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Prólogo

Debido a que el presente texto está escrito en inglés anexamos este prólogo
en español en donde describimos brevemente el trabajo.

Los politopos regulares abstractos son una generalización sin geometŕıa
intŕınseca de los politopos regulares convexos, que son, a su vez, una ge-
neralización multidimensional de los sólidos platónicos. En el Caṕıtulo 1
nos extendemos en el contexto histórico de los politopos regulares y de los
problemas que aqúı tratamos.

En el Caṕıtulo 2 se da la definición formal aśı como ciertos resultados
de los politopos regulares abstratos. El principal afirma la existenca de una
correspondencia biyectiva entre los politopos regulares abstractos y ciertos
grupos cuyo nombre en inglés es “string C-groups”. La letra “C” es debido
a su cercańıa con los grupos de Coxeter.

El presente trabajo aborda algunos problemas acerca de los politopos
abstractos regulares. La técnica utilizada consiste en representar en cier-
tas gráficas las acciones de cada “string C-group” en diferentes conjuntos.
Dichas gráficas reciben el nombre de “gráficas CPR”. Si bien ciertas repre-
sentaciones de este tipo se han desarrollado con anterioridad, por primera vez
se están utilizando como herramienta para trabajar con politopos abstractos
y se muestran como un método útil para atacar problemas de los politopos
abstractos. En el Caṕıtulo 3 se describen las gráficas CPR y sus principales
propiedades.

En los Caṕıtulos 4, 5 y 6 se exponen los resultados obtenidos mediante
esta técnica.

En el Caṕıtulo 4 se habla de los poliedros (politopos de rango tres) y
de su relación con las gráficas CPR. Se da solución al problema de decidir
qué grupos alternantes son“string C-groups” asociados a politopos regulares
(teorema 4.3.4). Este es un problema propuesto por M. Hartley en 2005. La
solución que aqúı mostramos aparecerá publicada en [20]. También se mues-
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viii PRÓLOGO

tran familias infinitas de ciertos poliedros que no se hab́ıan podido describir
expĺıcitamente con anterioridad a pesar de conocerse su existencia.

Decimios que un politopo P es extensión de un politopo regular K si las
facetas de P son isomorfas a K. El problema de existencia de extensiones
de politopos regulares fue estudiado en la década de los 80’s con los siguien-
tes resultados. Se encontró una extensión universal (infinita y con último
número de Schläfli infinito) para cada politopo de modo que cualquier ex-
tensión es cociente de ésta. Se encontraron además otras dos extensiones
finitas descritas por L. Danzer en [7] (1984) y E. Schulte en [24] (1983). Es-
tas dos extensiones tienen últimos números de Schläfli 4 y 6 respectivamente,
quedando abierta la pregunta de si existen tales extensiones para cualquier
número de Schläfli. M. Hartley probó en [13] que en general no existen ex-
tensiones con último número de Schläfli impar quedando abierta la pregunta
para los números pares.

En los Caṕıtulos 5 y 6 se da solución al problema de existencia de exten-
siones de politopos abstractos con último número de Schläfli n para todo n
par (teoremas 5.3.1 y 6.2.2), esto se hace mediante la construcción de gráficas
CPR. Como consecuencia se da una solución parcial a una conjetura publi-
cada en [28] (teorema 5.8.2) acerca de extensiones autoduales de rango d+ 1
de politopos autoduales de rango d − 1 con primero y último números de
Schläfli predeterminados. Las extensiones descritas en estos dos caṕıtulos
forman parte de los art́ıculos en preparación [21] y [22].

Finalmente, en el caṕıtulo 7 se exponen preguntas abiertas que surgen
del trabajo expuesto en los caṕıtulos anteriores.



Chapter 1

Introduction

The convex polytopes have been studied since antiquity starting with the
convex regular polygons and continuing with the platonic solids. The penta-
gram shown in Figure 1.1 was also studied before Christ even if it was not
considered a regular polygon.

Later, in the fourteenth century, Bredwardin studied all the star polygons.
It was Kepler in the fifteenth century who investigated the star polyhedra,
although he only found two of them, the small and great stellated dodeca-
hedra. The two other star polyhedra, the great dodecahedron and the great
icosahedron were found by Poinsot in the nineteenth century.

A convex polytope is the convex hull of a finite set of points in an euclidean
space, and it is said to be regular if it has all the possible symmetries. In the
twentieth century Coxeter investigated the regular convex polytopes in higher
dimensions including the star polytopes, continuing a line of investigation
begun by Schläfli and others in the nineteenth century. The technique to
determine the convex ones was to investigate whether or not it is possible

Figure 1.1: Pentagram
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2 CHAPTER 1. INTRODUCTION

to construct a regular polytope in R
4 with tetrahedra, octahedra, cubes,

dodecahedra or icosahedra as facets. An affirmative answer was found for
all except the icosahedron. For higher dimensions d ≥ 5 there are only three
regular convex polytopes, the d-simplex, the d-cube and the d-cross polytope,
and only the first two of them appear as facets of a higher dimensional one
(see H. S. M. Coxeter [5] for further details).

Also in the twentieth century, Grünbaum worked with polyhedra with
skew polygons (non-planar finite polygons) as faces. He also considered poly-
hedra as maps on surfaces conjecturing that for any p and q there are regular
maps on compact closed surfaces such that their faces are regular p-gons, q of
them at each vertex. In [31] A. Vince solves the existence problem, moreover
he proves that for almost any given p and q there are infinitely many such
maps.

In [8] L. Danzer and E. Schulte introduce a definition of abstract re-
gular polytopes (see Chapter 2). Since then, several authors have worked
in this concept. The encyclopedic book of P. McMullen and E. Schulte [19]
includes most of the known results about abstract regular polytopes. One of
these results gives a one-to-one correspondence between the abstract regular
polytopes and the so-called string C-groups that allows us to work with
groups rather than with the polytope. The “C” stands for Coxeter due to
the fact that the string C-groups are related to the well known Coxeter groups

The action on a set V of a group with distinguished generators gives
rise naturally to an edge-labeled graph with vertex set V . This is not new,
for instance, a Cayley graph is an example with the group acting on itself
(see White [32]). In Chapter 3 we introduce the CPR graphs, which are
Cayley-type diagrams of string C-groups arising from their effective actions.
In this way we encode all the properties of the group on an edge-labeled
graph and translate some of them to graph-theoretic terms. In this work the
CPR graphs prove to be a useful tool for solving problems about abstract
polytopes.

Using these graphs we are able to construct string C-groups with par-
ticular properties like being isomorphic to alternating or symmetric groups,
or to correspond to polytopes with a certain local structure. In Chapter 4
we solve a question of existence of polyhedra with alternating automorphism
group asked by M. Hartley in 2005 and published in the article by Schulte
and Weiss [30]. We also construct some infinite families of polyhedra (maps
on compact closed surfaces) with p-gons as faces, q of them at each vertex,
that were known to exist but had not been explicitly described before.
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It is a natural question to determine if for a given rank d polytope K
there exist rank d + 1 polytopes that contain K as a face (as Coxeter did
for the convex ones). Such rank d + 1 polytopes are called extensions of K.
In Chapter 5 we construct an extension of regular polytopes that generalizes
and gives insight to a previous example given by L. Danzer (see [7]) and solves
partially a conjecture of Schulte stated in [28]. In Chapter 6 we construct
another extension related to the extension described by E. Schulte [8] and
generalizes it for a certain class of polytopes.

In Chapter 7 we post some questions that arise naturally from the results
of the previous chapters and from the technique used to obtain them.

In Appendices A and B we include some necessary algebraic and combina-
torial technical results that are not properly about abstract regular polytopes
or CPR graphs. Finally, in Appendix C we give a list of examples of CPR
graphs of well-known polyhedra.





Chapter 2

Regular Polytopes

The purpose of this chapter is to introduce the preliminary concepts that
will be used in the remaining chapters. The main source for all this topics is
the encyclopedic book of McMullen and Schulte [19].

2.1 Definitions and Examples

In this section we introduce the notion of abstract regular polytopes as well
as their connection with the so called string C-groups. We also give some
results about regular polyhedra and show some examples.

The idea of the abstract polytopes is to generalize the concept of convex
polytopes preserving their basic combinatorial properties.

A partially ordered set (poset) X with a rank function

rank : X 7→ {−1, . . . , d}

such that it has a greatest element Fd of rank d and a least element F−1

of rank −1 will be called a flagged poset. The flags of the poset are the
maximal totally ordered subsets of X and they are required to have exactly
d + 2 elements including Fd and F−1. Two elements x, y ∈ X are called
incident if x ≤ y or y ≤ x.

We will say that a flagged poset satisfies the diamond condition if for
any two incident elements x, y such that rank(x) − rank(y) = 2 there exist
exactly two elements w1 and w2 such that y < wi < x.

If a flagged poset satisfies the diamond condition then it implies that for
any flag f and any 0 ≤ i ≤ d − 1 there exists a unique flag f i such that f

5



6 CHAPTER 2. REGULAR POLYTOPES

and f i differ only in the element of rank i. We will say that f and f i are
adjacent flags and f i will be called the i-adjacent flag of f .

We will say that a flagged poset satisfying the diamond condition is
strongly flag connected if for any two flags f and g there exists a sequence of
flags f = f1, f2, . . . , fm = g such that fi is adjacent to fi+1 and f ∩ g ⊆ fi

for all i. If we do not require that f ∩ g ⊆ fi for all i we will simply say that
the poset is flag connected.

Now we are ready to define an abstract polytope.

Definition 2.1.1 An abstract polytope of rank d (or d-polytope) is a flagged
poset with rank function valued in {−1, . . . , d} satisfying the diamond condi-
tion and being strongly flag connected.

Since there is little possibility of confusion we will refer to the abstract
polytopes simply by “polytopes”.

Aiming to preserve some terminology of the theory of convex polytopes we
will say that a polyhedron is a rank 3 polytope, the elements of any polytope
K are called faces, the elements of rank i are called i-faces; the 0-faces are
called vertices, the 1-faces edges, and the (d − 1)-faces facets. The set of
i-faces of K is denoted by Ki. When working with polyhedra the 2-faces are
simply called faces.

Observe that any section {H |G ≤ H ≤ F} for a given G ≤ F is again a
polytope. Any face F may be identified with the polytope section {G |G ≤
F}. The section {G |G ≥ F} is called the co-face of F , or, if F is a vertex,
the vertex figure of F .

Given a polytope K we define its dual K∗ as the same set of faces with
the partial order reversed. It is easy to see that the dual of any polytope is
again a polytope. We say that a polyope is self-dual if it is isomorphic (as a
partially ordered set) to its dual.

An automorphism of a polytope is an order preserving permutation of its
faces. The set of automorphisms of a polytope forms a group with the com-
position, denoted by Γ(K). The automorphism group of abstract polytopes
plays an important role in their study.

A polytope K is said to be regular if Γ(K) is transitive on the flags of
K. Some classes of non-regular polytopes have been studied, however we will
only work with regular polytopes.

The following proposition, which follows from flag connectivity, shows an
equivalence of regularity for polytopes (see [19] Chapter 2B).
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Proposition 2.1.2 The following statements are equivalent for an abstract
d-polytope K.

• K is regular.

• For some flag f and for each i ∈ {0, . . . , d − 1} there is an involutory
automorphism φ such that φ(f) = f i.

From now on we choose a reference, or base, flag f for K. For i =
0 . . . , d−1 we denote the element φ defined in Proposition 2.1.2 by ρi. Every
regular polytope K satisfies that Γ(K) = 〈ρ0, . . . , ρd−1〉 with the additional
relations (ρiρj)

2 = ε for |i − j| ≥ 2, and the so-called intersection property
described next. This motivates the following definition (see [19] Chapter 2B).

Definition 2.1.3 A string C-group is a group generated by involutions ρ0,
. . . , ρd−1, such that the generators satisfy

• (ρiρj)
2 = ε if |i− j| ≥ 2,

• 〈ρk | k ∈ I〉 ∩ 〈ρk | k ∈ J〉 = 〈ρk | k ∈ I ∩ J〉 (intersection property).

It is also true that every string C-group is the automorphism group of
a regular polytope. The proof of this statement can be found in [19] Chap-
ter 2E. This establishes a one-to-one correspondence between the regular
polytopes and the string C-groups. It implies that any definition, result or
example for Γ(K) has an equivalent definition, result or example respectively
for K. In the present work we will mostly work with the automorphism
groups of polytopes rather than with the polytope itself.

The next proposition gives us a useful way to determine that a group
generated by involutions with the suitable commutativity relations satisfies
the intersection property (see [19] Chapter 2E).

Proposition 2.1.4 Let Γ = 〈ρ0, . . . , ρn−1〉 be a group such that ρk is an
involution for all k, and (ρiρj)

2 = ε for |i − j| ≥ 2. If 〈ρ0, . . . , ρn−2〉 is a
string C-group, and

〈ρ0, . . . , ρn−2〉 ∩ 〈ρk, . . . , ρn−1〉 = 〈ρk, . . . , ρn−2〉

for k = 1, . . . , n− 1, then Γ is also a string C-group.
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The sections between two incident faces of ranks i − 2 and i + 1 of a
regular polytope K are isomorphic to pi-gons, that are determined by the
relations (ρi−1ρi)

pi = ε. The number pi then indicates how many i-faces
(or (i − 1)-faces) are glued together around an (i − 2)-face inside a single
(i+ 1)-face. We say that the Schläfli type or Schläfli symbol of the polytope
is {p1, . . . , pd−1}.

If pj = 2 then the automorphism group is the direct product

〈ρ0, . . . , ρj−1〉 × 〈ρj . . . , ρd−1〉,

and for many purposes it suffices to analyze the polytopes with automorphism
groups 〈ρ0, . . . , ρj−1〉 and 〈ρj . . . , ρd−1〉. In general we will assume that no
entry of the Schläfli symbol is 2.

It is easy to see that the dual of a regular polytope K with Schläfli type
{p1, . . . , pd−1} is a regular polytope with Schläfli type {pd−1, . . . , p1}.

Whenever Γ(K) = 〈ρ0, . . . , ρd−1〉 is the group determined only by the
relations (ρiρj)

2 = ε for |i− j| ≥ 2, and (ρi−1ρi)
pi = ε, we denote K simply

by {p1, . . . , pd−1}. The automorphism group of any other polytope with the
same Schläfli symbol will have extra generating relations. An exponent n in
an entry of the Schläfli symbol indicates n equal entries in it, for example,
the polytopes

{3n} and {4, 3n−1} (2.1)

have n entries in their Schläfli symbols, all of them equal to 3 except the 4 in
the first entry of the second polytope. The polytopes in (2.1) are respectively
the n+ 1-simplex and the n+ 1-cube.

The even subgroup of a group Γ = 〈g1, . . . , gs〉 is the subgroup of the
words of even length in terms of the generators gi’s

Γ+ = 〈gigj | i, j ∈ {1, . . . , s}〉.

It is clear that this is a subgroup of index at most two, but in some cases it
is the whole group Γ.

For each p ∈ N there exists one and only one abstract regular polygon
with Schläfli symbol {p}. This is the regular p-gon {p} and has all the
combinatorial properties of the regular convex p-gon in the plane.

The platonic solids are examples of regular polyhedra. Modifying the
shape of the edges and faces they can be embedded on the sphere in such a
way that the i-faces are mapped onto i-cells and the group of isometries of the
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sphere preserving the embedding is isomorphic to the automorphism group
of the corresponding polyhedron. This idea is generalized for any compact
surface without boundary in the following way.

An embedding of a connected (multi)graph G into a compact surface
without boundary S is called a map on S when the components of SrG are
topological open disks. The vertex and edge sets of the map are the vertex
and edge set of G, while the faces of the map are the closure of the 2-cells
in S \ G. A flag of a map is a triple including a vertex, an edge including
it, and a face including the edge. We say that a map is regular if the group
of homeomorphisms of the surface preserving the embedding is transitive on
the flags (these are sometimes called reflexive maps as in M. Conder [4]).

There is an injection from the set of abstract regular polyhedra to the set
of regular maps on a compact surface without boundary in such a way that
the partial order of the polyhedron is represented by the inclusion relation
on the set of vertices, edges and faces of the corresponding map (see [19]
Chapter 6B). We say that a polyhedron is orientable if its corresponding map
is embedded on an orientable surface. The even subgroup of an orientable
polyhedron K has index 2 in Γ(K), and if K is non-orientable then the even
subgroup of Γ(K) is again Γ(K). The genus of a polyhedron is defined as the
genus of the surface where its corresponding map is embedded. Note that
the genus of a polyhedron K can be derived from the Euler characteristic in
the following way.

g(K) =

{

(2 − χ(K))/2 if K is orientable,
1 − χ(K) if K is non-orientable,

where g(K) denotes the genus of K and χ(K) denotes the Euler characteristic
of the surface where we embed the map corresponding to K. We recall that
the Euler characteristic can be computed by χ(K) = v+ f − e where v is the
number of vertices, f the number of faces and e the number of edges of K
See [4] for further details about these concepts.

A map is said to be a polyhedral map if the partial order associated to it
induces a polyhedron.

Example 2.1.5 The cube, octahedron, dodecahedron and icosahedron in R
3

are symmetric with respect to the center. If we identify antipodal points in the
embedding of them in the sphere we get new maps on the projective plane. The
corresponding non-orientable polyhedra are called hemicube, hemioctahedron,
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Figure 2.1: Maps of the hemicube and the hemioctahedron on the projective
plane

hemidodecahedron and hemiicosahedron. Figure 2.1 shows the corresponding
maps of the hemicube and the hemioctahedron.

Example 2.1.6 The d-cube and the d-cross polytope are convex regular poly-
topes in R

d for every d ≥ 3. They have symmetry with respect to the center.
Hence we can construct the d-hemicube and the d-hemicross polytope in a
way analogous to that described in Example 2.1.5.

Example 2.1.7 Starting with the tessellation by squares of the plane and
taking quotient by two orthogonal vectors of the same length in such a way
that they are parallel to the edges of the squares or to their diagonals we obtain
the regular toroidal maps of types {4, 4}(t,0) and {4, 4}(t,t). They are regular
polyhedral maps for t ≥ 2 (see [6]). Figure 2.2 shows the maps corresponding
to {4, 4}(2,0) and {4, 4}(2,2). The subscript indicates one of the orthogonal
vectors.

Example 2.1.8 The great dodecahedron has the vertex and edge sets of the
icosahedron as vertex and edge sets, while its faces are the regular convex
pentagons determined by the five vertices surrounded any vertex of it (see
figure 2.3). The great dodecahedron has 12 vertices, 30 edges and 12 faces. It
can be proved that it lies on an orientable surface. By the Euler characteristic
we know that its corresponding map lies on an orientable surface of genus 4
(see [4]).

In this work we concentrate mainly on combinatorial properties of poly-
topes. For questions about geometric realizations of abstract polytopes in
Euclidean spaces we refer to, for example, [1], [3], [17] and [18].
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Figure 2.2: The toroids {4, 4}(2,0) and {4, 4}(2,2)

Figure 2.3: The great dodecahedron
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2.2 Flat Amalgamation Property

Some polytopes can be “folded” onto one of their i-faces in such a way that
each j-face is sent into a j-face for all j ≤ i. For example, the square (actually
any 2p-gon) for i = 1,
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the toroid {4, 4}(2,0) for i = 1,
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and the octahedron for i = 2
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can be “folded” into its i-face in the way the figures show.
However there is no way of “folding” a cube into one square in the way

described above.
This motivates the definition of the flat amalgamation property (FAP).

We say that the square and the toroid {4, 4}(2,0) satisfy the FAP with respect
to their 1-faces (a line segment), and the octahedron satisfies the FAP with
respect to its 2-faces.

Before giving the formal definition of FAP we introduce some concepts
and results.

Notation 2.2.1 Given a regular polytope K we denote the normal closure
of {ρk, . . . , ρd−1} as

N+
k (K) = N+

k := 〈φ−1ρiφ | i ≥ k, φ ∈ Γ(K)〉.

and dually, the normal closure of {ρ0, . . . , ρk} as

N−
k (K) = N−

k := 〈φ−1ρiφ | i ≤ k, φ ∈ Γ(K)〉.
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In [19] Chapter 4E they prove the following result.

Lemma 2.2.2 Let N−
k and N+

k be as previously described. Then, for 0 ≤
k ≤ d− 1,

a) N−
k := 〈φ−1ρiφ | i ≤ k, φ ∈ 〈ρk+1, . . . , ρd−1〉〉,

b) N+
k := 〈φ−1ρiφ | i ≥ k, φ ∈ 〈ρ0, . . . , ρk−1〉〉,

c) Γ(K) = N−
k 〈ρk+1, . . . , ρd−1〉 = 〈ρk+1, . . . , ρd−1〉N

−
k ,

d) Γ(K) = N+
k 〈ρ0, . . . , ρk−1〉 = 〈ρ0, . . . , ρk−1〉N

+
k ,

Definition 2.2.3 We say that a regular polytope K satisfies the flat amalga-
mation property (FAP) with respect to its k-faces if the products in Lemma
2.2.2 d) are semi-direct. It satisfies the FAP with respect to the co-k-faces
if the products in Lemma 2.2.2 c) are semi-direct. This is the DAP in [28].

The next proposition gives an equivalence of the FAP (see [19] Chapter
4E).

Proposition 2.2.4 Let K be the regular polytope with automorphism group
presentation Γ(K) = 〈ρ0, . . . , ρd−1 | R〉, where R is a set of defining relations
in terms of ρ0, . . . , ρd−1.

The polytope K has the FAP with respect to its k-faces if and only if
〈ρ0, . . . , ρd−1 | R and ρi = ε for i ≥ k〉 is a group presentation of the auto-
morphism group of the k-faces. Dually, the polytope K has the FAP with
respect to its co-k-faces if and only if 〈ρ0, . . . , ρd−1 | R and ρi = ε for i ≤ k〉
is a group presentation of the automorphism group of the co-k-faces.

