

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

Lef

COMMENCE PROPERIONALES

ESTUDIO DE LA PREDICCION DE PROPIEDADES TERMODINAMICAS DE SUSTANCIAS POLARES CON MODELOS RECIENTES DE ECUACIONES DE ESTADO CUBICAS

TESIS

QUE PARA OBTENER EL TITULO DE

INGENIERO QUIMICO

PRESENTA

NOAM, KLEIMAN KOVALSKY

MEXICO, D. F.

2200

1999

TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado asignado:

Presidente	Prof. Antonio Reyes Chumacero
Vocal	Prof. Ramón Arnaud Huerta
Secretario	Prof. José Fernando Barragán Aroche
1er. suplente	Prof. Reynaldo Sandoval González
2do. suplerite	Prof. Jose Jorge Núñez Alba

Sitio donde se desarrolló el tema:

Facultad de Química, UNAM

Asesor del tema

Maestro José Fernando Barragán Aroche

Asesor técnico

Dr. Enrique Bazúa Rueda

Sustentante

٠

Noam Kleiman Kovalsky

Para mi mamá.

•

Resumen

ESTUDIO COMPARATIVO DE LA PREDICCIÓN DE PROPIEDADES TERMODINÁMICAS DE SUSTANCIAS POLARES CON MODELOS RECIENTES DE ECUACIONES DE ESTADO CÚBICAS

En este trabajo se estudia el comportamiento de ecuaciones de estado cúbicas (EEC) para calcular propiedades termodinámicas de componentes puros, sobre todo de substancias fuertemente polares. Se revisan varios modelos recientes propuestos para la dependencia con la temperatura de la función alfa, derivados de las propuestas de Soave (1972) y Peng-Robinson (1976), que incorporan entre uno y tres parámetros de ajuste. Los parámetros de las ecuaciones para alfa se ajustan utilizando datos experimentales de presión de vapor reportados en la literatura. Se compara el comportamiento de cada expresión de alfa para representar la presión de vapor, la entalpía de vaporización y el segundo coeficiente virial de 32 substancias que comprenden alcoholes, cetonas, éteres y alcanos normales. En el caso de la entalpía de vaporización y el segundo coeficiente virial, los resultados de la ecuación de estado son totalmente predictivos. En los modelos estudiados, no se introduce ningún parámetro adicional para temperaturas superiores a la crítica. Se propone adaptar el modelo de Mathias (1983) en la región supercrítica para aquellas ecuaciones de alfa que no tienen una expresión específica para estas condiciones. Los resultados obtenidos son satisfactorios v se concluye que varios de los modelos estudiados son adecuados para describir presión de vapor, entalpía de vaporización y segundo coeficiente virial de componentes puros, incluyendo sustancias fuertemente polares.

Abstract

COMPARATIVE STUDY OF PROPERTIES' PREDICTABILITY OF POLAR COMPOUNDS USING RECENT CUBIC EQUATIONS OF STATE

This work studies cubic equations of state (CES) predictability of thermodynamic properties' of pure compounds, especially of polar compounds.

Many temperature-dependent models of the *alpha* function were chosen for comparison. These models are derived from Soave (1972) and Peng-Robinson (1976) equations, which use between one and three parameters. These parameters are fitted to vapor pressure with experimental data.

The *alpha* models were compared for accuracy to reproduce vapor pressure, enthalpy of vaporization and second virial coefficient for 32 non-polar compounds, from a variety of compounds (alcohols, ketones, ethers and alkanes).

The enthalpy of vaporization and second virial coefficient calculations are completely predictive. For the supercritical region the same parameters were used, and no additional parameter was included.

The Mathias (1983) modification is introduced for the supercritical region for those equations, which do not have a specific expression. Many of the studied models allow the accurate representation of vapor pressure, enthalpy of vaporization and second virial coefficient of pure compounds, including highly polar compounds.

Contenido

1. Introducción	
2.Van der Waals y las ecuaciones de estado	4
2.1 El entorno histórico	
2.2 Van der Waals	
2.3 La ecuación de estado de van der Waals	
2.4 El segundo coeficiente virial	14
3. Las ecuaciones de estado cúbicas	17
3.1 Cálculo de propiedades con ecuaciones cúbicas de estado	
3.2 Los modelos recientes	23
3.2.1 La contribución de Soave (1972)	24
3.2.2 La contribución de Dingrani y Thodos	27
3.2.3 La contribución de Redlich	29
3.2.4 La contribución de Peng y Robinson	30
3.2.5 La contribución de Fuller	33
3.2.6 La contribución de Hamam, Chung, Elshayal y Lu	35
3.2.7 La contribución de Graboski y Daubert	37
3.2.8 La contribución de Harmens y Knapp	38
3.2.9 La contribución de Soave (1980)	40
3.2.10 La contribución de Chang, Rousseau y Ferrell	44
3.2.11 La contribución de Mathias	44
3.2.12 La contribución de Mathias y Copeman	46
3.2.13 La contribución de Soave (1984)	47
3.2.14 La contribución de Adachi y Lu	49
3.2.15 La contribución de Stryjek y Vera	51
3.2.16 La contribución de Stryjek y Vera 2	53
3.2.17 La contribución de Yu y Lu	54
3.2.18 La contribución de Carrier, Rogalski y Péneloux	56
3.2.19 La contribución de Proust y Vera	58
3.2.20 La contribución de Androulakis, Kalospiros y Tasios	59
3.2.21 La contribución de Melhem, Sainí y Goodwin	62
3.2.22 La contribución de Twu, Bluck, Cunningham y Coon	63

4. Estrategia de solución	65
4.1 Presión de vapor	65
4.2 Entalpías de vaporización	74
4.3 Segundo coeficiente virial	76
4.4 Datos experimentales	77
4.4.1 Presiones de vapor	77
4.4.2 Entalpías de vaporización	77
4.4.3 Segundo coeficiente virial	78
4 5 La derivada de <i>alfa</i> con respecto a la temperatura	79
4.6 Estudio especial del modelo de Mathias	87
5. Análisis de resultados	92
5.1 Presión de vapor	92
5.1.1 Alcoholes/Presión de vapor	93
5.1.2 Cetonas/Presión de vapor	95
5 1 3 Éteres/Presión de vapor	96
5.1.4 Hidrocarburos/Presión de vapor	97
5.1.5 Evaluación general de la propiedad/Presión de vapor	99
5.2 Entalpía de vaporización	116
5.2.1 Alcoholes/ Entalpía de vaporización	116
5.2.2 Cetonas/ Entalpía de vaporización	117
5.2.3 Hidrocarburos/ Entalpía de vaporización	119
5.2.4 Evaluación general de la propiedad/ Entalpía de vaporización	120
5.3 Segundo coeficiente virial	
5.3.1 Alcoholes/ Segundo coeficiente virial	125
5.3.2 Cetonas/ Segundo coeficiente virial	126
5.3.3 Éteres/ Segundo coeficiente virial	127
5.3.4 Hidrocarburos/ Segundo coeficiente virial	128
5.3.5 Evaluación gral. de la propiedad/ Segundo coeficiente virial	130
5.4 Segundo coeficiente virial/Modelo de Mathias	135
5.4.1 Alcoholes/ Segundo coeficiente virial-Mathias	135
5.4.2 Cetonas/ Segundo coeficiente virial-Mathias	136
5.4.3 Éteres/ Segundo coeficiente virial-Mathias	137
5.4.4 Hidrocarburos/ Segundo coeficiente virial-Mathias	139
5.4.5 Evaluación general de la propiedad/	
Segundo coeficiente virial-Mathias	140
5.5 Comparación del modelo normal y el modelo de Mathias	145
5.5.1 Alcoholes	145
5.5.2 Cetonas	145
5.5.3 Éteres	146
5.5.4 Hidrocarburos	146
5.5.5 Evaluación general	147
6. Conclusiones	153

APÉNDICES

Indice de tablas

- Tabla 1Comparación del error relativo promedio de la predicción de presión de vapor
utilizando dos ecuaciones de estado (Redlich-Kwong y Peng-Robinson).
- Tabla 2.a Presiones de vapor. Error relativo promedio para alcoholes.
- Tabla 2.b Presiones de vapor. Error relativo promedio para cetonas.
- Tabla 2.c
 Presiones de vapor. Error relativo promedio para éteres.
- Tabla 2.d Presiones de vapor. Error relativo promedio para hidrocarburos.
- Tabla 3.a Parámetros estimados para alcoholes.
- Tabla 3.b Parámetros estimados para cetonas.
- Tabla 3.c Parámetros estimados para éteres.
- Tabla 3.d Parámetros estimados para hidrocarburos.
- Tabla 4.a Datos experimentales de presión de vapor para alcoholes.
- Tabla 4.b Datos experimentales de presión de vapor para cetonas.
- Tabla 4.c Datos experimentales de presión de vapor para éteres e hidrocarburos.
- Tabla 5Datos experimentales de entalpías de vaporización.
- Tabla 6.a Entalpía de vaporización. Error relativo promedio para alcoholes.
- Tabla 6.b Entalpía de vaporización. Error relativo promedio para cetonas e hidrocarburos.
- Tabla 7.a
 Segundo coeficiente virial. Error relativo promedio para alcoholes.
- Tabla 7.b Segundo coeficiente virial. Error relativo promedio para cetonas.
- Tabla 7.c Segundo coeficiente virial. Error relativo promedio para éteres.
- Tabla 7.d
 Segundo coeficiente virial. Error relativo promedio para hidrocarburos.
- Tabla 8.a Segundo coeficiente virial/Mathias. Error relativo promedio para alcoholes.
- Tabla 8.b Segundo coeficiente virial/Mathias. Error relativo promedio para cetonas.
- Tabla 8.c Segundo coeficiente virial/Mathias. Error relativo promedio para éteres.
- Tabla 8.d Segundo coeficiente virial/Mathias. Error relativo promedio para hidrocarburos
- Tabla 9.a
 Segundo coeficiente virial/Comparación de modelos. Error relativo promedio para alcoholes.
- Tabla 9.b Segundo coeficiente virial/Comparación de modelos. Error relativo promedio para cetonas.
- Tabla 9.c Segundo coeficiente virial/Comparación de modelos. Error relativo promedio para éteres.
- Tabla 9.d
 Segundo coeficiente virial/Comparación de modelos. Error relativo promedio para hidrocarburos.
- Tabla 10
 Suma de errores calculados para todas las sustancias
- Tabla 11 Ecuación de estado cúbica seleccionada

1. Introducción

Las ecuaciones de estado cúbicas (EEC) son una forma conveniente de representar el comportamiento presión-volumen-temperatura (PVT) de los fluidos y pueden usarse tanto para sustancias puras como para sus mezclas. Las ecuaciones de estado cúbicas (EEC) que se utilizan para calcular propiedades termodinámicas y equilibrio de fases de mezclas, parten de una ecuación de estado para sustancias puras. En consecuencia, la capacidad predictiva de las ecuaciones de estado depende, en primer término, de su desempeño en el cálculo de propiedades de componentes puros y en segundo término, de la regla de mezclado que se utilice para una mezcla dada.

En este trabajo se estudia el comportamiento de EEC para calcular propiedades termodinámicas de componentes puros, sobre todo de substancias fuertemente polares.

A lo largo del mismo se revisaron varios modelos recientes de EEC derivadas de las propuestas de Soave (1972) y Peng-Robinson (1976), en donde se proponen nuevas expresiones para la dependencia con la temperatura de la función *alfa* en la constante *a* de la EEC. Estos modelos incorporan entre uno y tres parámetros de ajuste particulares de cada substancia.

En el contexto de las ecuaciones de estado, donde utilizando pocos parámetros es posible obtener información que depende sólo del estado del fluido en una amplia gama de condiciones, se alcanza una representación imperfecta, ya que muestra diferencias con la información experimental. Por esta razón se han dirigido esfuerzos para mejorar las ecuaciones, tratando de minimizar el nivel de errores.

Numerosos trabajos se han orientado a mejorar la capacidad predictiva de las EEC tanto para componentes puros como para mezclas. En componentes puros, los esfuerzos se han centrado en la dependencia con temperatura de la constante a, a través de una función *alfa*.

En este trabajo se revisan varias expresiones para *alfa* que han sido propuestas recientemente (Soave, 1980; Mathias, 1983; Mathias y Copeman, 1983; Adachi y Lu, 1984; Stryjek y Vera, 1986; Stryjek y Vera 2, 1986; Yu y Lu, 1987; Androulakis y col., 1989; Melhem y col., 1989).

Para mezclas, los trabajos se han orientado al desarrollo de reglas de mezclado para las constantes a y b de la EEC. Este trabajo se centra en el estudio de componentes puros y no se hace mención a las reglas de mezclado. Como los resultados reportados por los trabajos originales arrojan conclusiones contradictorias, algunos autores se han preocupado por establecer una base común de evaluación de los modelos de reglas de mezclado para

determinar las bondades de cada propuesta (Solórzano-Zavala y col., 1996; Orbey y Sandler, 1997).

El objetivo de este trabajo es realizar un esfuerzo semejante aplicado a componentes puros. La descripción apropiada de los componentes puros es un paso fundamental para garantizar el correcto desempeño del modelo en la predicción de las mezclas (Holderbaum y Gmehling, 1991).

Para las sustancias puras, numerosos autores han propuesto modificaciones a la expresión original de Soave del parámetro *alfa*, dependiente de la temperatura.

Cada propuesta tiene virtudes y defectos. En los trabajos originales se compara la expresión propuesta con las precedentes, sin embargo, dado que la base de comparación en cada caso es diferente, no se ha podido llegar a una conclusión definitiva de cuál es la mejor expresión. Es difícil evaluar sistemáticamente, y con precisión, los méritos relativos de las diferentes expresiones de *alfa* ateniéndose únicamente a los resultados de las publicaciones originales.

Por ello, el propósito de este trabajo es llevar a cabo una comparación sistemática de diferentes expresiones de *alfa*, utilizando un común denominador como marco de evaluación. Para alcanzar esta meta se usó el mismo conjunto de sustancias, los mismos datos experimentales, el mismo método de ajuste y optimización de parámetros y la misma función objetivo para cada una de las expresiones estudiadas. También se utilizó el mismo algoritmo para los cálculos de equilibrio líquido-vapor (ELV).

Tradicionalmente se utilizan exclusivamente datos de presión de vapor para comparar la capacidad predictiva de diferentes expresiones de *alfa*. Lo anterior se debe a que las EEC deben reproducir adecuadamente las presiones de vapor de componentes puros para poder predecir correctamente el equilibrio de fases en mezclas. Sin embargo, para que la EEC tenga un buen desempeño en la simulación de procesos, debe producir buenos resultados para las entalpías de vaporización y en consecuencia sus cálculos térmicos deben ser adecuados.

Por otro lado, en muchas situaciones las mezclas incorporan gases ligeros que se encuentran a condiciones muy por encima de su punto crítico. En estos casos la EEC debe representar adecuadamente las desviaciones con respecto del gas ideal a temperaturas supercríticas. Una manera de comprobar lo anterior es que la EEC represente apropiadamente el segundo coeficiente virial.

En este trabajo se comparan 11 propuestas que por sus características representan opciones que mejoran la capacidad predictiva de las EEC.

Las funciones *alfa* revisadas son no paramétricas o tienen de uno a tres parámetros. En general, se desea utilizar ecuaciones con el menor número de parámetros para facilitar su manejo y agilizar los cálculos.

Este trabajo es parte de un proyecto global que está desarrollando el *Grupo de Termodinámica Aplicada* en el Departamento de Ingeniería Química de la Facultad de Química de la Universidad Nacional Autónoma de México.

Como resultado de dicho proyecto se tiene un compendio de rutinas de cálculo termodinámico estructuradas de tal forma que puedan ser ensambladas con un mínimo de requerimientos de interface, completamente modulares y codificadas en lenguaje FORTRAN.

Este proyecto se puede visualizar por medio de la Figura 1. Siguiendo este enfoque se puede trabajar de manera simultánea en varias de las partes del círculo. Este trabajo se enfoca al centro de dicho círculo: el modelo de predicción de propiedades de sustancias puras.

Fig.1. Diagrama del proyecto de desarrollo termodinámico.

Como producto de este trabajo se tiene una rutina en donde están programadas las diferentes expresiones de *alfa*, con la intención de que el interesado las pueda emplear en la construcción de programas que requieran cálculos de equilibrio de fases líquido-líquidovapor en general. Estos programas se encuentran disponibles en el Departamento de Ingeniería Química de la Facultad de Química de la UNAM.

Todos los elementos anteriores hacen que el presente trabajo sea una aportación valiosa al proyecto global del *Grupo de Termodinámica Aplicada*, tanto por la metodología utilizada como por sus conclusiones.

2. Van der Waals y las ecuaciones de estado

2.1 El entorno histórico

El siglo XIX fue una gran época para la ciencia. Hacia 1880 el prestigio de la ciencia era indiscutible en toda Europa. Su progreso lo penetraba todo: la enseñanza, la industria, la vida.

Apenas la tracción a vapor desarrollada por Stephenson acababa de dotar al mundo de una red de vías férreas y marítimas transoceánicas regulares, cuando la electricidad aparece triunfante en la Exposición de París de 1881.

Los descubrimientos del alemán Ohm en 1827, seguidos por las investigaciones del inglés Faraday, y del desarrollo del dínamo, inventado en 1869 por el belga Gramme, transforman la electricidad en una fuerza motriz que los descubrimientos del francés Deprez permiten transportar a distancia. En 1879 circulan los primeros tranvías eléctricos urbanos, en 1879 Edison ofrece al mundo la primera lámpara eléctrica que, en 1882, iluminará a Wall Street. El alumbrado eléctrico permite entonces multiplicar las horas útiles y productivas.

En 1862 Lenoir desarrolla el primer motor de combustión interna, que lleva a la invención del motor de combustión interna de Otto en 1867 y el primer automóvil, que comienza a circular para 1900, diseñado por Gottlieb Daimler y Benz; fecha en la cual el conde Graf von Zeppelin construye el primer dirigible.

El teléfono, inventado por Graham Bell 1877, junto con el transmisor de resistencia al carbón de Edison en 1876, suprimen prácticamente la distancia que separa a los hombres.

El descubrimiento de las ondas de radio y el desarrollo de la forma de transmitirse y captarse por Hertz en 1888, confirmaban de manera espectacular la teoría electromagnética de Maxwell. La aplicación más fantástica de las "ondas hertzianas" se produjo ocho años después, cuando Marconi las utilizó para comunicar a grandes distancias.

Los descubrimientos se suceden de manera acelerada: en 1896 el alemán Röntgen descubre los rayos X, que permiten la visión a través de la materia; en 1898 el francés Lumière inventa el cinematógrafo, el matrimonio Curie da a conocer el radio y sus sorprendentes propiedades. Después, el inglés lord Kelvin revela la existencia de los átomos y el alemán Max Planck la de los iones y los electrones en 1900. Los progresos de la química sintética abren a la industria perspectivas nuevas.

