

UNIVERSIDAD PANAMERICANA

ESCUELA DE ECONOMIA

CON ESTUDIOS INCORPORADOS A LA UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO.

TEORIA DE PORTAFOLIOS:

UNA APLICACION DEL MODELO DE INDICE A LA BOLSA MEXICANA DE VALORES DURANTE EL PERIODO: 1992 - 1995.

T E S I S

QUE PARA OBTENER EL TITULO DE:

LICENCIADO EN ECONOMIA

P R E S E N T A :

JESUS GUILLERMO MARROQUIN SERRANO

DIRECTOR DE TESIS: LIC. GILBERTO HERNANDEZ DE LA FUENTE.

MEXICO, D. F.

1998.

TESIS CON FALLA DE ORIGEN 2501310

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIA

A Carola que siempre supo como encauzar mi inquietud y a

Carmina mi compañera y apoyo

A Jorge siempre presente.

DEDICATORIA

A mi Padre,

Mis Abuelos

Y mis Hermanos

UNIVERSIDAD PANAMERICANA

Teoría de Portafolios: Una Aplicación del Modelo de Índice a la Bolsa Mexicana de Valores durante el periodo:1992-1995

por:

Jesús Guillermo Marroquín Serrano

ÍNDICE

Introducción1
1. Elección de Activos
Introducción3
Teoría de la Elección de Activos5
El modelo de Tobin13
Conceptos de Liquidez20
2. Selección de la Cartera Optima
Antecedentes Históricos23
Diversificación25
La Frontera Eficiente26
La Beta y el Modelo de Mercado29
Riesgo de Mercado y Riesgo Especifico30
Calculo de Beta32
Construyendo el Portafolio Optimo33
Beta del Portafolio40
3. Mercados Eficientes
Definición41
Eficiencia del Mercado Mexicano de Valores42
Hipótesis44
4. Aplicación del Modelo
Desarrollo del Modelo
5. Análisis de los Resultados

6. Conclusiones	55
ANEXO 1	58
ANEXO 2	61
Betas INMEX	69
Betas IBMV	82
Bibliografía	94

Introducción

La administración de inversiones requiere de seguir una metodología y sobre todo una filosofía para lograr un objetivo determinado.

Al respecto, existen una serie de teorías para conformar una cartera de inversión individual, dentro de las cuales podemos mencionar como las más comunes a las siguientes: Modelo de Markowitz (selección de los mejores valores), Modelo de Ross (correlación de factores con la valuación de activos) y la Teoría Moderna de portafolios (correlación entre riesgo y rendimiento).

Cada una de las teorias tienen sus cualidades y sus defectos, sin embargo, su objetivo común es el de lograr un mayor rendimiento en las inversiones realizadas.

En este trabajo se utilizará el modelo de Sharpe para elegir un portafolio óptimo de inversión, este modelo se encuentra dentro de la Teoría Moderna de Portafolios, que es una herramienta estadística que establece una relación entre el "riesgo" y el rendimiento. Se fundamenta en la hipótesis de los mercados eficientes y sus alcances se extienden a las áreas de valuación de acciones, organización de portafolios de inversión, distribución del patrimonio y medición de rendimientos.

Se considera que Sharpe es uno de los creadores del CAPM (Capital Asset Pricing Model). Este modelo simplifica el de Markowitz al considerar que las covarianzas de una cartera pueden expresarse simplemente como la variación o volatilidad del rendimiento de los valores con respecto al mercado.

Su aplicación al mercado mexicano y el seguimiento de sus resultados por un período de 5 meses es la metodología de este trabajo.

La teoría propone que es posible "predecir" el rendimiento futuro esperado de una inversión particular así como su "riesgo" asociado. Una vez que se han establecido las relaciones de riesgo-rendimiento para una serie de diferentes alternativas de inversión se procede a construir una cartera que se adapte a los requerimientos de un inversionista particular, maximizando sus rendimientos.

1

Elección de Activos

Introducción

Los activos financieros, a semejanza con los bienes que tienen por función brindar una utilidad a través de la satisfacción de una necesidad, cumplen con la de ofrecer un rendimiento a quien los posee. Pero, a diferencia de los bienes que no presentan desutilidad alguna, la mayoría de (o probablemente todos) los activos tienen un riesgo asociado al rendimiento, que en circunstancias normales constituye una desutilidad para su poseedor. El grado de utilidad proporcionado por un cierto capital, en consecuencia, resulta dado por el rendimiento y el riesgo de las colocaciones, actuando el primero en forma positiva y el segundo en forma negativa.

Si las decisiones se tomaran en condiciones de previsión perfecta el rendimiento sería conocido unívocamente y el riesgo no existiría. En cambio, las decisiones se toman para tener efecto dentro del periodo de planeación de la unidad económica, donde en condiciones normales existirá un mayor o menor grado de incertidumbre: el rendimiento no será un valor fijo sino un valor esperado, y las posibles variaciones del rendimiento constituirán una fuente de riesgo del activo. Ello exige un estudio del concepto de riesgo y luego una definición comprensiva de las distintas alternativas o tipos de riesgo, en particular las provenientes de ganancias y pérdidas de capital, congruente con la definición de rendimiento. En suma, las características de los activos son esencialmente sintetizadas por la dicotomía riesgo-rendimiento. La identificación de los distintos elementos que afectan el rendimiento y el riesgo es un antecedente para analizar su influencia en

1.1 Teoría de la Elección de Activos

Los activos cumplen una doble misión: por un lado, proveen a su titular de un ingreso igual a los productos del monto de cada uno por su respectivo rendimiento unitario, y, por otro, mantienen un poder de disposición de ingreso en el futuro, al permitir entonces ser utilizados en la compra de bienes y servicios. En el análisis del comportamiento de los individuos respecto a la posesión de activos hay por ello dos problemas distintos: primero, determinar la combinación óptima de activos para lograr el máximo ingreso en el periodo de referencia; segundo, determinar la distribución óptima del consumo en el tiempo, para la cual los activos cumplen la función de hacerlo posible. En lo que sigue sólo se abordará el primer problema, pues el de la distribución intertemporal corresponde a la teoría del consumo.

A manera de introducción considérese la distribución óptima de un capital dado (Á) entre los distintos activos disponibles en el caso de rendimientos ciertos, conocidos, de cada uno de ellos, El ingreso, también cierto, proveniente de la posesión de dichos activos representa una parte del ingreso total y a su vez la posibilidad de disfrutar una cantidad de bienes. La función de utilidad:

$$U(Y) = U[mY + (1-m)Y]$$

donde *m* registra la parte proporcional del ingreso del trabajo y (1 - m) la de la posesión de activos, tendrá la característica de ser monótonamente creciente. Cuando el ingreso del trabajo se supone constante, la utilidad dependerá del ingreso obtenido de los activos:

$$U[(1-m)Y] = U(\sum i_i A_i) = U(B)$$

donde las A e i representan, respectivamente, los tipos y rendimientos unitarios de los distintos activos y B el ingreso total proveniente de éstos.

las diversas categorías de activos y, bajo ciertas condiciones, proceder a su cuantificación.

Para la unidad económica que posee un capital dado, la cuestión es elegir, entre las distintas alternativas de colocación, aquella que más se adapte a sus preferencias (utilidad). Para ello se debe tener en cuenta los rendimientos totales que le brindan y los riesgos agregados a que la someten las distintas combinaciones de activos, los cuales pueden conocerse si se conocen los rendimientos y riesgos esperados de cada uno de los activos disponibles. La elección debe cumplir el requisito equivalente al de agotar el ingreso en la teoría de la conducta del consumidor, a saber, que el valor de la combinación de activos iguale al capital disponible, y otro adicional, que la escala de opciones se reduzca a las combinaciones de menos riesgo (para cada rendimiento).

Estos principios son adecuados para analizar la conducta individual de intermediarios, empresas y familias, y por extensión, según el principio de la unidad representativa, a situaciones más generales. No lo son, en cambio, para abordar el problema a nivel agregado o macroeconómico y efectuar la comparación entre distintas combinaciones de activos financieros. Una solución al problema comparativo ha sido brindada por el concepto de liquidez, partiendo del principio de que el dinero, activo líquido por excelencia, es el más deseable y de que el sacrificio de su disposición, a cambio de otro activo sustituto exige el pago de una retribución.

Sin embargo, la identificación de la liquidez con la preferencia incondicional hacia el dinero tiene bastantes dificultades, y a lo sumo su aplicación se reduce a condiciones muy especiales e hipótesis restrictivas.

Como las tasas de interés son fijas y conocidas y no existe riesgo, el problema se reduce a buscar la distribución que maximiza la utilidad bajo la condición de que el volumen total de activos es fijo. Para cualquier composición de activos, la utilidad claramente está asociada en forma positiva con cada tasa de interés. El problema formalmente consiste en maximizar:

$$U(\sum i_i A_i)$$

sujeto a:

$$\sum A_i = \overline{A}$$

De acuerdo con los principios generales, esto equivale a hallar el máximo de:

$$W = U\left(\sum i_i A_i\right) + \lambda \left(\sum A_i - \overline{A}\right)$$

lo cual ocurre cuando:

$$\frac{DW}{DA_i} = i_i \frac{DU}{DB} + \lambda = 0$$

$$i_i^* = i^*, = \lambda = i^*, = \lambda$$

Aplicando la relación mencionada entre utilidad y tasas de rendimiento, la igualdad indica que la asignación óptima consiste en invertir totalmente el capital en el activo cuyo rendimiento es máximo, conclusión a la que se llega sin este razonamiento y utilizando el simple sentido común.

$$\frac{1}{di}\frac{dU}{di_i} = \frac{dU}{dB}\frac{dB}{di_i} = A_i \frac{dU}{dB} > 0$$

A consecuencia del poco realista supuesto inicial de perfecta previsión, el planteo conduce a resultados que no se observan en la conducta de las unidades económicas. Las características más irreales son: primero, todos los activos financieros con rendimiento positivo dominan al dinero, cuyo rendimiento es nulo (accesoriamente, cambios en los precios de los bienes y servicios afectan a ambos por igual); segundo, si la tasa máxima es única no habría más que un solo tipo de activo, y si son varias, no existiría criterio económico para la elección; tercero, y consecuencia del anterior, no hay posibilidad tampoco de establecer criterios para la diversificación de activos.

La incorporación del riesgo al análisis de la elección de activos permite obviar estos inconvenientes y brindar un enfoque más adecuado del problema. Cuando la previsión no es perfecta y el rendimiento de los activos está sujeto a variaciones, a la utilidad proveniente del ingreso esperado se contrapone la desutilidad del riesgo proveniente de aquéllas. La función de utilidad no estará asociada positivamente con el ingreso de manera incondicional, sino cuando el riesgo permanece constante. En cambio, si el riesgo se acrecienta con el ingreso, puede ocurrir que la utilidad disminuya y que los individuos prefieran un menor ingreso con un menor riesgo.

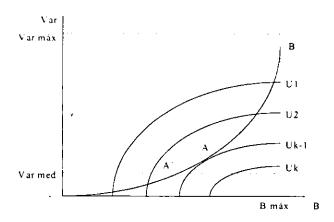
Bajo las nuevas condiciones, la función de utilidad debe reformularse poniendo en lugar de un ingreso proveniente de un conjunto de activos con tasas de interés conocidas, un ingreso originado en activos con rendimientos esperados y cuantificables. Además, el riesgo asociado al ingreso debe ser incluido explícitamente como argumento de la función de utilidad, en contraposición con el caso de certeza, donde es nulo. El ingreso esperado $\Sigma i_j A_j$, con la diferencia que aquí los valores i_j son los rendimientos individuales esperados, depende también de la composición de los activos y sus respectivos rendimientos. Cuando el riesgo del ingreso esperado se mide por su varianza, será igual a:

$$\sum \sum A_i A_i \sigma i_i \sigma_i r_{ij}$$

Manteniendo por razones de simplicidad la denominación B para el primer valor, e incorporando la de σ^2 para el segundo, la función de utilidad toma la forma:

$$U\left(\sum_{i} I_{i} A_{i}, \sum_{i} \sum_{j} A_{i} A_{i} \sigma_{j} \sigma_{j} r_{i,j}\right) = U\left(B, \sigma^{2}\right)$$

$$\frac{DU}{DB} > 0$$


$$\frac{DU}{D\sigma} < 0$$

La primera condición es general, y ha sido mencionada anteriormente. La segunda, en cambio, no es necesaria y puede aceptarse el comportamiento contrario. El caso incluido individualiza a quienes evitan el riesgo, aunque haya algunas personas que lo disfruten.

Estos conceptos pueden exponerse geométricamente con el instrumento de las curvas de indiferencia (entre ingreso y riesgo) para distintas combinaciones de igual utilidad, tal cual aparece en la gráfica 1.1.

Las curvas tienen inclinación positiva para los individuos que evitan el riesgo, como se supone en el análisis subsecuente, pero sería negativa en el caso contrario. El nivel de utilidad representado es más alto conforme las curvas se hallan más hacia la derecha. Un tipo de función de utilidad que se emplea con bastante frecuencia es el cuadrático en el ingreso, con un término positivo de primer grado, que toma la relación directa de éste con la utilidad, y un término negativo de segundo grado, potencia del orden de la de su varianza, para incorporar el riesgo.

Gráfica 1.1
ELECCIÓN DE ACTIVOS FINANCIEROS

Conocida la función de utilidad, y para seguir el análisis tradicional del equilibrio, el segundo paso es encontrar el marco de posibilidades de colocación del total *A* de que dispone la unidad económica. Variando la composición del capital mediante cambios en las cantidades de los distintos activos (*A_i*) se pueden obtener otras tantas combinaciones de ingreso y riesgo. Un valor mínimo se tiene cuando se coloca el importe total en el de mínimo rendimiento, el dinero -cuyo rendimiento es nulo, o incluso negativo habida cuenta de una posible pérdida de su valor real por un aumento de los precios de los bienes-, y uno máximo si se convierte en el de máximo rendimiento. Algo análogo puede decirse para el riesgo, con la aclaración de que no existe necesariamente una coincidencia con los respectivos máximo y mínimo de ingreso.

En la gráfica se establecen estos extremos (0 y B_{max} por un lado, y 0 y σ^2 , por otro); sin embargo, el rectángulo determinado por dichos valores no define el conjunto eficiente de posiciones alcanzables.

En efecto, el intervalo total de variación no tiene mayor importancia cuando se acepta que para un ingreso dado los individuos siempre prefieren la combinación con mínimo riesgo, pues el conjunto de combinaciones pertinente estará reducido al de aquellas que cumplan este requisito. Para llegar a los conjuntos correspondientes a cada uno de los valores del ingreso (B_n) habrá que minimizar el riesgo, medido por:

$$\sum \sum A_i A_i \sigma i \sigma_i r_{ij}$$

sujeto a la condición de colocar totalmente un capital fijo y lograr dicho ingreso, vale decir:

$$\sum A = \overline{A}$$

$$\sum i_{i}A = B_{n}$$

$$\sum i_{n}A = B_{n}$$

De aquí se obtienen las combinaciones eficientes de activos para cada ingreso esperado, que han sido señaladas en la gráfica con la curva OB.

La combinación preferida por el inversor (A*₁ + A*₂ + ... + A*_n = A, alguno de cuyos valores puede ser nulo) estará representada por el punto de ingreso-riesgo (A) donde la curva de mayor utilidad es tangente a la de oportunidades eficientes de colocación.

Una situación frecuente es aquella donde el riesgo que puede elegir la unidad económica se halla limitado. Esto ocurre, por ejemplo, con las alternativas de los bancos comerciales e intermediarios financieros cuando la autoridad monetaria fija ciertos criterios acerca de la concesión de préstamos, limitando su volumen de acuerdo a las condiciones de la empresa e impidiendo el otorgamiento de una proporción exagerada a la misma firma: el objeto es aumentar la diversificación y reducir el riesgo resultante de un pequeño volumen de grandes operaciones, no obstante las ventajas de un mayor rendimiento o un menor costo de administración.

Si éste fuera el caso, la curva de oportunidades eficientes estaría acotada en su parte superior por el riesgo máximo que el banco central estuviera dispuesto a permitir a los bancos. Por cierto que los criterios de los funcionarios de la autoridad monetaria son más simples y prácticos que los señalados en este análisis, pero su justificación reside en tales argumentos. Situaciones de esa naturaleza se ejemplifican en la gráfica 1.1 con el valor σ^2 med y en este caso la combinación que se ve obligada a elegir la unidad (A') puede ser menos deseable que la otra, dependiendo de que la restricción resulte o no operativa.

Algunas veces se ha sugerido que los individuos pretenden rendimientos unitarios (B_u) y riesgos unitarios $({\sigma_u}^2)$, máximos y mínimos, respectivamente, en cuyo caso la función de utilidad toma la siguiente forma:

$$U(B,\sigma^2) = \overline{A}U(B_n\sigma^2)$$

Maximizando dicha función y considerando los valores del rendimiento y el riesgo unitario, se tiene:

$$\frac{dU}{dT} = A \left(\frac{DU}{DB_{u}} \frac{dB_{u}}{dT} + \frac{DU}{D\sigma_{u}^{2}} \frac{d\sigma_{u}}{dT} \right) = 0$$

$$B_u = i_{\tau} \frac{T}{\overline{A}}$$

$$\sigma_{\parallel}^{2} = \frac{I}{\overline{A}}\sigma_{A}^{2}$$

de donde:

$$\frac{T^*}{\overline{A}} = \frac{i_T}{2\sigma_{\perp}^2} \left[-\frac{\frac{DU}{DB_u}}{\frac{DU}{D\sigma_{\perp}^2}} \right]$$

Bajo tales condiciones restrictivas, la proporción de los activos invertida en títulos (y por consiguiente también en dinero) es independiente del volumen total y está determinada por la tasa marginal de sustitución entre rendimiento y riesgo.

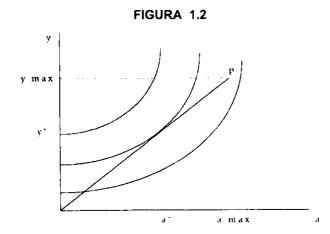
1.2 El modelo de Tobin

El modelo es una aplicación directa del esquema anterior. Se considera que el riesgo es un mal y que el patrimonio es un bien. Entonces, el sujeto que debe hacer la elección se enfrenta al problema de decidir cómo distribuir su patrimonio entre dinero en efectivo con rendimiento cero y bonos que proporcionan algún rendimiento pero también acarrean un riesgo en cuanto a que es incierto el rendimiento que van a proporcionar. Así, se supone que el rendimiento que se obtiene de un bono es aleatorio y se toma como medida de riesgo la "variación" o que puede tener.

Es decir, la variación σ es una medida de la magnitud de la incertidumbre y por lo tanto del riesgo. Por el momento no interesa la medida de variación que se utilice². Entonces, se va a crear un mapa de indiferencia similar al que se muestra en la figura 1.2 donde se tiene el incremento *esperado* en el patrimonio γ sobre el eje vertical y el riesgo σ en el horizontal.

Las curvas de indiferencia son ahora un reflejo de la actitud del sujeto en cuanto al riesgo. Para este caso particular la pendiente positiva creciente de las curvas de indiferencia significa que para que el sujeto acepte más riesgo en un momento dado y se mantenga la condición de indiferencia el rendimiento esperado de la inversión correspondiente debe aumentar más que proporcionalmente. La situación se muestra en la figura 1.3 y la línea p que aparece en el mapa corresponde al *presupuesto* del sujeto que en este modelo se considera la única restricción. Entonces, la solución al problema de elección entre riesgo y rendimiento está representada por el punto (σ^*, γ^*) que es donde existe tangencia

² En rigor, el modelo supone que el rendimiento del bono está normalmente distribuido alrededor de una media Y y con una desviación estándaro. Así, o es la medida de riesgo que se utiliza. Por cierto, Markowitz (Portfolio Selection, Efficient Diversification of Investments) usa la misma idea para obtener una medida de riesgo. Sin embargo, la desviación estándar no es la única medida de variación que se puede utilizar.


entre la restricción presupuestal y la curva de indiferencia con mayor nivel de utilidad que intersecta a dicha restricción presupuestal.

Nótese que hay una correspondencia exacta entre γ y σ y la cantidad del presupuesto que el inversionista asigna a bonos y a dinero en efectivo.

A continuación se ilustra el modelo con un pequeño ejemplo numérico.

Ejemplo 1.1 Para ilustrar el modelo se toma el caso de un inversionista "matematizado" que cuenta con N\$5 millones de pesos. El hombre tiene la opción de comprar bonos o conservar el dinero en efectivo. Las características de los bonos son las siguientes:

- 1. El rendimiento medio esperado del bono por mes es de 1%.
- 2. Debido a la incertidumbre del mercado que afecta a las ganancias del capital del bono, el rendimiento del mismo puede variar ± 1.5% alrededor de la media, de modo que existe el riesgo de perder hasta 5% por cada peso que se invierta en bonos.

Como el inversionista conoce el trabajo de Tobin decide armar un modelo matemático siguiendo los lineamientos de éste. Define "x" como la cantidad que destinará a bonos y "y" será la cantidad que conserve en efectivo.

La variación en el rendimiento la tomará como x por la longitud del intervalo de variación que es:

Es decir.

$$a = 0.03 x$$

En cuanto a su actitud acerca del riesgo, el inversionista sabe que en ningún momento está dispuesto a aceptar más de N\$100,000 de variación y que en este momento que tiene todo en efectivo su tasa marginal de sustitución de rendimiento esperado contra riesgo es de 1 a 10. Es decir, que acepta 10 unidades de riesgo por una unidad más de rendimiento. Además, es un "enamorado" de la forma hiperbólico y por lo tanto quiere que sus curvas de indiferencia sean de esta forma.