For example, a group presentation for the automorphism groups of the
square, toroid {4, 4}(2,0) and the octahedron are

Γ({4}) = 〈 ρ0, ρ1 | ρ2
0 = ρ2

1 = (ρ0ρ1)
4 = ε〉,

Γ({4, 4}(2,0)) = 〈ρ0, ρ1, ρ2 | ρ2
0 = ρ2

1 = ρ2
2 =

(ρ0ρ1)
4 = (ρ1ρ2)

4 = (ρ0ρ2)
2 = (ρ0ρ1ρ2ρ1)

2 = ε〉,

Γ({3, 4}) = 〈ρ0, ρ1, ρ2 | ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)

3 = (ρ1ρ2)
4 = (ρ0ρ2)

2 = ε〉.

respectively. It is easy to see that if we add the additional relation ρ1 = ε
to the automorphism groups of the square, and the relations ρ1 = ρ2 = ε to
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the automorphism group of the toroid {4, 4}(2,0) we get the automorphism
group of the 1-faces (an edge with group 〈ρ0 | ρ

2
0 = ε〉), while if we add the

additional relation ρ2 = ε to the automorphism group of the octahedron we
get the automorphism group of the 2-faces (triangles with group 〈ρ0, ρ1 | ρ

2
0 =

ρ2
1 = (ρ0ρ1)

3 = ε〉).
On the other hand, if we add to the automorphism group of the cube

given by

〈ρ0, ρ1, ρ2 | ρ
2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)

4 = (ρ1ρ2)
3 = (ρ0ρ2)

2 = ε〉

the additional relation ρ2 = ε the group collapses into the automorphism
group of its 1-face (a line segment). However, the cube has the FAP with
respect to its vertex figures (this is the dual statement to the octahedron
satisfying the FAP with respect to its faces), and it can be checked adding
the relation ρ0 = ε and obtaining the automorphism group of the triangle
with generators ρ1 and ρ2 rather than ρ0 and ρ1.

For further details about the FAP see [19] Chapter 4.

2.3 Mixing Operations

Some regular polytopes are related to others. For example, the dual of a
polytope can always be obtained by reversing the partial order of the original
polytope. Another example is the great dodecahedron, that can be obtained
from the icosahedron in the way described in Section 2.1 (see Example 2.1.8).

This motivates the definition of mixing operations of regular polytopes.

Definition 2.3.1 Let K be a regular polytope with automorphism group Γ(K) =
〈ρ0, . . . , ρd−1〉. A mixing operation µ is a choice of new generators σ0, . . . , σm−1

of a subgroup ∆ of Γ(K) in terms of ρ0, . . . , ρd−1 and it is denoted by

µ : (ρ0, . . . , ρd−1) 7→ (σ0, . . . , σm−1).

We are interested in the cases where ∆ is a string C-group in terms of
the generators σ0, . . . , σm−1 so we will assume that the σi’s are involutions
such that (σiσj)

2 = ε if |i− j| ≥ 2.
The mixing operations below will be used in this work. Unfortunately,

among these mixing operations, only the dual operation guarantees that we
obtain a polytope. For an example of two polytopes such that their mix is
not a polytope see [19] Chapter 7A, and for an example of a polytope such
that its petrial is not a polytope see [19] Chapter 7B.
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Figure 2.4: Petrie polygons

2.3.1 Dual operation

The dual K∗ of a polytope K can be obtained by the dual operation

δ : (ρ0, . . . , ρd−1) 7→ (ρd−1, . . . , ρ0).

It can be proved easily using the correspondence between string C-groups
and regular polytopes that the dual of a regular polytope as a poset is the
same as the one obtained by the mixing operation δ.

2.3.2 Petrie operation

This involutory operation can be applied only to polyhedra and is defined by

π : (ρ0, ρ1, ρ2) 7→ (ρ0ρ2, ρ1, ρ2).

If we obtain a polyhedron by applying this operation to the polytope K,
the new polyhedron is known as the petrial of K and Γ(K) = Γ(π(K)). The
faces are the so-called petrie polygons of K. These are zigzags such that any
two consecutive edges are in the same face (of K), but any three consecutive
edges are not in the same face. For example, in the toroid {4, 4}(3,0) of Figure
2.4 two petrie polygons appear, one of them in red and the other in blue.

The following lemma shows how the dual and petrie operations interact
(see [19] Chapter 7B).

Lemma 2.3.2 The mixing operation δπ has order 3, that is, (δπ)3(K) = K
for any regular polytope K.
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A consequence of Lemma 2.3.2 is that the families of polyhedra generated
by the dual and petrie operations starting with a polyhedron K contain in
general six polyhedra. They contain three polyhedra if K is self-dual or self-
petrial, and one polyhedron if K is self-dual and self-petrial. See Section 4.2
for examples.

Example 2.3.3 The tetrahedron is a self-dual polyhedron. Its petrial is iso-
morphic to the hemicube, and the dual of the hemicube is the hemioctahedron.
It can be seen from Figure 2.1 that the hemioctahedron is a self-petrie poly-
hedron. Hence the family of the tetrahedron obtained by duality and petrials
includes only the three polyhedra mentioned here.

2.3.3 Facetting operation

Similarly to the petrie operation, the k-th facetting operation can be applied
only to polyhedra, and it consists in replacing the faces of a polyhedron with
its so-called k-holes. A k-hole of a polyhedron K is a sequence of vertices and
edges such that “between” two consecutive edges there are k−1 edges in the
polyhedral map associated to K. The k-th facetting operation is formally
defined by

ϕk : (ρ0, ρ1, ρ2) 7→ (ρ0, ρ1(ρ2ρ1)
k−1, ρ2).

Example 2.3.4 The great dodecahedron is obtained by applying the 2-facetting
operation to the icosahedron.

It is clear that ϕ1(K) = K. Moreover, if K is a polyhedron with Schläfli
type {p, q}, then ϕk(K) = ϕq−k(K), and if k = q/2 then ϕk(K) is a polyhedron
of type {r, 2}. In the following we consider ϕk only for 2 ≤ k ≤ ⌊(q − 1)/2⌋.

Given k and a polyhedron K with Schläfli type {p, q} such that the great-
est common divisor (q, k) = 1, we have that Γ(K) = Γ(ϕk(K)). If (q, k) > 1
then the polyhedron ϕk(K) might have, as vertex and edge sets, proper sub-
sets of the vertex and edge sets of K. In this case the k-holes of K form a
disconnected partially ordered set and ϕk(K) is only one connected compo-
nent of it. This reduces the automorphism group. In Section 4.2 we show an
example where Γ(K) = Γ(ϕk(K)) with (q, k) = 2.

Of particular interest is the composition of the petrie and facetting oper-
ations (see [19] Chapter 7B).

Lemma 2.3.5 The petrie and the k-facetting operation commute for all k.
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The faces of the polyhedron ϕkπ(K) are the so-called k-zigzags. They can
be seen as k-holes such that, in each vertex, the local orientation used to skip
k − 1 edges changes.

2.3.4 Mix of two polytopes

The mix operation is related to the concept of blending, used in realizations of
polytopes (see [19] Chapters 5A and 7A). The idea is to construct a polytope
such that two different projections (quotients) of it are isomorphic to two
given polytopes K and P. However it is a purely combinatorial operation.
We define it in terms of its automorphism group. For a definition as a mixing
operation see [19] Chapter 7A.

Let m ≥ n, and let Γ(K) = 〈ρ0, . . . , ρn−1〉 and Γ(P) = 〈σ0, . . . , σm−1〉
be the automorphism groups of the polytopes K and P. We consider the
subgroup Λ of Γ(K)×Γ(P) generated by τ0, . . . , τm−1 where τi = (ρi, σi) (we
define ρi = ε if i > n − 1). If Λ is a string C-group with respect to the
generators τ0, . . . , τm−1, then the regular polytope Q associated to it is said
to be the mix of K and P, denoted by K♦P.

The following results talk about certain cases when we know that the mix
of two polytopes is a polytope (see [19] Chapter 7A).

Remark 2.3.6 For every regular polytope K, the mix K♦K is isomorphic to
K.

Theorem 2.3.7 Let K be a regular polytope and P be the polytope of rank
1 (that is, an edge). Then Γ(K♦P) ∼= Γ(K) if the 1-skeleton of K (graph
with vertex and edge sets equal to those or K) is a bipartite graph; otherwise
Γ(K♦P) ∼= Γ(K) × Z2.

For further details about these mixing operations see [19] Chapter 7.





Chapter 3

CPR Graphs

In this chapter we introduce the concept of CPR graphs as well as many
results about them that are necessary for the main results in the remaining
chapters of this work.

3.1 Definitions

The term “CPR” graph comes from “C-group Permutation Representation”
graph and is explained next.

Given a regular d-polytope K we can embed its automorphism group Γ(K)
on a symmetric group Sn. Since the generators of Γ(K) are involutions, their
images under the embedding are also involutions, or equivalently, products
of disjoint transpositions in Sn.

Now we can construct a (multi)graph G (we allow multiple edges but not
loops) with a labeling on its edges representing the (generators of the) group
Γ(K) by defining the vertex set

V (G) = {v1, . . . , vn}

and allowing an edge of label k between the vertices vi and vj if and only if
the image under the embedding of ρk interchanges i and j.

Since we are going to use graphs labeled only on the edges we will refer
to them simply as “labeled graphs”, and if the label set has d elements we
will refer to them as “d-labeled graphs”.

Definition 3.1.1 Let K be a regular d-polytope, and π be an embedding of
Γ(K) in Sn for some n. The CPR graph G of K given by π is a d-labeled

19
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3 421

Figure 3.1: Tetrahedron

(multi)graph with vertex set V (G) = {1, . . . , n} and such that there is an
edge of label k between the vertices i and j if and only if (πρk)i = j.

The loops make no contribution in the representation, so they will be
ignored.

A CPR graphG is a way of encoding the information of the automorphism
group Γ(K) in G. Moreover we can recover Γ(K) from G as a group of
permutations on V (G) by taking the group generated by the permutations
ρk, where ρk is obtained by the product of the transpositions of each pair of
vertices with an edge of label k between them.

Remark 3.1.2 The edges of each color in any CPR graph of a polytope form
a matching (set of edges such that no two of them are incident to the same
vertex).

Proof

Since ρk is an involution, it follows that (πρk)
2 = Id and each connected

component of the subgraph induced by the edges of label k has at most two
vertices.

�

Example 3.1.3 The tetrahedron’s group is S4, and can be seen as the group
of the permutations of its vertices (or faces). If we label the vertices 1, 2, 3, 4,
and we consider the base flag to be the one containing the vertex 1, the edge
12 and the face 123, the canonical generators of S4 will be

(ρ0, ρ1, ρ2) = ((12), (23), (34));

and the CPR graph given by the natural embedding described above will be
the one of Figure (3.1).

When working with CPR graphs of polyhedra, the color black will corre-
spond to label 0, the color red to label 1, and the color blue to label 2.
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In some cases, the embedding π is not relevant, so we will say only “a
CPR graph of the polytope K”.

In general, there is not a unique representation of the group of a polytope
as a permutation group, so each polytope has a family of graphs associated
to it. We mention some examples.

Example 3.1.4 The tetrahedron’s group can be embedded in S6, S8, S12 and
S24 in the ways shown in Figure (3.2).

Example 3.1.5 If Γ(K) acts faithfully on Kj, then it can be embedded in
Sm, where m is the number of j-faces of K. In this case, the graph will be
called the j-face CPR graph of K. Figure 3.1 shows the vertex (and facet)
CPR graph of the tetrahedron, while Figure 3.2 A shows the edge CPR graph
of the same polyhedron. For more examples see appendix C.

Example 3.1.6 If we consider Γ(K) as a group of permutations on the flags
of K, then the CPR graph obtained will be the Cayley graph of Γ(K) (see
Appendix B) with generators {ρ0, . . . , ρd−1}. In [31] Vince calls this graph
“the combinatorial map of the regular polytope”.

A similar notion of a permutation group given by the action on the flags
of a polytope determined by the i-adjacency of flags, has been used for non-
regular polytopes by M. Hartley in [10] and [11], and by Hubard, Orbanic
and Weiss in [14]. This group is called the monodromy group and for regular
polytopes it is isomorphic to the automorphism group.

From now on, we will use the following notation.

• G0,...,d−1 will be a d-labeled graph with colors 0, . . . , d− 1.

• Given a graph G0,...,d−1 and a subset I = {i1, . . . , im} of {0, . . . , d− 1},
Gi1,...,im will be the spanning subgraph (with all the vertices of G)
including only the edges of labels i ∈ I.

3.2 Action of Groups on the CPR Graphs

An embedding of a group into a symmetric group Sn may be seen as an action
of the group on the set {1, . . . , n}. The action will be faithful (in the sense
that two different elements of the group act in a different way on {1, . . . , n})
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Figure 3.2: Tetrahedron CPR-graphs
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Figure 3.3: Connected components of Gi,j

if and only if the embedding is injective. In this setting, a CPR graph G of
the polytope K also represents a faithful action of Γ(K) on the vertex set of
G. Now we proceed to the formal definition.

The following results give information about the CPR graphs of a given
polytope, as well as information of any polytope given one of its CPR graphs,
in terms of the action of the automorphism group of the polytope on the
vertex set of the graph.

Proposition 3.2.1 Let G = G0,...,d−1 be a CPR graph of a polytope K. Then,
every connected component of Gi,j with |i − j| ≥ 2 is either a single vertex,
a single edge, a double edge, or an alternating square (see Figure 3.3).

Proof

The set of edges of Gi,j is the union of two matchings so its connected compo-
nents are either alternating paths (including single vertices), or alternating
cycles (including double edges).

The single vertices correspond to fixed points of both, ρi and ρj ; the paths
of length 1 correspond to vertices interchanged by one generator and fixed
by the other; the double edges correspond to vertices interchanged by both
generators; and the alternating squares correspond to 4 vertices such that ρi

and ρj act in them like Z2 × Z2.
It is easy to see that an alternating path of length at least 2, or an

alternating cycle of length greater than 4 correspond to the action of non-
commutative involutions. Since ρi and ρj commute for |i− j| ≥ 2, the proof
is complete.

�
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E

Figure 3.4: Centralizing involution represented by E

Corollary 3.2.2 If G0,...,d−1 is a CPR graph of a polytope K of Schläfli type
{p1, . . . , pd−1}, then Gi−1,i has at least one alternating path of length at least
2, or one alternating cycle of length greater than 4 as a connected component
for every i such that pi > 2.

The central involutions (proper involutions in the automorphism group
that fix no vertex of the polytope and commute with every element in the
group) play an important role in the polytope theory. The following result
relates them to the CPR graphs.

Proposition 3.2.3 A central involution in the automorphism group of a
polytope can be recognized in any of its CPR graphs G = G0,...,d−1 as a perfect
matching (matching that covers all vertices) E in each connected component
of G on which it does not act trivially. Moreover, if E is such a perfect match-
ing, then, for any i ∈ {0, . . . , d− 1}, the spanning subgraph of G containing
E and all edges of G labeled i has connected components as in Proposition
3.2.1.

Proof

If a central involution φ has a fixed vertex on a connected component of a
CPR graph, then, by conjugacy, every vertex of that connected component
is fixed by φ, and that involution acts like ε in that component. Hence any
central involution can be seen as a perfect matching in some connected com-
ponents of the CPR graphs. The commutativity with every element of the
group can be seen in the generators, so it is enough to check the conditions
described in Proposition 3.2.1 in the spanning subgraphs determined by E
and each of the generators ρi’s.

�
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However, such a matching in a CPR graph does not guarantee a central
involution in the automorphism group of the polytope. It is also necessary to
prove that the corresponding permutation of the vertices of the CPR graph
can be generated by ρ0, . . . , ρd−1. For example, in the edges CPR graph of
the hemicube we can draw a matching E with the commutativity properties
(see Figure 3.4), but the hemicube does not have central involutions. Thus
the involution represented by E cannot be generated by ρ0, ρ1 and ρ2.

The automorphism group of a CPR graph G as an edge-labeled graph
may be trivial. As an example, the one in Figure 3.1 is, even though the
automorphism group of the tetrahedron is not. The following results relate
the automorphism group of a polytope with the automorphism group of its
CPR graphs as labeled graphs.

Lemma 3.2.4 Let G be a CPR graph of a polytope K, let Λ be any group of
automorphisms of G as a labeled graph, and let Ov be the orbit under Λ for
each vertex v. Then, the group

N = {φ ∈ Γ(K) |φ(v) ∈ Ov for all v ∈ V (G)}

is a normal subgroup of Γ(K).

Proof

First note that, if λ ∈ Λ then for all v ∈ V and for all i, λ maps the edge
{v, ρi(v)} with label i onto the edge {λ(v), λρi(v)} with label i. This implies
that λρi(v) = ρiλ(v).

Let φ ∈ N . Given a vertex v, φρi(v) = λvρi(v) = ρiλv(v) for some λv ∈ Λ.
Then ρiφρi(v) = λv(v) ∈ Ov. Since ρiNρi = N for all i, N is a normal sub-
group of Γ(K).

�

Proposition 3.2.5 Let G, K, Λ and N be as in lemma 3.2.4, let G′ be the
graph with vertex set

V (G′) = {Ov : v ∈ V (G)},

such that OvOw is an edge labeled i of G′ if and only if v′w′ is an edge labeled
i of G for some v′ ∈ Ov and w′ ∈ Ow. If G′ is a CPR graph of a polytope
K′, then K′ is the quotient of K determined by the subgroup N of Γ(K).
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Figure 3.5: Facet CPR graphs of cube and triangle

Proof

First note that the group Γ(K) = 〈ρ0, . . . , ρd−1〉 acts on G′ in the following
way,

φ(Ov) = Oφ(v).

In particular, the involution ρ′j represented by the edges of label j on G′ acts
like ρj, so we have the epimorphism from Γ(K) into Γ(K′) defined in the
generators by ρj 7→ ρ′j . Now, by definition,

N =
⋂

v∈V (G)

Stv

where Stv is the stabilizer of Ov in Γ(K), but this is the kernel of the mor-
phism. Hence,

Γ(K′) ∼= Γ(K)/N.

Since this isomorphism maps ρi to ρ′i, Γ(K)/N = 〈ρ′0, . . . , ρd−1〉 is the string
C-group describing K′.

�

Note that any generator ρi contained in N vanishes, so the quotient may
be a polytope of rank less than the one of K. For example, the 2-face CPR
graph of the cube shows that the triangle is a quotient of the cube (see Figure
3.5). In Chapter 5 another example of this occurs.

Proposition 3.2.5 does not guarantee proper quotients of a polytope given
a CPR graph with nontrivial automorphism group as a labeled graph. The
subgroup N plays an important role, and it may be trivial even for CPR
graphs with nontrivial automorphism groups as labeled graphs. For example,
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Figure 3.6: Hemidodecaedron CPR graphs

the edge CPR graph of the hemidodecahedron (see Figure 3.6) has automor-
phism group isomorphic to Z3, but in this case, N = {ε} and G′ is another
CPR graph of the same polyhedron.

Now we will describe the way in which the group 〈ρi, ρi+1〉 acts in each
connected component of Gi,i+1. We recall that 〈ρi, ρi+1〉 is isomorphic to the
dihedral group Dpi+1

, where pi+1 is the (i+1)-th entry of the Schläfli symbol
of Γ(K).

Let C be a connected component of Gi,i+1. If C is a path, then it is
easy to see that 〈ρi, ρi+1〉 acts as isometries (rotations and reflections) of the
polygon formed as Figure 3.7 shows. The element (ρiρi+1)

k acts as the k-th
power of the rotation by an angle of 2π/m where m is the number of vertices
of the polygon (or the number of vertices of C); and the element (ρiρi+1)

kρi

acts as the composition of the reflection determined by ρi and the rotation
determined by (ρiρi+1)

k. Note that m divides pi+1.
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Figure 3.8: D4 acts in both squares

If C is an alternating cycle of length 2s ≥ 4, then, the element (ρiρi+1)
k

acts like rotations by 2kπ/s and −2kπ/s respectively on the two polygons
formed by alternating the cycle’s vertices, as Figure 3.8 shows. The element
(ρiρi+1)

kρi acts like the composition of ρi and the rotations given by (ρiρi+1)
k,

that is, like a rotation of the s-gons along the 2s-gon such that it interchanges
both polygons. Now s divides pi+1.

Since this action is used several times in this work we introduce the fol-
lowing definition.

Definition 3.2.6 Let G be a CPR graph. The action of φ ∈ 〈ρi, ρi+1〉 in
any connected component of Gi,i+1 described in Figures 3.7 and 3.8 will be
called the polygonal action in that component.

From the polygonal action of the elements in 〈ρi, ρi+1〉, it follows that
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Figure 3.9: {20, 12}

each connected component of Gi,i+1 represented by a path with m vertices,
or by a cycle with 2m vertices, induces a group isomorphic to Dm. Since the
automorphisms ρi, ρi+1 represented in Gi,i+1 generate a group isomorphic
to Dpi+1

it follows that pi+1 is the least common multiple of the number of
vertices of its path components and of the halves of the number of vertices
of its cycle components. This fact allows us to know the Schläfli type of a
polytope given any of its CPR graphs, for example, the Schläfli type of the
graph in the picture 3.9 (we will prove in Chapter 4 that it is indeed a CPR
graph) is {20, 12}.

As we have seen, the elements of 〈ρi, ρi+1〉 of the form (ρiρi+1)
k act

differently on the connected components of Gi,i+1 than those of the form
(ρiρi+1)

kρi. We introduce the next definition.

Definition 3.2.7 An element φ of 〈ρi, ρi+1〉 of the form (ρiρi+1)
k will be

called ρiρi+1-even, and the remaining will be called ρiρi+1-odd.

Remark 3.2.8 The set of ρiρi+1-even elements of 〈ρi, ρi+1〉 form the even
subgroup of 〈ρi, ρi+1〉.
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Remark 3.2.9 The polygonal action of a ρiρi+1-even (ρiρi+1-odd) element
φ ∈ 〈ρi, ρi+1〉 in any connected component of Gi,i+1 is totally determined by
its action on one of the vertices of the component.

Note that the ρiρi+1-even elements are those of the rotation group in the
polygonal action of the elements of 〈ρi, ρi+1〉 in the path connected compo-
nents of Gi,i+1, while the ρiρi+1-odd elements are those of the reflections.

Remark 3.2.10 Let G be a CPR graph, φ ∈ 〈ρi, ρi+1〉 \ {ε} be ρiρi+1-even
and let C be a connected component of Gi,i+1 where φ does not act like ε,
then φ(v) 6= v for every vertex v of C (in other words, φ does not have fixed
points in the components where it does not act like identity).

Proof

It is easy to see from Figures 3.7 and 3.8 that the ρiρi+1-even elements are
powers of rotations in the polygonal action of 〈ρi, ρi+1〉, hence they have no
fixed points if they are distinct from ε.

�

Lemma 3.2.11 Let C be a connected component of Gi,i+1 with at least three
vertices, and let φ ∈ 〈ρi, ρi+1〉 such that φ|C = (ρi)|C. Then φ is ρiρi+1-odd.