En 1845 Wohler descubre la manera de refinar el aluminio metálico y en 1886 Hiroult descubre el método para fabricar el aluminio por electrólisis.

Joule da a conocer sus estudios en 1843 del equivalente mecánico del calor y en 1852 publica con Thomson su famoso trabajo en que demuestra que existe una relación cuantitativa entre el trabajo y el calor, y que en consecuencia, el calor es una forma de energía.

En el campo de la química destacan los desarrollos de Kekulé en la valencia del carbono, Mendeleyev con su tabla periódica, el descubrimiento de la anilina de Perkin, los electrolitos de Arrhenius y la baquelita de Baekeland.

La ciencia se apodera de la medicina, crea terapéuticas nuevas y, al prolongar la existencia, acentúa el crecimiento demográfico.

El descubrimiento de los microbios por Pasteur, la identificación de los bacilos del tifus en 1884, de la difteria, del tétanos, del cólera (1894) y de la peste inauguran una nueva era en la historia de la medicina.

La ciencia emprende una nueva lucha contra las grandes epidemias, el paludismo y la fiebre amarilla, mientras que la anestesia y la asepsia de Lister en 1865 ensanchan el campo de la cirugía.

En el plano social, la higiene, la asistencia médica, la instalación de conducciones de agua y el tratamiento de las aguas residuales ocasionan un notable descenso de la mortalidad.

Por todas partes la ciencia se pone al servicio de la humanidad. Este es el mundo que rodea a van der Waals.

2.2 Van der Waals

Johannes Diderik van der Waals nació en Leiden, Holanda el 23 de noviembre de 1837. Realizó estudios por su cuenta aprovechando las instalaciones de la Universidad de Leiden, fue profesor de secundaria y a partir de 1877 profesor en la Universidad de Amsterdam.

En su investigación doctoral analizó la naturaleza de los gases y el paso del estado gaseoso a la fase líquida. Supuso que los fluidos están formados por un gran número de partículas móviles que tienen cierto tamaño y que ejercen atracción unas sobre otras a distancias pequeñas.

Van der Waals publicó trabajos sobre teoría molecular, termodinámica de capilaridad, termodinámica de mezclas y su obra maestra en 1873: la ecuación de estado, que es la base de la termodinámica aplicada.

Ganó el premio Nobel de Física en 1910 por su trabajo sobre el comportamiento de los gases.

Van der Waals murió en Amsterdam el 9 de marzo de 1923.

2.3 La ecuación de estado de van der Waals

Van der Waals fue el primero en reconocer la influencia del tamaño molecular y de las fuerzas intermoleculares sobre la presión de un gas.

La ley del gas ideal:

$$\overline{\overline{V}} = \frac{RT}{p} \tag{1}$$

implica que a la temperatura de cero absoluto, bajo cualquier presión finita, el volumen de un gas será de cero.

En realidad, al enfriarse, los gases reales se licúan y finalmente se solidifican. Después de licuarse, el volumen no cambia apreciablemente al variar la temperatura.

Si se añade una constante positiva al volumen ideal, se puede formar una nueva ecuación que calcule un volumen finito positivo para el gas a cero grados:

$$\overline{V} = b + \frac{RT}{p}$$
(2)

Esta ecuación implica que a medida que la presión se hace infinita, el volumen molar se aproxima al valor límite de *b*. Mientras tanto, la ecuación del gas ideal predice que el volumen molar se aproxima a cero a presiones muy altas.

Como por definición el factor de compresibilidad es:

$$\overline{Z = \frac{p\overline{V}}{RT}}$$
(3)

Entonces al multiplicar la ecuación (2) por $\frac{p}{RT}$ se tiene:

$$Z = 1 + \frac{bp}{RT}$$
(4)

Esta ecuación exige que Z sea función lineal de la presión con una pendiente positiva de *b RT* De esta manera se concluye que la suposición de que las moléculas de un gas tienen tamaño finito es suficiente para explicar valores de Z mayores que la unidad.

Sin embargo, algunos gases como el nitrógeno presentan un comportamiento diferente, como por ejemplo, una pendiente negativa a presiones bajas, con valores de Z menores a la unidad.

Era necesario encontrar la razón de ese efecto.

Van der Waals observó que el nitrógeno y el dióxido de carbono presentaban valores de Z menores a la unidad y que ambos se licuaban con facilidad. El científico observó cierta relación entre la facilidad para licuarse y el factor de compresibilidad.

Para que un gas se licúe se le debe suministrar una energía conocida como calor de vaporización, para que una molécula pase del estado líquido al estado vapor.

Esta energía es necesaria para vencer la fuerza de atracción entre las moléculas. En un líquido esta fuerza es mayor debido a que las moléculas se encuentran mas cerca entre si, y es más débil en un gas ya que las moléculas están muy separadas.

La presión ejercida por un gas sobre las paredes del recipiente que lo contiene depende de las fuerzas atractivas de las moléculas del gas, que tienden a reunirlas, y disminuyen la presión sobre las paredes. Esta fuerza atractiva actúa reduciendo la presión por debajo de la ejercida por un gas ideal.

Debido a que la fuerza de atracción ejercida por las moléculas es proporcional a su concentración, la fuerza de atracción entre dos elementos de volumen de concentraciones diferentes es proporcional a las concentraciones de ambos elementos, y se puede expresar como: fuerza de atracción $\propto c_1c_2$

Pero como la concentración de un gas es la misma en cualquier parte, entonces:

 $c_1 = c_2 = c$

y la fuerza de atracción es proporcional a c^2 .

La concentración puede expresarse como:

$$c = \frac{n}{V} = \frac{1}{\overline{V}}$$

La ecuación (2) puede escribirse como:

$$p = \frac{RT}{\overline{V} - b}$$
(5)

Dado que las fuerzas atractivas entre las moléculas hacen que la presión sea menor que la dada por la ecuación anterior en una cantidad proporcional a $\frac{1}{\overline{V}^2}$, se requiere ajustar el modelo restando este término al segundo miembro de la ecuación anterior para tener la siguiente ecuación, que es la ecuación de van der Waals:

$$p = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2}$$
(6)

en que a es una constante positiva cuyo valor es aproximadamente proporcional a la energía de vaporización del líquido.

La ecuación de van der Waals toma en cuenta, por consiguiente entonces dos factores fundamentales: El tamaño molecular y el efecto de las fuerzas atractivas.

En la ecuación (2) se observa que el denominador de esta ecuación es menor que el de la ecuación del gas ideal.

El efecto del tamaño por si mismo aumenta la presión por encima del valor ideal, lo cual implica que sólo el espacio vacío entre las moléculas es el que sigue la ley del gas ideal y que el efecto de las fuerzas atractivas reduce la presión por debajo del valor ideal.

Retomando otra vez la ecuación (6) se observa que si V es muy grande, la ecuación se aproxima a la del gas ideal, ya que V es muy grande en comparación con b. Por su parte el término $\frac{a}{v^2}$ es muy pequeño comparado con el primer término, y por ello puede despreciarse a altas temperaturas.

Si se reordena la ecuación de van der Waals se puede obtener una expresión de la siguiente forma:

$$\left(p + \frac{a}{\overline{V}^2}\right)(\overline{V} - b) = RT$$
(7)

Al desarrollar el producto y multiplicar el resultado por $\frac{\nu^2}{p}$ se obtiene la siguiente expresión:

$$\overline{\overline{V}^{3}} - \left(b + \frac{RT}{p}\right)\overline{\overline{V}^{2}} + \frac{a}{p}\overline{\overline{V}} - \frac{ab}{p} = 0$$
(8)

Esta ecuación es cúbica y permite obtener tres raíces reales para ciertos valores de presión y temperatura.

Estas tres raíces se encuentran dentro de la región de dos fases.

Conforme se aumenta la temperatura, la región de dos fases se estrecha y finalmente se cierra en un punto.

Este punto, en donde coexisten las fases líquido y vapor corresponde al punto crítico y se define por una temperatura crítica y una presión crítica, a la que le corresponde un volumen crítico único. En este punto las tres raíces de la ecuación (8) son iguales a V_c .

La ecuación cúbica puede expresarse en función de sus tres raíces reales $V_1 V_2 y V_3$ como:

$$(V-V_1)(V-V_2)(V-V_3) = 0 (9)$$

En el punto crítico $V_1 = V_2 = V_3 = V_c$ por lo que la expresión se reduce a:

$$(V - V_c)^3 = 0 (10)$$

Si se desarrolla este binomio se tiene:

$$V^{3} - 3V_{c}V^{2} + 3V_{c}^{2}V - V_{c}^{3} = 0$$
(11)

Asi, la ecuación (8) se transforma en:

$$\overline{V}^{3} - \left(b + \frac{RT_{c}}{p_{c}}\right)\overline{V}^{2} + \frac{a}{p_{c}}\overline{V} - \frac{ab}{p_{c}} = 0$$
(12)

Como las ecuaciones (11) y (12) son diferentes expresiones de la misma ecuación, los coeficientes de las potencias individuales de V deben ser los mismos en ambas ecuaciones.

Si se igualan los coeficientes se obtienen las siguientes ecuaciones:

$$\overline{3\overline{V}_{c}} = b + \frac{RT_{c}}{p_{c}} \qquad \overline{3\overline{V}_{c}}^{2} = \frac{a}{p_{c}} \qquad \overline{\overline{V}_{c}}^{3} = \frac{ab}{p_{c}} \qquad (13)$$

También es posible llegar a esta determinación del volumen crítico utilizando el cálculo diferencial.

Si se grafican las relaciones presión-volumen a diferentes temperaturas utilizando la ecuación de van der Waals se obtiene una gráfica en donde en el punto crítico se produce un punto de inflexión en la curva.

De acuerdo con las condiciones necesarias para la existencia de un punto de inflexión, tanto la pendiente como la segunda derivada en este punto son nulas, o sea:

$$\left(\frac{\partial p}{\partial \overline{V}}\right)_{I} = 0 \qquad \left(\frac{\partial^{2} p}{\partial \overline{V}^{2}}\right)_{T} = 0 \qquad (14)$$

A partir de la ecuación de van der Waals se calcula:

$$\left(\frac{\partial p}{\partial \overline{V}}\right)_{I} = \frac{-RT}{\left(\overline{V} - b\right)^{2}} + \frac{2a}{\overline{V}^{3}}$$
(15)

$$\left(\frac{\partial^2 p}{\partial \overline{V}^2}\right)_{\gamma} = \frac{2RT}{\left(\overline{V} - b\right)^3} - \frac{6a}{\overline{V}^4}$$
(16)

y por ello en el punto crítico se tiene:

$$0 = \frac{-RT_{c}}{\left(\overline{V}_{c} - b\right)^{2}} + \frac{2a}{\overline{V}_{c}^{3}}$$
(17)

$$0 = \frac{2RT_c}{\left(\overline{V}_c - b\right)^3} - \frac{6a}{\overline{V}_c^4}$$
(18)

$$p_{\iota} = \frac{RT_{\iota}}{(\overline{V}_{\iota} - b)} - \frac{a}{\overline{V}_{\iota}^{2}}$$
(19)

sistema de tres ecuaciones simultáneas cuya solución coincide con las mismas expresiones (13) que se obtuvieron anteriormente.

Por su lado las ecuaciones (13) pueden resolverse para V_c , p_c y T_c en función de a, b y R obteniéndose:

$$\overline{\widetilde{V}_{\iota}} = 3b \tag{20}$$

$$p_{\iota} = \frac{a}{27b^2} \tag{21}$$

$$T_c = \frac{8a}{27Rb}$$
(22)

Si los valores de los parámetros a y b son conocidos, las ecuaciones (20), (21) y (22) pueden utilizarse para calcular V_c p_c y T_c.

Entonces, se puede calcular a, b y R en función de las constantes críticas como:

$$b = \frac{\overline{V}_{\iota}}{3}$$
(23)

$$a = 3p_{\iota} \overline{V}_{\iota}^{2}$$
(24)

$$R = \frac{8p_c \overline{V}_c}{3T_c}$$
(25)

Sin embargo, el valor de R que se obtiene con la ecuación (25) no se apega completamente al real.

El error proviene de la dificultad de obtener con precisión los valores experimentales del volumen en las condiciones críticas.

Por ello es aconsejable obtener los valores de *a* y *b* a partir de p_c y T_c únicamente. Esto se puede hacer resolviendo la ecuación (25) para V_c :

$$\overline{\overline{V}}_{\iota} = \frac{3RT_{\iota}}{8p_{\iota}}$$
(26)

y reemplazando este valor de V_c en las ecuaciones (23) y (24) se tiene:

$$a = \frac{27(RT_{\epsilon})^2}{64p_{\epsilon}}$$
(27)

$$b = \frac{RT_{\iota}}{8p_{\iota}}$$
(28)

Por otra parte, si se calcula el valor de V_c con la ecuación (26) y se lo compara con los valores experimentales, el resultado no es muy bueno. Esto se debe a la falta de precisión de la ecuación de van der Waals para la zona cercana al punto crítico.

2.4 El Segundo Coeficiente Virial

Para calcular el factor de compresibilidad Z para un gas de van der Waals se multiplica la ecuación

$$p = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2}$$
(6)

por el factor $\frac{\vec{V}}{RT}$ obteniendo la siguiente ecuación:

$$Z = \frac{p\overline{V}}{RT} = \frac{\overline{V}}{\overline{V} - b} - \frac{a}{RT\overline{V}}$$
(30)

Dividiendo el primer término entre V la expresión se reduce a:

$$Z = \frac{1}{1 - \frac{b}{\overline{V}}} - \frac{a}{RT\overline{V}}$$
(31)

Cabe considerar que a presiones bajas el término $\frac{b}{V}$ es pequeño comparado con la unidad. Por ello es posible desarrollar el primer término del segundo miembro en una serie de potencias de $\frac{1}{V}$ como sigue:

$$\frac{1}{1-\frac{b}{\overline{V}}} = 1 + \frac{b}{\overline{V}} + \left(\frac{b}{\overline{V}}\right)^2 + \dots$$
(32)

Sustituyendo la ecuación (32) en la (31) y reagrupando términos se tiene:

$$Z = 1 + \left(b - \frac{a}{RT}\right)^{1}_{V} + \left(\frac{b}{\bar{V}}\right)^{2} + \left(\frac{b}{\bar{V}}\right)^{3} + \dots$$
(33)

que expresa Z en función de la temperatura y del volumen molar.

Una expresión para Z en función de p y T podría, a partir de la ecuación (33), tener la forma:

$$Z = 1 + A_1 p + A_2 p^2 + A_3 p^3 + \dots$$
(34)

donde A₁, A₂, A₃, .son sólo funciones de T.

Para determinar el valor de estas constantes se acude a la definición de Z:

$$\frac{1}{V} = \frac{p}{RTZ}$$
(35)

y de la ecuación (33) se tiene:

$$1 + A_1 p + A_2 p^2 + \dots = 1 + \left(b - \frac{a}{RT}\right) \frac{p}{RTZ} + \left(\frac{b}{RT}\right)^2 \frac{p^2}{Z^2} + \dots$$
(36)

o sea:

$$A_{1} + A_{2}p + ... = \left(b - \frac{a}{RT}\right)\frac{1}{RTZ} + \left(\frac{b}{RT}\right)^{2}\frac{p}{Z^{2}} + ...$$
(37)

Cuando $p \rightarrow 0$ Z $\rightarrow 1$, y entonces:

$$A_{1} = \frac{1}{RT} \left(b - \frac{a}{RT} \right)$$
(38)

que es conocido como segundo coeficiente virial.

La expansión de Z es entonces:

$$Z = 1 + \left(b - \frac{a}{RT}\right) \frac{p}{RT} + \left(2b - \frac{a}{RT}\right) \frac{ap^2}{(RT)^3} + \dots$$
(39)

La pendiente de la curva de Z con respecto a p se obtiene de la derivada parcial de la ecuación anterior con respecto a la presión, manteniendo la temperatura constante:

$$\begin{pmatrix} \partial Z \\ \partial p \end{pmatrix}_{T} = \begin{pmatrix} b - a \\ RT \end{pmatrix}_{RT}^{1} + \begin{pmatrix} 2b - a \\ RT \end{pmatrix} \begin{pmatrix} 2ap \\ (RT)^{3} + \dots \end{pmatrix}$$
(40)

Cuando la presión es igual a cero:

$$\left(\frac{\partial Z}{\partial p}\right)_{T} = \left(b - \frac{a}{RT}\right)\frac{1}{RT}$$
(41)

Esta derivada es la pendiente inicial de la curva Z vs. p.

Si $\frac{a}{RT} < b$, la pendiente es positiva, lo que significa que el efecto del tamaño molecular caracteriza el comportamiento del gas.

Si $\frac{a}{RT} > b$, la pendiente es negativa, lo que significa que el efecto de las fuerzas de atracción define su comportamiento.

La ecuación de la pendiente muestra que si T es baja, $\frac{a}{RT} > b$ y la pendiente es negativa.

A medida que T aumenta, $\frac{a}{RT}$ se hace más pequeño, y si T es lo suficientemente alta,

 $\frac{a}{RT} < b$ y la pendiente es positiva,

Finalmente, si T es muy alta, la pendiente tiende a hacerse nula

A una temperatura intermedia, llamada *temperatura de Boyle*, la pendiente inicial debe ser cero.

Cuando esto ocurre la temperatura de Boyle se expresa como:

$$\boxed{T_h = \frac{a}{Rb}} \tag{42}$$

3. Las ecuaciones de estado cúbicas

A partir de los tiempos de van der Waals, en el siglo pasado, se han desarrollado nuevas ecuaciones de estado que buscan representar con mayor fidelidad la relación presión-temperatura-volumen de los fluidos. Estas expresiones han evolucionado desde formas sencillas constituidas con una o dos constantes, hasta formas complicadas con más de 50 constantes.

Algunas de estas expresiones son recomendables para el cálculo preciso de propiedades termodinámicas sencillas, pero no lo son para propiedades más complejas como presión de vapor, calor latente de vaporización, comportamiento de mezclas, o equilibrio líquido-vapor multicomponente.

Estos cálculos más complicados implican numerosas manipulaciones matemáticas, procedimiento iterativos complejos y una gran capacidad de almacenamiento en la memoria de la computadora, que aún utilizando equipos modernos resulta excesiva, dando como resultado una respuesta muy lenta.