Lo anterior conduce a una función de preferencia de la forma siguiente:

$$U(\gamma,\sigma) = \frac{10^{\circ}}{10^{\circ} - \sigma} - \gamma - 10^{4}$$

Esta función produce curvas de indiferencia como las que se muestran en la figura 1.3 Ahora bien, si invirtiese todo su patrimonio en bonos su utilidad esperada sería de:

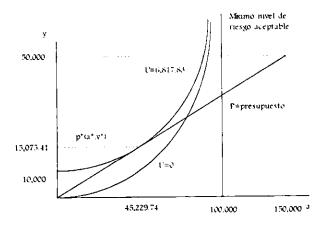
$$0.01 \times 5 \times 10^6 = 5 \times 10^4 = 50,000$$

y la variación sería de: $0.03 \times 5 \times 10^6 = 150,000$

Si por lo contrario conserva todo su patrimonio en efectivo su utilidad esperada y su variación son cero. Así, la línea que une el origen del diagrama con el punto (150,000, 50,000) es la restricción presupuestal del inversionista ya que representa todas la combinaciones de rendimiento esperado y riesgo que puede "adquirir" con sus 5 millones. La ecuación de dicha restricción presupuestal es simplemente:

$$\gamma = \frac{1}{3}\sigma$$

Con esto, el problema del inversionista se resuelve al resolver el siguiente problema de optimización:


$$\max \gamma - \frac{10^{\circ}}{10^{\circ} - \sigma} + 10^{4} \equiv U(\gamma, \sigma)$$

$$\gamma - \frac{1}{3}\sigma = 0 \equiv P$$

$$0 \le \sigma < 10^5$$

Ahora bien, se sabe que la solución se encuentra en el punto donde una curva de indiferencia es tangente a la restricción presupuestal. Para saber cuál es ese punto sólo se tiene que igualar pendientes de ambas curvas:

FIGURA 1.3

$$\frac{\partial U}{\partial \sigma} = -\frac{-10^{9}(-1)}{10^{5} - \sigma} = -\frac{10^{9}}{10^{5} - \sigma}$$

У

$$\frac{\partial P}{\partial \sigma} = -\frac{1}{3}$$

Igualando las dos expresiones:

$$\frac{10^9}{10^5-\sigma}=\frac{1}{3}$$

Es decir.

$$\sigma = 10^5 - \sqrt{3 \times 10^9} = 45,227.74$$

A este nivel de riesgo corresponde un nivel de rendimiento esperado de:

$$\gamma = \frac{1}{3}$$
 $\sigma = \frac{1}{3}$ 45,227.74 = 15,075.91

El nivel de utilidad es de:

$$U = 15,073.91 - \frac{10^{7}}{10^{5} - 45,229.74} + 10^{4} = 6,817.83$$

Finalmente, como σ^* = 0.03 x*, se tiene que la cantidad óptima de bonos que se deben comprar es

$$x^* = \frac{45,229.74}{0.03} = 1507,658$$

y el inversionista retendrá 5,000,000 -x* en efectivo. Es decir,

$$v^* = 3'492,342$$

El ejemplo ilustra los conceptos del modelo en una forma simple. El objeto es a fin de cuentas el de proporcionar una explicación económica para el fenómeno observado de la diversificación de cartera cuando hay riesgo. El ejemplo muestra cómo, ante una situación de incertidumbre, un inversionista hipotético distribuye sus recursos entre efectivo y bonos.

Es obvio que si hubiera total certeza de obtener un rendimiento de los bonos el inversionista jamás tendría efectivo si su objetivo es solamente el de maximizar utilidades.

En la vida real las cosas son por supuesto más complicadas ya que sería necesario contar con información acerca del carácter aleatorio del rendimiento para poder adoptar una buena medida de variación. Pero, más importante aún, habría que buscar un criterio menos arbitrario para elegir la función de preferencia. Además hay muchos más de dos instrumentos de inversión, cada uno con características particulares de riesgo y rendimiento.

1.3 Conceptos de Liquidez

En la sección anterior se analizó como la incertidumbre incide directamente en las utilidades de una inversión a través de movimientos aleatorios en el rendimiento que de ella se obtiene.

En el desarrollo realizado hasta aquí se ha aceptado el principio de sustituibilidad entre los distintos activos financieros, centrándose en el comportamiento de la unidad económica individual frente a las distintas alternativas brindadas por el mercado: es por consiguiente, un enfoque fundamentalmente subjetivo.

Se vio cómo el riesgo de bajo rendimiento puede obligar a una diversificación de la cartera. Sin embargo, la aleatoriedad del rendimiento proveniente de fluctuaciones en tasas de interés y precios de activos no es la única fuente de incertidumbre que puede obligar a una diversificación de la cartera. Tan importante u ocupando un segundo lugar muy cercano en jerarquía está el requisito de liquidez.

Puede haber una motivación de tipo especulativo, ya que es posible desaprovechar inversiones redituables por no tener liquidez en el momento oportuno. Sin embargo, la tenencia de activos liquidos responde principalmente a la necesidad de hacer gastos.

Difícilmente es posible imaginar un caso de un inversionista que no tenga necesidades de gastar dinero simplemente para realizar sus transacciones diarias o cumplir con ciertas obligaciones como alquileres, hipotecas, etc. El problema obviamente surge porque no es posible precisar el momento en que será necesario hacer un gasto imprevisto.

Si el monto del gasto imprevisto excede al de los activos líquidos de la cartera habrá necesidad de vender activos menos líquidos, exponiéndose a una pérdida

no planeada, ya sea porque se tengan que vender a un precio por debajo de su valor real o por incurrir en alguna cláusula penal del titulo.

Para efecto de modelado, los requisitos de liquidez inciden en primera instancia en las restricciones del modelo; pero como consecuencia, invariablemente afectan a las utilidades.

Un mal cálculo de las necesidades de liquidez puede tener uno de dos efectos:

- Si el cálculo es muy restrictivo; es decir, si se estima un requisito mayor del necesario, invariablemente significará un sacrificio en utilidades potenciales.
- ii) Si el cálculo es muy liberal; es decir, si se subestima el requisito, se puede incurrir en pérdidas innecesarias, al tener que vender activos menos líquidos a precios castigados.

Entonces, siempre es deseable diversificar la cartera para incluir activos líquidos y poder así afrontar gastos imprevistos y anticiparse a la posibilidad de futuras alternativas de inversión que sean más redituables que las actuales.

Usualmente la determinación del nivel óptimo de liquidez se ha tratado usando teoría de inventarios. El primer trabajo fue el de Baumol³. El defecto principal de estos modelos es que es difícil ampliarlos al caso de varios activos ya que hay diferentes "grados" de liquidez entre activos y el nivel óptimo depende también de las características de los activos no líquidos de la cartera. Por esta razón se prefiere utilizar para el modelado técnicas de programación matemática.

³ BAUMOL, W. The Transactions Demand for Cash; An Inventory Theoretic Aproach. "Quarterly Journal of Economics", 6 Nov 52 pp.546-556

2

Selección de la Cartera Optima

En el capítulo 1 se trató el problema de selección racional usando un enfoque microeconómico. Según la teoría analizada se vio cómo los supuestos de racionalidad que se utilizaron conducen al planteamiento del problema de elección como uno de optimización matemática. En términos del problema de cartera, se vio por medio de ejemplos pedagógicos sencillos que la aplicación de la teoría era inmediata y que, salvo en el tratamiento del riesgo, todos los elementos que intervienen en el problema son objetivos y se pueden caracterizar matemáticamente en forma explícita.

Habiendo aceptado que el problema de selección de cartera es un problema de optimización, en este capítulo se analiza un modelo específico para atacar el problema con el supuesto de incertidumbre.

2.1 Antecedentes Históricos

Los primeros intentos de aplicar técnicas cuantitativas al problema de cartera aparecen a fines de la década de los años cincuenta y principios de los sesenta coincidiendo con un avance tecnológico que ha sido definitivo a nivel mundial: la computadora.

Se desarrollaron dos corrientes principales para atacar el problema de manera rigurosa y apegada a los cánones de la teoría económica expuesta anteriormente y ambas son por medio de modelos de programación matemática.

La primera fue iniciada por H. Markowitz (*Portfolio Selection*) y es totalmente general ya que se refiere a la cartera de una empresa que puede incluir instrumentos del mercado de valores y que por fuerza tiene que tomar en cuenta en forma explícita las características de riesgo de dichos valores. El trabajo de Markowitz despertó muchísimo interés y no tardaron en aparecer artículos relacionados proponiendo perfeccionamientos y añadiendo aportaciones definitivas al trabajo, tanto para el modelo original (v.g. Pao Lun Cheng¹) como en la determinación y el análisis de información que se requiere para alimentar al modelo (v.g. Hillier²). El enfoque ha llegado a un grado de complejidad formidable, que intenta llegar a una teoría general para la evaluación de inversiones con riesgo.

El segundo enfoque tiene su origen en el trabajo de Chambers y Charnes³ aplicable a la cartera de un banco privado, y su aportación principal es precisamente el reconocimiento explícito de las características dinámicas que operan en dicho manejo de activos, las restricciones legales a que está sometido

⁴ CHENG, P.L. "Optimum Bond Potfolio Selection", Management Science, Vol 8 No.4 (jul 62)

² HILLIER, F.S. "Derivation of Probabilistic Information For the Evaluation of Risky Investments", Management Science. Abr 63 pp.443-457.

³ CHAMBERS D. y CHARNES A. "International Analisis and Optimization of Bank Portfolios", Management Science, Vol 7, No.4 (jul 61)

un banco privado y la incorporación de criterios de seguridad proporcionados por los examinadores de la junta de Gobernadores de la Reserva Federal (una prueba de suficiencia de capital y otra de liquidez).

Los primeros perfeccionamientos aparecen en Charnes y Thore⁴ en el sentido de tomar en cuenta la incertidumbre del futuro en cuanto a la captación de pasivos, demanda de liquidez y los rendimientos de los diferentes instrumentos del mercado. Además, aparecen algunas ideas novedosas de formulación intentando hacer más realista el modelo tanto en el sentido de flujos de caja como de las prácticas reales de los bancos y las empresas

En la actualidad hay una gran proliferación de modelos. Esto se debe a que a medida que avanza la tecnología de computación y la investigación en técnicas de modelación es posible hacer modelos cada vez más apegados a la realidad y adaptados al caso particular que le interesa al investigador o la empresa que lo requiere. Debido a que cada aplicación puede requerir un sesgo especial, es muy dificil hacer un modelo totalmente general, aunque se han hecho y se siguen haciendo intentos muy serios para lograrlo.

⁴ CHARNES A. y S. THOR. "Planing for Liquidity in Financial Institutions: The Chance Constrained Method". The Journal of Finance, Vol XXI (dic 66)

2.2 Diversificación

La razón de ser de la diversificación es minimizar el riesgo. Tradicionalmente la diversificación se ha entendido como mantener dentro del portafolio de inversión papeles de distintos sectores industriales, a diferente plazo, con diferentes características legales. La razón es sencilla: las diferencias inherentes a cada sector industrial y cada papel proporcionan diferentes exposiciones al riesgo por parte del inversionista. En el extremo de este concepto de diversificación, podemos afirmar que el portafolio mejor diversificado será aquel que mantenga la mayor cantidad de papeles distintos.

Sin embargo, mantener una cartera bien diversificada contempla dificultades que no se solucionan manteniendo la mayor cantidad de papeles en nuestro portafolio de inversión. En este capitulo analizaremos una noción más avanzada del concepto de diversificación, utilizando los conceptos desarrollados por Harry Markowitz⁵. El concepto de Markowitz parte de la relación riesgo-rendimiento que posee cualquier activo financiero y la actitud del inversionista hacia estas dos variables. Asumiendo que éste tomará sus decisiones de inversión de acuerdo a:

- 1. La tasa esperada de rendimiento
- 2. El riesgo derivado de la inversión

MARKOWITZ H.M. "Portfolio Selection: Efficient Diversification of Investments".

2.3 La Frontera Eficiente

Al hablar de riesgo en el capitulo 1 se mencionó que siempre existirá un elemento de subjetividad en el criterio de riesgo.

Para los efectos del presente trabajo, asumiremos las siguientes definiciones:

Riesgo de una acción: es la ausencia de certeza (o bien, incertidumbre) con relación al precio de la acción en una fecha futura; es decir, es la probabilidad de que el rendimiento esperado de una inversión no se realice y mas específicamente, la probabilidad de que el precio de la acción disminuya por debajo del precio de compra.

Rendimiento de una acción: es el producto obtenido de la inversión realizada en la acción (incluyendo los dividendos), o bien, el cambio en el precio (ajustado) de una acción en el periodo t con respecto al precio (ajustado) de la misma acción en el periodo t-l.

Toda inversión en acciones involucra la posibilidad de obtener una ganancia o una pérdida sobre el capital invertido; esto es, está sujeta a un determinado riesgo.

La teoría de carteras parte de la premisa de que todo inversionista mantiene, en mayor o menor medida un cierto grado de aversión por el riesgo, lo que de acuerdo a la definición anterior, el riesgo representa la dispersión o variabilidad de su rendimiento alrededor de su valor esperado.

El riesgo de una acción puede, ser medido estadísticamente con la varianza, σ^2 , y la desviación típica o estándar σ de los rendimientos, de tal manera que la varianza del rendimiento del mercado es igual al valor esperado del cuadrado de

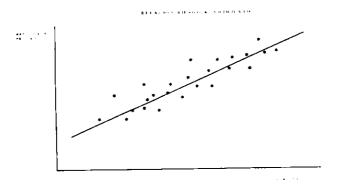
las desviaciones respecto a los rendimientos esperados. La desviación estándar es simplemente la raíz cuadrada de la varianza⁶.

En teoría se pueden graficar todos los activos financieros y sus respectivas combinaciones de riesgo-rendimiento. Decimos "en teoría" porque las combinaciones son infinitas.

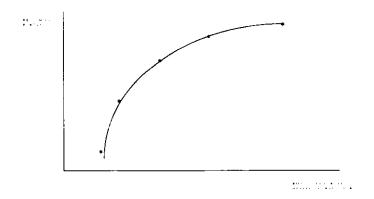
Esquemáticamente, la relación entre riesgo y rendimiento puede apreciarse claramente en la gráfica 2.1. Bajo el supuesto de que el inversionista preferirá mayor rendimiento y menor riesgo podemos definir un conjunto de portafolios que proporcionen:

- 1. mayor rendimiento por el mismo riesgo
- 2. menor riesgo por el mismo rendimiento

En general, la correlación entre riesgo y rendimiento es positiva, es decir, en la medida en que se tenga una percepción de riesgo elevado respecto a una acción, la prima o rendimiento esperado de la acción también será elevada.


Tobin señala que una consecuencia directa del riesgo es la diversificación de la cartera (de títulos), es decir, distribuir el riesgo entre varios activos de forma que las pérdidas en algunos sean compensadas y aún superadas con ganancias en otros.

El constatar que existen acciones con niveles de rendimiento y riesgo promedio diferentes entre sí y a su vez, superiores e inferiores con respecto al rendimiento y sesgo promedio del mercado sugiere intuitivamente la validez de la diversificación.


⁶ La varianza y la desviación estándar son las medidas correctas del riesgo si el rendimiento se distribuye normalmente

Por otro lado, la frontera eficiente estará definida por la curva que involucra a todos los portafolios que proporcionen la menor varianza y el mayor rendimiento. Esta curva es cóncava y no puede tener una región convexa ya que la combinación de los portafolios eficientes en los extremos (gráfica 2.2) da como resultado puntos a lo largo de la curva.

Gráfica 2.1 Relación Riesgo Rendimiento

Gráfica 2.2 La Frontera Eficiente

2.4 La Beta y El Modelo de Mercado (Single Index Model)⁷

El modelo de mercado (Single Index Model) fue desarrollado por William F. Sharpe a finales de los 60's; su trabajo, junto con los trabajos desarrollados por Lintner y Mossin se enfocan en el equilibrio general de los mercados de activos y son el fundamento del Modelo de fijación de precios de activos de capital CAPM⁸.

Existen dos hechos fundamentales que conoce por experiencia todo inversionista:

- Las variaciones de cada acción están ligadas en cierto grado a las del mercado accionario. Pocos son los valores que suben en un mercado a la baja e inversamente.
- Algunas acciones son más volátiles, más sensibles que otras a los movimientos del mercado accionario. La volatilidad de un titulo describe su grado de sensibilidad a los movimientos del mercado.

Capital Asset Pricing Model

⁷ Se le denomina Modelo de Mercado al modelo desarrollado por William Sharpe (Index Model); que sentara las bases para el posterior desarrollo del Capital Asset Pricing Model.

Esta relación entre el rendimiento de una acción y el rendimiento del mercado accionario se formaliza bajo el modelo de mercado. Este modelo relativamente sencillo, se utiliza frecuentemente por un gran número de instituciones financieras en el mundo. El razonamiento que lo sostiene es que las fluctuaciones de los precios de las acciones se deben a la influencia del mercado accionario en general y a causas específicas para cada uno de los títulos.

2.4.1 Riesgo de Mercado y Riesgo Específico

Con respecto a una acción, se pueden distinguir dos componentes del riesgo:

El riesgo único o propio que puede ser potencialmente eliminado por medio de la diversificación, que es resultado de que muchos de los peligros que rodean a una determinada empresa son específicos de la misma y tal vez de sus competidores inmediatos. Este componente del riesgo adquiere relevancia cuando el portafolio está integrado por una sola acción, pero pierde relevancia con la diversificación del portafolio.

El riesgo de mercado o riesgo sistemático que no se puede evitar con la diversificación, es resultado de la existencia de otros peligros en la economía que amenazan a todos los negocios, por lo que las inversiones están expuestas a "incertidumbres del mercado" independientemente de las acciones que integren en su portafolio. El riesgo de un portafolio diversificado depende del riesgo de mercado de los títulos incluidos en la cartera.

El determinar el riesgo de mercado de una acción es equivalente a cuantificar su sensibilidad respecto de los movimientos del mercado. A la medida del riesgo de

mercado al que nos referimos, o bien, de la sensibilidad ante cambios en el mercado, se le conoce como Beta, que es una herramienta efectiva para estructurar carteras de inversión de manera mas eficiente, es decir, para diversificar el riesgo de mercado de un portafolio.

La Beta del mercado es igual a uno, en tanto que, por ejemplo, un instrumento libre de riesgo tendrá una Beta (β) de cero. A la diferencia entre el rendimiento del mercado y la tasa libre de riesgo se le denomina prima por riesgo del mercado, que se denota por:

donde

Rm = Rendimiento del mercado Rf = Tasa libre de riesgo

En general, los precios de las acciones cuya Beta sea superior a uno $(\beta>1)$ registrarán un efecto mayor que proporcional a cambios en el mercado, por lo que se dice que es mas sensible, mientras que los precios de las acciones cuya Beta sea inferior a uno $(\beta<1)$ registrarán un efecto menor que proporcional a cambios en el mercado, o bien, será mas insensible a cambios del mercado.

El modelo de mercado indica que en un mercado competitivo la prima por riesgo esperada varía en proporción directa a la Beta, lo que se puede resumir en la siguiente expresión:

$$(R - Rf) = \beta(Rm - Rf)$$

donde

R = Tasa de rendimiento esperado de la acción

Una de las conclusiones básicas del modelo de mercado establece que los inversionistas no requieren una rentabilidad esperada adicional para cubrir el riesgo único de la empresa. El único riesgo que inquieta a los inversionistas es el riesgo que no pueden diversificar (representado por el riesgo de mercado).

2.4.2 Calculo de Beta

Sharpe propone enfocarse en la relación existente entre el rendimiento de una acción y el riesgo de mercado, representada por la siguiente ecuación:

$$Ri = \alpha + \beta iI + ei$$

donde:

Ri = Rendimiento esperado de la acción i

 αi = coeficiente

 βi = Beta o pendiente de la recta ajustada. Cuantifica como cambia el rendimiento de una acción en particular, al variar el índice del mercado. Entre mayor sea la β , mayor será el riesgo de invertir en esa acción, y a su vez, mayor el rendimiento esperado.

I = Rendimiento esperado del índice de mercado

ei ≃ error estándar (riesgo no sistemático)

El método de mínimos cuadrados ordinarios además de los parámetros de la regresión, arroja los siguientes datos:

 R^2 : Esta medida estadística obtenida de la regresión es el porcentaje de las variaciones de los rendimientos de una acción que se explica por los movimientos del mercado. Es, por lo tanto, el porcentaje del riesgo total de una acción que es riesgo de mercado.

2.4.3 Construyendo el Portafolio Optimo

Aplicando el modelo de mercado de Sharpe, el factor determinante para incluir una acción dentro de nuestro portafolio de inversión esta representado por el premio en el rendimiento esperado de beta:

$$\frac{Ri - Rf}{\beta i}$$

donde:

Ri = Rendimiento esperado de la acción i

 βi = Beta o pendiente de la recta ajustada.

Rf = Tasa libre de riesgo

Si las acciones son sorteadas en orden descendente por el premio en el rendimiento esperado de beta, el orden representara la deseabilidad de la acción

en nuestro portafolio. El número de acciones en la cartera dependerá de la tasa mínima de rendimiento propuesta⁹; en donde todas las acciones por arriba de esta tasa serán incluidas dentro de nuestro portafolio de inversión.

En resumen, para determinar que acciones formaran parte de nuestro portafolio de inversión habrá que:

- Calcular la prima sobre beta para cada acción y sortearlos en orden descendente.
- 2. Estimar una tasa mínima de rendimiento para nuestro portafolio ,C*, e incluir en el a todas las acciones que se encuentren por arriba de esta tasa.

Este procedimiento es muy sencillo. Una vez que se ha determinado C* los papeles que se incluirán en el portafolio pueden ser seleccionados. De igual manera, el monto a invertir es muy fácil de determinar como en breve examinaremos.

Sorteo de los datos en orden descendente

En las tablas 2.1 y 2.2 presentamos un ejemplo que ilustra el procedimiento. La tabla 2.1 contiene los datos necesarios para aplicar un sorteo que determinará nuestro portafolio optimo. Esta es la corrida normal que resulta de aplicar el modelo de mercado, existen 10 papeles que han sido evaluados y sorteados en orden descendente de acuerdo a la prima sobre beta, $\frac{R_i - R_F}{\beta_i}$, y se han usado números que hacen más sencillo entender el procedimiento. La aplicación del

Cutoff Rate

punto 2 nos indica que hay que comparar la prima sobre beta, $\frac{R_i-R_F}{\beta_i}$, con la tasa mínima de rendimiento, C^* . Por el momento supondremos que $C^*=5.45$. Examinando la tabla 2.1 podemos observar que los papeles del 1 al 5 tienen un coeficiente $\frac{R_i+R_F}{\beta_i}$ mayor a C^* ; mientras que los papeles 6 a 10 tienen un coeficiente menor. Así, nuestro portafolio optimo estará conformado por los papeles 1 a 5.

TABLA 2.1

Datos necesarios para determinar el portafolio optimo RF = 5%

	Rendimiento			Riesgo no	
	medio		Beta	sistemático	
Papel	$ar{R}_i$	$R_i - R_F$	β,	σei²	$\frac{R_i - R_F}{\beta_i}$
1	15	10	1	50	10
2	17	12	1.5	40	8
3	12	7	1	20	7
4	17	12	2	10	6
5	11	6	1	40	6
6	11	6	1.5	30	4
7	11	6	2	40	3
8	7	2	0.8	16	2.5
9	7	2	1	20	2
10	5.6	0.6	0.6	6	1

Calculo de la tasa mínima de rendimiento (Cut-off Rate) C*

Como discutimos anteriormente, C* es la tasa mínima de rendimiento. Todos los papeles que tienen una prima sobre beta por arriba de la tasa mínima serán seleccionados en el portafolio de inversión optimo. El valor de C* es calculado tomando en cuenta a todos los papeles analizados para poder pertenecer el portafolio optimo.

Dado que los papeles han sido sorteados previamente en orden descendente sabemos que si un papel en especial pertenece al portafolio optimo, todos los papeles sorteados arriba de el también pertenecerán al portafolio optimo. El siguiente paso es calcular valores para Ci, que serán candidatos para C^* . Sabremos que hemos encontrado la Ci optima (C^*), cuando todos los papeles utilizados en el calculo de Ci tengan una prima sobre beta por arriba de Ci. Por ejemplo, la columna 7 de la tabla 3.2 nos muestra las Ci calculadas para cada papel. Analizando la tabla, observamos que C_* , es el único valor de Ci para el cual todos los papeles utilizados en el calculo de i (1 a 5 en la tabla) mantienen una prima sobre beta por arriba de Ci, es decir, C_* actuará como C^* .