Proof

The polygonal action of a ρiρi+1-even element of 〈ρi, ρi+1〉 is the same than
the polygonal action of ρi in at most two vertices.

�

Given a graph G = G0,...,d−1, it is hard to say if the intersection property
holds for the generators represented by the edges of each color. We will show
some results for d = 3 and connected CPR graphs in chapter 4. In general
we prove the intersection property in a case by case way.

3.3 Connected CPR Graphs

We can construct disconnected CPR graphs for any polytope, for example,
two copies of one of its connected CPR graphs. Actually, if G is a discon-
nected CPR graph for P with components C1, . . . , Cm, and Ci is a CPR
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Figure 3.10:

graph of a polytope Di, then P is the mix P = D1♦D2♦ . . .♦Dm (see Chap-
ter 2). In this section we will show that, in general, regular polytopes also
have several connected CPR graphs and we will give a way of constructing
them.

A CPR graph of a given polytope, with the smallest number of vertices,
can be either connected or disconnected. For example, the square’s smallest
CPR graph is connected (a path of length 3, see Figure 3.10 A) while the
hexagon’s smallest CPR graph is the disjoint union of two paths of lengths 1
and 2 respectively (see Figure 3.10 B). From the automorphism groups and
the polygonal action we can see that no disconnected graph with four or less
vertices will be the CPR graph of the square, and no connected graph with
five or less vertices will be the CPR graph of the hexagon.

Examples 3.1.5 and 3.1.6 show some connected CPR graphs of any poly-
tope.

The following results link the connected CPR graphs of a polytope K
with the structure as a group of Γ(K).

Proposition 3.3.1 Any connected CPR graph G = G0,...,d−1 with s vertices
of a polytope K can be constructed by the embedding of Γ(K) into the sym-
metric group SB, where B = {B1, . . . , Bs} and Bi is a suitable set of flags of
K such that

a)
⋃

i

Bi is the full set of flags of the polytope,

b) Bi ∩ Bj = ∅ if i 6= j, and

c) For any i ∈ {0, . . . , d−1} and j ∈ {1, . . . , s} there exists k ∈ {1, . . . , s}
such that ρi(Bj) = Bk.
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Proof

Let f be the base flag of K, u0 be a vertex of the graph, and H be the
stabilizer of u0 in Γ(K).

Now we associate the set of flags H(f) with u0, and, for a vertex v of
G such that ψ(u0) = v with ψ ∈ Γ(K), we associate ψH(f) to v (actually,
we are making Γ(K) act on the left cosets of H). Lemma A.1.1 implies that
Γ(K) acts faithfully on these sets of flags, and that the graph constructed by
them is the original graph G.

Items a) and b) are consequence of the construction with the cosets ψH ,
and c) is consequence of the action of Γ(K) on these cosets.

�

Proposition 3.3.2 Let H be a subgroup of the automorphism group Γ(K) of
a polytope K such that H does not contain as a subgroup any normal subgroup
of Γ(K) distinct from {ε}. Then, H determines a connected CPR graph for
K. Conversely, we can associate such a subgroup H to any connected CPR
graph G of K.

Proof

To prove the first part of this proposition let Γ(K) act on the left cosets of
H by left multiplication. Then we construct a graph GH whose vertices are
the left cosets of H and whose edges are determined by the action of the
generators of Γ(K). This graph will be a CPR graph for K if and only if
Γ(K) can be recovered from its action on the left cosets of H in Γ(K); in
other words, if and only if Γ(K) acts faithfully on the set of these left cosets.
This part of the proof is implied by the purely algebraic and general Lemmas
A.1.1 and A.1.2.

The converse of the proposition is a consequence of the proof of Propo-
sition 3.3.1. It remains to prove that the subgroup H does not have as a
subgroup any normal subgroup of Γ(K) different from {ε}, but this follows
from the fact that the stabilizer of any vertex v of G is φHφ−1, where H is
the stabilizer of a fixed vertex u0, and φ(u0) = v. If W ≤ H is a normal
subgroup of Γ(K), then W stabilizes all the vertices of G, but this implies
that W = {ε}.

�

Propositions 3.2.5 and 3.3.2 imply the following result.
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Corollary 3.3.3 Any connected CPR graph of a polytope K is a quotient in
the sense of Proposition 3.2.5 of the Cayley CPR graph of K.

As a consequence of proposition 3.3.2 and the subgroup lattice of S4, we
have that all the connected graphs for the tetrahedron are those in Figures
3.1 and 3.2

3.4 Mixing Operations

In this section we explain how to work with the mixing operations using CPR
graphs.

Let G be a CPR graph of the polytope P, and ξ a mixing operation given
by

(ρ0, . . . , ρd−1) 7→ (σ0, . . . , σm−1).

Assume that Pξ is a polytope Q. Then we can construct a CPR graph
G′ for Q in the following way. Let G′ have the same vertex set as G and
introduce an edge of color j between the vertices u and v whenever σj(u) = v,
j = 0, . . . , m− 1 (recall the action of Γ(P) on the vertices of G).

Example 3.4.1 Given a CPR graph G0,...,d−1 of the polytope P, a CPR graph
for its dual P∗ is Gd−1,...,0 and is obtained from the duality mixing operation.

Example 3.4.2 To construct a graph of the petrial of a polyhedron P with
CPR graph G0,1,2, we only have to modify some components of G0,2 in the
following way:

• Those edges with color 2 will have now double edges of colors 0 and 2.

• The double edges will change into a single edge of color 2.

• The squares will remain being squares, but their edges of color 0 will be
replaced by the diagonals of the old squares and again be colored 0.

In Figure 3.11 we show an example of how the dual and petrie operation
work in the CPR graphs.

We recall that the k-facetting operation is defined by

(ρ0, ρ1, ρ2) 7→ (ρ0, (ρ1ρ2)
kρ1, ρ2).
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Figure 3.11: Dual and petrie operation

Therefore to construct a CPR graph for the k-facetting operation φk(P) from
a CPR graph G of the polyhedron P we only have to change the edges of
color 1 of G to suitable ones. The following example illustrates the case
k = 2.

Example 3.4.3 The 2-facetting operation applied to the icosahedron gives
the great dodecahedron. The first graph in Figure 3.12 is the vertex CPR
graph of the icosahedron, while the remaining graphs are isomorphic to the
vertex (face) CPR graph of the great dodecahedron. They were obtained from
the first one by deleting the red edges and adding a red edge between two
vertices u and v if ρ1ρ2ρ1(u) = v.

3.5 Finding the automorphism group

In general it is hard to determine Γ(K) (or even |Γ(K)|) given a CPR graph
K of a polytope K. However there are cases where something can be said
about it. In this section we discuss some ways to determine subgroups of the



3.5. FINDING THE AUTOMORPHISM GROUP 35

Figure 3.12: Facetting operation

automorphism group, or the automorphism group itself, of some polytopes
given CPR graphs of them.

Lemmas A.2.1 and A.2.3 describe when an alternating or symmetric group
is a subgroup of the automorphism group. They are used in CPR graphs
where we are able to get a transposition or a 3-cycle from the generators of
the automorphism group.

Lemma 3.2.4 gives a (normal) subgroup N of the automorphism group
of a polytope K given a CPR graph with nontrivial automorphism group as
labeled graph. This is a useful criterion to determine that the automorphism
group of a polytope with such a graph G is isomorphic to neither the alter-
nating group nor the symmetric group on the vertex set of G. Sometimes
we are able to find a subgroup M ≤ Γ(K) such that Γ(K) = MN (or NM).
In this cases Γ(K) ∼= M ⋉N , with the action of M on N determined by the
permutation group of the orbits Ov induced by M . In chapter 5 an example
of this appears.

The next proposition is also used several times in the rest of this work.

Proposition 3.5.1 Let G be a CPR graph of a polytope K such that V (G)
can be divided in two sets U and V satisfying that



36 CHAPTER 3. CPR GRAPHS

U

V

Figure 3.13: CPR graph of the square

• The edges of one color i form a perfect matching between U and V , and

• the edges of any color j 6= i join either two vertices on U or two vertices
on V .

Then Γ(K) ∼= 〈ρi〉 ⋉ Λ where Λ is a subgroup of SU × SV , and ρi acts on Λ
by interchanging the first and second entries of the elements.

Proof

Note that if φ ∈ Γ(K) maps a vertex in U into a vertex in U , then φ preserves
the sets U and V ; while if φ maps a vertex in U into a vertex in V , then it
interchanges both sets. Let Λ ≤ Γ(K) be the subgroup preserving the sets
U and V (or abusing notation, let Λ = Γ(K) ∩ (SU × SV )). Clearly Λ has
index 2 in Γ(K), therefore Λ ⊳ Γ(K). Finally, since ρi /∈ Λ it follows that
Γ(K) ∼= 〈ρi〉⋉ Λ. Since ρi interchanges the sets U and V , ρi acts on Λ in the
expected way.

�

Example 3.5.2 Figure 3.13 shows the vertex CPR graph of the square. This
graph satisfies the conditions of Proposition 3.5.1 with i = 0; and ρ1 induces
the symmetric group on V , while ρ0ρ1ρ0 induces the symmetric group on U .
Hence, the automorphism group of the square is isomorphic to

S2 ⋉ (S2 × S2) ∼= 〈ρ0〉 ⋉ (〈ρ1〉 × 〈ρ0ρ1ρ0〉).



Chapter 4

CPR Graphs of Polyhedra

Given a natural number n, the only connected CPR graphs of the polygon
{n} are its Cayley graph (an alternating 2n-gon) and an alternating path of
length n − 1 (see proposition 3.3.2). The latter is the vertex CPR graph if
one of the vertices of degree 1 of the graph has an edge of label 1 incident to
it, and is the edge CPR graph if one of the vertices of degree 1 of the graph
has an edge of label 0 incident to it. Note that if n is odd the vertex CPR
graph and the edge CPR graph are the same graph.

On the other hand, any group obtained from a nontrivial 2-labeled graph
such that the edges of the two labels form different matchings, satisfies the
intersection property; hence such a graph is a CPR graph of a polygon.

It is more difficult to determine all the CPR graphs of any polyhedron
because they have more complicated automorphism groups. It is also harder
to determine whether a 3-labeled graph is a CPR graph of a polyhedron.
However, those graphs where we are able to decide that the groups associated
satisfy the intersection property will prove useful.

In Section 4.1 we give some criteria to determine that a 3-labeled graph
is a CPR graph. In Section 4.2 we give a complete list of polyhedra with
automorphism group S7. In Section 4.3 we show a method to construct
polyhedra with automorphism group An for n ≥ 21. Finally, in Section 4.4
we give some infinite families of polyhedra with preassigned Schläfli type
{p, q} for some p and q.

We recall that while working with CPR graphs of polyhedra the color
black will be identified with label 0, color red with label 1, and color blue
with label 2.

37
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4.1 Intersection Property

In Chapter 3 we explained that a CPR graph of a polyhedron is a labeled
(multi)graph G with label set {0, 1, 2} such that the edges of labels i = 0, 1, 2
induce three different matchings of the vertices of G. In this section we
give some sufficient conditions for such a graph to be a CPR graph of a
polyhedron. First we introduce the following definition.

Definition 4.1.1 A d-labeled multigraph G satisfying the conditions of Propo-
sition 3.2.1 with the properties that the set of edges of each label i ∈ {0, 1,
. . . , d − 1} forms a matching Mi on G, and that Mi represents a different
pairing of the vertices of G from Mj for i 6= j, will be called a proper d-labeled
graph.

Remark 4.1.2 Every CPR graph is a proper d-labeled graph.

A proper 3-labeled graph G is a CPR graph of a polyhedron if the group
generated by the involutions ρ0, ρ1 and ρ2 determined by the edges of labels
0, 1 and 2 is a string C-group with respect to ρ0, ρ1 and ρ2. The only remain-
ing condition for G to be a CPR graph of a polyhedron is the intersection
property.

By Proposition 2.1.4, the only necessary equality for a polyhedron K with
automorphism group Γ(K) = 〈ρ0, ρ1, ρ2〉 to satisfy the intersection property
is

〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉.

Let Γ(K) = 〈ρ0, ρ1, ρ2〉 be a polyhedron, let φ ∈ 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 be a
ρ0ρ1-even element of Γ(K), and let C be a connected component of G0,1,
where G = G0,1,2 is a CPR graph of K. If φ does not act like ε in C, then φ
acts as a power of the rotation on the vertices of C described by the polygonal
action of ρ0ρ1 on C, so it is a product of disjoint cycles of the same length
d. Moreover, if d ≥ 3, then φ is also ρ1ρ2-even (ρiρj-odd permutations are
involutions). This leads us to the first criteria to determine that a 3-labeled
graph is a CPR graph.

Theorem 4.1.3 Let G0,1,2 be a connected, proper 3-labeled graph. If C1, C2

are two connected components of G0,1 (or G1,2) with n and m vertices, n,m ≥
2, such that (n,m) = 1, then G0,1,2 is a CPR graph.
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Figure 4.1:

Proof

It only remains to prove the intersection property.
Suppose to the contrary that φ ∈ 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 and φ /∈ 〈ρ1〉. If φ is

ρ0ρ1-odd then φρ1 will be ρ0ρ1-even, φρ1 ∈ 〈ρ0, ρ1〉∩ 〈ρ1, ρ2〉, and φρ1 /∈ 〈ρ1〉.
Thus we can suppose that φ is ρ0ρ1-even.

Suppose that n is odd (otherwise m is odd). Then n ≥ 3 and φ forms
cycles of length d in a connected component C with n vertices of G0,1, leaving
no vertex fixed in this component. Therefore d is a divisor of n, and d ≥ 3,
so φ is also ρ1ρ2-even. This implies that φ forms cycles of length d in the
components of G1,2 intersecting C moving all the vertices of such components
(see Figure 4.1). It follows from the connectedness of G that φ is a product
of disjoint cycles of length d without fixed points, so d is a divisor of both,
m and n, but that is a contradiction to the hypothesis.

�

The proposition above is a powerful criterion to determine that many
connected, proper 3-labeled graphs are CPR graphs, for example, that of
Figure 3.9. We will give another two useful criteria in Theorems 4.1.6 and
4.1.7, but first we prove some lemmas concerning the action of automorphisms
in 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 on the vertices of a given CPR graph.

Lemma 4.1.4 Let φ ∈ 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 such that, φ|C = (ρ1)|C and φ|D 6=
(ρ1)|D for C and D connected components of G0,1 and G1,2 respectively, with
at least one edge of label 1 in their intersection. Then, every vertex of C is
incident to an edge of label 2.

Proof

If C ∩D has no vertex incident to edges of both labels, 1 and 2, then D is
only the edge of label 1 with its two vertices, and φ|D = (ρ1)|D, so we can
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C

Figure 4.2:

assume that C ∩D has at least one vertex incident to edges of both labels,
1 and 2.

Let v0 be a vertex of C ∩ D incident to edges of labels 1 and 2. We
claim that φ is not ρ1ρ2-odd because the only reflection interchanging v0 and
φ(v0) = ρ1(v0) in the polygonal action of 〈ρ1, ρ2〉 on D, is ρ1 (see Figures 3.7
and 3.8). Therefore φ must be ρ1ρ2-even, but the only ρ1ρ2-even permutation
that interchanges two vertices that are also interchanged by ρ1 is (ρ1ρ2)

(n/2),
with n the number of vertices of D, n even. In this case, φ|D = (ρ1ρ2)

(n/2),
D is a path of odd length n − 1, and the edge of label 1 incident to v0, say
u0v0, is the central edge of it. This implies that u0 is also incident to an
edge of label 2. Because φ is ρ1ρ2-even, it cannot act as ρ1 in any connected
component of G1,2 with at least three vertices (see Lemma 3.2.11), and any
edge of label 1 in C is either adjacent to 2 edges of label 2, or it is adjacent
to none of them.

If xw is an edge of label 0 and x is incident to an edge of label 2, then,
by Proposition 3.2.1, w is also incident to an edge of label 2.

The last two paragraphs and the existence of v0 imply that every vertex
of the component C is incident to an edge of label 2 (see Figure 4.2).

�

Note that if C and D are connected components of G0,1 and G1,2 respec-
tively and their intersection does not contain an edge of label 1, then C and
D are paths and C ∩D contains at most two vertices (the first one and the
last one of each path). Moreover, if it has two vertices u and v, then C and
D are paths of odd length. The following lemma generalizes Lemma 4.1.4.

Lemma 4.1.5 Let φ ∈ 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 such that, for C and D connected
components of G0,1 and G1,2 respectively with C ∩ D 6= ∅, φ|C = (ρ1)|C
and φ|D 6= (ρ1)|D. Then, every vertex of C is incident to an edge of label
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2. Moreover, if C and D have at least 3 vertices, then φ is ρ0ρ1-odd and
ρ1ρ2-even.

Proof

It was proved in Lemma 4.1.4 that if C ∩D contains an edge of label 1 the
statement is satisfied. The remainder case is when C ∩ D is either a single
vertex or a couple of isolated vertices.

The lemma holds trivially if C is a single vertex, and Proposition 3.2.1
shows that the lemma also holds when C is a single edge of label 0 with its
two vertices, or C consists of two isolated vertices. Note that D has at least
two vertices, because φ|D 6= (ρ1)|D, but, if D has exactly two vertices u and
v, then D consists only of u, v and a single edge of label 2 between them
(here we use that there is no edge of label 1 in C ∩ D). Then φ(u) = v,
otherwise φ|D would be equal to (ρ1)|D. Since φ|C = (ρ1)|C , then there is an
edge of label 1 between u and v, but that contradicts our hypothesis.

We now assume that both, C and D have at least one edge of label 1 and
at least 3 vertices.

Let w0 be a vertex in C ∩D. Since there is no edge of color 1 in C ∩D, it
follows that w0 is a vertex of an alternating square of colors 0 and 2 in G with
no edge of label 1 between two of its vertices. Let w1 and w2 be the vertices
adjacent to w0 of C and D respectively, and let w3 be the other vertex of the
square (see Figure 4.3). Let D′ be the connected component containing w3

of G1,2. We know that φ is ρ0ρ1-odd because it fixes w0 and moves w1 (see
remark 3.2.10). This also says that φ|D is either IdD or (ρ1)|D because they
are the only two elements of 〈ρ1, ρ2〉 whose polygonal action on D fix w0 (see
Remark 3.2.9). So we can assume that φ|D = Id|D and φ is ρ1ρ2-even (this is
a consequence of the fact that D has at least 3 vertices). This implies that
φ does not act as ρ1 on D′ (note that w1, w3 and ρ1(w1) are three different
vertices of D′). Since the labeled-1 edge between w1 and ρ1(w1) is in C ∩D′,
we apply Lemma 4.1.4 to C and D′ to get the desired result.

�

Theorem 4.1.6 Let G = G0,1,2 be a connected, proper 3-labeled graph. If G
has a vertex v0 such that no edge of labels 1, 2 (or dually 0, 1) are incident to
it (in other words, 〈ρ1, ρ2〉 has a fixed point v0 in G), then G0,1,2 is a CPR
graph.
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Figure 4.3:

Proof

Let C0 be the connected component on G0,1 of the vertex v0, and let φ ∈
〈ρ0, ρ1〉∩〈ρ1, ρ2〉. We can assume that φ is ρ0ρ1-odd, otherwise we would take
ρ1φ. Note that φ(v0) = v0 because {v0} is the only vertex of the connected
component of v0 in G1,2. Then Remark 3.2.9 implies that φ|C0 = (ρ1)|C0.

Suppose to the contrary, that φ 6= ρ1. Then, there exist adjacent vertices
u and w such that φ(u) = ρ1(u) but φ(w) 6= ρ1(w). The vertices u and w
are in the same connected component D0 of either G0,1 or G1,2, but since
φ is ρ0ρ1-odd and φ(u) = ρ1(u), it follows from Remark 3.2.9 that D0 is a
connected component of G1,2 and that φ is ρ1ρ2-even.

Lemma 4.1.5 shows that φ acts as ρ1 on every connected component D of
G1,2 such that C0 ∩D 6= ∅; here we are using that v0 is not contained in an
edge of label 2. While φ is ρ1ρ2-even and φ|D = (ρ1)|D, then D has at most
two vertices (see Lemma 3.2.11). Then G has no edge of color 2, but that is
not possible. So we have that φ acts like ρ1 in every connected component
of G0,1 and G1,2.

Hence, the only ρ0ρ1-odd element of 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 is ρ1.
�

Theorem 4.1.7 Let G = G0,1,2 be a connected, proper 3-labeled graph. If
G has an edge v0u0 of label 1, such that no edge of label 2 (or dually, 0) is
incident to either v0 or u0; and v0u0 is not the central edge of an odd-path
connected component in G0,1 (resp. G1,2) then G0,1,2 is a CPR graph.

Proof

Let C0 be the connected component of v0u0 in G0,1, and let φ ∈ 〈ρ0, ρ1〉 ∩
〈ρ1, ρ2〉. We can assume that φ is ρ0ρ1-odd, otherwise we would take ρ1φ.
Note that the vertices of the connected component of u0 in G1,2 are only u0

and v0. We know then that φ|C0
= (ρ1)|C0

because the polygonal action of ρ1

-/ 
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Figure 4.4: Intersection property fails

on C0 is the only one fixing {v0, u0} as a set once we ruled out the possibility
of C0 being an odd-path connected component in G0,1 having u0v0 as its
central edge.

Again, lemma 4.1.5 shows that φ acts as ρ1 on every connected compo-
nent of G1,2 intersecting C0. We suppose that φ 6= ρ1 and continue the proof
in the same way as in Theorem 4.1.6.

�

Remark 4.1.8 The graph of Figure 4.4 shows that theorem 4.1.7 fails if we
allow v0u0 to be the central edge of an odd-path connected component in G0,1

or, as in this case, of G1,2. Note that ρ0 ∈ 〈ρ1, ρ2〉.

4.2 Polyhedra with automorphism group S7

Michael Hartley built the atlas [12] of regular polyopes with small auto-
morphism groups. This atlas was constructed by means of an exhaustive
computer search and considers the groups of order n that are automorphism
groups of polytopes for almost every n ≤ 2000. We describe next the poly-
topes with symmetric automorphism group that appear in this atlas.

