

UNIVERS'IDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

METODO DE ESFUERZO MATRICIAL EQUIVALENTE PARA EL CALCULO DE PRESION DE PORO

DIRECTOR DE TESIS: DR. DANIEL GARCIA GAVITO

MEXICO, D. F.

ABRIL 2001

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE INGENIERIA DIRECCION 60-I-273

SRITA. VIRGINIA LUNA SANTIAGO Presente

En atención a su solicitud, me es grato hacer de su conocimiento el tema que propuso el profesor Dr. Daniel García Gavito y que aprobó esta Dirección para que lo desarrolle usted como tesis de su examen profesional de Ingeniero Petrolero:

METODO DE ESFUERZO MATRICIAL EQUIVALENTE PARA EL CALCULO DE PRESION DE PORO

INTRODUCCION

- I ANTECEDENTES
- II DETERMINACION DE PRESIONES ANORMALES
- III CALCULO DE LA PRESION DE PORO APLICANDO
- EL METODO DE ESFUERZO MATRICIAL EQUIVALENTE
- IV ANALISIS DE RESULTADOS CONCLUSIONES Y RECOMENDACIONES REFERENCIAS

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el título de ésta.

Asimismo, le recuerdo que la Ley de Profesiones estipula que se deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar examen profesional.

Atentamente "POR MI RAZA HABLARA EL ESPIRITU" Cd. Universitaria, D. febreza de 2001 а 12 de EL DIRECTOR ING. GERARDO FERRANDO BRAVO

GFB*RLLR*gtg

UNIVERSIDAD AUTÓNOMA NACIONAL DE MÉXICO

FACULTAD DE INGENIERÍA

DIVISIÓN DE INGENIERÍA EN CIENCIAS DE LA TIERRA

Alumna:

Virginia Luna Santiago

Número de Cuenta: 9359510-2

Tesis: "CÁLCULO DE LA PRESIÓN DE PORO APLICANDO EL MÉTODO DE ESFUERZO MATRICIAL EQUIVALENTE"

Director de Tesis: Dr. Daniel García Gavito

JURADO DEL EXAMEN PROFESIONAL

- PRESIDENTE: Ing. Salvador Macias Herrera
- VOCAL: Dr. Daniel García Gavito
- SECRETARIO: M. I. Joaquín Mendiola Sánchez
- PRIMER SUPLENTE: M. I. José Martínez Pérez
- SEGUNDO SUPLENTE: M.I. Néstor Martínez Romero

Ciudad Universitatia, Marzo del 2001

<u>AGRADECIMIENTOS</u>

A mis padres. José Melesio Luna Gómez y Antonia Santiago Guerrero por brindarme con su ejemplo, la conciencia de valorar que el único motivo real es nuestra manera de vivir, por hacerme digna de confianza y su infinito amor y compressón Gracias

A mis hermanos: Leonor, Socorro y Mario por su apoyo, confianza, por ser parte fundamental en el logro de esta meta y sobre todo por ser mis mejores amigos. Gracias.

A mi Abuelita por sus cuidados, apoyo y compresión. Gracias.

A Jesús Rodolfo por su apoyo incondicional, por permitirme ser yo misma y por su amor. Gracias

A mis amigos que me apoyaron y con los cuales compartí momentos y situaciones malas y buenas y robre todo por ser parte fundamental de un logro mas

A la Universidad Nacional Autónoma de México y la Facultad de Ingeniería por brindarme el conocimiento y el excelente profesorado que me apoyó e hizo posible la realización de una de mis metas

Al Dr. Daniel García Gavito por la confianza, apoyo y amistad que me brindo

MUCHASGRACIAS

ÍNDICE

INTRO	DUCCIÓN	1	
CAP. I ANTECEDENTES			
I. 1 ORÍGENES DE LAS PRESIONES ANORMALES		3	
	 I.1.1 Nivel Piezométrico del Fluido I.1.2 Estructura de las Formaciones I.1.3 Ritmo de Sedimentación y Ambiente de Deposito I.1.4 Actividad Tectónica I.1.5 Fenómeno de Diagénesis I.16 Represionamiento o Recarga I.17 Fenómenos Osmóticos de Filtración I.1.8 Efectos Termodinámicos I.1.9 Teoría de la Compactación 	4 5 6 7 8 9 9	
1.2	ANÁLISIS DE REGISTROS	12	
	I.2.1 Registros de Resistividad y/o ConductividadI.2.2 Registros de Densidad y NeutrónI.2.3 Registro Sónico	13 14 15	
1.3	PRESIONES	17	
	 1.3.1 Presión Hidrostática 1.3.2 Presión de Sobrecarga 1.3.3 Presión de Formación 1.3.4 Presión de Formación Anormal 1.3.5 Presión de Fractura 	17 17 18 19 20	
CAP. II	DETERMINACIÓN DE PRESIONES ANORMALES		
11.1	MÉTODOS APLICABLES ANTES DE LA PERFORACIÓN	24	

- II.2 MÉTODOS APLICABLES DURANTE LA PERFORACIÓN 24
- II.3 MÉTODOS APLICABLES DESPUÉS DE LA PERFORACIÓN 33

11.4	CÁLCULO DEL GRADIENTE DE SOBRECARGA A PARTIR I REGISTROS GEOFÍSICOS		
	.4 1 .4 2 .4.3	Método de Iqbal Bootwala Método del Bourgoyne Método de Belloti y Gracca	40 41 43
11. 5.	PREC	ICCIÓN DEL GRADIENTE DE FRACTURA	45
	II.5.1 II 5 2 II.5 3 II.5.4	Método de Houbbert y Willis Método de Matthews y Kelly Método de Eaton Método de Pilkington	46 47 51 54
11.6	MÉTO FORI EQUI	DDO DE EATON PARA COMPARAR EL GRADIENTE DE MACIÓN CON EL MÉTODO DE ESFUERZO MATRICIAL VALENTE	56
	II 6.1 II.6 2 II.6 3	Método de Eaton Diagrama de cálculo Procedimiento	56 60 61

CAP. III CÁLCULO DE LA PRESIÓN DE PORO APLICANDO EL MÉTODO DE ESFUERZO MATRICIAL EQUIVALENTE

111.1	MÉTODO DE ESFUERZOS MATRICIALES EQUIVALENTES	63
	III.1 1 Diagrama de Cálculo III 1.2 Desarrollo del Procedimiento	67 69
CAP. IV	RESULTADOS Y ANÁLISIS	71
CONCLUS	SIONES Y RECOMENDACIONES	97
NOMENCI	ATURA	99
REFEREN	CIAS	103

LISTA DE TABLAS Y FIGURAS

LISTA DE TABLAS

CAD H

С АГ. П		
	Tabla II.1	Técnicas de predicción, detección y evaluación de sobrepresiones
	Tabla II.2	Factores más importantes que afectan a la perforación
CAP. II	Í	
	Tabla III.1	Tiempo de Tránsito de la Matriz
CAP. I	v	
	Tabla IV.1	Resultados del Método de Eaton
	Tabla IV.2	Resultados del Método de Esfuerzo Matricial Equivalente con la Porosidad del Registro
	Tabla IV.3	Cálculos con el método de EME cuando la porosidad es calculada con el tiempo de Tránsito
	Tabla IV.4	Cálculos del EME cuando la porosidad es calculada con la densidad

LISTA DE FIGURAS

CAP. I

- FIGURA 1.1 Presión anormal originada por la estructura de las formaciones
- FIGURA I.2 Presión anormal originada por la transferencia de hidrocarburos a una zona más somera que contiene agua
- FIGURA 1.3 Representación esquemática de la compactación de las lutitas

- FIGURA I.4 Ejemplo de un Registro de Rayos Gamma tomado de un Pozo de la Región Marina
- FIGURA I.5 Representación Gráfica de la Presión de Poro
- FIGURA I.6 Zonas de Presión Anormalmente Altas y Bajas
- FIGURA I.7 Perfil típico del Gradiente de Presión de Fractura

CAP. II

- FIGURA II.1 Nomograma para Determinar el Exponente d
- FIGURA II.2 Gráficas Comparativas entre Exponentes
- FIGURA II.3 Gráfica de Densidad contra Profundidad
- FIGURA II.4 Porosidad Calculada contra Profundidad
- FIGURA II.5 Gráfica Semilogarítmica de Porosidad contra Profundidad
- FIGURA II.6 Curva Ajustada de la Relación de Esfuerzos de la Matriz para el Área Costera del Sur de Texas
- FIGURA II.7 Curva Ajustada del Coeficiente de Poisson

CAP. III

FIGURA III.1 Principio del Método de Esfuerzo Matricial Equivalente

CAP. IV

- FIGURA IV.1 Comportamiento de la Porosidad de los Registros.
- FIGURA IV. 2 Comportamiento del Coeficiente de Biot para la Porosidad de los Registros
- FIGURA IV.3 Comportamiento del Gradiente de Sobrecarga y Presión de Formación por Eaton
- FIGURA IV.4 Comportamiento de la presión de formación por el método de EME cuando α=1 comparada con el método de Eaton

- FIGURA IV.5 Comportamiento de la presión de formación por el método de EME cuando α=variable comparada con el método de Eaton
- FIGURA IV. 6 Comportamiento de la Presión de Formación por el método de EME contra el método de Eaton
- FIGURA IV. 7 Comportamiento del tiempo de tránsito contra profundidad
- FIGURA IV. 8 Comportamiento de la porosidad calculada con el tiempo de tránsito
- FIGURA IV. 9 Comportamiento del coeficiente de Biot con la porosidad calculada con tiempo de tránsito
- FIGURA IV. 10 Comportamiento del gradiente de presión de formación con el método de EME cuando alfa es uno comparado con el método de Eaton
- FIGURA IV. 11 Comportamiento del gradiente de presión de formación por el EME comparada con el método de Eaton
- FIGURA IV. 12 Comportamiento de la presión de formación por el método de Eaton contra el método de EME
- FIGURA IV. 13 Comportamiento de la densidad
- FIGURA IV. 14 Comportamiento de la porosidad calculada con la densidad
- FIGURA IV. 15 Comportamiento del coeficiente de Biot con la porosidad calculada con la densidad
- FIGURA IV. 16 Comportamiento del gradiente de presión de formación con el método de EME cuando alfa es uno comparado con el método de Eaton
- FIGURA IV. 17 Comportamiento del gradiente de presión de formación por el EME comparada con el método de Eaton

FIGURA IV. 18 Comportamiento de la presión de formación por el método de Eaton contra el método de EME

INTRODUCCIÓN

La presión de poro es un parámetro importante en cualquier estudio de los poros en la mecánica de rocas, dentro del sistema roca-fluido. El fluido del poro puede formar parte de los esfuerzos totales aplicados al sistema, de este modo alivia un poco a la matriz rocosa de parte de la carga soportada. El esfuerzo efectivo es definido por Terzaghi como la pérdida total de esfuerzos de la presión de poro. Este concepto de esfuerzo efectivo fue introducido por vez primera en 1923 por Terzaghi en el campo de la mecánica de una manera empirica; este concepto fue después redefinido por Biot.

En experimentos se observa de manera evidente que los poros, los fluidos y la roca porosa obedecen a la ley esfuerzos efectivos. Pero la tensión, dada por la relación esfuerzo-tensión y el rompimiento o fractura de la roca son controlados en mayor porcentaje por los esfuerzos efectivos que por los esfuerzos totales.

Debido a esto, cuando se estudia la estabilidad del pozo durante la perforación, la estabilidad de la roca durante la producción y la compactación / subsidencia, el conocimiento de la presión de poro en el fondo del agujero en varios tipos de formación, es extremadamente importante.

Las presiones de poro anormales (sobrepresiones), no se limitan a ninguna edad geológica en particular, pero se encuentra frecuentemente en formaciones del Terciario (Oligoceno-Eoceno).

Los causantes de las presiones anormales pueden ser varios o tal vez una multitud de factores superpuestos, como son los procesos geológicos, físicos, geoquímicos y mecánicos. Es difícil, sino imposible, especular sobre la importancia relativa de cada factor tomado individualmente, por un ambiente determinado, de alguna área geológica.

1

Existen desacuerdos considerables en cuanto al mecanismo responsable de las sobrepresiones en las cuencas sedimentarias del Terciario. Sin embargo, se puede citar en resumen una cierta cantidad de factores posibles:

- Sobrecarga gravitacional continua y compactación incompleta debida a una restricción en la facilidad de expulsar fluidos;
- 2. Compresión tectónica (fallamiento, diapirismo salino);
- 3. Efectos de diagénesis de los minerales arcillosos;
- Cambios de temperatura creando expansión del fluido y/o rompimiento de moléculas orgánicas;
- 5. Presiones osmóticas y efectos de difusión;
- 6. Invasión por agua proveniente de intrusiones magmáticas.

Cualquiera que sea la causa inicial de las sobrepresiones, éstas constituyen un riesgo potencial durante la perforación de un área nueva. En yacimientos ya desarrollados, un buen conocimiento tanto de la presión misma como de la extensión de los intervalos sobrepresurizados, permite una perforación y terminación eficaz de los pozos.

Para esto varios autores se han dado a la tarea de encontrar ecuaciones que nos permitan calcular la presión de poro, tal es el caso de este trabajo en el cual se aplicarán las ecuaciones del método de *Esfuerzo Matricial Equivalente* para un pozo determinado, comparando dichas ecuaciones con el método de Eaton.

CAPÍULO I ANTECEDENTES

En cualquier ambiente geológico, las presiones normales de formación son iguales a la presión que ejerce una columna hidrostática de agua desde la superficie, hasta la profundidad considerada. Las presiones anormales de formación, por definición, se caracterizan por una tendencia que se desvía de la normal, es decir, pueden existir altas presiones anormales (sobrepresiones: superiores a la presión hidrostática del agua), como también pueden existir presiones inferiores a la normal (presiones subnormales), aunque la experiencia adquirida en la perforación a escala mundial, señala que estas últimas son menos frecuentes que las sobrepresiones

Un ambiente geológico que se caracteriza por una presión de formación normal, se debe considerar como un sistema hidráulico "abierto" es decir, permeable, donde el fluido se comunica entre las formaciones y permite que se mantengan condiciones de equilibrio hidrostático. En cambio, los ambientes caracterizados por presiones anormalmente altas (o bajas), son esencialmente "cerrados", es decir que impiden total o parcialmente la comunicación de fluidos.⁽¹⁾

Es posible la existencia conjunta de presiones de formación normal o anormal, sólo si están separadas por una barrera de permeabilidad, que actúa en este caso como barrera de presión.

I.1 ORIGEN DE LAS PRESIONES ANORMALES

Existen varios mecanismos que dan origen a las presiones anormales. El fenómeno está relacionado a procesos geológicos, físicos, geoquímicos y mecánicos. A menudo es difícil, si no es que imposible, especular sobre la importancia que toma cada proceso en un ambiente geológico sobrepresionado de un área específica ya que frecuentemente los procesos que originan las presiones

anormales no se presentan en forma aislada. A continuación se describen los procesos más importantes.

1.1.1 Nivel Piezométrico del Fluido

El efecto de una superficie piezométrica regional alta puede causar presiones anormales. Un ejemplo clásico para demostrar este efecto es que al perforar un pozo artesiano, fluye agua con gran presión. Generalmente, las "presiones artesianas" se presentan bajo las siguientes condiciones: (1) acuíferos porosos y permeables que se encuentran confinados entre formaciones impermeables como las lutitas; (2) que estos acuíferos sean plegados; (3) que la formación del acuífero aflore en superficie generando una elevación en el nivel piezométrico del fluido y por ende una presión hidráulica mayor que la normal.⁽²⁾

I.1.2 Estructura de las Formaciones

En yacimientos cerrados, tal es el caso de las formaciones con grandes echados y anticlinales, siendo estos porosos y permeables, la presencia de las presiones anormales pueden ser originadas por una acumulación de hidrocarburos provenientes de zonas más someras. El agua por diferencia de densidad desplaza a los hidrocarburos. La sobrepresión en la cima de una columna de hidrocarburos y agua puede ser estimada como la diferencia entre el gradiente de presión del agua (0.465 psi/pie) y el gradiente de presión promedio de los hidrocarburos (aceite y agua) multiplicada por la altura de la columna de los hidrocarburos (figura I.1).⁽³⁾

$$\Delta \mathbf{P}_{ch} \approx \left[\left(\frac{\mathbf{P}_{w}}{\mathbf{D}} \right) \left(\frac{\mathbf{P}_{hc}}{\mathbf{D}} \right) \right] \mathbf{h}$$
 1.1

Fig. I. 1 Presión anormal originada por la estructura de las formaciones⁽²⁾

donde.

- D Profundidades
- Pr Presión del fluido en los poros de la roca
- Pch Presión hidrostática en la cima
- ΔP_{ch} Sobrepresión en la cima de los hidrocarburos
- $\frac{P_w}{D}$ Gradiente de presión del agua de formación
- $\frac{P_{hc}}{D}$ Gradiente de presión promedio de los hidrocarburos
- h Altura de la columna de hidrocarburos

1.1.3 Ritmo de Sedimentación y Ambiente de Depósito

Durante el proceso de sedimentación y compactación se tiene flujo de fluidos intersticiales a través de zonas porosas y permeables hacia zonas de baja presión, hasta que se restablece el equilibrio que permanecía antes del depósito de nuevos sedimentos.

Los estratos sobrepresionados pueden estar relacionados con periodos de rápida depositación, donde la tendencia de equilibrio hidráulico que acompaña a una compactación normal es interrumpida, debido a una restricción que impide la expulsión de fluidos del espacio poroso. Generalmente esta restricción se debe a la cementación de arenas y lutitas con sal, calcita, anhidrita, dolomita u otros minerales solubles en agua; dando como resultado el taponamiento de los poros.

Bredehoeft y Hanshaw, Magara y Smith, proponen que la creación y mantenimiento de las presiones anormales dependen en gran medida de la conductividad hidráulica de las formaciones. Probablemente, el ritmo de sedimentación es el factor que más influye en el desarrollo de presiones anormales.⁽³⁾

I.1.4 Actividad Tectónica

Las presiones anormales pueden ser el resultado de afallamientos locales o regionales, plegamientos, deslizamientos laterales, represionamiento causado por caídas de bloques afallados, movimientos diapíricos de sal (domos salinos) y/o lutitas, movimientos telúricos, etc. Por ejemplo, las presiones anormales causadas por movimientos diapíricos se deben a que estos movimientos son acompañados por afallamientos locales y movimientos diapíricos de los estratos lutíticos más jóvenes ⁽³⁾

1.1.5 Fenómeno de Diagénesis

Básicamente, el fenómeno de diagénesis es una alteración posterior a la depositación de los sedimentos y los minerales que los constituyen. El proceso de diagénesis incluye la formación de nuevos minerales, redistribuidos y recristalización de los minerales existentes en los sedimentos y la litificación.⁽²⁾ A continuación se presentan dos procesos de naturaleza diferentes, los cuales pueden coadyuvar al origen y mantenimiento de las sobrepresiones, aunque varios factores son los que intervienen.

