$ y $u_{2n}
otin N$. Como $\{u_{2n},u_{2n+1}\}\cap N=\phi$ y las única flecha que sale de u_{2n} es hacia u_{2n+1} tenemos que N no absorbe por trayectorias monocromáticas a u_{2n} lo cual es una contradicción. Por lo tanto $\widetilde{s}\left(\widetilde{S}
ight)$ no tiene núcleo por trayectorias monocromáticas.

Nota 5.54 Consideremos a D_0 un ciclo dirigido de longitud par $(u, u_1, u_2, ..., u_{2n+1}, u)$

Nota 5.55 Consideremos la digráfica coloreada D_0 de la Nota 5.51. En la figura 5.24 \widetilde{s} (\widetilde{S}) representa una extensión de la digráfica donde $U = \{u\}$ y $\widetilde{\beta}_u = (u_- = x_0, x_1, \dots, x_{2m} = u_+)$ es cualquier u_-u_+ -trayectoria de longitud par positiva

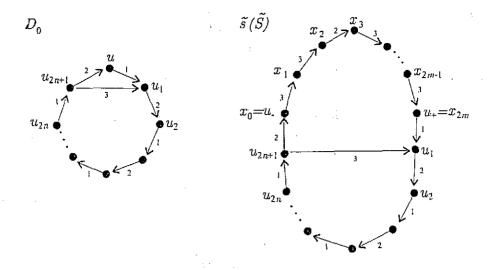


Figura 5.23

donde la flecha $(u_- = x_0, x_1)$ tiene color 3 que es el mismo color que la flecha (u_{2n}, u_-) y en las flechas (x_{j-1}, x_j) con $2 \le j \le 2m$ se van alternando los colores 2 y 3. A excepción de la condición sobre la coloración de $\widetilde{\beta}_u$ que pide que la flecha de $\widetilde{\beta}_u$ que incide dede u_- tenga color diferente que todas las flechas que inciden hacia u en D_0 incluida en el inciso (iii) de la definición de \widetilde{s} -sistema, esta extensión satisface las condiciones de la definición de \widetilde{s} -sistema y la condición A. D_0 no tiene núcleo por trayectorias monocromáticas y el núcleo por trayectorias monocromáticas de \widetilde{s} (\widetilde{S}) es $\{x_{2j-1}/j=1,...,m\} \cup \{u_{2j-1}/j=1,...,n\}$. Análogamente se puede obtener una extensión con núcleo por trayectorias monocromáticas donde la flecha de la trayectoria $\widetilde{\beta}_u$ que incide hacia u_+ tenga el mismo color que (u_+, u_1) .

Nota 5.56 Consideremos a D_0 un ciclo dirigido de longitud par $(u, u_1, u_2, ..., u_{2n+1}, u)$ con la diagonal (u_{2n}, u_2) , $n \geq 2$, con la siguiente 3-coloración: para cada $i \in \{1, ..., n\}$ la flecha (u_{2i-1}, u_{2i}) y la flecha (u_{2n+1}, u) con color 2; para cada $i \in \{1, ..., n\}$ la flecha (u_{2i}, u_{2i+1}) y la flecha (u, u_1) con color 1; y la flecha (u_{2n}, u_2) con color 3, figura 5.25. D_0 es una digráfica 3-coloreada y $\{u_{2i+1}/i \in \{1, 2, ..., n\}\}$ es un núcleo por trayectorias monocromáticas de D_0 . Sea $U = \{u\}$ y sea $\tilde{\beta} = \{\tilde{\beta}_u\}$ donde $\tilde{\beta}_u = (u_- = x_0, x_1, ..., x_{2m} = u_+)$ con $m \geq 1$ es una u_-u_+ -trayectoria de longitud par con la siguiente coloración: la flecha (u_-, x_1) con color 2 y para las demás flechas se van alternando los colores 3 y 2. La extensión correspondiente \tilde{s} (\tilde{s}) se satisfacen las condiciones de la definición de \tilde{s} -sistema y la condición A con excepción de la condición sobre la coloración de $\tilde{\beta}_u$ que pide que la flecha de $\tilde{\beta}_u$ que incide dede u-tenga color diferente que todas las flechas que inciden hacia u en D_0 incluida en el