The triangle is the only polytope with automorphism group isomorphic to
S3. The tetrahedron, hemicube and hemioctahedron are the only polytopes
with automorphism group isomorphic to S4. The 4-simplex has automor-
phism group isomorphic to S5, and the remaining seven polytopes with this
automorphism group are polyhedra. Finally, there are eleven polytopes with
that automorphism group isomorphic to S6; one of them is the 5-simplex,
there are seven 4-polytopes and the remaining three are polyhedra.



44 CHAPTER 4. CPR GRAPHS OF POLYHEDRA

Figure 4.5: {10, 4}

In this section we will find all the polyhedra with automorphism group
isomorphic to S7. In order to do that, we construct proper 3-labeled CPR
graphs on seven vertices such that

a) The graph is connected (otherwise it would not generate the whole
symmetric group).

b) The group generated by the involutions satisfy the intersection prop-
erty.

c) The group generated by the involutions is S7.

In most of the cases, the intersection property can be verified easily with
the criteria of the last section; the ones where they do not apply can be
verified separately looking at the subgroups explicitly.

We will list the graphs by families closed under dual and petrie operations,
hence each family has 1, 3 or 6 polyhedra.

All the 3-labeled graphs that satisfy conditions a) and b) will also satisfy
c). To see this it is enough to verify it in just one of the graphs of each of the
families, given the fact that the dual and petrie operations are invertible.

In order to determine that the automorphism group generated is isomor-
phic to S7, we can find a transposition of two vertices of the graph and
a 6-cycle not including one of the vertices of the transposition and apply
Lemma A.2.1, or find a 3-cycle and a 5-cycle not including two of the ver-
tices of the 3-cycle and apply Lemma A.2.3; this is because at least one of the
involutions ρ0, ρ1 and ρ2 will be an odd permutation. Other polyhedra need
a little more work. For example, let us check that the polytope of Schläfli
type {10, 4} in Figure 4.7 C has automorphism group isomorphic to S7 (see
Figure 4.5).



4.2. POLYHEDRA WITH AUTOMORPHISM GROUP S7 45

Figure 4.6: (ρ0ρ1)
2, (ρ0ρ1)

5 and ρ2

First we see that (ρ0ρ1)
2 induces a cycle of length 5 in the vertices of the

graph, leaving the other two fixed, while (ρ0ρ1)
5 leaves those 5 vertices fixed

and interchanges the other two (see Figure 4.6).

With (ρ0ρ1)
2 and ρ2 we generate a group isomorphic to S6 by Lemma

A.2.1, and this group with (ρ0ρ1)
5 generates the desired group isomorphic to

S7.

Now we give the list of the graphs of the polyhedra with automorphism
group S7. In Figure 4.7 we list the polyhedra with acyclic CPR graphs (the
only cycles allowed are the double edges). It is easy to see that those 24
graphs include all the possibilities of polyhedra without squares or other
cycles. It is important to remark that the polyhedron of Schläfli type {6, 6}
of Figure 4.7 A (left, upper corner) is not self dual because in this polyhedron
(ρ0ρ1ρ0ρ1ρ2)

6 is not the identity, but in its dual it is.

In Figures 4.8 and 4.9, we list the rest of the graphs of the polyhedra with
automorphism group S7. We can see that they are all the possible graphs
noting that a graph with at least a cycle that generates S7 needs a square
of labels 0 and 2; then we have to look at all the possibilities of graphs
with 1, 2 and 3 edges of label 1 incident to this square and to an outside
vertex. Note that some of the graphs of Figure 4.9 belong to self petrie or
self dual polyhedra, while the last graph belongs to a self dual and self petrie
polyhedron of Schläfli type {12, 12}.

Some of these families are related by facetting operations. We can see
here some examples of the 2-facetting operation acting on a polyhedron of
Schläfli type {p, 2q} giving as a result another polyhedron with the same
automorphism group. For instance, the 2-facetting operation applied to the
polyhedron of Schläfli type {6, 12} at the upper right corner of Figure 4.8 H,
gives rise to the polyhedron with Schläfli type {10, 6} at the left of Figure
4.9 K (recall that in order to see the 2-hole of a polyhedron given its graph
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A B

C D

Figure 4.7: Acyclic graphs of S7
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E F

G H

Figure 4.8: Remaining graphs of S7
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J

K

L

M

N

I

Figure 4.9: Remaining graphs of S7
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G we have to change ρ1 to ρ1ρ2ρ1).
In Table 4.1 we give the Schläfli symbols of the polyhedra with automor-

phism group isomorphic to S7. In each family the first polyhedron will be the
upper left one in the correspondent figure. In [16] D. Leemans displays the
same table up to duality, but these results are based on a computer search,
not the CPR graph technique.

Group First δ πδ δπδ δπ π

A {6, 6} {6, 6} {7, 6} {6, 7} {6, 7} {7, 6}

B {12, 4} {4, 12} {7, 12} {12, 7} {4, 7} {7, 4}

C {10, 4} {4, 10} {7, 10} {10, 7} {4, 7} {7, 4}

D {12, 6} {6, 12} {10, 12} {12, 10} {6, 10} {10, 6}

E {10, 3} {3, 10} {12, 10} {10, 12} {3, 12} {12, 3}

F {5, 6} {6, 5} {7, 5} {5, 7} {6, 7} {7, 6}

G {10, 7} {7, 10} {5, 10} {10, 5} {7, 5} {5, 7}

H {12, 6} {6, 12} {7, 12} {12, 7} {6, 7} {7, 6}

I {12, 4} {4, 12} {12, 12}

J {7, 4} {4, 7} {7, 7}

K {10, 6} {6, 10} {10, 10}

L {7, 6} {6, 7} {7, 7}

M {7, 12} {12, 7} {7, 7}

N {12, 12}

Table 4.1: Polyhedra with automorphism group A7
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4.3 Polyhedra with automorphism group An

In May 2005, in the Conference “Convex and Abstract Polytopes” in Banff,
Canada, M. Hartley proposed in the open problems session the following
question. For which alternating groups An does there exist an abstract regu-
lar polytope with automorphism group isomorphic to An? This question can
be found in [30]. Hartley already knew an affirmative answer for n = 5, 9
and a negative answer for n = 3, 4, 6, 7 and 8 obtained with the aid of the
computer (see [12]). The question can be rephrased in the following way.
What alternating groups are generated by three involutions (ρ0, ρ1 and ρ2)
two of which commute ((ρ0ρ2)

2 = ε), and such that the intersection prop-
erty is satisfied (〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉)? This question already appears in
[15], problem 7.30 for all the finite simple groups, without taking on account
the intersection property. In this section we will construct (CPR graphs of)
polyhedra with automorphism groups isomorphic to An for n ≥ 9, giving an
affirmative answer for the remaining alternating groups.

It is easy to see that A3 and A4 cannot be the automorphism group of
any polyhedra because they do not have enough involutions, while A5 is the
automorphism group of the hemi-dodecahedron, the hemi-icosahedron and
the hemi-great dodecahedron.

Now we show that A6, A7 and A8 cannot be the automorphism group of
any polyhedra.

Proposition 4.3.1 No polyhedron has automorphism group isomorphic to
A6.

Proof

Let G = G0,1,2 be a connected CPR graph with 6 vertices of a polyhedron K.
Suppose to the contrary that Γ(K) ∼= A6, then G has exactly two edges of
each label 0, 1 and 2 in order to have only even permutations. By Proposition
3.2.1, G0,2 is either an alternating square together with two isolated vertices,
or it contains one isolated edge of label 0, one of label 2 and an isolated
double edge (see Figure 4.10).

If G0,2 is an alternating square together with two isolated vertices, then
the two edges of label 1 join the square with each of these vertices. We have
three cases (actually it is only one modulo petrie and dual operations). If the
vertices of the square having an edge of label 1 incident to them are adjacent
by an edge of label 0, then we have the edge CPR graph of a hemicube. If
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Figure 4.10:

Figure 4.11: CPR graphs of hemicube, hemioctahedron and tetrahedron

these vertices are joined by an edge of label 2, then we have the edge CPR
graph of a hemioctahedron. Finally, if these two vertices are opposite in the
square, we have the edge CPR graph of the tetrahedron (see 4.11). These
three polyhedra have automorphism group S4.

If G0,2 contains one isolated edge of each label 0 and 2 and one double
edge of both labels, then the two edges of label 1 join these three connected
components forming a path with a double edge. Now we have three cases
(again there is only one modulo dual and petrie operation). If the central
edge of the path is the one of label 0, then we have the face CPR graph of
the hemidodecahedron. If the central edge of the path is the one of label
2, then we have the vertex CPR graph of the hemiicosahedron. Finally, if
the central edge of the path is the double edge, we have the vertex (or face)
CPR graph of the hemi-great dodecahedron (see Figure 4.12). These three
polyhedra have automorphism group isomorphic to A5.

Hence, no polyhedron has automorphism group A6.
�

Proposition 4.3.2 No polyhedron has automorphism group isomorphic to
A7.

Proof

Let G = G0,1,2 be a connected CPR graph with 7 vertices of a polyhedron K.



52 CHAPTER 4. CPR GRAPHS OF POLYHEDRA

Figure 4.12: CPR graphs of hemidodecahedron, hemiicosahedron and hemi-
great dodecahedron

Suppose to the contrary that Γ(K) ∼= A7, then G has exactly two edges of
each label 0, 1 and 2. Again, by Proposition 3.2.1, G0,2 is either an alternat-
ing square together with three isolated vertices; or it contains one isolated
vertex, one isolated edge of label 0, one of label 2 and an isolated double
edge. In any of these two cases we have 4 connected components of G0,2 that
have to be connected by only two edges of label 1, but that is impossible.

�

Proposition 4.3.3 No polyhedron has automorphism group isomorphic to
A8.

The proof of this last proposition involves the cases when the CPR graph
has 2 or 4 edges of each label. We do not include the proof because of its
length, but it follows from the same case by case arguments.

For n ≥ 9 we can find polyhedra with automorphism group An. Let us
take a look first at the graph Gk consisting in k squares of labels 0 and 2
joined by edges of label 1 as Figure 4.13 shows.

We know that these graphs are CPR graphs because of Proposition 4.1.3,
and we can determine that An is a subset of the automorphism groups of
these polyhedra in the following way.

Note that (Gk)0,1 and (Gk)1,2 have only one connected component C0 with
three vertices. The remaining connected components have 4 or 2 vertices.
From the polygonal action of ρ0ρ1 we know that φ = (ρ0ρ1)

4 is a cycle C that
includes only the three vertices of C0.

By a similar reasoning we can see that each of the automorphisms ψ1 =
(ρ0ρ1)

3 and ψ2 = (ρ1ρ2)
3 acts on the vertex set of Gk as a product of disjoint

cycles of length 4 and a transposition. It follows that the group generated by
ψ1 and ψ2 is transitive on all the vertices of the graph Gk with the exception
of two vertices of C.
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k

Figure 4.13: The graph Gk

By Lemma A.2.3 we have that An is included in the automorphism group
of the polyhedra of these graphs. Since Gk has always an even number of
edges of labels 0 and 2, to determine whether the automorphism group is An

or Sn it suffices to see whether the number of edges of label 1 is even or odd,
respectively.

Therefore we can construct a polyhedron with automorphism group An

for n = 8k+1 and Sn for n = 8k+5 with k an integer. Now we modify these
graphs to obtain polyhedra with automorphism groups An for the rest of the
n’s. There are many ways to do this, but it will be enough with a couple of
them.

We can add an edge of label 1 as a diagonal of any square of the graph
with the exception of the first one and the last one (see Figure 4.14). In
this situation, φ = (ρ0ρ1)

8 will be the cycle C of length 3 while the subgroup
generated by ψ1 = (ρ0ρ1)

3 and ψ2 = (ρ1ρ2)
3 is transitive on the rest of the

vertices along with one of C. This helps to construct graphs with automor-
phism groups An from those with automorphism groups Sn. Note that two
diagonals of label 1 in consecutive squares would not work in the same way
because, in this case, no power of ρ0ρ1 will be a cycle of length three.

In order to add more vertices to the graphs of the type of Figure 4.13,
we can attach them to any square except the one at the beginning and the
one at the end, with an edge of label 1 (see Figure 4.15). In this situation,
φ = (ρ0ρ1)

20 gives us the cycle C of length 3, while ψ1, ψ2 as before still work
as generators of a group transitive in the rest of the vertices along with one
of C. Actually, we can add two vertices to the same square, but we cannot
add vertices to consecutive squares in opposite sides of the graph, or add
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Figure 4.14: Obtaining An from Sn

Figure 4.15: Obtaining An+1 from An

a vertex to a square next to another square with diagonal of label 1, again
because no power of ρ0ρ1 will be a cycle of length three.

With these two modifications, we are ready to generate families of poly-
hedra with automorphism groups isomorphic to An for n ≥ 21 as Figure 4.16
shows. Now we are ready to state the following theorem.

Theorem 4.3.4 For any n ≥ 9 there is a polyhedron with automorphism
group isomorphic to An.

The Schläfli type of the polyhedra for the above graphs is {p, p} where p
is 12 if we added no diagonal or vertex to Gk, 24 if we added one diagonal,
60 if we added vertices but no diagonals, and 120 if we added vertices and
diagonals. Note that these graphs will correspond to self-dual polyhedra if
they have 4k + 1 vertices, or if they have 4k + 3 vertices and the two extra
vertices are attached to the same square. In the remaining cases it is not
immediate to determine whether the polyhedra they represent is self-dual or
not.

The graphs of the polyhedra with automorphism groups isomorphic to
An, 9 ≤ n ≤ 20 have to be constructed separately. In Figure 4.17 we give
a list of graphs of polyhedra with automorphism groups A9, A10, . . . , A20.
These results will be published in [20].
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A

A

A

A

A

21

22

23

24

25

{24, 24} {120, 120}

{60, 60} {60, 60}

{12, 12}

Figure 4.16: Graphs with automorphism group An

4.4 Infinite families of finite polyhedra

Vince proves in [31] (see also [19] Chapter 4C) that there exist infinitely
many finite polyhedra with Schläfli type {p, q} for any given pair (p, q) such
that p, q ≥ 3 and

(p, q) /∈ {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}.

However, the proof is non-constructive.

In [33] and [34] Wilson gives an algorithm to build infinitely many regular
maps for each Schläfli symbol, but he does not give explicitly an infinite
family including the automorphism groups of the maps; he does not mention
either if this algorithm provides infinitely many polyhedral maps.

In this section we construct CPR graphs for infinite families of finite
polyhedra for some pairs (p, q).

4.4.1 The Polyhedron P k
12|2s

For s ≥ 2 and k ≥ 1, let Gk
12|2s be the graph such that
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AA

A
A

AA

A

A

A

A 9

10

11

12

13

14

15

16

17
18

A A19 20

{12, 12}

{12, 12}

{21, 21}

{12, 15}

{30, 21}

{24, 24}

{60, 60} {60, 60}

{60, 60}

{105, 105}

{77, 12}

{120, 120}

Figure 4.17: Graphs with automorphism group An
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Figure 4.18: The graph P 3
12|6

• it is a simple (with no multiple edges) path of length 2ks + 2 with its
edges ordered e1, . . . , e2ks+2,

• all the edges with odd index are labeled 1,

• all the edges with index congruent to 2 modulo 2s are labeled 0, and

• the remaining edges are labeled 2.

Note that the subgraph induced by edges of labels 1 and 2 has k+2 connected
components; the first one is a single edge, the last one is an isolated vertex,
and the remaining ones are alternating paths of length 2s−1. The connected
components of the subgraph induced by edges of labels 0 and 1 are single
edges, a path of length 2, and k paths of length 3 (see Figure 4.18 for an
example).

Since Gk
12|2s is a connected, proper 3-labeled graph, Theorem 4.1.3 imply

that it is a CPR graph of a polyhedron P k
12|2s, and from the polygonal action

of 〈ρ0, ρ1〉 and 〈ρ1, ρ2〉 on the connected components of the corresponding
subgraphs of Gk

12|2s we can see that the Schläfli type of the latter is {12, 2s}.

The polygonal action of 〈ρ0, ρ1〉 on the connected components of the sub-
graph induced by edges of labels 0 and 1 tells us that (ρ0ρ1)

4 is a 3-cycle
involving the connected component of (Gk

12|2s)0,1 with three vertices. More-

over the subgroup generated by ρ2 and (ρ0ρ1)
3 is transitive on all the vertices

except by two of the 3-cycle. Lemma A.2.3 implies that AV ≤ Γ(P k
12|2s) ≤ SV ,

where V is the vertex set of P k
12|2s. Since |V | = 2ks + 3 and there are k + 1

edges of label 0, ks+ 1 edges of label 1 and k(s− 1) edges of label 2,

Γ(P k
12|2s)

∼=

{

A2ks+3 if k and s are odd,

S2ks+3 if k or s is even.

We have constructed an infinite family of finite polyhedra {P k
12|2s}k≥1 with

Schläfli type {12, 2s}.
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U

W

Figure 4.19: The bipartition of the graph P 3
4|6

4.4.2 The Polyhedron P k
4|2s

For s ≥ 3 let Gk
4|2s be Gk

12|2s − v, where v is the vertex with only one edge (of

label 0) incident to it. Proposition 3.2.1 and Theorem 4.1.7 imply that Gk
4|2s

is a CPR graph of a polyhedron P k
4|2s with Schläfli type {4, 2s}.

Now, by Proposition 3.5.1, Γ(P k
4|2s)

∼= 〈ρ1〉 ⋉ Λ for some Λ ≤ SU × SW ,

where U and W are the sets of vertices described in Figure 4.19, and 〈ρ1〉
acts on Λ by interchanging the entries of elements (as elements in SU × SV ).

It can be checked easily from Gk
4|2s that (ρ0ρ1ρ2ρ1)

4 is a 3-cycle in U ,

and ρ1(ρ0ρ1ρ2ρ1)
4ρ1 is a 3-cycle in W . The subgroup generated by ρ2 and

(ρ0ρ1ρ2ρ1)
3 is transitive in U minus two of the vertices of the 3-cycle. The

same group works analogously in W . Hence AU × AW ≤ Λ ≤ SU × SW .
By Proposition A.3.2 we have that Λ can only be isomorphic to An × An,
(Sn × Sn)](An ×An), or Sn × Sn, where n = sk+ 1 is the number of vertices
of U (or W ).

Since there are k edges of label 0, ⌈k/2⌉ of them in U ; ks + 1 edges of
label 1; and k(s−1) edges of label 2, ⌊k(s−1)/2⌋ of them in U , we conclude
that

Γ(P k
4|2s)

∼=















An ×An if k and k/2 are even

(Sn × Sn)](An × An) if k is even and k/2 is odd,

Sn × Sn if k is odd.

We have constructed an infinite family of finite polyhedra {P k
4|2s}k≥1 with

Schläfli type {4, 2s}. Note that every polyhedra in this family has 2-holes of
length 12.
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U

W

Figure 4.20: The bipartition of the graph P 2
6|8

4.4.3 The Polyhedron P k
6|2s

For s ≥ 3 let Gk
6|2s be the graph such that

• it is a simple path of length (2s + 2)k + 1 with its edges ordered
e1, . . . , e(2s+2)k+1,

• all the edges with odd index are labeled 1,

• all the edges with index congruent to 2 or 4 modulo 2s+ 2 are labeled
0, and

• the remaining edes are labeled 2.

The subgraph induced by edges of labels 1 and 2 has single edges and
alternating paths of length 2s− 1 as connected components. The connected
components of the subgraph induced by edges of labels 0 and 1 are single
edges, and k paths of length 5.

Proposition 3.2.1 and Theorem 4.1.7 imply that Gk
6|2s is a CPR graph of

a polyhedron P k
6|2s with Schläfli type {6, 2s}.

Again by Proposition 3.5.1, Γ(P k
6|2s)

∼= 〈ρ1〉 ⋉ Λ for some Λ ≤ SU × SW ,

where U and W are the sets of vertices described in Figure 4.20, and 〈ρ1〉
acts on Λ by interchanging the entries.

Now (ρ0ρ1ρ0ρ1ρ2)
4 is a 3-cycle in W , and ρ1(ρ0ρ1ρ2ρ1)

4ρ1 is a 3-cycle in
V . The subgroup generated by ρ1ρ2ρ1 and (ρ0ρ1ρ2ρ1)

3 is transitive in W
minus two of the vertices of the 3-cycle. The same group works analogously
in V . Hence AU × AW ≤ Λ ≤ SU × SW . Again Proposition A.3.2 implies
that Λ can only be isomorphic to An ×An, (Sn × Sn)](An ×An), or Sn × Sn,
where n = (s+ 1)k + 1 is the number of vertices of U (or W ).

Since there are 2k edges of label 0, k of them in U ; k(s+ 1) + 1 edges of
label 1; and k(s−1) edges of label 2, ⌊k(s−1)/2⌋ of them in U , we conclude
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U

W

Figure 4.21: The graph P 1
8,8

that

Γ(P k
6|2s)

∼=























An × An if k and k(s− 1)/2 are even,

(Sn × Sn)](An × An) if k is even and k(s− 1)/2 is odd,

or if k and s are odd,

Sn × Sn if k is odd and s is even.

We have constructed an infinite family of finite polyhedra {P k
6|2s}k≥1 with

Schläfli type {6, 2s} for s ≥ 3.

4.4.4 The Polyhedron P k
4p,4q

For p ≥ 2, q ≥ 2 and k ≥ 1, let Gk
4p,4q be the graph such that

• it is a simple path of length m = 4k(p+ q + 1) + 4q + 1 with its edges
ordered e1, . . . , em,

• all the edges with odd index are labeled 1,

• all the edges with index congruent to 2 + 4q or 2 + 4q+ 4 + 2s modulo
4(p+ q) + 4 for s = 1, . . . , 2p are labeled 0, and

• the remaining edges are labeled 2.

Now the subgraph induced by all edges of labels 1 and 2 has single edges,
2k paths of length 4 and k + 1 paths of length 4q as connected components.
The connected components of the subgraph induced by the edges of labels 0
and 1 are single edges, 2k+1 paths of length 4 and k paths of length 4p (see
Figure 4.21 for an example).
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The graph Gk
4p,4q can be considered as an alternating sequence of paths

with edges labeled 0 and 1 and paths with edges labeled 1 and 2, such that
the intersection of two consecutive paths contains only a single edge labeled
1. The sequence of the lengths of the paths is shown in Table 4.2. The first
two rows of Table 4.2 appear only once in Gk

4p,4q, while the last six rows
repeat k times. In Figure 4.21 the first path appears at the left and the last
at the right.