TABLA 2.2 Datos necesarlos para determinar la tasa mínima de rendimiento con $\sigma m^2 = 10$

Papel	<u>R, - R,</u> β,	$\frac{(R_i - R_E)\beta_i}{\sigma e i^{\frac{3}{2}}}$	$\frac{\beta_i^2}{\sigma e i^2}$	$\sum_{i\neq 1} \frac{(R_i - R_F)\beta_i}{\sigma e i^2}$	$\sum_{i=1}^{r} \frac{\beta_i^2}{\sigma e i^2}$	C,
1	10.00	0.20	0.02	0.20	0.02	1.67
2	8.00	0.45	0.06	0.65	0.08	3.69
3	7.00	0.35	0.05	1.00	0.13	4.42
4	6.00	2.40	0.40	3.40	0.53	5.43
5	6.00	0.15	0.03	3.55	0.55	5.45
6	4.00	0.30	0.08	3.85	0.63	5.30
7	3.00	0.30	0.10	4.15	0.73	5.02
8	2.50	0.10	0.04	4.25	0.77	4.91
9	2.00	0.10	0.05	4.35	0.82	4.75
10	1.00	0.06	0.06	4.41	0.88	4.52

Para un portafolio dado, Ci esta definido por:

$$C_{i} = \frac{\sigma_{m}^{2} \sum_{i=1}^{i} \frac{\left(R_{i} - R_{F}\right) \beta_{i}}{\sigma_{ci}^{2}}}{1 + \sigma_{m}^{2} \sum_{j=1}^{i} \left(\frac{\beta_{i}^{2}}{\sigma_{ci}^{2}}\right)}$$
(2.1)

donde

 σ_m^2 = varianza del índice de mercado

 σ_{ij}^2 = varianza del papel que no está asociada a los movimientos del mercado (riesgo no sistemático)

La ecuación 2.1 puede ser simplificada de la siguiente manera:

$$C_{i} = \frac{\beta_{iP} \left(R_{P} - R_{F} \right)}{\beta_{i}} \tag{2.2}$$

donde:

 β_{iP} = Cambio esperado en la tasa de rendimiento del papel *i*, asociado con el cambio de 1% en el rendimiento del portafolio optimo.

R, = Rendimiento esperado en el portafolio optimo

Por supuesto, estas dos variables solo se conocerán hasta tener estructurado nuestro portafolio óptimo. Por lo tanto, la ecuación 2.2 no puede ser utilizada para calcular *Ci*. Sin embargo, la importancia de esta ecuación radica en su interpretación económica de su derivación. Hay que recordar que los papeles son seleccionados en la medida que:

$$\frac{R_i - R_F}{\beta_i} \rangle C_i$$

sustituyendo en la ecuación 2.2 tenemos:

$$(R_i - R_F) \rangle \beta_{iP} (R_P - R_F)$$

El lado derecho de la expresión anterior es el rendimiento esperado de un papel particular basado solamente en el comportamiento del portafolio óptimo. El

término del lado izquierdo nos indica el rendimiento estimado del analista para un papel en particular. Si el análisis de un papel particular le indica al portfolio manager que el papel se comportará mejor de lo que esperamos, basado en su relación con el portafolio óptimo, el papel tendrá que ser seleccionado dentro del portafolio.

Determinación de la estructura porcentual del portafolio óptimo

Una vez determinado nuestro portafolio optimo solo nos queda calcular el porcentaje a invertir en cada papel:

$$X_i = \frac{Z_i}{\sum_{i=1}^{N} Z_i} y.$$

donde:

$$Z_i = \frac{\beta_i}{\sigma e i^2} \left(\frac{R_i - R_F}{\beta_i} - C^* \right)$$
 (2.3)

La ecuación 2.3 nos indica el peso relativo que deberá tener cada instrumento dentro de nuestro portafolio óptimo. La suma de las Zj nos deberá dar uno. Hay que notar que la varianza de cada papel σ_{ci}^2 juega un papel muy importante para determinar el monto que se habrá de invertir en cada instrumento.

2.2.5 La Beta del Portafolio

Sharpe afirma que una adecuada diversificación puede reducir el riesgo no sistemático de un portafolio a cero, promediando los riesgos no sistemáticos de cada papel que componen el portafolio. El riesgo sistemático, que es determinado por el comportamiento del mercado, no puede ser eliminado por la diversificación. Es decir, el modelo de Sharpe considera que el riesgo sistemático es la variable más importante, y por lo tanto su calculo, que está representado por la beta, β.

De acuerdo con el modelo, la contribución de cada papel al riesgo del portafolio está medida por la beta de ese papel. Por lo tanto, la beta de un portafolio estará determinada por el promedio ponderado de las Betas individuales de los papeles que conforman al portafolio.

Mercados Eficientes

De acuerdo con Elton y Gruber (1979), cuando uno se refiere a un *Mercado Eficiente*, se supone que la información reciente que atañe a este es amplia y rápidamente accesible a un bajo costo para los inversionistas, y esta información es incorporada en los precios de las acciones en un corto tiempo. De esta forma, un mercado es eficiente si no existe algún tipo de información que permita conocer el futuro comportamiento del mercado, de tal manera que los precios de las acciones incorporan toda la información existente sobre cada una de ellas, siendo muy difícil detectar el momento específico para invertir en acciones que provean altos rendimientos o evitar invertir en acciones que den bajos rendimientos.

Las hipótesis de mercados eficientes se dividen en tres grupos según la fuerza de cada una de ellas; a estas corresponden pruebas de acuerdo con los diferentes tipos de información. La primera es la hipótesis débil, en la que la información analizada es la secuencia de movimientos pasados en los precios de las acciones. Por lo tanto, sus pruebas correspondientes sirven para ver si toda esta información es incorporada totalmente en precios actuales. Las siguientes pruebas, correspondientes a la hipótesis semi-fuerte, se utilizan para ver si toda la información pública acerca de las empresas es incorporada totalmente en los precios de las acciones. Por último, la hipótesis fuerte, cuyas pruebas son aquellas que muestran si toda la información tanto pública como privada de las empresas es totalmente incorporada en los precios de las acciones.

En un mercado eficiente existe una infinidad de inversionistas con objetivos similares y con acceso a la misma clase y cantidad de información. Todos los

participantes en el mercado tienen como objetivo obtener el mayor rendimiento con el menor riesgo posible.

Eficiencia del Mercado Mexicano de Valores

Los estudios que se han realizado para determinar la eficiencia del mercado de valores mexicano en las diferentes escuelas del país no nos dan indicios de que el mercado fuera ineficiente, aunque si varió la eficiencia encontrada con el paso de los años en cada estudio. Las tesis que se pudieron localizar y estudiar abarcan un rango de por lo menos 10 años (1981-1991). Este concepto es clave, ya que de encontrarse ineficiencia en el mercado el estudio realizado en el presente trabajo perdería en automático toda validez, ya que uno de los supuestos sobre los que descansa la Teoría de Portafolios es la eficiencia de los mercados.

Es importante apuntar que para aplicar el modelo a otros mercados, como el de dinero o cambiario primero habría que determinar su eficiencia.

Llaguno V. Mauricio en su tesis "Aplicación de Pruebas Estadísticas al Mercado de Valores Mexicano Bajo el Marco Teórico de Eficiencia de Mercados" realizada en 1991 (ITAM) para obtener el título de Lic. en Actuaría, determinó que el mercado era eficiente en su forma semi-fuerte y que por lo tanto era posible aplicar la Teoría de Portafolios para determinar una cartera óptima de inversión. En este trabajo se aplicó el CAPM como base de la metodología seguida para demostrar que existe evidencia suficiente de que los precios de las emisoras que conformaban el Índice de la Bolsa Mexicana de Valores, en 1990, reflejaban la información pública sobre las acciones estudiadas.

Tres tesis mas, realizadas de 1981 a 1985 determinaron que el mercado de valores era eficiente en su forma débil.

Esteniou Ortega E. en su trabajo "La Eficiencia del Mercado de Valores Mexicano", 1981, ITAM, estudió el comportamiento del mercado de 1979 a 1980, concluyendo que a pesar de existir correlación en varias emisoras el mercado no era ineficiente.

Rivera Meana M. en "Análisis de la Eficiencia del Mercado Mexicano de Valores", 1985, ITAM, concluye que el mercado es eficiente en su forma débil a pesar de que es un mercado poco desarrollado, y que las imperfecciones que pudiera mostrar se deben a que su tamaño es limitado.

Mejía Montoya J. en "La Eficiencia del Mercado Accionario en México", 1991, UDLA, analiza el mercado entre 1988 y 1990, determinando que el mercado era eficiente en su forma semi-fuerte.

Hipótesis

El crecimiento de los mercados, la globalización de estos y el número de instrumentos y variables a considerar para realizar inversiones nos conduce invariablemente a tratar de realizar cálculos de riesgo-rendimiento para evaluar las distintas alternativas que se nos presentan.

Sin embargo, cuando hemos decidido "formalizar" nuestra toma de decisiones de inversión, nos enfrentamos con otros problemas: ¿que modelo utilizar?, ¿cuál es el más sencillo y práctico?, ¿se aplica a nuestro mercado?. En fin, una interminable lista de preguntas sale a nuestro paso y complica nuestra elección.

De acuerdo a las diferentes pruebas sobre la eficiencia en el Mercado de Valores Mexicano, previamente documentadas, me permito formular la siguiente hipótesis:

Debido a que el mercado mexicano es eficiente en su forma semifuerte para el período analizado. "Es posible construir un portafolio de inversión óptimo bajo los conceptos de la teoría moderna de portafolios (análisis de la relación riesgorendimiento). Para probar lo anterior, se utilizará el modelo desarrollado por William Sharpe (Single Index Model) bajo tres escenarios distintos, dando seguimiento a sus resultados durante los 5 meses siguientes".

4

Aplicación del modelo

Aunque la construcción de un portafolio eficiente debe incluir un universo más amplio de alternativas de inversión, en este trabajo solo se toma en cuenta a las acciones cotizadas en la Bolsa Mexicana de Valores e incluidas en la ponderación del IBMV para simplificar los cálculos y adaptarnos de mejor manera a las necesidades actuales de la mayoría de los inversionistas, que para el caso de México todavía son poco sofisticados.

En la actualidad las Betas se pueden calcular con un sinnúmero de variables adicionales y la inclusión de otros instrumentos como: opciones, warrants, swaps, etc. Pero en la practica es más fácil determinar para un inversionista la cantidad a invertir en acciones y aplicar métodos como el descrito para encontrar un portafolio eficiente en instrumentos tradicionales del mercado de capitales.

El modelo también se puede adaptar a las restricciones que uno desee, como puede ser el nivel de riesgo que el inversionista desea enfrentar en términos de la Beta global del portafolio. Así un inversionista puede determinar de antemano el riesgo, la cantidad máxima o mínima a invertir en cada acción o el número de acciones que desea en su portafolio.

4.1 Desarrollo del Modelo

La versión del modelo de optimización de carteras descrito en la sección precedente se aplicó en el caso de México para el período 1992-1995. Se tomó como base este período para contar con una cantidad mayor de datos al realizar los cálculos, ya que el desarrollo del mercado de valores mexicano aún es incipiente y solo se podrían obtener series de datos más antiguas de unas cuantas acciones, lo que reduciría de manera significativa las opciones de inversión disponibles. No se aplicaron restricciones adicionales al modelo y los resultados obtenidos se derivan de su aplicación directa.

Para el calculo de las regresiones se utilizaron los rendimientos nominales mensuales de cada acción que en noviembre de 1995 se tenían contempladas para determinar el IBMV, durante el periodo 1992-1995 como variable dependiente (anexo 1). Como variable independiente se utilizaron los rendimientos nominales mensuales de dos índices:

- 1. El índice de precios de la bolsa mexicana de valores IBMV.
- 2. El indice México INMEX

El uso de dos índices para determinar la Beta de cada acción se realizó por la diferencia existente entre las metodologías para su calculo (anexo 2).

Para complementar el modelo desarrollado por Sharpe se incluyó una variable que nombramos "calificación del sector por análisis técnico". Esta variable tiene como objetivo ponderar el rendimiento esperado de la acción, *Ri*, de acuerdo a las perspectivas de los analistas técnicos en el mediano plazo, es decir un periodo de 2 años en promedio.

Se tomó la decisión de incluir esta variable ya que el mercado de valores mexicano ha experimentado grandes fluctuaciones en los últimos 15 años, provocadas por especulaciones y una gran concentración de la operatividad en unas cuantas acciones. Es hasta hace unos 5 años cuando la cantidad de acciones con buena bursatilidad se ha incrementado. Sin embargo, la variabilidad en los rendimientos nominales de las acciones ha hecho del análisis técnico una pieza fundamental en la toma de decisiones dentro de una cartera de inversión.

En los cuadros 4.1 y 4.2 se detallan los portafolios de inversión eficientes arrojados por el modelo afectado por la variable de análisis técnico.

El cuadro 4.3 nos muestra el portafolio de inversión eficiente cuando el rendimiento esperado de la acción no se modifica con la valoración del análisis técnico.

Los supuestos utilizados para realizar los cálculos son los siguientes:

- 1. Rendimiento libre de riesgo = 20%
- 2. Rendimiento esperado del mercado = 30%
- 3. Varianza del índice = 20%

Es importante señalar que estos supuestos pueden variar de acuerdo a cada analista ya que se fundamentan en perspectivas de mercado particulares. Y evidentemente, son vitales en la determinación de la cartera eficiente.

Čuadro 4.1

Rf = 20.00

Rendimiento esperado del mercado =

30.00

Var IBMV = 20.00

	Calif				Riesgo no									
	Sector	Rend			sist (Vart		(Ri-Rí)	ļ.	_	Sum (Ri-		Cutoff	. 1	x
Emisora	A. Tec	f.sp Ri	Ri Rf	Beta	8	Bı	Bi S	Bi2 S	Bi S		B(! S	Rate Ci	ζ_	
AHMSA	1.30	40.16	20.16	0.81	561 12	24.86	0.03	0.00	0.00	0.03	00 (1	0.57	19.0	2.01
GMEXICO B	1.30	37.14	17.14	н к2	159 61	21 (9)	0.09	O ()61	0.01	0.12	0.01	2 11	0.03	4.18
GCARSO A1	1 20	45.59	25.59	1 23	33.85	20 92	0.93	0.04	0.04	104	0.05	30.46	0.20	29.13
GMODELO C	1 30	36.99	JA 99	0.84	98.71	20 13	z 13	0.01	0.01	1.19	0.06	11.12	0.04	5 8 8
CEMEX.A	1.20	43.12	23,12	1 19	52.63	19,43	0.52	0.03	0.02	17]	80,0	12.79	0.09	13 21
CEMEX B	1 20	43.22	23 22	1.29	42 88	[9,30]	0.65	0.03	0.03	2.36	0.12	14.11	0.11	16.15
GCC.B	1.10	46.80	26 80	1.36	117.90	19 36	631	0,02	0.01	2 67	043	j.4.58	0.05	6.73
CEMEX.CPO	1 20	42.87	22.87	1.18	47 12	19,34	n C	0 03	0.03	3.25	u 16	15.24	0 10	14.32
MODERNA.A	1 10	36.30	16.30	0.95	139.56	17.12	9.10	0.91	0.01	3 34	0.17	15,29	0.01	1.43
MASECA B	1.18	37.33	17 33	1 02	50 u5	16.98	0.35	0.02	0.02	3.69	0.19	15.43	0.03	4.41
TTOLMEX.B2	1 20	36 85	16.85	1 02	115 62	16.57	0.15	0.01	0.01	3.84	0.20	15.47	0.01	1 39
DESC B	1.15	36 62	16.62	1 01	119.27	16.43	1114	0.01	0.01	3 98	921	15 <u>51</u>	0 01	1 16
KOF.L	1 10	34.41	14 41	0.98	65.17	14.76	0.22	0.01	0.01	4.20	0.2	15.47	(0.01)	
KIMBER.A	1.20	31.87	1187	0.81	27.84	14.63	0.35	0.02	0.03	4.54	0.25	15.40	(0.03)	-
APASCO	1 10	33,72	(3.72	0.98	52.59	14.03	n 25	0.02	0 02	4.80	0.26	15.32	(0.03)	
HYLSAMX.B	1 30	28 24	8.24	0.67	130,87	12.24	8 04	0.00	0.01	4 84	0.27	15.29	(0,02)	
SITUR B	0.80	35.59	15 59	1.54	83 66	10.14	0.79	6.03	0.02	5 13	0.29	14 87	(0.10)	
SIDEK.B	0.60	32.75	12.75	139	132,88	9.17	0.13	0.01	0.01	5.26	9.31	14.63	(0.07)	
FEMSA.B	0 90	30.14	10.14	1.11	36.04	9.10	0.31	0.03	0 03	5.58	034	14.15	(0.20)	₩-
TLEVISA C	1 10	27 37	7.37	0.82	47_46	9 (10)	0.13	10.01	0.02	5.70	0.36	13 97	(0.11)	├─-
TELMEXIL	1.30	25.74	5.74	0.65	31.86	8 84	0/12	0.01	0 02	5 82	937	13.81	(0.14)	├
GGEMEX.C	0.70	32.05	12.05	1 43	89 40	8.41	0.19	0.02	0.02	6.01	0.30	13 <u>53</u>	(0.11)	
CIFRA B	0.90	28 33	8.33	1.02	62 06	8.14	0.14	0.02	0.02	6 15	0.41	13.33	(0.12	
CIFRA C	0.90	28.04	K 04	1.90	55 52	8.00	0.15	9.02	0.02	6.30	0.43	13.13	(0.14	
ICA	0.80	29.71	9.71	1 22	78 03	7.96	0.13	0.02	0.02	6 45	0.45	12.93	{0.12	Ψ—
ALFA.A	1 10	24.96	196	0.68	78 07	7 31	6.04	0.01	0.01	6.49	0.45	12.87	(0.07	4
AEROMEX.C	0.80	25.15	5.15	1.20	346.54	4.29	0.02	0.00	0.00	6.51	0.46	12.80	(0.04	4
BANACCIL	0.50	23.21	3.21	1 53	99.02	2.10	0.05	0.02	0.03	6.50	0.48	12.32	(0.21	
CYDSASA.A	1.20	21.05	1 05	0.55	194.58	1.93	8 00	0.00	0.00	6.56	0.48	12.29	(0.04	1
VITRO	1.00	21.40	(40	0.74	49 32	1,99	0.02	6.0[0.02	6.58	0.49	12.08	(0.21	4
BANACCI B	0.50	21,27	1 27	1 39	90.31	0.91	0.02	0.03	0.0	9.60	9.5	11.65	(0.23	4
PE&OLES	1.20	20.24	0.24	0.43	98.61	0.55	0.00	0.00	0.00	6.60	0.53	11.62	(0.07	4
GFB B	0.5	19.96	(0.04	1 39	170 11	(0.03	(0.00	0.01	0.0	6.60	0.53	11.39	(0.13	4
GFB A	0.5	16.66	(3.34) 1.19	199 6	(2.81	0.0	9 0 01	9.0	6 5	0.5	1 11.22	(0.11	4
GSERFIN B	0.5	11.65	(8.35) 0.94	118.68	(9.2)	n to re	9.91	0.0	6.5	2 6 5	89,01	(0.19	9

Beta portafolio

1.14

Rendimiento esp. portafolio

34 27

Cuadro 4.2

Rf = 20.00

Rendimiento esperado del mercado =

30.00

Var IBMV = 20.00

	Calif				Rickgo no									
	Sector	Rend			soci (Var)		(R)-R1)			Sum (Ri-	Sum	Cutoff	z	x
Emisora	A Tet	Esp R⊨	Ri-Rf	Bera		В	B ₁ S	8-2-8		RíjBi S	B (12.5	Rate Ci		
AHMSA	1 30	43 73	23.73	0 91	555 93	26 17	0.04	0.00	0.00	0.04	0.00	0.75	0.02	2.48
GMEXICO.B	1 30	39.61	19.81	0 89	154 77	22 28	6.11	0.01	0 01	0.15	0.01	2 69	0.04	5.38
GÇARSO A1	1 20	48 21	28 21	1 30	30.10	21.67	1 22	0.06	0.04	1 37	0.06	12 16	0 24	36.58
GMODELO C	1 30	38 98	18 98	0 90	96 77	21	218	0 01	0.01	1 55	0.07	12 78	0.05	7.08
GCC 8	1,10	48 94	28 94	1 45	117.61	1988	0.36	0 02	0 01	1.91	0 09	13 70	0.05	7.16
CEMEX B	1.20	43 58	23 58	1 2	53 38	1949	0 53	0 03	0 02	2.44	0.12	14 65	0 08	11.77
CEMEX.A	1.20	43 32	23 32	1 20	63 88	1948	0 44	0 62	0.02	2 88	0 14	15.22	0.06	9.70
CEMEX.CPO	1 20	43 15	23 15	1 *9	57 77	19 42	3.48	0 02	3 02	3 36	0 16	15 70	0 07	10.49
MODERNA.A	1 10	38 94	18 94	1 04	152.64	18 25	0 13	0.01	0.01	3 48	0 17	15.79	0.02	2.27
DESC.B	1 15	39 24	19 24	109	113 46	17 59	0.0	0.01	0.01	3 67	0 18	15.87	0 02	2.27
MASECA.B	1 18	38 41	18 41	1 05	53 95	17 46	0.36	0.02	0 02	4.03	0.20	16 00	0.03	4.22
TTOLMEX B2	1.20	36 79	16 79	1 02	125 12	16 51	0 14	0.01	0.01	4.17	0.21	16 02	0 00	0.60
KOFL	1.10	36 92	16 92	1 06	59 23	15 99	0.30	0 02	0.02	4,47	0 23	16 01	(0 00)	ļ
KIMBER.A.	1.20	33.82	13 82	0.87	25 26	15.89	0.48	0.03	0 03	4.94	0 26	16 00	(0.00)	
APASCO	1 10	33 77	13 77	0 98	60 76	14 05	0 22	0 02	0.02	5.17	0 27	15 91	(0.03)	ļ
HYLSAMX B	1.30	28 96	8.96	0 69	132.56	12.93	0.05	3,00	0.01	5 21	0 28	15 87	(0.02)	
TELMEX L	1.30	29 42	9 42	0.75	23 43	12 57	0 30	0 02	0.03	5 5 1	0 30	15 65	(0 11)	
SITUR B	0 80	36 77	16 77	1 59	89.54	10 52	0 30	0.03	0.02	5 81	0 33	15 27	(0.10)	<u> </u>
TLEVISA.CPO	1.10	28.63	8 63	0.86	47 46	10.02	0 15	0.02	0.02	5.97	0.35	15 06	(0.11)	<u> </u>
CIFRA B	0.90	30.63	10 63	1 12	53 95	9.52	0 22	0.92	0.02	6 19	0 37	14 75	(0 13)	1
FEMSA B	0.90	30 88	10 88	1 15	41 10	9 4 9	0 30	0 03	0 03	6 49	0 40	14 38	(0.18)	
SIDEK.B	0.80	33.04	13 04	141	146 46	9 27	0 13	0.91	0.01	6.62	0 41	14,23	(0.06)	-
CIFRA.C	0.90	29.96	9 96	1 08	50 37	9.20	0.21	0.02	0.02	6,83	0 44	13.99	(0 15)	!
GGEMEX.C	0.70	33 05	13 05	1 49	93.87	8 77	0.21	0 02	0.02	7.04	0.46	13,75	(0 11)	.
ICA	0.60	30.00	10.00	1 24	88 27	8 09	0 14	0.02	0 01	7 18	0 48	13 <u>57</u>	(0.11)	!
ALFA.A	1.10	25 33	5.33	0.69	80.73	7 71	0.05	0.01	0.01	7.22	0.49	13.50	(0.07	4
PEAOLES	1.20	23 58	3 58	0 53	9197	6.75	0 02	2.00	0.01	7 25	0.49	13.46	(0.05	Ц_
AEROMEX.CP	0.80	23.66	3.68	1 14	372.85	3 22	0.01	0.00	0.00	7.26	0 49	13.40	(0.04	4
BANACCIL	0.50	23 65	3 65	1 57	109 81	2 32	0.05	0 02	0.01	7 31	0.51	12.96	(0.20	4
VITRO	1.00	21.74	1.74	0.76	52.59	2 30	0.03	0.01	0.01	7,33	0.52	12.76	{0.20	4
CYDSASAA	1 20	21 09	1.09	0 55	197.14	1 99	0 00	0 00	0.00	7 34	0 53	12 73	(0.04	4
BANACCIB	0.50	1	1.63	1 43	99.98	1.14	0.02	0.02	0.01	7.36	0.55	12.33	(0.21	4
GFB.B	0.50	1	0.17	1 41	182.43	0 12	5 00	0.01	0 01	7 36	0.56	12.11	(0.12	4_
GFB.A	0.50		1	1 19	212.00	(2.82	(0.02) 0.01	0.01	7,34	0.56	11.95	₹0.11	<u>بل</u>
GSERFIN B	0.5		-		126.11	(9 29) (0.0E	0.01	0.01	7 28	0 57	11 73	(0.18	سلد