Es así como las ecuaciones más cortas resultan más atractivas. Estas ecuaciones cortas son cúbicas en el volumen, como la ecuación de van der Waals⁵² y muchas otras, entre las cuales las mas conocidas son: Clausius¹, Berthelot², virial de tercer grado de Onnes³, Redlich-Kwong⁴, Wilson⁵, Barner-Pigford-Schreiner⁶, Martin⁷, Lee-Edmister⁸, Soave⁹, Dingrani-Thodos¹⁰, Usdin-McAuliffe¹¹, Redlich¹², Peng-Robinson¹³, Fuller¹⁴ y Won¹⁵. Cada autor ha indicado las ventajas, las bases teóricas o experimentales y las restricciones de su ecuación.

Cada autor ha indicado las ventajas, las bases teóricas o experimentales y las restricciones de su ecuación. Se han realizado algunas comparaciones de sus características y su comportamiento por Abbot¹⁶ (1973), por Martin¹⁷ (1979) y por Moreno⁹¹ (1984) pero en años recientes se han desarrollado nuevas ecuaciones de estado, cuya capacidad para predecir propiedades termodinámicas no ha sido comparada.

^{*} Moreno concluye que "A nivel global, en la fase líquida de mezclas no polares, prevalece la superioridad de las ecuaciones de orden superior, pero para sustancias puras tal superioridad les es arrebatada por una ecuación cúbica".

3.1 Cálculo de propiedades con ecuaciones cúbicas de estado

En un sistema heterogéneo formado por varias fases, cualquier propiedad extensiva se puede calcular por la suma de las propiedades de cada una de las fases, de manera que si F es una propiedad extensiva como la entalpía, entropía, energía interna o cualquier otra, se cumple que:

$$\mathbf{F}_{\text{total}} = \mathbf{F}_{a} + \mathbf{F}_{b} + \mathbf{F}_{c} + \dots$$

donde a, b y c indican la fase respectiva.

Como las ecuaciones cúbicas de estado son ecuaciones explícitas en la presión, es posible calcular todas las propiedades extensivas con respecto al volumen y a temperatura constante, para de esta manera tenerlas expresadas en función de la presión.

Así se tienen las siguientes expresiones¹⁸:

$$\left(\frac{\partial U}{\partial V}\right)_{T,N} = T \left(\frac{\partial P}{\partial T}\right)_{V,N} - P$$
(1)

$$\left(\frac{\partial S}{\partial V}\right)_{T,N} = \left(\frac{\partial P}{\partial T}\right)_{V,N}$$
(2)

$$\left(\frac{\partial H}{\partial V}\right)_{I,N} = T \left(\frac{\partial P}{\partial T}\right)_{V,N} + V \left(\frac{\partial P}{\partial V}\right)_{T,N}$$
(3)

$$\left(\frac{\partial G}{\partial V}\right)_{T,N} = V\left(\frac{\partial P}{\partial V}\right)_{T,N}$$
(4)

$$\left[\left(\frac{\partial A}{\partial V}\right)_{T,N} = -P\right]$$
(5)

$$\left[\left(\frac{\partial \hat{\mu}_{i}}{\partial V}\right)_{T,N} = -\left(\frac{\partial P}{\partial N_{i}}\right)_{T,V,N_{j+1}}\right]$$
(6)

18

$$\left(\frac{\partial \ln \hat{f}_i}{\partial V}\right)_{T,N} = -\frac{1}{RT} \left(\frac{\partial P}{\partial N_i}\right)_{T,V,N_{j \neq i}}$$
(7)

Se puede demostrar que las ecuaciones (1) y (2) para un gas ideal son:

$$\left(\frac{\partial U^*}{\partial V}\right)_{I,N} = 0 \tag{8}$$

$$\left(\frac{\partial S^{\star}}{\partial V}\right)_{T,N} = \frac{NR}{V}$$
(9)

Al efectuar las restas de las derivadas para un gas real menos las del gas ideal, se tiene:

$$\left(\frac{\partial U - U^{*}}{\partial V}\right)_{T,N} = T \left(\frac{\partial P}{\partial T}\right)_{V,N} - P$$
(10)

$$\left(\frac{\partial S - S^*}{\partial V}\right)_{T,N} = \left(\frac{\partial p}{\partial T}\right)_{Y,B} - \frac{NR}{V}$$
(11)

Si estas ecuaciones se integran desde el volumen del gas real hasta un volumen infinito en donde sus propiedades se aproximan a las del gas ideal, se tienen las siguientes expresiones:

$$-\left(U-U^{\star}\right) = \int_{V}^{\infty} \left[T\left(\frac{\partial p}{\partial T}\right)_{V,N} - p\right] dV$$
(12)

$$\left(S - S^{\star}\right) = \int_{\nu}^{\infty} \left[\frac{NR}{\nu} - \left(\frac{\partial p}{\partial T}\right)_{\nu, N}\right] d\nu + NR \ln Z$$
(13)

y a partir de la definición H = U + pV

$$\left(H - H^{*}\right) = \int_{V}^{\infty} \left[-T\left(\frac{\partial p}{\partial T}\right)_{V,N} + p\right] dV + pV - NRT$$
(14)

Las fugacidades pueden calcularse con la expresión:

$$\ln \phi_{i} = \int_{\infty}^{\nu} \left[\frac{1}{V} - \frac{1}{RT} \left(\frac{\partial p}{\partial N_{i}} \right)_{T,V,N_{i\neq i}} \right] dV - \ln Z$$
(15)

Observamos que para calcular la entropía, la entalpía y la fugacidad en las ecuaciones anteriores, es necesario evaluar las derivadas de la presión con respecto a la temperatura y a las moles a partir de la ecuación cúbica de estado que se utilice:

Las ecuaciones de estado cúbicas pueden ser representadas en forma semigeneral por la expresión¹⁷:

$$P = \frac{RT}{V} - \frac{\alpha(T)}{(V+\beta)(V+\gamma)} + \frac{\delta(T)}{V(V+\beta)(V+\gamma)}$$
(17)

O bien por la expresión¹⁹:

$$P = \frac{RT}{v - b} - \frac{a}{v^2 + ubv + wb^2}$$
(18)

donde a y b son función de la composición y además a es función de la temperatura.

Las propiedades extensivas como el volumen, entalpía, entropía, etc. pueden ser convertidas a variables intensivas si son divididas por la masa o por las moles.

Para denominar estas propiedades se utilizarán letras minúsculas.

Una vez calculadas las derivadas de la expresión (16) y realizada la integración en las ecuaciones (13), (14) y (15) se obtienen las siguientes expresiones²⁰:

$$\ln\phi_{i} = -\ln(Z-B) + \frac{B_{i}}{B}(Z-1) + \frac{A}{B} \left[\frac{\overline{B}_{i}}{B} \frac{\overline{A}_{i}}{B} \right] \Im$$
(19)

$$h = h^{*} + RT \left[Z - 1 + \begin{pmatrix} A' - A \\ B \end{pmatrix} \Im \right]$$
(20)

$$s = s^{*} + R \left[\ln(Z - B) + \frac{A'}{B} \mathfrak{I} \right]$$
(21)

Estas ecuaciones están definidas en función de los siguientes términos adimensionales:

$$A = \frac{aP}{\left(RT\right)^2}$$
(22)

$$B = \frac{bP}{RT}$$
(23)

$$\Im = \frac{1}{\Delta} \ln \left[\frac{2Z + B(u + \Delta)}{2Z + B(u - \Delta)} \right]$$
(24)

en que:

$$\Delta = \sqrt[2]{u^2 - 4w} \tag{25}$$

Con el fin de poder introducir diferentes formas para las reglas de mezclado y la dependencia del parámetro a con la temperatura, la derivada de a con respecto a la temperatura y la derivada de las constantes a y b con respecto a la composición, se han dejado implícitas con la siguiente notación:

$$A' = \left(T\frac{dA}{dT}\right)$$
(26)

$$\overline{\overline{A}}_{i} = \frac{1}{N} \frac{\partial A N^{2}}{\partial N_{i}}$$
(27)

$$\overline{B}_{i} = \frac{\partial BN}{\partial N_{i}}$$
(28)

Los parámetros A y B en una mezcla corresponden a la contribución de todos los componentes. Para tal efecto es necesario evaluar las contribuciones que tiene cada componente sobre los parámetros.

La contribución individual se calcula con las siguientes expresiones:

$$A_{i} = \Omega_{a} \left(\frac{P}{P_{a}}\right) \left(\frac{T_{a}}{T}\right)^{2} \alpha_{i}$$

$$B_{i} = \Omega_{b} \left(\frac{P}{P_{a}}\right) \left(\frac{T_{a}}{T}\right)$$
(29)
(30)

Donde α_i contiene la dependencia de *a* respecto a la temperatura.

La comparación de sus diversas propuestas es precisamente el objetivo de esta investigación.

En la ecuación (26) observamos que para cada propuesta de *alfa* es necesario calcular su derivada con respecto a la temperatura por el producto de T/α o bien:

$$\frac{T}{\alpha} \frac{\partial \alpha}{\partial T}$$
(31)

3.2 Los modelos recientes

Aunque la ecuación de van der Waals⁵² tiene mucho valor histórico, no es muy precisa cuantitativamente hablando.

Es por ello que se han desarrollado numerosas ecuaciones cúbicas que buscan describir de manera más precisa el comportamiento de las sustancias.

En 1949 Redlich y Kwong⁴ introdujeron en el término atractivo una dependencia de la temperatura y una dependencia ligeramente diferente en el volumen:

$$P = \frac{RT}{v-b} - \frac{a/T^{05}}{v(v+b)}$$

Con esta ecuación se calculan valores más apropiados para la compresibilidad crítica y los coeficientes del segundo virial, pero sus predicciones de presión de vapor y densidad del líquido son poco precisas.

Wilson⁵ propuso en 1964 una ecuación en la que modificaba la dependencia de la temperatura del término atractivo:

$$P = \frac{RT}{v-b} - \frac{a_c \alpha}{v(v+b)}$$

con:

$$\alpha = T_r \left[1 + (1.57 + 1.62\,\omega) \left(\frac{1}{T_r} - 1 \right) \right]$$

y a partir de allí surgieron numerosas propuestas.

Como la predicción de propiedades termodinámicas ha atraído la atención de numerosos científicos e investigadores en los años recientes, una parte de las innovaciones en este campo se basan en la propuesta de nuevas reglas de mezclado que plantean cómo deben mezclarse las propiedades individuales, de tal forma que los parámetros obtenidos para la mezcla sean capaces de proporcionar a la ecuación de estado la capacidad de predecir el comportamiento real del sistema.

Otro nicho de investigación es aquel que busca desarrollar nuevas propuestas para modificar la dependencia de la ecuación de estado respecto de la temperatura y así mejorar su capacidad para predecir propiedades termodinámicas de sustancias puras.

A continuación se presentan los desarrollos más recientes en este campo.

3.2.1 La contribución de Soave⁹

En este trabajo se propone modificar la ecuación de Redlich-Kwong⁴ para obtener una expresión de la siguiente manera:

$$P = \frac{RT}{v-b} - \frac{a}{v(v+b)}$$
(1)

Rearreglando:

$$v = z \frac{RT}{p}$$
(2)

$$A = \frac{a p}{R^2 T^2}$$
(3)

$$B = \frac{b p}{R T}$$
(4)

La ecuación (1) puede escribirse como:

$$Z^{3} - Z^{2} + Z(A - B - B^{2}) - AB = 0$$
(5)

A continuación se determinan las expresiones para los parámetros de la ecuación de estado en el punto crítico aplicando las condiciones de van der Waals. Se tiene entonces:

$$a_{i}(T_{ci}) = a_{ci} = 0.42747 \frac{R^{2} T^{2}_{ci}}{P_{ci}}$$
(6)

$$b_{i} = 0.08664 \frac{RT_{ci}}{p_{ci}}$$
(7)

A temperaturas diferentes a la crítica se tiene:

$$a_{i}(T) = a_{i} \alpha_{i}(T)$$
(8)

donde α (T) es un factor adimensional que adopta un valor unitario cuando T = T_c

Al aplicar las ecuaciones (6)-(8) a las ecuaciones (3)-(4) para sustancias puras se obtiene:

$$A = 0.42747 \alpha_{I} (T) \frac{p / p_{cI}}{(T / T_{cI})^{2}}$$
(9)

$$B = 0.08664 \frac{p / p_{u}}{T / T_{u}}$$
(10)

El coeficiente de fugacidad de un componente puro se calcula de la siguiente manera:

$$\ln \frac{f}{P} = Z - 1 - \ln(Z - B) - \frac{A}{B} \ln(\frac{Z + B}{Z})$$
(11)

El factor de compresibilidad Z que se usa en la ecuación (11) se obtiene al resolver la ecuación (5). De esta última se obtienen una o tres raíces reales: la que adopta el valor numérico menor es la que se asocia a la fase líquida y la del valor mayor se asocia a la fase vapor.

Para una sustancia pura, a una temperatura dada, se tiene un sólo valor de a(T) y sólo se tiene un valor de P que satisface la igualdad de fugacidades de las fases líquido y vapor en equilibrio.

El autor obtuvo valores de *alfa* para cada sustancia utilizando datos de presión de vapor obtenidos a partir de expresiones de la ecuación de Antoine reportadas en el Proyecto API 44⁵³.

El autor indica que al trazar una gráfica de los valores de *alfa* contra la temperatura reducida se obtiene una familia de curvas de trazo similar.

Si se construye una representación gráfica de la raíz de *alfa* contra la raíz de la temperatura reducida se obtienen líneas casi rectas que pasan por el mismo punto $T_r=\alpha=1$, por lo que se puede expresar la siguiente función para *alfa*:

$$\alpha^{05} = 1 + m_i \left(1 - T_{r_i}^{05} \right)$$
(12)

La pendiente de m_i puede relacionarse con los factores acéntricos de los compuestos correspondientes.

Partiendo de la ecuación de Pitzer para w, se tiene que para cada valor del factor acéntrico define un valor de la presión reducida a una temperatura reducida de 0.7 de la siguiente manera:

$$p_{ri}^{sat}(T_r = 0.7) = 10^{-1 - w_r}$$
(13)

De la pareja T_r = 0.7 y p_r = 10^{-1-w} se puede obtener un valor de $\alpha_1(0.7)$ que depende sólo de la *w* asumida.

Si se restringe que todas las líneas rectas definidas por la ecuación (12) pasen a través de los puntos $T_r = 0.7$ y $\alpha = \alpha(0.7)$ se obtiene:

$$m_{i} = \frac{\alpha_{i}^{0.5}(0.7) - 1}{1 - (0.7)^{0.5}}$$
(14)

Los valores de m_i obtenidos por sustitución de los valores de $\alpha_i(0.7)$ en la ecuación (14) se correlacionaron en función de w_i y de datos de presión de vapor para una serie de hidrocarburos normales.

La ecuación original de Pitzer¹¹ es: $\ln p_{vpr} = f^{(0)}(T_r) + wf^{(1)}(T_r)$ donde $f^{(0)} = 5.92714 - \frac{6.09648}{T_r} - 1.28862 \ln T_r + 0.169347T_r^6$ $f^{(1)} = 15.2518 - \frac{15.6875}{T_r} - 13.472 \ln T_r + 0.43577T_r^6$

A temperatura reducida de 0.7 la ecuación de Pitzer se reduce a: p_{vor} :

$$p_{vnr} \approx 10^{-1-w}$$

De lo anterior se obtiene:

$$m_i = 0.480 + 1.574 w_i - 0.176 w_i^2$$
⁽¹⁵⁾

El autor calcula con estas ecuaciones presiones de vapor para sustancias no polares y para mezclas que contienen hidrógeno, e indica que hay desviaciones a temperaturas reducidas menores a 0.4.

3.2.2 La contribución de Dingrani y Thodos¹⁰

Los autores proponen utilizar la ecuación de van der Waals⁵² de la forma:

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$
(1)

y proponen correlacionar el parámetro *a* de esta ecuación con la densidad y la temperatura de la fase gaseosa y de la fase líquida del metano.

Los autores se basan en el trabajo de Howard²¹, en donde se analiza el comportamiento de la ecuación para el argón. En dicho artículo se indica que el parámetro a es función de la temperatura y de la densidad.

Sobre estas bases los autores definen una función alfa como:

$$\alpha = \frac{a}{a_i}$$
(2)

en la que:

$$a_i = \frac{9RT_e v_e}{8}$$
(3)

Se analizaron datos experimentales de diez referencias diferentes, y se graficaron las isotermas de alfa vs. temperatura reducida a densidad constante.

Para representar estas isotermas se propuso utilizar una ecuación como la siguiente:

$$\alpha = \alpha_0 - \Delta_1 + \Delta_2 + \Delta_3 + \Delta_4$$
(4)
Cada uno de los términos de la ecuación anterior representa una región sucesiva de densidad reducida.

 α_0 corresponde al valor de *alfa* cuando la densidad reducida es igual a cero.

 $\frac{1}{\alpha_{0}} = 0.7441 + 0.4219 \ln T_{r} + 4.34e^{-\frac{9.821}{T_{r}}}$ (5)

$$\Delta_1 = 0.0456 \rho_r^{0.853} e^{\frac{1.815}{T_r}}$$
(6)

$$\Delta_2 = \frac{6.661 - 3.207T_r}{\frac{5.353}{e^{-\rho_r}}}$$
(7)

$$\Delta_3 = A e^{\gamma \rho_r} \tag{8}$$

$$\gamma = 7.31 - 0.135T_r^{4.8} + \frac{39.43}{\frac{41.83}{r_r^{3.5}}}$$
(9)

$$\Delta_4 = \frac{2.652}{e^{6.05T_r^3}} \tag{10}$$

Para $T_r \ge 1.00 \Delta_2$, Δ_3 , y $\Delta_4 = 0$ para densidades reducidas menores a 0.8. Para densidades reducidas entre 0.8 y 2.0, Δ_3 y $\Delta_4 = 0$; y para densidades reducidas mayores a 2.00, $\Delta_4 = 0$. Para temperaturas reducidas menores a 1.00 el valor de Δ_4 está dado por la ecuación (10).

Los autores indican que sus resultados son aceptables para sustancias con factores de compresibilidad similares a los del metano ($Z_c = 0.289$).

De aquí se obtienen las siguientes ecuaciones:

3.2.3 La contribución de Redlich¹²

El autor indica que la relación P-V-T para la mayor parte de las sustancias con moléculas pequeñas no polares puede representarse por medio de ecuaciones de estado de dos parámetros, como la propuesta por Redlich-Kwong⁴ (1949); pero para sustancias polares, es necesario utilizar un modelo de tres parámetros.

Se indica que la parte más difícil de representar para una ecuación de estado es la región crítica, por lo que propone que la ecuación de estado esté construida sobre tres parámetros: el factor de compresibilidad crítica, las presiones reducidas y las temperaturas reducidas.