Path number length labels

1 4-1 0, 1

2 4q-1 1, 2

3 4-1 0, 1

4 4-1 1, 2

5 4p-1 0, 1

6 4-1 1, 2

7 4-1 0, 1

8 4q-1 1, 2.

Table 4.2: Structure of P k
4p,4q

Proposition 3.2.1 and Theorem 4.1.7 imply that Gk
4p,4q is a CPR graph of

a polyhedron P k
4p,4q with Schläfli type {4p, 4q}. Now we find Γ(P k

4p,4q) in a
similar way as Γ(P k

4|2s).

By Proposition 3.5.1, Γ(P k
4p,4q)

∼= 〈ρ1〉 ⋉ Λ for some Λ ≤ SU × SW , where
U and W are the sets of vertices as in Figure 4.19 (see Figure 4.21), and 〈ρ1〉
acts on Λ again by interchanging the entries.

Now (ρ0ρ1ρ2ρ1)
10 is a 3-cycle in U , and ρ1(ρ0ρ1ρ2ρ1)

10ρ1 is a 3-cycle in
W . The subgroup generated by ρ2 and (ρ0ρ1ρ2ρ1)

3 restricted to U is again
transitive in U minus two of the vertices of the 3-cycle. The same group works
analogously in W . Hence AU ×AW ≤ Λ ≤ SU ×SW . By Proposition A.3.2 we
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have that Λ can only be isomorphic to either An ×An, (Sn × Sn)](An ×An),
or Sn × Sn, where n = 2k(p+ q + 1) + 2q + 1 is the number of vertices of U
(or W ).

Since there are k(2p + 1) + 1 edges of label 0, k(p − 1) of them in W ;
2k(p+ q+1)+2q+1 edges of label 1; and 2k+(k+1)(2q− 1) edges of label
2, (k + 1)(q − 1) of them in U , we conclude that

Γ(P k
4p,4q)

∼=















An × An if k and p are odd

(Sn × Sn)](An × An) if k is odd and p is even,

Sn × Sn if k is even.

We have constructed an infinite family of finite polyhedra {P k
4p,4q}k≥1 with

Schläfli type {4p, 4q} for p, q ≥ 2. Note that every polyhedra of this family
has 2-holes of length 30.

4.4.5 Remarks

We have constructed infinite families of finite polyhedra for the Schläfli types
listed in Table 4.3. They all have groups related to alternating or symmetric
groups.

The graphs Gk
4p,4q can be modified in several ways in order to get different

polyhedra with the same Schläfli type. For example, we can reduce the length
of some paths of length 4p to 2p, or 4q to 2q, for p and q odd numbers. Since
there is still a connected component with 4 vertices, the Schläfli symbol would
not change, but the group would be smaller.

With the help of some similar techniques to those used to construct the
polyhedra P k

12|2s, P
k
4|2s, ,P

k
6|2s and P k

4p,4q it might be possible to construct

infinite families of finite polyhedra with Schläfli type {2p, 2q} for any p, q ≥ 3.
Moreover, it might also be possible to preassign the length of a k-hole, or of
a k-zigzag.

Note that if the automorphism ρiρi+1 has order 2p+ 1, then

ρi = (ρi+1ρi)
pρi+1[(ρi+1ρi)

p]−1.
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Polyhedron Schläfli s. n parameters Automorphism group

P k
12|2s

{12, 2s} 2ks + 3 k, s odd An

k or s even Sn

P k
4|2s

{4, 2s} sk + 1 k, k/2 even An × An

k even, k/2 odd (Sn × Sn)](An × An)

k odd Sn × Sn

P k
6|2s

{6, 2s} (s + 1)k + 1 k, k(s − 1)/2 even An × An

k even, k(s − 1)/2 odd,

or k, s odd (Sn × Sn)](An × An)

k odd, s even Sn × Sn

P k
4p,4q {4p, 4q} 2k(p + q + 1)+ k, p odd An × An

+2q+1 k odd, p even (Sn × Sn)](An × An)

k even Sn × Sn

Table 4.3: Infinite families of polyhedra

Since ρi is conjugate of ρi+1 they have the same cyclic structure as permu-
tations when embedded into any permutation group. This means that there
are the same number of edges of labels i and i + 1 in any CPR graph of
the polytope. This is highly restrictive and makes working with CPR graphs
of polyhedra (and of polytopes in general) with odd entries in their Schläfli
symbols more complicated than working with CPR graphs of those with even
numbers in all the entries of the Schläfli symbol.





Chapter 5

The Polytope 2sK−1

The amalgamation problem asks if, given two regular d-polytopes K and P,
there are any regular (d+ 1)-polytopes such that their facets are isomorphic
to K and their vertex figures are isomorphic to P (see [19] Chapter 4A). If
such a polytope exists it is said to be an amalgamation of K and P. An
obvious condition for an amalgmation of K and P to exist is to require the
vertex figure of K to be isomorphic to the facet of P, but that condition is
not enough. For instance, there is no 4-polytope with facets isomorphic to
a hemicube and vertex figures isomorphic to a tetrahedron (see M. Hartley
[13]). In general it is hard to give an answer for other choices of K and P.

We can relax the problem in the following way. Given a regular d-polytope
K, are there (d+1)-polytopes with facets (or dually vertex figures) isomorphic
to K? Any such a polytope will be called an extension of K.

In [19] Chapter 4D it is proved that any polytope has a universal extension
in the sense that any other extension is a quotient of it (in the sense of groups;
for a formal definition see [19] Chapter 2D). This new polytope is infinite,
moreover its last entry of the Schläfli symbol is infinity.

The next step is to ask if any d-polytope K has an extension that has a
finite last entry of the Schläfi symbol. Additionally we can ask the extension
to be finite if K is finite (finiteness property), and to be a lattice if K is a
lattice (lattice property). In [19] Chapters 8B-D the polytope 2K is described.
It solves the dual of these questions by finding a (d+1)-polytope with vertex
figure isomorphic to K and first entry of the Schläfli symbol equal to 4 (see
also Danzer [7] and Schulte [29]). This extension satisfies the finiteness and
lattice properties.

In [24], [26] and [27] E. Schulte gives another approach to this problem.

65



66 CHAPTER 5. THE POLYTOPE 2SK−1

It will be described in Chapter 6.

The question if any regular d-polytope K has an extension with a preas-
signed last entry of the Schläfli symbol equal to n for n ≥ 3 had remained
open. In this Chapter we construct a generalization of the polytope 2K that
gives an affirmative answer to (the dual of) this problem for n even. More-
over, the extension also satisfies the finiteness and lattice properties.

5.1 First Construction

We start with a regular d-polytope K of Schläfli type {p1, . . . , pd−1} with the
task of constructing a regular (d+1)-polytopeP of Schläfli type {p, p1, . . . , pd−1},
for a preassigned number p, with vertex figure isomorphic to K. The proce-
dure is to construct a CPR graph of P from CPR graphs of K by increasing
the label of each edge by 1 and adding edges of a new label 0. From the
polygonal action of 〈ρ0, ρ1〉 on the connected components of the subgraph
induced by edges of labels 0 and 1 of the new CPR graph we know that its
connected components have to be paths with their number of vertices divid-
ing p, or cycles with half the number of vertices dividing p. The attempt
here is to build a CPR graph having an alternating cycle of edges 0 and 1 of
length 2p and leaving the remaining connected components of the subgraph
induced by the edges of those labels to be squares or single edges. We are
assuming, then, that p is an even number, p = 2s (say).

Proposition 3.2.1 tells how the connected components of the subgraphs
induced by the edges of labels 0 and k have to be for k ≥ 2. Since this is
somehow restrictive we select a particular CPR graph G with a particular
condition that will be discussed in Section 5.7. The first approach will be to
take a CPR graph of K containing a vertex with only one edge (of label 0)
incident to it. Then we can build the cycle using this edge and completing
the new CPR graph in such a way that each connected component of the
new graph obtained by erasing the edges of label 0 will be isomorphic to G.
Before giving the formal description we show an example of how it is done.
In Figure 5.1 we show the vertex CPR graph of a triangle (black = 0, red
= 1) and how we construct the new graph for s = 2, that turns out to be a
CPR graph of the cube (black = 0, red = 1, blue = 2).

The construction of the extension is done by taking 2s copies of the
vertex CPR graph of the polytope K (we are assuming here that Γ(K) acts
faithfully on the vertices), arranging them in s pairs in a cycle, and joining
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Figure 5.1: Triangle and its extension

Figure 5.2: G2s

corresponding vertices in each pair by an edge of label 0 except for those
corresponding to the base vertex of K; the latter have to be joined among
themselves in such a way that they belong to the new cycle of length 4s of
labels 0 and 1. In Figure 5.2 we show how it looks like for s = 4. Each elipse
altogether with the vertex joined to it by a black edge represents a copy of
the vertex CPR graph of K, while the green edges are the new edges of label
0. Now we describe the construction formally.

Let K be a d-polytope such that its automorphism group acts faithfully
on the vertices, and let G be its vertex CPR graph, with x1, . . . , xn the vertex
set of the latter, x1 corresponding to the base vertex of K. We assume n ≥ 2,
otherwise K is the 1-polytope and the extension will give as a result the
regular 2s-gon. Now we construct a CPR graph G2s defining its vertex set
by

V (G2s) = {xi,j : i = 1, . . . , n; j ∈ Z2s}

Two vertices xi,j and xk,l are adjacent if and only if one of the following
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conditions is satisfied.

1) j = l and xi is adjacent to xk in G. The label of this edge will be 1
plus the label of the edge between xi and xk in G.

2) i = k = 1, j = l + 1, j even, with label 0.

3) i = k 6= 1, j = l + 1, j odd, with label 0.

The following results show that the CPR graph we just defined is the one
we were looking for.

Theorem 5.1.1 For any regular polytope K of Schläfli type {p1, . . . , pd−1}
the graph G2s described above is a CPR graph of a polytope 2sK−1 with vertex
figure isomorphic to K and Schläfli type {2s, p1, . . . , pd−1}.

The name of the polytope 2sK−1 comes from its number of vertices. In
Section 5.5 we prove that if K has n vertices, then 2sK−1 has 2sn−1 vertices.
Moreover, the notation is consistent with that of the polytope 2K.
Proof

The first entry of the Schläfli symbol can be seen from the polygonal action
of 〈ρ0, ρ1〉 in the graph (G2s)0,1 since the connected components of the latter
are one cycle of length 4s, alternating squares and single edges of label 0.

In order to check the intersection property let φ ∈ 〈ρ1, . . . , ρd〉∩〈ρ0, . . . , ρj〉
and let

φ = ρi1ρi2 · · · ρim , (5.1)

with ik ∈ {0, . . . , j}.
We can obtain an element ψ ∈ 〈ρ1, . . . , ρj〉 by eliminating all factors ρ0

in equation (5.1). We know that φ and ψ fix the second subindex of each
vertex of G2s because φ, ψ ∈ 〈ρ1, . . . , ρd〉; and they act in the same way in
the first subindex because they have the same factors in {ρ1, . . . , ρd} in the
same order. Hence, φ = ψ ∈ 〈ρ1, . . . , ρd〉, and by the dual of Proposition
2.1.4 the intersection property holds. Since G2s is a proper (d + 1)-labeled
graph, it is a CPR graph of a regular polytope.

Since each connected component of G2s after deleting all the edges of
label 0 is isomorphic to a copy of G obtained by adding 1 to the label of
each edge, it follows from Remark 2.3.6 that the vertex figure of 2sK−1 is
isomorphic to K.

�
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Proposition 5.1.2 The polytope 2sK−1 has the FAP with respect to its vertex
figures.

Proof

From the proof or Theorem 5.1.1 it follows that the generating relations for
Γ(K) can be obtained from those for Γ(2sK−1) by adding the relation ρ0 = ε.
By Proposition 2.2.4 we conclude that 2sK−1 satisfies the FAP with respect
to its vertex figures.

�

Proposition 5.1.2 can also be proved using Lemma 2.2.2 and Proposition
3.2.5.

5.2 The automorphism group

In this section we describe the automorphism group of the polytope 2sK−1.
Definition 2.2.3 and Proposition 5.1.2 imply that

Γ(2sK−1) ∼= N−
0 (2sK−1) ⋊ 〈ρ1, . . . , ρd〉.

It remains to say which group is N−
0 = N−

0 (2sK−1) and how does 〈ρ1, . . . , ρd〉
act on it.

First, note that every γ in N−
0 preserves the first subindex of the vertices

of G2s because the generators ψ−1ρ0ψ, ψ ∈ 〈ρ1, . . . , ρd〉, of N−
0 act in this way

(see Lemma 2.2.2). Actually

ψ−1ρ0ψ(xi,j) =

{

xi,j−1 for j even, ψ(xi) = x1 or j odd, ψ(xi) 6= x1,

xi,j+1 for j odd, ψ(xi) = x1 of j even, ψ(xi) 6= x1.

(5.2)
The next step is to find the even subgroup (N−

0 )+ of N−
0 . Since its

generators are products of two generators of N−
0 we will analyze the action

of elements of the form ψ−1ρ0ψφ
−1ρ0φ, with ψ, φ ∈ 〈ρ1, . . . , ρd〉 on the vertices

of G2s. From (5.2) it follows that for j even

ψ−1ρ0ψφ
−1ρ0φ(xi,j) =























xi,j if φ(xi) = x1, ψ(xi) = x1;

or φ(xi) 6= x1, ψ(xi) 6= x1;

xi,j+2 if φ(xi) 6= x1, ψ(xi) = x1;

xi,j−2 if φ(xi) = x1, ψ(xi) 6= x1;

(5.3)
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while for j odd the subindices j + 2 and j − 2 in the right side of 5.3 are
interchanged. It follows from (5.3) that any two generators of (N−

0 )+ com-
mute.

Now we introduce the mapping Φ from the generators of (N−
0 )+ into Z

n
s

given by Φ(ψ−1ρ0ψφ
−1ρ0φ) = (y1, . . . , yn), where

yi =























0 if φ(xi) = x1, ψ(xi) = x1;

or φ(xi) 6= x1, ψ(xi) 6= x1;

1 if φ(xi) 6= x1, ψ(xi) = x1;

−1 if φ(xi) = x1, ψ(xi) 6= x1.

Note that if (y1, . . . , yn) 6= (0, . . . , 0), then (y1, . . . , yn) has exactly one entry
equal to 1 and one equal to −1.

The mapping Φ can be extended to a group morphism Ψ from (N−
0 )+ to

Z
n
s because the relations of the generators of (N−

0 )+ (commutativity and the
order of each generator) are also satisfied by their images in Z

n
s . It is clear

that if two automorhisms of 2sK−1 have the same image under Ψ then they
have the same action on the vertex set of G2s (and thus they are the same
automorphism), hence Ψ is a monomorphism. Moreover, the image under Ψ
of the generators of (N−

0 )+ is a generating set of

{(x1, . . . , xn) ∈ Z
n
s |
∑

xi = 0}.

Hence

(N−
0 )+ ∼= {(x1, . . . , xn) ∈ Z

n
s |
∑

xi = 0}.

It follows from (5.3) that ρ0 /∈ (N−
0 )+. Hence (N−

0 )+ is a subgroup of
index 2 of N−

0 and we can rewrite

N−
0
∼= (N−

0 )+
⋊ 〈ρ0〉 ∼= {(x1, . . . , xn) ∈ Z

n
s |
∑

xi = 0} ⋊ Z2.

Since ρ0 interchanges even and odd second subindices of the vertices of
G2s, it follows from Equation 5.3 and its analogue for j odd that Z2 acts on
{(x1, . . . , xn) ∈ Z

n
s |
∑

xi = 0} by sending each element to its inverse.
We recall that the first subindex of the vertices of G2s represents the

vertices of K. It follows from the definition of G2s that 〈ρ1, . . . , ρd〉 acts on
{(x1, . . . , xn) ∈ Z

n
s |
∑

xi = 0} ⋊ Z2 by permuting the entries in the first
factor. Now we can state the following theorem.



5.3. MAIN CONSTRUCTION 71

Theorem 5.2.1 The automorphism group of 2sK−1 is

(H ⋊ 〈ρ0〉) ⋊ 〈ρ0, . . . , ρd−1〉, (5.4)

where H ∼= {(x1, . . . , xn) ∈ Z
n
s |
∑

xi = 0}, 〈ρ0〉 acts in H as the auto-
morphism that sends each element to its inverse, and 〈ρ0, . . . , ρd−1〉 acts on
H ⋊ 〈ρ0〉 permuting the coordinates of the elements of H.

Note that if s = 2 then the product of H and 〈ρ0〉 in Equation 5.4 is a
direct product and

Γ(2 · 2K−1) ∼= Z
n
2 ⋊ Γ(K) (5.5)

The automorphism group of the polytope 2K is the same as the one in
(5.5), and its generators ρ1, . . . , ρd are embedded in the natural way while ρ0

is assigned to the element [(0, . . . , 0, 1), ε]. Since the polytopes 2K and 2·2K−1

have the same automorphism group with the same canonical generators, the
next corollary follows.

Corollary 5.2.2 The polytope 2 · 2K−1 is isomorphic to the polytope 2K.

5.3 Main Construction

In Section 5.1 we constructed extensions only for polytopes such that their
automorphism groups act faithfully on their vertices. In this section we give a
different construction that may be applied to any polytope. It turns out that
the polytope obtained by the first construction is the same as the polytope
obtained by this one, so we can construct the polytope 2sK−1 for any polyope
K. We consider the Cayley graphs (see Example 3.1.6 and Appendix B) of
the polytopes rather than their vertex CPR graphs, while the set of vertices
representing the flags containing the base vertex of the polytope will play
the role that played the base vertex x1 in the first construccion.

Let K be a regular polytope with vertex set w1, . . . , wn and G be its
Cayley graph (its CPR graph of the permutations of the flags) with vertex
set {v1, . . . , vm}, where m = nt and v1, . . . , vt correspond to the flags that
include the base vertex w1 of K. Consider the graph G2s with vertex set

{vi,j | i ∈ {1, . . . , m}, j ∈ Z2s}

and such that two vertices vi,j, vk,l are adjacent if and only if one of the
following conditions is satisfied.
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Figure 5.3: G2s

1) j = l and vi is adjacent to vk in G. The label of this edge will be 1 plus
the label of the edge between vi and vk in G.

2) i = k ∈ {1, . . . , t}, j = l + 1, j even, with label 0.

3) i = k /∈ {1, . . . , t}, j = l + 1, j odd, with label 0.

Picture 5.3 shows how the graph G2s looks like. Each elipse altogether
with the small circle joined to it by black edges represents a copy of the
Cayley CPR graph G of K, each small circle represents the vertices v1, . . . , vt

of each copy of G (note that they form a connected component of G if we
erase the edges of label 1 or color black) and the green edges are again the
new edges of label 0.

The following results show that the graph G2s is a CPR graph of an
extension of K. Their proofs are analogous to those of Theorem 5.1.1 and
Proposition 5.1.2.

Theorem 5.3.1 For any regular polytope K of Schläfli type {p1, . . . , pd−1}
the graph G2s described above is a CPR graph of a polytope (2sK−1)′ with
vertex figure isomorphic to K and Schläfli type {2s, p1, . . . , pd−1}.

Proposition 5.3.2 The polytope (2sK−1)′ has the FAP with respect to its
vertex figures.
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To determine the automorphism group of (2sK−1)′ we proceed in a similar
way to that used for 2sK−1.

Propositions 3.5.1 and 5.1.2 also imply that

Γ((2sK−1)′) ∼= N−
0 ((2sK−1)′) ⋊ 〈ρ1, . . . , ρd〉.

We still have to say which group is N−
0 = N−

0 ((2sK−1)′) and how does
〈ρ1, . . . , ρd〉 act on it.

Again we study the group N−
0 by describing first the even subgroup

(N−
0 )+.
Every γ in N−

0 still preserves the first subindex of the vertices of G2s, but
now (5.2) and (5.3) are changed to

ψ−1ρ0ψ(vi,j) =























vi,j−1 for j even, ψ(vi) ∈ {v1, . . . , vt}

or j odd, ψ(vi) /∈ {v1, . . . , vt},

vi,j+1 for j odd, ψ(vi) ∈ {v1, . . . , vt}

of j even, ψ(vi) /∈ {v1, . . . , vt},

(5.6)

and (for j even)

ψ−1ρ0ψφ
−1ρ0φ(vi,j) =























vi,j if φ(vi) ∈ {v1, . . . , vt}, ψ(vi) ∈ {v1, . . . , vt};

or φ(vi) /∈ {v1, . . . , vt}, ψ(vi) /∈ {v1, . . . , vt};

vi,j+2 if φ(vi) /∈ {v1, . . . , vt}, ψ(vi) ∈ {v1, . . . , vt};

vi,j−2 if φ(vi) ∈ {v1, . . . , vt}, ψ(vi) /∈ {v1, . . . , vt};

(5.7)
while for j odd the subindices j + 2 and j − 2 in the right side of 5.7 are
interchanged.

Now we construct again the mapping Φ from the generators of (N−
0 )+ into

Z
n
s redefining it by Φ(ψ−1ρ0ψφ

−1ρ0φ) = (y1, . . . , yn), where, for any vertex v
of G corresponding to a flag containing the vertex wi of K

yi =























0 if φ(v) ∈ {v1, . . . , vt}, ψ(v) ∈ {v1, . . . , vt};

or φ(v) /∈ {v1, . . . , vt}, ψ(v) /∈ {v1, . . . , vt};

1 if φ(v) /∈ {v1, . . . , vt}, ψ(v) ∈ {v1, . . . , vt};

−1 if φ(v) ∈ {v1, . . . , vt}, ψ(v) /∈ {v1, . . . , vt}.

(5.8)
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Note that φ(v) ∈ {v1, . . . , vt} for some v corresponding to a flag containing a
given vertex wi of K if and only if φ(z) ∈ {v1, . . . , vt} for every z correspond-
ing to a flag containing wi, so Φ is well defined.

By similar reasons than those explained in Section 5.2 for the first exten-
sion, we extend the mapping Φ to the group morphism Ψ from (N−

0 )+ to Z
n
s ,

implying that

(N−
0 )+ ∼= {(x1, . . . , xn) ∈ Z

n
s |
∑

xi = 0}.

We imply from (5.7) that ρ0 /∈ (N−
0 )+, and we can rewrite

N−
0
∼= (N−

0 )+
⋊ 〈ρ0〉 ∼= {(x1, . . . , xn) ∈ Z

n
s |
∑

xi = 0} ⋊ Z2.

with Z2 acting on {(x1, . . . , xn) ∈ Z
n
s |
∑

xi = 0} by sending each element to
its inverse, and 〈ρ1, . . . , ρd〉 acting on {(x1, . . . , xn) ∈ Z

n
s |
∑

xi = 0}⋊ Z2 by
permuting the entries in the first factor.