Beta portafolio

1 20

Rend. esperado portafolio

35.91

ESTA TESIS NO DEDE SALIR GE LA BIBLIOTECA

Cuadro 4.3

DATOS REQUERIDOS PARA CONSTRUÍR EL PORTAFOLIO OPTIMO (INMEN)

Rf = 20.00

Rendimiento esperado del mercado =

30.00

Var 1BMV = 20.00

	Calif.				Riesgo no									
	Sector	Rend			sist. (Vari		(Rs-Rt)			Som (Ri-		Cutoff		: I
Emisora	A.Tec	Esp. Rı	Rt-Rf	Beta	S	Bi	B) S	Bi*2 S	B ₁ S	Rr)BıS	Bin2 S	Rate Cı	_Z	_x
GGEMEX.CPO	1.00	41 01	24.94	1 43	89.40	17.41	0.40	0.02	0.02	0.40	0.02	5.48	0.07	15.51
BANACCIL	100	46.18	26 18	1.53	90 02	17 10	0.40	0.02	0.02	0.80	0.05	8.33	0.07	13.94
GCC B	1.00	42 64	22,64	+ 38	117.90	16.36	19.27	0.02	0.01	1 07	0.06	9.48	0.04	8,72
SITUR B	1 00	44.82	24 82	154	83.66	16 14	0.46	603	0.02	1 53	0.09	10.81	0.06	12.81
BANACCI.B	1 00	42.16	22 16	1 39	90.31	15.91	0.34	502	0.02	1 XT	0.11	11 49	0.05	0.99
AHMSA	1 00	32 86	12.66	0.81	561 12	15 Ro	0.02	0.00	0.00	1.89	0.11	11.52	0.00	0.92
SIDEK.B	1.00	41 10	21.40	139	132.88	15.17	0.22	0.01	0.01	211	013	11.82	0 02	5.13
GFB.B	1.00	40.74	20.74	139	170.11	1497	0.17	0.04	0.01	2.28	0.14	12.00	0.02	3.65
GCARSO A1	1.00	38 25	18 25	1.22	33.85	14.92	() fife	6.04	0.04	2.94	0.18	12.56	0.07	15.79
MODERNA A	1 00	33,44	13 44	0.95	159.56	14 12	. 0.08	0.01	0.01	3.02	0.19	12 59	0.01	1.59
ICA	1.00	37 04	17.94	1.22	78.03	13.96	0.27	6.02	0.02	3.28	0.21	12.69	0.02	3.63
CEMEX A	1.00	35.98	15 98	1.19	52.63	13.43	0.36	0.03	0.02	3.64	0.24	12.76	0.01	2.71
CEMEX B	1.00	36.04	16 04	1.20	42.88	13.39	0.45	0.03	0.03	109	0.27	12.83	0.01	3.10
CEMEX CPO	1 00	35 77	15 77	ijЯ	47 12	114	0.40	0.03	0.03	4 49	0.30	12.87	0.03	2 52
GFB.A	1.00	34.51	14.51	1.19	199.64	12.19	0.09	9,01	0.01	4 57	0.31	12.86	(0.00)	Щ.
FEMSA B	1 00	33.48	13.48	1.11	36.04	12.10	0.42	0.03	0.03	4.99	0.34	12,79	(0.02)	
GMEXICO B	1.00	29 80	9.80	0.82	159.61	12.00	0.05	0,00	0.01	5 04	0.34	12.78	(0.00)	Ш
DESC.B	1 00	32 07	12 97	1,01	119.27	11 93	0.10	0.01	0.01	5 14	0.35	12.77	(0.01)	
KOFL	100	31 48	11.48	0.98	65.17	11.76	612	601	0.01	5 32	0.32	12.73	(0.02)	lacksquare
MASECA B	100	31.82	11.82	1.02	50.65	11.58	0.24	0.02	0 02	5 55	0 39	12,68	(0.03)	Ш
CIFRA B	1 00	31 40	11.40	1.02	62.06	11.14	0.19	0.02	0.02	5.74	0.41	12.62	(0.03)	lacksquare
GMODELO.C	1 00	29 39	0 39	0.84	98.71	11.13	0,08	0.14	0.01	5 82	0.41	12,60	(0.01)	Ш
APASCO	100	30.79	10.29	0.98	52.59	11.05	0.20	0.02	0.02	6 02	0.43	12.54	(0.03)	
CIFRA C	1 00	11.05	11 05	1 50	55.52	11.00	9.20	0.62	0 02	6.22	0.45	12.48	(0.03)	
TTOLMEX.B2	1.00	30 75	10.75	1 02	115.62	10.57	0.09	0.01	0.01	6 32	0.46	12 45	(0.02)	
AEROMEX CP	1 00	32 36	12 36	1.20	346.54	10.29	0.04	0.00	0.00	6 36	0.46	12.43	(0.01)	Ш
KIMBER.A	1 00	27.01	701	0.81	27.84	8.63	0.20	0.02	0.03	6.56	0.49	12.26	(0.12)	
TLEVISA CPO	1.00	24 92	4.92	0.82	47.46	6.00	0.08	4 01	0.02	6.65	0.50	12.10	(0.12)	
GSERFIN.B	1,00	25.20	5.20	0.90	118.68	5.76	0.04	0.01	0.01	6.69	0 51	12.02	(0.05)	
ALFA A	1.00	22.92	2.92	0.68	78.07	4.31	0.03	0.01	0.01	6.71	0.51	11,94	(0.07)	
HYLSAMX.B	1.00	22.18	2.18	0.67	139.87	3,24	0.01	0.00	0.01	6.73	0.52	11.89	(0.05)	
VITRO	1.00	21.40	1.40	0.74	49.32	Į ×ĸ	0.02	0.01	0.02	6.75	0.53	11.69	(0.17)	
TELMEX.L	1.00	19 90	(0.10)	0.65	31.86	(0.16)	(0.00)	0.01	U 02	6.74	0.54	11.43	(0.27)	
CYDSASA A	1.00	17.78	(2.23)	0.55	194.58	(4.07)	(0.01)	0.00	0.00	6.74	0.54	[1.39	(0.05)	
PEAOLES	1.00	17.65	(2.35)	0.43	98.61	(5.45	(0.01)	0.00	0.00	6 73	0.54	13.33	(0.08)	

Beta portafolio

1.37

Rendimiento esp. portafolio

41.10

5

Análisis de los resultados

El modelo de optimización de portafolios desarrollado por Sharpe se aplicó para México en el periodo 1992-1995 con las acciones que a noviembre de 1995 se utilizaban para el calculo del IBMV. Las regresiones para el calculo de las Betas se realizaron con datos mensuales de rendimientos para cada papel; como variable independiente se utilizaron dos índices de mercado calculados de manera distinta: el IBMV y el INMEX.

Se utilizaron dos índices con metodología diferente para determinar el efecto que esto tendría sobre el modelo al realizar los cálculos. En los portafolios resultantes 1 y 2 se obtuvieron las mismas acciones pero con diferente ponderación, sin significar esto diferencias importantes, por lo que se puede concluir que para México ambos índices tienen el mismo valor predictivo en el calculo de las Betas y el portafolio óptimo.

Portafolio 1	%	Portafolio 2	%
AHMSA	2.01	AHMSA	2.48
GMEXICO.B	4.18	GMEXICO.B	5.38
GCARSO.A1	29.13	GCARSO.A1	36.58
GMODELO.C	5.88	GMODELO.C	7.08
CEMEX.A	13.21	CEMEX.A	7.16
CEMEX.B	16.15	CEMEX.B	11.77
GCC.B	6.73	GCC.B	9.70
CEMEX.CPO	14.32	CEMEX.CPO	10.49
MODERNA.A	1.43	MODERNA.A	2.27

MASECA.B	4.41	MASECA.B	4.22
TTOLMEX B2	1.39	TTOLMEX B2	0.60
DESC.B	1.16	DESC.B	2.27

Para el portafolio 1, calculado con el IBMV y modificando el rendimiento esperado por acción por la variable de análisis técnico, obtuvimos una beta de 1.20 con un rendimiento esperado del 36.00%, el Cutoff rate arrojó un valor máximo de 15.51, es decir, la tasa mínima de rendimiento esperada fue del 15.51%, mientras que el premio en el rendimiento esperado de beta tuvo un máximo de 24.86% y un mínimo de 16.43%.

Para el portafolio 2, calculado con el INMEX y modificando el rendimiento esperado por acción por la variable de análisis técnico, obtuvimos una beta de 1.14 con un rendimiento esperado del 34.20%.%, el Cutoff rate arrojó un valor máximo de 16.02, es decir, la tasa mínima de rendimiento esperada fue del 16.02%, mientras que el premio en el rendimiento esperado de beta tuvo un máximo de 26.17% y un mínimo de 16.51%.

Portafolio 3	%
GGEMEX.CPO	15.51
BANACCI.L	13.94
GCC.B	8.72
SITUR.B	12.81
BANACCI.B	9.99
AHMSA	0.92
SIDEK.B	5.13
GFB.B	3.65
GCARSO.A1	15.79
MODERNA.A	1.59

ICA	3.63
CEMEX.A	2.71
CEMEX.B	3.10
CEMEX.CPO	2.52

El portafolio 3 arrojo una beta ponderada más alta (mayor riesgo), y una estructura de cartera completamente distinta a la de los dos anteriores.

Para el portafolio 3, calculado con el IBMV y sin modificar el rendimiento esperado por acción por la variable de análisis técnico, obtuvimos una beta de 1.37 con un rendimiento esperado del 41.10%, el Cutoff rate arrojó un valor máximo de 12.87, es decir, la tasa mínima de rendimiento esperada fue del 12.87%, mientras que el premio en el rendimiento esperado de beta tuvo un máximo de 17.41% y un mínimo de 13.34%.

Los resultados arriba descritos nos indican que el portafolio 3 debería tener un mejor comportamiento que el 1 y 2, aunque con un mayor riesgo. También la cartera optima del portafolio 3 difiere casi en su totalidad de la cartera 1 y 2, esto es debido a que se afectaron los rendimientos esperados de cada acción por el factor de análisis técnico. Es interesante notar en este punto, que la metodología de Sharpe puede arrojar diferentes resultados, ya que la variable clave de todo el análisis se encuentra en el rendimiento esperado por acción. En este sentido Sharpe nunca hace aclaración de que solo con su metodología hay que determinar este resultado, por lo que lo deja abierto a diferentes cálculos que puedan realizarse con diferentes metodologías.

A los tres portafolios resultantes se les dio seguimiento durante un período de 5 meses. No se afectó la ponderación de ninguna de las acciones, ni la estructura de la cartera arrojada por el modelo. Cabe señalar que en el tiempo, debido a la

variación de los precios de las acciones, su importancia relativa dentro del portafolio se modifica; sin embargo, suponemos que los portafolios se mantendrán sin alteraciones (compra-venta de valores), a menos que ocurriera un evento importante que nos hiciera cambiar las perspectivas de mediano plazo para el mercado.

También dejamos sin modificación los supuestos iniciales de rendimiento sin riesgo y rendimiento del mercado esperado en un año.

Los resultados arrojados no son del todo diferentes para los dos portafolios de inversión afectados con la variable de análisis técnico; ya que mantienen a las mismas acciones con diferente ponderación dentro de su estructura.

Por su parte el portafolio 3 si tiene diferencias significativas con respecto a los dos primeros portafolios: la estructura de la cartera incluye más acciones y en algunos casos distintas a las de los portafolios 1 y 2; y tiene una beta promedio más alta.

El rendimiento del portafolio 1 de noviembre de 1995 a abril de 1996 fue del 34.02%, el portafolio 2 aumentó en 33.90% y el 3 del 22.92%; mientras que en el mismo período el IBMV se incrementó en 30.43% y el INMEX en 26.78%.

Al comparar estas predicciones con los resultados obtenidos al término de los 5 meses siguientes, podemos observar que los dos primeros portafolios se comportaron de acuerdo a lo esperado; es decir, durante los primeros 5 meses de vida de los portafolios las perspectivas del análisis técnico fueron correctas. El portafolio 3 por su parte, tuvo un comportamiento pobre, de acuerdo a su rendimiento esperado, esto es debido a que al no afectarse el rendimiento esperado por acción no se estan incorporando fáctores que pueden ser relevantes en el comportamiento de cada acción.

6

Conclusiones

Es importante resaltar las debilidades propias del modelo para determinar los verdaderos alcances que este puede tener como un método eficiente en la toma de decisiones de inversión.

1. Como ya se expuso en capítulos anteriores el rendimiento esperado de cada acción juega un rol fundamental en el desarrollo del modelo, ya que de este dato depende la construcción del portafolio. La dificultad de predecir eventos futuros tiene como consecuencia la ausencia de reglas para su cálculo. Sin embargo, es congruente con las definiciones de eficiencia de Mercados.

En este sentido, el modelo se puede complicar todo lo que el investigador desee; puede aplicar las regresiones al rendimiento esperado del mercado para determinar el rendimiento de cada acción o incluir otras variables, como se realizó en este trabajo. Como se recordará en los portafolios 1 y 2 fueron incluidas variables adicionales que afectaban el rendimiento esperado y el portafolio 3 se dejó sin alteración alguna, de acuerdo con el modelo original de Sharpe.

En todo caso, lo que resulta es que al aplicar el mismo modelo pueden existir resultados completamente distintos dependiendo de las variables que considere uno que afectan el rendimiento esperado de una acción o cualquier otro activo.

 Para México, que es un país caracterizado por la volatilidad de sus mercados en el período de estudio 1992-1995 la desviación estándar del rendimiento real del IBMV fue del 32.6%, con un rendimiento real máximo del 40% en 1993 y un mínimo del -35% en 1995, mientras que el rendimiento real de cetes en promedio fue de 5% durante el mismo período. Es imposible aplicar el modelo con buenos resultados sin modificaciones de algún tipo en el esquema de rendimiento esperado de los activos.

Sin embargo, aunque el mercado mexicano es eficiente, las fluctuaciones a las que está expuesto nos impiden utilizar el modelo de Sharpe de esta manera; durante el período de estudio de este trabajo (1992-1995), los acontecimientos políticos y sociales que se suscitaron afectaron de manera importante las perspectivas de los precios en todos sus plazos, lo que hizo necesario refinar los cálculos de rendimientos esperados para tratar de ajustarse a las modificaciones de las perspectivas económicas y sociales generadas.

- 3. El horizonte de inversión es otra consideración que no queda resuelta por el modelo. Los resultados obtenidos pueden considerarse como "definitivos" en un periodo de tiempo dado, o revisarse periódicamente: diario, semanal, mensual, bimestral, etc. Esto es importante porque con cada revisión el portafolio óptimo pudiera alterarse de manera significativa, entre más variables afecten el rendimiento esperado de cada activo.
- 4. Aunque en este trabajo solo se incluyeron acciones, el modelo puede soportar la inclusión de cualquier otro activo susceptible de ser objeto de inversión, por supuesto habría que determinar la Beta de cada activo y su rendimiento esperado contra un índice particular, convirtiendo así al modelo de Simple Index Model a Multiple Index Model.
- 5. La aportación más importante del modelo aplicado a México, y en especial, al mercado de valores reside en proporcionar un método sencillo de toma de decisiones que permite mantener de manera estructurada y bien definida los

- objetivos de cada persona en el tiempo. Es un modelo para ser utilizado de manera particular con objetivos bien determinados.
- 6. Podemos afirmar que el modelo desarrollado por Sharpe es congruente con la teoría de eficiencia de los mercados, nos facilita la toma de decisiones de inversión, no elimina los riesgos que conllevan todas las decisiones de inversión pero sí nos ayuda a mantener la objetividad de acuerdo a parámetros delineados por nosotros mismos.