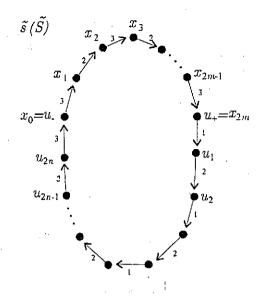


Figura 5.24

inciso (iii) de la definición de \tilde{s} -sistema, esta extensión satisface las condiciones de la definición de \tilde{s} -sistema y la condición A. Por un argumento análogo al usado en la Nota 5.54, $\tilde{s}\left(\tilde{S}\right)$ no tiene núcleo por trayectorias monocromáticas. Análogamente se puede obtener una extensión sin núcleo por trayectorias monocromáticas donde la flecha de la trayectoria $\tilde{\beta}_u$ que incide hacia u_+ tenga el mismo color que (u_+,u_1) .

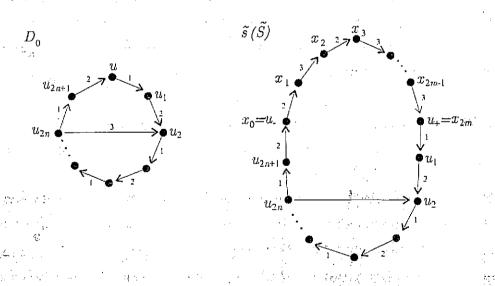


Figura 5.25

En las notas 5.57 y 5.58 muestran que si la extensión no satisface la condición (A) entonces la digráfica original o su extensión puede tener núcleo por trayectorias monocromáticas aunque la otra no tenga.

Nota 5.57 Consideremos la digráfica coloreada D_0 de la Nota 5.54. Esta digráfica como se vió en la nota 5.54 tiene núcleo por trayectorias monocromáticas. En la figura 5.26, $\widetilde{s}\left(\widetilde{S}\right)$ representa una extensión de la digráfica donde $U=\{u,v=u_2\}$, $\widetilde{\beta}_u=(u_-=x_0,x_1,...,x_{2m}=u_+), \, \widetilde{\beta}_v=(v_-=y_0,y_1,...,y_{2k}=v_+)$ y se van alternando los colores 3 y 2 en las flechas de ambas trayectorias, la digráfica $\widetilde{\mathcal{U}}_-$ no tiene flechas y la digráfica $\widetilde{\mathcal{U}}_+$ solo tiene la flecha (v_+,u_+) . Se satisface la definición de \widetilde{s} -sistema pero en $\widetilde{\mathcal{U}}_+$ no se cumple la condición (A) pues aparece la flecha (v_+,u_+) y en D_0 no hay flecha de v a u. Análogamente a los argumentos usados en la nota 5.54 se puede ver que $\widetilde{s}\left(\widetilde{S}\right)$ no tiene núcleo por trayectorias monocromáticas. Análogamente se puede obtener una extensión $\widetilde{s}\left(\widetilde{S}\right)$ sin núcleo por trayectorias monocromáticas donde en $\widetilde{\mathcal{U}}_-$ no se satisfaga la condición (A).