6

- Diagénesis de Sedimentos Arcillosos: La importancia de la diagénesis en la generación de presiones anormales es cuantificable con poca precisión, puesto que otros mecanismos están involucrados para impedir el escape de los fluidos.
- 2. Diagénesis en Secuencias de Carbonatos: La diagénesis en carbonatos crea barreras impermeables en las capas porosas y permeables, restringiéndose el escape de fluidos. De este modo, durante el incremento del esfuerzo de sobrecarga, se genera una gran energía potencial en los fluidos dentro de los poros originándose así presiones anormales.⁽³⁾

I.1.6 Represionamiento o Recarga

Las presiones anormales también pueden deberse a la recarga de los fluidos de la zona porosa y permeable, si existe una redistribución de fluidos por flujo a través de un conducto de otra zona porosa y permeable, figura I 2. el conducto puede ser una falla, una fisura o un agujero y la energía potencial que se genera puede ser transferida por:

- 1. Fluidos de baja densidad (aceite o gas) del yacimiento normal o anormalmente presionado.
- 2. A través de la transferencia de agua de la formación anormalmente presionada

Si se encuentra involucrado aceite o gas en el mecanismo de recarga debe tomarse en cuenta el efecto del contraste de densidades para estimar la presión en la zona represionada. La energía potencial generada es igual a la energía contenida en la zona proveedora de fluido anormalmente presionada, disminuida por la energía necesaria para levantarla de una zona a otra en contra de la gravedad y la energía gastada en vencer las fuerzas de fricción.⁽³⁾

7

Fig. 1. 2 Presión anormal originada por la transferencia de hidrocarburos a una zona más somera que contiene agua⁽³⁾

donde:

- D Profundidad
- Phot Presión de hidrocarburos en la cima 1
- Phc2 Presión de hidrocarburos en la cima 2
- Presión del fluido en los poros en 1
- Pr2 Presión del fluido en los poros en 2
- h Altura de los hidrocarburos en la estructura uno

1.1.7 Fenómenos Osmóticos de Filtración

Básicamente, una presión osmótica puede generarse cuando dos soluciones de diferente concentración están separadas por una membrana semi-impermeable produciéndose flujo osmótico a través de ella. El flujo osmótico continúa hasta que el potencial químico sea el mismo en ambos lados de la barrena

Evidencias de campo y de laboratorio muestran que las lutitas sirven como membranas semi-impermeables. Para una solución dada, a condiciones isotérmicas, la presión osmótica es directamente proporcional a la diferencia de concentraciones y para una incremento en la temperatura la presión osmótica aumenta.⁽³⁾

1.1.8 Efectos Termodinámicos

La creación de presiones anormales, también pueden deberse a los procesos termodinámicos, ya que el fenómeno incrementa el volumen de los fluidos *contenidos en los espacios porosos*, generando una sobrepresión que se suma a la presión interna de las formaciones, causada por la sobrecarga.

Considerando un incremento de temperatura y presión a una cierta profundidad, el agua tiende a expandirse debido al incremento de temperatura en un ritmo mayor que a comprimirse, en respuesta al incremento de presión. Dos efectos son claramente evidentes para el caso mencionado: primero, la densidad del fluido disminuye y el segundo, el aumento en volumen involucra un aumento de presión. A medida que la formación va siendo sepultada debido al depósito de nuevos estratos y la compactación continúa, el exceso de fluido dentro de los poros soporta cada vez una mayor parte de la sobrecarga, si el escape de fluidos está limitado.

Como se indicó, si los fluidos son confinados dentro de la roca, se origina una zona de presión anormal ⁽³⁾

1.1.9 Teoría de la Compactación

Para entender el proceso de compactación causado por el esfuerzo de sobrecarga, emplearemos el modelo descrito por Terzaghi y Peeck en 1948.⁽⁴⁾ En el modelo simularon la compactación de las arcillas saturadas con agua. El concepto se explica por un tubo cilíndrico con platos de metal perforados y separados entre sí por resortes y agua, la figura 1.3 es una representación esquemática del modelo. El esfuerzo de sobrecarga, "S", se simula por un pistón; a su vez los resortes simulan la comunicación entre las partículas de arcillas y estas se simulan por los platos perforados. El tubo también está equipado con una válvula de drene y un manómetro.

14

Al aplicar presión al plato de arriba, en este caso "S", la altura de los resortes entre los platos permanece sin cambio cuando la válvula de drene se encuentra cerrada, con la cual no se permite al agua escapar del sistema. Como el agua es casi incomprensible, en la Etapa A la sobrecarga es soportada totalmente por el agua, incrementando la presión "P".

Una útil manera de registrar estas presiones es el término de la relación de la presión del fluido "P" al esfuerzo de sobrecarga "S", la cual está definida por " λ ":

$$\lambda = \frac{P}{S}$$
 1.2

Para las condiciones de la Etapa A en la figura I.3., " λ " tienen un valor de uno; por lo tanto, el sistema está sobrepresionado. Cuando al agua se le permite escapar del sistema (abriendo la válvula), los platos se mueven ligeramente hacia abajo (el sístema se compacta), y los resortes soportan parte del esfuerzo aplicado. Conforme más y más agua se deje escapar del sistema, los resortes soportarán una mayor parte de este esfuerzo, y " λ " será menor que uno. Finalmente, si escapa suficiente agua del sistema los resortes alcanzan un estado llamado "equilibrio de compactación terminal". En esta etapa, la carga aplicada es soportada casi totalmente por el esfuerzo generado en los resortes y la presión en el agua, es simplemente la causada por la presión hidrostática. Así el valor de " λ " es aproximadamente 0.465 psi/pie.

Houbbert y Rubey demostraron que el esfuerzo de sobrecarga "S" es soportado por la presión del fluido "P" y el esfuerzo "o" ejercido por las partículas de arcilla en la matriz rocosa, de esta manera establecieron una ecuación de equilibrio ampliamente aceptada.⁽⁵⁾

$$S = \sigma + P$$
 1.3

$$S = \rho_r g D$$

entonces "σ" es análogo al esfuerzo soportado por los resortes en el modelo de Terzaghí y Peeck.

Si la figura I.3 y la ecuación I.3. se estudian, es obvio que si "S" se incrementa y el fluido se deja escapar, " σ " debe crecer mientras "P" permanece como la presión hidrostática. Sin embargo, si el fluido no puede escapar "P" también deberá crecer conforme "S" se incrementa.⁽⁶⁾

Houbbert y Rubey publicaron una teoría relacionada con la compactación de las rocas arcillosas; establecieron que la sobrecarga se incrementa como resultado del sepultamiento de los sedimentos. El fluido que una vez estuvo dentro de los poros de una formación, fue expulsado fuera de ésta por la compactación. En muchos casos, no hay rutas de escape para los fluidos; de ser así, el fluido llega a sobrepresionarse de acuerdo a la ecuación I.3.

Fig 4.3 Representación esquemática de la compactación de las lutitas⁽⁶⁾

Los autores demostraron que el esfuerzo efectivo σ ejercido por la matriz depende únicamente del grado de compactación de las arcillas, en pocas palabras se pude decir que " σ " crece continuamente con la compactación; siempre y cuando los fluidos tiendan a escapar de la matriz porosa. Una de las maneras de medir cualitativamente el grado de compactación de las arcillas es la porosidad (ϕ); a mayor compactación menor porosidad. No obstante podemos inferir que para una arcilla dada, con un valor de porosidad existe un valor máximo de esfuerzo compresivo (σ); el cual la arcilla puede soportar sin sufrir compactación.

De la ecuación I.3. y I.4. podemos establecer que la porosidad a una profundidad D depende de la presión del fluido. Si esta presión es anormalmente alta (mayor que la hidrostática), ϕ también será anormalmente alta a la misma profundidad *entonces* σ *es análogo al esfuerzo soportado por los resortes en el modelo de* Terzaghi y Peeck.⁽⁷⁾

I.2 ANÁLISIS DE REGISTROS

Por otra parte no debemos de olvidar que los análisis de registros son un procedimiento común para estimar la presión de poro en pozos compensadores y en pozos que se perforan. Las nuevas herramientas MWD implementan una técnica de análisis de registros mientras se perfora en tiempo real. Las técnicas de análisis usan el efecto de la alta porosidad anormal de las propiedades de la roca tales como la conductividad eléctrica, el tiempo de tránsito y la densidad. Así los registros de resistividad (o él reciproco que es la conductividad) y el sónico aquí presentados se basan en estos principios. Cabe hacer notar que cualquier registro dependiente principalmente de la porosidad puede ser usado en la evaluación cuantitativa de presiones de la formación.

Los registros que mejor permiten detectar las sobrepresiones son:

- Registros de resistividad o conductividad;
- Registros sónicos;
- Registros de densidad y neutrónicos.

Se trata de establecer, para condiciones normales de presión o de compactación, tendencias de las respuestas de las herramientas con respecto a la profundidad.

Un cambio con respecto a la tendencia establecida en condiciones normales de compactación, indica presencia de presiones anormales ⁽¹⁾

I.2.1 Registros de Resistividad o Conductividad

El registro de resistividad fue originalmente usado en la detección de la presión. La respuesta del registro es basada en la resistividad electrónica de una muestra total, la cual incluye la matriz rocosa y los fluidos contenidos en el medio poroso Si la zona que es penetrada tiene una alta porosidad anormal (altas presiones asociadas), la resistividad de la roca se ve reducida debido a la gran conductividad del agua que contiene la roca. En el caso de compactación normal, la resistividad de las arcillas tiende a incrementarse a medida que va aumentando la profundidad, puesto que el volumen de fluido disminuye. Al llegar a una zona sobrepresurizada, la resistividad en las arcillas es menor a la normal, indicando así que el contenido de fluido en los poros resulta superior a lo esperado a esta profundidad.

Los registros de resistividad son una herramienta valiosa, pero esta no opera en pozos bajo todo tipo de condiciones. Esto es en casos donde el líquido del pozo no permita el contacto entre los electrodos y la formación o en casos donde se usan lodos base aceite. Para estos casos el registro de inducción es mucho más apropiado.

En el registro de inducción, la sonda emplea corriente alterna de magnitud constante y un transmisor es bajado al pozo para crear una alteración del campo magnético debido a un remolino de corrientes que es introducido dentro de la formación. El remolino de corrientes sigue unos patrones circulares centrados en el eje de la sonda El remolino de corriente en turno, crea un campo magnético secundario que induce una fuerza electromotriz o "señal" en un segundo receptor también localizado en la sonda. La señal es amplificada, rectificada a corriente directa y entonces transmitida a la superficie donde es registrado en la forma de un registro continuo.⁽⁸⁾

1.2.2 Registros de Densidad y Neutrón

Dado que las variaciones en la actividad de rayos gamma observadas en los registros de neutrones son el resultado del contenido de hidrógeno de la formación, esto ofrece una medida de la porosidad. Entonces la determinación de la porosidad es una de las más importantes aplicaciones para el registro de neutrón.

Cada dato obtenido en los registros de rayos gamma y neutrón son de un modo cualitativo y no cuantitativo entonces naturalmente en los diagramas no existe la línea cero. Sin embargo, adelantos al final de los 40's han incorporado la línea cero en los registros y escalas numéricas en los rayos gamma y neutrón

El continuo, rápido e intensivo desarrollo de las técnicas de los registros de resistividad y nucleares han resultado en un movimiento de la interpretación cuantitativa a la interpretación cuantitativa con la publicación en 1942 de un artículo de G. E. Archie El artículo detalla el descubrimiento de las relaciones entre la resistividad eléctrica y la saturación del agua de formación. El trabajo de Archie fue inspirado en una intensiva investigación de datos que son obtenidos de registros de Survey subsuperficiales y sus relaciones para las propiedades fundamentales del yacimiento tales como es la porosidad, permeabilidad, agua salada y los límites del yacimiento.

Otra técnica de registro nuclear, introducida en los 60's fue el registro de densidad-formación. El aparato usa una fuente de rayos gamma y un detector, que es puesto en contacto con la pared del agujero para medir el volumen o la masa de densidad de la formación in situ.

La aplicación en campo ha demostrado que la medición de la densidad de formación es usada y revelada una técnica para la determinación de la porosidad, litología y contenido de fluidos de la formación en condiciones que impidan el uso de otros métodos de registros tales como agujeros vacios o con gas ⁽⁸⁾

14

I.2.3 Registro Sónico

Un registro nuclear diferente, el registro sónico o acústico operan bajo el principio que las ondas sonoras (ondas elásticas) viajan a través de la roca densa más rápidamente que a través de los poros de la roca. La técnica, la cual retoma el registro eléctrico, usa un transmisor y receptores combinados en una herramienta para medir, en microsegundos, la diferencia de tiempo requerido para que los pulsos de sonido atraviesen la formación.

Igualmente, para el registro sónico el tiempo de tránsito es función del contenido de fluído. A mayor porosidad, mayor tiempo de tránsito y viceversa. El efecto de compactación se demuestra como una tendencia decreciente del tiempo de tránsito con respecto a la profundidad. En las zonas sobrepresionadas se observan tiempos de tránsito superiores a la tendencia normal

A fin de poder observar estos fenómenos, se recomienda usar escalas de profundidad como de 1/1500 y escalas logarítmicas para el tiempo de tránsito Los registros de densidad y de neutrón mostrarían efectos muy similares al sónico Es necesaria la comparación con registros de rayos Gamma y de calibre del agujero para la interpretación correcta de los resultados.

Los registros de resistividad y sónico son poco sensibles a los efectos de agujero Además los registros sónicos son más populares debido a que proporcionan una mayor precisión en la interpretación de la porosidad de las fracturas de la formación y del agua.

La figura I 4 muestra un ejemplo de registro de rayos gamma, donde podemos apreciar algunas características de la zona perforada en donde podemos leer la porosidad

Fig 14. Ejemplo de un Registro de Rayos Gamma tomado de un Pozo de la Región Marína⁽¹³⁾

La base para una perforación eficiente radica en el conocimiento de la presión de poro y de los gradientes de presión de fracturamiento de las formaciones Un peso excesivo provoca invasión exagerada, daño de formación y riesgos de aprisionamiento por presión diferencial. Si la presión que ejerce a la columna de lodo llega hasta el límite de resistencia de la roca, se pueden producir pérdidas de circulación, disminuyendo notablemente la presión hidrostática sobre la formación, fo cual representa riesgos serios de descontrol del pozo.⁽⁸⁾

I.3 PRESIONES

Para que un pozo este bien planeado, será necesario el perfecto conocimiento de las presiones existentes en el subsuelo. Existe una relación íntima entre las propiedades de la roca (y las presiones o geopresiones) de las formaciones a perforar ya que la mejor manera de entenderlas son los procedimientos para cuantificar la magnitud y la distribución de estas presiones en el subsuelo.

I.3.1 Presión Hidrostática

Es la fuerza que ejerce el peso de una columna de fluido sobre la unidad de área, la presión hidrostática es igual al producto de la densidad promedio del fluido involucrado y la altura de la columna del mismo fluido, tal como se aprecia en la siguiente ecuación.⁽¹⁾

$$P_{h} = \rho_{r} D$$
 is

I.3.2 Presión de Sobrecarga

Esta presión se origina a partir del peso acumulativo de las rocas sobreyacentes de interés y se calcula a partir de la densidad combinada de la matriz rocosa y de los fluidos contenidos en los espacios porosos por la profundidad de interés. De aquí que se tenga una variante de las ecuaciones 1.3 y 1.4 como son:

$$S = (\rho_m + \rho_r)D$$
 16

Generalmente se asume que el gradiente de presión de sobrecarga es constante, por ejemplo, en la costa norte del Golfo de México y en otras partes, se emplea un gradiente de sobrecarga de 0.231 Kg/cm³ (1.0 psi/pie) correspondiente a una densidad promedio del paquete de rocas-fluidos de las formaciones sobreyacentes de 2.31 gr/cm³.⁽¹⁾

1.3.3 Presión de Formación

La presión de formación, también llamada presión de poro, es aquella presión que ejercen los fluidos confinados en el espacio poroso de la formación sobre la matriz de roca Estos fluidos intersticiales son generalmente aceite, gas y agua salada. Como se dijo, el esfuerzo de sobrecarga es creado por el peso de la matriz rocosa sobreyacente y por los fluidos que llenan los poros en punto (figura I.5). Así, se tiene que la presión de formación es la presión de sobrecarga menos el esfuerzo vertical de la matriz rocosa.⁽⁹⁾

Fig. I.5.- Representación gráfica de la presión de poro.⁽⁹⁾

1.3.4 Presión de Formación Anormal

Por definición la presión d0e formación anormal es cualquier presión que es diferente de la tendencia normal establecida por el gradiente de presión de formación a una profundidad y área dada (Fig. I.6).

Si la presión de formación excede a la presión hidrostática se le llama anormalmente alta, geopresurizada, superpresurizada o simplemente presión anormal; en cambio, si es menor que la normal, se le ha denominado presión de formación anormalmente baja o subnormal. Ambos tipos de presiones representan riesgos en las operaciones de perforación y planeación del pozo, pero las presiones anormalmente altas, sin embargo, llegan a poner en peligro incluso la integridad del personal en el equipo de perforación.⁽¹⁾

La siguiente figura I.6 muestra el comportamiento de las presiones anormales con respecto a la tendencia de la presión normal.

Fig. I.6. Zonas de presión anormalmente altas y bajas⁽³⁾

1.3.5 Presión de Fractura

Es aquella presión a la cual la roca de una formación dada comienza a fracturarse, esto sucede después de haber vencido la resistencia a la compresión de la roca y la presión de la formación, es decir, se provoca la deformación permanente del material que constituye la roca.⁽¹⁰⁾

Se ha probado que cuando se fractura la formación horizontalmente; la presión de fractura es mayor que el esfuerzo de sobrecarga; por el contrario, si esta presión es substancialmente menor que la sobrecarga la fractura producida es vertical. En otras palabras, se puede decir que la fractura ocurre perpendicularmente al sentido donde está actuando el menor esfuerzo. La figura 1.7 muestra el perfil típico del gradiente de presión de fractura.

Fig. I.7 Perfil típico del gradiente de presión de fractura⁽¹⁰⁾

CAPÍTULO II

DETERMINACIÓN DE PRESIONES ANORMALES

El problema de las presiones anormales ha sido estudiado con gran interés y se han desarrollado técnicas de apoyo para su detección y evaluación. Gráficas semilogarítmicas de resistividad, porosidad, tiempo de tránsito y densidad contra la profundidad que muestran tendencias típicas cuando se tienen condiciones normales de compactación, esto es, presiones hidrostática o normales en las formaciones, en tanto que en zonas sobrepresionadas los valores de los parámetros graficados divergen de la tendencia normal. El grado de divergencia es una respuesta directamente proporcional a la magnitud de la sobrepresión y es la base de los métodos de cuantificación. Comportamientos semejantes a las formaciones anormalmente presionadas pueden resultar por causas ajenas a la presión, por lo que es de gran importancia correlacionar todos los resultados para emitir conclusiones satisfactorias.