ANEXO 1

RENDIMIENTOS NOMINALES

27 20 20 20 20 20 20 20			AHMASA I	27 6 2 4 1	ABJECOL	O LINCOLD	BANACCILI	CEMERA	CEMEKR	CEMENCP	CIFRAB	CIFRA C	EYDSA\$A A	D∈SC B	FEMSA B	GCARSO A1	GCC B	ĠĒB A	GF8 8	GGENEX CP	GME XICO B
1															25 38	20 00	20 00	20 00	20 00	51 42	51 42
1.00	92 [5.82	35 07	21 70	(6 25)	36 34	(0.30)	23 85	27 23	27 23	27 23	23.06	23 06
1.	- 1								(4 18)	(4.18)	(5.20)	(2 49)	3 60	6.78	(6.85)	(2 95)	(13 06)	0.00	(1.51)	0.00	0.00
1.00	2							(13.04)		(6.74)	(4 15)	(6 24)	11 20	(7.54)	(0.77)	304	(0.37)	0.00	6.78	15 00	15 00
S	-					198	1991	9 62	7 14	6 46	17 15	19 37	(4 29)	(8 371	4 95	947	(1 52)	1199	16 16	4 73	4 23
1	- 1						(14.32)	(15 61)	(12.28)	(16.07)	(10 88)	(10 19)	(6 21)	(9.62)	(6 54)	(11.14)	(18 56)	(4 65)	,	(14 34)	(14 34)
10 10 10 10 10 10 10 10	7	• 1	1	, ,		(12 18)	(12 18)	(18 30)	(20 00)	(20 65)	(4 70)	(9 66)	(0.81)	1 06	(10.70)	(3 13)	(2 79)	(15 25)		6.05	8 05
Fig. 327 0.00 0.00 0.00 0.52 2.03 2.03 6.02 6.10 7.14 0.22 2.27 2.28 2.07 2.0						(17.45)	(17.45)	(18 25)	(16.95)	(16 DB)	(9 25)	(4.47)	(4 27)	(9 19)					•	(15 56)	{15 56 }
13 13 15 16 17 18 18 18 18 18 18 18	-1			10 801	D 52	2 03	203	6 92	6 10	7.14	0 22	2 22	(10 / 1)	(9 57)	(2.51)	(0.69)				(0 53)	(0 53)
13 98 0 00 11 00 12 00 10 11 10 14 486 427 500 1300 120 1250 0 00 576 1278 1041 3773 1323 1391 1497 000 1330 1309 0 368 368 0 368 0 368 0 7 773 1071 1071 1033 131 21 249 407 (0.06) (1.071) (1.080) (1.080) (10		000	(2 70)	26 43	20 72	20 72	25 68	26 44	27 58	24 73	18 80	5 00							21 16	21 15
12	11	,	0.00	11 08	12 08	10 14	10 14	4 88	4 27	500	13 00	12 58	0.00	5.76		1041				17 90	1790
14 17 0 0 0 10 11 13 15 16 17 17 17 18 17 17 18 17 18 17 18 17 18 18			0.00	13 39	8 69	3 68	368	9 07	7 73	10 71	1 19	10 33	13 61							0 74	074
1		14 17	000	(10 51)	(3.45)	(10 32)	(10 32)	(2 32)	(3.75)	(4 26)	(7 69)	(14 59)	(7 56)	(6.06)	(5 91)				, ,	(4.78)	(4 78)
3	- 1	(12 77)	0.00	(2.87)	(5 36)	1 74	174	(12 72)	(9.74)	(11.58)										(9.27)	(9 27)
4 11021 3030 11327 11327 175			0.00	9 68	14 34	8 61	861	17 76	16.79	17.09										26 38	26 38
5	4		6.00	(1 01)	1 96	(3 35)	(3 35)													(2 16)	(2 16)
6	5		0 00	(1 32)	(1 32)	(7 52)	(7 52)	(3.07)	(3 01)											(6 25) 12 59	(6-25) 12-59
16	6	2 05	0.00	(6 67)	14 43	10.25	10 25	10 76						I						(0.66)	(0.66)
8 162 000 134 102 455 4550 100 114 102 455 4550 110 119 000 100 119 000 100 119 000 120 1328 1849 3565 2063 1132 1923 1875 1859 6500 2355 1459 1871 1047 735 6500 120 120 130 1849 3565 2063 1132 1972 1875 1459 6500 2341 1641 170 113 1867 700 120 130 1867 110 147 735 1850 170 1867 170 1875 1850 1850 1850 1850 1850 1850 1850 185	- 7	(4 52)	0.00	(4 29)	2 35	5 13														7 97	7 97
9 (1064) 0 0 0 (47) (408) (319) 120 120 120 1306 186 176 1162 1070 589 2395 1459 1671 1022 7.35 (5.50) 1170 1294 0 0 0 767 2130 1849 3.565 2053 1122 1977 1875 1459 (670) 2341 1641 1702 113 1667 7.55 120 1294 13	8	1 62	0.00	13 24	10 32															3 39	3 39
10	9	(10:64)	0.00	(4 42)										,						35 12	35 12
17	10																			8 45	8 45
12	71	12.94												1 -						20 00	20 00
30.52	12	16 67	3 t65 61 °	24 82										1 -					l	3 64	364
1177 (272) 546 (654) (652) (832) (878) (1725) (180)	94 1	30 52	0.91	19.56	671	10 21	15 90	10 69				1 1	1							(947)	(9.47)
1 (1777) (727) 546 (654) (652) (654) (652) (773) (713) (743)	- 7	(6.27)	1 12	(7.25)	(14.37)	(5 30)	(11 60)	(758)	(6.41)	(7 18)		1 ' '		1							
4 (28.69) (9.99) (7.7) (13.79) 4.75 (27.50) (27.50) (7.50) (8.60) (9.90) (7.50) (8.60) (9.90) (8.00)	- 3	(11.77)	(2.22)	5 46	(6 64)	(6.28)	(6 32)				L									(0.48)	(0 48) 1 80
5 (500) 10.88 372 (830) (754) 472) 5.94 4.96 4.9	- 4	(28 69)	(9.09)	1 / 1	13 79	4.75														5 52	5 52
6 (2040) (596) 372 (690) (796) 427 (790) (797) 46 (797) 47 (797) 48 (797) 48 (797) 49 (797) 4	5	(5.00)	10 38	7 65	131															(7 95)	(7 95)
7 (1901) 6.54 14 86 (4.37) 3.32 0.42 0.47 1.700 14.72 18.64 27.5 2.23 2.67 20.47 12.02 7.76 31.04 14.79 23.79 9 (24.81) 42.63 23.90 8.72 0.48 (7.51) 3.75 4.90 3.04 3.90 3.92 25.33 4.05 (17.41) (1.41) 0.76 3.51 (2.71) (4.86) 0.00 (1.76) (1.41) 0.76 3.51 (2.71) (4.86) (1.41)	6	(20 40)	(5 96)	3.72	,, ,															4 43	4 43
8 3671 2809 748 1989 1496 1600 1751 375 45 1989 1496 1600 1751 375 45 10 380 390 392 25.33 4.06 1441 9.26 25.51 (2.37) (4.46) 10 0.00 (3.16) 2.96 (3.03) 145 1333 585 511 6.00 (1.87) 1600 115 15 10 0.00 (1.74) 1751 1755 1748 140 0.05 0.66 4.19 2.33 4.31 164 3.78 (1.69) 10 0.00 (1.74) 1751 1751 1751 1751 1751 1751 1751 175	7	(19.01)	8 54																	5 33	[11 84]
9 (24 81) 47 63 (330) 67 2 048 (331) 145 133 5 85 5 11 6 10 (181) (0.43) 10 00 (17.74) (18.11) (3.05) 5.61 (0.38) 0.00 101 11.51 7.55 17.48 1.40 0.05 0.66 4 10 2.33 4.31 184 3.76 (3.48) 8.30 0.09 (3.29) (3.09) 0.00 (17.74) (18.11) (27.73)	8	35.71					9													195	17 97
10 0.00 (3.10) 2.66 (3.03) 4.65 (3.63) 4.6 (- 1																			(6 45)	
11 1145 756 7748 740 055 060 060 070 070 070 070 070 070 070 070	- 1								_			, ,								(6 72)	12 31
12																				(2 53)	24 14
91 (2721) (1227) 79 (2003) (2007) (20				,															(6.67)	(28 31)	0 22
1 1 1 1 1 1 1 1 1 1	*5 1																(51 20)	(46 32)	(50 48)	(30 07)	(10 81)
3 1000 1012 1314 130 132 130	3														39 12	44 63	51 07	(9 80)	4 61	59 33	1813
5 (5/6) (101-88 2302 238 (667) (650) 2.49 237 2.99 (12.47) (10.23) 49.66 38.13 7.94 (862) [6.28] (24.36) (17.75) 6 91.67 14.55 8.43 15.35 812 842 10.77 10.78 9.28 9.42 6.74 (31.5) (1881) 0.01 15.15 802 22.58 32.61 7 (2.26) 1.61 9.01 (10.93) 36.18 35.48 11.81 11.86 11.63 (7.62) (10.44) 0.71 12.50 11.80 13.74 (8.20) 19.74 34.62 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61	1											(3 26)	61 82	13 14	7 96	(274)	25 24	75 26	62 73	3.71	2 70
3 19-701 101-00	:1									2 99			49 66	35 13	7 94	(8 52)	(6.28)	(24 36)	(17 75)	(11 09)	5107
7 (2 28) 1 81 901 (10 93) 36 18 35 48 11 81 11 86 11 63 (762) (10 44) 0 71 12 50 17 80 13 74 (8 20) 19 74 34 62 8 13 33 2 5 86 4 58 26 36 (2 44) (0 64) 13 46 15 40 13 13 0 00 163 (1 89) 9 40 6 14 3 60 17 87 12 09 2 64	3							10 77	10 78	9 28	9 4 2	5.74	(3 15)	(1 BE	001	15 15	8 02	22 58	32 61	14 24	7 97
a 13.33 25.86 4.86 26.36 12.44 10.643 13.46 15.40 13.13 0.00 1.63 (1.89) 9.40 5.14 3.60 17.67 12.09 2.04	,							1	11 86	11 63	(7.62	(10 44)	0.71	12 50	11 80	1374	(8 20)			20.00	(4 22)
	۱.				,			4	15 40	13 13	0 00	163	(\$ 89)	9 40	5 14	3 60	17 67	12 09		(1.74)	9 49
9 (22.22) (6.06) (4.60) (10.32) (4.73) (5.71) (17.99) [13.42) (14.24) (9.95) [7.04) (18.13) (8.97) (8.07) (8.24) (14.47) (16.67) (24.10)	-							4		(14 24	(9.95	(7 04)	(16 13)	(8 92)	(â D7	(9 24)	(34 47)	(16 67)	(24 10)	(9 76)	(8 54)
10 000 (10.36) 013 917 (3.18) (17.5) (13.21) (11.45) (8.30) 3.84 5.41 4.12 (12.50) (1.07) 4.44 (2.63) (15.72) 4.65	٠,								(11 45)	(8 30	3 84	5 41	4 12	(12 50)	(1.07)	444	(2 63)	(15 72)	4 65	5 66	4 21
			l ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1			i '	1	1		ı	l]	Į.	1	1	l		l		i l
			l	1				l _	l			L	1	<u> </u>	<u> </u>	L	┖	L	<u>. </u>	<u>L</u>	L

RENDIMIENTOS NOMINALES

_	GMODELOC	GSERFIN B	HYLSAMX B	ICA	AMBER A	KOF L	MASECA B	MODERNA A	PE&OLES		SITUR B	TELMEXI	TLEVISA CPO	TTOLMEX B2	ORTIV	HMEX	IBMV
92,	51 42	12 93	12 93	12 93	1 03	103	23 93	2 98	1.47	7 93	24 19	4 50	8 65	25 00	20 05	15 36	12 36
2.	23.08	19 14	19 14	19 14	22 45	27 45	0.00	44 63	24 64	15 42	6 92	15 89	2 90	0.00	7 80	11 08	14 54
3	0.00	11.79	11 29	11 29	6 75	6 75	(6 19),	(2.86)	965	17.39	4 68	(1.41)	(9.85)	(5 07)	(22 73)	(2 33)	(1 54)
į 4:	15 00	22 86	22 86	6 49	(2 31)	(2 31)	183	1 18	0.17	0 93	(1 86)	(2.28)	(4 99)	(3 80)	2 99	(0.43)	(0.77)
5.	471	3 10	3 10	(2.48)	0 34	0 34	(0.94)	27 91	17.00	(9 57)	9 98	441	(2 31)	3 14	(1 61)	3 76	4 36
6	(14.34)	(18 60)	(18 80)	(8 89)	(1153)	(11 53)	(22 39)	6 82	(8 49)	(6 BC)	(15 81)	(17 49)	263	(12 79)	(13 12)	(12 17)	(13 93)
1 1	6.05	0 93	0.93	(2 09)	(4 22)	(4 22)	(12 94)	17 02	(9 28)	(4 51)	(7.36)	2 0 7	11:54	(7 11)	(17 45)	(6.77)	(5 38)
6	(15.56)	(17.86)	(17 86)	(4 21)	(5 20)	(5 20)	(19 65)	8 93	(4 37)	(5 62)	(15 39)	(5.76)	(3 46)	(17 55)	(3 74)	(11 77)	(11 11)
9	(0.53)	(25 00)	(25 001	(1 10)	(7 17)	(7.17)	4 32	(6 56)	4 51	(28 57)	(14 85)	(0 72)	3 58	1 17	(5.00)	(2 60)	{1 81}
10	21 16	4 35	4 35	B 52	28 64	28 64	22 76	24 56	15 91	35 00	21 35	15 94	23 50	37 18	4 27	16.97	17 53
11	17.90	15 881	(5 AB)	2 82	9 29	9 29	21 91	56 62	0.98	370	294	762	13 79	7 69	667	8 69	8 39
12	0.74	14 06	14 06	13 061	163	163	13 36	9.71	3 88	13 33	13 71	3 54	034	{0 40}	8 24	5.29	4 16
931	(4.78)	11 42	11 42	4 20	(1 61)	(161)	(165)	(5.56)	0.00	(3 62)	(11 90)	(7 32)	(7 24)	(3 95)	(2 34)	(4 83)	(6 32)
2	(9.27)	(6 56)	(6 56)	(8 39)	(11 45)	(11.48)	(10 04)	13 33	(1.87)	574	6 32	(5.78)	(5.32)	(9 47)	(9 33)	(7.38)	(6 05)
] 3	26 38	25 00	2500	11 72	12 52	12 52	14 88	20 74	2 66	15 91	20 27	9 03	11 61	14 55	18 47	13 59	12 34
۱ 4	(2.16)	3 16	3 18	(0.63)	(1 33)	(1 33)	(2 02)	385	3 50	(1 79)	3 15	(11 54)	(0 15)	(1 98)	(7 07)	(3 03)	(5 19)
5	(6.25)	(4 76)	(4.76)	(4 00)	683	6 83	0.66	(10 37)	14 62	0.71	(7 13)	2 73	206	(3 05)	2 28	(3 11)	
6	12 59	(0.71)	(0.71)	(2 43)	13 05	13 05	14 29	(2 48)	1 65	7 27	9.40	0.00	(2 52)	14 22	1 12	4 57	4 28
,	(0.66)	1 80	160	(1 42)	4 29	4 29	17 80	3 67	22 27	(5 09)	(0.88)	6 10	12 50	7 78	(2.78)	5 20	586
1 8	7.97	11 39	11 39	2 70	1196	1195	8 31	(4 37)	(5.31)	14 29	16 97	3 57	10 06	19 57	9.35	8 99	7 03
9	3 39	0.37	0.32	(6.66)		9 44	(5 02)	(1.43).	(18 2R)	500	(4 58)			(5 91)		(4 40)	(4 31
10	35 12	14 33	14 33	8 82	1911	17.25	14 91	21 74	5 09	18 07	15 20	D 44	18 67	17 11	166	11 69	10 16
‡ 19	8 45	3 13	3 33	33 16	5 83	3 69	14 86	10 72	15.95	21 69	13 19	261	4 06	648	4 97	11 82	11.57
12	20 00	1 34	1 34	14 29	14 34	12 22	15 59	14 51	7.45	30 69	45 09	20 95	17.35	16 58	3 68	14 90	16 63
94 1	3 64	22 91	22 91	16 65	12 32	15 63	25 22	40 00	2011	9 96	8.89	13 86	5 98	7.06	23 76	1109	11 39
z	(9.74)	(16 18)	(18 18)	(14 88)	(3.23)	(8.11)	(10 07)	(21 05)	3.85	8 41	(8 16)	(6 70)	(17 63)	(148)	127	(9.75)	(9 80)
l a	(0.86)	14 731	(4.73)	10 121	(0.12)	(7 84)	0.00	(0.70)	4 58	(3 86)	(4 44)	(4.76)	(10 77)	(2 42)	(2.50)	(4.31)	(4 13,
4	(0.15)	(0.75)	(0.75)	1 42	7 90	13 04	1061	17 30	(0 41)	5 40	1186	0.63	4 12	(2 24)	2 59	2 02	1 26
1 5		3 23	3 23	13 66	16 90	(1 36)	174	57.15	3 85	8 89	8 49	7 84	10 66	2 07	16 78	894	934
6	17.571	(7.00)	(7 00)	(7.49)	(5 27)	(13 20)	(6.27)	(8 44)	(3.26)	0.95	(2 17)	(5.71)	(5 95)	(8 12)	(5 68)	(7 15)	17 23
1 7	9.95	(5.91)	(5 91)	11 66	5.64	20 72	197	(5 44)	(2.53)	(7.04)	10 00	10 13	1761	17 68	2 78	9 23	9 32
	4 23	18 86	18.86	10 66	4 01	15 16	17.76	18.50	(0.22)	16 79	1192	1.72	769	15 64	18 47	9 68	8 90
) 9	1 82	(2.65)	13 851	8 64	190	2 50	2 62	1 27	6.06	3 18	5 05	0 19	(0 70)	969	10.27	3.75	1 195
10	3 79	(5.73)	(1.56)	(509)	(2 01)	(12 30)		1 49	27.45	(6 64)	(7 80)	(8 59)	(21.41)	101	(15 C2)	(5.66)	(4 99
11	201	(13.56)	8 66	2 67	(1 15)	5.80	(3 99)		(9.70)		3 39	0 13	697	0.00	(161)	2 20	1 90
12	22 85	(22.39)		124 18	(1167)		3 00	(12 42)		(25 17)	(5 12)		467	(16.00)	(5 94)		(6.38
95 1	(2.17)			(37.04)	(6 12)					(39 45)	(54 85)		(20 84)	(48 32)			(15 14
2	(15.17)	, , ,	,						(18.77)		:55 92			(11 63)			(24 02
3		(7.55)			21 26	43 66	15 47	19 33	22 54	31 23	19 40	17 36	14.80	(18 53)	1	20 61	20 74
4	7 36	(2.04)		13 90	6.85	(7.22)		(2 39)	8.09	31 11	(10.88)	, , ,	(5.65)	17 65	174	4 52	1 94
5	(4 00)	,		[6 26]		(5.47)			12 10	(19 46)			(6.84)	16 45	201	(0.50)	9 18
6	1 19	10 58	611	38 36	11.84	21 16	(1.65)		6.02	16 67	17 19	191	17 43	1 67	(1 11)	8 78	8 43
7		31 34	(4.61)	(6.01		7 23	6 70	6 58	1153	0.00	9 90	9 /2	11 55	19 67 25 31	d3 57:	6 82	5 78
	14 48	(5 97)		27 99	7 65	3 94	9.78	5 98	14 63	(0.36)	8 70	0.79	3 69			(8.62)	17.64
9		(11.35)		(6.47		(15.65)			(2 (14)		**			(14.5 9) (9.76)		(0.76)	
10		(4.42)	14 12	3 73	8 16	5 63	0 92	14 031	15.71	(16 41	(9 17	'l''	(d 95)	(11/6)	10.00	10,00	1 "°'
11		{	l	ĺ	1	1	1	1	1	1	l	ŀ	1	1)	1	I
1 17	1	I	1	1	l .	l		1		<u> </u>			<u> </u>	L			

ANEXO 2

Principales Índices de Precios

A nivel internacional los índices de precios constituyen un mecanismo válido y eficaz para medir los diferenciales de fluctuación, capitalización y rendimiento de los mercados de valores en diferentes periodos. Los centros bursátiles, desarrollados o emergentes, han puesto especial énfasis en la búsqueda y perfeccionamiento de métodos de valuación de los cambios de precios en cada mercado accionario.

El Índice de Precios y Cotizaciones es el principal indicador de la Bolsa Mexicana de Valores (BMV), expresa el rendimiento del mercado accionario en función de las variaciones de precios de una muestra del conjunto de acciones cotizadas en la Bolsa Mexicana de Valores.

Este indicador, aplicado en su actual estructura desde 1978, trata de expresar la situación del mercado bursátil y su dinamismo operativo.

Principales Índices Mundiales

Los centros bursátiles mundiales más antiguos adoptaron indicadores vinculados al promedio simple de una muestra de acciones, semejantes al Índice Dow Jones, Creado por Charles Dow hace más de cien años, el cual se aplica en Nueva York con ligeras adaptaciones.

La muestra del promedio Dow Jones está constituida por 65 importantes emisoras, 30 industriales, 20 del sector transportes y 15 del sector servicios.

Entre las Bolsas que emplean derivaciones de las fórmulas de Laspeyres, Paasche y Fisher, el índice pionero es el Standard & Poor's de Nueva York, que se implementó en 1957.

Características del IPC

El Índice de Precios y Cotizaciones (IPC) de la Bolsa Mexicana de Valores es un indicador de las fluctuaciones del mercado accionario con dos características fundamentales:

- La selección de la muestra es en base a la operatividad del mercado, asegurada mediante la selección de las emisoras líderes, las cuales son determinadas a través de su nivel de bursatilidad.
- La estructura de cálculo contempla la dinámica del valor de capitalización del mercado ya que el Índice utiliza como ponderador el valor de capitalización de las emisoras más bursátiles.

La mayoría de las Bolsas que utilizan una derivación de las fórmulas de Paasche, Laspeyres y Fisher, al igual que la Bolsa Mexicana de Valores, usan como ponderador el valor de capitalización, a excepción del Dax de Frankfurt, que pondera por el capital social de la emisora. La diferencia, en este último caso, se acentúa cuando intervienen empresas emisoras que cotizan en bolsa sólo una pequeña parte de sus acciones.

Sistema de Cálculo

La mayoría de los sistemas de cálculo procuran que el índice represente la dinámica operativa del mercado y no así las fluctuaciones de los títulos de baja

bursatilidad; por lo cual el cálculo se basa en una muestra de las acciones que tienen mayor incidencia en el evolución bursátil.

En general, los procedimientos de cálculo utilizados internacionalmente se agrupan en las siguientes modalidades:

- . Índices de precios acumulativos simples.
- . Indices no ponderados (promedio geométrico)
- . Índices de precios ponderados (Laspeyres, Paasche)
- . Indices ponderados por valor (Fisher)

El Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores, es un índice ponderado por valor de capitalización (precio de mercado por acciones inscritas). Esto significa que el cambio de precio de una acción integrante del IPC, influye en el comportamiento del Índice en forma relativa al peso que dicha acción tiene en la muestra.

Selección de la muestra

En la mayoría de los mercados se utiliza como único criterio de selección la rotación (Turnover), es decir, la relación entre cantidad de títulos negociados y títulos inscritos.

El procedimiento aplicado por la Bolsa Mexicana de Valores toma como criterio de selección el Índice de Bursatilidad, el cual se calcula automáticamente considerando un período de observación diaria durante seis meses de las siguientes variables:

- Importe negociado en el período.
- . Volumen de acciones negociadas.

- Rotación (Importe/Valor de capitalización).
- · Cantidad de operaciones efectuadas.
- Total de días de negociación.

La muestra así constituida es revisada cada dos meses observando los criterios arriba mencionados. Se cuenta además con un listado de emisoras para una posible sustitución antes de la fecha de revisión se el caso así lo amerita. El indicador es debidamente validado y autorizado por la Comisión Nacional de Valores.

Tamaño de la Muestra

El tamaño de la muestra está en función a la representatividad que se pretende tenga la misma, esto es, se trata de incluir en la muestra a las acciones más representativas de los siete sectores económicos en los cuales están clasificadas las emisoras inscritas en la Bolsa Mexicana de Valores atendiendo al giro de cada una de las empresas.

El número de títulos accionarios incluidos en la muestra para el cálculo del IPC ha fluctuado entre 35 y 50 en los últimos años; procurando en su selección, incluir a las emisoras más representativas del sector al que pertenecen.

Expresión Matemática

Una vez definida la composición y tamaño de la muestra, el cálculo del IPC es efectuado en tiempo real, registrando automáticamente cada cambio de precio de las acciones que componen la muestra.

La formula utilizada es la siguiente:

$$I_{t} = I_{t-1} \left(\frac{\sum_{i}^{n} Pi_{t}Qi_{t}}{\sum_{i}^{n} Pi_{t-1}Qi_{t-1}Fi_{t}} \right)$$

Donde:

It = IPC el día t.

Pit = Precio de la acción i el día t.

Qit = Cantidad de acciones inscritas de la acción i el día t.

Fit = Factor de ajuste por derechos de la acción i el día t.

t-1 = Día hábil inmediato anterior.

n = Número total de emisoras de la muestra.

Esta fórmula indica que la sumatoria del valor de capitalización de todas las emisoras incluidas en la muestra, dividida entre la sumatoria del valor de capitalización de dicha muestra del día hábil anterior, ajustada en su caso, determina el factor de variación del IPC respecto al día hábil anterior.

El factor de ajuste siempre es igual a 1 excepto cuando en la emisora i se aplica un derecho o una reestructuración de capital.

ÍNDICE MÉXICO

En relación a la implementación del Mercado de Productos Derivados de la Bolsa Mexicana de Valores, surgió la necesidad de contar con un índice alterno que

Selección y Revisión de la Muestra

Su revisión es cada seis meses. Los cambios se dan a conocer con un mes de anticipación. El procedimiento de selección aplica dos criterios fundamentales y un tercero adicional, de la siguiente manera:

Son seleccionadas las emisoras más bursátiles, identificadas a través del Índice de Bursatilidad.

Estas deben cumplir un mínimo de capitalización, el cual en la Base fue de 100 millones de dólares, sin embargo, este mínimo es revisable periódicamente en términos del nivel de capitalización del mercado total.

Como criterio adicional se encuentra el Índice de Liquidez, que indica el importe promedio que puede ser negociado en una serie accionaria sin causar una variación del precio de la misma.

El tamaño de la muestra no es fijo y puede ser modificado en el momento de la revisión de acuerdo al número de emisoras que en ese momento cumplan con los criterios de selección.

Expresión Matemática

El Índice México utiliza un sistema de cálculo similar al del IPC, es decir la formula empleada, los precios de referencia, el método de los ajustes por derechos decretados y cambios de capital de las emisoras, excepto el dividendo en efectivo, la actualización en tiempo real, etc.

La fórmula utilizada es la siguiente:

reflejara el comportamiento del mercado accionario y, que además se constituyera como un valor subyacente para la emisión de productos derivados del índice.

Para tales efectos la BMV se abocó a realizar un estudio completo sobre los diferentes índices que son cotizados en mercados de productos derivados, como el S&P 100, S&P 500, FT-SE 100, Russell 2000, etc., además se recabó la opinión y experiencia de diferentes bolsas de valores, intermediarios y consejeros del exterior con la finalidad de conocer estándares en relación a la metodología de cálculo y a las reglas de mantenimiento que son aplicadas a los índices con tales características.

Características del INMEX

El Índice México es un índice ponderado por valor de capitalización al igual que el IPC, sin embargo cuenta con una política en relación a la ponderación de cada una de las emisoras que constituyen la muestra de este Índice.

Esta política modera la ponderación que pueden llegar a tener las emisoras que constituyen la muestra a un 10%. Dicha política se aplicó en el momento de su creación (Base 30 de diciembre de 1991 = 100) y se aplica en las revisiones periódicas que se realizan sobre la muestra.

Otra característica de este Índice es que no se ajusta por dividendos en efectivo, aun cuando si es ajustado por los demás derechos que las emisoras decretan y por los cambios de capital en las mismas.

Una más lo constituye el hecho que en la composición del INMEX no puede haber más de una serie por emisora, desde luego ésta será la más representativa en cuanto a bursatilidad, capitalización y liquidez.

$$I_{t} = I_{t-1} \left(\frac{\sum_{i}^{n} Pi_{i} Qi_{i}}{\sum_{i}^{n} Pi_{t-1} Qi_{t-1} Fi_{t}} \right)$$

Donde:

It = INMEX el día t.