El análisis inicia con una ecuación del tipo van der Waals expresada en cantidades reducidas:

$$P * Z_{\zeta} = \frac{T}{V - B} - \frac{QQ}{V^{2} + F * V + G}$$
(1)

donde QQ es función de la temperatura, B, F y G son constantes, T, P y V son las temperaturas, presiones y volúmenes reducidos y Z_c es el factor de compresibilidad crítico.

La función QQ se representa como:

$$\mathcal{Q}\mathcal{Q} = \mathcal{Q}W[1 - Z_C(1 - B)]^3 \frac{TS}{Z_C}$$
⁽²⁾

en la que:

$$QW = 1 - 0.26TD + 1.60TD^2 - AU * TD(13.7 + 1.6TD^2) + 16.0AT * AU * TD^2$$
(3)

$$\overline{TD = 1 - TS} \tag{4}$$

$$\overline{TS = T^{-0.5}} \tag{5}$$

$$AU = 0.291 - Z_C \tag{6}$$

y siguiendo las siguientes restricciones:

$$AT = 1 \qquad si T < 1$$

$$AT = 0 \qquad si T \ge 1$$

y la relación:

$$F = \frac{1}{Z_c} - 3 + B$$
(7)

Al introducir las ecuaciones (2) y (7) en la ecuación (1) se obtiene una ecuación de estado reducida en función de la temperatura y presión críticas y el factor de compresibilidad crítico.

El autor indica que las desviaciones obtenidas para trece sustancias estudiadas es razonablemente aceptable y semejante a las obtenidas por Pitzer²² y Lu^{23} .

3.2.4 La contribución de Peng y Robinson¹³

Los autores proponen una ecuación de estado de la forma:

$$P = \frac{RT}{v - b} - \frac{a}{v(v + b) + b(v - b)}$$
(1)

Esta ecuación puede ser escrita como:

$$Z^{3} - (1 - B)Z^{2} + (A - 3B^{2} - 2B)Z - (AB - B^{2} - B^{3}) = 0$$
(2)

donde:

$$A = \frac{aP}{R^2 T^2}$$
(3)

$$B = \frac{bP}{RT}$$
(4)

$$\overline{Z = \frac{P \nu}{R T}}$$
(5)

La ecuación (2) puede tener una o tres raíces reales dependiendo del número de fases presentes en el sistema.

En la región de dos fases, la raíz más grande corresponde al factor de compresibilidad de la fase vapor y la raíz más pequeña positiva a la del estado líquido.

Si aplicamos la ecuación (2) en el punto crítico se tiene:

$$a(T_{c}) = 0.45724 \frac{R^{2} T_{c}^{2}}{P_{c}}$$

$$b(T_{c}) = 0.07780 \frac{R T_{c}}{P_{c}}$$

$$Z_{c} = 0.307$$

Para temperaturas diferentes a la crítica, el autor propone calcular el parámetro *alfa*, de manera que:

$$a(T) = a(T_{c})\alpha(T_{r}, w)$$
(6)

Para determinar la forma de la función *alfa*, propone aplicar la siguiente relación en la ecuación (1):

$$\ln \frac{f}{p} = \int_{0}^{p} \left(\frac{v}{RT} - \frac{1}{P} \right) dP$$
(7)

Así se obtiene la relación para determinar la fugacidad de un componente puro, que se muestra a continuación:

$$\ln \frac{f}{p} = Z - 1 - \ln(Z - B) - \frac{A}{2\sqrt{2}B} \ln\left(\frac{Z + 2.414B}{Z - 0.414B}\right)$$
(8)

y con las ecuaciones (2) y (8) se ajustan los datos experimentales de presión de vapor hasta cumplir la condición de equilibrio de fugacidades:

$$f^{L} = f^{V}$$

con un criterio de convergencia de:

$$\left|f^{L}-f^{\nu}\right| \leq 10^{-4} \ kPa$$

Para todas las sustancias evaluadas, la relación entre *alfa* y T_r se puede expresar en forma de una relación lineal como:

$$\alpha^{1/2} = 1 + k \left(1 - T_r^{1/2} \right)$$
(9)

donde k es una constante característica de cada sustancia.

A su vez, estas constantes se correlacionan con los factores acéntricos:

$$k = 0.37464 + 1.54226w - 0.26992w^2$$
⁽¹⁰⁾

El autor indica que su propuesta de *alfa* es semejante a la de Soave⁹ (1972), pero que la que se incluye en el trabajo mencionado es de mayor generalidad ya que se calcula con valores de presión de vapor desde el punto normal de ebullición hasta el punto crítico, mientras que Soave utilizó sólo el valor del punto crítico y la presión de vapor calculada a $T_r = 0.7$ basada en el valor del factor acéntrico.

3.2.5 La contribución de Fuller¹⁴

El autor propone una modificación a la ecuación de Redlich-Kwong-Soave para reproducir volúmenes de líquidos saturados y volúmenes de líquidos comprimidos de sustancias puras.

En esta ecuación se introducen dos modificaciones importantes: un factor de compresibilidad crítico variable y una función de temperatura que incluye a los parámetros a y b.

La ecuación predice presiones de vapor de moléculas polares y no polares con precisión razonable y con sólo el volumen crítico y el *parachor* como información adicional.

El *parachor* es una medida de la acentricidad de la molécula y puede ser calculado por métodos de contribuciones de grupo, como el de Quayle²⁴ (1953) que sólo requiere conocer la fórmula estructural del compuesto.

El autor propone utilizar una ecuación de la forma:

$$P = \frac{RT}{v-b} - \frac{a}{v(v+c\,b)}$$
(1)

Así el método tiene una incógnita única llamada *beta*, y se definen los parámetros a, b y c en función de β , como sigue:

$$\beta_{c} = \frac{b}{vc} \qquad (T = T_{c}) \tag{2}$$

$$c(\beta) = \frac{1}{\beta} \left(\sqrt{\frac{1}{\beta} - \frac{3}{4}} - \frac{3}{2} \right)$$
(3)

$$b = \Omega_{h}(\beta) \frac{RT_{c}}{P_{c}}$$
(4)

$$\Omega_{h}(\beta) = \beta \frac{(1-\beta)(2+c\beta)-(1+c\beta)}{(2+c\beta)(1-\beta)^{2}}$$
(5)

33

$$a(T) = \frac{\Omega_a(\beta) R^2 T_c \alpha(T)}{P_c}$$
(6)

$$\Omega_{a}\left(\beta\right) = \frac{\left(1+c\beta\right)^{2}\Omega_{b}\left(\beta\right)}{\beta\left(1-\beta\right)^{2}\left(2+c\beta\right)}$$
(7)

y la función *alfa* propuesta por Soave se modifica en los siguientes términos:

$$\alpha^{1/2}(T) = 1 + q(\beta)(1 - T_r^{1/2})$$
(8)

donde deben utilizarse las siguientes definiciones:

$$q(\beta) = \left(\frac{\beta}{0.26}\right)^{1/4} m$$
(9)

$$m = 0.480 + 1.5740w - 0.176w^2$$
⁽¹⁰⁾

para que la modificación propuesta en el presente artículo concuerde con la modificación propuesta por Soave.

Para determinar la dependencia de *beta* respecto de la temperatura se utilizaron datos experimentales de 27 sustancias, igualando las fugacidades de líquido y del vapor basándose en datos de volumen de líquido saturado a diferentes temperaturas reducidas desde 0.5 hasta el punto crítico.

Se correlacionó el cociente β/β_c contra la temperatura crítica y se obtuvo la siguiente función:

$$\beta = \beta_{c} + (\beta_{0} - \beta_{c}) \left(\frac{2}{1 + e^{\theta(T_{c} - 1)}} - 1 \right)$$
(11)

El valor de β_c puede determinarse a partir del factor de compresibilidad crítico y para determinar β_0 y ϕ se proponen algunos métodos generalizados.

Con el siguiente polinomio se correlacionan β_0 y Z_c:

$$\frac{\beta_0}{\beta_c} = 7.7880 - 36.8316Z_c + 50.7061Z_c^2$$
(12)

Por otro lado, se establece la dependencia de *teta* en función del *parachor* obteniéndose la siguiente función:

$$\phi = 10.9356 + 0.0285P \tag{13}$$

3.2.6 La contribución de Hamam, Chung, Elshayal y Lu²⁵

En este trabajo se propone utilizar una ecuación de la forma:

$$P = \frac{RT}{V - b} - \frac{a}{T^{05} V(V + b)}$$
(1)

en la que:

$$a = \Omega_a \frac{R^2 T_{\iota}^{2.5}}{P_{\iota}}$$
(2)

$$b = \Omega_b \frac{RT_c}{P_c}$$
(3)

El procedimiento para obtener estos parámetros utiliza datos experimentales de presión de vapor y volúmenes de líquidos saturados.

Se utiliza el mismo procedimiento para T $< T_c y T = T_c$.

En el punto crítico los valores experimentales de P_c y V_c se manejan como datos de presión de vapor y volumen de líquido saturado.

En otras palabras, los valores de Ω_a y Ω_b obtenidos en el punto crítico varían para cada sustancia.

Se indica que en esta investigación los valores de Ω_a y Ω_b se evaluaron para 13 componentes puros en la región donde la temperatura asegura que las propiedades sean las de la saturación.

Los valores de los parámetros obtenidos se correlacionan en función de T_r en dos intervalos de temperatura:

 $0.85 \leq T_r \leq 1.0 \text{ y} \quad T_{r(min)} \leq T_r \leq 0.85$

El indicativo *min* representa la temperatura mas baja que se utilizó en la investigación experimental.

Para el intervalo de temperaturas de T_r de 0.85 a 1.0 se obtienen las siguientes correlaciones:

$$\Omega_a = a_0 + a_1(1 - T_r) + a_2(1 - T_r)^{1/3} + a_3(1 - T_r)^{2/3}$$
(4)

$$\Omega_{b} = c_{0} + c_{1}(1 - T_{r}) + c_{2}(1 - T_{r})^{1/3} + c_{3}(1 - T_{r})^{2/3}$$
(5)

Para el intervalo de temperaturas de $T_{r(min)} \leq T_r \leq 0.85$ los parámetros se ajustan con las siguientes ecuaciones:

$$\Omega_a = \sum_{r=0}^2 b_r T_r^{\ r} \tag{6}$$

$$\Omega_b = \sum_{i=0}^2 d_i T_i^i$$
(7)

Los coeficientes a_i , b_i , c_i y d_i se determinan utilizando el método de mínimos cuadrados y se incluyen en una tabla para las 13 sustancias utilizadas.

Posteriormente, se generalizan en función del factor acéntrico:

$$a_{i} = \sum_{j=0}^{2} a_{ij} w^{j} \qquad (i = 0, 1, 2, 3)$$
(8)

$$b_{i} = \sum_{j=0}^{2} b_{ij} w^{j} \qquad (i = 0, 1, 2)$$
(9)

$$c_{i} = \sum_{j=0}^{2} c_{ij} w^{j} \qquad (i = 0, 1, 2, 3)$$
(10)

$$d_{i} = \sum_{i=0}^{2} d_{i} w^{i} \qquad (i = 0, 1, 2) \qquad (11)$$

Se indica que esta representación es buena hasta valores de $T_r \le 0.97$

3.2.7 La contribución de Graboski y Daubert²⁶

Los autores proponen utilizar la modificación de Soave⁹ (1972) a la ecuación de Redlich-Kwong⁴ de la forma:

$$P = \frac{RT}{v-b} - \frac{\alpha \ a}{v(v+b)}$$
(1)

en la cual:

$$a = 0.42747 \frac{R^2 T_{\iota}^2}{P_{\iota}}$$
(2)

$$b = 0.07664 \frac{RT_{\iota}}{P_{c}}$$
(3)

y *alfa* es una ecuación empírica desarrollada a partir de datos experimentales de presión de vapor de hidrocarburos.

Se indica que el desarrollo original de Soave se basó en una correlación de presiones de vapor de hidrocarburos en términos de la temperatura reducida, la presión reducida y el factor acéntrico. Soave utilizó el punto crítico y la presión de vapor a la temperatura reducida de 0.7 para determinar la función requerida para correlacionar las presiones de vapor.

Los autores indican que Soave utilizó datos experimentales que no son totalmente consistentes con los recomendados por la American Petroleum Institute Data Book²⁷ (1977).

Asimismo, se indica que en esta propuesta se calcula la función *alfa* utilizando los datos experimentales compilados por el equipo del API.

Los autores indican que Soave propone utilizar la siguiente ecuación:

$$\alpha = \left(1 + S\left(1 - \sqrt{T_r}\right)\right)^2 \tag{4}$$

en la que:

$$S = a + bw + cw^2$$
(5)

La ecuación de Soave correlaciona bien los datos experimentales, por lo que el autor conserva esta ecuación, pero propone una nueva ecuación para la cantidad S, esto es:

$$S = 0.48508 + 1.55171w - 0.15613w^2 \tag{6}$$

Los autores indican que la ecuación de Soave predice las presiones de vapor con un error promedio del 2.87% y 0.91 psi.

Los errores son menores para parafinas y mayores para olefinas, naftenos y aromáticos.

Las mejores estimaciones se dan a temperaturas reducidas de 0.50 y mayores. Los errores son grandes a presiones reducidas menores a 0.45.

3.2.8 La contribución de Harmens y Knapp²⁸

Los autores proponen una ecuación cúbica de la forma:

$$p = \frac{RT}{v-b} - \frac{a}{v^2 + vcb - (c-1)b^2}$$
(1)

donde:

$$a = \alpha (T_r) \Omega_a \frac{R^2 T_c^2}{p_c}$$
⁽²⁾

$$b = \Omega_b \frac{RT_c}{p_c}$$
(3)

$$c = 1 + \frac{1 - 3\zeta}{\beta \zeta} \tag{4}$$

y a su vez:

$$\Omega_{a} = 1 - 3\zeta + 3\zeta^{2} + \beta\zeta(3 - 6\zeta + \beta\zeta)$$
(5)

$$\overline{\Omega_b} = \beta \zeta \tag{6}$$

$$\beta = 0.10770 + 0.76405\zeta - 1.24282\zeta^2 + 0.96210\zeta^3$$
(7)

$$\zeta = 0.3211 - 0.080w + 0.0384w^2$$
(8)

Se calcularon los valores de *alfa* para 20 sustancias desde el argón hasta el n-decano (en su mayoría hidrocarburos). Su utilizó información experimental de presiones de vapor en el intervalo de temperaturas reducidas desde 0.3 hasta 1.

Los valores de *alfa* para $T_r \le 1$ se calculan con la ecuación (1) y con la siguiente ecuación:

$$\alpha(T_r) = \left[1 + A(1 - \sqrt{T_r}) - B\left(1 - \frac{1}{T_r}\right)\right]^2$$
(9)

Los autores observan que al correlacionar $\alpha^{1/2}$ contra $T_r^{1/2}$ se obtiene una recta, pero que a temperaturas bajas no presentan un comportamiento lineal.

El autor propone utilizar los parámetros A y B, en función del factor acéntrico w.

Para w > 0.2 la correlación es lineal, y a valores menores se requieren funciones parabólicas.

De esta manera:

Para w≤0.2 : A = $0.50 + 0.27767w + 2.17225w^2$ B = $-0.022 + 0.338w - 0.845w^2$ Para w > 0.2: A = 0.41311 + 1.14657w B = 0.0118

Para vapor sobrecalentado se calcularon valores de volúmenes para las mismas 20 sustancias siguiendo el procedimiento de Lee-Kesler²⁹ (1975).

Se utilizaron 24 valores de volúmenes entre $T_r = 1.02$ y $T_r = 2.6$.

El autor indica que no vale la pena seguir mas allá de este punto debido a que el término atractivo es muy pequeño comparado con el término de repulsión.

De la correlación de *alfa* contra T_r se observa que para $T_r > 1.03$ el valor de *alfa* es menor al obtenido con la extrapolación de la ecuación (9).

Las curvas de *alfa* contra temperatura reducida presentan una forma parabólica, que se correlacionan con la siguiente ecuación para $T_r > 1.0$:

$$\overline{\alpha(T_r)} = 1.0 - (0.6258 + 1.5227w) \ln T_r + (0.1533 + 0.41w)(\ln T_r)^2$$
(10)

Dado que la función *alfa* está definida en dos partes, la función presenta una discontinuidad cuando la temperatura reducida es igual a la unidad.

Finalmente los autores proponen interpolar entre las dos ecuaciones para estimar el valor al punto crítico.

3.2.9 La contribución de Soave³⁰

En este trabajo se propone utilizar la ecuación de Redlich-Kwong⁴ modificada de la forma:

<i>P</i> =	RT	а
	$\overline{v-b}$	v(v+b)

en la que:

$$a = a_c \alpha$$

$$a_{c} = 0.42748025 \frac{R^{2}T_{c}^{2}}{P_{c}}$$

$$\alpha = 1 + (1 - \frac{T}{T_{c}})(m + n\frac{T_{c}}{T})$$
(1)

Los parámetros m y n se determinan a partir de los valores de presión de vapor experimentales.

Se encuentran aquellos valores para m y n que minimizan la desviación estándar de las presiones de vapor calculadas utilizando la siguiente función de error:

$$\varepsilon = \sum_{k} \left(\frac{P^{o}_{\textit{calc},k} - P^{o}_{\exp,k}}{P^{o}_{\exp,k}} \right)^{2}$$
(2)

o también con:

$$\varepsilon = \sum_{k} \left(\ln \frac{P^{\circ}_{calc,k}}{P^{\circ}_{exp,k}} \right)^{2}$$
(3)

El autor propone tres procedimientos para calcular m y n:

Procedimiento riguroso.

Es un proceso iterativo con la siguiente secuencia:

- Supone un par de valores para m y n
- Calcula una P°_{calc} utilizando un proceso iterativo (apéndice D)
- Calcula el error utilizando la función de error
- Modifica los valores de m y n hasta encontrar la mínima función de error

Este método requiere muchos cálculos para obtener los valores de m y n.

Procedimiento simplificado

Si se asume que en los alrededores de cada punto experimental el logaritmo de la presión de vapor calculada varía linealmente con la α calculada de acuerdo a la ecuación (1), es posible simplificar el procedimiento de estimación.

Si $\alpha_{exp,k}$ es el valor de *alfa* que corresponde a un P^o_{exp,k} para cada punto calculada de acuerdo al procedimiento del apéndice B, un pequeño cambio δP^{o}_{k} en la P^o_{exp,k} daría un nuevo valor de α'_{k} cuya derivada $(\delta \ln P^{o}/\delta \alpha)_{k}$ puede evaluarse numéricamente según:

$$\left(\frac{\delta \ln P^{o}}{\delta \alpha}\right)_{k} = \frac{\ln \left(\frac{P^{o}_{\exp,k} + \delta P^{o}_{k}}{P^{o}_{\exp,k}}\right)}{\alpha'_{k} - \alpha_{\exp,k}}$$
(4)

Se supone que cada derivada es constante y sólo debe calcularse una vez para cada punto.