Sin embargo, existen métodos mediante el empleo de ciertos métodos empíricos desarrollados por diferentes investigadores se pueden obtener resultados cuantitativos de las presiones existentes en las formaciones.

En áreas de zonas con presiones anormalmente es de gran importancia la predicción de los gradientes de fractura, debido a que en estas zonas, la densidad de lodo debe elegirse cuidadosamente para mantener el control en el pozo, ya que los valores de la presión de formación están muy cercanos a los de fractura

Son numerosos los métodos de detección y evaluación de sobrepresiones. La experiencia ha demostrado que cierta cantidad de errores costosos de interpretación se puede evitar por medio de un estudio combinado de varios indicadores de presión. En el pozo se podrán medir individualmente varios parámetros pero no todos estarán siempre disponibles al mismo tiempo.

La tabla II.1 muestra un resumen de las técnicas disponibles. Uno de los mejores métodos es el de los registros, técnica mediante la cual las características de formación quedan registradas en forma continua con respecto a la profundidad.

Para tener una mejor visión de las técnicas utilizadas en la detección y evaluación, estas se clasifican en tres grupos principales. El primero grupo se caracteriza por el uso de las técnicas geofísicas para la detección antes de la perforación, el segundo hace uso de datos obtenidos durante la perforación o muestras durante ella y el último, de mediciones de parámetros efectuados después de la perforación del pozo.⁽¹⁾

TABLA II.1

TÉCNICAS DE PREDICCIÓN, DETECCIÓN Y EVALUACIÓN DE SOBREPRESIONES

MEDICIONES ANTES	MEDICIONES	MEDICIONES	MEDICIONES
DE LA	DURANTE LA	DESPUÉS DE LA	PRUEBAS O
PERFORACIÓN	PERFORACIÓN	PERFORACIÓN	TERMINACIÓN
Métodos Geofísicos (sísmico-gravedad) Método de prospección eléctrica	Parámetro de perforación (exponente D- Velocidad de penetración, registros durante la perforación, troque) Parámetros de lodo (peso de lodo, detección de gas, incrementos de presión) Muestras de canal (densidad, factor de formación de arcillas, volumen de muestras, forma y tamaño)	Registros geofísicos de pozos (resistividad, sónico, densidad, neutrónico)	Mediciones directas de presion (bombas, pruebas, probadores de formación)

II.1 MÉTODOS APLICABLES ANTES DE LA PERFORACIÓN

El desarrollo y refinamiento de nuevas técnicas en la adquisición, procesamiento e interpretación de datos geofísicos han hecho posible para la industria petrolera, no sólo el estudio de las configuraciones estructurales de las rocas sedimentarias, sino además la configuración estratigráfica, así como la detección y evaluación de las formaciones presionadas.⁽¹¹⁾

II.2 MÉTODOS APLICABLES DURANTE LA PERFORACIÓN

Existe una gran variedad de puntos de control superficiales usados en la detección de geopresiones durante la perforación, aunque como regla general, la ocurrencia de cambio en alguno de ellos no es suficiente para indicar, en forma definitiva una zona con presión anormal, a excepción de tres de ellos que trataremos posteriormente. Los puntos de control más usados son los siguientes:⁽¹²⁾

- a) Ritmo de penetración
- b) Momento de torsión aplicado a la tubería
- c) Carga soportada por el gancho al levantar la tubería
- d) Exponente "d" y "dc"
- e) Presión de bombeo del lodo
- f) Incremento en el volumen de iodo
- g) Registros del lodo
- h) Contenido de cloruros en el lodo
- i) Incremento de recortes
- Medida de la densidad de la lutita

II.2.1 Ritmo de Penetración

Los muchos factores que afectan la eficiencia de las operaciones de perforación pueden dividirse en dos grupos, como se observa en la tabla II.2.

TABLA II.2

FACTORES MÁS IMPORTANTES QUE AFECTAN A LA PERFORACIÓN

ALTERABLES	INALTERABLES		
LODO ♦ Tipo ♦ Contenido de sólidos	CONDICIONES ATMOSFÉRICAS		
 Viscosidad Pérdidas d e fluidos Densidad 			
 HIDRÁULICA Presión de bombas Velocidad de lodo en las boquillas de la barrera Ritmo de circulación Velocidad en el espacio anular 	 EQUIPO Condiciones Flexibilidad Tiempo necesario para un viaje de ida y vuelta de la tubería 		
BARRENA ♦ Tipo ♦ Peso aplicado	PROPIEDADES DE LA ROCA		
VELOCIDAD DE L <u>A ROTARIA</u>	 POZO ♦ Problemas característicos ♦ Localización ♦ Temperatura de fondo ♦ Profundidad 		

Se ha observado que el ritmo de penetración depende también de la diferencia entre la presión ejercida por la columna de lodo y la de la formación perforada

A partir de experimentos de campo se ha demostrado que el ritmo de penetración disminuye al incrementarse la presión hidrostática ejercida por el lodo; debido primeramente, a la reperforación de cortes y partículas de roca retenidas en el fondo del agujero por la presión diferencial y secundariamente, al repersionamiento de la roca que aumenta su cohesión.

En las lutitas normalmente compactadas la perforabilidad disminuye con la profundidad, debido a que su densidad aumenta por la compactación y a al
aumentar la profundidad, se mantiene constante la densidad del lodo y se incrementa la presión diferencial $(\rho_m - \rho_f)$.⁽¹²⁾

II.2.2 Momento de Torsión Aplicado a la Tubería

El momento de torsión aplicado a la tubería aumenta gradualmente con respecto a la profundidad, debido a que es mayor el contacto efectivo entre tubería y agujero. En zonas sobrepresionadas este aumento se hace más notorio y se debe a dos fenómenos que ocurren dentro del pozo. Las lutitas bajo compactadas son consideradas por su plasticidad natural: cuando la presión de formación es mayor que la presión ejercida por el lodo ésta tiende a disminuir el diámetro del agujero, aumentando la fricción principalmente contra los lastrabarrenas. El segundo fenómeno que ocurre al perforar con las condiciones anteriores, consiste en una entrada mayor de recortes al espacio anular, los cuales tienden a impedir el movimiento de rotación de la tubería de perforación. Si la presión de formación es menor que la presión equivalente ejercida por la columna de lodo difícilmente se notará cambios.

Este punto de control superficial se usa frecuentemente para confirmar la presencia de geopresiones, acusadas por otros puntos de control. Un incremento en el momento de torsión puede interpretarse como una formación con alta presión, cuando en realidad puede ser debido a una ruptura de tubería, a un cono atorado de la barrena o a una fuga grande en las conexiones de la tubería de perforación e inclusive en el cuerpo de ella.⁽¹²⁾

II.2.3 Carga Soportada por el Gancho al Levantar la Tubería

Cuando la bomba está cerrada y la tubería es levantada a través del agujero, la carga soportada por el gancho puede ser medida en la superficie. Si el incremento en la presión de formación es pequeño con respecto al incremento de profundidad (compactación normal) o la zona de transición es grande, la carga se incrementa lentamente y no es notable de conexión a conexión.

Si la presión ejercida por el lodo es menor que la presión de formación se presenta un incremento brusco en la carga soportada por el gancho; pero esto también puede ser observado cuando el agujero se desvía con un gran ángulo, cuando la tubería está pegada o si existen acoplamientos de gran diámetro y una gran cantidad de recortes en el agujero.

Por estas razones, al igual que en el caso del momento de torsión, el cambio en la carga soportada por el gancho no es suficiente por sí mismo para garantizar la existencia de zonas con presiones anormales.⁽¹²⁾

II.2.4 Exponente "d" y "dc"(3)

Uno de los métodos más usados para predecir la presión de formación a partir del ritmo de perforación es el exponente "d". Este método no considera los cambios en la compactación de la lutita y por esta razón su aplicación es limitada

Considerando que las propiedades de las rocas y las condiciones de perforación permanecen constantes, una gráfica de ritmo de penetración contra profundidad definen, como tendencia normal, una disminución de la penetración, identificándose una zona bajocompactada por el notable aumento de la penetración en esta zona. Una gráfica de resistividad de lutitas contra profundidad, define características similares.

Jorden y Shirley desarrollaron un método útil de evaluación del ritmo de perforación, conocido como exponente "d". La base teórica de este exponente es derivado de la ecuación de ritmo de perforación:

$$\frac{R}{N} = a \left(\frac{W}{D_b} \right)^d$$
(II.1)

donde

R = Ritmo de perforación (pie / hora)

 K_d = Constante de perforabilidad

N = Velocidad de rotación, (r.p.m.)

W = Peso sobre barrena (lb/pg)
 D_b = Diámetro de la barrena (pg)
 d = Exponente.

Sin cambios en la velocidad de rotación, peso sobre barrena o litología, el único factor que cambia en el exponente "d" es el ritmo de perforación. Así, bajo estas condiciones de ritmo de perforación deben ser usadas en lugar del exponente "d" Note que el ritmo de perforación es directamente proporcional a la velocidad de rotación.

Esto es verdadero en formaciones suaves como la lutita en áreas costeras, pero no es verdadero en rocas duras. Consecuentemente, esta correlación es limitada para rocas compactas. Si el exponente "d" es usado en áreas de rocas duras, la corrección para la velocidad de rotación es valida y debe realizarse.

Fig. II.1 Nomograma para determinar el Exponente d. (3)

En la figura II.1 se muestra en nomograma de Jorden y Shirley, el cual es solución de la ecuación

$$d = \frac{Log \frac{R}{60N}}{Log \left(\frac{12W}{10^6 D_b}\right)}$$
(II.2)

o bien para simplificar los cálculos logarítmicos como:

$$d = \frac{\log\left(\frac{60N}{R}\right)}{\log\left(\frac{10^6 D_b}{12W}\right)}$$
(II.3)

donde: R (ft /hr), N (rpm), W (lb), D_b (in), d (adimensional).

Note que en la solución del nomograma para el exponente "d" no incluye la corrección del peso del lodo. Las correcciones por peso del lodo dependen de la presión de formación normal para un área específica y la compactibilidad actual de la lutita como se muestra en el caso de la velocidad de perforación.

Debido a que el exponente "d" se ve influenciado por las variaciones en el peso del lodo, haciendo dificil la interpretación de la gráfica; se hizo necesaria una modificación para normalizar dicho exponente. Este parámetro modificado es conocído como el exponente "dc" y se define de la siguiente manera:

$$dc = d\left(\frac{MWc}{MWa}\right)$$
(II.4)

Las gráficas de los exponentes "d" y "dc" contra profundidades son bastantes similares, pero en esta última, la zona bajocompactada se manifiesta con más claridad como se observa en la figura II.2

Fig. II. 2 Gráficas comparativas entre el Exponente⁽³⁾

Las desventajas en el uso de los exponentes "d" como puntos de control superficiales son. los cálculos deben ejecutarse cada 10 ft y deben ser representados gráficamente, no se consideran todos los parámetros que afectan el ritmo de penetración y la construcción de la gráfica consume bastante tiempo, por lo que algunos otros puntos de control superficial pueden dar resultados más rápidos en la detección de zonas bajocompactadas.⁽³⁾

II.2.5 Presión de Bombeo del Lodo

Observando la presión de bombeo, puede determinarse indirectamente la entrada de fluídos de las formaciones hacia el pozo, al perforar una zona con presión anormal.

La entrada de fluidos de menor densidad que la del lodo en el espacio anular, reduce la presión hidrostática fuera de la tubería de perforación, presentándose un efecto de tubo en "u", el cual se manifiesta inmediatamente como una disminución de la presión en el manómetro de salida de la bomba, acompañada con un aumento de presión en el lodo que sale del pozo.

Debe tenerse en consideración que este efecto se presenta solamente si sé esta perforando la zona con una densidad de lodo menor que la densidad equivalente a la presión de formación.⁽¹²⁾

II.2.6 Incremento en el Volumen de Lodo

Cuando se perfora una zona de presión anormal con un lodo de baja densidad, se origina un flujo de fluidos de la formación hacia el pozo lo que redunda en un incremento en el volumen de lodo, que puede ser vigilado constantemente con un detector de nivel de fluido en las presas de lodo.

Al suceder este fenómeno, aunado a varios cambios en otros puntos de control superficiales, se debe parar la bomba de lodo, levantar la barrena unos cuantos metros y si el flujo prosigue, entonces se confirma la presencia de una zona geopresionada.⁽¹²⁾

II.2.7 Registros del Lodo

Los registros de lodo incluyen la medición de su contenido de gas natural. Cuando las formaciones avanzadas contienen gas y la presión ejercida por el lodo no es suficiente para evitar el flujo de gas de las formaciones, entonces el gas se incorpora al lodo y se mantiene en suspensión coloidal. La incorporación del gas al lodo puede ocurrir durante períodos de no-circulación en los cuales disminuye la presión efectiva ejercida por el lodo. Cuando se está circulando, la presión soportada por las formaciones es mayor que cuando se encuentra estático, debido al mismo movimiento del lodo. Para determinar el contenido de gas en el lodo se requiere una técnica para extraerlo y luego medirlo. El gas comúnmente es removido de la suspensión coloidal por la formación de un vacio en la muestra analizada. Se recomienda efectuar un muestreo continúo del contenido de gas durante las operaciones de perforación.

Un incremento en contenido de gas entre conexión y conexión puede indicar un aumento gradual en la presión de formación. El gas liberado por la roca perforada se le ha llamado gas de conexión y se manifiesta en forma de colchón, mientras que si existe flujo de gas desde la formación, se manifiesta en forma continua, indicando una zona bajocompactada.⁽¹²⁾

II.2.8 Contenido de Cloruros en el Lodo

Cuando se usa un lodo base agua, el flujo de agua salada de la formación hacia el agujero puede causar un incremento en el contenido de cloruros en el filtrado del lodo. La importancia de dicho incremento depende naturalmente del contraste en cloruros entre el lodo y el fluido de formación, así como de la cantidad de fluido incorporado a la columna de lodo. Se tiene flujo de líquidos del agujero solarmente si la presión ejercida por el lodo es menor que la de formación.

II.2.9 Incremento de Recortes

Cuando la barrena entra a la zona de transición y la presión efectiva ejercida por el lodo es menor que la de formación, se incrementa el ritmo de penetración como se indicó anteriormente. Esta variación en el ritmo de penetración causa un importante aumento en la cantidad y el tamaño de los recortes de lutita que deben ser levantados a la superficie. Un incremento de los recortes depende de tres factores:

- 1. La importancia de la longitud del agujero perforado abajo del punto de balance de las presiones hidrostáticas de lodo y de formación.
- 2. La magnitud de la presión diferencial en el agujero.
- 3. La magnitud del incremento en el ritmo de penetración.

Los recortes de lutita en zonas normales son pequeños y redondeados, mientras que en una zona anormal toman formas planas más grandes con aristas afiladas.⁽¹²⁾

II.2.10 Medida de la Densidad de la Lutita

Una nueva técnica de detección de geopresiones consiste en medir la densidad de los recortes de la lutita en la superficie. Algunos investigadores han indicado que

la densidad de los recortes puede dar signos definitivos de presiones anormales Una tendencia de compactación normal tiene que ser establecida por la graficación de densidad de lutita contra profundidad.

Un quiebre de la compactación normal hacia valores más bajos indica una formación bajocompactada, esto es con presiones anormales.

Existen algunas desventajas con respecto a la aplicación de este punto de control.

- 1. Los recortes deberán ser circulados a la superficie antes de que las medidas puedan ser hechas.
- Deberán hacerse lecturas repetidas para confirmar una lectura de baja densidad de lutita
- La densidad de la lutita sé decrementa por una excesiva exposición a un lodo base agua.
- La presencia de cantidades pequeñas de arena y minerales secundarios dentro de la formación lutitita causa errores en las mediciones
- La presencia de gas dentro de las partículas de lutita decrementa la densidad de los cortes.⁽¹²⁾

II.3 MÉTODOS APLICABLES DESPUÉS DE LA PERFORACIÓN

Unas de las mejores herramientas usadas tanto para la estimación de las zonas con presiones anormales, son aquellas que utilizan los datos obtenidos de los registros geofísicos de explotación, en los cuales se graba información de la variación, con la profundidad, de las características de las formaciones atravesadas por el pozo.

Debido a que los estratos lutíticos son notablemente sensibles a los procesos de compactación, éstos han construido una valiosa ayuda en la detección y construcción de perfiles de presión. Cuando el agua intersticial es libre de escapar y debido a ello se desarrollan presiones normales en las formaciones, la compactación de las lutitas es función principalmente de la profundidad.⁽¹³⁾ Por

tanto, a mayores profundidades de enterramiento, es mayor el grado de compactación y mayor la densidad que exhiben (Fig. II.3).

Fig. II.3 Gráfica de Densidad contra Profundidad.

Las rocas lutíticas con presiones mayores que la normal, presentan una porosidad mayor que la de una formación lutitita de las mismas características con presión normal, debido a que contienen una mayor cantidad de fluido. Como resultado de lo anteriormente dicho, los parámetros lutíticos sensibles a la compactación y obtenidos de los registros, son graficados contra la profundidad para determinar una tendencia normal de compactación. La forma y la pendiente de esta tendencia es característica de las formaciones de una región geológica, de un solo campo y algunas veces, solamente de un bloque fallado

II.3.1 Detección a Partir de Datos de Resistividad y/o Conductividad

La medición de esta propiedad se logra mediante un sistema de bobinas, una receptora y una emisora que acopladas en una sonda son introducidas en el pozo. La bobina emisora esta alimentada por una corriente oscilatoria que genera un campo electromagnético, el cual induce en el terreno corriente eléctricas que circulan como anillos coaxiales al eje de la sonda.

Estas corrientes, a su vez generan su propio campo magnético e inducen una señal o fuerza electromotriz en la bobina receptora cuya intensidad es proporcional a la conductividad de las formaciones.

Se conoce que la resistividad (inverso de la conductividad) es función de varios factores, tales como, porosidad, temperatura, contenido de sales en el fluido, saturación y composición mineralógica, entre los más importantes, pero que en los estratos lutíticos, es función principalmente de la porosidad, y debido a que la porosidad es una respuesta de las formaciones a los procesos de compactación, las medida de resistividad y/o conductividad reflejan en cierto modo, la presión en los poros de la lutita.⁽¹³⁾

II.3.2 Determinación a Partir de Datos de Tiempo de Tránsito y Porosidad

Como se indicó en la técnica anterior, la porosidad refleja los procesos de compactación de las formaciones, por lo cual el tiempo de tránsito, proporcional a la porosidad, así como ésta, pueden ser utilizados como parámetros útiles en la

detección de zonas bajocompactada.⁽¹³⁾ El tiempo de tránsito es obtenido a partir del registro sónico de porosidad (Fig. II.4).