Pit = Precio de la acción i el día t.

Qit = Cantidad de acciones inscritas de la emisora i el día t.

Fit = Factor de ajuste por derechos de la emisora i el día t.

t-1 = Día hábil inmediato anterior.

n = Número total de emisoras de la muestra.

Esta fórmula indica que la sumatoria del valor de capitalización de la muestra, dividida entre la sumatoria del valor de capitalización de la muestra del día hábil anterior, ajustada en su caso, determina el factor de variación del INMEX respecto al día hábil anterior.

El factor de ajuste siempre es igual a 1 excepto cuando en la emisora i se aplica un derecho o una reestructuración de capital.

Resumen AEROMEX

Estadisticas de la regresión							
Coeficiente de correlación multiple	D 536452353						
Coeficiense de determinación R*2	0 287781127						
R*2 syustado	271 59433 5						
Error toxco	18 82590173						
Observaciones	46						

ANALISIS DE VARIANZA

	Gredos de Aberta. Su	me de cuedrados	Promedio de los cuedrados	Ē	Valor critico de F
Regresion		6301 052278	6301 052278	17 77876168	0 000121558
Residuos	44	15594 24135	354 414576		
∀ota i	45	21895 29362			

AND		Coeficientes Error lipico	Estadistico (Probi	windled Inferior 95%	Superior 95%	infenor 95 000%	Superior 95 900%
**NMEX	Intercapción	3 894181887 2 82276117	7 -1 308705 0 19	426887 -0 36306280	1 994739459	-9 383082802	1 994739469
	NMEX	1 201758493 0 28501416	6 4216486887 300	12*558 0 62735020	5 1 776166781	0 527350208	1 776166781

Resumen AMMSA

Estadisticas de la regresión							
Coeficiente de correlación multiple	0 347881454						
Coeficiente de determinación Rº2	0 121021508						
R*2 mustado	0 077072582						
Error tipico	24 27299944						
Observaciones	22						

ANALISIS DE VARIANZA

	Grados de xberta	Sume de cuadrados	Promedio se los cuadrados	ž	Vaior crisco de F
Regresión	1	1622 412158	1622 412158	2 753685264	0 112630564
Residuos	20	11783 57004	589 1785018		
Total	21	13405 98219			

	Coeficientes	Error tipico	Estadistico f	Probabilidad	minnor 95%	Superior 95%	ntenor 95 000%	Superior 25 000%
Intercepción	8 536383087	5 17934355*	1 64815927	0 114941136	-2 267533222	19 3402994	-2 267533222	19 3402994
INMEX	C 81087371	0 488647937	* 6594231*2	0 112630564	-0 208427552	1 830174972	0 208427552	* 830: 74972

Resumen ALFA A

Estadísticas de la regresión							
Coeficiente de correlación multiple	0 603290246						
Coeficiente de determinación R*2	0 363959121						
R^2 ayuttado	0 349503847						
Error tipico	8 935486349						
Observaciones	46						

	Grados de irberta	Suma de cuadrados	Promedio de los cuadrados	F	Veror critico de F
Regresión	1	2010 25044	2010 28044	25 17794358	9 09229E-06
Remaios	44	3513 088317	19 54291629		
Total	45	5523 368757			

	Coeffcientes	Error tipico	E stadistico /	D TOD SDINGSO	inferior 95%	Superior 95%	intenor 95 000%	Superior 95 000%
Intercepción	2 563605041	1 33978942	1913438786	2.052212105	-0 136563012	5 263773095	-0 136563012	5 263*73095
NMEX	9 678795543	0 135278523	5.017762805	9 092296-06	0.406159504	0 951431483	C 406*59504	0.951431483

Resumen APASCO

Estádisáces de la regresión						
Coeficiente de comeración multiple	0 798456772					
Coeficiente de déterminación R*2	0 637533216					
R12 ajustado	0 629295335					
Error tipico	7 333686466					
Observaciones	46					

ANALISIS DE VARIANZA

PORTO DE TOTO DE					
	Grados de liberta	Suma de cuadrados	Promedio de los cuadrados	F	Valor orfoco de F
Regresión	,	4162 286374	4162 266374	77 39043353	2 97973E 11
Residuos	44	2366 450116	53 78295719		
Total	45				

	Coefcentes	Error tipico	Estadistico :	Probabilidad	Inferior 95%	Superior 95%	infenor 95 000%	Superor 93 000%
rntercepción	1 488256632	1 09961508	1 353434178	0 182829499	-0 727871863	3 704385127	C 727671653	3 104385127
INMEX	0 976734746	0 111028123	8 797183273	2 97973E-11	0 7529722°5	1 200497216	9 752972275	1 200497216

Rasumen BANACCI B

Estadisticas de la regresión								
Coeficiente de correlación multiple	0 822002552							
Coeficiente de determinación Rº2	0 675688195							
R^2 ejustado	0 668317472							
Error Upica	9 610709067							
Observaciones	45							

ANÁLISIS DE VARIANZA

	Grados de kberta	Sume de cuadrados	Promedio de los cuedrados	F	Valor crítico de f
Regresión	1	8467 342233	8467 342233	91 67 190375	2 50975E 12
Residuos	44	4064 092083	92 36572915		
*ota	45	12531 43432			

	Coeficientes	Error tipico	Estadistico I	Probabilidad	infenor 95%	Superior 95%	Inferior 95 000%	Superior 95 000%
Intercepción	0 374268264	1 441032514	0 25972229	0 796289449	2 529941829	3 278478358	-2 529941829	3 278478358
INMEX	1 393106169	C 145501338	9 574544572	2 50975E-12	1 099868107	1 586344232	1 099868107	1 686344232

Resumen BANACC: L

Estadísticas de la regresión							
Coeficiante de corretación multiple	0 834619261						
Coeficiente de determinación Rº2	0 696589344						
R*2 mustage	0 689693648						
Error tipica	10 06327538						
Observaciones	46						

	Grados de voerte	Suma de cuadrados	Promedic de los cuadrados	F	/#for critico de F
Regresión	1	10230 04135	10230 04135	101 0179787	\$ 71364E-13
Residuos	44	4455 858504	101 2695115		
Total	45	14665 89986			

	Coefficientes	Error tipica	Estadisaco I	Probabilidad	infenor 95%	Superior 95%	menor 95 000%	Supenor 95 000%
Intercepción	0 245770796	1 508890438	0 162881805	D 871357289	-2 795197948	3 286739543	-2 795197948	3 266739543
INMEX	1 531281465	6 152352651	10 05077006	5 71364E-13	224214583	1 838308047	1 224214883	1 636308047

Resumen CEMEX A

Estadisticas de la regresión								
Coeficiente de correlación multiple	0 850170887							
Coeficiente de determinación R*2	0 722790183							
R^2 ayustado	0 716489939							
Error tipico	7 338578847							
Observaciones	46							

ANÁLISIS DE VARIANZA

	Grados de liberta	Sume de cuadrados	Promedio de los cuadrados	F	Valor crisco de F
Regresion	1	6175 002253	6175 092253	114 7245250	7 59978E-14
Residuos	44	2366 317124	53 6253/918		
Total	45	8543 409376			

	Coeficientes	Error storco	Estadistico !	Probabaded	menor 95%	Superior 95%	interior 85 000%	Supenor 95 000%
Intercepción	0 28998495	1 100048785	0 263592614	D 793324281	-1 927037578	2 508967478	1 927037578	2 506967478
INMEX	1 18968609	0 111071912	10 7 1095355	7 69978E-14	0 965835369	1 413536812	0 965835389	1 413536812

Resumen CEMEX B

Estadisacas de la regresión								
Coeficiente de constación multiple	0 874272114							
Coeficiente de determinación R*2	0.764351729							
R^2 mustado	Q 758998087							
Error tipico	6 622185021							
Observaciones	45							

ANÁLISIS DE VARIANZA

	Grados de identa	Sume de cuedrados	Promedio de los cuedrados	F	Valor critico de F
Regresón	1	8258 702273	6250 702273	142 7189597	2 10401E-15
Residuce	44	1929 546718	43 85333445		
Total	45	8188 248989			

	Conficenses	Error donco	Estadistico I	Probabilitied	Infenor 93%	Superior 95%	Infanor 85 000%	Superior 95 000%
Intercepción	0 108481251	0 992932347	0 1077/49251	0 915078785	1 00463233	2 107614831	1 89453233	2 107614831
NMEX	1 197713115	0 100256368	11 94550408	2 10401E-15	0 995659688	1 309786542	0 995659688	1 399766542

Resumen CEMEX CPO

Estadísticas de la regresión							
Coeficiente de comusción multiple	0 961392107						
Coefficiente de determinación R^2	0 741996363						
R^2 ayustado	0 738132644						
Error tipuça	6 941829845						
Observaciones	46						

	Grados de Aberta	Sume de cuedrados	Promedio de los cuedrados	F	Valor critico de F
Regresion	1	8098 007282	8098 007282	126 5402313	1 56707E-14
Residuce	44	2120,371861	48 19026502		
Total	45	8218.378943			

	Coeficientes	Error filpico	Emadratico (Probabilitied	Intenor 95%	Supperior 95%	Infenor 95 000%	Superior 95,000%
Intercepción	0 306675002	1 040873829	0.293884877	0 770243102	-1 791866801	2 403618676	-1 791886891	2 403619976
INMEX	1 18223722	0 105098999	11 24901024	1 56707E-14	0 970420144	1 394045297	0 970428144	1 394046297

Resumen CIFRA B

Estadisticas de la regresión							
Coeficiente de comitéción multiple	0 787888991						
Conficiente de determinación R*2	0 620734398						
R*2 ayustado	0 012114723						
Ептог врисо	7 986705942						
Observeciones	46						

ANÁLISIS DE VARIANZA

	Grados de sberte	Suma de cuadrados	Promedio de los cuedrados	F	Valor cr≅cc de F
Regresión	1	4570 593571	4570 593571	72 0136842	8 17434E-11
Residuos	44	2792 809757	63 46840356		
Total	45	7363.203328			

	Coeficientes	Error Horco	Estadistro (Probabilidad	Interior 95%	Superior 95%	infenor 95 000%	Superior 95 000%
Intercepción	0 692738579	1 194530204	D \$79825544	0 564922841	·1 714678772	3 10015593	-1 714678772	3 1001 5583
INMEX	1 023521479	0 120611702	8 485067585	8 17434E-11	0 780444575	1 206598383	0.780444575	1 280598383

Resumen CIFRA C

Estadísticas de la regretión							
Coeficiente de correlación multiple	0 798563077						
Coeficiente de determinación R^2	0 637894658						
R^2 ajustado	0 629664991						
Error tipico	7 535704776						
Observaciones	46						

ANÁLISIS DE VARIANZA

	A STEIGHT DE TAITE					
Remduos 44 2496 621244 56 78684646		Grados de liberta	Suma de cuadrados	Promedio de los cuadrados	F	Valor critico de F
	Regresión	1	4401 639411	4401 639411	77 \$1160145	2 91427E-11
Total 45 9900 280555	Residuos	44	2486 621244	56 78694646		
	Total	45	6900 280855			

	Conficentes	Error tlpico	Estadístico !	Probabilidad	intenor 95%	Superior 95%	Inferior 95 000%	Superior 95 000%
Intercepción	0 922422911	1 129905764	0 \$16371542	0.410685687	1 354752443	3 199500200	-1 354752443	3 199596266
INMEX	1 004425889	0 114086573	9 804067324	2 81427E-11	0 774499496	1 234352241	0 774499498	1 234352241

Resumen CYDSASA

Estadisticas de la regresión								
Coeficiente de correlación múltiple	C 359948176							
Coeficiente de determinación R*2	0 12956268							
R*2 ayustado	0 109780023							
Error tipico	14 10715893							
Observaciones	45							

	Grados de liberta	Suma de cuedrados	Promedio de los cuedrados	<u> </u>	A SHOL CLISCO GE 5
Regresión	1	1303 389229	1303 389229	6 549303748	0 014007163
Residuos	44	6756 52257	199 0118765		
Total	45	10058 9118			

	Conficentes	Error Noice	Estadistico I	Probabilidad	Intenor 95%	Superior 95%	Infanor 95 000%	Superior 95 000%
Intercepción	1 38455256	2 11523121	0 654563224	0 51615621	2 878415874	5 647520794	-2 878415874	5 647520794
INMEX	0 546\$72432	0 213674873	2 559160751	0 014007163	0 118140574	0 977004289	0 116140574	0 977004289

Resumen DESC

Estadfascas de la regresión							
Coeficiente de correlación multiple	0 674026848						
Coeficiente de determinación R*2	0 454312191						
R*2 ajustado	0 441910195						
Error tipico	11 04446518						
Observaciones	46						

ANÁLISIS DE VARIANZA

-	Grados de liberta	Suma de cuadrados	Promedio de los cuadrados	F	Velor critico de F
Regresión	1	4468 401579	4488 401579	36 63218436	2 62576E-07
Residuos	44	5367 129266	121 980211		
Total	45	9835 530865			

	Coefcentes	Error apaca	Essarianco (Probabaded	Infanor 85%	Superor 95%	Infenor 95 000%	Superior #5 000%
inercepción	1 708584497	1 656010318	1 030527695	0 308393993	1 830804878	5 044033872	1 630904878	5 044033672
IMMEX	1 012014551	0 187207344	6 052452755	2 82576E-07	0 675030304	1 348908790	0 675030304	1 348098799

Resumen FEMSA

Estadisaces de la regresión								
Coeficiente de correlación multiple	0 677294341							
Coeficiente de determinación R*2	0 769545362							
R*2 spustado	0 764410029							
Error tipico	6 071234309							
Observaciones	46							

ANÁLISIS DE VARIANZA

	Grados de liberte	Sume de cuedrados	Promedio de los cuedrados	F	Valor critico de F
Regresión	1	5418 765528	5418 765528	147 0098288	
Readuct	44	1821 834985	36 85988604		
Total	45	7040 600513			

	Coeficientes	Error Mpico	Ested/strco (Probabilidad	Inferior B5%	Surveyor 85%	inferior 85 000%	Superior 95 000%
Priercepción	0.051995051	0 910322637	0.057106183	0 954719161	1 782549505	1 998619707	-1 782848805	1 888619707
INMEX	1 114450541	0.091915267	12 12478097	1 27219E-15	0 9292076	1 200003083	0 9292079	1 290003863

Resumen GCARSO

Coeficiente da correlação múltiple	0 900497996
Conficiente de determinación R^2	0 81089664
R*2 ayustado	0 808598837
Error tipica	5 863464332
Observeciones	46

	Grados de Aberta	Suma de cuadrados	Promedio de los cuadrados	F	Valor crisco de F
Regresión	1	6531 06269	6531 06269	158 6769671	1 61611E-17
Residuos	44	1523 086712	34 51515254		
Total	45	8054 149401			

-	Coefcientes	Error House	Estadistico I	Probabilidad	intenor 95%	Superior 95%	infenor 95 000%	Superior 95 000%
mercepain	1 55174179	0 862168352	1 750008883	0 005520015	-0 228151835	3 329635216	-0.226151635	3 329835218
INMEX	1 223497961	0.089072529	13 7359742	1 616116-17	1 043984081	1 403011841	1 043984081	1 403011841

Resumen GCC

Estadísticas de la regratión								
Coeficiente de correlación multiple	0 782187719							
Coeficiente de determinación R^2	0 61 161 7626							
R*2 ajustado	0 902995302							
Error tipico	10 98078518							
Observaciones	46							

ANÁLISIS DE VARIANZA

ANÁLISIS DE VARIANZA	_		<u></u>		
	Grados de liberte	Sume de cuedrados	Promedio de los cuadrados	F	Valor crisco de F
Regresión	1	8361 913011	8361 913011	69 34878456	1 3722E-10
Residues	44	5305 416307	120 5776433		
Total	45	13667 32932			

	Coefcentes	Error (ferce	Estadistico !	Probeomided	infenor 95%	Superior #5%	milenor 95 000%	Superior 95 000%
Intercepción	1 107410374	1 546462122	0 57259997	0 504718952	-2 210815876	4 475636625	2 210815876	4 425 6306 25
INMEX	1 384408027	0 186243263	8 327591762	1 3722E-10	1 049364758	1 719447297	1 049354758	1 719447297

Resumen GFS A

Estadisticas de la regresión							
Coeficiente de corretación multiple	0 638455648						
Coeficiente de determinación R*2	0 40762561\$						
R^2 syustado	0 394162581						
Error tipica	14.28920112						
Observaciones	46						

ANÁLISIS DE VARIANZA

	Grados de liberte	Sume de cuedrados	Promedio de los cuedrados	F	valor critico de F
Regresión	1	6182 087694	6182 057894	30 2773508	1 80684E-08
Residucs	44	8963 975815	204 1812585		
Total	45	15186.74371			

	Coefigentes	Error Harco	Estadistico I	Probabilidad	intenor 95%	Superior 95%	infenor 95 000%	Suganor 95 000%
Intercepción	-1 202981906	2.142526968	-0.561468734	0 577326804	-5 520941123	3 115017314	-5.520941123	3 115017314
INMEX	1 19035786	0.216330925	5 502485875	1 80684E-05	0 754371544	1 626344176	0 754371544	1 828344178

Resumen GFB B

Estadisticas de la regresión							
Coeficiente de comunición multiple	0 722001400						
Coeficiente de determinación R^2	0 52257212						
R*2 ajustado	0.511721488						
Error signas	13 19038463						
Observaciones	45						

PURPLICATION OF AMERICA					
	Grados de Aberta	Suma de cuedrados	Promedio de los cuadredos	F	Valor critico de F
Regresión	1	8379 242087	8379 242087	48 16051645	1 40086E-08
Readuce	44	7655 37 1841	173 9857191		
Total	45	16034 81373			

	Coeffcrentes	Error tip-co	Estadístico (Probabilidad	Interor 95%	Superior 95%	Infenor 95 000%	Supenor 95 000%
Intercepçion	-0 631236215	1 977767106	-0.420290242	0 676318957	-4 617163763	3 154691333	-4 B17163763	3 154691333
HMEX	1 385639794	0 199095124	6 939777839	1 40085E-08	0 983380732	1 786296856	0 983360732	1 780298656

Resumen GGEMEX

Estadisticas de la regre-	só n
Coeficiente de correspon multiple	0 630712218
Coeficiente de determinación Rº2	0 690082789
R^2 ajustado	0 583039215
Error tigaco	9 561903293
Observaciones	46

ANALISIS DE VARIANZA

	Gradus de liberta	Suma de cuadrados	Promedio de los cuedrados	F	Valor critico de F
Regresion	1	8957 707392	8957 707392	97 97339958	9 15263E-13
Residuos	44	4022 919762	91 42999458		
Total	45	12980 62715			

	Coefficientes	Error Horco	Estadisaco f	Probab-ided	Infenor 95%	Superior 95%	Inferior 95 000%	Superior 95 000%
Principal Control of C	1 982924124	1 433714559	1 369117801	D 177911162	-0 926537601	4 852385849		4 852385849
INMEX	1 432877604	0 144762144	9 898151321	9 15283E-13	1 141120605	1 724826524	1 141128585	1774626524

Resumen GMEXICO

Estedistices de la regresión							
Coeficiente de correlación multiplie	0 536742321						
Coefciente de determinación R*2	0.289092319						
R^2 mustado	0 271912599						
Error Upico	12 77633269						
Observaciones	46						

ANÁLISIS DE VARIANZA

	Grados de liberta	Suma de cuadrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	2908 518572	2905 518572	17 80576867	0 000120338
Residuos	44	7182 325793	163 2345771		
Total	45	10088 84437			

	Coefcentes	Error Harco	Estadishco /	Probabilidad	inferor 95%	Superor 95%	interior 95 000%	Supenor 95 000%
Intercepción	5 308087734	1 915667037	2 770653292	Ç 008180649	1 44727434	9 168801125	1 44727434	9 1689Q1129
INMEX	0 616201164	0 1934269	4 219687962	0 000120338	0 426374877	1 208027452	0 426374877	1 208027452
I MANUE Y	0 41040 - 100	4 -55-100						

Resumen GMODELO

Estadispicas de la regresión							
Coeficiente de correleción múltiple	0.64160976						
Coeficiente de determinación R*2	0 411863084						
R*2 mustage	0 39829179						
Error tipico	10 04741977						
Observaciones	46						

MINISTER SHOWING					
	Gredos de kberta	Sume de cuadrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	3107 975555	3107 975555	30 78707999	1 54752E-08
Residuos	44	4441 82834	100 9505441		
Total	45	7549 803895			

	Coeficientes	Error Hosto	Estadispop (Probabilidad	Infenor 95%	Superior 25%	Inferior 85 000%	Supenor 95 000%
intercepción	4 068144258	1 508513041	2 700371087	0.009794265	1 031985837	7 104321678	1 031966837	7 104321678
INMEX	9 644013622	D 152112608	5 548610636	1 54752E-08	0 53745082	1 150578424	0 53745062	1 150576424

Resumen GSERFIN

Estadisticas de la regresión							
Conficiente de comisción multiple	0 632544143						
Coeligents de determinación R*2	0 400238612						
R*2 ajuntado	0 300007672						
Error tipico	11 01764943						
Observeriones	46						

ANALIŞIS DE VARIANZA

	Gredos de aperte	Sume de cuedrados	Promego de los cuadrados	F	Valor critico de F
Regresión	1	3563 86559	3563 88559	29 35250866	2 392916-06
Residuos	44	5340 518835	121 3753781		
Total	45	6904 402224			

	Coefcertes	Елти баксо	Estedistica (Probabilitied	Infenor 95%	Supenor 95%	infanor 95 000%	Supenor 95 000%
intercupción	-1 916453163	1 651899593	-1 160151132	0 252243775	5 245637935	1 412731589	-5 245837935	1 412731569
INMEX	0 903800413	0 166792284	5 41871836	2 39291E-08	0 587652664	1 239948152	0 557552664	1 239948162

Resumen HYLSAMX

Estadisticas de la regresión							
Coeficiente de corretación múltiple	0 501315301						
Coefigiente de deserminación R*2	0 251317031						
R*2 syustado	0 234301509						
Error tipico	11 50027273						
Observeciones	46						

ANÁLISIS DE VARIANZA

	Grados de Moerta	Suma de cuadrados	Promedio de los cuadrados	F	Valor crisco de F
Regresión	1	1976 915483	1976 918483	14 76986901	0 000388792
Residuos	44	5889 315143	133 8480714		
Total	45	7866 233626			

	Coeficientes	Error tip-co	Estadistico 1	Probabilidad	Infenor 95%	Superior 95%	Infanor 95 000%	Superior 95 000%
Intercepción	1 990570965	1 734700115	1 147501489	0 257375638	-1 505487268	5 486529198	-1 505487268	5 486629198
INMEX	0 673138444	0 175152852	3 843158729	0 000386792	0 320142481	1 025135407	0 320142481	1 025136407

Resumen ICA

Estadispost de la regresión								
Coeficiente de correlación múltiple	0 805768266							
Coeficiente de determinación R^2	0 649262499							
Rr2 ajustado	0 641291191							
Error tipico	8 933124046							
Observaciones	46							