La ecuación (1) es ahora:

$$\alpha = 1 + (1 - \frac{T_k}{T_c})(m + n\frac{T_c}{T_k})$$
(5)

El error en la presión de vapor es entonces:

$$\ln P''_{colc,k} - \ln P''_{\exp,k} = \left(\frac{\delta \ln P'}{\delta \alpha}\right)_{k} (\alpha_{colc,k} - \alpha_{\exp,k})$$

$$= \left(\frac{\delta \ln P'}{\delta \alpha}\right)_{k} \left[1 + \left(1 - \frac{T_{k}}{T_{c}}\right)\left(m + n\frac{T_{c}}{T_{k}}\right) - \alpha_{\exp k}\right]$$
(6)

A partir de la ecuación (3) la función error que se debe minimizar es;

$$\varepsilon = \sum_{k} \left(\frac{\delta \ln P^{*}}{\delta \alpha} \right)_{k} \left[1 + (1 - \frac{T_{k}}{T_{c}})(m + n\frac{T_{c}}{T_{k}}) - \alpha_{\exp,k} \right]^{2}$$
(7)

Diferenciando la ecuación (7) con respecto a m y n e igualando esas derivadas a cero se obtiene el siguiente par de ecuaciones lineales:

$$m\sum_{k} \delta_{k}^{2} (1 - T_{r,k})^{2} + n\sum_{k} \delta_{k}^{2} \frac{(1 - T_{r,k})^{2}}{T_{r,k}} = \sum_{k} \delta_{k}^{2} (1 - T_{r,k})(\alpha_{\exp,k} - 1)$$
(8)

$$m\sum_{k} \delta_{k}^{2} \frac{(1-T_{r,k})^{2}}{T_{r,k}} + n\sum_{k} \delta_{k}^{2} (\frac{1-T_{r,k}}{T_{r,k}})^{2} = \sum_{k} \delta_{k}^{2} (\frac{1-T_{r,k}}{T_{r,k}})(\alpha_{\exp,k}-1)$$
(9)

42

donde:

$$\delta_{k} = \left(\frac{\delta \ln P''}{\delta \alpha}\right)_{k}$$
(10)

$$T_{r,k} = \frac{T_k}{T_c}$$
(11)

Las ecuaciones (8) y (9) se resuelven para m y n.

El procedimiento completo es entonces:

- Calcular el valor de α_{expk} para cada punto según el apéndice E
- Para cada punto incrementar (o disminuir) ligeramente el valor de la presión de vapor experimental en un valor de δP^o_k y calcular el valor de α'_k según dicho apéndice E.
- Para cada punto calcular la derivada δ_k según las ecuaciones (4) y (10)
- Calcular las sumas en las ecuaciones (8) y (9)
- Resolver las ecuaciones (8) y (9) con respecto a m y n

El autor propone un procedimiento adicional, denominado procedimiento directo, en el que los valores de m y n se obtienen directamente a partir de dos valores experimentales de la presión de vapor.

Esta investigación es complementada por otro trabajo sobre el mismo tema desarrollado por los autores Sandarusi, Kidnay y Yesavage³¹.

En este artículo se calculan los parámetros m y n para 286 sustancias, utilizando el método simplificado propuesto por Soave³⁰ (1980). Se concluye que la correlación es buena para equilibrio líquido-vapor y que su extrapolación a altas temperaturas probablemente sea buena debido a que la ecuación debe ajustar en el punto crítico, pero se indica que su extrapolación a temperaturas bajas posiblemente no arroje resultados apropiados.

3.2.10 La contribución de Chang, Rousseau y Ferrell³²

Los autores retoman el trabajo de Soave⁹ (1972) y el de Graboski y Daubert²⁶ donde se definen las siguientes funciones:

$$\alpha = \left(1 + S\left(1 - \sqrt{T_r}\right)\right)^2 \tag{1}$$

en la que:

$$S = 0.48508 + 1.55171w - 0.15613w^2$$
⁽²⁾

Los autores indican que la ecuación (1) fue sustituida por una ecuación de dos parámetros por Soave³⁰ (1980) para describir sustancias polares, y que estos parámetros deben ser evaluados con información de presiones de vapor individuales, por lo que la generalización (2) no tiene sustento.

Los autores indican que Evelin y Moore³³ (1976) propusieron agregar un factor de corrección al parámetro *alfa* de Soave para mejorar la predicción de propiedades para sustancias polares.

El resto del artículo trata acerca de cómo calcular los factores de interacción binaria para mezclas que contienen metanol, según la modificación propuesta por Soave.

3.2.11 La contribución de Mathias³⁴

El autor utiliza la ecuación de Soave-Redlich-Kwong4:

$$P = \frac{RT}{v-b} - \frac{a}{v(v+b)}$$
(1)

donde:

$$a = a_{\iota} \alpha \tag{2}$$

$$a_{c} = 0.42748025 \frac{R^{2} T_{c}^{2}}{P_{c}}$$
(3)

Alfa es un factor adimensional que toma el valor de la unidad cuando $T = T_c$.

El autor propone la siguiente ecuación para alfa:

$$\alpha^{05} = 1 + m(1 - T_r^{05}) - p(1 - T_r)(0.7 - T_r)$$
(4)

en la que:

$$T_r = T/T_e$$

El segundo término en el lado derecho de la ecuación (4) fue introducido por Soave para reproducir las presiones de vapor de sustancias no polares.

Soave correlaciona la constante *m* en función del factor acéntrico.

Graboski y Daubert²⁶ (1978) calcularon esta correlación utilizando más puntos experimentales.

Esta correlación es:

$$m = 0.48508 + 1.55191w - 0.15613w^2 \tag{5}$$

La ecuación de Soave (la ecuación 5 y la ecuación 4 con sólo los dos primeros términos de la derecha) correlaciona adecuadamente la presión de vapor de sustancias no polares. La ecuación de Soave sobrestima la presión de vapor a temperaturas reducidas entre 0.7 y 1.0 y subestima a temperaturas reducidas menores de 0.7 o viceversa.

El tercer término a la derecha en la ecuación (4) corrige esta deficiencia.

El parámetro p en la ecuación (4) es empírico.

La expresión *alfa* se obtiene con datos experimentales de sustancias puras. El usar la expresión a temperaturas supercríticas es una extrapolación a una región no conocida. Por ello, Boston y Mathias³⁵ (1980) proponen una extrapolación para temperaturas supercríticas:

$$\alpha^{05} = \exp\left[c\left(1 - T_r^{d}\right)\right]$$
(6)

en la cual:

$$c = 1 \frac{m}{2} + 0.3 p \tag{7}$$

$$d = \frac{c-1}{c}$$
(8)

Las ecuaciones (6), (7) y (8) se obtienen igualando la primera derivada de las ecuaciones (4) y (6) con $T_r = 1$.

3.2.12 La contribución de Mathias y Copeman³⁶

Los autores proponen el uso de la ecuación de Peng Robinson¹³ (1976) de la forma:

$$P = \frac{RT}{v - b} - \frac{a}{v(v + b) + b(v - b)}$$
(1)

donde:

$$b = 0.07780 \frac{RT_{c}}{P_{c}}$$
(2)

$$a = a_{\iota} \alpha$$
(3)

$$a_{c} = 0.45724 \frac{R^{2} T_{c}^{2}}{P_{c}}$$
(4)

y proponen una representación de alfa de la forma:

$$\alpha = (1 + c_1 (1 - \sqrt{T_R}) + c_2 (1 - \sqrt{T_R})^2 + c_3 (1 - \sqrt{T_R})^3)^2$$
(5)

Los autores indican que los parámetros c_2 y c_3 son necesarios para correlacionar la presión de vapor de sustancias altamente polares como el agua y el metanol.

En un artículo reciente de Dahl y Michelsen⁹² (1990) se incluye una adaptación de la expresión de Mathias y Copeman para temperaturas superiores a la crítica, en donde simplifican la expresión original considerando que los coeficientes c_2 y c_3 son nulos:

$$\alpha^{1/2} = 1 + c_1 \left(1 - T_R \right)$$
(6)

Dahl y Michelsen citan esta expresión como si estuviese incluida en el artículo original de Mathias y Copeman; sin embargo en dicho artículo no se propone ninguna forma: especial para este intervalo de temperaturas.

3.2.13 La contribución de Soave³⁷

El autor propone utilizar la ecuación de van der Waals como base:

$$P = \frac{RT}{\nu - b} - \frac{a(T)}{\nu^2}$$
(1)

Suponiendo que la primera y segunda derivada de la presión con respecto al volumen son iguales a cero en el punto crítico se tiene:

$$a_{c} = a(T_{c}) = \frac{9}{8} R T_{c} V_{c} = \frac{27}{64} \frac{R^{2} T_{c}^{2}}{P_{c}}$$
(2)

$$b = \frac{1}{3}V_c = \frac{1}{8}\frac{RT_c}{P_c}$$
(3)

entonces:

$$\overline{Z_{\iota} = \frac{P_{e}v_{\iota}}{RT_{\iota}} = \frac{3}{8}}$$
(4)

Los valores de a(T) a otras temperaturas pueden derivarse de valores de presión de vapor experimentales, imponiendo la condición de igualdad de fugacidades calculadas para las fases líquido y vapor.

El coeficiente a(T) se corrige de la siguiente forma:

$$a(T) = a(T_r)a(T_c)$$
(5)

Para compuestos no polares:

$$a(T_r) = \left(1 + m(1 - \sqrt{T_r})\right)^2$$
(6)

donde m depende del compuesto y puede ser expresada por:

$$m = 0.4998 + 1.5928w - 0.19563w^2 + 0.025w^3$$
⁽⁷⁾

para $0 \le w \le 1$.

Para compuestos polares la tendencia de $a(T_r)$ se desvía de la de la ecuación (6).

Se propone entonces la ecuación siguiente:

$$a(T_r) = 1 + m(1 - T_r) + n\left(\frac{1}{T_r} - 1\right)$$
(8)

donde m y n son constantes empíricas que se determinan a partir de la correlación de presiones de vapor experimentales.

La ecuación (8) arroja una buena correlación para la mayor parte de los compuestos, polares y no polares.

Si además de las constantes críticas T_c y P_c se conocen las temperaturas de ebullición a 10 y 760 mmHg, es posible calcular los valores de *m* y *n* directamente.

Los autores proponen el siguiente método para calcular m y n a partir de las temperaturas de ebullición:

Los valores de alfa a 10 y 760 mmHg se calculan con las siguientes ecuaciones:

$$\alpha_{10} = \sum_{i=0}^{2} \sum_{j=0}^{2} A_{ij} T'_{R,10} W'_{10} + 1$$
(9)

$$\overline{\alpha_{760}} = \sum_{i=0}^{2} \sum_{j=0}^{2} B_{ij} T'_{R,760} W'_{760} + 1$$
(10)

en las que:

$$W_{10} = \frac{3}{7} \log \frac{\left(\frac{10 \ mmHg}{P_c}\right)}{\left(1 - \frac{1}{T_{r,10}}\right) - 1}$$
(11)

$$W_{760} = \frac{3}{7} \log \frac{\left(\frac{760 \ mmHg}{P_c}\right)}{\left(1 - \frac{1}{T_{r, 760}}\right) - 1}$$
(12)

Los valores de W son muy cercanos a los valores del factor acéntrico y los valores de A_{ij} y B_{ij} se reportan en una tabla incluida en el trabajo.

Las ecuaciones anteriores son válidas para el intervalo de: 0 > W > 1 y $100 > P_c$ 600 psia

Una vez obtenidos los valores de α_{10} y α_{760} , las constantes *m* y *n* se calculan resolviendo el siguiente sistema:

$$m(1 - T_{r,10}) + n(\frac{1}{T_{r,10}} - 1) = \alpha_{10} - 1$$
(13)

$$m(1 - T_{r,760}) + n(\frac{1}{T_{r,760}} - 1) = \alpha_{760} - 1$$
(14)

3.2.14 La contribución de Adachi y Lu³⁸

Los autores analizan tres tipos de funciones de *alfa*, manteniendo constantes todos los demás parámetros en sus valores críticos.

Los autores identifican las siguientes funciones:

De la forma de Soave (S):

$$\alpha_{a} = \alpha_{av} \left[1 + m(1 - T_{r}^{0.5}) \right]^{2}$$
(1)

De forma logarítmica (L):

$$\alpha_a = \alpha_{a0} 10^{m(1-T_r)}$$
(2)

De forma de polinomio (P):

$$\alpha_{u} = A_{0} + \frac{A_{1}}{T_{r}} + \frac{A_{2}}{T_{r}^{2}} + \frac{A_{3}}{T_{r}^{3}}$$
(3)

El valor α_{ao} representa el valor de α_a en el punto crítico.

Los autores comparan los valores de presión de vapor para diez alcanos normales, del metano al decano, generados por la correlación de Gomez-Nieto y Thodos³⁹ (1978) en el intervalo de temperaturas reducidas de 0.5 a 0.98, con intervalos de 0.02.

Asimismo se comparan los resultados obtenidos con las ecuaciones de VDW, Clausius¹ y Martin⁷ y las desviaciones resultan ser idénticas para las tres ecuaciones propuestas.

La forma L resulta aceptable sólo para la ecuación VDW.

La forma S no es aceptable para la ecuación VDW pero es aceptable para las demás. Para la ecuación VDW las desviaciones obtenidas con la forma L son mucho menores que las obtenidas con la forma S, pero ligeramente mayores que las obtenidas con la forma P.

Para las ecuaciones de Clausius¹ y Martin² las diferencias entre las ecuaciones S y P no son significativas. La desviación general promedio absoluta obtenida por la ecuación de tipo L en la ecuación VDW es ligeramente menor que las obtenidas por la ecuación S en las demás ecuaciones.

Los autores analizan 27 sistemas binarios a 80 condiciones isotérmicas y comparan 844 puntos experimentales.

Las menores desviaciones en el cálculo de VLE las obtienen utilizando la ecuación de van der Waals de la forma:

$$P = \frac{RT}{V-b} - \frac{a(T)}{V^2}$$
(4)

Con una función alfa generalizada de la forma logarítmica:

$$\alpha = \frac{27}{64} 10^{m(1-t_c)}$$
(5)

y con:

$$m = 0.228165 + 0.791981w - 0.648552w^2 + 0.654505w^3$$
(6)

3.2.15 La contribución de Stryjek y Vera^{40,41}

Los autores proponen utilizar la ecuación de Peng-Robinson¹³ (1976):

$$P = \frac{RT}{v-b} - \frac{a}{v^2 + 2bv - b^2}$$

en la que:

$$a = a_{c} \alpha$$

$$a_{c} = 0.477235 \text{ R}^{2}\text{T}_{c}^{2} / P_{c}$$

$$b = 0.077796 \text{ R} \text{ T}_{c} / P_{c}$$

y aceptan la forma de *alfa* propuesta por Soave⁹ (1972):

$$\alpha = \left(1 + k_i \left(1 - T_r^{0.5}\right)\right)^2$$

 $T_r = T / T_c$

donde se considera que k es función sólo del factor acéntrico w.

Los autores observan que la desviación porcentual entre las presiones de vapor calculadas y las experimentales en función de la temperatura reducida son elevadas para compuestos con factores acéntricos grandes, y que el error se incrementa rápido a temperaturas reducidas bajas.

Es así como proponen la siguiente ecuación:

$$k_{r} = k_{0} + k_{1}(1 + T_{r}^{0.5})(0.7 - T_{r})$$
(1)

con:

$$k_0 = 0.378893 + 1.4897153w - 0.17131848w^2 + 0.0196554w^3$$
(2)

donde k_I es un parámetro ajustable característico de cada compuesto puro.

El artículo incluye una lista de valores de T_c , P_c , w y k_l para noventa compuestos de interés industrial.

Se aclara que el valor de k_1 indicado en la tabla es aplicable para agua y alcoholes en todo el intervalo de temperaturas reducidas hasta el punto crítico.

Para todos los demás compuestos, aclaran que se obtienen resultados ligeramente mejores si se utiliza $k_1 = 0$ para temperaturas reducidas mayores a 0.7

Los autores indican que sus resultados son mejores a los obtenidos con la ecuación PRSV por Mathias³⁴ (1983), Soave³⁷ (1984) y Gibbons y Laughton⁴² (1984) para los compuestos incluidos en sus estudios.

También se aclara que no es recomendable utilizar la ecuación a temperaturas por debajo de la temperatura mínima indicada en la tabla que incluyen.

Los valores de k_1 se determinan usando las ecuaciones (1) y (2) para k en la correlación de presiones de vapor a temperaturas reducidas bajas.

Los autores indican que propiedades como la presión crítica y la temperatura crítica deben ser estimadas por métodos de contribución de grupos, siendo sólo valores aproximados los que se utilizan para determinar k_I .

Para obtener los valores de k_0 y k_1 a temperaturas subcríticas se utiliza el método de obtener igualdad de fugacidades de las fases saturadas a una temperatura dada.

Para la región supercrítica, los valores de los parámetros, o su dependencia con la temperatura se pueden obtener ajustando datos volumétricos.

En la región supercrítica la dependencia de k respecto de la temperatura no parece ser importante. Estudios preliminares indican que no hay ninguna ventaja en usar la ecuación PRSV con valores de k_1 diferentes de cero en esta región. Asi, para la región supercrítica $T_r \ge 1$ el uso de $k = k_0$ es recomendado para todos los compuestos.

Finalmente, los autores hacen una propuesta para calcular los valores de k_0 y k_1 de compuestos cuya P_c y T_c son desconocidas.

Proponen utilizar la ecuación de Edmister⁴³ para calcular w:

$$w = \frac{3}{7} \left(\frac{T_{h}}{T_{c} - T_{h}} \right) \log_{10} P_{c}(atm) - 1.000$$

o sino, a partir de datos de presión de vapor a $T_r = 0.7$ y calcular la P_c y T_c a partir del método de Ambrose⁴⁴ (1980).

3.2.16 La contribución de Stryjek y Vera 245

Los autores modifican su propuesta anterior y proponen una ecuación de tres parámetros a partir de la ecuación de Peng-Robinson¹³:

$$P = \frac{RT}{v - b} - \frac{a}{v^2 + 2bv - b^2}$$
(1)

donde:

 $a = a_c \alpha$ $a_c = 0.477235 R^2 T_c^2 / P_c$ $b = 0.077796 R T_c / P_c$

Los autores modifican la forma de alfa propuesta por Soave:

$$\alpha = \left(1 + k_i \left(1 - T_r^{os}\right)\right)^2$$
(2)

y proponen la siguiente ecuación:

$$k_{i} = k_{0} + \left(k_{1} + k_{2}\left(k_{3} - T_{r}\right)\left(1 - \sqrt{T_{r}}\right)\left(1 + \sqrt{T_{r}}\right)\left(0.7 - T_{r}\right)$$
(3)

$$k_0 = 0.378893 + 1.4897153w - 0.1713848w^2 + 0.0196554w^3$$
(4)

en las que k_1 , k_2 y k_3 son parámetros ajustables característicos de cada compuesto puro.