Fig. II.4 Porosidad calculada con Tiempo de Tránsito contra Profundidad

El dispositivo usado para obtener el registro sónico de porosidad consta de una sonda de materiales aislantes acústico, de dos transmisores de ondas acústicas y cuatro receptores. El objetivo es medir el tiempo, Δt , que tarda la onda acústica en recorrer, en la formación, una distancia igual a la separación entre receptores. La velocidad de la onda acústica depende de la composición mineralógica de la formación, así como de su porosidad y fluido que la satura. Se ha observado que la mayor velocidad de transmisión de la onda acústica se tiene en materiales densos, tales como rocas de baja porosidad y velocidades más bajas en materiales con menor densidad tales como rocas impregnadas de gas y/o con alta porosidad.

En las zonas sobrepresionadas los tiempos de tránsito aumentan con respecto a la tendencia normal, debido a que contiene una cantidad mayor de espacios porosos, aunque una zona impregnada de gas también puede mostrar este tipo de comportamientos, ya que el gas es de una densidad mucho menor que la del agua. Para evitar este tipo de incertidumbre, debe apoyarse la interpretación con datos de perforación u otra técnica de detección, tal como la de resistividad en la cual se puede notar un notable aumento en una zona impregnada de hidrocarburos.

La construcción de una gráfica de porosidad contra profundidad puede lograrse fácilmente por medio de los datos de tiempo de tránsito y la siguiente expresión

$$\phi = \frac{\Delta t - \Delta t_m}{\Delta t_{f-} \Delta t_m} \tag{115}$$

o bien a través del registro de Rayos Gamma-Neutrón

Este registro se obtiene por la introducción de una fuente radioactiva colocada en la sonda, la cual continuamente emite neutrones a alta velocidad (energía). Estos neutrones chocan contra las moléculas de la formación perdiendo energía, la cual depende la masa relativa del núcleo con el que chocan. Cuando el neutrón choca con un núcleo de igual masa ocurre una pérdida mayor, como el hidrógeno por ejemplo. El hidrógeno es el elemento de mayor importancia en el retraso de neutrones en comparación con los demás constituyentes de la formación. Normalmente las formaciones porosas están llenas de aceite, gas, o de agua, compuestos que contienen hidrógeno, por lo que la cantidad de hidrógeno presente en una formación es proporcional a su porosidad. La relación entre la respuesta de la curva neutrón y porosidad se determina calibrando la sonda en formaciones de porosidad conocida.

La porosidad de las formaciones también puede ser evaluadas con la ayuda del registro de densidad ⁽¹³⁾

II.3.3 Determinación a Partir de Datos de Densidad

Para la medición de esta propiedad se aprovecha la dispersión y absorción de rayos gamma por los electrones de los átomos como principio fundamental. La dispersión de los rayos gamma, es proporcional al número de electrones, y por tanto a la densidad del medio por donde viajan los rayos. Entre más densa es la formación, más amplia es la dispersión, (Fig. II.3)

Como la densidad de un estrato homogéneo es proporcional a su porosidad, la dispersión de los rayos gamma es proporcional a la porosidad de las formaciones.

La relación entre la cuenta de rayos gamma y la densidad se encuentra experimentalmente mediante herramientas calibradoras en formaciones de densidad conocida. La relación entre la densidad con la porosidad se calcula para varias combinaciones litológicas y de fluidos saturantes.

La densidad normalmente aumenta con la profundidad debido a que las formaciones entre más profundas son más compactadas.

Las zonas con presión anormal distorsionan los valores leídos de densidad hacia valores más bajos de la tendencia normal debido a que tienen una mayor porosidad, aunque esto también puede suceder con formaciones impregnadas de

38

gas. Los datos de densidad pueden ser graficados sobre escalas normales y/o semilogarítmicas. ⁽¹³⁾

II.3.4 Otros

Temperatura: Cuando el flujo de calor se encuentra con un material aislante, el flujo disminuye distorsionando el perfil normal de temperatura. Es claro que por lo tanto, que un gradiente mayor de temperatura se tiene en la parte inferior del aislante.

Una zona con alta presión es un aislante natural. Estas zonas presionadas contienen una cantidad de agua considerablemente mayor que una zona normal El agua de formación tiene un valor mucho menor de conductividad térmica que el sílice, el agua es mejor aislante.

Salinidad: Se ha observado un aumento progresivo de concentración de sales del agua de formación con respecto a la profundidad en las rocas sedimentarias El incremento de salinidad con respecto a la profundidad ha sido observado en casi todas las cuencas sedimentarias conocidas.

Se ha encontrado que la porosidad de los estratos lutíticos disminuye exponencialmente con respecto al esfuerzo vertical neto soportado por la roca, y debido a que en las zonas de alta presión la porosidad es anormal.

Factor de Formación: También se encontró que es más conveniente trabajar con el factor de formación (parámetro calculado a partir de datos de registro de inducción) que con la porosidad misma, debido a que la disponibilidad del registro de inducción es mayor que la del registro sónico de porosidad y/o rayos gamma.⁽¹³⁾

II.4 CÁLCULO DEL GRADIENTE DE PRESIÓN DE SOBRECARGA A PARTIR DE REGISTROS GEOFÍSICOS

II.4.1 Método de Iqbal Bootwala

Este método propone estimar el gradiente de presión de sobrecarga en pozos terrestres y marinos. Con el uso de datos de densidad leídos del registro FDC y el ajuste de una curva de tendencia normal de compactación en un gráfico de densidad contra profundidad (figura 11.5), el autor desarrolla una ecuación para calcular el gradiente de sobrecarga en pozos terrestres y otra para pozos marinos. El método que a continuación se describe emplea la densidad volumétrica leída directamente del registro de densidad.

Procedimiento:

- Sé gráfica la densidad obtenida del registro de densidad en escala logarítmica contra la profundidad en escala normal.
- 2. Se ajusta una línea de tendencia normal (figura II.5) por regresión líneal para obtener los valores de K y b

$$\rho_{\rm pr} = K(\text{profundidad})^{\rm b} \tag{II.6}$$

donde K y b son constantes empíricas obtenidas del ajuste lineal.

3. Para determinar el gradiente de sobrecarga en pozos terrestres se emplea la ecuación:

$$\left(\frac{S}{D}\right) = \left(\frac{K}{b+1}\right)\left(D^{b}\right) \tag{II.7}$$

y para estimar el gradiente de sobrecarga en pozos costa afuera se utiliza la siguiente ecuación:

$$\binom{S}{D} = -\frac{(\rho_{w} \times D_{w}) + \left(\frac{K}{b+1}\right)(D - D_{w})^{(b+1)}}{D} - (II.8)$$

Para generar un perfil del gradiente de sobrecarga basta con repetir el paso 3 a diferentes profundidades.⁽¹⁴⁾

Fig. II.5 Gráfica semilogaritmica de Densidad vs Profundidad⁽¹⁴⁾

I.4.2 Método de Bourgoyne

Al igual que el método anterior, la teoría para calcular el esfuerzo de sobrecarga es la propuesta por Eaton, es decir el peso acumulativo de las formaciones sobreyacentes en un punto de interés, que usualmente se determina por el registro de densidad en zonas normalmente compactadas. El método aquí descrito propone la sustitución de las densidades de la matriz, de los fluidos y la densidad de la roca del registro de densidad en la ecuación:

$$\rho_{\rm r} = \rho_{\rm m} (1 - \phi) + \rho_{\rm f} \phi \tag{II.9}$$

Resolviendo esta ecuación para ϕ se tiene:

$$\phi = \frac{\rho_m - \rho_r}{\rho_m - \rho_f} \tag{II.10}$$

Procedimiento:

- 1. Con la ecuación (II.10) se calcula la porosidad para cada valor de densidad.
- Construir una gráfica semilogaritmica con los valores de porosidad contra la profundidad a la cual se tomó la lectura de la densidad. La porosidad en la escala logarítmica.
- Ajustar estos puntos a una ecuación de mínimos cuadrados para obtener una ecuación del tipo:

$$\phi = \phi_{a} \mathbf{C}^{-k \mathbf{D}_{s}} \tag{11.11}$$

donde ϕ_0 es la porosidad a la profundidad cero en pozos terrestres o a la profundidad a partir del lecho marino en estos pozos, mientras que k es la pendiente de la recta ajustada.

Con estas dos constantes y la densidad de la matriz rocosa y del fluido intersticial se calcula el gradiente de sobrecarga para pozos terrestres con la siguiente ecuación:

$$\left(\frac{S}{D}\right) = \frac{\rho_m D - \left(\rho_m - \rho_f\right)\phi_o \left(\frac{1 - e^{-kD}}{D}\right)}{D}$$
(II 12)

y para pozos marinos:

$$\left(\frac{S}{D}\right) = \frac{\rho_{w}D_{w} + \rho_{m}D_{s} - (\rho_{m} - \rho_{f})\phi_{o}}{D} \frac{\left(1 - e^{-kD_{s}}\right)}{k} - (1113)$$

Con este procedimiento se obtiene la sobrecarga en zonas con tendencia normal de compactación y aún, en zonas anormalmente compactadas cuando se tiene información confiable de la densidad del fluido de formación y de la matriz rocosa a cada profundidad de cálculo.⁽¹⁶⁾

II.4.3 Método de Belloti y Giacca

Este método propuesto por Belloti y Giacca utiliza el registro sónico de porosidad para obtener densidades promedio de las capas perforadas; en formaciones de arenas y lutitas compactadas y consolidadas. Este método es confiable en campos desarrollados, ya que en estos campos se tiene pleno conocimiento de las formaciones perforadas Las ecuaciones que se presentan fueron desarrolladas experimentalmente y los autores han demostrado que estas ecuaciones empíricas son casi exactas.

Procedimiento:

 A partir de los valores del tiempo de tránsito ∆t aportado por el registro sónico compensado BHC, se calculan los valores de porosidad promedio de las capas mediante la siguiente ecuación:

$$\phi = \frac{\Delta t - \Delta t}{\Delta t_f - \Delta t_m} \tag{II.14}$$

para formaciones compactadas y consolidadas, y:

$$\phi = \frac{1.228\Delta t - \Delta t}{\Delta t - \Delta t_{\star}}$$
(II.15)

Para arenas y lutitas no consolidadas.

La ecuación II.14 es aplicable a: $\phi=0-47\%$ en arenas

φ=0-60% en lutitas

y para los tiempos de tránsito en la matriz rocosa y en el fluido se utiliza:

$$\Delta t_m = 43.5 \ (\mu \text{seg/pie}) \text{ en dolomitas}$$

 $\Delta t_m = 43.5 \cdot 47.5 \ (\mu \text{seg/pie}) \text{ en limolitas}$
 $\Delta t_m = 47.5 \cdot 55.6 \ (\mu \text{seg/pie}) \text{ en arenas}$
 $\Delta t_m = 47.0 \ (\mu \text{seg/pie}) \text{ en lutitas}$
 $\Delta t_f = 200 \ (\mu \text{seg/pie})$

2. Calcular las densidades promedio de las capas para cada valor de porosidad:

$$\rho_{\rm r} = \rho_{\rm f} \phi + \rho_{\rm m} (1 - \phi) \tag{II.16}$$

 Una vez calculadas las densidades promedio de las capas, se puede obtener el perfil del gradiente de sobrecarga con la siguiente ecuación:

$$\begin{pmatrix} \mathbf{S} \\ \mathbf{D} \end{pmatrix} = \frac{\sum_{i=1}^{n} \rho_{iT_{i}}}{\sum_{i=1}^{n} H_{i}}$$
(II.17)

Para el cálculo del gradiente de sobrecarga en pozos marinos se debe incluir en la sumatoria el término de la presión de la columna del agua, es decir, la densidad del agua de mar por la profundidad del tirante ($\rho_W D_W$):

$$\begin{pmatrix} S \\ D \end{pmatrix} = \frac{\rho_W D_W + \sum_{i=1}^n \rho_{r_i} H_i}{D_W + \sum_{i=1}^n H_i}$$
(II.17a)

Las ecuaciones (II 17) y (II.17a) son ampliamente usadas en el cálculo del gradiente de sobrecarga ya que es considerada como una aproximación de la integral de Eaton

Los métodos descritos anteriormente son utilizados para determinar perfiles del gradiente de sobrecarga variables en zonas anormalmente compactadas.

Es importante señalar que los métodos estudiados anteriormente para determinar el gradiente de sobrecarga en pozos marinos, los autores plantean incluir el término del peso del agua debido al tirante en sus ecuaciones. Al igual que tomar en cuenta que la ecuación de Gardner para obtener densidades promedio de los estratos, está en función de la "velocidad de intervalo" en las capas, misma que se obtiene de un análisis "automático de la velocidad", de modo que, no se está tomando en cuenta la densidad del agua ni el tirante; además, aún leyendo directamente el registro de densidad, se debe de considerar el peso del agua, puesto que el registro es una medida de la densidad electrónica de la formación rocosa que se traduce a densidad, y no es una medición del esfuerzo de la matriz ejercido por las rocas sobreyacentes y la presión del fluido de formación.⁽¹⁷⁾

II.5 PREDICCIÓN DEL GRADIENTE DE PRESIÓN DE FRACTURA

Una de las etapas más criticas en la planeación de la perforación de un pozo es en los intervalos geopresionados, ya que estos afectan a otras etapas del diseño como son: la profundidad de asentamiento de las tuberías de revestimiento, la densidad del fluido de perforación necesaria para atravesar estos intervalos sin fracturar la formación, etc. De aquí, que la predicción del gradiente de fractura juega un papel importante en la planeación de los pozos petroleros. Sin embargo, ninguno de los métodos que existen actualmente para predecir el gradiente de fractura, se ajusta o es totalmente válido para todas las áreas petroleras del mundo

II.5.1 Método de Houbbert y Willis

En el año de 1957, estos autores realizaron experimentos en donde deducen que al aplicar una presión en el subsuelo, las rocas se sujetan a tres esfuerzos fundamentales, perpendiculares y diferentes entre sí y que el plano de fractura es ortogonal al plano del mínimo esfuerzo; es decir, en aquellas zonas en donde el menor esfuerzo es horizontal, la fractura producida será vertical y si el esfuerzo de sobrecarga es menor que el esfuerzo horizontal la fractura será horizontal.

Basándonos en un diagrama de fuerzas y en la definición de presión de sobrecarga, se deduce que ésta es igual en magnitud y de sentido contrario a la suma de la presión de formación y el esfuerzo vertical soportado por la roca.

$$S = P_f + \sigma_v \tag{11.18}$$

De acuerdo a lo anterior y a la definición de la presión de fractura, para que una fractura sea producida verticalmente la presión deberá vencer la presión de formación y el esfuerzo efectivo horizontal de la matriz rocosa, es decir

$$\mathbf{P}_{\mathbf{fr}} = \mathbf{P}_{\mathbf{f}} + \boldsymbol{\sigma}_{\mathbf{h}} \tag{11.19}$$

Houbbert y Willis, establecieron que el esfuerzo mínimo horizontal varía de ⁷, a ¹/₂ del esfuerzo matricial vertical, esto es:

$$\sigma_{h} \cong \left(\frac{1}{3}a\frac{1}{2}\right)\sigma, \tag{II.20}$$

Resolviendo la ecuación (II.18) para σ_v y sustituyendo en (II.20), se tiene

$$\sigma_{k} \cong \left(\frac{1}{3}a\frac{1}{2}\right)(S - p_{f}) \tag{II.21}$$

Reemplazando la ecuación anterior en la expresión (II.19) y dividiendo entre la profundidad para obtener el gradiente de fractura, tenemos:

$$\begin{pmatrix} P_{\dot{P}} \\ D \end{pmatrix} = \frac{p_f}{D} + \left(\frac{1}{3}a\frac{1}{2}\right)\left(\frac{S}{D} - \frac{p_f}{D}\right)$$
(11.22)

La ecuación de Houbbert y Willis tiene la desventaja de que fue propuesta para un gradiente de sobrecarga constante y por lo tanto, en donde existan presiones de formación normal se tendrá como resultado un gradiente de fractura constante, lo que nunca sucede. Es conveniente mencionar que esta correlación ha sido usada con gradientes de presión de sobrecarga variables y en general se ha comprobado que este método proporciona gradientes de fractura menores a los reales.

Procedimiento

- 1 Calcular el gradiente de sobrecarga $\binom{S}{D}$ del pozo terrestre o marino, ya sea por el método sísmico descrito anteriormente si el pozo es exploratorio o bien, por medio de los métodos de lobal Bootwala, Bourgoyne o Belloti y Giacca, dependiendo del tipo de información que disponga si el pozo es de desarrollo
- Determinar el perfil del gradiente de presión de formación por el método de Ben Eaton descrito anteriormente.
- Calcular con la ecuación (II.22) el gradiente de presión de fractura a cada profundidad utilizando el gradiente de sobrecarga y de formación obtenidos de los pasos precedentes.⁽¹⁸⁾

II.5.2 Método de Matthews y Kelly

Matthews y Kelly, en 1967 desarrollaron una metodología para predecir gradientes de fractura. La diferencia con el modelo de Hubbert y Willis estriba en que estos autores introdujeron la relación de esfuerzos de la matriz o coeficiente matricial de la roca "k_i" en términos de gradiente. La ecuación que propusieron es la siguiente.

$$\begin{pmatrix} P_{t} \\ D \end{pmatrix} = \frac{P_{t}}{D} + k_{t} \frac{\sigma_{v}}{D}$$
(II.23)

resolviendo la ecuación para ov y sustituyendo en la expresión anterior se tiene-

$$\left(\frac{P_{fr}}{D}\right) = \frac{P_f}{D} + k_f \left(\frac{S}{D} - \frac{P_f}{D}\right)$$
(11.24)

El parámetro "k_i" es la relación existente entre los esfuerzos vertical y horizontal de la matriz de roca y debe ser calculado a la profundidad "D_i" a la cual el valor del esfuerzo efectivo vertical " σ_V " es el esfuerzo matricial normal; en otras palabras, relaciona las condiciones reales del esfuerzo matricial de la formación de interés a las condiciones de esfuerzo matricial si la misma formación hubiese sido normalmente compactada.

Estos autores representaron la curva de " k_i " gráficamente para las áreas costeras de Lousiana y el sur de Texas.

La figura II.6 muestra una curva ajustada utilizando el método de regresión lineal, del coeficiente de esfuerzos de la matriz en función de la profundidad para el área del sur de Texas, cuya ecuación se presenta a continuación:

$$k_{r} = 0.0683 \mathcal{E}^{(0.272 \ln b_{r})} \tag{11.25}$$

en donde Di, debe ser introducido en pies.