	Gredos de adente	Sume de cuedrados	Promedio de los cuadredos	F	Valor critico de F
Regresión	1	8499 782968	5499 752958	61 44994395	1 432786-11
Readuos	44	3511 23103	79 80070522		
Total	45	10010 994			

	Coefcrantes	Error Noico	Estadisecc t	Probabilidad	infenor 95%	Superior 95%	Infenor 95 000%	Superior 95 000%
Intercépción	0 423573360	1 339435216	0 315232015	0 753321159	-2 275880832	3 123027571	-2 275000832	3 123027571
INMEX	1.220580801	0 136242759	9 024962269	1 43278E-11	0 947990939	1 493124663	0 947999939	1 493124853

Resumen KIMBER

Estadisticas de la regresión								
Coeficiente de correlación multiple	0 834498933							
Coeficiente de delerminación R*2	0 696386469							
R^2 apuesado	0 689486207							
Error tipico	5 335726044							
Observeciones	46							

ANALISIS DE VARIANZA

	Grados de Aberta	Sume de cuedrados	Promedio de los cuedredos	£	Vetor critico de F
Regresión	1	2873 247465	2873 247465	100 9220319	5 79623E-13
Residuos	44	1252 678786	28 45997241		
Total	45	4125 926251			

Interception 2 86554408 0 800040314 3 331782616 0 001755567 1 053188162 4 277918655 1 053188162 4 277919655 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162 4 27791865 1 053188162									
Interception 2 88554406 0 800040314 \$ 331782616 0 001755567 1 05318982 4 277918555 1 053189862 4 27791855 3 0 274317878 0 274317878 0 274317878 0 274317878		Coefcentes	Error tipics	Estadisaco f	Probab-dad	interor 95%	Superior 97%	Inflamor 95 000%	
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.000040314	3 331762616	0.001755567	1 053169162	4 277919655	1 053189162	4 277919655
	MANUFX	D 811518184	0.000780052	10.04599582	5 79823E-13	0 648714653	0 974317876	0 648714653	0 974317676

Resumen KOF

Estadísticas de la regresión								
Coeficiente de corretación múltiple	0.765821948							
Coeficiente de determinación R^2	0 586483253							
R^2 ajustado	0 577085145							
Error desca	8 163971427							
Observaciones								

ANÁLISIS DE VARIANZA

WINDLINE DE AVENTAN					
	Grados de inberta	Sume de cuedrados	Promedio de los cultorados	f	Valor crisco de F
Ragresión	1	4159 279844	4159 279844	62 40439676	5 62309E-10
Residuos	44	2932 518895	66 65042946		
Total	45	7091 89874			

	Coefcentes	Error Horco	Experiment	Probablished	Intenar 95%	Superor PS%	Inferior 95 000%	
Intercepción	2 194761427	1 224100248	1 792947176	0.079857308	-0 272208553	4 56 1789407	0 277288553	4 851789407
MEX	0 976381922	0 123508197	7 899845357	5 62389E -10	0 727296133	1 22547771	0 727200133	1 22547771

Resumen MASECA

Estadisacas de la regrasión							
Coeficiente de correlación múmble	0 \$16047716						
Coeficiente de determinación R^2	0 865933875						
R*2 apustado	0 658341463						
Error tipico	7 197553657						
Observaciones							

	Grados de liberta	Suma de cuadrados	Promedio de los cuedrados		VMOV CHICO GO P
Regresión	1	4543 620507	4543 820507	87 71045115	4 84862E-12
Residuos	44	2278 41026	51 80477865		
Total	45	8623 230767			

	Coeficientes	Error tip-co	Éstad/saco (Archadedod	Infenor 95%	Superior 95%	Interior 95 000%	Supenor 95 000%
Intercepción	1 2020567	1 079203267	1 113837138	0 27 1396764	-0 97283453	3 377047931	-0 97293453	3 377047931
INMEX	1 020519347	0 106967144	9 365365796	4 64962E-12	0 800610505	1 240128188	0.800910505	1 240126188

Resumen MODERNA

Estadispos de la regrazión									
Coeficiente de correlación multiple	0 595817698								
Coefciente de determinación R*2	0 354986729								
R*2 ayustado	D 340339809								
Error spice	12 77433008								
Observaciones	45								

ANÁLISIS DE VARIANZA

	Grados de liberta	Suma de cuadrados	Promedio de los cuedrados	F	Valor critico da F
Regresión	1	3951 80195	3951 80195	24 21691965	1 25081E-05
Residuos	44	7180 074377	163 1635086		
Total	45	11131 87633			

	Coelicentes	Error florco	Estadistico !	Probabilidad	Infanor 95%	Superior 95%	Infenor 95 000%	Superior 95 000%
intercepción	4.886036392	1 915386762	2 550939635	0.014297269	1 025629162	8 746244521	1 025828162	8 746244621
NMFX	0 951717915	0 193398581	4 921084976	1 25081E-06	0.561952731	1 341483099	0 \$61952731	1 341483099

Resumen PEAOLES

Estadisticas de la regres	
Coeliciente de comeración multiple	D 393915804
Coeficiente de determinación R*2	0 155169503
R*2 ajustado	0 13598881
Error tipico	10 04206394
Observaciones	45

ANÁLISIS DE VARIANZA

	Grados de Aberta	Suma de cuadrados	Promedio de los cuedredos	F	Valor crisco de F
Regresión	1	815.0557656	815 0557656	8 081453231	0.008758427
Residuos	44	4437 624356	100 855099		
Total	45	5252.680121			

	Configurates	Error Marco	Estac/saco (Probabilidad	Intenor 95%	Superior 95%	Inferior 95 000%	Superior #5 000%
Intercepción	4 677391838	1 50579995	3 106250374	0 003312309	1 642651377	7 712131936	1 642651377	7 712131936
INMEX	0 432219464	0.152040605	2 842709892	0 006756427	0 125801771	0.738637158	0 125801771	0 738837158

Resumen SIDEK

Estadisticas de la regretión							
Coeficiente de correlación múltiple	0.765085946						
Coeficiente de determinación R*2	0 585358804						
R*2 austado	0 575932789						
Error tiesco	11 65763510						
Observaciones	46						

-	Grados de idente	Sume de cuedrados	Promedio de los cuadredos	F	√alor critico de F
Regression	1	8441 491469	8441 491409	62 11525427	5 97619E-10
Republica	44	5979 620127	35 9004574		
Total	45	14421 1116			

Coulce	ntes Error Noico	Estediatico r	Probabilidad	Inferior 95%	Superior 95%	Infanor 95 000%	Superior 95.000%
intercepción -0 6362	26185 1 747949203	-0 363984367	D 717612987	4 1589862	2 886533831	-4 15 000 52	2 888533831
	97797 0 17649C412	7 681323129	5 97819E-10	1 035284929	1 748671011	1 035294929	1 748671011

Resumen SITUR

Essadisticas de la regresión							
Coeficiente de correlación multiple	0 855925432						
Coeliciente de determinación Rº2	0 732608345						
R*2 apustado	0 726531262						
Enter tepico	9 249902599						
Observaciones	- 46						

ANÂLIȘIS DE VARIANZA

	Grados de liberte	Suma de cuedrados	Promedio de los cuadredos	- F	Valor crisco de F
8	1	10314 56718	10314 56718	120 55263	3 46083E-14
Regresión Resducis		3764 670718	85 5606981		
Total	45	14079 2379			

	Coefcientes	Error Harco	Estadistico I	Probabilided	mienor 95%	Superior 95%	Infanor 95 000%	Superor 95 000%
intercapción	-1 314334373	1 386933084	4) 947655217	0 348480872	-4 109514235		-4 109514235	1 480845488
INMEX	1 537574484	0 14003#619	10 97954617	3 46063E 14	1 255345203	1 819803765	1 255345203	1 619803765

Resumen TELMEX

Estedísticas de la regresión							
Coeficiente de corretación múltiple	0 749581653						
Coeficiente de determinación Rº2	0 551672654						
R^2 ajustado	0 551915215						
Error tipico	5 708765154						
Observeciones	40						

ANÁLISIS DE VARIANZA

	Grados de liberta	Sume de cuedrados	Promedic de los cuadrados	F	Valor crisco de F
Regresión	1	1836 969673	1836 969673	56.42742242	2 04668E-09
Readuct	44	1433 959962	32 50900058		
Total	45	3272 929655			

	Coeficientes	Error tlaica	Estadistico I	Probablidad	Infenor 95%	Superior 95%	Infenor 95 000%	Superior 95 000%
traercepcón	0.418064338	0 855973906	0 486396124	0 827894801	-1 307047854	2 143156329		2 143156329
NMEX	0 649229047	0.086427676	7 511818849	2 04858E-09	0 475045518	0 823412577	0 475045518	0 823412577

Resumen TLEVISA

Estadisticas de la regresión					
Coeficiente de correlación multiple	0 750549662				
Coeficiente de determinación R*2	0 \$79587939				
R*2 ayumado	0 569010392				
Error tapico	6 966952746				
Observaciones	46				

-	Grados de Mente	Sume de cuedredos	Prometos de los cuedrados	£	Valor crisco de F
Regresión	1	2932 240076	2932 248626	80 41087014	8 57988E-10
Residuos	44	2135 690945	48 53843056		
Tatal	45	5067 93977			

	Coeficientes	Error Maico	Estadhaco t	Probabilided	Infanor 95%	Superior 95%	Infenor 95 000%	Superior 95 000%
Intercepcor	C 321901998	1 044626918	0.308150175	0 759422199	-1 783405175	2 42720911	1 783405175	2 42720911
	* ***	0 105475989	7 772442997	8 57986E-10	0 607233116	032378798	0 607233118	1 032378796
INMEX	0 619805956	Q 10047380V						

BETAS - WMEX

Resumen TTOLMEX

Estadisticas de la regresión					
Conficiente de correlación multiple	0 681560124				
Coeficiente de determinación R*2	0 464524203				
R^2 quetado	D 452354290				
Error tipica	10 87440038				
Observectores	46				

ANÁLISIS DE VARIANZA

	Gredos de Aberte	Sume de cuedrados	Promedio de los cuadrados	F.	Valor critico de F
Regresión	1	4513 660905	4513 890905	38 16991352	1 84505E-07
Residuos	44	5203 113663	118 2525837		
Total	45	971 <u>6 804588</u>			

	Coefficients	Error tlaico	EstacHemon !	Procedulated	Internor 95%	Superior 95%		Supenor 95,000%
insercepción	0 241419301	1 630510754	D 148063642	0 862969008	-3.04466902		-3 04465902	3 527487742
INMEY	1 01713024	0 164632653	8 178180446	1 84595E-07	0.006334941	1 34882564	0 685334941	1 34892554

Resumen VITRO

Estaclisaces de la regresión						
Configente de correlación múltiple	6 721893991					
Coeficiente de determinación R^2	0 520842217					
R^2 ayustado	0 509952267					
Error taxo	7 102201878					
Observaciones						

ANALISIS DE VARIANZA					
	Grantos de son son	Suma de cuatrados	Promedo de los cuadredos		Valor critico de F
Regressón		2412 548659	2412 548859	47 82778937	1 51926-08
	44	2218 465946	50 44240787		
Residuos	7.7	4832.014805			
Total	45	4632.U146U3			

	Coefcense	Error apico	Emadasco I	Probabaded	Infenor 85%	Superior 85%	Inhetor 95 000%	Superior R5 000%
	-0.911272442	1 084918209	-0 856720594	0.396788419	-3 05747399	1 234929106	-3 05747399	1 234929106
entercepción		0 10752476	6 915763831	1 5192E-08	0 526914039	0.980317933	0.528914038	0 950317933
INMEX	0.743815986	0 10/32476	5 5.5.000					

Resumen AEROWEX

Estadisticas de la regres	MON .
Coeficiente de correlación múltiple	0 483428992
Coeficients de determinación R^2	0 233703494
R*2 mustado	0 216267664
Empr spico	19 52753709
Observerones	46

4844	ICIC.	DC.	VARI	ANZA

	Greatos de xibertad	Suma de cuadrados	Promedio de los cuadrados		VEG CALL GO.
Regresión	1	5117 008611	5117 008511	13 41902727	0.000865643
Residuos	44	16778 28701	381 3247048		
Total	45	21895 29352			

	Coeficientes	Error tipico	Estadistico !	Probabilitied	Intenor 95%	Superior #5%	infenor 95 000%	Supenor 93 000%
	-3 631540489	2 935750512	-1 237005827	0 222646669	-9 548158857	2 26507568	9 548156657	2 28507568
mercepción		0 31055805	3 86319904	0 000865643	0 511747353	1 783524555	0 511/47353	1 783524555
1BMV	1 137635954	() ((C) ((C) ((C						

Resumen AHMSA

Estadisticas de la regres	oón .
Coeficiente de corretación múltiple	0 359379627
Coeficiente de determinación R*2	0 129153717
R*2 austudo	0.085611402
Error tipica	24 16045298
Observaciones	22

ANÁLISIS DE VARIANZA

7.0.0.0	Gradus de irberted	Sume de cuadrados	Promedio de los cuadredos	F	Valor or too the F
	1	1731 432425		2 98616565	0 100453302
Regresión	20	11874 54977	563 7274864		
Residuos	21	13405 98219			

	Conficentes	Error tloico	E stadistico !	Probabilidad	Inferior 95%	Superior #5%	mlenor 95 000%	Superior 95 000%
	8 361373306	5 16007498	1 62039763*	0 120807655	-2 402349487	19 1250961	-2 402349467	19 1250961
Interespeión	0 90703662	D 526658102	1 722255977	0 100453302	-0 191548248	2 005621487	-0 191546248	2 006621487

Resumen ALFA

Estacialicas de la regres	do .
Configurate de correlación múltiple	0 565035215
Coeficiente de determinación R^2	0 342266203
R*2 austado	0 327317707
Error tipico	9 086586401
Cheeryscones	46

	Grados de libertad	Suma de cuadredos	Promedio de los c <u>uedrados</u>	<u> </u>	Valor crieco de i
Regresión	1	1890 462451	1090 462451	72 89836473	1 95458E-05
Readus	44	3632 908307	82 5660 5243		
Total	45	5523 368757			

	Coeficientes	Error tipico	Estadiation (Probabilidad	Intenor 95%	Superior 95%	Interior 95 000%	Superior 95 200%
Vitercapción	2 508659866	1 366056369	1 836408726	0 073059079	4) 24446992	5 261789653	-0 24445992	5 25 : 789553
IBMV	0 691479561	0 144509394	4 785014601	1 95458E-05	0 400240025	0 982719096	0 400240025	0 962719096

Resumen APASCO

Estadísticas de la regresión							
Coefigente de correlación multiple	0 752357409						
Coeficiente de determinación R^2	0.58118882						
R*2 ayustado	0 571670384						
Error tipico	7 883105981						
Observaciones	46						

ANALISIS DE VARIANZA

	Grados de liberted	Sume de cuedrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	3794 428654	3794 426654	61 05927743	7 47176E-10
Residuos	44	2734 307838	62 14335992		
Total	45	6528 73649			

	Conformer	Error tipico	Estadístico :	Probabaded	infantor 95%	Superior 95%	Inferior 95 000%	Superior 95 000%
	1 437528247	1 185138316	1 212962426	C 231616254	-0 950980997	3 826017491	-0 950980997	3 8260 17491
Intercepción	0 979644525	0 125369729	7 814043603	7 47176E-10	0 725978449	1 232310601	0 726978449	1.232319801
IBM∨	4 \$1 \$0-023							

Resumen BANACCI B

Estadisticas de la regre-	HO?
Coshgenes de correlación multiple	0 800804496
Coeficiente de determinación R^2	0 640967562
R^2 eustedo	0 632607733
Error bpico	10 11208932
Observaciones	46

ANALISIS DE VARIANZA

	Grados de labertad	Suma de cuedrados	Promedio de los cuadrados	F	Valor critico de F
Regresion	1	8032 242895	6032 242895	78 55150059	2 41061E-11
Residuos	44	4499 19142	102 2543505		
Total	45	12531 43432			

	Coeficientes	Error flaico	Estadistico t	Propabwided	Inferior 95%	Superior 95%	Intenor 95 000%	Superior 95 000%
		1 520241455	0 164498482	0 870092124	-2 813787809	3 313922831	-2 813767609	3 313922631
(nearcaptivión	0.250077411		1 862934085		1 10121592	1 74943299	1 10121592	1 74943299
IBMV	1 425324455	0 160818578	1 60,29,340,60	2410016-11	7012.02			

Resumen BANACCI L

Estadisacas de la regresión							
Coeficiente de correlación multiple	0 814570766						
Coeficiente de determinación R^2	0 863525532						
R*2 ayustado	0 655878385						
Error tipeco	10 59741643						
Observectones	46						

ARACISIS DE TAMBITADA	Grados de 40e/led	Sume de cuedrados	Prometto de los cuedrados	Ē	Valor crisco de F
Regression	3/2003 55 45 45	9744 469518	9744 469518	66 76772296	5 68979E 12
Residuos	44	4941 43034	112 305235		
Total	45	14685 59996			

	Confidentes	Error darco	Estadístico :	Probabilidad	Infenor 95%	Superior 95%	inferior 95 000%	Superior 95 000%
	0 103291279	1 59320505	0 054632382	0 948601125	-3 107602399	3 314184957	-3 107602399	3 314184957
(maycoapción (RMV)	1,589909799	9 186537024	9 314919375	5 68979E-12	1 230244749	1 909572029	1 230244749	1909572829

Resumen CEMEX A

<u> </u>
0 814552073
0 66349506
0 655847241
6 063230801
*

ANĀLISIS DE VARIANZA

	Grados de libertad	Sume de cuadrados	Promedio de los cuadrados	<u> </u>	A SHOT CHIECO DIS
B	1	5668 510068	5658 510088	65 75566913	5 70125E-12
Regresión Residuos	44	2874 899288	65 33862018		
Total	45	8543 409376			

	Confidences	Error Hasos	Éstadiatico (Probabaded	Inflator 95%	Superior 95%	intenor 95 000%	Superior 95 000%
	0.220523947	1 215224882	0 181467803	0 036833949	-2 229800786	2 009548679	-2 228600786	2 889848679 1 45645428
Intercepción	1 197373886	0 128552433	9 314284145	5 70125E-12	0 938293491	1 45645426	0 938293491	1 43340-20

Resumen CEMEX B

Estadísticas de la regresió	on
Coeficiente de correlación multiple	0.840805639
Coeficiente de determinación Rº2	g 70861784
R*2 sustado	0 599950084
Error tipeco	7 389006231
Chance Control	48

ANÁLISIS DE VARIANZA

ATALISIS DE TAMESTO	Grados de Abertad	Suma de cuacredos	Promedio de los cuadrados	<i>F</i>	Valor critico de F
	1	5785 962814	5785 962814	105 9750359	2 7093E-13
Regresión	44	2402 286175	54 59741308		
Residuos Total	45	8186 248989			
100					

		Error tipico	Estadistico (Probabilitied	Inferior 95%	Superky 95%	Infanor 95 000%	Superior 95 000%
Intercepción	0 02870967	1 110855851	0 02584464	0 979498118 2 7093E-13	-2 210073198 0 97288581	2 287492448	-2.210073108 0.97288581	2 267492448 1 446544598
IBMV	1 209715204	0 117511766	10 29441771	2 /USSE-73				

Resumen CEMEX CPO

Estadisticas de la regre:	bóri
Coeficiente de correlación múltiple	0 828859051
Coeficiente de determinación R*2	0 683695891
R*2 apustedo	0 676507161
Error tipica	7 686332368
Observances	46

	Grados de liberted	Suma de cuadrados	Promedio de los cuadrados	<u> </u>	Valor crisco de F
	Graded de Industrial	5618 671912	5616 871912	95 10863415	1 43997E-12
Regresión	44	2509 507031	59 07970524		
Residuos		8218 378943			

Coeficentes Error (BICO Estacistical Probabilities - 1990 141612 2 981 598882 - 2 098141812	2 561598652
0.73777782 1.55555566 U.201396016 U.601314830	1 438478928
	1 430470020
1 192119755 0 122240321 9 792203027 1 438972-12	

Resumen CIFRA B

Estadisticas de la regres	sor .
Coeficiente de correleción multiple	0 618701193
Coeficiente de determinación R*2	0 670271644
R^2 ajustado	0 662777817
Error tipaco	7 426227691
Observeriones	46

ANALISIS DE VARIANZA

	Grados de labertad	Sume de cuadrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	4935 346396	4935 346398	89 443 17872	3 62683E-12
Readuos	44	2427.856931	55 17855662		
Tatal	45	7363 203328			

								5
	Coefcentes	Error tipico	Estad/shco f	Proposition	Inferior 95%	Superior 95%	intenor 95 000%	Superior 95 000%
			0 42273590	0.674546847	1 7785751	2 722757746	1 7785751	2 722757746
:neercepcson	0 472091323	116752366					0 879173212	1 35534622
ISMV	1 117259716	0 118135528	9 4574403	3 82883E-12	0 879173212	1 35534622	0 0/2//32/2	

Resumen CIFRA C

Estadísticas de la regres	uớn .
ubaficiente de correlación multiple	0.81942275
Coeficiente de determinación R^2	0 671453643
R^2 ajustado	0 86398858
Error troico	7 178021226
Observaciones	46

ANALISIS DE VARIANZA

	Grados de abertad	Suma de cuadrados	Promedio de los cuedredos	F	Valor critico de F
Regresión	1	4833 205151	4633.205151	89 92326227	3 34855E-12
Residuos	44	2267 055504	51 52396872		
Total	45	6900 260655			

	Conficiences	Error tlarco	Estedisaco I	Ртовевщоей	inferior 95%	Superior 95%	menor 95 000%	Superior 95 000%
Interdepoion	D 731553919	1 079136575	0 677906704	0 501380397	-1 443302862	2 906410699	1 443302862	2 905410699
HILL	1 00252039	0 114156346	9 482787885	3 34855E-12	0 852453401	1 312587379	0 852453401	1 312587379

Resumen CYDSASA

Estadísticas de la regres	uón
Coeficiente de correlación múltiple	0 343731026
Coeficiente de determinación R^2	0 11815102
R*2 ayustado	0 098108997
Error tipico	14 19933014
Observaciones	46

	Gregos de abertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	1166 586837	1188 568837	5 695164569	0 019340438
Residuos	44	8871 322962	201 6209764		
Total	45	10059 9118			

	Coeficientes	Error tiasco	Estadiatico (Probabilided	intenor 95%	Superior 95%	menor 95 000%	Superior 95 000%
	1 355998593	2 134713178	D 635213483	0 528578965	2 946232964	5 658230149	2 945237954	5 658230149
Intercepción	0 548291033	0 225820402	2 427995999	0.019340436	0 093179934	1 003402133	0 093179934	1 003402133
18MV	A 2-mag 2 10 000							

Resumen DESC 8

Estaditácas de la regresión	
Coefigente de comelación multiplie	0 083452045
Coeficiente de determinación R*2	0 460675738
R-2 ayustedo	0 46607746
Error tipico	10 77229475
Observaciones	46