Los autores indican que su propuesta presenta desviaciones aún menores que las obtenidas con su modelo anterior.

3.2.17 La contribución de Yu y Lu⁴⁶

Los autores proponen una nueva ecuación cúbica de tres parámetros tipo van der Waals, generalizada en términos del factor acéntrico y la temperatura reducida, para la representación de volúmenes de líquidos de mezclas asimétricas como las de CO_2 - C_{19} y C_1 - C_{10} .

Los autores proponen una ecuación de estado en donde sólo el parámetro a sea dependiente de la temperatura:

$$P = \frac{RT}{V - b} - \frac{a}{V(V + c) + b(3V + c)}$$
(1)

en la que:

$$c = wb$$

$$a = \alpha \ (T_r, w)a_c = \alpha (T_r, w)\Omega_{ac} (w)\frac{R^2 T_c^2}{P_c}$$
(2)

$$b = \Omega_{bc} \left(w \right) \frac{RT_{c}}{P_{c}}$$
(3)

$$c = \Omega_{\iota\iota} (w) \frac{RT_c}{P_c}$$
(4)

con:

$$\Omega_{\iota\iota}(w) = w \Omega_{bc}(w)$$
(5)

Las expresiones generalizadas en términos de T_r y w se determinan utilizando las propiedades de alcanos normales:

$$\Omega_{ac} (w) = 0.468630 - 0.0378304 w + 0.00751969 w^2$$
(6)

$$\Omega_{bc}(w) = 0.0892828 - 0.0340903 w - 0.00518289 w^2$$
(7)

$$w + 3 = u = 1.70083 + 0.648463w + 0.895926w^2$$
(8)

y la función para calcular alfa es la siguiente:

$$\log_{10} \alpha = M(w)(A_0 + A_1T_r + A_2T_r^2)(1 - T_r)$$
(9)

Para la aplicación de la ecuación (9) se utilizan dos correlaciones, dependiendo del factor acéntrico:

Para $w \le 0.49$ $M(w) = 0.406846 + 1.87907w - 0.792636w^2 + 0.737519w^3$ (10) $A_0 = 0.536843$ $A_1 = -0.39244$ $A_2 = 0.26507$

y para
$$0.49 < w \le 1.0$$

$$M(w) = 0.581981 - 0.171416w + 1.84441w^{2} - 1.19047w^{3}$$
(11)
 $A_{0} = 0.79355$
 $A_{1} = -0.53409$
 $A_{2} = 0.37273$

Los valores de *alfa* para los componentes puros a $T_r \leq 1$ se determinan a partir de presiones de vapor satisfaciendo la condición de equilibrio de fugacidades.

Para $T_r > 1$ se determinan de acuerdo con un procedimiento propuesto anteriormente por el autor, utilizando valores de equilibrio vapor-líquido, minimizando las desviaciones en la presión calculada en el punto de burbuja para mezclas donde el componente de interés se encuentra en su estado supercrítico. Para dicho cálculo, el término $(A_0+A_1T_r+A_2T_r^2)$ de la ecuación (9) se reduce a $(A_0+A_1+A_2)$ cuando $T_r > 1$.

Todos los valores de w fueron tomados de Reid⁴³ (1977).

Los autores indican que su propuesta presenta desviaciones aceptables con respecto a la temperatura en el cálculo de volúmenes de líquidos. También indican que para algunas mezclas asimétricas hay una gran ventaja comparativa con respecto a otras ecuaciones cúbicas.

El porcentaje de desviación absoluta en el cálculo de presiones de vapor para 30 fluidos puros es del 1.25, muy semejante a lo obtenido con otras ecuaciones.

También resulta útil para el cálculo de volúmenes de vapor saturado en mezclas, en que la desviación resultó del 2.5 porciento.

3.2.18 La contribución de Carrier, Rogalski y Péneloux⁴⁷

Los autores indican que las predicciones de presiones de vapor realizadas con ecuaciones de estado y expresiones para *alfa* como la de Soave⁹ (1972) son precisas para el intervalo de altas presiones, sin embargo para presiones medias de 0.06 a 3 bar las predicciones no son suficientemente buenas.

Los autores centran su trabajo en los hidrocarburos de las fracciones del petróleo y en trabajos anteriores de Gibbons y Laughton⁴² (1984).

Se propone una ecuación para determinar el parámetro a de la ecuación de estado como:

$$a = a_{\gamma b} \left[1 + m_1 \left(1 - \frac{T}{T_b} \right) - m_2 \left(1 - \frac{T}{T_b} \right) \right]$$
(1)

El parámetro a_{Tb} se determina igualando la ecuación de estado con las condiciones de equilibrio en el punto de ebullición. Se requiere de un método iterativo para resolver la ecuación de estado. Se propone iniciar la convergencia con un valor de a_{Tb} igual a $6T_b$.

Resultados arrojados por el modelo para sistemas con hidrocarburos demuestran que los parámetros m_1 y m_2 están altamente correlacionados y que sólo se requiere un parámetro para definirlos.

Es así como los parámetros m_1 y m_2 se generalizan con las siguientes ecuaciones:

$$m_1 = 7.1562m - 1.9829 \tag{2}$$

$$m_2 = 2.5780m - 0.9914$$
 (3)

Al ajustar los valores de presión de vapor con las ecuaciones (2) y (3) se obtiene una lista de valores de m para diversos hidrocarburos.

Los autores indican que al trazar la gráfica de m contra la masa molar se observa una clara correlación.

Es asi como se propone representar el parámetro m en términos de un método de contribución de grupo.

Se propone una ecuación de la forma:

$$m = 0.22942 + S - 0.21311S^2 \tag{4}$$

con:

$$S = \sum_{j=1}^{13} M_j G_j - 0.015 G_{13} (0.5 G_{13} + 0.75 (G_{11} + G_{12} - G_{13} - 6))$$
(5)

donde S es una suma calculada para todos los grupos que forman un compuesto.

 M_j y G_j son los parámetros característicos del grupo j y el número de grupos de este tipo en la molécula respectivamente.

Los parámetros de grupo se obtienen ajustando la ecuación (1) con la m expresada en la ecuación (4) con los valores del parámetro a calculado directamente con los datos experimentales de presión de vapor.

Los parámetros calculados para alcanos, ciclopentanos, ciclohexanos y aromáticos se incluyen en una tabla.

3.2.19 La contribución de Proust y Vera⁴⁸

Los autores indican que siguiendo las propuestas de Stryjek y Vera^{40,41,45} (1986), sugieren utilizar la ecuación de Peng-Robinson¹³ (1976):

$$P = \frac{RT}{v - b} - \frac{a}{v^2 + 2bv - b^2}$$
(1)

donde:

$$a = a_c \alpha \tag{2}$$

Corrigen el coeficiente indicado por Stryjek y Vera⁴⁰ (1986) en el término de a_c como 0.477235:

$$a_{c} = 0.457235 \frac{R^{2} T_{c}^{2}}{P_{c}}$$
(3)

$$b = 0.077796 \frac{RT_c}{P_c}$$

$$\tag{4}$$

Los autores aceptan la forma de *alfa* propuesta por Soave⁹ (1972):

$$\alpha = \left(1 + k_i \left(1 - T_r^{0.5}\right)\right)^2 \tag{5}$$

$$T_r = \frac{T}{T_c}$$
(6)

$$k_r = k_0 + k_1 (1 + T_r^{0.5})(0.7 - T_r)$$
(7)

con:

$$k_0 = 0.378893 + 1.4897153w - 0.17131848w^2 + 0.0196554w^3$$
(8)

donde k_1 es un parámetro ajustable característico de cada compuesto puro.

El artículo incluye una lista de valores de T_e , P_e , w y k_I para sesenta y nueve compuestos de interés industrial diferentes a los propuestos en los artículos anteriores.

Los autores indican que los valores de k_1 se determinaron minimizando el porcentaje de desviación absoluta promedio entre los valores experimentales y los calculados.

Finalmente, indican que las desviaciones obtenidas en la presión de vapor calculadas a temperaturas reducidas menores a 0.7 son generalmente menores al 0.5 porciento.

A temperaturas reducidas por encima de 0.7 las desviaciones son del orden del uno porciento.

3.2.20 La contribución de Androulakis, Kalospiros y Tasios⁴⁹

Los autores proponen una modificación a la ecuación de van der Waals:

$$P = \frac{RT}{(V+t-b)} - \frac{a}{(V+t)^{2}}$$
(1)

en la que:

$$a = a_c \alpha \tag{2}$$

$$a_{\iota} = a(T_{c}) = \frac{9}{8} RT_{\iota}V_{\iota} = \frac{27}{64} \frac{R^{2}T_{\iota}^{2}}{P_{c}}$$
(3)

$$\alpha = \left(1 + m\left(1 - \sqrt{T_r}\right)\right)^2 \tag{4}$$

$$m = 0.48553 + 1.62400w - 0.21884w^2 \tag{5}$$

$$b = \frac{1}{3}V_{c} = \frac{1}{8}\frac{RT_{c}}{P_{c}}$$
(6)

$$t = t_0 + (t_c - t_0) \exp^{(\beta | t - T_c|)}$$
(7)

$$t_0 = \begin{pmatrix} RT_c \\ P_c \end{pmatrix} (0.03479 + 0.09370w - 0.16606w^2 + 0.12499w^3)$$
(8)

$$t_{\iota} = \begin{pmatrix} RT_{\iota} \\ P_{\iota} \end{pmatrix} \begin{pmatrix} 3 \\ 8 \end{pmatrix} - Z_{\iota}$$
(9)

$$\overline{Z_{\iota}} = 0.2890 - 0.0701w - 0.0207w^2 \tag{10}$$

$$\beta = -7.35356 - 24.5176w + 9.19829w^2 \tag{11}$$

Para obtener la expresión de *alfa* se utiliza información de presiones de vapor desde el punto triple hasta el crítico, y datos de presión de 45 mmHg hasta el punto crítico.

Los autores analizan numerosas expresiones de *alfa* y comparan el porciento de error obtenido al utilizar cada una de ellas para compuestos polares y no polares.

Las expresiones estudiadas son las siguientes:

1. Dos parámetros

$$\alpha = \left[1 + d_1(1 - \sqrt{T_r}) + d_2(1 - \sqrt{T_r})^2\right]^2 \qquad \text{(Mathias y Copeman)A}$$
$$\alpha = 1 + d_1(1 - T_r) + d_2(\frac{1}{T_r} - 1) \qquad \text{(Soave)} \qquad B$$

$$\alpha = 1 + d_1(1 - T_r^{2/3}) + d_2(1 - T_r^{2/3})^3$$
 (Androulakis) C

2. Tres parámetros

$$\alpha = \left[1 + d_1(1 - \sqrt{T_r}) + d_2(1 - \sqrt{T_r})^2 + d_3(1 - \sqrt{T_r})^3\right]^2 \quad \text{(Mathias y Copeman) D}$$

$$\alpha = 1 + d_1(1 - T_r) + d_2\left(\frac{1}{T_r} - 1\right) + d_3(1 - T_r^2) \quad \text{(Soave)} \qquad \text{E}$$

$$\alpha = 1 + d_1(1 - T_r) + d_2\left(\frac{1}{T_r} - 1\right) + d_3\left(\frac{1}{T_r^2} - 1\right) \quad \text{(Soave)} \qquad \text{F}$$

$$\alpha = \left[1 + d_1(1 - \sqrt{T_r}) + d_2(1 - \sqrt{T_r})^2 + d_3(1 - \sqrt{T_r})^3\right] \quad \text{(Androulakis)} \qquad \text{G}$$

$$\alpha = 1 + d_1(1 - T_r^{2/3}) + d_2(1 - T_r^{2/3})^2 + d_3(1 - T_r^{2/3})^3 \quad \text{(Androulakis)} \qquad \text{H}$$

Los autores proponen usar los factores de Soave³⁰ (1980) y Sandarusi³¹ (1985) para evaluar la desviación de las predicciones:

$$\delta_{,} = \frac{\partial \ln P_{\exp}}{\partial \alpha} \approx \frac{\ln(1+\delta)}{\alpha - \alpha_{\exp}}$$
(12)

Se presentan los siguientes resultados:

- La expresión F genera errores muy grandes.
- Todas las expresiones de tres parámetros dan buenos resultados de presión de vapor.
- Las expresiones de dos parámetros dan buenos resultados de presiones de vapor. A bajas temperaturas los valores se vuelven malos, especialmente al acercarse al punto triple.
- Al extrapolar valores de presión de vapor a presiones bajas se obtienen errores más pronunciados.
- La ecuación H resulta ser la mejor, seguida por la ecuación G.
- La ecuación C, que es la expresión de dos parámetros de la ecuación H, también da buenos resultados y sirve cuando no hay muchos datos experimentales.

• Al calcular valores a presiones bajas, incluso de 1 mmHg, se obtienen valores buenos para la ecuación H.

Para $T_r > 1$ se recomienda utilizar la siguiente expresión:

$$\alpha = \exp\left[d_1(1 - T_r^{2/3})\right]$$
(13)

3.2.21 La contribución de Melhem, Saini y Goodwin⁵⁰

Los autores expresan que existen numerosas ecuaciones de alfa, pero que no son adecuadas para sustancias con temperaturas críticas bajas como el N₂, CH₄, H₂ y CO₂. Asimismo, indican que la dependencia de alfa con la temperatura es finita y se aproxima a cero a temperaturas infinitas.

Proponen utilizar una ecuación de *alfa* que contenga un término exponencial en la temperatura reducida para describir el comportamiento de α en un mayor intervalo de temperaturas. Asi es que se propone relacionar α contra (1-T_r) obteniendo una expresión casi lineal:

$$\ln \alpha = m \left(1 - \frac{T}{T_c} \right) + n \left(1 - \sqrt{\frac{T}{T_c}} \right)^2$$

Este modelo es similar al de Adachi³⁸ (1984). Se tienen dos parámetros ajustables m y n. El segundo término tiene la función de mejorar las predicciones para compuestos muy polares.

Para calcular los valores de m y n se sigue el siguiente procedimiento:

- 1. Se establecen valores de T_i^{sat} y P_i^{sat} para i = 1 a N_{obs}
- 2. Se calcula el valor de α_i donde $f_i^L = f_i^V$ para i = 1 a N_{obs}

3. Se obtienen los valores de los parámetros por regresión lineal (utilizando el modelo de función lineal homogénea).

4. Se somete a prueba la significación estadística del segundo término.

Los autores indican que su correlación extrapola mejor que las desarrolladas por Soave^{30,37} para sustancias como el nitrógeno. Se incluye una tabla de m y n para numerosos compuestos.

3.2.22 La contribución de Twu, Bluck, Cunningham y Coon⁵¹

Los autores formalizan el enfoque a seguir indicando tres requerimientos básicos para una función *alfa*:

- 1. que sea finita y positiva para todas las temperaturas
- 2. que sea igual a la unidad en el punto crítico
- 3. que se converja a un valor finito al tender la temperatura al infinito

Los autores proponen utilizar la ecuación de Redlich-Kwong4:

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)}$$
(1)

Las constantes a y b a la temperatura crítica se encuentran al igualar a cero la primera y segunda derivada de la presión con respecto al volumen, valuadas en el punto crítico.

$$a(T_c) = 0.427481 \frac{R^2 T_c^2}{P_c}$$
(2)

$$b = 0.086641 \frac{RT_c}{P_c}$$
(3)

donde el subíndice c significa que se trata de las propiedades en el punto crítico. El valor de a(T) a otras temperaturas puede calcularse con:

$$\overline{a(t) = \alpha(T)a(T_c)}$$
(4)

Los investigadores incluyen una función α desarrollada por ellos mismos con anterioridad.

Dicha *alfa* es función de una exponencial modificada que se comporta como una distribución de probabilidad:

$$\alpha = T_r^{2(M-1)} e^{L(1 - Tr^{2M})}$$
(5)
Esta ecuación cumple con todos los requerimientos para una función *alfa*, y predice las presiones de vapor con mayor precisión que la ecuación propuesta por Soave.

A continuación los autores proponen extender la ecuación para incrementar su flexibilidad a la siguiente forma:

$$\alpha = T_r^{N(M-1)} e^{L(1-T_r^{NM})}$$
(6)

donde el número 2 en la ecuación (5) ha sido reemplazado por un parámetro N para mejorar la predicción de presiones de vapor para sustancias altamente polares, con elevados puntos de ebullición normales, como es el caso de los glicoles.

El parámetro N, que es siempre positivo con un valor cercano a 2, juega un papel muy importante en la predicción de propiedades en la región supercrítica para componentes ligeros.

Un valor más grande de N causa que la función α se acerque a un valor finito con mayor velocidad y un valor menor de N causa una convergencia más lenta.

Los parámetros L, M y N son únicos para cada componente y se determinan por la regresión simultánea de datos de presión de vapor del componente puro y de la capacidad calorífica del líquido saturado a bajas temperaturas.

Los autores desarrollaron un programa en el que se correlaciona la información del banco de datos SIMSCI para mas de 1000 componentes. Analizan para tres ecuaciones de estado: van der Waals⁵² (1873), Redlich-Kwong⁴ (1949) y Peng-Robinson¹³ (1976). La regresión muestra resultados casi idénticos para las tres ecuaciones. Esto significa que la predicción de las propiedades en una ecuación cúbica de estado está controlada por la forma de la función *alfa* y no por la ecuación de estado en si.

Finalmente se compara la función que se propone en este artículo con otras ocho propuestas de la función *alfa*:

Soave^{9 30} (1972,1980), Boston y Mathias³⁵ (1980), Mathias³⁴ (1983), Mathias y Copeman³⁶ (1983), Twu⁵¹ (1988), Melhem⁵⁰ (1989).

y concluyen que su ecuación correlaciona los datos de forma más precisa que los otros modelos considerados.

4. Estrategia de solución

El propósito de esta investigación es comparar la capacidad de algunas de las propuestas revisadas en el capítulo anterior para predecir propiedades termodinámicas de sustancias puras.

De la comparación de las diversas propuestas de *alfa* se observa que el comportamiento termodinámico antes y después de la temperatura crítica se describe de maneras muy distintas.

Es por ello que esta investigación compara la capacidad de predicción de propiedades en los dos intervalos de temperatura: antes y después del punto crítico.

Para el intervalo de temperaturas menores al crítico se compara la predictibilidad de la presión de vapor y la entalpía de vaporización; mientras que para el intervalo de temperaturas por encima del punto crítico se compara la predictibilidad del segundo coeficiente virial.