Figura II.6 Curva ajustada de la relación de esfuerzos de la matriz para el área costera del sur de Texas⁽¹⁹⁾

Una curva similar a la curva mostrada en la figura II.6 puede ser determinada para cada área en especial por sustitución de datos de campo de presión de fractura en la ecuación (II.26). El procedimiento consiste en graficar los valores de k, obtenidos con la ecuación (II.26) contra la profundidad correspondiente a los datos de presión de formación y de fractura. Mediante el ajuste de una curva representativa de estos puntos por regresión lineal se puede determinar la ecuación del tipo de la expresión (II.25):

$$k_{i} = \frac{D}{\begin{pmatrix} S & P_{i} \\ D & D \end{pmatrix}} \begin{pmatrix} P_{j} & -P_{j} \\ D & D \end{pmatrix}$$
(II.26)

Las presiones de fractura, a falta de mediciones directas, pueden evaluarse a partir de información de pérdidas de circulación durante la perforación, pruebas de admisión, fracturamientos inducidos, etc.

Como principales desventajas de este método se encuentran la suposición de un gradiente de sobrecarga constante (aproximadamente de 1 psi/pie) y que la curva de la gráfica de k_i sólo debe aplicarse en la región geológica para la cual fue desarrollada.

Para pozos mayores a 20,000 pies de profundidad, el método ya no es aplicable, puesto que el valor de k, a esta profundidad es mayor a uno y como consecuencia, gradientes de fractura mayores a los de sobrecarga, hecho que si bien no llega a ser cierto tampoco llega a ser falso; es decir, si estudiamos la ecuación (II 24), a partir de 20,000 pies se necesitaría una presión mayor a la sobrecarga para fracturar la formación y producir fracturas horizontales (recuerde que una de las premisas para establecer la ecuación de la presión de fractura es la creación de fracturas verticales, ecuación (II.19), pero, observaciones de campo infieren en la presión de fracturamiento de ciertas formaciones por debajo de la presión de sobrecarga calculada a más de 20,000 pies.

Procedimiento

- Calcule el gradiente de sobrecarga por cualquiera de los métodos mencionados y dependiendo del tipo de información de que disponga (información sísmica para pozos exploratorios o de registros geofísicos para pozos de desarrollo).
- 2. Determine el perfil del gradiente de presión de formación por el método de Eaton.
- 3 Construya la gráfica de k, en función de la profundidad a partir de la ecuación (II.26) para el área en estudio y obtenga su ecuación aplicando regresión lineal, o si lo prefiere utilice la expresión (II.25).

 Obtenga el esfuerzo vertical de la matriz usando la ecuación abajo mostrada y asuma el gradiente de sobrecarga variable determinado en el paso 1 a cada profundidad de interés.

$$\sigma_{r} = \begin{pmatrix} S & -P_{r} \\ D & D \end{pmatrix} D \tag{11.27}$$

5. Determine las profundidades D_i, para las cuales los esfuerzos de la matriz serían los valores normales, mediante la siguiente ecuación:

$$D_{r} = \frac{\sigma_{v}}{\left(\frac{S}{D} - \left(\frac{P_{r}}{D}\right)_{n}\right)}$$
(II 28)

- Una vez determinadas las profundidades D_i, use la gráfica de esfuerzos que construyó en el paso 3 para obtener el valor de k_i a cada profundidad D_i o si lo prefiere utilice la ecuación (II.25).
- 7 Por último, usando los valores de D_i, σ_V, P_f y k_i obtenidos, calcule el valor del gradiente de fractura para las diferentes profundidades con la ecuación (II.24).
- B. Grafique en escala lineal los perfiles de los gradientes de presión de sobrecarga, formación y de fractura.

No obstante que en un principio los dos modelos anteriores se desarrollaron con la premisa del gradiente de sobrecarga constante, su aplicación con sobrecargas variables han sido ampliamente aceptados.⁽¹⁹⁾

II.5.3. Método de Eaton

Desde 1969 en que Eaton publicó su trabajo a la fecha, su método se encuentra entre los más utilizados y confiables para predecir gradientes de presión de fractura en todo el mundo La innovación de ésta técnica estriba en la consideración de un gradiente de sobrecarga variable y la introducción del coeficiente de Poisson " ν ", para relacionar los esfuerzos vertical y horizontal soportados por la roca.

$$\sigma_{H} = \left(\frac{\nu}{1-\nu}\right)\sigma_{\nu} \tag{II.29}$$

de la ecuación (II.19) y sustituyendo la expresión anterior se tiene:

$$p_{fr} = p_f + \left(\frac{\nu}{1-\nu}\right)\sigma_{\nu} \tag{II.30}$$

que convirtiendo a gradiente se encuentra la correlación de Eaton para predecir gradientes de presiones de fractura:

$$\left(\frac{P_{fr}}{D}\right) = \frac{P_f}{D} + \left(\frac{\nu}{1-\nu}\right)\frac{\sigma_{\nu}}{D}$$
(11.31)

$$\begin{pmatrix} P_{fr} \\ D \end{pmatrix} = \frac{P_f}{D} + \begin{pmatrix} v \\ I - v \end{pmatrix} \begin{pmatrix} S \\ D \end{pmatrix} - \begin{pmatrix} P_f \\ D \end{pmatrix}$$
(II 32)

La relación del coeficiente de Poisson puede establecerse para cada área, disponiendo de datos de presión de fractura mediante la siguiente expresión

$$\frac{\nu}{1-\nu} = \frac{\frac{Pfr}{D} - \frac{Pf}{D}}{\frac{S}{D} - \frac{Pf}{D}}$$
(II.33)

o bien, directamente el coeficiente de Poisson con:

$$\nu = \frac{A}{1+A} \tag{II 34}$$

en donde-

$$A = \frac{\frac{Pfr}{D} - \frac{Pf}{D}}{\frac{S}{D} - \frac{Pf}{D}}$$
(II 35)

Con fines de facilitar los cálculos, aplique el método de regresión lineal a la ecuación del coeficiente de Poisson determinado por Eaton para el área de la costa del golfo:

$$\nu = 0.075 e^{(019\,lr\,0)} \tag{11.36}$$

en donde D debe ser introducida en pies.

Utilizando la ecuación anterior se obtiene una gráfica de v en función de la profundidad (figura II.7).

Al igual que el método precedente, este método también estipula que el coeficiente de Poisson fue desarrollado para una área específica y se ha hecho extensivo para otras regiones mostrando confiabilidad en los resultados arrojados.

A profundidades mayores de 20,000 metros, el coeficiente de Poisson es mayor a 0.5. Análogamente al método anterior, la relación $\left(\frac{\nu}{I-\nu}\right)$ es también mayor a uno con lo que se obtienen resultados del gradiente de fractura más grandes que el gradiente de sobrecarga.

Procedimiento:

- 1 Calcular el gradiente de sobrecarga $\binom{S}{D}$ del pozo terrestre o marino, ya sea por el método sísmico descrito anteriormente o bien, por medio de los métodos de Iqbal Bootwala, Bourgoyne o Belloti y Gíacca, dependiendo del tipo de información que disponga.
- 2 Determine el perfil del gradiente de presión de formación por el método de Eaton
- 3 Construya un gráfico de v en función de la profundidad por medio de la ecuación (II.34), con datos pertenecientes al área en estudio, o bien utilizando la ecuación (II.36) propuesta en este trabajo determine el valor de v a todas las profundidades de interés.

- 4 Evalúe con la ecuación (II 32) el gradiente de presión de fractura a cada profundidad
- 5 En escalas lineales, grafique los valores de los gradientes de presión de sobrecarga, de formación y de fractura obtenidos.⁽²⁰⁾

Figura II.7 Curva ajustada del Coeficiente de Poisson⁽²⁰⁾

II.5.4. Método de Pilkington.

Pilkington se basó en los trabajos de Hubbert y Willis, Matthews y Kelly, Pennebaker, Eaton y Christman para modificar la relación de esfuerzos matriciales k_i , al cual llamo K_a (relación de esfuerzos promedio) y determinó sus valores los cuales se muestran a continuación.

$$K_{a} = 39\left(\frac{S}{D}\right) - 28 \qquad (para \quad S/D \le 0.94)$$
$$K_{a} = 32\left(\frac{S}{D}\right) - 224 \qquad (para \quad S/D > 0.94)$$

Con estos valores e modificó la ecuación de Matthews y Kelly introduciéndole el parámetro de esfuerzos promedio, guedando como:

$$\left(\frac{P_{fr}}{D}\right) = \frac{P_f}{D} + k_s \left(\frac{S}{D} + \frac{P_f}{D}\right) \tag{II.37}$$

Este método también tiene la particular ventaja de ser aplicable a profundidades menores a 20,000 metros, ya que algunos resultados obtenidos en la práctica se observó que el gradiente de fractura es mucho mayor que el gradiente de sobrecarga a profundidades mayores.

El procedimiento de cálculo para cuantificar el gradiente de sobrecarga es el mismo que el propuesto por Matthews y Kelly.

Pilkington es de la opinión de que éstas fórmulas pueden ser aplicadas a las cuencas del Terciario, que son similares a las de la Costa del Golfo existiendo en ambas, presiones normales y anormales. Su uso no se aplica a rocas quebradizas tales como los carbonatos o a rocas que aún no se han fracturado ⁽²⁰⁾

II.6 MÉTODO COMPARATIVO DE PREDICCIÓN DE GRADIENTE DE FORMACIÓN

II.6.1 Método de Eaton

Eaton desarrolló su método en 1969 y propuso tres ecuaciones empíricas para cuantificar las zonas de presión anormal empleando datos de registros geofísicos de pozos tales como: la resistividad, conductividad y tiempos de tránsito. Este método en comparación con otros métodos gráficos como el de Hottman y Johnson, presenta las siguientes ventajas.

- Es un método analítico
- · La experiencia práctica ha demostrado que es un método muy preciso
- · Se fundamenta en el uso de la presión de sobrecarga variable
- · Es fácilmente programable en una computadora

Este método argumenta que los datos de los registros y las presiones anormales tienen una relación entre ellos. Eaton desarrolló ecuaciones empíricas (ajustándolas con datos de campo), las cuales relaciona la presión de formación con la resistividad de las lutitas, la conductividad y el tiempo de tránsito para el área de Louisiana, E. U. A Las ecuaciones de correlación del gradiente de presión de formación, cuando se tienen datos de resistividad se puede aplicar la siguiente:⁽⁷⁾

$$\left(\frac{\mathsf{P}_{\mathsf{f}}}{\mathsf{D}}\right) = \mathsf{f}\left(\frac{\mathsf{R}_{\mathsf{N}}}{\mathsf{R}_{\mathsf{o}}}\right) \tag{11.38}$$

Cuando se dispone de valores de conductividad se aplica la siguiente ecuación:

$$\begin{pmatrix} \mathbf{P}_{\mathbf{f}} \\ \mathbf{D} \end{pmatrix} = \mathbf{f} \begin{pmatrix} \mathbf{C}_{\mathbf{o}} \\ \mathbf{C}_{\mathbf{n}} \end{pmatrix}$$
(11.39)

Y cuando se tienen datos de tiempo de tránsito se aplica la siguiente ecuación.

$$\begin{pmatrix} \mathbf{P}_{f} \\ \mathbf{D} \end{pmatrix} = f\left(\Delta \mathbf{t}_{o} - \Delta \mathbf{t}_{n}\right) \tag{11.40}$$

Expresado de otro modo se tiene que:

$$\frac{R_{n}}{R_{o}} = f\left(\frac{P_{f}}{D}\right)$$
(II.41)

$$\frac{C_{o}}{C_{n}} = f\left(\frac{P_{f}}{D}\right)$$
(11.42)

$$\Delta t_{o} - \Delta t_{n} = f\left(\frac{P_{f}}{D}\right)$$
(11.43)

Además, considerando la teoría de la compactación demostrada por Hubbert y Rubey vista en el capítulo I en las ecuaciones I.2 y I.3:

Resolviendo la ecuación (I.3) para la presión de formación P_f y convirtiendo a gradiente se transforma en la siguiente expresión:

$$\left(\frac{P_{f}}{D}\right) = \frac{S}{D} - \frac{\sigma}{D}$$
(11.44)

Eaton, encontró que los parámetros R, C y Δt de las lutitas están relacionados con el gradiente de sobrecarga $\frac{S}{D}$ y el esfuerzo de sobrecarga $\frac{\sigma}{D}$, proponiendo así ecuaciones que ajustan analíticamente a las correlaciones gráficas de Hottman y Johnson. Para encontrar estas ecuaciones, él consideró un gradiente de sobrecarga variable apoyándose en una gran cantidad de datos reales de pozos y de registros geofísicos

Despejando de la ecuación (II.44) el gradiente del esfuerzo matricial de la roca para condiciones de presión normal se tiene que:

$$\left(\frac{\sigma}{D}\right)_{n} = \frac{S}{D} - \left(\frac{P}{\frac{1}{D}}\right)_{n}$$
(11.45)

y para condiciones de presión anormal:

$$\left(\frac{\sigma}{D}\right)_{an} = \frac{S}{D} - \left(\frac{P_f}{D}\right)_{an}$$
(II.46)

El trabajo de Eaton consistió entonces en encontrar la relación del gradiente matricial anormal con la resistividad, conductividad y tiempo de tránsito:

$$\begin{pmatrix} \sigma \\ \overline{D} \end{pmatrix}_{an} = \left[\frac{S}{D} - \left(\frac{P_f}{D} \right)_n \right] \left(\frac{R_o}{R_n} \right)^{1.5}$$
(II.47)
$$\begin{pmatrix} \sigma \\ \overline{D} \end{pmatrix}_{an} = \left[\frac{S}{D} - \left(\frac{P_f}{D} \right)_n \right] \left(\frac{C_n}{C_o} \right)^{1.2}$$
(II.48)
$$\begin{pmatrix} \sigma \\ \overline{D} \end{pmatrix}_{an} = \left[\frac{S}{D} - \left(\frac{P_f}{D} \right)_n \right] \left(\frac{\Delta t_n}{\Delta t_o} \right)^3$$
(II.49)

A los exponentes 1.5, 1.2 y 3 de las ecuaciones (II.47) a (II.50) suelen llamarse exponentes de Eaton " α ", y tienen un valor para cada área en particular, especialmente los valores que α toma en estas ecuaciones son para el área de Louisiana.

Rigurosamente, debe ser calculado el valor de "α", para cada área de estudio, sin embargo, se ha comprobado que pueden aplicarse a otros campos presentando buenos resultados. En éste trabajo, los exponentes determinados por Eaton serán los que se utilicen para predecir los gradientes de formación.

Despejando el gradiente de presión de formación anormal de la expresión (II.46) y sustituyendo en cada una de las expresiones anteriores se tendrán las correlaciones de Ben Eaton para predecir los gradientes de presión de formación

de los siguientes pozos a perforar cuando se dispone de datos de resistividad, conductividad y tiempo de tránsito:

$$\begin{pmatrix} \mathsf{P}_{\mathsf{f}} \\ \mathsf{D} \end{pmatrix}_{\mathsf{an}} = \frac{\mathsf{S}}{\mathsf{D}} - \left[\frac{\mathsf{S}}{\mathsf{D}} - \left(\frac{\mathsf{P}_{\mathsf{f}}}{\mathsf{D}} \right)_{\mathsf{n}} \right] \left(\frac{\mathsf{R}_{\mathsf{p}}}{\mathsf{R}_{\mathsf{n}}} \right)^{1.5}$$
(II.50)

$$\begin{pmatrix} P_{\underline{f}} \\ D \end{pmatrix}_{an} = \frac{S}{D} - \begin{bmatrix} S \\ D \end{bmatrix} - \begin{pmatrix} P_{\underline{f}} \\ D \end{pmatrix}_{n} \begin{bmatrix} C_{\underline{n}} \\ C_{\underline{o}} \end{bmatrix}^{12}$$
(II 51)

$$\begin{pmatrix} P_{f} \\ D \end{pmatrix}_{an} = \frac{S}{D} - \left[\frac{S}{D} - \left(\frac{P_{f}}{D} \right)_{n} \right] \left(\frac{\Delta t_{n}}{\Delta t_{o}} \right)^{3}$$
(II.52)

A pesar de que el exponente α es una limitante para la aplicación del método; se puede determinar para cada área siempre y cuando se disponga de datos de pruebas de formación DST (Drill Stem Test), de información recabada de registros geofísicos y de datos de la presión de sobrecarga:

(11.53)

También se puede determinar empleando los cocientes $\begin{pmatrix} C_n \\ C_n \end{pmatrix} y/o \begin{pmatrix} 4_n \\ 4_n \end{pmatrix}$

Utilizando el siguiente procedimiento se puede predecir el perfil de gradientes de presión de formación por el método de Eaton

II.6.2 Diagrama de Cálculo para Eaton

II.6.3 Procedimiento

1. Calcular el gradiente de sobrecarga $\binom{s}{D}$ del pozo terrestre o marino, ya sea

por el método sísmico descrito anteriormente o bien, por medio de los métodos de lqbal Bootwala, Bourgoyne o Belloti y Giacca, dependiendo del tipo de información que disponga.

- 2. Graficar y ajustar una tendencia de compactación normal para los datos de tiempo de tránsito si es que su información es sísmica; y de resistividad, conductividad y/o tiempos de tránsito a partir de registros, tomar solo en cuenta los puntos que estén dentro de la tendencia normal. Para facilitar los cálculos obtenga la ecuación de la tendencia normal en función de la profundidad mediante una regresión lineal.
- 3. Calcular el gradiente del esfuerzo de la matriz anormal $\begin{pmatrix} \sigma \\ D \end{pmatrix}_{ar}$ mediante las ecuaciones (II.50) a (II.52) para cada profundidad dependiendo del tipo de información que disponga. Si lo desea, obtenga previamente los cocientes involucrados en las ecuaciones anteriores con la ecuación de tendencia normal obtenida en el paso 2, o leyendo directamente los valores de los parámetros normales correspondientes a los datos de la región desviada, es decir, a la misma profundidad.
- 4 A partir de una prueba DST o de datos de presión de formación de los pozos del área, estime el gradiente de presión normal de formación (p) En su

defecto, estímelo de algunas medidas de densidad del agua de formación obtenidas en laboratorio. Generalmente se asume este valor en 1 07 gr/cm³ (0.465 psi/pie).

5 Determine el valor del exponente "α", empleando la ecuación (ll 53) El procedimiento consiste en ejecutar este cálculo para varias profundidades y en
varios pozos del área, en los cuales se disponga de mediciones de presión y obtenga el promedio de α para el área.

- Una vez que ha realizado los pasos anteriores, calcule el gradiente de presión de formación anormal con las ecuaciones (II.50) a (II.52) en todas las profundidades de interés.
- 7. Por último, graficar en escalas lineales los perfiles del gradiente de presión de sobrecarga y de formación contra la profundidad. Este tipo de gráficas serán indispensables para determinar gráficamente la profundidad de asentamiento de las tuberías de revestimiento.