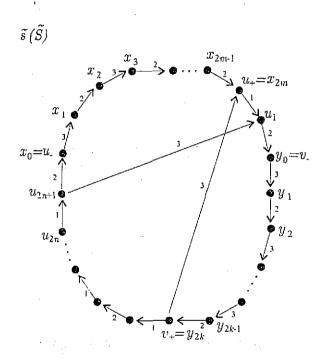


Figura 5.26

Nota 5.58 Consideremos la digráfica coloreada D_0 de la Nota 5.51. Como se vió en la Nota 5.51 D_0 no tiene núcleo por trayectorias monocromáticas. En la figura 5.27 $\tilde{s}\left(\tilde{S}\right)$ representa una extensión de la digráfica donde $U=\{u,v=u_2\},\ \tilde{\beta}_u=(u_-=x_0,x_1,...,x_{2m}=u_+)$ con los colores 2 y 3 alternándose en sus flechas y $\tilde{\beta}_v=(v_-=y_0,y_1,...,y_{2k}=v_+)$ con los colores 3 y 2 alternándose en sus flechas, la digráfica $\tilde{\mathcal{U}}_-$ no tiene flechas y la digráfica $\tilde{\mathcal{U}}_+$ solo tiene la flecha (u_+,v_+) . Se satisface la

definición de \widetilde{s} -sistema pero en $\widetilde{\mathcal{U}}_+$ no se cumple la condición (A) pues aparece la flecha (u_+,v_+) y en D_0 no hay flecha de u a v. $\widetilde{s}\left(\widetilde{S}\right)$ sí tiene núcleo por trayectorias monocromáticas, $N=\{v_+\}\cup\{u_{2i}/\ i\in\{2,...,n\}\}\cup\{x_{2i-1}/\ i\in\{1,2,...,m\}\}\cup\{y_{2i}/\ i\in\{0,1,...,k-1\}\}$. Análogamente se puede obtener una extensión $\widetilde{s}\left(\widetilde{S}\right)$ con núcleo por trayectorias monocromáticas donde en $\widetilde{\mathcal{U}}_-$ no se satisfaga la condición (A).

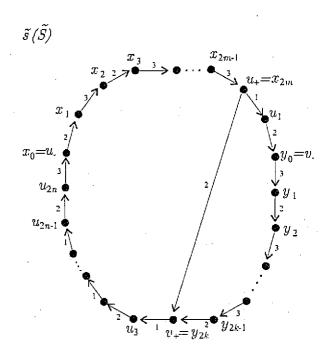


Figura 5.27

5.7 Problemas Abiertos

- 1. ¿El número de núcleos por trayectorias monocromáticas de una digráfica m—coloreada D_0 es igual al número de núcleos por trayectorias monocromáticas de cualquier extensión $\widetilde{s}\left(\widetilde{S}\right)$?
- m2. De la extensiones que existen para digráficas que preservan núcleo cuáles puedendo generalizarse a digráficas m-coloreadas y que preserven núcleo por trayectorias monocromáticas?

TESIS CON FALLA DE ORIGEN

Referencias

- [1] J. Bang-Jensen and J. Huang, Quasi-kings in quasi-transitive digraphs, Submitted.
- [2] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (2) (1995), 141-161.
- [3] C. Berge, Les problèmes de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960) 123-160.
- [4] C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).
- [5] C. Berge and V. Chvátal, editores, *Topics on perfect graphs*, Ann. Discrete Math. (21), North Holland-Amsterdam, 1984.
- [6] M. Blidia, P. Duchet, H. Jacob, F. Maffray, H. Meyniel, Some operations preserving the existence of kernels, Discrete Math. 205 (1999), 211-216.
- [7] E. Boros and V. Gurvich, Perfect graphs are kernel solvable, Discrete Math. 159 (1996), 35-55.
- [8] C. Champetier, Kernels in some orientations of comparability graphs, J. Combin. Theory Ser. B 47 (1989) 111-113.
- [9] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980), 93-101
- [10] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984), 67-96.
- [11] P. Duchet, A sufficient condition for a digraph to be kernel perfect, J. Graph Theory II (1) (1987), 81-85.