En las secciones 4.1 a 4.3 se presenta la metodología de trabajo con sus correspondientes diagramas de flujo.

En la sección 4.4 se indican los datos experimentales seleccionados.

En la sección 4.5 se resumen las expresiones de *alfa* consideradas, así como sus derivadas. En la sección 4.6 se muestran las expresiones de *alfa* desarrolladas para el estudio especial del modelo de Mathias.

4.1 Presión de vapor

Para resolver el problema de presión de rocío y burbuja se utilizó el procedimiento recomendado por Barragán²⁰ (1995).

El procedimiento tiene como datos la temperatura T y la composición de una de las fases y los valores experimentales de presión de vapor a cada una de las temperaturas.

La presión de vapor podría calcularse como presión de rocío o presión de burbuja. En el presente trabajo se calcularon presiones de burbuja, dando como dato la composición de la fase líquida, en todos los casos $x_i^L = 1$ por tratarse de sustancias puras, donde i = 1, 2,..., n_c . Es así como las incógnitas del problema son los parámetros de *alfa*, la presión \mathbf{p} y la composición de la fase vapor $\mathbf{y}_i^{\mathbf{v}}$.

La estrategia de solución planteada por Barragán para la solución de este problema de equilibrio y modificada en este trabajo para optimizar los parámetros de *alfa* se describe a continuación:

1. Inicialización de los parámetros de alfa.

La secuencia iterativa inicia asignando a los parámetros de la ecuación *alfa* el valor de cero o un valor proporcionado por el usuario. A partir de la segunda iteración se utilizan los parámetros calculados por la iteración anterior.

2. Inicialización de las incógnitas de equílibrio.

Debido a las características no explícitas de las variables es necesario presentar una secuencia iterativa para hallar los valores de las variables que resuelvan el problema. Sin embargo, este proceso necesita forzosamente una *semilla* que inicie la secuencia iterativa.

De manera general se recurre al modelo ideal que considera que la fase vapor se comporta como un gas ideal y la fase líquida como una solución ideal, de tal forma que se aplica la ley de Raoult^{18,65}:

$$K_{i}^{*} = \frac{x_{i}^{V}}{x_{i}^{L}} = \frac{p_{i}^{*}}{p}$$
(1)

El superíndice \neq significa que la propiedad corresponde al comportamiento del gas ideal.

En esta rutina se generan los valores estimados iniciales para la presión p y la composición de la fase que aparece, en nuestro caso la composición del vapor x_i^v .

El procedimiento que se desarrolla para encontrar estos estimados es el siguiente:

A. Calcular $\mathbf{p_i}^{\circ}$ para todos los componentes con la ecuación^{86*}:

$$p_{i}^{\circ} = p_{Ci} \exp\left[5.3727\left(1+\omega_{i}\right)\left(\frac{1-T_{Ci}}{T}\right)\right]$$
(2)

donde:

 \mathbf{p}_{ci} : presión crítica del componente *i*.

- \mathbf{T}_{ci} : temperatura crítica del componente *i*.
- ω_i : factor acéntrico del componente *i*.
- *i* :1,2,...,n_c.

B. Calcular la presión p que corresponde a la temperatura T con la ecuación:

$$\mathbf{p}_{cal} = \sum_{i}^{nc} \mathbf{p}_{i}^{\circ} \mathbf{x}_{i}^{L}$$
(3)

C. Calcular las composiciones de la fase que aparece en términos de la ecuación:

$$K_{i}^{\neq} = \frac{x_{i}^{\nu}}{x_{i}^{L}} = \frac{p_{i}^{\circ}}{p}$$
(4)

D. Normalizar las composiciones para cumplir la condición de que la suma de las fracciones mol sea igual a la unidad.

3. Cálculo de $\phi_i^L y \phi_i^V$ usando una ecuación de estado.

• Calcular ϕ_i^L con datos de temperatura T, presión p, fase líquida y composición x_i^L , mediante la ecuación

$$\ln\hat{\phi}_{i} = -\ln(z-B) + \frac{\overline{B}_{i}}{B}(z-1) + \frac{A}{B} \left[\frac{\overline{B}_{i}}{B} - \frac{\overline{A}_{i}}{B}\right] \Im$$
(5)

$$\log \begin{pmatrix} p_{i}^{0} \\ p_{ci} \end{pmatrix}_{T/T_{ci}=0,7} = -(1+w_{i}) \qquad \log \begin{pmatrix} p_{i}^{0} \\ p_{ci} \end{pmatrix}_{T/T_{ci}=1} = 0$$

Esta ecuación se demuestra considerando que el logaritmo de la presión reducida es una función lineal del inverso de la temperatura reducida. Para establecer esta función lineal se requieren dos puntos: la presión de vapor a Tr=0.7 y a Tr=1:

• Calcular ϕ_i^v con datos de temperatura T, presión p, fase vapor y composición x_i^v , mediante la ecuación:

$$\boxed{\ln\hat{\phi}_{i} = -\ln(z-B) + \frac{\overline{B}_{i}}{B}(z-1) + \frac{A}{B}\left[\frac{\overline{B}_{i}}{B} - \frac{\overline{A}_{i}}{B}\right]\Im}$$
(6)

Estos cálculos se realizan siguiendo el siguiente procedimiento:

DATOS: T, p, x_1 , x_2 , ..., x_{nc} , fase

4. Cálculo de las constantes de equilibrio K_i.

Las constantes de equilibrio Ki se calculan por medio de la ecuación:

$$K_i^{LV} = \frac{\phi_i^L}{\phi_i^V} \tag{7}$$

5. Prueba de convergencia.

El valor de la función objetivo κ se calcula por medio de la ecuación:

$$\mathcal{K} = \sum_{i}^{mc} \left[x_{i}^{L} \varphi_{i}^{L} - x_{i}^{\nu} \varphi_{i}^{\nu} \right]$$
(8)

y se compara con la tolerancia prescrita.

Puede presentarse el caso en el cual la función objetivo calculada en la primera iteración sea menor que la tolerancia, pero que las condiciones no correspondan a la solución apropiada. Para evitar esto, se establece un criterio adicional, que consiste en no aceptar la salida del proceso de cálculo sino se realizan por lo menos dos iteraciones.

Por otro lado, no se permite la salida del proceso de cálculo cuando en la iteración anterior se aplicó el *método de Wegstein* para acelerar o amortiguar las composiciones, dado que las composiciones no han sido todavía empleadas para calcular la nueva temperatura y están *desfasadas* de esta. El valor de la función objetivo en la iteración anterior se almacena, ya que es necesario en cálculos subsecuentes.

Normalmente se recomienda como valor para la tolerancia el de 0.0001. Si no se cumple esta condición se continúa con el proceso iterativo hasta alcanzar la convergencia o bien, hasta que se cumpla con un número máximo de iteraciones permitidas, valor fijado por el usuario. Se recomienda un valor de 30 iteraciones.

6. Cálculo de una nueva estimación para la presión p.

El nuevo valor de la presión **p** se calcula por medio del método de Newton-Raphson, tomando a las *constantes de equilibrio Ki* calculadas en el paso 4. Para este tipo de cálculos se emplea la *función error*:

$$g = \sum_{i}^{nc} x_{i}^{v} / k_{i} - 1$$
(9)

- La variable independiente que se utiliza es **p**
- La nueva presión de burbuja se calcula por medio de la siguiente ecuación:

$$\mathbf{p}_{\text{nucva}} = \mathbf{p}^{j} - \frac{\mathbf{g}(\mathbf{p}^{j})}{\mathbf{g}'(\mathbf{p}^{j})}$$
(10)

La evaluación numérica de la derivada g', se efectúa como se explica a continuación:

• Incrementar la presión en una unidad: $p'=p^{i}+1$ para presiones superiores a 1 bar y p'=p'+0.1 para presiones inferiores a la unidad.

• Calcular los coeficientes de fugacidad con la p', manteniendo las composiciones de las fases sin modificación: $\phi_i^{L}(\mathbf{p}') \neq \phi_i^{V}(\mathbf{p}')$.

• Con $\phi_i^{L}(\mathbf{p}')$ y $\phi_i^{V}(\mathbf{p}')$ se calcula la función error que se denotará por \mathbf{g}' .

• Con los valores de la función error $g y g^*$, se pueden calcular las derivadas numéricas con la siguiente ecuación:

$$\mathbf{g'}(\mathbf{p}) = \frac{\mathbf{g}(\mathbf{p'}) - \mathbf{g}(\mathbf{p})}{\mathbf{p'} - \mathbf{p}}$$

Con estas ecuaciones se calcula la nueva presión en la iteración j.

7. Cálculo de nuevas composiciones.

Las composiciones se calculan para la fase desconocida empleando las constantes de equilibrio obtenidas en el punto 4. En nuestro caso se emplea la ecuación:

$$x_{i}^{l'} = x_{i}^{l} K_{i}^{ll'}$$
(11)

El resultado se normaliza para cumplir con la condición de que las fracciones mol sumen la unidad. A estas composiciones se les denotará por $(x_i)_{nueva}$

Debido a que se necesita la historia de las composiciones en la iteración anterior para la aplicación del método de Wegstein, en este bloque se almacenan las composiciones de la iteración anterior.

8. Aplicación del método de Wegstein.

Las composiciones son las variables, que resultan más difíciles de converger, sobre todo si se encuentran en la región cercana al punto crítico.

Si se recurre al cálculo de las nuevas composiciones empleando el procedimiento anterior, la convergencia es muy lenta. Por lo tanto, es necesario *acelerar* el acercamiento de estas variables a los valores de la solución.

Asimismo, cuando los valores de la composición están divergiendo, es necesario *amortiguar* esta divergencia.

Las composiciones que se utilizarán en la siguiente iteración, $(x_i)^{i+1}$, se obtienen por medio de la ecuación del método de Wegstein:

$$x_{i}^{j+1} = (x_{i})_{meva} + \omega^{j} \left[(x_{i})_{meva} - x_{i}^{j} \right]$$

$$(12)$$

donde:

 ω^{i} : factor de aceleración de Wegstein en la iteración *j*.

i: 1, 2, ..., **n**_c.

El método de Wegstein se acopla con la historia de la convergencia, particularmente con el valor numérico de la función objetivo κ :

$$K = \sum_{i}^{n_{c}} x_{i}^{L} \varphi_{i}^{L} - x_{i}^{V} \varphi_{i}^{V^{T}}$$
(13)

de modo que el factor de Wegstein que se requiere en la ecuación que calcula $(\mathbf{x}_i)^{i+1}$ se calcula por el procedimiento sugerido por Prausnitz^{18,86,90}.

$$\omega^{i} = \frac{\kappa^{i}}{\kappa^{i-1} - \kappa^{i}}$$
(14)

9. Prueba de convergencia.

Se repite el procedimiento desde el punto 1 con cada uno de los puntos experimentales de temperatura.

El valor de la función objetivo β se calcula por medio de la siguiente ecuación:

$$\beta = \sum_{i}^{M} \begin{bmatrix} P_{i}^{tale} - P_{i}^{exp} \\ P_{i}^{exp} \end{bmatrix}$$
(15)

donde M es el número de datos experimentales.

Esta función objetivo minimiza el error relativo del valor calculado de la presión con respecto al valor experimental correspondiente a cada temperatura, utilizando un método de mínimos cuadrados propuesto por Levenberg y Marquardt.

Con esto se completa una iteración. Se continúa en el punto 1 con un nuevo valor del parámetro *alfa* hasta cumplir con el criterio de minimización o por exceso de iteraciones.

El diagrama de flujo correspondiente se incluye a continuación:

DIAGRAMA DE FLUJO PARA LA OPTIMIZACIÓN DE LOS PARÁMETROS DE ALFA UTILIZANDO PRESIONES DE VAPOR.

4.2 Entalpías de vaporización

La entalpía de vaporización o calor latente de vaporización λ es el cambio en la entalpía que se da durante el proceso de evaporación.

El valor de λ se calcula resolviendo la ecuación cúbica de estado a la misma temperatura para líquido y para vapor. De ahí se obtienen dos valores de z, uno para cada estado.

Con z se calcula la entalpía correspondiente a cada fase con la ecuación:

$$h = h^{*} + RT \left[z - 1 + \begin{pmatrix} A' - A \\ B \end{pmatrix} \Im \right]$$
(16)

considerando la entalpía del gas ideal h^* igual a cero.

Entonces la entalpía de vaporización puede calcularse como:

$$\lambda = h^{\nu} - h^{L} \tag{17}$$

Este cálculo sigue el mismo procedimiento presentado para presiones de vapor, con la diferencia que se utilizan los parámetros de *alfa* ya optimizados con presiones de vapor.

La estrategia de solución es similar a la planteada para presiones de vapor, con la diferencia que inicia en el paso 2 y termina en el paso 8.

El diagrama de flujo correspondiente se incluye a continuación:

DIAGRAMA DE FLUJO PARA EL CÁLCULO DE ENTALPÍAS DE VAPORIZACIÓN

4.3 Segundo coeficiente virial

.

El segundo coeficiente virial se calcula resolviendo la ecuación cúbica de estado para obtener los valores correspondientes de a y b a cada temperatura.

Con dichos valores se calcula el segundo coeficiente virial a través de la ecuación:

$$A_1 = \frac{1}{RT} \left(b - \frac{a}{RT} \right)$$
(18)

Este cálculo sigue el mismo procedimiento presentado para presiones de vapor, con la diferencia que se utilizan los parámetros de *alfa* ya optimados con presiones de vapor. Tanto la estrategia de solución como el diagrama de flujo son semejantes a los planteados para entalpías de vaporización.

Los cálculos del segundo coeficiente virial se realizan con la misma ecuación que se utiliza para presión de vapor, salvo en los casos en que los autores presentan una ecuación de *alfa* para intervalos de temperatura superiores al crítico.

Estos autores son: Mathias³⁴ (1983), Yu y Lu⁴⁶ (1987), Stryjek y Vera⁴⁰ (1986), Androulakis (1989) y Stryjek y Vera 2⁴¹ (1986).

En el caso de Mathias y Copeman³⁶ (1983), Dahl y Michelsen⁹² (1990) proponen una expresión de *alfa* para intervalos superiores al crítico, la cual será identificada en este trabajo como Mathias-Copeman II.

Las propuestas se presentan con detalle en la siguiente sección.

4.4 Datos experimentales

4.4.1 Presiones de vapor

El ajuste de los parámetros de *alfa* se realizó con valores experimentales de presión de vapor reportados en la literatura.

Se compararon las fuentes experimentales citadas por las propuestas analizadas en el capitulo 3 y se observó que cada autor seleccionó su fuente de datos experimentales de acuerdo a sus necesidades particulares.

Adicionalmente, algunos autores sesgaron las sustancias que seleccionaron para ajustar los parámetros y propusieron diferentes intervalos de temperaturas de los datos experimentales que utilizaron.

En esta investigación, en general, se utilizaron las siguientes fuentes experimentales:

- Artículos publicados por Ambrose^{72a82} et al en el Journal of Chemical Thermodynamics.
- Smith, B.D. y Srivastava, R.55
- Boublik T., Fried, V., Hála E.⁵⁶

Los parámetros de *alfa* se ajustaron basándose en las mismas fuentes citadas por Stryjek y Vera⁴⁰, que en casi todos los casos son artículos de Ambrose *et al*.

Se localizaron los artículos originales de Ambrose y se utilizaron todos los puntos experimentales reportados a partir de presiones de 1.0 kPa.

El resumen de los datos seleccionados se incluye en las Tablas 4.a 4.b y 4.c, mientras que los datos experimentales utilizados se reproducen en el apéndice F.

4.4.2 Entalpías de vaporización

Para el cálculo de entalpías de vaporización se utilizaron los datos experimentales reportados por:

- Smith, B.D. y Srivastava, R.55
- Boublík T., Fried, V., Hála E.⁵⁶

Se utilizaron todos los datos reportados a partir de temperaturas cuyas presiones de vapor fuesen superiores a 1 kPa.

El resumen de los datos experimentales se presenta en la Tabla 5.

4.4.3 Segundo coeficiente virial

El objetivo del cálculo de segundo coeficiente virial cs el de medir la precisión para evaluar la capacidad predictiva de cada una de las ecuaciones de estado a temperaturas superiores a la crítica.

Para ello es necesario contar con datos de segundo coeficiente virial a dichas temperaturas.

Como no se localizaron datos experimentales de segundo coeficiente virial a temperaturas mayores a la crítica se decidió comparar la predictividad de ecuaciones que describieran el segundo coeficiente virial a temperaturas menores a la crítica, y una vez elegido el mejor modelo, utilizarlo para extrapolar a temperaturas más altas.

Para ello se recopiló información experimental de:

• J.H. Dymond y E.B. Smith⁵⁷

y de los ya citados

- Smith, B.D. y Srivastava, R⁵⁵.
- Boublik T., Fried, V., Hála E⁵⁶.

Se comparó la predictividad de las ecuaciones de Pitzer y Curl⁵⁸, O'Conell-Prausnitz⁵⁹ y Tsonopoulos⁶⁰.

Los errores más pequeños se obtuvieron con la correlación de Tsonopoulos, que fue la seleccionada.

La ecuación de Tsonopoulos es la siguiente:

$$B = \frac{RT_c}{P_c} \left[f^{(0)} + w f^{(1)} \right]$$

$$f^{(0)} = 0.1445 - \frac{0.330}{T_r} - \frac{0.1385}{T_r^2} - \frac{0.0121}{T_r^3} - \frac{0.000607}{T_r^8}$$

$$f^{(i)} = 0.0637 + \frac{0.331}{T_r^2} - \frac{0.423}{T_r^3} - \frac{0.008}{T_r^8}$$

Los únicos datos requeridos para el cálculo del segundo coeficiente virial son la temperatura y el factor acéntrico correspondiente a cada sustancia.