CAPÍTULO III

CÁLCULO DE LA PRESIÓN DE PORO APLICANDO EL MÉTODO DE ESFUERZO MATRICIAL EQUIVALENTE

Como es común encontrar formaciones sobrepresionadas, es necesario planificar correctamente las operaciones de perforación para evitar, o por lo menos minimizar, los peligros de descontrol de pozo, de aprisionamiento de tubería o de pérdidas de circulación. Es imprescindible contar con un buen conocimiento de los valores de presión de poro y de presión de fracturamiento. Estos parámetros se pueden obtener a partir de la información de registros geofísicos.

La evaluación cuantitativa de presiones se puede obtener en forma directa por medio de formulas empíricas (Hottman y Johnson, Eaton, etc.) o indirectamente con el concepto de Esfuerzo Matricial Equivalente.

III.1 MÉTODO DE ESFUERZO MATRICIAL EQUIVALENTE

Este método es válido para cualquier parámetro registrado, que incluye la resistividad, el tiempo de tránsito, la conductividad, la porosidad, la densidad, etc Por lo cual se presenta el siguiente desarrollo:

1. Determinar la presión de formación en la zona normal a partir de la siguiente ecuación:

$$P_{f} = 0.052 * \rho_{f} * D_{i}$$

ó por cualquier método conocido

2 Graficar el logaritmo de porosidad (φ), resistividad (R), tiempo de tránsito (Δt), compresibilidad (C), densidad (ρ), etc. Y establecer la curva de tendencia normal de compactación., ejemplo.

Cualquier punto "A" es asociado con un punto "B" sobre la línea normal, esto debido a que los parámetros de Porosidad y Esfuerzo Matricial del punto "A" son equivalentes o idénticos a los del punto B (Figura III.1).

Fig. III.1 Principio del Método de Esfuerzo Matricial Equivalente.⁽²¹⁾

La profundidad en el punto B (Z_B) es llamada profundidad equivalente, o en algunas veces profundidad de aislamiento mostrada en el eje de las ordenadas mientras que en las abscisas se presenta el parámetro de porosidad en escala logarítmica. Por otra parte, el fluido contenído dentro de los poros en el punto "A", ha sido considerado igual para todas las cargas geoestáticas en el transcurso del descenso de Z_B a Z_A , esto con el fin de poder emplear relaciones ya establecidas como es el caso de la fórmula de Terzaghi

$$S = \sigma + P$$

El esfuerzo matricial del punto "A" (σ_A) transmitido en el contacto de grano a grano es idéntico al punto "B" (σ_B). Por lo tanto conociendo la presión de sobrecarga en B (S_B) y la presión de formación normal en el punto "B" (P_B), entonces el Esfuerzo Matricial puede ser calculado como.

$$\sigma_{\rm B} = S_{\rm B} - P_{\rm B} \tag{III.1} \text{ y}$$

por definición sabemos que $\sigma_{R} = \sigma_{A} y \sigma_{A} = S_{A} - P_{A}$ por lo tanto obtenemos.

$$S_{A} - P_{A} = S_{B} - P_{B} \tag{III 2}$$

Conociendo la sobrecarga en A (S_4), se obtiene la presión de formación en A (P_A) despejada de la ecuación anterior, por lo tanto.

$$\mathsf{P}_{\mathsf{A}} = \mathsf{P}_{\mathsf{B}} + \left(\mathsf{S}_{\mathsf{A}} - \mathsf{S}_{\mathsf{B}}\right) \tag{III 3}$$

Si se desea determinar la densidad de equilibrio o equivalente, cuando es conocido el gradiente de sobrecarga,⁽²¹⁾ ésta puede ser determinada mediante la siguiente ecuación:

$$\rho_{equis_{A}} = \frac{S_{A}}{D} - \frac{Z_{B}}{Z_{A}} \left(\frac{S_{B}}{D} - \rho_{equis_{B}} \right)$$
(III 4)

La información requerida para los cálculos se obtuvo de registros geofisicos, tales como el sónico de porosidad en el cual se leen tiempos de tránsito; el de rayos gamma-neutrón en el cual se leen directamente valores de porosidad; y por último el registro de densidad que como su nombre lo indica nos proporciona la densidad de la roca

Del registro de densidad, se obtuvo una gráfica semilogarítmica con el objetivo de ratificar la zona de presión anormal; además con estas lecturas se determinó el gradiente de sobrecarga. Para llevar a cabo la estimación del gradiente de presión de poro en zonas anormales se diseñó una hoja de cálculo en Excel

Por medio de esta hoja de cálculo, es posible graficar los siguientes parámetros en función de la profundidad.

Resistividad Tiempo de tránsito Porosidad Densidad de la roca Gradiente de sobrecarga

El tipo de gráfico dependerá de la información que se disponga en el momento de hacer los cálculos

A continuación se muestra el procedimiento para aplicar el método de Esfuerzo Matricial Equivalente.

III.1.1 Diagrama de Cálculo de Esfuerzo Matricial Equivalente

Las gráficas presentan la variación de los parámetros correspondientes contra la profundidad en escala semilogarítmica (log (C), log (R), log(Δt), log(ϕ) y log(ρ) contra profundidad). En el caso de no disponer del registro de rayos gammaneutrón el programa puede calcular los valores de porosidad a partir de tiempos de tránsito, utilizando la siguiente ecuación:

$$\phi = \frac{\Delta t_{o} - \Delta t_{f}}{\Delta t_{m} - \Delta t_{f}}$$

para lo cual disponemos de los valores de tiempo de tránsito del fluido y de la matriz y las características de las formaciones penetradas para emplearlos como información adicional en la siguiente tabla:

Matriz	∆t _m (µseg/fies)			
Dolomita	43.5			
Limonita	43.5-47 6			
Lutita	47.5-55.6			
Andresita	50			
Caliza	67			
Arcilla	47 (estimada)			

TABLA III.1 TIEMPO DE TRÁNSITO DE LA MATRIZ

Una vez construidas las diferentes gráficas se procede a definir una tendencia normal de compactación. Debe tenerse siempre en mente que la forma correcta de la tendencia normal varía con la edad y el tipo de roca presente, tratando de definir la mejor tendencia; ya que será la base para obtener la zona sobrepresionada y realizar cualquier interpretación cuantitativa.

III.1.2 Procedimiento

- 1 Graficar y ajustar una tendencia de compactación normal para los datos ya sea de tiempo de tránsito, resistividad, conductividad, densidad ó porosidad, donde solo se deben tomar en cuenta los puntos que estén dentro de la tendencia normal. Para facilitar los cálculos debe obtenerse la ecuación de la tendencia normal en función de la profundidad.
- Calcular la sobrecarga "S" en la zona normal del pozo, ya sea por medio de los métodos empíricos que se conozcan (Iqbal Bootwala, Bourgoyne, Belloti y Giacca, etc.) o dependiendo del tipo de información que se disponga.
- 3. Determinar de la profundidad equivalente a través de la ecuación del ajuste.

$$D_1 = C_1 * Ln(F(\phi, \Delta t, C, R, etc.)) + C_2$$

- Determinar la sobrecarga por el mismo método empleado en el punto dos, para la profundidad equivalente calculada en el punto tres.
- Determinar la presión de poro para cada profundidad de la zona normal y para la profundidad equivalente.

$$Pi = 0.052 * \rho_{f} * Di$$

$$P_{equiv} = 0.052 * \rho_{f} * D_{equiv}$$

6. Determinar el coeficiente de Biot "a" para el ajuste de la presión de poro.

$$\alpha = \frac{S_A - S_B}{P_A - P_B}$$

7 Determinar la presión de poro con y sin el coeficiente de Biot.

$$P_{form} = \frac{S_A - S_B}{\alpha} + P_B$$
$$P_{form} = S_A - S_B + P_B$$

 Por último, graficar en escalas lineales los perfiles del gradiente de presión de sobrecarga y de formación, contra la profundidad. Este tipo de gráficas serán indispensables para determinar la profundidad de asentamiento de las tuberías de revestimiento.

CAPÍTULO IV

RESULTADOS Y ANÁLISIS

La necesidad de minimizar riesgos en la perforación han hecho posible la aplicación de distintas técnicas de predicción y detección de la presión de formación para tener el pozo controlado, sin embargo cada pozo se comporta diferente, como resultado de las presiones anormales persistentes en cada área. El control de la presión de formación es complicado debido a los diversos gradientes de presión, a los problemas como formaciones no consolidas, formaciones hidratadas de flujo de agua y gas, presurización y lutitas plásticas que hacen más critica la optimización de la perforación. ⁽²²⁾

La presión de poro es una limitante natural que ejerce una gran influencia en la seguridad y costos de perforación. Tradicionalmente los modelos empíricos son limitados para determinar la presión de poro en el que interviene un solo tipo de litología (arcillas) si se cuenta con datos petrofísicos o de perforación contra la profundidad para crear líneas de tendencia. Aquí se desarrollará un método que cuantifica la ley de esfuerzos efectivos $P = S - \sigma$. Éste método usa datos petrofísicos (rayos gamma, porosidad, densidad, etc.), relaciones mineralógicas de esfuerzo (tensión para calcular la presión de poro) y el gradiente de sobrecarga pie por pie a través de todos los tipos de roca.⁽²³⁾

Los métodos de detección y predicción han sido utilizados, pero ha sido necesario aumentar la información comparándolos entre ellos mismos dependiendo de la información con que se disponga del pozo Para este caso se busca comparar el método de Esfuerzo Matricial Equivalente contra el de método de Eaton para un pozo real.

Este trabajo, como se ha mencionando, se basó con la aplicación de registros de densidad, tiempo de tránsito, rayos gamma y neutrón. Como resultado de este estudio se obtuvieron los siguientes gráficos, los cuales se describirán y se explicará su función en el desarrollo de este trabajo. El siguiente gráfico nos representa el comportamiento de la porosidad obtenida con los registros neutrón, rayos gamma, densidad y tiempo de tránsito ó en su caso con los que se dispongan; además se aprecia la zona anormal para nuestro pozo manejándose una profundidad de 1500 a 4300 metros de zona anormal y se delimitó con la ecuación de ajuste que se muestra junto con el gráfico.

Fig. IV.1 Comportamiento de la Porosidad de los Registros.

Se calculó el coeficiente de Biot con el fin de comparar el comportamiento del método de Eaton contra el método de Esfuerzo Matricial Equivalente utilizando la fórmula:

$$\alpha = \frac{S_A - S_B}{Pf_{Eaton} - Pf_{equiv}}$$

donde[.]

 S_A = Sobrecarga calculada con Eaton S_B = Sobrecarga para cada profundidad equivalente Pf_{Eaton} = Presión de Formación calculada con Eaton Pf_{equiv} = Presión de Formación equivalente

Fig. IV. 2 Comportamiento del Coeficiente de Biot para la Porosidad de los Registros

TABLA IV.1	RESULTADOS	DEL MÉTODO	DE EATON
------------	------------	------------	----------

METÔDO DE EATON								
PROF	PROF	D2-D1	POROS	POROS	So/D(A)	PF/D	PF	PFN/D
(M)	(FT)	{FT}	FRACC	(%)	(LB/GAL)	(LB/GAL)	{PSB	(LE/GAL)
185 928	610 000	1 001			15 581	8 945	283 306	8 946
186.233	611 001	1 001			15 581	8 946	284 237	8 946
60D 151	1968 999	1 001			15 764	8 946	915 978	8 946
600 456	1970 000	1 001			15 764	8 945	916 444	<u> </u>
601 765	1971 001	0 497			15 765	8 946	916 909	8 945
601 370	1972 999	1 001			15 765	8 946	917 839	8946
601 675	1973 999	1 001			15 765	8 946	918.304	\$ 946
601 980	1975 000	1 001			15 765	8 946	918 770	8 946
602 285	1976 001	1 001			15 765	<u>8 946</u>	919 235	8 946
602 894	1976 999	1.001			15 766	8 946	919 599	8 946 8 046
603 199	1978 999	1 001			15 766	8 946	920 630	8,946
603 504	1980 000	1 001			15 766	8 946	921 096	8 946
603 809	1981 001	1 001			15 766	8 946	921 561	8 946
604 113	1981 998	0 997			15 766	8 946	922.025	8 946
604 418	1982 999	1.001		·	15 767	8 946	922 491	8 946
605 028	1985 000	1 001			15 76/	<u> </u>	922 956	8 946
1105 205	3626 001	1 001	0 292	29 200	16 186	8 945	1686 815	8 946
1105 509	3626 998	0 997	0 322	32 200	16 186	8 946	1687 279	8 946
1105 814	3627 993	1 001	0 324	32 400	16 186	8 946	1687 745	8 946
1106 119	3628 999	1 001	0 329	32 900	16 187	8 946	1688 210	8 946
1106 424	3630 000	1 001	0 329	32 900	16.187	8 946	1688 676	8.946
1107 033	3631 001	1 997	0 320	32 000	16 187	8 946	1689 141	5 946
1207 338	3632 999	1 001	0 255	26 200	16 187	8,946	1690 071	8 946
1107 643	3633 999	7 001	0 306	30 600	16 188	8 946	1690 536	8 946
1107 948	3635 000	1 001	0 275	27 500	16 188	8 946	1691 002	8 946
1108 253	3636.001	1 001	0 251	26 100	16 188	8 946	1691 467	8 946
1108 557	3636 998	0 997	0 223	22 300	16 189	8 946	1691 93t	8 946
1108 852	3637 999	1 001	0.236	23 600	16 189	8 946	1692 397	8 946
1109 472	3640,000	1 001	0 310	31,000	16 190	8 946	1693 328	8 946
1109 777	3641 001	1 001	0 290	29 000	16 190	3 946	1693 793	\$ 946
1110 081	3641 998	0 997	0 349	34 900	16 190	8 946	1694 257	6 946
1562 405	5126 001	1 001	0 267	26 700	16 545	5.929	1580 502	8 946
1562 709	5126 998	0 997	0 179	17 900	16 545	7 750	2065 215	8 946
1563 014	5127 999	1 001	0 175	14 500	16 545	7 449	1986 260	3 945
1563 624	5130 000	1 001	0 150	15 000	16 546	7 850	2094 184	8 956
1563 929	5131 001	1 001	0 123	12 300	16 546	8 564	2285 003	\$ 946
1564 233	5131 998	0.997	0 141	14 100	16 546	9 088	2425 151	8 946
1564 538	5132 999	1 001	D 161	16 100	16 547	8 832	2357 392	8.946
1564 843	5133 999	1 001	0 182	18.200	16 547	7 679	2049 965	8 946
1565 442	5135 000	1 001	0 202	17.100	16 547	7 899	2109 109	8 946
1565 757	5136 998	0 997	0 322	32 200	16 547	8 028	2144 561	8 946
2500_274	8202 999	1 001	0 247	24 700	16 917	14 726	6281 437	8 946
2500 579	8203 999	1 001	0 239	23 900	16 917	14 898	6355 757	8 946
2500 884	8205 000	1 001	0 225	22 500	16 918	τ5 044	6418 858	8 946
2501 189	8206 001	1 001	0 238	23 800	16 918	14 950	6379 463	8 946
2501 798	8206 998	1 007	0.216	21 600	16 918	14 810	6320 410	8 945
2502 103	8208 999	1 001	0 261	26 100	16 918	14 688	6269 943	8 946
2502 408	8210 000	1 001	0 232	23 200	16 918	14 559	6215 691	8 9 46
2502.713	8211 001	1 001	0 231	23 100	16 918	14 618	6241 454	\$ 945
2503 017	8211.998	0 997	0 225	22 500	16 918	14 695	6275 586	8 946
2503 322	8212 999	1 001	0 187	18 700	16 918	14 634	6249 730	8 9.46
2503 627	8213 999	1 001	0 185	18 500	16 918	14 543	6211 585	8 946
2504 237	8216 001	1 001	0 734	20 900	16 910	14 519	6250 405	8 940
2504 542	8217 001	1 001	0 216	21 600	16 919	14 640	6255 515	8 946
2504 846	8217 999	0 997	0 201	20 100	16 919	14 565	6224 144	8 946
2505 151	8218 999	1 001	0 204	20 400	16 919	14 623	6249 650	8 945
3000 146	9842 999	1 001	0 166	16 600	17 091	15 644	8007 143	8 946
1 3000 451	9843 999	1 001	0 177	17 700	17 091	15 820	8098 289	8 946

Los resultados de la Tabla IV.1 se obtuvieron mediante el siguiente procedimiento.

1. Cálculo de la sobrecarga

Datos:

Profundidad D = 1562.405 m = 5126.001 pies

Densidad ρ =2.025 gr/cc = 16.8601 lb/gal

Sobrecarga anterior SANTERIOR = 4112.0281 psi

$$S_B = 0.052 * \rho * \Delta D_i + S_{ANTERIOR}$$

 $S_B = 0.052 \pm 16.8601 \pm 1.0007 \pm 4411.1508 = 4412.0281 \text{ ps}$

2. Cálculo del gradiente de Sobrecarga

$$\frac{S}{D} = 19.2225 * \left(\frac{4412.0281}{5126.001}\right) = 16.5451 \text{ lb/gal}$$

3 Cálculo del gradiente de Presión de Formación por el método de Eaton

$$\frac{Pf}{D} = \frac{S}{D} - \left(\frac{S}{D} - \frac{Pf}{D}\right) \left(\frac{\Delta t_o}{\Delta t_o}\right)^3$$

 $\frac{\text{Pf}}{\text{D}} = \frac{4412.0281}{5126.001} - \left(\frac{4412.0281}{5126.001} - \frac{1580.5021}{5126.001}\right) \left(\frac{124.4}{127.39}\right)^3 = 5.9294 \text{ lb/gal}$

De los datos generados en la hoja de cálculo a partir de varias iteraciones, se generó la siguiente gráfica que contiene el comportamiento del gradiente de sobrecarga y el gradiente de la presión de formación.

Fig. IV.3 Comportamiento del Gradiente de Sobrecarga y Presión de Formación por Eaton

El gráfico IV.3 nos ayudará hacer la comparación con el método de Esfuerzo Matricial Equivalente (EME) que es el objetivo de este trabajo y con los resultados este método veremos y comprobaremos la factibilidad en campo.

Desarrollando el método EME para nuestra comparación tenemos:

 De las gráfica IV.1 se ajustó una tendencia, con su respectiva ecuación, la cual se encuentra en función de la porosidad.

Las ecuaciones son del tipo $D = C_1 * ln(f_{(x)}) + C_2$

$$D_{equiv} = -2055.5933 * \ln \phi + 7825$$

Como se puede observar la ecuación es del tipo logarítmico, donde la primera constante es la pendiente de la recta y la segunda constante es la ordenada al origen.

Conociendo la ecuación logarítmica, procedemos a la aplicación del método de EME, la cual será empleada para determinar las profundidades equivalentes en la zona anormal.

 Calcular la profundidad equivalente para cada punto de la zona anormal al igual que la sobrecarga y presión de formación para cada profundidad equivalente. Ejemplo:

Datos.

Densidad ρ = 2.1710 gr/cc =18.0757 lb/gal Diferencial de profundidad ΔD = 1.0007 pies S_{ANTERIOR} = 3120.9452 psi Para α = 1 y α variable.