Since Γ(2sK−1) = Γ((2sK−1)′), and the string C-group generators of the
two polytopes correspond to the same elements in that group, we conclude
the following theorem.

Theorem 5.3.3 For any polytope K such that Γ(K) acts faithfully on its
vertices we have that 2sK−1 ∼= (2sK−1)′.

The construction described in this section along with some results from
the following sections will be published in [21].

From now on we refer to (2sK−1)′ just by 2sK−1.

5.4 Results and Examples

In this section we give some examples and results to illustrate some properties
of the polytope 2sK−1.

Proposition 5.4.1 Let K be a regular d-polytope with even subgroup of index
2 on Γ(K), then the even subgroup of 2sK−1 has index 2 on Γ(2sK−1).

Proof

Since the even subgroup has index at most 2 it suffices to prove that it is not
the whole group Γ(2sK−1). We will prove that ρd is not an element of the
even subgroup.
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Let
ρd = ρi1ρi2 · · · ρim , (5.9)

with ik ∈ {0, . . . , d}. Proposition 5.3.2 implies that, if we remove all the ρ0’s
in (5.9), we get an expression for ρd in terms of ρ1, . . . , ρd. Since the even
subgroup of K has index 2 in Γ(K), this expression has an odd number of
factors.

In the other hand, ρ0 interchanges the parity of the second subindex of
any vertex of G2s, where G2s is the graph constructed in Section 5.3. Since ρi

preserves that subindex for i > 0, there has to be an even number of factors
ρ0’s in (5.9). Hence the total number of factors is odd.

�

Corollary 5.4.2 The polyhedron 2s{n}−1 is an orientable polyhedron with
Schläfli type {2s, n} with genus 1 + [sn−2(ns− 2s− n)]/2.

Proof

To determine the genus of the polyhedron it suffices to notice that the num-
ber of vertices is 2sn−1, the number of edges is nsn−1 and the number of
facets is nsn−2.

�

The polytope 2K is centrally symmetric if K has a finite number of vertices
(see [19] Chapter 8C). Now we give a sufficient condition for the polytope
2sK−1 to be centrally symmetric.

Proposition 5.4.3 Let K be a polytope with an even number of vertices.
Then, for s even, the polytope 2sK−1 is centrally symmetric.

Proof

The involution ξ given by a half turn of Figure 5.3 corresponds to the element
[ε, ((s/2, . . . , s/2), 0)] in

[{(x1, . . . , xn) ∈ Z
n
s |
∑

xi = 0} ⋊ Z2] ⋊ 〈ρ1, . . . , ρd〉

(here we use that n is even, otherwise the sum of the coordinates would not
be 0). Then, ξ is also an element of Γ(2sK−1). The commutativity can be
checked for each ρj either using Proposition 3.2.3 or directly from the group.
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Figure 5.4: CPR graphs of {4, 4}(4,0) and {4, 2}

�

Unfortunately this conditions are not necessary for the polytope K to
be centrally symmetric. The cube is isomorphic to 2{3} and is centrally
symmetric but the number of vertices of the triangle is odd.

Proposition 5.4.4 Given a polytope K of Schläfli type {4, p2, . . . , pd−1}, the
polytope 2K is a polytope with 3-faces isomorphic to the toroidal polytope
{4, 4}(4,0).

Proof

The only connected components of the subgraph of the Cayley graph G of K
induced by edges of labels 0 and 1 are alternating octagons. It is easy to see
that the only connected components of the graph G2s (with s = 2) defined in
Section 5.3 after deleting the edges of labels 3, . . . , d−1 are the CPR graphs of
{4, 4}(4,0) and {4, 2} shown in Figure 5.4. Since {4, 4}(4,0)♦{4, 2} = {4, 4}(4,0),
there are no other choices for the vertex figure.

�

It was already known that the polytopes 2{4,4}(2,0) and 2{4,4}(3,0) are the
universal polytopes 2T

4
(4,0),(2,0) and 2T

4
(4,0),(3,0) respectively (see [19] Chapter

10C). This extensions provide another universal locally toroidal polytope (the
facets and vertex figures are toroidal polytopes).

Example 5.4.5 The polytope 2 · 3{3,3}−1 is the universal polytope 3T
4

(3,0) (see

[19] Chapter 11B). This follows from the cardinality 1296 of the automor-
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Figure 5.5: CPR graph of 2 · 3{3,3}−1

phism groups of these polytopes. The facet type of 2·3{3,3}−1 is 6, 3(3,0) and can
be derived from the corresponding CPR graph and the relations (ρ0ρ1ρ2)

6 = ε
and (ρ2(ρ1ρ0)

2)6 = ε (see Figure 5.5, black = 0, red = 1, blue = 2 and green
= 3).

5.5 The Lattice Property

Now we will prove that the polytope 2sK−1 satisfies the lattice property with
respect to the polytope K. With that in mind we define a polytope P2s(K),
we prove that it is regular and that its dual is an extension of the dual of K
that satisfies the lattice property. Finally we prove that the polytope P2s(K)
is isomorphic to 2sK−1.

In [7] they give a purely combinatorial construction of the polytope 2K (see
also [29] and [19] Chapter 8D). The construction in this section is somewhat
similar to it and provides a combinatorial model for 2sK−1.

5.5.1 The Polytope P2s(K)

Let K be a regular d-polytope with vertex set K0 = {v1, . . . , vn}, with base
vertex v1 and such that each face is determined by its vertex set (it can be
easily seen that this is the case if K is a lattice).

Let 2sG(K) be the graph with vertex set

V (2sG(K)) = {x̄ = [(x1, . . . , xn), rx̄] | xi ∈ Zs,
∑

xi = 0, rx̄ ∈ Z2}
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such that x̄ is adjacent to ȳ if and only if rx̄ = 0, rȳ = 1, and one of the
following conditions is satisfied

• xi = yi for all i, or

• x1 = y1 + 1, yj = xj + 1 for some j ∈ {2, . . . , n}, and xi = yi for
i ∈ {2, . . . , n} \ {j}.

Another way of describing the adjacencies of 2sG(K) is by defining the
involutory bijections η1, . . . , ηn in V (2sG(K)), where for j > 1

ηj [(x1, . . . , xn), 0] = [(x1 − 1, x2, . . . , xj−1, xj + 1, xj+1, . . . , xn), 1],

ηj [(y1, . . . , yn), 1] = [(y1 + 1, y2, . . . , yj−1, yj − 1, yj+1, . . . , yn), 0],

and
η1[(x1, . . . , xn), rx̄] = [(x1, . . . , xn), rx̄ + 1].

Now x̄ is adjacent to ȳ if and only if x̄ = ηj(ȳ) for some j.

Proposition 5.5.1 The graph 2sG(K) is connected.

Proof

Given two vertices x̄ = [(x1, . . . , xn), 0] and ȳ = [(y1, . . . , yn), rȳ] it is not
hard to see that

ȳ =

{

(η1η2)
y2−x2 · · · (η1ηn)yn−xn(x̄) if rȳ = 0

η1(η1η2)
y2−x2(η1η3)

y3−x3 · · · (η1ηn)yn−xn(x̄) if rȳ = 1.

Hence all the vertices are in the same connected component as x̄ and 2sG(K)
is connected.

�

For any face F of K of rank at least 1 and any vertex x̄ of 2sG(K) we
define F (x̄) as the set of vertices

{z̄ | z̄ = χ(x̄) for some χ ∈ 〈ηj | vj is a vertex ofF 〉}. (5.10)

We can extend the definition to a face F of K of rank 0, that is, a vertex vj,
by taking vj(x̄) to be the edge between x̄ and ηj(x̄). Similarly, for F = ∅ we
define ∅(x̄) := {x̄}. The following remark follows directly from the definition
of F (x̄).
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Remark 5.5.2 Let F and G be faces of K such that F ≤ G, and x̄ and ȳ
vertices of 2sG(K). If F (x̄) ⊆ G(ȳ) then G(x̄) = G(ȳ).

Now we construct a poset P2s(K) consisting of the empty set and the set

{F (z̄) | z̄ ∈ V (2sG(K)), F is a face of K}

with the order relation given by the set inclusion. Note that for all F and x̄,
if v1 is a vertex of F then

F (x̄) = {z̄ ∈ V (2sG(K)) | zi = xi if vi is not a vertex of F}.

First we have to prove that P2s(K) is an abstract (d+ 1)-polytope.
The empty set is F−1 and V (2sG(K)) is Fd+1. Clearly F (x̄) ⊆ G(x̄) if

F ≤ G and we have a proper contention if and only if we F < G. As a
consequence of this and of Remark 5.5.2 P2s(K) is a flagged poset where
rank(F (x̄)) = rankK(F )+1. Remark 5.5.2 also implies that P2s(K) satisfies
the diamond condition.

To prove the strongly flag connectivity note that if f and g are two flags
containing the same vertex, the strongly flag connectivity of K implies that
we can find the desired sequence of flags between them. Since all the edges
have exactly two vertices we can also find a 0-adjacent flag to each flag.
The connectedness of 2sG(K) finishes the proof. Hence P2s(K) is an abstract
(d+ 1)-polytope.

Remark 5.5.2 implies that the vertex figure at any vertex is isomorphic
to K.

Now that we know that P2s(K) is an extension (although possibly not
regular) of K we prove the lattice property.

Let K be a lattice and let F (x̄) and G(ȳ) be two faces of P2s(K). If they
have a vertex z̄ in their intersection then F (x̄) = F (z̄) and G(ȳ) = G(z̄). It
follows that the meet of F (x̄) and G(ȳ) is H(z̄), where H is the meet of F
and G. Hence every two elements of P2s(K) have a meet. Now Proposition
B.1.1 implies that P2s(K) is a lattice.

5.5.2 The Automorphism Group

Now we prove that P2s(K) ∼= 2sK−1. To do this we prove first that P2s(K) is
regular by giving automorphisms σj that send a base flag g to its i-adjacent
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flags gi. Some of these automorphisms are defined in terms of automorphisms
of K in the way described next.

Any φ ∈ Γ(K) determines a permutation τ of the (indices of the) vertices
of K and it induces a bijection φ′ in V (P2s(K)) given by the corresponding
permutation τ of the coordinates of the vertices

φ′[(x1, . . . , xn), rx̄] = [(xτ(1), . . . , xτ(n)), rx̄].

We choose both a base flag f of K containing the base vertex v1 and the
edge between the vertices v1 and v2, and the base flag g of P2s(K) containing
the vertex x̄0 = [(0, . . . , 0), 0] and the faces F (x̄0) with F a face of f .

Since any face of P2s(K) is determined by its vertex set it suffices to define
the functions σ0, . . . , σd on V (P2s(K)) in the following way.

σi[(x1, . . . , xn), rx̄] = ρ′i−1[(x1, . . . , xn), rx̄] for i ≥ 2,

σ1[(x1, . . . , xn), 0] = ρ′0[(x1, . . . , xn), 0],

σ1[(x1, . . . , xn), 1] = ρ′0[(x1 + 1, x2 − 1, x3, . . . , xn), 1],

σ0[(x1, . . . , xn), rx̄] = [(−x1, . . . ,−xn), rx̄ + 1].

The proof of the following lemmas is straightforward.

Lemma 5.5.3 Let η1, . . . , ηn, σ0 be as defined above. Then σ0 commutes with
ηj for j = 1, . . . , n.

Lemma 5.5.4 The functions σ1, . . . , σd and η1, . . . , ηn defined above satisfy

σiηj = ηkσi

where ρi−1(vj) = vk.

It follows from 5.10 and Lemmas 5.5.3 and 5.5.4 that the σi’s map j-
faces of P2s(K) into j-faces of P2s(K). It is also straightforward that σi is
an order preserving bijection of the faces of P2s(K) for i = 0, . . . , d and that
σi(g) = gi. Proposition 2.1.2 implies that P2s(K) is a regular polytope with
automorphism group 〈σ0, . . . , σd〉.

Now we find explicitely the automorphism group of P2s(K) in a similar
way as for Γ(2sK−1). First we prove that P2s(K) satisfies the FAP with
respect to its vertex figures.
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Proposition 5.5.5 Let K be a regular polytope. Then the polytope P2s(K)
defined above satisfies the FAP with respect to its vertex figures.

Proof

For any relation

σi1σi2 · · ·σit = ε

we can get another relation of Γ(P2s(K)) by deleting all the factors σ0’s be-
cause σ0 does not involve permutations of the indices of the vertices but the
other generators do. Proposition 2.2.4 implies that P2s(K) satisfies the FAP
with respect to its vertex figures.

�

Now note that each generator φ−1σ0φψ
−1σ0ψ; φ, ψ ∈ 〈σ1, . . . , σd〉, of the

even subgroup of the normal closure N−
0 of σ0 in Γ(P2s(K)) acts on the

vertices x̄ of P2s(K) such that rx̄ = 0 by adding 1 to the j-th entry and
−1 to the k-th entry where ψ(vj) = φ(vk) = v1 (we are considering φ, ψ ∈
〈σ1, . . . , σd〉 ∼= Γ(K) = 〈ρ0, . . . , ρd−1〉).

Since σ0 is not an element of the even subgroup of N−
0 (it changes the

entry in Z2) it follows that

[{(x1, . . . , xn) ∈ Z
n
s |
∑

xi = 0}⋊ Z2] ⋊ Γ(P2s(K)) ∼= 〈σ1, . . . , σd〉 = Γ(2sK−1).

Since the identification of the generators σ0, . . . , σd of Γ(P2s(K)) is the same
as that of the generators ρ0, . . . , ρd of Γ(2sK−1) it follows that the polytopes
P2s(K) and 2sK−1 are isomorphic.

5.6 An Alternative Construction

In this section we give a construction of another CPR graph of the polytope
2sK−1.

Given a d-polytope K we construct the graph (G2s)′ from G2s by deleting
the vertices vi,j of G2s, such that j = 0 or j ≥ s+ 1, while keeping the same
rules of adjacency of vertices. We are taking only half of the vertices of G2s

(see Figure 5.6).

Note that the graph (G2s)′ can be obtained from G2s in the way described
in Proposition 3.2.5 by taking Λ = 〈λ〉 as the group of automorphisms of G2s
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Figure 5.6: The graph (G2s)′ for s = 2 and s = 5

as a labeled graph, where λ is the involutory bijection on the vertex set of
G2s given by

λ(vi,j) = vi,1−j .

In Figure 5.3, λ is a reflection with respect to a line through the center of the
graph that intersects two sets of five red edges that join two pairs of elipses.

It can be proved directly that the graph (G2s)′ is a CPR graph of a
polytope with automorphism group isomorphic to Γ(2sK−1) and conclude by
studying the generators that (G2s)′ is another CPR graph of 2sK−1, as we
did in Section 5.3. This time we will prove it in a different way.

In order to use Proposition 3.2.5 on G2s note that if φ ∈ Γ(2sK−1) is such
that φ(v) ∈ {v, λ(v)} for all vertex v and φ(v0) = λ(v0) for some vertex v0 of
G2s, then φ(v) = λ(v) for every vertex v of G2s because λ changes the parity
of the second subindex of the vertices. Hence

N = {φ ∈ Γ(2sK−1) |φ(v) ∈ {v, λ(v)}} ≤ 〈λ〉.

We shall prove that N is trivial.
For s ≥ 3, λ is the action of no automorphism of K on the vertices of

G2s because it acts like ρ0 on vm,1, but not on vm,3 and, since there is an
automorphism of G2s as a labeled graph that takes vm,1 to vm,3 (a rotation of
π/2 on Figure 5.3), any automorphism of K has to act like ρ0 in both vertices
vm,1 and vm,3, or in none of them.

For s = 2, ρ0λ corresponds to the element [ε, ((1, 0, . . . , 0), 0)] of

[Zn
s ⋊ Z2] ⋊ 〈ρ1, . . . , ρd〉

(see (5.8)) but is not an element of

[{(x1, . . . , xn) ∈ Z
n
s |
∑

xi = 0} ⋊ Z2] ⋊ Γ(2sK−1) ∼= 〈ρ1, . . . , ρd〉.
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Figure 5.7: CPR graph of the hemicube

Hence λ does not correspond to the action of an element of Γ(2sK−1) on the
vertex set of G2s for any s.

From the proof of Proposition 3.2.5 we imply that the permutation group
generated by the graph (G2s)′ is isomorphic to Γ(2sK−1) with such isomor-
phism mapping the permutation corresponding to the edges of label i to ρi.
Hence (G2s)′ is another CPR graph of the polytope 2sK−1.

This construction has the advantage that needs only s copies of G, while
graph G2s needs 2s.

Note that if we change the definition of λ to

λ′(xi,j) = xi,3−j

then, for s = 2, we can no longer say that λ′ does not corresponds to an
action of an element of Γ(2sK−1). For example, Figure 5.7 shows the CPR
graph of the extension of the triangle {3} obtained from λ′ with s = 2. That
graph is a CPR graph of the hemicube (apply the petrie operation to the
graph of Figure 3.2C), while 2{3} ∼= 2 · 2{3}−1 is the cube. In this case λ′

corresponds to the central involution of the cube.

5.7 Related Extensions

Given a CPR graph G of a d-polytope K we can construct several graphs of
the type of G2s and G2s. The only important condition of G to construct
those graphs is to be connected but to get disconnected if we delete the edges
of label 0. In this section we briefly discuss the extensions determined by
these constructions of CPR graphs.

For d ≥ 2 let G = G0,...,d−1 be a connected CPR graph with vertex
set V (G) = {x1, . . . , xn} of the d-polytope K and let C be the union of a
nonempty family of connected components of G1,...,d−1, but not the whole



84 CHAPTER 5. THE POLYTOPE 2SK−1

graph (if we choose G to be the Cayley graph of K we can choose C as a
nonempty proper subset of connected components in G1,...,d−1). We construct
a new graph G{2s,C} in the following way.

V (G{2s,C}) = {xi,j : i = 1, . . . , n; j ∈ Zs},

and there is an edge between the vertices xi,j and xk,l if and only if one of
the following conditions is satisfied.

1) j = l and {xi, xk} ∈ E(G). The label of {xi,j, xk,l} will be 1 plus the
label of {xi, xk}.

2) xi = xk ∈ C, j = l + 1, j even, with label 0.

3) xi = xk /∈ C, j = l + 1, j odd, with label 0.

Clearly the graphs G{2s,C} and G{2s,G\C} are isomorphic.
The proofs of the following results are analogous to those of Theorem

5.1.1 and Proposition 5.1.2.

Theorem 5.7.1 Let G be a CPR graph of the polytope K. Then the graph
G{2s,C} described above is a CPR graph of a polytope 2sK−1

{G,C} with vertex figure
type isomorphic to K and first entry of the Schläfli symbol equal to 2s.

Proposition 5.7.2 The polytope 2sK−1
{G,C} defined in Theorem 5.7.1 has the

FAP with respect to its facets.

The polytope 2sK−1 is a particular case of 2sK−1
{G,C}, taking G = G0,...,d−1

to be the Cayley graph of K and C to be one of the connected components
of G1,...,d−1.

By similar arguments to those of Sections 5.2 and 5.3, the automorphism
group of 2sK−1

{G,C} is

(H ⋊ Z2) ⋊ 〈ρ0, . . . , ρd−1〉,

where the group H is a subgroup of {(x1, . . . , xn) ∈ Z
n
s |
∑

xi = 0} that
depends on the graph G and the set C. The actions that determine the
semidirect products are the same actions as for the polytope 2sK−1.

We finish this section showing an example of these constructions.
The square has only three connected CPR graphs, they are its Cayley

graph, its vertex CPR graph, and its edge CPR graph (see Figure 5.8, black
= 0, red = 1), and they have 4, 2 and 3 connected components respectively if
we eliminate the edges of label 0. Applying these constructions with s = 2,
we get the following toroidal polyhedra.



5.8. REMARKS 85

Figure 5.8: Connected CPR graphs of the square

A

B C

Figure 5.9: CPR graphs of {4, 4}(4,0), {4, 4}(2,2) and {4, 4}(2,0)

1) {4, 4}(4,0) when we take the edge CPR graph with C a component with
a single vertex (see Figure 5.9 A, black = 0, red = 1, blue = 2) or the
Cayley graph with C a single component.

2) {4, 4}(2,2) when we take the vertex CPR graph with C any of its two
components (see Figure 5.9 B) or the Cayley graph with C consisting
of two components that have an edge of label 1 (red) between them.

3) {4, 4}(2,0), when we take the edge CPR graph with C the component
with an edge of label 1 (see Figure 5.9 C) or the Cayley graph with C
two opposite components.

5.8 Remarks

The polytope 2sK−1 in the way constructed in Section 5.3 gives an affirmative
answer to the extension problem for even last entries of the Schläfli symbol.
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Additionally it satisfies the FAP with respect to its vertex figures and the
finiteness and lattice properties.

Michael Hartley proved in [13] that, for d ≥ 3, no n-hemicube can be
extended with an odd number as last entry of its Schläfli symbol. This gives
a negative answer to the extension problem for odd last entries of the Schläfli
symbol. It remains open to give sufficient conditions on K that guarantee the
existence of extensions of K with odd numbers as last entry of the Schläfli
symbol.

In [28] Egon Schulte shows that if the vertex figures of a polytope P are
isomorphic to the facets of a polytope Q, and additionally P has the FAP
with respect to its vertex figures and Q with respect to its facets, then the
set of amalgamations of P and Q is not empty. Moreover, if P is the dual of
Q then there is a self-dual amalgamation of P and Q. In the same paper he
states the following conjecture.

Conjecture 5.8.1 Given a self-dual regular (d−1)-polytope K there is a self-
dual regular (d+1)-polytope Q such that its medial section {F |F0 ≤ F ≤ Fd}
(F0 and Fd are incident vertex and facet respectively) is isomorphic to K and
the first and last entries of the Schläfli symbol are equal to a preassigned
natural number n.

The conjecture was already known to be true for n = 4. Let n = 2s
be even. Since 2sK−1 has the FAP with respect to its vertex-figures, we can
deduce from [28] that there is a self-dual amalgamation of 2sK−1 and its dual.
The following result follows.