- [12] P. Duchet, H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981), 103-105.
- [13] H. Galeana-Sánchez, A counterexample to a conjeture of Meyniel on kernel perfect graphs, Discrete Math. 41 (1982), 105-107.
- [14] H. Galeana-Sánchez, A new method to extend KP-graphs, Discrete Math. 69 (1988), 207-209.
- [15] H. Galeana-Sánchez, On monocromatic paths and monocromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996), 103-112.
- [16] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998), 87-99.
- [17] H. Galeana-Sánchez, J.J. García Ruvalcaba, Kernels in the closure of coloured digraphs, Discussiones Mathematicae Graph Theory 20 (2000) 243-354.
- [18] H. Galeana-Sánchez, J.J. García Ruvalcaba, On graphs all of whose $\{C_3, T_3\}$ free arc colorations are kernel perfect, Discussiones Mathematicae Graph Theory 21 (2001) 77-93.
- [19] H. Galeana-Sánchez, V. Neumann Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984), 67-76.
- [20] H. Galeana-Sánchez, V. Neumann Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986), 257-265.
- [21] H. Galeana-Sánchez, V. Neumann Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991), 181-187.
- [22] H. Galeana-Sánchez, V. Neumann Lara, New extensions of kernel perfect digraphs to kernel imperfect critical digraphs, Graphs and Combinatorics 10 (1994), 329-336.
- [23] H. Galeana-Sanchez, V. Neumann Lara, KP-digraphs and CKI-digraphs satisfying the k-Meyniel's condition, Discussiones Mathematicae Graph Theory 16 (1996) 5-16.
- [24] H. Galeana-Sánchez, V. Neumann Lara, On the dichromatic number in kernel theory, Mathematica Slovaca 48 (1998), No. 3, 213-219.

- [25] H. Galeana-Sánchez, L. Pastrana Ramírez, Kernels in edge coloured line digraph, Discussiones Mathematicae Graph Theory 18 (1998) 91-98.
- [26] T. Gallai, Transitive orienterbare graphen, Acta Math. Sci. Hung. 18 (1967), 25-66.
- [27] A. Ghouilà-Houri, Caractérisation des graphes non orientés dont on peut orienter les arrêtes de maniere à obtenir le graphe d'un relation d'ordre, C. R. Acad. Sci. Paris 254 (1962) 1370-1371.
- [28] P. Hell and J. Huang, Lexicographic orientation and representation algorithms for comparability graphs, proper circular arc graphs, and proper interval graphs, submitted.
- [29] J. Huang, Tournament like oriented graphs. Ph. D. thesis, Simon Fraser University (1992).
- [30] D. Kelly, Comparability graphs, in Graphs and Order (ed. I. Rival), Nato ASI Series C. VOI. 147, D. Reidel (1985), 3-40.
- [31] S. Minggang, On monocromatic paths in m-coloured tournaments, J. Combin. Theory Ser. B 45 (1988) 108-111.
- [32] Von Neumann, O. Morgenstern, Theory of games and economic behavior, Princeton University Press, Princeton, 1944.
- [33] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (2) (1953), 573.
- [34] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA 39 (1953), 649.
- [35] B. Sands, N. Sauer and R. Woodrow, On monocromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271-275.
- [36] D. J. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular arc graphs and nested interval graphs, J. Graph Theory (6) (1980), 142-163.
- [37] J. Topp, Kernels of digraphs, formed by some unary operations from other digraphs, J. Rostock Math. Kolloq. 21 (1982), 73-81.

in the control of the

en de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya del companya de la companya de la companya

garanti perinta di Salah di S

to the first of the control of the c

ABSTRACT

A kernel in a digraph D is a set N of vertices just that every pair of them isn't adjacent and for every vertex v not in N there is an arc from v to some vertex in N. If the arcs of D are coloured with m colours we call the digraph D an m-coloured digraph. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of different vertices there is no monochromatic directed path between them and for every vertex v not in N there is a monochromatic directed path from v to some vertex in N. In this thesis I studied the problem of the existence of kernels by monochromatic paths in some kinds of digraphs. I obtained sufficient conditions for the existence of this kind of kernels in digraphs just like quasitransitive digraphs, tournaments and bipartite tournaments. I also obtained some generalizations of results about kernels and kernels by monochromatic paths.

.