Cálculo de la profundidad equivalente

 $D_{equiv} = -20555933 \text{ In}(176) + 7825 = 1127632 \text{ m} = 3699.581 \text{ pies}$

Cálculo de la sobrecarga para cada profundidad equivalente

$$S_B = 0.052 * \rho * \Delta D_1 + S_{ANTERIOR}$$

 $S_B = 0.052 * 18.0757 * 10007 + 3120.9452 = 2949.092 \, psi$

Cálculo de la presión de formación para cada profundidad equivalente

$$Pf = 0.052 * \rho * D_{equiv}$$

3 Ayudados con la presión obtenida utilizando el método de Eaton determinaremos el coeficiente de Biot para ajustar nuestra gráfica (Fig. IV 4 y IV.5).

$$\alpha = \frac{S_A - S_B}{Pf_{Eaton} - Pf_{equiv}}$$

$$\alpha = \frac{4925.214 - 2949\,692}{3747\,0636 - 1721.782} = 0.976$$

4 Determinación de la presión de formación con y sin el coeficiente de Biot
 Sin el Coeficiente de Biot

$$Pf = Pf_{equiv} - (S_A - S_B)$$

Pf = 1721782 - (4925214 - 2949.692) = 2945.283 psi

$$\frac{S}{D} = 192225 * \left(\frac{2945.283}{3699.581}\right) = 99378 \text{ lb/gal}$$

Con el Coeficiente de Biot

$$\mathsf{Pf} = \frac{\mathsf{Pf}_{\mathsf{equav}} - (\mathsf{S}_{\mathsf{A}} - \mathsf{S}_{\mathsf{B}})}{\alpha}$$

$$Pf = \frac{1721782 - (4925.214 - 2949.692)}{0.976} = 3747.0636 \text{ psi}$$
$$\frac{S}{D} = 19.2225 * \left(\frac{3747.0636}{3699.581}\right) = 12.6409 \text{ ib/gal}$$

Los resultados de estas iteraciones se muestran en la tabla IV.2 y en los

gráficos IV.4 y IV.5 en los cuales podemos apreciar que el comportamiento

de la presión de formación es menor con el método de EME que con el

método de Eaton.

TABLA IV.2 RESULTADOS DEL MÉTODO DE ESFUERZO MATRICIAL EQUIVALENTE CON LA POROSIDAD DE LOS REGISTROS

Ň	METODO DE ESFUERZO MATRICIAL EQUIVALENTE CON LA POROSIDAD DE LOS REGISTROS								
PROF	PORO-CALC	Deguiv	Pp2	SB	ALFA	PF	PF/D	PF(psi)	PF/D
125 6230	D 4732		(*3)	(250)	FRACE	282 3064	B 9423	283 3064	(CB/GAL) 8 94621
185 9280	0 5038					283 7719	8 9423	283 7719	\$ 9462
186 2 3 3 0	0 4973					284 2374	8 9423	284 2374	8 9462
186 5370	0 4831			~		284 7014	B 9423	284 7014	9 9462
187 1470	0 5035					285 1669	8 9423	285 5324	8 9462
187 4520	0 4337					286 0979	8 9423	286 0979	8 9462
1600 5050	0 3945	2667 3890	1241 4028	2086 5471	1 5585	2806 2702	10 27 30	3679 4128	3 47 19
1600 8090	0 3959	2091 / 141	973 4837	1617 4311	1 5763	2818 9475	10 3174	3680 3122	13 1726
1601 4190	0 4286	3009 8023	1400 7620	2369 7762	1 2949	3067 5353	1 2230	3721 3950	13 6178
1601 7240	0 3912	3321 3079	1545 7367	2629 9942	: 5362	2781 9855	10 1763	3559 1457	13 (216
1602 0290	0 3159	2600 9442	1210 4794	2031 9402	3 4644	1931 5467	7 0641	3444 8074	12 6009
1602 6380	0 4514	3420 1242	1591 7258	2713 0304	1 1201	3215 4910	11 7554	3725 0351	13 6208
1602 9430	0 4415	3596 b153	1673 8648	2861 9064	1 1270	3156 5099	11 5376	3410 5560	12 4685
1603 2480	0 3907	3857 0374	1795 0652	3082 8781	1 4696	2782 3214	10 1679	3344 7569	12 2256
1939 7470	0 3733	2893 7221	1346 7383	2273 4231	1 7708	2623 7164	9 5865	3245 9019	11 8620
1940 0520	0 6795	2712 0520	1262 1890	2123 3184	0 9040	4231 3321	12 302	4114 3306	12 4274
1940 3570	0 6604	2578 9406	1200 2389	2013 8827	0 9260	4986 5147	15 0571	4658 1042	14 0676
1940 6610	0 6338	2426 8934	1129 4762	1889 4595	0 9540	4935 9374	14 9020	4706 4489	14 2114
1974 7990	0.5263	3296 8284	1534 3439	2840 3539	0.8770	4835 1874	14 34/7	4618 6062	137071
1975 1040	0 5052	3127 9156	1455 7319	2468 1630	0_9795	4678 7468	13 8792	4548 9831	13 4963
1975 4090	0 4973	3223 9186	1500 4117	2546 3853	0 9778	4647 8553	13 7854	4612 5877	13 6829
1975 7130	0 5009	3321 30791	1545 7367	2629 9942	0 96 12	4663 6337	13 8301	4577 9645	13 5781
1976 3230	0 4982	3991 1192	1857 4669	3197 2341	0 6693	4654 6096	13 7991	4487 6693	13 3062
1976 5280	0 5021	3964 0888	1844 8859	3174 1489	0 8687	4671 4747	13 8469	4288 9505	12 7 150
1976 9330	0 5073	3647 9014	1697 7333	2905 3025	0 9099	4692 8084	13 9080	4300 3790	2 7 4 7 0
1977 5420	0 4994	3520 4100	1074 9756	2755 0968	0 9438	4662 5533	13 8162	4422 9963	13 1084
977 8470	0 4782	3571 1177	1561 9982	2840 3539	0 9594	4573 2490	13 5474	4473 2716	13 2533
1978 1520	0 4854	3445 0562	1603 3292	2734 0174	0 9657	4606 5232	13 6439	4454 9709	13 1971
1978 4570	0 5036	3223 9186	1500 4117	2548 3853	0 9697	4663 5787	13 8700	4503 5568	3 3389
1979 0660	0 4664	3056 7997	1422 6346	2408 8829	1 0417	4521 3924	13 3856	4588 0945	13 5851
1979 3710	0 4888	3033 260 1	1411 6792	2389 2886	10109	4625 3557	13 6912	4650 7278	3 7685
1979 6760	0 5473	3199 7894	1489 1820	2528 2013	0 9280	4841 2130	14 3280	4660 2857	13 "946
1979 9810	0 4981	4127 9710	1921 1344	3060 3238	0.8472	4667 1033	14 2143	4352 1713	13 6135
1980 5900	0 4881	4045 5074	1882 7791	3243 7318	0 8740	4626 3959	13 6859	4247 5188	12 5670
1980 6950	0 4793	4211 3541	1959 9642	3385 9061	0 8585	4588 6724	13 5722	4280 6743	12 6632
1981 2000	0 4744	3910 3507	1819 8772	3128 3011	0 9156	4566 7625	13 5053	4216 6134	12 47 17
1981 8090	0 4860	4127 9210	1921 1344	3314 3093	0 8633	4507 0679	13 5267	4346 3254	12 8201
1982 1140	0 5091	3725 5694	1733 8800	2971 1354	0 8968	4716 9286	13 9430	4252 1661	12 57 1
2027 2250	0 490 1	3248 1344	15116817	2568 6560	0 9804	4789 8491	13 8435	4733 5856	3 6829
2027 8340	0 5163	3937 1662	1832 3571	3151 1715	0 9046	4894 2716	14 0646	4725-4919 4565-9609	1 3 5575
2028 1390	0 5441	3991 1192	1857 4669	3197 2341	0 8264	4989 2367	14 41 32	44654675	12 9021
2028 4440	0 5306	3857 0374	1795 0652	3082 878:	0 8578	4946 5667	14 2878	4445 4227	2 8422
2028 7490	0 4995	4555 8053	2120 2732	3683 0099	0 7754	4833 5962	13 9594	4498 2877	2 9930
2029 3580	0 4959	4526 4222	2106 5969	3657 5700	0 7852	4820 9788	13 9188	4128 5445	1 92 14
2029 6630	0 4909	4981 2526	2318 2750	4053 1978	0 6993	4801 3515	13 5500	4237 8559	12 2352
2029 9680	0 5053	4439 0245	2065 9220	3582 0106	0 7904	4860 2140	14 0278	4054 8*31	7050
2030 2130	0 5105	4381 3823	2039 0953	3532 2602	0 7950	4880 8155	14 0852	4274 5511 6841 6460	12 3375
3019 0440	0 5227	5850 5058	2722 8254	48197613	0 7239	8232 3243	15 9764	7147 9807	13 8734
3079 3490	0 5197	5368 5797	2498 5370	4333 1440	07710	8226 5440	15 9635	5711 3758	3 0247
3019 6530	0 5177	5502 7950	2561 0008	4511 5606	0 7592	8222 7907	15 9546	6914 6535	3 4178
30 19 9580	0 5199	6565 0330	3055 3663	5153 0457	0.6479	9235 5405	15 9650	6859 9403	2 1200
3020 5680	0 5253	5958 4136	2773 0457	49 5 81 18	0 7 1 2 4	5243 4856	15 9899	5459 1992	2 5308
3020 8730	0 5346	5172 1359	2407 1121	4220 3932	0 7341	8265 3613	16 0308	06-0 2380	· ~ 0383
3021 1770	1 0 5456	4704 6906	2189 5630	3812 1599	0 8201	8289 4894	16 07 59	7000 63 -	3 5778

<u></u>

4

Fig. IV:.4 Comportamiento de la presión de formación por el método de EME cuando a=1 comparada con el método de Eaton

Fig IV.5 Comportamiento de la presión de formación por el método de EME cuando α=variable comparada con el método de Eaton

En este gráfico se aprecía el comportamiento de la presión de formación calculada con el método de Eaton contra el método de EME La dispersión de puntos de debe a que los resultados arrojados por el método EME son menores a los obtenidos con el método de Eaton.

Fig. IV. 6 Comportamiento de la Presión de Formación por el método de EME contra el método de Eaton

En las tablas IV.3 y IV.4 se muestran los resultados de los cálculos del método de EME así como sus respectivos gráficos que representan el comportamiento de la presión de formación utilizando la porosidad que se determinó con los registros de tiempo de tránsito y densidad.

Fig. IV.7 Comportamiento del tiempo de tránsito contra profundidad

TABLA IV. 3 CÁLCULOS CON EL MÉTODO DE EME CUANDO LA POROSIDAD ES CALCULADA CON EL TIEMPO DE TRÁNSITO

NETODO DE ESFUERZO MATRICIAL EQUIVALENTE CON LA PORDSIDAD CALCULADA								
PROF EQUIV C	SOBRECARGARS	PBC	(ALFA)C	PFC CIALFA	PEC CIALEA	PEC STALEA	PFC S/ALFA	
FT	PŚI	(PS1)	FRACC	PSI	LB/GAL	PSI	LB/GAL	
2500 1269	2146 8955	1210 0991	1 '531	3422 6234	2 0918	175 3908	3 2885	
2552 770	2108 8796	1188 0592	* '529	3436 5311	12 1387	3780 2529	3 .528	
2636 6430	2 '90 6663	236 4015	1 1559	3408 9939	12 03 92	37-7 6978	13 235-1	
2637 \$615	2177 7455	1227 6608	1 1543	3415 1740	2 0588	3752 7865	3 2509	
2618 7390	2*65 0364	218 7611	1 * 526	3421 4292	*2 0787	3757 50 4	13 2651	
2972 3349	Z=64 2907	1383 3247	1 1557	3321 9584	1 725-1	3623 70"1	-2-904	
3132 9205	2511 2899	1458 0612	1 * 525	3275 1959	11 5582	3552 342	12 5362	
3264 7035	2748 1683	1528 7010	- 1512	3229 8046	11 3959	3~87 0086	*2 3034	
2,61 5683	2274 6665	255 2804	1 (541	3423 0160	10.99.8	3752 361-	13 2455	
2887 3103	2386 9853	1343 7540	1 1522	3388 2213	11 8577	3699 41-29	2 9577	
2880 6968	2381 4019	1340 6783	1 1520	3391 1146	1 8757	3702 6237	2 96 73	
2 * 22 0993	2239 0630	1255 8550	1 1544	3437 0778	12 0345	3772 25-2	3 2080	
2284 2645	1880 7514	1063 096*	1 1492	3556 7178	12 4476	3927 6869	3 98	
2300 ** 05	1895 1247	070 750	1 1469.	3552 4365	12 + 339	3921 8540	13 -269	
2707 5779	2225 9232	1280 1088	1 1544	3444 0729	*2 0524	3781 3024	3 2325	
4361 00~5	3726 0424	2029 6115	1 1597	2910 8087	10 1544	3051 5735	10 5759	
524 4840	4518 9863	2439 3866	1 8805	2561 6439	\$ 9611	2669 2902	÷ 3377	
5242 8401	4520 B215	2440 0175	1 6753	2562 1103	8 961 -	2668 9734	9 33-9	
			1 0063	4557 3608	14 8899	~599 4487	14 8899	
715 -877	579 9475	332 9890	1 434	4282 0047	13 9818	4848 2992	\$ 9309	
2206 3527	1814 8868	1026 8365	1176	3962 8292	-2 9374	4308 0891	1 - 364B	
2432 6682	2008 92-7	**32 1639	1 1137	3906 8554	12 7525	4222 2653	3 7821	
2704 2374	2222 417	1256 552*1	t 1155	3836 3270	12 5202	413-06-8	3 19-9	
2669 8502	2199 9874	1242 5483	1 + 32	3846 5747	\$2 5515	-1 3738	13 5 3~	
2627 9.68	2171 2166	223 0325	• 1113	3858 7641	12 5891	4151 5049	3 5442	
2565 0808	2*19 0928	1193 7886	1 1114	3876 3812	-2 6445	4175 2890	3 5194	
2495 9354	2050 4150	161 6083	1 1 1 2 4	3895 4469	12 7045	4202 5-78	s 1064	
2458 5752	2028 9898	1144 2205	1 1125	3906 1135	12 7371	2217 5776	3 7527	
2375 9949	1958 5036	135 7580	1 1141	3928 2492	12 8071	1250 1207	3 85*5	
2409 699.	1987 4190	1121 4740	1 1134	3920 6395	12 7801	4238 1701	13 8:52	
2567 9963	212 6452	1*95 1455	1 1109	3860 5665	12 6474	4178 5005.	13 6184	
576-31'9	4885 9254	2682 7138	D 8608	3858 1056	10 763	3594 5027	103,93	
5-13 3592	4402 3-47	2379 757~	0 9215	4111 9105	•7 4635	3976 0097	1040	
2962 6211	2456 - 257	1378 6039	* 0410	4782 7264	13 3550	4922 1647	4 ــــ ۲ د ۲	
1699 39-1	1389 8-03	790 6969	1 0762	5074 8224	-11566	5-0 4312	15 0805	
1502 8629	1226 9347	699 4324	1 0812	\$115 25T1	1-1 2794	5473 7531	9 2802	
1769 420	148 2086	823 4881	1 0575	5529 5047	****712	o600 1885	5 * 798	
1705 6585	1395 6736	793 6135	1 0592	5543 (329	.4 5046	6523 9751	2398	
1~88 5844	1215 3400	692 78 <u>7</u> 2	1 0651	5585 5025	1+ 6-38	690~ 2155	*5 *6	
255 88.9	*022 7860	584 48 4	1 0714	5629 UB46	a 7258	6949 - 28	15 068-	
133- 82-1	1087 9461	621 2274	7 0693	5615 8886	1-6593	5961 9335	to 5944	
69 2425	383 177-	787 -043	1 0595	5549 9611	5148	5833 5103	15 250-1	
2157 3171	1773 6724	1004 0154	1 0460	5456 3504	14 268	5660 9559	- 303	
2014 0227	653 29-8	937 3262	1 0501	\$487 3615	3- 3-72	5-15-726	1-9-36	
1978 8669	1623 9207	920 96-7	- 0511	5495 62 9	1 - 3669	379 4680	9780	
2275 140.	873 1456	058 8502	1 0422	5434 2061	1-2044	55 8 5993	- 28 - 2	
2732 526-	22-8 209	12** 7175	0054	6172 7756	1- 5537	5,86.95222	- 5 56	
2770 9858	2282 898-	1289 6 68	1 0037	6155 5635	1- 53-19	5 83 6462		
2000 1501	2309 5930	1303 1895	1 0023	6150 3552	1+ 5208	5 53.7	- > "2	
25389718	2095 9598	1 81 6380	0093	6216 69	1- 65-4	5253 5385	- `#22	
2348 3823	934 8894	C92 937*	1 0158	6256 4500	1 '43'	- 33 - 8. A	- 9355	
2431 - 525	2005 2297	1 31 6028	1 0130	6240 77-5	050	230, 0, 20	+ 2012	
23 4 34 98	906 1182	077 0955	1 0168	6265 2745	- "603	5357 5759	- 2566	
2268 3026	1867 2296	1055 6680	• 0.es	6275 3693	14 7829	63 '0 93 '2	5 1080	
2 03 4280	728-03-	978 935-	1 0236	6308 3287	14 9587	6234 2270	<u>5</u> 552	
2 57 40 2	173 5724	100-05-3	• 0219	6299 01 -	- 8345	54 -659	-5 675	
2524 6378	2085.06-2	174 955~	0095	6226 8922	~ 5633	52 '5 1 . 2		
<u> 3308</u>	20 8 8033	1138 9875	> 0+23	6243 7645	1 - 70 2	9346 3-93	<u>- 3-86</u>	
23-8-523	934 8894	092 937	1 0155	6264 7118	1- 7487	6345 285	- 939	
2560 9862	2132 7143	1201 1912	1 0076	6218 3805	- 6379	6255-15	- 275	
2580 9867	2132 7143	\$201.19*0	1 0076	6219 4290	14 6385	5257 -017	2-5.6	
2397 255	1976 3956	1115 6228	1 0136	6258 1617	r + 7278	-3291-2	- 5949	
2 "5 3-80	1758 7442	1012 4072	1 0211	6302 9023	1~ 83 -	ð		
2 35-5	870 6089	057 3220	1 0 175	6285 1967		53 8 55 7		
246-0529	2033 2345	46 7 -0	- 01-5	5247 7963	1 599	=3061.88	- 2358	
2536 3659	2.03 195	1187 2288	1 0085	6231 00 '5	- 6355	375	· · · · ·	
25.52.73	2 65 74 - 9	12 19 2-51	006	62 7 76	- 6239	62-9-553	- 595-	
2723 3423	2239 9650	267 4435	1 005;	6196 979-	- 5-32	5274 1235	- 23- 1	

El siguiente gráfico muestra el comportamiento de la porosidad calculada a través del tiempo de tránsito y la ecuación de la tendencia.