Theorem 5.8.2 Given a self-dual regular (d− 1)-polytope K there is a self-
dual regular (d+1)-polytope Q such that its medial section {F |F0 ≤ F ≤ Fd}
is isomorphic to K and the first and last entries of the Schläfli symbol are
equal to a preassigned even natural number n.

This conjecture is now proved for n even, however it remains open for n
odd.



Chapter 6

Extensions of Dually Bipartite
Polytopes

In this chapter we construct extensions with an even number as last entry
of the Schläfli symbol, for regular polytopes such that the 1-skeleton of their
duals are bipartite, and their automorphism groups act faithfully on the
facets.

This extension is related to two extensions discovered by Egon Schulte
(see [24], [25], [26] and [27]) that can be applied to any polytope such that
its automorphism group acts faithfully on its facets. The last entry of the
Schläfli symbol of those extensions is 6. One of those extensions is equivalent
to the extension described in this chapter for s = 3 since for that case the
bipartition on the facets of the polytope is not needed. Unfortunately for the
remaining values of s the construction does not give as a result an extension
of the polytope if its facet graph is not bipartite.

6.1 Previous results

In this chapter we deal mainly with the class of regular polytopes defined
next.

Definition 6.1.1 A regular dually bipartite polytope is a regular poly-
tope that satisfies that

• its automorphism group acts faithfully on its facets and

87
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• the 1-skeleton (the graph determined by the vertices and edges of the
polytope) of its dual is a bipartite graph.

Before explaining the constructions, some results on the facet CPR graphs
of these kind of polytopes are necessary.

Remark 6.1.2 Let K be a regular polytope and let G = G0,...,d−1 be its j-face
CPR graph. Then, the vertex of G corresponding to the base j-face of K has
degree 1, and the edge incident to it has label j.

Proposition 6.1.3 Let K be a regular dually bipartite polytope and K∗ its
dual. Then, the mix K∗♦{ } is isomorphic to K∗.

Proof

It follows from Theorem 2.3.7.
�

As a consequence of Proposition 6.1.3 we have the following corollary.

Corollary 6.1.4 Let G be a CPR graph of the regular dually bipartite poly-
tope K. Then the graph obtained from G by adding two vertices and an edge
of label d− 1 between them is another CPR graph of K.

The facet CPR graph G of a regular dually bipartite polytope K behaves
well with respect to the bipartition of the vertices of G corresponding to the
bipartition of the facets of K. This is described by the following results.

Lemma 6.1.5 Let K be a regular dually bipartite d-polytope with bipartition
U, V of its set of facets, then ρd−1 induces a perfect matching on the facet
CPR graph of K such that each edge of color d − 1 is incident to a vertex
corresponding to a facet in U and a vertex corresponding to a facet in V .

Proof

Suppose without loss of generality that the base facet F is an element of V .
While ρd−1 moves F to an adjacent facet F ′, F ′ has to be in U . In order
to preserve the bipartition in the set of facets, the image under ρd−1 of any
facet in V has to be in U and vice versa. This induces the perfect matching
required on the vertices of the facet CPR graph.

�
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Lemma 6.1.6 Let K be a regular dually bipartite d-polytope with bipartition
U, V of its set of facets, then every edge of labels 0, . . . , d − 2 joins vertices
corresponding to two facets in U or two facets in V .

Proof

Let F be the base facet of K. Then, ρk fixes F for k = 1, . . . , d− 2. In order
to preserve the bipartition in the set of facets, the image of any facet in U
under ρk has to remain in U , and the image of a facet in V under ρk has to
remain in V .

�

Proposition 6.1.7 The facet CPR graph of every regular dually bipartite
d-polytope has an even number of edges of label k for each k = 0, . . . , d− 3.

Proof

Let G be the facet CPR graph of a dually bipartite polytope with bipartition
U, V of its facets. Lemma 6.1.6 implies that any edge e of label k < d − 2
is incident to two vertices corresponding to facets in U or to two vertices
corresponding to facets in V . By Lemma 6.1.5 we have that there is an edge
of label d − 1 incident to each vertex of e. Proposition 3.2.1 implies that e
belongs to an alternating square with edges of labels k and d−1. Since every
edge of label k < d− 2 is in such an alternating square we conclude that the
number of edges of label k in G is even.

�

We now know that the facet CPR graph of a regular dually bipartite
polytope looks like the one in Figure 6.1. The sets U and V correspond to
the sets of the bipartition of the facets of the polytope. The vertex at the
right belongs to V and represents the vertex corresponding to the base facet.
The edges represent the perfect matching between U and V of edges of label
d− 1 and no other edge joins a vertex on U to a vertex on V .

6.2 The main extension

Now that we have the necessary results we proceed with the construction.
Let K be a regular dually bipartite d-polytope, G = G0,...,d−1 its facet

CPR graph and let s ≥ 3. We now construct a new graph Gs(K) = Gs by
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U

V

Figure 6.1: Facet CPR graph of a regular dually bipartite polytope

u u uu uu q qq

vs v2
v1

d−1 d−1d

vs−2
vs−3

G

vs−1
= x

Figure 6.2: Graph Gs

adding to G an alternating path of length s− 2 of colors d and d− 1 to the
vertex x correspondent to the base facet. Then, in Gs, the path P of labels
d and d− 1 of maximal length including x has length s− 1, and includes the
vertices v1, . . . , vs−3, vs−2 = ρd(x), vs−1 = x and vs = ρd−1(x). (see Figure
6.2).

Proposition 6.1.7 implies the following remark.

Remark 6.2.1 Let G be the facet CPR graph of a regular dually bipar-
tite polytope K. Then the graph Gs has an even number of edges of colors
0, . . . , d− 3.

Now we prove that the graph Gs is a CPR graph of an extension of K.

Theorem 6.2.2 Let K be a regular dually bipartite d-polytope of Schläfli
type {p1, . . . , pd−1} with G its facet CPR graph, and let d ≥ 2 and s ≥ 3.
Then the graph Gs constructed as above is a CPR graph of a d + 1-polytope
Qs(K) = Qs with facets isomorphic to K and Schläfli symbol {p1, . . . , pd−1, s}
if s is even, or {p1, . . . , pd−1, 2s} if s is odd.

Proof

We can easily see that this construction with s = 3 leads to the extension
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introduced in [25]. For that particular construction, the intersection prop-
erty had already been proved in that paper. We use this fact to prove the
intersection property in general.

Let Γ(K) = 〈ρ0, . . . , ρd−1〉, let ρi for i = 0, . . . , d be determined by the
edges of label i in Gs, and let φ ∈ 〈ρ0, . . . , ρd−1〉 ∩ 〈ρj , . . . , ρd〉. We may
assume that φ fixes vk for k = 1, . . . , s − 2 and thus preserves the sets U
and V shown in Figure 6.1 (because an even number of generators ρd−1 are
involved in the expression of φ in terms of ρ0, ..., ρd−1); otherwise we take
ρd−1φ instead of φ.

Let ρ′d−1 be ρd−1 trivially extended to the vertex vs−2 and ρ′d be ρd re-
stricted to the vertex set of the original graph G and vs−2. We can construct
an element φ′ in 〈ρ0, . . . , ρd−2, ρ

′
d−1〉 from any expression of φ in terms of

ρ0, . . . , ρd−1 by changing every factor ρd−1 to a factor ρ′d−1. Then the actions
of φ and φ′ on V (G) ∪ {vs−2} are the same. In particular φ′ also fixes the
sets U and V .

Lemma A.2.1 implies that 〈ρj , . . . , ρd−2, ρ
′
d−1, ρ

′
d〉 contains a symmetric

group on the vertices of the connected component of x on (G∪{vs−2})j,j+1,...,d.
Since the remaining connected components of (G ∪ {vs−2})j,j+1,...,d are also
connected components of (Gs)j,j+1,...,d it is not hard to see that the subgroup
of 〈ρj , . . . , ρd〉 that fixes vk for k = 1, . . . , s−2 is contained (as actions on the
vertices) on the subgroup of 〈ρj , . . . , ρd−2, ρ

′
d−1, ρ

′
d〉 that fixes vs−2. Hence we

can also get an expression for φ′ in terms of ρj, . . . , ρd−2, ρ
′
d−1, ρ

′
d.

Now we can appeal to the results in [25]. In particular, the above means
that φ′ ∈ 〈ρj, . . . , ρ

′
d−1〉 in the construction with s = 3, but then we can find

an expression for φ in terms of ρj , . . . , ρd−1 by changing the factors ρ′d−1 to
ρd−1 of any expression of φ′ in terms of ρj, . . . , ρd−2, ρ

′
d−1 (this can be done

because φ′ fixes the sets U and V ), and the intersection property holds for
s ≥ 3.

The facet of the resulting (d+1)-polytope Qs is isomorphic to K because
of Corollary 6.1.4, and the last entry of the Schläfli sybol can be easily ob-
tained from the polygonal action of 〈ρd−1, ρd〉 on the connected components
of Gd−1,d and the fact that G has at least two edges of label d−1 (see Lemma
6.1.5).

�

In order to describe the automorphism group for this construction we will
discuss the cases s even and s odd separately.
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U’

V’

Figure 6.3: Graph Gs for s even

6.2.1 s even

For s even, the first and last edges of P will be of color d−1, and the graph Gs

will have a bipartition of the vertices into sets U ′ and V ′ of the type described
on Lemmas 6.1.5 and 6.1.6 (see Figure 6.3). Proposition 3.5.1 implies that
the automorphism group of Qs is a semidirect product 〈ρd−1〉⋊H , where the
elements of H are pairs (σ, τ) with σ ∈ SU ′ and τ ∈ SV ′, and ρd−1 acts on H
by interchanging the entries of the elements.

The actions of ρd and ρd−1ρdρd−1 on the vertex set of Gs are given by the
involutions

ρd = (xvs−2)(vs−3vs−4) . . . (v3v2)

ρd−1ρdρd−1 = (vsvs−3)(vs−2vs−5) . . . , (v4v1).

Now we find certain conjugates of ρd in Γ(Qs) whose action on V (Gs) is the
same of ρd or ρd−1ρdρd−1 except in one transposition.

Without loss of generality assume x ∈ V and let y ∈ V (Gs)\{v1, . . . , vs−2}
and φ ∈ 〈ρ0, . . . , ρd−1〉 such that φ(y) = x. Then

φ−1ρdφ =

{

ρd (x vs−2)(y vs−2) if y ∈ V ,

ρd−1ρdρd−1 (vs vs−3)(y vs−3) if y ∈ U
(6.1)

(see Figures 6.2 and 6.3). Now we have

ρdφ
−1ρdφ = (xvs−2y) for y ∈ V ,

ρd−1ρdρd−1φ
−1ρdφ = (vsvs−3y) for y ∈ U.

(6.2)

By Lemma A.2.2 we can obtain any 3-cycle in AV ∪{vs−2} and in AU∪{vs−3}.
Now we consider the element (ρdρd−1)

2, that induces two disjoint cycles, one
of them on the set U ′ ∩ P , and the other on V ′ ∩ P . Conjugating a 3-cycle
including x (or ρd−1(x)) with this element we obtain all the necessary 3-cycles
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U’

V’

Figure 6.4: Graph Gs for s odd

including elements of U ′ (or V ′) to use Lemmas A.2.2 and A.2.3 and conclude
that

An × An ≤ H ≤ Sn × Sn

where n = fd−1/2 − 1 + s/2 is the number of vertices in U ′ (or V ′).

By Proposition A.3.2, H is isomorphic An ×An, (Sn × Sn)](An × An) or
Sn × Sn.

If Gs has an odd number of edges of color d − 2 (or of color d), say an
odd number in U ′ and an even number in V ′, then, we can multiply ρd−2 (or
ρd) by (ρd−2)

−1
|V ′ (or (ρd)

−1
|V ′) in order to get an element (σ, ε) ∈ Γ(Gs) with σ

an odd permutation. In this case,

Γ(Qs) ∼= [Sn × Sn] ⋊ Z2. (6.3)

Now, if Gs has an even number of edges of colors d− 2 and d, but there
is a color k ∈ {1, . . . , d − 2, d} such that U ′ has an odd number of edges of
color k, then

Γ(Qs) ∼= {(Sn × Sn)](An × An)} ⋊ Z2. (6.4)

Finally, if both, U ′ and V ′ have an even number of edges of colors
1, . . . , d− 2 and d, then

Γ(Qs) ∼= [An ×An] ⋊ Z2. (6.5)

6.2.2 s odd

If s is odd then the edge between v1 and v2 has label d (see Figure 6.4). In
order to find Γ(Qs) we proceed in a similar way to the case s even.

Assuming that x ∈ V ′, the conjugate of ρd by an element φ ∈ 〈ρ0, . . . , ρd−1〉
with φ(y) = x is again
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φρdφ
−1 =

{

ρd (x vs−2)(y vs−2) if y ∈ V ,

ρd−1ρdρd−1 (vs vs−3)(y vs−3) if y ∈ U,

and we can also get the 3-cycles

ρdφ
−1ρdφ = (xvs−2y) for y ∈ V ,

ρd−1ρdρd−1φ
−1ρdφ = (vsvs−3y) for y ∈ U ;

but now v2 = (ρdρd−1)
2(v3). Since v2 and v3 belong neither both to U ′, nor

both to V ′, we have that (ρdρd−1)
2 doesn’t fix U ′ and V ′ (as sets) any longer.

Actually, (ρdρd−1)
2 induces a cycle including all the vertices of P while the

remaining vertices of Gs remain fixed (this can also be seen in the connected
components of (Gs)d−1,d because P is a path of even length). Lemma A.2.3
allows us to obtain the 3-cycles in V ∪{vs−2} and U ∪{vs−3} as well as their
conjugates by (ρdρd−1)

2, so An ≤ Γ(Qs) ≤ Sn, where n is now the number of
vertices of Gs.

If Gs has an even number of edges of each label k for k = d− 2, d− 1, d,
then

Γ(Qs) ∼= An; (6.6)

and if there exists k ∈ {d − 2, d − 1, d} such that Gs has an odd number of
edges of label k then

Γ(Qs) ∼= Sn. (6.7)

6.3 Results and examples

The result of the construction described above applied to the square with
s = 4 is the toroidal polyhedron {4, 4}(3,0). The relation (ρ0ρ1ρ2ρ1)

3 can be
derived directly from the graph of the construction, that is shown in Figure
6.5 A.

However the construction applied to any regular dually bipartite polyhe-
dron K with Schläfli type {p, 4}, except π({4, 4}3,0) (here π means the petrial
operation, see Section 2.3, and Figure 6.6 for its facet CPR graph), gives rise
to a polytope Q4 with Schläfli type {p, 4, 4} with vertex figure isomorphic
to {4, 4}(6,0). This is because the CPR graph of the vertex figure of Q4, ob-
tained from the graph Gs of the construction by deleting the edges of label 0,
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A B C D

Figure 6.5: Connected components

Figure 6.6: Connected components

will have as connected components some copies of the graphs in Figure 6.5.
If the graphs B or C of this figure are connected components it is easy to
see that the vertex figure of Q4 is the polyhedron {4, 4}(3,0)♦{} = {4, 4}(6,0)

(see Theorem 2.3.7). The vertex figure of Q4 will be isomorphic to {4, 4}(3,0)

only if there is only one edge of label 1 in the facet CPR graph of K, but
the only regular dually bipartite polyhedron satisfying this extra condition
is precisely π({4, 4}3,0).

Since symmetric and alternating groups are involved in the automorphism
groups of the extensions described in this chapter we expect no centrally
symmetric polytopes as a result of this constructions.

Proposition 6.3.1 For any polytope K and s ≥ 3, the polytope Qs(K) de-
scribed in Section 6.2 is not centrally symmetric.

Proof

The center of any of the groups An, Sn, An × An, (Sn × Sn)](An × An) and
Sn × Sn is trivial.

�

Now we explore the polyhedra obtained by this construction applied to
polygons. Since the automorphism groups involve symmetric and alternating
groups, the genus of the polyhedra are expressions involving factorials that
are not to hard to obtain but make little contribution to this work, so we
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Figure 6.7: CPR graph of Q6({10})

omit them. Note that the n-gons with n odd are not dually bipartite, so we
restrict ourselves to the polyhedra Qs({2n}).

Proposition 6.3.2 For all n ≥ 2 the polyhedron Qs({2n}) with s odd is
non-orientable.

Proof

Let ei be the number of edges of label i in Gs for i = 0, 1, 2. Then ei is even
(odd) if and only if ρi induces an even (odd) permutation of the vertices of
Gs.

If e0, e1, e2 are even, then the Γ(Qs({2n})) ∼= An and Qs({2n}) cannot
be orientable because An has no subgroup of index 2.

Now assume that ei is odd for some i. From Figure 6.4 we can see that
e1 = e0 + e2, hence at least one of e1, e2, e3 is even. Then at least one of
ρ0ρ1, ρ0ρ2, ρ1ρ2 induces an odd permutation on the vertex set of Gs. Since
An is the only index 2 subgroup of Sn it follows that the even subgroup is
the whole group Γ(Qs({2n})) ∼= Sn.

�

For s even we will use Proposition A.3.4 and the action of ρ0ρ1, ρ0ρ2 and
ρ1ρ2 on the vertex set of Gs to determine when the polyhedron Qs({2n}) is
orientable.

The action of ρ0ρ1 on the vertex set of Gs is the product of transpositions
determined by the edges of label 0 composed with the interchange of the
vertices in U ′ with their correspondents in V ′. Analogously the action of ρ1ρ2

is the product of transpositions determined by the edges of label 2 composed
with the interchange of the vertices in U ′ with their correspondents in V ′ (see
Figure 6.3). Finally the action of ρ0ρ2 is simply the product of the n+s/2−1
transpositions induced by the edges of labels 0 and 2. See Figure 6.7 for the
CPR graph of Q6({10}).
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In Table 6.1 we give the automorphism group of Qs({2n}) for s even and
for different cases of values of n and s/2. The first two columns indicate that
n and s/2 are even, odd, or congruent to the number in the table modulo
4. The elements of the even subgroup of Γ(Qs({2n})) are of type [(σ, τ), ǫ],
where σ and τ are permutations of the vertices in U ′ and V ′ respectively.
We have that ǫ = 0 if the element fixes the sets U ′ and V ′, and ǫ = 1 if
the element interchanges these two sets. Note that ǫ = 1 for ρ0ρ1 and ρ1ρ2,
and ǫ = 0 for ρ0ρ2. We put “even” (“odd”) in the column of ρiρj if σ and τ
are both even (odd) permutations for that generator of the even subgroup of
Γ(Qs({2n})), in this case the generator will induce an even permutation on
the vertices of Gs. We put “both” in this column if σ is odd and τ is even or
vice versa, giving as a result a generator which induces an odd permutation
on the vertices of Gs. Observe that for s even the dual of Qs({2n}) is the
polytope Qs({2n}) (see Figure 6.7), so there are no more necessary rows in
Table 6.1.

n s/2 ρ0ρ1 ρ1ρ2 ρ0ρ2 Γ(Qs)

≡ 0 ≡ 0 both both odd (Sn × Sn) ⋊ Z2

≡ 0 ≡ 2 both both even (Sn × Sn) ⋊ Z2

≡ 2 ≡ 2 both both odd (Sn × Sn) ⋊ Z2

even ≡ 1 both even both (Sn × Sn) ⋊ Z2

even ≡ 3 both odd both (Sn × Sn) ⋊ Z2

≡ 1 ≡ 1 even even even (An × An) ⋊ Z2

≡ 1 ≡ 3 even odd odd (Sn × Sn)](An ×An) ⋊ Z2

≡ 3 ≡ 3 odd odd even (Sn × Sn)](An ×An) ⋊ Z2

Table 6.1: Parameters of Qs({2n}) for s even

Now it is clear that if n and s/2 are even then the three generators of the
even subgroup of Γ(Qs({2n})) are in

{

(τ, ǫ) | τ ∈ {(Sn × Sn)](An × An)}, ǫ = 0;
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or τ ∈ [(Sn r An) × An] ∪ [An × (Sn rAn)], ǫ = 1
}

.

Hence the polyhedron Qs({2n}) is orientable.
If n is even and s/2 is odd or n is odd and s/2 is even, then ρ0ρ2 is of

type [(σ, τ), 0] with σ even and τ odd or σ odd and τ even. Proposition A.3.4
implies that the even subgroup of Γ(Qs({2n})) is either (Sn × Sn) ⋊ Z2 or
[(Sn × Sn), 0], but since ρ0ρ1 and ρ1ρ2 do not belong to the second group
we have that the even subgroup of Γ(Qs({2n})) is of index one, and hence
Qs({2n}) is non-orientable.

Similarly, if n is congruent to 1 and s/2 is congruent to 3 modulo 4 or
vice versa, then ρ0ρ2 is not an element of the groups 5) and 6) of Proposition
A.3.4. The even subgroup of Γ(Qs({2n})) cannot be the group 4) of Propo-
sition A.3.4 because ρ0ρ1 and ρ1ρ2 interchange U ′ and V ′, so it is an index 1
subgroup and Qs({2n}) is non-orientable.

If n and s/2 are congruent to 3 modulo 4 the even subgroup of Γ(Qs({2n}))
is

{

(τ, x) | τ ∈ (An × An), x = 0;

or τ ∈ (Sn rAn) × (Sn r An), x = 1
}

.

and Qs({2n}) is orientable.
The only subgroup of index 2 of (Am × Am) ⋊ C2 is Am × Am, but ρ0ρ1

and ρ1ρ2 interchange the sets U ′ and V ′. Hence the polyhedron Qs({2n}) is
non-orientable if n and s are congruent to 1 modulo 4.

Now we can state the following theorem.

Theorem 6.3.3 The polytope Qs({2n}) for s even is orientable if and only
if n and s/2 are both even or both congruent to 3 modulo 4.

6.4 Reflection and half turn constructions

Given a regular dually bipartite polytope K with facet CPR graph G, and
the graph Gs(K) described in Section 6.2, we can construct a CPR graph
G′

s(K) = G′
s of another extensions Rs for K in the following way.

We take two copies of Gs and join the last vertices of the corresponding
paths P by an edge of label d if s is even, or of label d−1 if s is odd (see Figure
6.8). The following result shows that this is a CPR graph of an extension of
K.
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W

W

Y

Y

Figure 6.8: CPR graphs G′
s of the reflection and half turn constructions

Theorem 6.4.1 For s ≥ 3 and for any regular dually bipartite d-polytope K
with Schläfli symbol {p1, . . . , pd−1}, the graph G′

s(K) described above is a CPR
graph of a regular d + 1-polytope Rs with Schläfli symbol {p1, . . . , pd−1, 2s}
and facets isomorphic to K.