ANÁLISIS DE VARIANZA

	Gredos de libertad	Suma de cuedrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	4729 006108	4729 866166	40 758 12679	9 1036E-08
Residuos	44	5105 862699	116 0423341		
Total	45	9835 530865			

	Conficentes	Error tipico	Estadistico (Probabilided	Inferior \$5%	Superior 95%	Infenor 95 000%	Superior 95 000%
Intercepción	1 500653351	1 619496062	0 931557272	0.356648862	-1 755226418	4 772533121	-1 755225418	4 772533121
BMV	1 093731338	0 171318218	6 384209175	9 1838E-08	0 74846217	1 439000505	0.74846217	1 439000506

Resumen FEMSA

Estadisticas de la regrad	rón
Costiciente de correlación multiple	0 858654811
Coeficiente de determinación Rº2	0 737288085
R^2 mjustado	0 73131738
Еттог віресо	6 483632816
Observaciones	46

ANALISIS DE VARIANZA

	Grados de libertad	Sume de cuadrados	Promedio de los cuadrados	F	Valor offeco de F
Regresión	1	5190 95087	5190 95087	123 4838367	2 3398E-14
Residuos	44	1849 549544	42 0374919		
Total	45	7040 600513			

	Coefficientes	Error Kpico	Estadistico I	Probabilidad	Inferior 95%	Superior 95%	Inferior 95 000%	Superior 95 000%
marcapción	-0 067710255	0 974742881	-0 059205819	0 953056421	-2 022175379	1 908754868	-2 022175379	1 906754868
BMV	1 145828282	0 10011307	11 11232823	2 3396E-14	0 938015551	1 353637012	0 938015551	1 353637012

Resumen GCARSO

Estadisticas de la regree-	ón .
Confidente de corretación multiple	0 912058631
Coeficiente de delerminación R*2	0 831851494
R*2 ayustado	0 828029937
Error tipico	5 547917682
Observaciones	46

	Grados de liberted	Suma de cuedrados	Promedio de los cuedrados	F	Valor critico de F
Regresión	1	6669 856215	8899 856215	217 6734524	1 205255-18
Repaucs	44	1354 293186	30 7793906		
Tour	45	8054 149401			

	Coeficientes	Error tipico	Essedisaco r	Probabilidad	menor 95%	Superior 95%	Infanor 95 000%	Superior 95 000%
Hiterospoian	1 360406661	0 834088428	1 619059834	0 112581114	-0 330547712	3 031381094	-0 330547712	3 (31361094
HEMV	1 301751424	0.000231838	14 75376062	1 20526E-18	1 123931844	1 479571003	1 12393 1844	1 479571003

BETAS-IBMY

Resumen GCC

Essatisticas de le regres	uán
Coeficiense de comitéción multiple	0 782793168
Coeficiente de deserminación R^2	0 812785145
R^2 ayustedo	0 603964352
Error tipico	10 98737548
Observaciones	46

ANÁLISIS DE VARIANZA

	Gradus de liberted	Sume de cuedrados	Promedio de los cuadrados	į.	Valor critico de F
Regresión	1	8374 663026	8374 863026	69 62613512	1 29943E-10
Residuos	44	5292 466292	120 2833248		
Total	45	13667 32932			

	Coefcentes	Error tipico	Estadistico (Probabilizad	Infanor 95%	Superior 95%	Intenor 95 000%	Supenor 95 000%
Intercepción	0 911999541	1 848824325	0 55312111	0 582980119	-2 410987417	4 234986498	-2 410987417	4 234986490
IBMV	1 455405052	0 174420703	8 344227652	1 29943E-10	1 103884236	1 605927858	1 103884236	1 806927868

Resumen GF8 A

Estedisticas de la regre:	
Coeficiente de correlación multiple	0 609062374
Coeficiente de determinación R*2	G 37095697t
R^2 ajustado	D 350000544
Error tupico	14 7248196
Observaciones	46

ANÁLISIS DE VARIANZA

	Grados de identad	Suma de cuadrados	Promedio de los cuadredos	F	Valor crisco de F
Regresión	1	5625 94971	5625 94971	25 947 52078	7 06731E-06
Residuos	44	9540 093998	218 8203181		
Total	45	15166 04371			

	Coefcentes	Error Haxas	Estadistico I	Probabilidad	Inferior 95%	Superior 95%	Inferior 95 000%	Supremor 95 000%
intercepción	-1 262876095	2 213714769	4) 570478235	0 571255368	-5 724324894	3 198572704	-5 724324664	3 198572704
IDM IV	1 192870347	0 234177577	5 093870903	7 05731E-05	0 720916469	1 664824228	0.720916469	1 884824228

Resumen GFB B

Estadisticas de la regret	pón .
Coeficiente de correlación múltiple	0.698581732
Coeficiente de determinación R*2	0 488016437
R*2 ajustado	0.476380447
Error topico	13 65937798
Observaciones	46

	Grados de liberted	Sume de cuadrados	Promedio de los cuedrados	F	Valor critico de F
Regresión	1	7825 155057	7825 155057	41 94025895	8 72581E-08
Resduce	44	8209 458571	186 5786062		
Total	45	18034 61373			

	Coeficientes	Error tipico	Estadistico (Probab#ded	intenor 95%	Superior 95%	Infenor 95 000%	Supenor 25 000%
Intercepción	-0 934354149	2 063537302	-0 454997408	0 651348266	-5 072986485	3 204278188	-5 07 2988-486	3 204276188
IBMV	1 408830568	0 217233221	6 476129938	6 72581E-08	0 989025794	1 844635342	0 969025794	1 844635342

Resumen GGEMEX

Estadisocas de la regre	10 0
Coeficiente de correlación multiple	0 621330994
Coeficiente de determinación R*2	0 674584502
R*2 ayustado	0 667166798
Error topica	9 798070249
Observaciones	44

ANALISIS DE VARIANZA

	Grados de Mantad	Sume de cuedrados	Promedio de los cuedrados	F	Valor critico de F
Regreson	1	8756 531207	8756 531207	91 2117949	2 70658E-12
Residuos	44	4224 095046	96 0021806		
Torre	45	12960 62715			

	Configurator	Error Hpico	Estadistics /	Proceduded	Interior 95%	Superior 95%	Interior 95 000%	Superior 95 000%
(negrosoción	1 794216276	1 47303214	1 21804285	7 0 229899144	-1 174484825	4 762917376	1 174484825	4 782917376
IBMV	1 488200239	0 155824546	9 55048883	2 2 70658E-12	1 174156514	1 802243984	1 174156514	1 802243984
(Com v								

Resumen GMEXICO

Estadísticas de la regresión	
Coeficiente de correlación multiple	0 556409965
Coeficiente de determinación R*2	0 309556622
R*2 systado	0.29396925
Error topico	12 50132157
Observaciones	46

ANALISIS DE VARIANZA

	Grados da Marted	Suma de cuedrados	Promedio de los cuadredos	F	Valor critico de F
Regresión		3124 099863	3124 099663	19 7366007	5 92478E-05
Residuos	44	8964 744703	158 2896523		
Total	45	10088 84437			

	Coeffornies	Error Haica	Estadisaco :	Probabilidad	infenor 95%	Superior 95%	Inferior 95.000%	Superior 95 000%
Intercapción	5 135905578	1 891463376	2 715307968	0 009424753	1 323911762	# 947 899 39	1 323911762	8 94769939
IBMV	0 000009935	0 200088249	4 442589414	5 92478E-05	0 485658582	1 292161286	0 485658582	1 292161268

Resumen GMODELO

Estadraticas de la regrat	edn
Coefigente de correlación multiple	0 850527588
Coeficiente de seterminación R^2	0 423186116
R*2 mustado	0.41007871
Error tapico	9 948638985
Observencens	46

	Grados de abertad	Suma de cuadrados	Promedio de los cuedrados	f	Valor ortaco de F
Regresión	1	3194 972191	3194 972191	32 26110428	9 8901E-07
Residuos	4	4354 831705	98 97344783		
Total	45	7549 803895			

	Conficentes	Error Borco	Estadistico I	Proceduded	Infenor 95%	Superior 95%	Infanor 95 000%	Superior 95 000%
Intercepción	3 927519057	1 49565361	2 625954967	0.011642068	0 91322738	6 941610734	0 81322738	6 941610734
IRMV	0 000035163	0 158217555	5 561646265	9 8901E-07	0 580089864	1 217802701	0 560069864	1 217802701

Repumen GSERFIN

Estadisocas de la regre:	sión
Coeficiente de correlación multiple	0 602222126
Coeficiente de deserminación R*2	0 362871489
R*2 mustado	0 34818675
Error tipica	11 35564556
Covervaciones	40

ANALISIS DE VARIANZA

	Grados de Abertad	Sume de cuadrados	Promedio de las susaredos	F	Valor critico de F
Regresión	+	3229 372816	1229 372816	25 03817831	9 5211E-08
Residues	44	5675 029408	128 9779411		
Total	45	8904 402224			

	Coeficientes	Error Horco	Estadistico I	Probabilidad	Interior 95%	Superior 95%	Interior 85 000%	Superior 95 000%
Imercepción	-1 958351306	1 707376871	-1 145994164	0.257583008	-5 399343161	1 482640548	5 389343161	1 482840548
IBMV	0 903762699	0 180614678	5 003818475	9 5211E-06	0 539757748	1 26776765	0 539757748	1 26776765

Resumen HYLSAMX

Estadísticas de la regres	idn
Coeficiense de correspoin multiple	0 491611729
Coeficiente de determinación R^2	0.241682092
R12 ajustado	0 224447594
Error tipico	11 5434783
Observaciones	46

ANÁLISIS DE VARIANZA

	Grados de libertad	Sume de cuedrados	Promedio de los cuadrados	F	Velor critico de F
Regresión	1	1901 127799	1901 127799	14 02315628	0 000521166
Residuos	44	5985 105826	135 570587		
Total	45	7900 233526			

	Coefcentes	Error Morco	Estadistico (Probabilidad	Infenor 95%	Superior 95%	Inferior 95 000%	Superior 95 000%
Intercepción	1 921845179	1 750488952	1 097903037	0.278218768	-1 605993056	5 449683413	1 805993056	5 449683413
IBMV	0.893427365	0 185173169	3 744750764	0 000521168	0 320235379	1 086619351	0 320236379	1 000519351

Resumen ICA

Estadisticas de la regresa	<u> </u>
Coeficiente de comunición múltiple	0 778868536
Coeficiente de determinación R*2	0 603214014
R*2 ejustado	0 594196151
Error tipico	9 501481755
Observaciones	46

	Grados de Irbertad	Sume de cuadrados	Promedio de los cuadrados	F	Valor critico de F
Regresón	1	6038 771877	6038 77 1877	66 89101326	2 23737E-10
Residuos	44	3972 222121	90 27777548		
Total	45	10010 994			

	Confinentes	Error tipico	Estadispop (Probabilicad	Infenor 95%	Superior 95%	Inferior 95 000%	Supenor 95 000%
Interpretation	0 338639731	1 428440314	0.23706957	Q B13703154	2 540192452	3 217471915	-2 540192452	3 217471915
IBMV	1 235861013	0 151107404	8 178692638	2 23737E-10	0 931324062	1 540397984	0 931324062	1 540397984

Resumen KMBER

Estadisticas de la regre-	sudon .
Conficiente de corretación múltiple	0 851162274
Coeficiente de determinación Rº2	p 724477217
R*2 austado	0 710215336
Error tipico	5 082918546
Observaciones	46

ANÁLISIS DE VARIANZA

11016-0-4-0-1	Gracos de atentad	Sume de cuedrados	Promedio de los cuadrados	<u> </u>	Velor critico de F
	1	2989 13957	2989 13957	115 6964127	6 72476E-14
Regresión Residuos	44	1136 788681	25 83808094		
Total	45	4125 926251			

	A 40 114	Error tlaica	Estadistico !	Probabilidad	Inferior 95%	Supenor 95%	Infanor 95 000%	2004sios 23 000-4
	Coeficientes		3 298753923	0.001929095	0 900713751	4 060843919	0 980713751	4 050843919
Intercección	2.520778835	0 764160921		8 72478E-14	0.70858204	1 032413277	0.70854204	1 032413277
1044V	0.869497659	0.00083868	10 7582287	8 /24/0E-14	Q 7080820A			

Resumen KOF

Estadisaças de la regres	
Coeficiente de correleción multiple	0 790050591
Configeres de determinación Rº2	0 524179037
R^2 austado	0 615638572
Error tipico	7 782961915
Observeciones	46

ANALISIS DE VARIANZA

	Grados de Aperted	Sume de cuedrados	Promedio de los cuadrados		Valor checo de r
	•	4426 620909	4426 820909	73 07730463	6 87011E-11
Regresión	44	2665 277631	60 57449617		
Residuos Total	45	7091 89874			
TOUR					

	enter Error Horco	Estadistico I	CONTRACTOR OF THE PROPERTY OF	antenor 95%	Superior J5%	NUMBER OF ACTIONS	Superior 93 000 A
			094698847	-0 350065739	4 356627779	0 350065739	4 358627779
Intercepción 1	99848102 1 170082750		67D11E-11	0 808655325	1 307567924	0 808656325	1 307567924
IBMV	256111625 0 1237 <u>7707</u> 0	8 54852940 0	B) DitE.				

Resumen MASECA

udn
0 802621963
0 844202048
0 6381 18731
7 427974662
- 45

ANALISIS DE VARIANZA					Valor critico de F
	Grados da scertad	Suma de cuadrados	Promedio de los cuedrados		
Regresión	1	4395 539234	4395 539234	79 66569214	1 97078E-11
Residuos	44	2427 691533	55 17480757		
Total	45	8823 230757			

			Estadistico I	Probabilidad	inferior 95%	Superior 95%	Infenor 95 000%	Superior 95 000%
	Conficentes	1 116714326			-1 158475142	3 342704375	-1 158475142	3 342704375
Intercepción	1 082114616	0 116/14320 0 116131504	8 925563967	1 97078E-11	0 816311903	1 292468691	0 816311903	1 292458691
(BMV	1 054380297	0 116131304	0 42,000,00					

Resumen MODERNA

Estadisticas de la regresión	
Coeficiens de correspon multiple	0.618632008
Coeficiente de determinación 912	0 382953051
R*2 apustado	0 368929257
Error tipico	12 49444451
Observaciones	45

ANALISIS DE VARIANZA

	Gradios de abertad	Suma de cuadrados	Promedio de los cuedrados	F	Valor or floor die F
Regresión	,	4252 986008	4262 985008	27 30737799	4 56103E-08
Residuos	44	6868 89032	156 1111436		
Total	45	11131 87633			

	Coeficientes	Error tipico	Estadistico t	Probabilidad	infenor 95%	Superior 95%	Inferior 95 000%	Supenor 95 000%
Intercepción	4 581809737	1 878402366	2 49244242	0.016524921	0 896138658	8 487480616	0 896138658	8 467480816
IBMV	1 038370338	0 198708591	5 225646179	4 56103E-08	0 537903533	1 438837144	0 837903533	1 438837144

Resumen PESOLES

Estadisticas de la regre-	800
Coeficiente de comeleción múltiple	0 460571794
Coeficiente de determinación R*2	0 212126378
R*2 austado	0 194220159
Error basco	9 69622985
Observaciones	46

ANÁLISIS DE VARIANZA

	Grados de abertad	Suma de cuadrados	Promedio de los cuedrados	F	Valor crisco de F
Regresión	1	1114,232000	1114.232008	11 84652	0 001277874
Residuos	44	4138 448113	94 05563894		
Total	45	5252 680121			

	Coeficientes	Error Haica	Estadistico I	Properioded	Infenor 95%	Supenor 95%	Interior 95 000%	Supenor 95 000%
	4 475140509	1 458022053	3 069322922	0.003867461	1 536690249	7 413590769	1 538890249	7 413590769
Intercepción salav	0 530863629	C 154238705	3 44 187 7 395	0 001277674	0 220020186	0 841707472	0 220020195	0 841707472

Resumen SIDEK

Estadisocas de la regre	arch 1
Coeficiente de corresción multiple	0 736865091
Coeficiente de determinación R*2	0 542970182
R^2 arustado	0 53258312
Error tipico	12 23898233
Observaciones	46

ANÁLISIS DE VARIANZA

Regresión		7630 24330							
Residuos	44	6590 678298	149 7926885						
Total	45	14421 1118							
							interior 95 000%	0 47 0000	
	Coeficientes	Error tipico	Estedistico f	Procebilided	Infentor 95%	Superior 95%		Superior 95 000%	
	0 730936213	1 839995436	-0 397246711	0 693104599	4 439205229	2 977332803	4 439205229	2 977332803	
(nterzepczón	•		7 23006236	5 26637E-09	1 015008148	1 799565821	1 015008148	1 799585821	
	. 45T384044	0.104443624							

Grados de elevador Suma de cuadrados Promedio de los cuadrados F yearo crítico de F 1 7850 233301 7830 233301 52 27380172 9 286375-09

Resumen SiTUR

Estadisticas de la regresión								
Coeficiente de corretación múltiple	0 844883483							
Coeficiente de determinación R*2	0.713626101							
R*2 ajustado	0 707324194							
Error tipico	9 589224168							
Observaciones	46							

ANÁLISIS DE VARIANZA

	Grados de Abertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	10050 15565	10050 15565	109 7537407	1 55957E 13
Residuos	44	4029 08225	91 57005115		
Total	45	14079 2379			

	Conformer	Error rilpico	Estadisàco (Probabilided	Infency 95%	Superior 85%	Inferior 95 000%	Superior 95 000%
Intercepción	-1 490573813	1 438627647	-1 036106138	0 305812853	4 389937218	1 408789591	-4 389937218	1 408789591
IBMV	1 594342833	0 15218507	10 47834195	1 55967E-13	1 207633989	1 901051677	1 207833900	1 901051677

Resumen TELMEX

Estadisticas de la regi	TENON
Coeficiente de constación multiple	0 623356135
Coeficiente de determinación R^2	0 677913678
R*2 ejustado	0 670593534
Error tipico	4 894723214
Observeciones	46

ANÁLISIS DE VARIANZA

WATIRIS OF ANGWAYS					
	Grados de libertad	Sume de cuedrados	Promedio de los cuedrados	F	Valor ortico de F
Regresión	•	2218 76378	2218 76378	92 80934038	2 15362E-12
Residuos	u	1064 165875	23 9563 1534		
Total	45	3272 929655			

	Coeficientes	Error tipico	Estacitatico I	Propabations	Interior \$3%	Superior 95%	Infenor 95 000%	Superior 95 000%
*ntercepción	0.203425853	0 735867822	0 276443469	D 783501905	1 279618738	1 686469945	1 279518238	1 686469945
IBMV	0 749119072	0 077843696	9 623374688	2 15382E-12	0 502235413	0 908002731	0 592235413	0 908002731

Resumen TLEVISA

Estadisação de la regreta	den
Coeficiente de correspoên multiple	0 76054181
Coeficiente de deserminación R*2	0 578575983
R*2 ayustado	0 568996144
Error tipico	6 967051742
Observectories	46

	Grados de Mentad	Sume de cuedrados	Promedio de los cuadrados	F	Valor critico de F
Regresión	1	2932 188132	2932 186132	60 40790299	8 58531E-10
Residuos	44	2135 751639	48 \$3980997		
Total	45	5087 93977			

	Coeficentits	Error tipico	Estadistico !	Propabeded	infenor 95%	Supenor 95%	infanor 95 000%	Superior 95 000%
(mercepción	0 207432779	1 047419832	0 198041714	0 843924586	1 903502708	2 318368264	1 903502708	2 318365264
IBMV	0.861174647	0.110801172	7 772252118	8 58531E-10	0 637069565	1 084479729	0 637869585	1 054479729
1,01								

Resumen TTOLMEX

Extedisticas de la regresión	
Coeficiente de corretación multiple	0.648498606
Coeficiente de determinación R^2	0 420547851
R*2 ayustado	0 407378484
Error tipico	11 31212473
Observaciones	48

ANÁLISIS DE VARIANZA

	Grados de Martad	Sume de cuadrados	Promedio de los cuedrados	F	Valor orlico de F
Regresión	1	4085 381284	4085 381284	31 93379374	1 00057E-05
Residuos	44	5630 423304	127 984166		
Total	45	9715 804588			

	Configurated	Error tie-co	Estec/stop (Probabilided	Inferior 95%	Superior 95%	Inferror 95 000%	Superior 95 000%
Intercepción	0 196106044	1 700853586	0 114723566	0 909186173	3 232336921	3 522547009	-3 232336921	3 622547009
IBMV	1 018634312	D 179903456	\$ 650999358	1 09657E-08	0 554062735	1 37920589	u 654382735	1 37920589

Resumen VITRO

Estadiseces de la regresión							
Coeficiente de correlación múltiple	0 69931748						
Coeficiente de determinación R*2	0 489044836						
R*2 spustado	0 477432323						
Error tipico	7 334153311						
Observaciones	46						

	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	. F	Valor critico de F
Regresión	1	2265.263394	2265 263394	42 11324809	8 42853E-08
Residuos	44	2366 751411	53 7898048		
Total	45	4632 014805			

	Conformer	Ентог брисо	Estadfaboo 1	Probabilitied	Internor 85%	Superior 95%	IMPROP 95 000%	Superior 95 000%
mercepción	-0 970387684	1 102009317	-0 880082971	0 363500009	3 192550887	1 251775299	-3 192550887	1 251775299
IBMV	0 758926179	0 116639407	6 489472097	6 42653E-08	0 521856909	0 98199945	0 521856909	0 99199945

BIBLIOGRAFIA

ARNAUDO ALDO A. Economía Monetaria; 2a. edición CEMLA 1988.

BAUMOL W. "The Transactions Demand for Cash; An Inventory Theoretic Apoach". Quarterly Journal of Economics, 6 nov 52.

CHAMBERS - CHARNES. "International Analysis and Optimization of Bank Portfolios", Management Science, Vol 7 No. 4, jul 61.

CHARNES - THOR. "Planing for Liquidity in Financial Institutions: The Chance Constrained Method". The Journal of Finance, Vol XXI, dec 66.

CHENG P.L. "Optimum Bond Portfoilio Selection", Management Science. Vol 8 No. 4, jul 62.

ELTON EDWIN - GRUBER MARTIN. Modern Portfolio Theory and Investment Analysis; Third Edition, Wiley 1987.

FISCHER DONALD - JORDAN RONALD. Security Analysis and Portfolio Management; Fourth Edition, Prentice Hall 1987.

HILLIER F.S. "Derivation of Probabilistic Information for the Evaluation of Risky Investments", Management Science, Apr 63.

KEYNES JOHN M. Teoría General de la Ocupación, el Interés y el Dinero; FCE 1951

LAIDLER DAVID. La Demanda de Dinero. 2a edición, Antoni Bosch 1977.

MARKOWITZ H.M.Portfoilio Selection: Efficient Diversification of Investments. Wiley 1959.

MARQUEZ DIEZ JAVIER. Carteras de Inversión. LIMUSA 1981.

SHARPE WILLIAM F. Portfolio Theory and Capital Markets; Mc Graw - Hill 1970.

TOBIN JAMES. "A General Equilibrium Approach to Monetary Theory", Journal of Money, Credit and Banking. Feb 1969.