Fig. IV.8 Comportamiento de la porosidad calculada con el tiempo de tránsito.

A partir de la porosidad mostrada en el gráfico anterior podemos observar el siguiente comportamiento de la presión de formación con dicha porosidad

Fig. IV 9 Comportamiento del coeficiente de Biot con la porosidad calculada con tiempo de transito

Fig IV.10 Comportamiento del gradiente de presión de formación por el EME comparada con el método de Eaton

Fig. IV.11 Comportamiento del gradiente de presión de formación con el método de EME cuando alfa es uno comparado con el método de Eaton

Fig. IV. 12 Comportamiento de la presión de formación por el método de Eaton contra el método de EME

En los siguientes gráficos se presenta el comportamiento de la presión de formación a partir del gráfico de densidad.

Fig. IV. 13 Comportamiento de la densidad

TABLA IV.4 CÁLCULOS DEL EME CUANDO LA POROSIDAD ES CALCULADA CON LA DENSIDAD

MÉTODO DE ESFUERZO MATRICIAL EQUIVALENTE CON LA POROSIDAD CALCULADA								
PROF EQUIV C	SOBRECARGARB	PBC	(ALFA)C	PFC CIALFA	PFC CALFA	PEC STALEA	PEC SALEA	
FT	P 51	(251)	FRAGE	PSI	LB/GAL	PSI	18 GAL	
-523 8470	12-4 3605	709 1984	1 26.84	3392 9584	12 1 61	4113 3-47	4 4858	
135 884-	*462 4001	631 1506	1 2201	3443 1779	2 2 9 3 2	4016137	- 3-60	
18=2 6421	1516 3835	882 2196	1 1 9 4 *	3485 021	2 08	399- 25	- 2576	
1591 2735	138- 84 4	768 0495	1 2370	3441 5179	12 2821	4054 3844	700	
-85 2115	1212 0255	691 Z174	1 2 . 82	3515 0789	-2 5-29	31 2457	1_ 11*6	
1562 6545	1276 7287	727 2594	t 1971	3547 5981	2 0 > 0 0	4.03.4694	- 5 3 5 7	
1206 9935	982 4303	561 7348	1 2612	3472 7982	12 38 4	4233 1 20	5 0 2 9 5	
*70 0360	624 6980	358 3747	1 2689	3534 4452	12 0050	4388 3394	5 - 5 - 0 3	
-21 9104		196 3571	1 4 1 6 3	3483 4078	12 420 "	4851 8620		
50 9062		233 5871	1 4 5 2 2	3440 0221	12 253 1	-869 93-4		
2419495		255 0157	1 3668	3662 3080	13 323.	39.2 2100		
1 20 2982	910 9042	521 3868	1 1473	3788 04-3	-3-993	1255 51-5	5 2 *7	
1-185 Z 1 15	-212 0255	691 2174	1 - 734	3628 5573	12 9290	4 38 342	3	
1-46 7462	1180 5474	673 3157	1 1836	36-2 9971	12 8 68	4 52 5996	- ÷30	
1459 5491	-191 3140	579 2742	1 1986	3573 - 366	2 7280	8628		
2222 2 348	1828 3852	1034 2281	1 1 3 8 7	3522 3222	2 5-3	386-4-50		
2320 5667	1912 0409	1080 0383	1 182	3539 - 823	12 2 2 3 0	3930 5065	3 6 1 6 1	
2363 1941	1947 5905	1099 3305	1 1030	3562 032*	12 1 98	18 5 65 3	5 382	
575 8360	548 2526	314 5341	1 3108	3479 963	2363	63 825	- 169	
937 3735	760 9488	436 2535	1 3 0 7 9	3-46 8717	2 519	4373 '08	5-976	
1 32 8436	1418 1774	806 4654	1 2584	3413 9237	12 0633	6057584	+ 37	
1892 9433	-551 8516	680 0758	1 2387	3422 6234	12 09*8	4029 3*15	- 2351	
17-5 0736	1429 0204	812 6227	1 2470	3436 53 1	12 387	4084 6756	11-28*	
812 5262	1484 9484	843 5497	1 2 5 4 0	3408 9939	-2 0392	4060 5658	- 3403	
2306 5368	1900 1965	1073 4622	1 1 9 6 8	3415 1740	12 0588	3876 1370	3 5 8 6 5.	
2754 2840	1863 8507	1053 7978	1 1995	3421 4292	*2 C S*	3893 7238	1 7 160	
974 1084	1619 7255	918 7501	1 2837	332 8584	11 725	4003 6966	1-1317	
2 1 0844	1734 8372	982 4987	1 2 9 5 7	3275 1959	11 5582	39532323	3 44.0	
2200 2451	1852 0257	1047 2641	1 3079	3229 60-46	11 3959	3901 **42	3 `66 ?	
2180 3873	1792 9593	1014 7522	1 2 9 5 3	3264 8266	115 74	3929	s 85 O	
2222 2348	1628 3652	1034 2281	1 3086	3234 9840	2088	39 4 1257	3 805-	
2250 2451	1852 0257	1047 2641	1 4041	3082 1009	10,9058	390- 4263	3 .96	
20-2 3276	1676 8113	950 4993	1 4396	3057 5881	10 50-	3983 / "1-	- 0-59	
7250 2451	1652 0257	1047 2841	1 2834	3274 8902	5+4"	3905 2269	3 7 . 9 9	
2250 2451	1852 0257	1047 264-	1 2 1 2 1	3406 7599	12 0070	3907 1319	3 06	
506 4185	*562 7375	687 2472	1 2 1 2 9	3484 3441	12 2782	~017 2974	1 2 2 6 8	
905 4185	1562 7375	887 2472	1 2 2 8 2	3452 8087	12 0-9	4038 .018	- 22*3	
2001 3321	1642 3826	931 4200	1 2 . 07	3466 9305	2 2195	4303 5135	- 1029	
2301 3321	1542 3826	93·4200	1 2107	3469 7591	2 2 2 0	-03-5-08	- 035	
940 9694	1597 0855	906 1196	- 2743	3353 8880	1 8359			
736 0736	429 0204	812 6227	1 2 9 3 3	3355 0973	9.2.5	.00 8×02		
	1429 0204	8-2-6227	7 2647	54 3 4 3 90	12 . 2	+ 21 - 4		
20 4 9759	1654 1350	937 7698	1 2 3 8 6	3412 2320	<u> </u>	40.000		
380 5284	1608 8250	912 4295	, 1603	3-98 4820	<u>`5 @</u>	-023 5425	5	
950 5284	1608 8250	912 4299	1 4213	3102 0514		402-4384		
2014 9759	1654 1350	937 7698	1 4162	3103 8367		- 305 2004		
2 24 001-	1734 6372	982 ~987	1 3753	3 55 - 200	1 2934	19 C 2x1-	19,25	
2 24 9010	1740 6216	986 9289	1 2 9 - 0	3268 4911	1 2662	1055 83.0	53	
2/24 3010	1/10 62*6	956 9289	3 2 7 0 8	3332 0954	1 38	3955 385		
2049 7443	1700 3469	903 2608	1 2 2 1 5	3439 1628	2.342	3918 2525		
26.48.24	1700 3469	1009 2008		320 2445		3961 3 9		
10783 44	1875 5700	1060 2810		3307 7215		392-35-5		
783 5 60	17 2 3 4	969 64 66	1 1082	3145 0845		1996.14		
		905 6686	1 3 0 3 0	3.00.03.6	11 (036	300000		
206-2404	1733 0410	976 0745	1 2654	3354 49 0	<u> </u>	393 33-		
1208 2612	1816 5725	1027 7247	1 7 1 2 4	3245 3423	11 3618	38-7 -21	3.4-14	
2-7 5744	2045 1222	1153 0864	1 76.47	3138 6339	N DOMA	34, 7.73	3	
2905 -870	2443 4746	1352 2140		3100 9259	1-5/14		2	
2890 3 100	2389 7590	1345 1825	1 3 812	30+0 0312	1 10.00	1.182.970		
2852 1740	2303 7390	1214 3013	1 1812	3045 3475	13.00	3.43.43	3.7 42	
2652 340	2186 9842	1234 3032	1400	2900 3515		3 63 2-49		
2-10 5448	2259 1845	1282 3108	- 4 763	2017 1072		1 3 3 3 3 3 3		
9.80	2599.24.4	145 9846	1 2 3 08	3,85 79 6		<u>}</u>		
3 9 50 4	2000 2610	145 0456	- / 308	3107 /2-9	+	1.0 .05		
-20 5275	2417 6184	• 159 3550	t —	33-0785	+	1 10 1		
2156 8343	2147 2874	1241 1.4		3 68 74-		<u>+</u>	<u> </u>	
23-232.6	1676.8.13	100 4003	* 2156	1-23 11-3		 		
	10 0 0 13	844-983	2930	1		 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		

Fig. IV 14 Comportamiento de la porosidad calculada con la densidad

Fig. IV.15 Comportamiento del coeficiente de Biot con la porosidad calculada con la densidad

Fig IV.16 Comportamiento del gradiente de presión de formación con el método de EME cuando alfa es uno comparado con el método de Eaton

Fig IV.17 Comportamiento del gradiente de presión de formación por el EME comparada con el método de Eaton

Fig IV. 18 Comportamiento de la presión de formación por el método de Eaton contra el método de

EME

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES:

- En el presente trabajo se implementó el método de Esfuerzo Matricial Equivalente para el cálculo de presión de poro y se utilizó la información de un pozo real. La implementación se llevó a cabo en una hoja de Excel, lo que nos permíte evaluar la presión de poro a través de las porosidades equivalentes
- Con base a los resultados presentados se puede concluir que la aplicación del método de Esfuerzo Matricial Equivalente es una opción factible de aplicar en campo, ya que la predicción de la presión de poro con este método es comparado con los resultados del método de Eaton, el cual es más empleado y los resultados fueron muy similares.
- Los valores de presión de poro que predice el método de esfuerzo Matricial Equivalente son usualmente menores a los valores de los métodos semiempíricos, tal como se presenta en el método de Eaton. Lo anterior es común cuando el valor de la constante de Biot se supone igual a uno.
- La ventaja del método de Esfuerzo Matricial Equivalente consiste en que no requiere de coeficientes empíricos. Sin embargo, se requiere de estimar el valor de la constante de Biot para ajustar los valores. Mediante el uso contínuo de este método se puede generar la relación de la constante de Biot contra profundidad y así ajustar las predicciones del método de Esfuerzo Matricial Equivalente.
Este trabajo, muestra que la aplicación de la geomecánica en procesos de diseño y operativos en la industria petrolera, puede mejorar nuestro entendimiento de condiciones problemáticas y simplificar su solución.

RECOMENDACIONES:

- Para distinguir las causas de la desviación en la llamada zona anormal se recomienda incluir información geológica y litológica ya que la correcta aplicación de dicha información nos permitirá obtener resultados de mayor confiabilidad.
- La implementación de este método en campo dependerá de la información disponible. Se recomienda obtener la mayor información del pozo así como de la toma de registros en las zonas más someras.

NOMENCLATURA

- a Constante de perforabilidad (adimensional)
- b Constante empirica de Bootwala (adimensional)
- d Exponente (adimensional)
- C_n Conductibilidad sobre la normal (Ω)
- C₀ Conductibilidad observada (Ω)
- D Profundidad (Longitud)
- D_b Diámetro de la barrena (Longitud))
- dc Exponente "dc" (adimensional)
- pequiA Densidad equivalente en A (masa / volumen)
- pequiB Densídad equivalente en B (masa / volumen)
- D. Profundidad a la cual es esfuerzo vertical real de la matriz es el esfuerzo matricial normal (longitud)
- D_s D-D_w (longitud)
- D_w Tirante de agua (longitud)
- f Factor de formación (adimensional)
- g Gravedad (fuerza / área)
- $\frac{S_A}{D}$ Gradiente de sobrecarga en A (masa / volumen)
- $\frac{S_B}{D}$ Gradiente de sobrecarga en B (masa / volumen)
- h Altura de al columna de hidrocarburos (longitud)
- K Constante empirica de Bourgoyne (adimensional)
- k Constante empírica de Bootwala (adimensional)

- K. Relación de esfuerzos matriciales de Matthes y Kelly (adimensional)
- Ka Relación de esfuerzos matriciales promedio (adimensional)
- MWc Peso de lodo utilizado en la perforación a la profundidad de interés (masa)
- MWa Gradiente de presión normal para la zona, en peso de lodo equivalente (masa / volumen)
- N Velocidad de rotación (longitud / tiempo)
- P Presión (fuerza / área)
- PA Presión de formación en A (fuerza / área)
- P_B Presión de formación en B (fuerza / área)
- Pr Presión del fluido en los poros de la roca (fuerza / área)
- Pf Presión de formación (fuerza / área)
- Pfr Presión de fractura (fuerza / área)
- Ph Presión hidrostática (fuerza / área)
- Pre Presión en la cima de una columna de aceite o gas (fuerza / área)
- P. Presión de una columna de agua (fuerza / área)
- R Ritmo de perforación (longitud / tiempo) (Ω)
- R_N Resistividad sobre la normal (Ω)
- R_{\circ} Resistividad observada (Ω)
- S Presión de sobrecarga (fuerza / área)
- SA Sobrecarga en A (fuerza / área)
- SB Sobrecarga en B (fuerza / área)
- W Peso sobre barrena (fuerza / longitud)
- ZA Profundidad de la arcilla bajo compactada (longitud)
- ZB Profundidad equivalente (longitud)

- α Coeficiente de Biot (adimensional)
- " α " Exponente de Eaton (adimensional)
- ΔPch Sobrepresión en la cima de los hidrocarburos (masa / longitud)
- Δt Tiempo de tránsito (tiempo / longitud)
- Δtn Tiempo de tránsito sobre la normal (tiempo / longitud)
- Δt_o Tiempo de tránsito observado (tiempo / longitud)
- Δt_m Tiempo de tránsito de la matriz rocosa (tiempo / longitud)
- ∆tr Tiempo de tránsito del fluido intersticial (tiempo / longitud)
- Porosidad (fracción)
- Porosidad inicial (fracción)
- λ Relación de la presión del fluído a la sobrecarga (adimensional)
- v Coeficiente de Poisson (adimensional)
- ρ Densidad (masa / volumen)
- ρⁱ Densidad del fluido intersticial (masa / volumen)
- p₉ Densidad del gas (masa / volumen)
- pm Densidad de la matriz rocosa (masa / volumen)
- ρ^r Densidad de la roca (masa / volumen)
- ρ_w Densidad del agua (masa / volumen)
- σ Esfuerzo efectivo de la matriz rocosa (fuerza / área)
- σv Esfuerzo matricial vertical (fuerza / área)
- σ_B Esfuerzo matricial horizontal (fuerza / área)
- Pr Gradiente de presión de formación (masa / volumen)

- $\left(\frac{Pf}{D}\right)_{m}$ Gradiente de presión de formación anormal (masa / volumen)
- $\left(\frac{Pf}{D}\right)_{a}$ Gradiente de presión de formación normal (masa / volumen)
- $\frac{S}{D}$ Gradiente de sobrecarga (masa / volumen)
- $\frac{s}{D}$ Gradiente de esfuerzo matricial (masa / volumen)
- $\left(\frac{S}{D}\right)_{an}$ Gradiente de esfuerzo matricial anormal (masa / volumen)

 $\left(\frac{s}{D}\right)_{a}$ Gradiente de esfuerzo matricial normal (masa / volumen)

REFERENCIAS

- 1. "Evaluación de las formaciones en México". Septiembre 1984. Schlumberger.
- Fertl, W. H., "Abnormal formation Pressures", Elsevier Scientific Publishing Company, 1976.
- Martínez, R. N., León v. R., "Procedimiento Semi-Automático para el Cálculo de Geopresiones y Gradientes de Fractura", IMP, Subdirección de Tecnología de Explotación, División de Evaluación de Formaciones, 1986.
- 4 Therzaghi, K., Peck, R. B., "Soil Mechanics in Engineering Practice", Jhon Wiley & Sons, Inc., New York, 1948.
- 5 Hubbert, M. K., Rubey, E. E., "Role of Fluid Pressure in Mechanics of Overthust Faulting, Part I", Bulletin, GSA, February 1959.
- Eaton, B. A., "The effect of Overburden Stress on Geopressure Prediction from Well Logs", SPE-AIME, August 1972.
- 7 Hottman, C E., Johnson, R. K., "Estimation of Formation Pressure from Log Derived Shale Properties", JPT, June 1965
- 8. "Formation Evaluation: Logging and Testing" SPE, November, 1999
- Adams, Neal, J., "Drilling engineering: A Complete Well Planning Approach", Penn Well Publishing Company, Tulsa, Oklahoma, 1985
- 10 Fernández, P. R., "Fundamentos y Conceptos Básicos de la Ingeniería de Perforación", IMP, Tomo I.
- Ferrán, A. L. "Evaluation of Abnormally High and Low Pressured Morrow Sands in Northwestern Oklahoma Using Well Logs and Water Sample Data. M S Thesis, Univ. of Tulsa, Tulsa Oklahoma., 1973
- 12 Corona, C. M. A., Cervantes, O. L. J. Y Cortés, P. L. A. "Estimación de las Presiones de Formación y de Fracturamiento Durante la Perforación-

Aplicación a un Caso Práctico". Congreso Panamericano de Ingeniería del Petróleo. 1979.

- 13 Información de PEMEX Región Marina
- 14 Bootwala, Y., "Meted Speeds On-Site Pressure Predictions". World Oil, October 1976.
- 15. Bourgoybne Jr., A. T., Young, F. S "Applied Drilling Engineering", SPE Textbook Series, Vol. 2, 1984.
- Bellotti, P., Giacca, D, "Pressure Evaluation Improves Drilling Programs"., Oil and Gas Journal, September 1978
- 17 Eaton, B. A., "The Equation for Geopressure Prediction from Well Logs", SPE-AIME, SPE. 5544
- Hubbert, M. K., Willis, D. G., "Mechanics of Hydraulic Fracturing", Trnas., AIME, 1957.
- 19 Matthews, W. R., Kelly, J., "How to Predict Formation Pressure and Fracture Gradient". Oil and Gas Journal, February 1967.
- 20. Eaton, B. A., "Fracture Gradient Prediction and Its Application in Oilfield Operations", JPT, October 1969.
- Mouchet, Jean Paul, Mitchell, Alan. "Abnormal Pressures While Drilling Elf Aquitaine, 1989
- 22 Holbrook, P W "Real-Time Pore Pressure and Fracture-Pressure Determination in all sedimentary Lithologies" SPE. Formation Evaluation December, 1995
- Wilkie, D. I. And Bernad, W. F. "Detecting and controlling Abnormal Pressure" World Oil, July 1981