Proof

The intersection property can be checked in a similar way than the one in
theorem 6.2.2, the last entry of the Schläfli symbol can be obtained from the
polygonal action of the corresponding generators on G′

s(K), and the facet
type follows from Proposition 6.1.3 and Theorem 2.3.7.

�

It can be seen immediately from Figure 6.8 that this construction has a
suitable drawing in the plane that allows a reflection symmetry if s is even,
and a half turn symmetry if s is odd. From now on, this construction for s
even will be the reflection construction, and for s odd will be the half
turn construction.

Since we have a bipartition of the vertices of each copy of the graph Gs

constructed in Section 6.2 satisfying the conditions of Lemmas 6.1.5 and
6.1.6, we also have a bypartition of the vertices of the CPR graphs of the
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reflection and half turn constructions in the sets W and Y shown in Figure
6.8 that also satisfy the conditions of Lemmas 6.1.5 and 6.1.6.

Proposition 3.2.5 implies that Γ(Qs(K)) is a quotient of Γ(Rs(K)), and

N ⋊ Γ(Rs(K)) ∼= Γ(Qs(K)) (6.8)

with N defined as in Lemma 3.2.4.
Now we derive the automorphism groups of the reflection and half turn

construction separately. It can be done by different ways but we think this
is the simplest.

6.4.1 Half Turn construction

Let η denote the half turn symmetry of G′
s. We recall that

N = {φ ∈ Γ(Rs) |φ(v) ∈ {v, η(v)} for all v ∈ V (G)}.

Since η interchanges the sets W and Y (see Figure 6.8), and a vertex v
of G′

s is in W if and only if η(v) is in Y , we have that N is either {ε} or 〈λ〉
where λ is an automorphism of Rs whose action on the vertex set of G′

s is
η. Proposition 3.2.3 implies that if λ is an automorphism of Rs then it is a
central involution.

The set W (or Y ) contains exactly one element of each orbit of vertices
of G′

s under the action of 〈η〉. This implies that

∆ := {φ ∈ Γ(Rs) |φ fixes the sets W and Y } ∼= Γ(Qs).

It follows that the half turn η is an element of Γ(Rs) if and only if ∆ contains
the product of all the transpositions of type (ab) where b = ηρd−1(a), but
this occurs if Γ(Qs) is symmetric, and if Γ(Qs) is alternating and the number
of vertices in W is congruent to 1 modulo 4 (note that this number cannot
be even). Now (6.6), (6.7) and (6.8) imply the following.

Let K be a regular dually bipartite polytope, k, t and m be the number
of edges of labels d− 2, d− 1 and d respectively on the graph G′

s of the half
turn construction, and let s ≥ 3. Then if k or m are odd then

Γ(Rs(K)) ∼= Sn × Z2,

if k and m are even and t is congruent to 1 modulo 4 then

Γ(Rs(K)) ∼= An × Z2,
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and if k and m are even and t is congruent to 3 modulo 4 then

Γ(Rs(K)) ∼= Sn.

The polytope Rs(K) is centrally symmetric if and only if the half turn is
the action of an element φ ∈ Γ(Rs(K)). It is clear now that this happens
always except if k and m are even and t is congruent to 3 modulo 4.

6.4.2 Reflection Construction

For s even, let ξ denote the reflection symmetry of G′
s. Then

N = {φ ∈ Γ(Rs) |φ(v) ∈ {v, ξ(v)} for all v ∈ V (G)}.

Now it is possible to have φ(u) = ξ(u) and φ(v) = v for two vertices u
and v of G′

s and φ ∈ Γ(Rs(K)).
Let W be one of the subgraphs of G′

s isomorphic to Gs. Then W contains
exactly one element of each orbit of vertices of G′

s under the action of 〈ξ〉.
We name again v1, . . . , vs the vertices in W corresponding to the path P as in
Figure 6.2. Then we have to determine when there exists an automorphism of
Rs whose action on the vertex set of W is the transposition (v1, ρd−1ξ(v1)),
and by conjugacy, obtain automorphisms whose actions are the remaining
transpositions (v, ρd−1ξ(v)). Equivalently, we have to determine when it is
possible to obtain an automorphism of Rs whose action is the permutation

(

v2 v3

)

· · · ,
(

vs−2 vs−1

)(

ξ(vs−1) ξ(vs−2)
)

· · ·
(

ξ(v3) ξ(v2)
)

. (6.9)

Note that when we use ρd we are interchanging a vertex of W with a vertex
outside W . In the cases when it is not possible to obtain such automorphism
it will remain to determine the permutations induced by the action of auto-
morphisms of Rs on the vertex set of G′

s that include a single transposition
of type (v, ρd−1ξ(v)).

Let n be half of the vertices of W , then equations 6.1 and 6.2 still hold.
Similar arguments than those used to derive equations (6.3), (6.4) and (6.5)
imply that the permutation in (6.9) is the action of an automorphism of Rs

if

• W has an odd number of edges of label d− 2,
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• W has an even number of edges of label d−2 and the numbers of edges
of labels d and k are congruent to 2 modulo 4 for some k ∈ {0, . . . , d−2},
and

• The number of edges of every color is a multiple of 4.

In this case
Γ(Rs) ∼= Z

2n
2 ⋊ Γ(Qs),

where Γ(Qs) acts in Z
2n
2 by permuting the coordinates of the elements (note

that an element of Z
2n
2 has as many coordinates as W has vertices). It follows

that the semidirect product is actually a wreath product.
The remaining cases are when W has an odd number of edges of label d

and an even number of edges of label d − 2, and when the number of edges
of label d in W is congruent to 2 modulo 4 and the numbers of edges of
labels k are multiples of 4 for k ∈ {0, . . . , d − 2}. In the first case there is
no automorphism of Rs having the permutation in 6.9 as its action on the
vertex set of W , but there is one whose action is

(

v2 v3

)

· · · ,
(

vs−4 vs−3

)(

ξ(vs−3) ξ(vs−4)
)

· · ·
(

ξ(v3) ξ(v2)
)

.

This implies that whenever we interchange only one vertex v of W (or an
odd number of them) with η(v) we get an odd permutation on the vertex set
of W .

In a similar way, if the number of edges of label d in W is congruent
to 2 modulo 4 and the numbers of edges of labels k are multiples of 4 for
k ∈ {0, . . . , d− 2} there is an automorphism whose action on the vertex set
of W is

(

v2 v3

)

· · · ,
(

vs−6 vs−5

)(

ξ(vs−5) ξ(vs−6)
)

· · ·
(

ξ(v3) ξ(v2)
)

,

implying that whenever we interchange only one vertex v of W (or an odd
number of them) with η(v) we get a permutation in (Sn×Sn)](An×An)⋊Z2

on the vertex set of W .
Now we describe explicitly the automorphism groups.
Let K be a regular dually bipartite polytope with G its facet CPR graph.

Let Gs be the graph explained in Section 6.2 for s even, let n be half of its
number of vertices and let ei denote the number of edges of label i in Gs for
i = 0, . . . , d.
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Let N1 be the subgroup of Z2 ≀ [(Sn ×Sn) ⋊ Z2] consisting of the elements

Z
2n
2 ⋊ (τ1, τ2, y, x1, . . . , x2n) ∈ [(Sn × Sn) ⋊ Z2]

with τ1τ2 even if
∑

xi = 0, and τ1τ2 odd if
∑

xi = 1; and N2 the subgroup
where τ1, τ2 are even if

∑

xi = 0 and τ1, τ2 are odd if
∑

xi = 1.
If ed−2 is odd then

Γ(Rs(K)) ∼= Z2 ≀ [(Sn × Sn) ⋊ Z2],

if ed−2 is even and ed, ek are congruent to 2 modulo 4 for some k ∈ {0, . . . , d−
2} then

Γ(Rs(K)) ∼= Z2 ≀ [(Sn × Sn)](An × An) ⋊ Z2],

if ei is a multiple of four for i = 0, . . . , d− 2, d then

Γ(Rs(K)) ∼= Z2 ≀ [(An × An) ⋊ Z2],

if ed is odd and ed−2 is even then

Γ(Rs(K)) ∼= N1,

and if ed is congruent to 2 modulo 4 and ei is a multiple of four for i =
0, . . . , d− 2 then

Γ(Rs(K)) ∼= N2.

In all the cases Z2 acts on the corresponding group by interchanging the en-
tries of the elements so we actually have a permutation group on 2n elements
(vertices of W ).

Note that the involutions (a, ξ(a))(b, ξ(b)) are always actions of automor-
phisms of Rs(K)). Since W has an even number of vertices the reflection is
always the action of an element φ ∈ Γ(Rs(K)). Hence the polytope Rs(K))
is always centrally symmetric (see Proposition 3.2.3).

The extensions described in this chapter will be published in [22].





Chapter 7

Open questions

In this chapter we pose some open questions originated from the definitions
and results of this work.

7.1 CPR Graphs

The main problem to determine whether a d-edge labeled graph is a CPR
graph or not is to verify the intersection property.

Problem. Give a characterization of the intersection property for proper
d-edge labeled graphs.

It is hard to work with some aspects of the permutation groups, for exam-
ple to determine the number of elements of the subgroup of Sn generated by
certain elements. This makes a hard task to determine most of the properties
of a polytope even if we have a CPR graph of it.

Problem. Given two CPR graphs, are there any criteria to determine if
they represent the same polytope?

Problem. Given a disconnected CPR graph of a polytope K, how can
we find a connected CPR graph for K?

Problem. Given a CPR graph G of a polytope K, is there a procedure
to find the Cayley graph of K from the properties of G as a graph?

7.2 Polyhedra

In the SIGMAC conference, Aveiro, 2006, Roman Nedela talked about chiral
maps (maps with two orbits of flags under the automorphism group in such
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a way that adjacent flags belong to different orbits) with alternating auto-
morphism group. He described sufficient conditions for p and q in order to
allow infinitely many polytopes with Schläfli symbol {p, q} with alternating
automorphism group.

Problem. For what p and q are there infinitely many regular polyhedra
with Schläfli symbol {p, q} and alternating automorphism group?

In Section 4.2 we explain that all the proper 3-labeled graphs with 7
vertices are CPR graphs of polyhedra with automorphism group isomorphic
to S7. It is not hard to see that if we consider all the proper 3-labeled graphs
with 5 vertices we get CPR graphs of the seven polyhedra with automorphism
group S5 and the three with automorphism group A5.

Problem. Is any proper 3-labeled graph with p vertices, a CPR graph
of a polyhedron with alternating or symmetric automorphism group, for any
prime number p?

7.3 Extensions

For any regular polytope K and any even number 2s we construct in Chapter
5 an extension of K with 2s as last entry of the Schläfli symbol. However
there is little information about extensions with odd numbers as last entries
of the Schläfli symbol.

Problem. Give necessary conditions for a regular polytope K in order to
admit extensions with any number m ≥ 3 as last entry of the Schläfli symbol.

And in particular,
Problem. Can the regular dually bipartite polytopes be extended with

any number as last entry of the Schläfli symbol?
Conjecture 5.8.1 remains open for odd numbers n. We restate it like the

following problem.
Problem. Given a self-dual regular (d−1)-polytope K, is there a self-dual

regular (d + 1)-polytope Q such that its medial section {F |F0 ≤ F ≤ Fd}
(F0 and Fd are incident vertex and facet respectively) is isomorphic to K and
the first and last entries of the Schläfli symbol are equal to a preassigned odd
natural number n ≥ 3?.



Appendix A

Algebra

This appendix contains the purely algebraic definitions and results used in
the previous chapters, all of them on group theory.

In all the work we may denote the identity element of any group by ε,
and we denote the alternating and symmetric groups on any set M by AM

and SM respectively.

A.1 General Results

Every group acts in a natural way on the left (right) cosets of any of its
subgroups. We say that this action is faithful if the only element of the group
that fixes all the cosets is ε. The following two results give an equivalence
for a group acting faithfully on the cosets of one of its subgroup.

Lemma A.1.1 Let G be a group, H ≤ G. Then, G acts faithfully on the
set of left (right) cosets of H on G if and only if

⋂

g∈G

g−1Hg = ε (A.1)

Proof

Let S be the symmetric group on the left cosets of H , and H̃ be the left side
of equation A.1. The natural action given by

G→ S

g 7→ ĝ,
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where ĝ(kH) = (gk)H acts faithfully if and only if ε is the only element that
fixes all the left cosets.

We can easily see that g0 is such that g0kH = kH for all k ∈ G if and
only if g0 ∈ H̃ . This finishes the proof.

�

Lemma A.1.2 Let G be a group, H ≤ G. Then, H contains no normal
subgroup of G different from {ε} if and only if

⋂

g∈G

g−1Hg = {ε} (A.2)

Proof

Let H̃ be the left part of equation A.2.
If H contains a normal subgroup H ′ of G, then H ′ ⊆ H̃. In the other

hand, H̃ E G. To see this, note that

h−1

(

⋂

g∈G

g−1Hg

)

h =
⋂

g∈G

h−1g−1Hgh =
⋂

g∈G

g−1Hg.

�

A.2 Symmetric and Alternating Groups

The following results are a useful tool to determine that a group G is isomor-
phic to the symmetric group SM or the alternating group AM once we have
a description of G as a permutation group on the set M . More information
about these results can be found in Rotman [23].

Lemma A.2.1 If a subgroup Γ of Sn contains the transposition (n−1 n) as
well as a subgroup acting transitively on {1, . . . , n− 1} while keeping n fixed,
then Γ = Sn.

Lemma A.2.2 If a subgroup Γ of Sn contains all the 3-cycles of the form
(ijk), k ∈ {1, . . . , n} \ {i, j} for any fixed i and j, then An ≤ Γ ≤ Sn.

Lemma A.2.3 If a subgroup Γ of Sn contains the 3-cycle (n−2 n−1 n) as
well as a subgroup acting transitively on {1, . . . , n−2} while keeping n−1, n
fixed, then An ≤ Γ.
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A.3 Index 2 Subgroups

Now we present some notation and results involving index 2 subgroups of
certain groups.

Given a group Λ and an index 2 subgroup ∆ there exists an index 2
subgroup of Λ × Λ consisting in the pairs such that both or none of the
elements are in ∆.

Notation A.3.1 Let ∆ be a subgroup of index 2 of Λ. The group

[∆ × ∆] ∪ [(Λ \ ∆) × (Λ \ ∆)]

will be denoted by (Λ × Λ)](∆ × ∆).

Proposition A.3.2 Let ∆ be a subgroup of index 2 of Λ, and α ∈ Aut(∆×
∆) be the automorphism interchanging the entries of the elements. Then the
only groups Γ invariant under conjugation by α, and such that ∆×∆ ≤ Γ ≤
Λ × Λ are

• ∆ × ∆,

• (Λ × Λ)](∆ × ∆), and

• Λ × Λ.

Proof

The quotient (Λ×Λ)/(∆×∆) is isomorphic to Z2 ×Z2, that has three sub-
groups of index 2. By the one to one correspondence theorem (mentioned in
[14] as the fourth isomorphism theorem), Λ×Λ has three subgroups of index
2 containing ∆×∆. The subgroups ∆×Λ and Λ×∆ are not invariant under
conjugation by α, so the proposition holds.

�

Lemma A.3.3 The group An × An has no index 2 subgroups.

Proof

Suppose to the contrary that Λ is an index 2 subgroup of An ×An. Consider
the normal subgroup ∆ of An × An with elements (σ, ε) for every σ ∈ An.
Note that ∆ ∼= An. Since Λ ⊳ An ×An, we have that Λ∩∆ ⊳∆. Then Λ∩∆
is either trivial or ∆.
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If Λ ∩ ∆ is trivial then we can embed ∆ in (An × An)/Λ ∼= Z2, but that
is not possible. On the other hand, if Λ∩∆ is isomorphic to ∆, then Λ/∆ is
an index 2 subgroup of (An ×An)/∆ ∼= An, leading again to a contradiction.

�

Proposition A.3.4 The index 2 subgroups of (Sn × Sn) ⋊ Z2 are

1) {(τ, 0) | τ ∈ Sn × Sn}

2) {(Sn × Sn)](An × An)} ⋊ Z2

3)
{

(τ, x) | τ ∈ {(Sn × Sn)](An × An)}, x = 0;

or τ ∈ [(Sn rAn) × An] ∪ [An × (Sn rAn)], x = 1
}

;

and those of {(Sn × Sn)](An × An)} ⋊ Z2 are

4) {(τ, 0) | τ ∈ (Sn × Sn)](An ×An)}

5) (An ×An) ⋊ Z2

6)
{

(τ, x) | τ ∈ (An × An), x = 0;

or τ ∈ (Sn r An) × (Sn r An), x = 1
}

. In all cases Z2 acts by inter-

changing the two coordinates.

Proof

It follows from Lemma A.3.3 that any index 2 subgroups of (Sn × Sn) ⋊ Z2

and {(Sn ×Sn)](An ×An)}⋊ Z2 contain the normal subgroup group {(τ, 0) :
τ ∈ An × An}.

Note that the quotient

(Sn × Sn) ⋊ Z2

/

{(τ, 0) : τ ∈ An × An} ∼= D4,

and
{(Sn × Sn)](An ×An)} ⋊ Z2

/

{(τ, 0) : τ ∈ An × An} ∼= Z
2
2.

The one to one correspondence theorem applied to (Sn × Sn) ⋊ Z2 and
{(Sn×Sn)](An×An)}⋊Z2, and their normal subgroup {(τ, 0) : τ ∈ An×An}
implies that there are only three index 2 subgroups of each of these two
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groups. It is straightforward to check that they are the ones mentioned in
the proposition.

�

A.4 Semidirect and Wreath Product

Given a group Λ, if there exist two subgroups ∆ and Γ of Λ such that Λ = ∆Γ,
∆∩Γ = {ε}, and ∆⊳Λ, then for any γ ∈ Γ there is an automorphism φγ of ∆
given by conjugacy by γ. This induces an action of Γ on ∆ that determines
the multiplication rule

δ1γ1 · δ2γ2 = δ1φγ1(δ2) · γ1γ2.

Conversely, for any morphism φ : Γ → Aut(∆) there is a group Λ with
elements (δ, γ), where δ ∈ ∆ and γ ∈ Γ, such that

(δ1, γ1) · (δ2, γ2) = (δ1 · φ(γ1)(δ2), γ1γ2).

In this case we say that Λ is a semidirect product of ∆ and Γ and we
denote it by

Λ = ∆ ⋊ Γ

A particular case of a semidirect product is the wreath product explained
next.

Definition A.4.1 Let Λ be a group and ∆ a permutation group on the set
{1, . . . , n}. The wreath product of Λ by ∆, denoted by Λ ≀ ∆ is the group
Λn

⋊ ∆ where

[(x1, . . . , xn), h][(y1, . . . , yn), k] = [(x1, . . . , xn) · (yh(1), . . . , yh(n)), hk].

In other words, ∆ acts on Λn by permuting the coordinates of the elements.

An analogous definition can be seen in M. Hall jr. [9].





Appendix B

Combinatorial Concepts

In this appendix we discuss only the concepts of lattices and Cayley graphs.
These are mainly combinatorial concepts.

B.1 Lattices

A lattice is a partially ordered set such that for every two elements there
exist an unique least upper bound called join and an unique greatest lower
bound called meet.

Since polytopes partially ordered sets with least and greatest elements
and has no infinite ascending or descending chain, the following proposition
is useful to help determining that a polytope is a lattice (see G. Birkhoff [2],
Chapter 2.3 for details).

Proposition B.1.1 Let (P,≤) be a poset such that

• has a least (greatest) element,

• has no infinite ascending (descending) chains, and

• every two elements have least upper bound (greatest lower bound),

then (P,≤) is a lattice.
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B.2 Cayley Graphs

Any group acts on itself by multiplication by the left (right) side. The Cay-
ley graph of a finite group Γ is a representation of this action in a digraph
(oriented graph) given a generating set of Γ. To construct this graph we
consider every element of Γ as a vertex and we add an arc (directed edge)
from a vertex u to a vertex v whenever v = gu for some g in the generating
set.

If the generating set consists only of involutions then the Cayley graph
will be symmetric (if there is an arc from u to v then there is an arc from v
to u). In this case it is enough to add simple edges rather than symmetric
arcs.

Let the generating set of the group Γ be X = {g1, . . . , gn}, then we may
label each arc (edge) of the Cayley graph in such a way that the arc (edge)
from u to v has label j if gju = v. In [32] they call these graphs by Cayley
color graphs. Whenever we refer to “Cayley graphs” on the previous chapters
we are talking about the labeled graphs.

For example, Figure 3.2 F shows the Cayley graph of S4, the automor-
phism group of the tetrahedron, with the generating set {(12), (23), (34)}.
In this figure the generator (12) induces black edges, (23) induces red edges
and (34) induces blue edges.

We mention briefly two properties of the Cayley (color) graphs.

Remark B.2.1 The Cayley (color) graph of a group Γ with generating set
X = {g1, . . . , gn} consisting only of involutions is n-regular (every vertex has
degree n) with every vertex having an edge of each label incident to it.

Remark B.2.2 Let X = {g1, . . . , gn} be a generating set of a group Γ such
that X r {gn} is no longer a generating set. Then the subgraph induced by
the edges of labels 1, . . . , n − 1 of the Cayley (color) graph of Γ with X as
generating set is disconnected.

For further details about Cayley graphs see [32].



Appendix C

Catalog of CPR graphs

Now we present some CPR graphs of well known polyhedra. Since we can
get the vertex CPR graph of a polytope from the face CPR graph of the
dual interchanging labels 0 and 2, we do not include CPR graphs of the
octahedron, icosahedron, hemioctahedron and hemiicosahedron.

We recall that there are no i-face CPR graphs for polytopes such that
their automorphism group does not act faithfully on their i-faces. This is the
reason why we do not include a face CPR graph of the hemicube or a vertex
(face) CPR graph of the toroid {4, 4}(2,0).

Color black represents label 0, color red label 1 and color blue label 2.

Figure C.1: Vertex, edge and face CPR graphs of the tetrahedron
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Figure C.2: Vertex, edge and face CPR graphs of the cube

Figure C.3: Face, vertex and edge CPR graphs of the dodecahedron

Figure C.4: Vertex and edge CPR graphs of the hemicube
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Figure C.5: Face, vertex and edge CPR graphs of the hemidodecahedron

Figure C.6: Edge CPR graphs of {4, 4}(2,0) and vertex CPR graph of the
{4, 4}(2,2)
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