4.5 La derivada de *alfa* con respecto a la temperatura

Como se vio en el capítulo 2, el cálculo de la entalpía y entropía requiere de la evaluación de la derivada de *alfa* con respecto a la temperatura:

$$A' = \frac{1}{2} \sum_{i} \sum_{j} x_{i} x_{j} A_{ij} \left(\frac{T}{a_{i}} \frac{da_{i}}{dT} + \frac{T}{a_{j}} \frac{da_{j}}{dT} \right)$$

dado que a_i está definida como:

$$a_{i} = \Omega_{a} \frac{\left(RT_{ci}\right)^{2}}{P_{ci}} \alpha_{i}$$

es necesario evaluar la siguiente expresión para cada alfa propuesta:

T	д	α
α	д	Τ

A continuación se presentan dichas ecuaciones, para las alfas consideradas:

ESTA TESIS NO DEBE SALIR DE LA BIBLIDTECA

SIN PARÁMETROS

1. Soave⁹(1972) ALFA:

$$\alpha^{1/2} = 1 + m (1 - \sqrt{T_r})$$

 $m = 0.48508 + 1.55171w - 0.15613w^2$

(corrección de Graboski)26

DERIVADA*:

$$\frac{-m_{\gamma}/T_{r}}{\alpha^{1/2}}$$

2. Peng y Robinson¹³(1976)

ALFA:

$$\alpha^{1/2} = 1 + m(1 - \sqrt[1]{T_r})$$

 $m = 0.378893 + 1.4897153w - 0.17131848w^2 + 0.0196554w^3$

(corrección PRSV2 1986)⁴¹

DERIVADA[#]:

$$\begin{vmatrix} -m_{\odot}T_r \\ \alpha^{1/2} \end{vmatrix}$$

' Se considera como derivada a la expresión: $\frac{T}{\alpha} \frac{\partial \alpha}{\partial T}$

UN PARÁMETRO (A)

3. Mathias³⁴(1983)

Para T<Tc

ALFA:

$$\alpha^{1/2} = 1 + m(1 - T_r^{0.5}) - A(1 - T_r)(0.7 - T_r)$$

 $m = 0.48508 + 1.55191w - 0.15613w^2$

DERIVADA#:

$$\frac{-m_{\gamma}T_{r}+A\left[3.4T_{r}-4T_{r}^{2}\right]}{\alpha^{1/2}}$$

Para T>Tc

ALFA:

$$\alpha = \exp\left(\binom{c-1}{c} l - T_r^c\right)$$

$$c=1+\frac{m}{2}+0.3A$$

DERIVADA":

$$-2(c-1)T_r^{c}$$

4. Stryjek y Vera⁴⁰(1986) Para T<Tc

ALFA:

$$\alpha^{1/2} = 1 + m(1 - T_r^{0.5}) - A(1 - T_r)(0.7 - T_r)$$

 $m = 0.378893 + 1.4897153w - 0.17131848w^2 + 0.0196554w^3$

^{*} Como derivada se considera a la expresión: $\frac{T}{\alpha} \frac{\partial \alpha}{\partial T}$

DERIVADA[#]:

$$\begin{array}{c} -m T_r + A \left[3.4T_r - 4T_r^2 \right] \\ \alpha^{1/2} \end{array}$$

Para T>Tc

Se recomienda usar A=0, por lo que la ecuación resulta así igual a la de Peng Robinson(1976)

DOS PARÁMETROS (A y B)

5. Adachi y Lu³⁸(1984) *ALFA*:

$$\alpha = A10^{B(1-T_r)}$$

DERIVADA#:

$$-\log(10)BT_r$$

6. Soave³⁰(1980) ALFA:

$$\alpha = 1 + (1 - T_r) \left(\begin{array}{c} A \\ + \\ T_r \end{array} \right)$$

DERIVADA[#]:

$$\begin{bmatrix} -\left(AT_r + \frac{B}{T_r}\right) \\ \alpha \end{bmatrix}$$

[•] Como derivada se considera a la expresión: $\frac{T}{\alpha} \frac{\partial \alpha}{\partial T}$

7. Melhem, Saini, Goodwin⁵⁰(1989)

ALFA:

$$\ln \alpha = A(1-T_r) + B(1-\sqrt{T_r})^2$$

DERIVADA#:

$$\left(-A-\frac{B\left(1-\sqrt{T_r}\right)}{\sqrt{T_r}}\right)T_r$$

TRES PARÁMETROS (A, B y C)

8. Androulakis, Kalospiros y Tasios⁴⁹(1989)

Para T<Tc

ALFA:

$$\alpha = 1 + A(1 - T_r^{2/3}) + B(1 - T_r^{2/3})^2 + C(1 - T_r^{2/3})^3$$

DERIVADA":

$$\frac{\left(\left[\frac{-2A}{3T_r^{1/3}}\right] + \left[\frac{-4B(1-T_r^{2/3})}{3T_r^{1/3}}\right] + \left[\frac{-2C(1-T^{2/3})^2}{T_r^{1/3}}\right]\right)T_r}{\alpha}$$

Para T>Tc

DERIVADA#:

ALFA:

$$\alpha = e^{A\left(1 - T_r^{2/3}\right)}$$

$$\boxed{\begin{array}{c} -2AT^{2/3} \\ 3\end{array}}$$

^{*} Como derivada se considera a la expresión: $\frac{T}{\alpha} \frac{\partial \alpha}{\partial T}$

9. Mathias y Copeman³⁶(1983)

ALFA:

$$\alpha^{1/2} = 1 + A(1 - \sqrt{T_r}) + B(1 - \sqrt{T_r})^2 + C(1 - \sqrt{T_r})^3$$

DERIVADA#:

$$\frac{\sqrt{T_r}}{\alpha^{1/2}} \left[-A - 2B(1 - \sqrt{T_r}) - 3C(1 - \sqrt{T_r})^2 \right]$$

Mathias-Copeman II

Propuesta de Dahl y Michelsen⁹² (1990) ALFA:

$$\alpha^{1/2} = 1 + A(1 - \sqrt{T_r})$$

DERIVADA*:

$$\frac{-A_{\sqrt{T_r}}}{\alpha^{1/2}}$$

10. Yu y Lu⁴⁶(1987) Para T<Tc *ALFA*:

$$\log_{10} \alpha = (A + BT_r + CT_r^2)(1 - T_r)$$

DERIVADA[#]:

$$T_r \left(-A + B(1 - 2T_r) + C(2T_r - 3T_r^2) \right)$$

Para T>Tc

ALFA:

$$\log_{10}\alpha = (A + B + C)(1 - T_r)$$

DERIVADA":

$$-Tr(A+B+C)$$

[#] Como derivada se considera a la expresión: $\frac{T}{\alpha} \frac{\partial \alpha}{\partial T}$

11. Stryjek y Vera⁴¹(1986)

Para T<Tc

ALFA:

$$\alpha^{1/2} = 1 + k \left(1 - \sqrt{T_r} \right)$$

$$k = m + (A + B(C - T_r)(1 - \sqrt{T_r}))(1 + \sqrt{T_r})(0.7 - T_r)$$

 $m = 0.378893 + 1.4897153w - 0.1713848w^2 + 0.0196554w^3$

DERIVADA[#]

$$\frac{2T_r}{\sqrt{\alpha}}[G-H]$$

$$G = \left(1 - \sqrt{T_r} \left\{ \frac{A}{\sqrt{T_r}} \left(0.35 - \frac{T_r}{2} \right) - A \left(1 + \sqrt{T_r}\right) + BC \left(2T_r - 1.7\right) + BT_r \left(3.4 - 3T_r\right) - 0.7B \right\}$$

$$H = \frac{m + (A + B(C - T_r)(1 - \sqrt{T_r}))(1 + \sqrt{T_r})(0.7 - T_r)}{2\sqrt{T_r}}$$

Para T>Tc

Se recomienda usar A=0, B=0 y C=0, por lo que la ecuación resulta así igual a la de Peng Robinson(1976).

El resumen de las expresiones de alfa consideradas es el siguiente:

^e Como derivada se considera a la expresión: $\underline{T} \frac{\partial \alpha}{\partial \alpha}$

	T < Tc	T > Tc	Parámetros	EEC
1. Soave(1972)	$\alpha^{1/2} = 1 + m(1 - \sqrt{T_r})$ m = 0.48508 + 1.55171w - 0.15613w ²	Misma	Ninguno	SRK
2. Peng y Robinson (1976)	$\alpha^{1/2} = 1 + m_i (1 - \sqrt{T_r})$ m = 0.378893 + 1.4897153w - 0.17131848w ² + 0.0196554w ³	Misma	Ninguno	PR
3. Mathias (1983)	$\alpha^{1/2} = 1 + m(1 - T_r^{0.5}) - A(1 - T_r)(0.7 - T_r)$ $m = 0.48508 + 1.55191w - 0.15613w^2$	$\alpha = \exp\left[\left(\frac{c-1}{c}\right)\left(1-T_r^c\right)\right]$ $c = 1 + \frac{m}{2} + 0.3A$	A	SRK
4. Stryjek y Vera (1986)	$\alpha^{1/2} = 1 + m(1 - T_r^{0.5}) - A(1 - T_r)(0.7 - T_r)$ m = 0.378893 + 1.4897153w $- 0.17131848w^2 + 0.0196554w^3$	$\alpha^{1/2} = 1 + m(1 - \sqrt{T_r})$	A	PR
5 Adachi y Lu (1984)	$\alpha = A10^{B(1-T_r)}$	Misma	A, B	SRK, PR
6. Soave(1980)	$\alpha = 1 + (1 - T_r) \left(A + \frac{B}{T_r} \right)$	Misma	A, B	SRK, PR
7. Melhem, Saini, Goodwin (1989)	$\ln \alpha = A(1-T_r) + B(1-\sqrt{T_r})^2$	Misma	A, B	SRK, PR
8. Androulakis, Kalospiros y Tasios -(1989)	$\alpha = 1 + A(1 - T_r^{2/3}) + B(1 - T_r^{2/3})^2 + C(1 - T_r^{2/3})^3$	$\alpha = e^{A\left(1-T_r^{2/3}\right)}$	A, B, C	SRK, PR
9. Mathias y Copeman (1983)	$\alpha^{1/2} = 1 + A(1 - \sqrt{T_r}) + B(1 - \sqrt{T_r})^2 + C(1 - \sqrt{T_r})^3$	$\alpha^{1/2} = 1 + \mathcal{A}(1 - \sqrt{T_r})$	A, B, C	SRK, PR
10. Yu y Lu (1987)	$\log_{10} \alpha = (A + BT_r + CT_r^2)(1 - T_r)$	$\log_{10} \alpha = (A + B + C)(1 - T_r)$	A, B, C	SRK, PR
11. Stryjek y Vera 2 (1986)	$\alpha^{1/2} = 1 + k \left(1 - \sqrt{T_r} \right)$ $k = m + \left[A + B \left(C - T_r \right) \left(1 - \sqrt{T_r} \right) \right]$ $\left[\left(1 + \sqrt{T_r} \right) \left(0.7 - T_r \right) \right]$ $m = 0.378893 + 1.4897153w$ $- 0.17131848w^2 + 0.0196554w^3$	$\alpha^{1/2} = 1 + m(1 - \sqrt{T_r})$	A, B, C	PR

^{&#}x27;Dahl y Michelsen (1990)⁹². Esta ecuación no se incluye en el artículo original de Mathias y Copeman (1983).

4.6 Estudio especial del modelo de Mathias

La estimación del segundo coeficiente virial con las diferentes propuestas de *alfa* muestra claramente en la sección 5.3 que la ecuación de Mathias es la que mejor predice el comportamiento de las sustancias a temperaturas superiores a la temperatura crítica.

De aquí se puede inferir que el comportamiento termodinámico de las sustancias después de la temperatura crítica es de tipo exponencial.

Es posible adaptar la ecuación de Mathias a las demás propuestas de alfa.

La expresión del parámetro *c* se obtiene al igualar la derivada de la ecuación de Mathias a la derivada de la ecuación correspondiente, considerando un valor unitario para la temperatura crítica.

Esto significa que a la temperatura crítica, la pendiente de ambas ecuaciones debe ser la misma para asegurar la continuidad.

Las expresiones del parámetro c para todas las propuestas de *alfa* se muestran a continuación:

Modelo de Mathias para T > Tc

ALFA:

$$\boxed{\alpha = \exp\left(\binom{c-1}{c}\left(1 - T_r^c\right)\right)}$$

DERIVADA:

$$-2(c-1)T_r^c$$

CÁLCULO DEL PARÁMETRO C

1. Soave⁹(1972)

$$c = 1 + \frac{m}{2}$$

$$m = 0.48508 + 1.55171w - 0.15613w^{2}$$

2. Peng y Robinson¹³(1976)

$$c = 1 + \frac{m}{2}$$

 $m = 0.378893 + 1.4897153w - 0.17131848w^2 + 0.0196554w^3$

3. Mathias³⁴(1983)

$$c=1+\frac{m}{2}+0.3A$$

$$m = 0.48508 + 1.55191w - 0.15613w^2$$

4. Stryjek y Vera⁴⁰(1986)

$$c = 1 + \frac{m}{2} + 0.3A$$

 $m = 0.378893 + 1.4897153w - 0.17131848w^2 + 0.0196554w^3$

5. Adachi y Lu³⁸(1984)

$$c = 1 + \frac{\log(10)B}{2}$$

6. Soave³⁰(1980)

$$c = 1 + \frac{A+B}{2}$$

7. Melhem, Saini, Goodwin⁵⁰(1989)

$$c = 1 + \frac{A}{2}$$

8. Androulakis, Kalospiros y Tasios⁴⁹(1989)

$$c = 1 + \frac{A}{3}$$

9. Mathias y Copeman³⁶(1983)

$$c = 1 + \frac{A}{2}$$

10. Yu y Lu⁴⁶(1987)

$$c = 1 + \frac{\log(10)(A + B + C)}{2}$$

11. Stryjek y Vera⁴¹(1986)

$$c = 1 + \frac{m}{2}$$

$$m = 0.378893 + 1.4897153w - 0.17131848w^2 + 0.0196554w^3$$

(es igual a Peng Robinson)

El resumen de las expresiones del parámetro c consideradas para utilizar con el modelo de Mathias es el siguiente:

Las expresiones del parámetro c para el modelo de Mathias a T > Tc

$$\alpha = \exp\left(\binom{c-1}{c}\left(1-T_r^{c}\right)\right)$$

ALFA	Expresión del parámetro c
1. Soave°(1972)	$c = 1 + \frac{m}{2}$
2. Peng y Robinson ¹³	$c = 1 + \frac{m}{2}$
3. Mathias ³⁴	$c = 1 + \frac{m}{2} + 0.3 A$
4. Stryjek y Vera ⁴⁰	$c = 1 + \frac{m}{2} + 0.3 A$
5. Adachi y Lu ³⁸	$c = 1 + \frac{B}{2}$
6. Soave ³⁰ (1980)	$c = 1 + \frac{A+B}{2}$
7. Melhem, Saini, Goodwin ⁵⁰	$c = 1 + \frac{A}{2}$
8. Androulakis49	$c = 1 + \frac{A}{3}$
9. Mathias y Copeman ³⁶	$c = 1 + \frac{A}{2}$
10. Yu y Lu ⁴⁶	$c = 1 + \frac{(A + B + C)}{2}$
11. Stryjek y Vera241	$c = 1 + \frac{m}{2}$

5. Análisis de resultados

5.1 Presión de vapor

Se estimaron los parámetros para cada una de las ecuaciones de *alfa* utilizando el método de ajuste óptimo de Levenberg-Marquardt.

De acuerdo a la expresión de *alfa* que se trate, se debe utilizar una ecuación de estado determinada, o bien en algunos casos, pueden utilizarse ambas ecuaciones de estado (Peng-Robinson o Redlich-Kwong).

La diferencia radica en que algunas ecuaciones de *alfa* expresan un parámetro como un polinomio en función del factor acéntrico. En estas ecuaciones es necesario utilizar la misma ecuación de estado que usó el autor para ajustar dicho polinomio.

Las ecuaciones de *alfa* que permiten utilizar ambas ecuaciones de estado (RK y PR) son las siguientes:

Adachi y Lu, Soave(1980), Melhem, Androulakis, Mathias y Copeman, Yu-Lu y Twu-Bluck

Para comparar la capacidad de predecir presiones de vapor con una u otra ecuación de estado se ajustaron los parámetros de cada una de las ecuaciones de *alfa* con las dos ecuaciones de estado.

Este ajuste de parámetros busca minimizar los errores relativos correspondientes a la predicción de presiones de vapor.

Posteriormente se calcularon los errores relativos promedio correspondientes a las 32 sustancias analizadas y se sumaron. Se seleccionó la ecuación de estado cuya suma de errores fuese la menor, utilizando la misma expresión de *alfa*. El detalle de este cálculo se encuentra en la Tabla 1.

Ecuación de alfa	Suma de errores relativos con RK	Suma de errores relativos con PR
Twu y Bluck	3.8041	3.5477
Yu y Lu	4.7192	4.5804
Androulakis	4.6294	4.6010
Mathias y Copeman	5.0851	4.9015
Melhem	15.6935	12.9370
Soave 1980	11.6992	12.5967
Adachi y Lu	23.204	28.3265

El resumen de la Tabla 1 se muestra a continuación:

Es así como se determina la conveniencia de utilizar las ecuaciones anteriores en conjunto con determinadas ecuaciones de estado, tal como se muestra a continuación:

Ecuación de alfa	Ecuación de Estado	
Adachi y Lu	Peng Robinson	
Androulakis	Peng Robinson	
Mathias y Copeman	Peng Robinson	
Melhem	Peng Robinson	
Soave 1980	Redlich Kwong	
Twu y Bluck	Peng Robinson	
Yu y Lu	Peng Robinson	

Por su parte, las ecuaciones de *alfa* que solamente pueden utilizarse con una ecuación de estado son las siguientes:

Ecuación de alfa	Ecuación de Estado
Mathias	Redlich Kwong
Peng Robinson	Peng Robinson
Soave 1972	Redlich Kwong
Stryjek y Vera	Peng Robinson
Stryjek y Vera 2	Peng Robinson

5.1.1 Alcoholes/Presión de vapor

Las siguientes consideraciones se basan en la tabla 2.a

Ecuaciones sin parámetros

En todos los casos, salvo para el metanol y el etanol, la ecuación Soave(1972) predice considerablemente mejor que la Peng Robinson. La suma de los ERP indica una desviación de 216.963 para Soave(1972) y de 242.101 para Peng Robinson. En general las predicciones son aceptables, salvo para las sustancias más grandes de la lista (1-pentanol, 1-hexanol y 1-octanol) donde la predicción es poco aceptable.

A efectos de comparar resultados generales, se han recalculado los errores promedio relativos omitiendo estas tres sustancias, con los siguientes resultados: para la ecuación de Soave(1972) la suma de los errores es de 31.248 y para Peng Robinson es de 32.304.

Ecuaciones con un parámetro

En todos los casos, salvo para el metanol y el etanol, la ecuación Stryjek y Vera predice mejor que la Mathias. La suma de los ERP indica 16.631 para Stryjek y Vera y 17.213 para Mathias.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Melhem predice mejor que Soave(1980) y considerablemente mejor que Adachi y Lu como vemos a continuación:

Ecuación de alfa	Error relativo promedio	
Melhem	6.436	
Soave (1980)	7.634	
Adachi y Lu	12.771	

Ecuaciones con tres parámetros

Las ecuaciones que mejor predicen las presiones de vapor son la de Yu y Lu y la de Androulakis. Les sigue la de Mathias y Copeman y en un cuarto lugar la de Stryjek y Vera2. Los ERP para cada una de estas ecuaciones se muestran a continuación:

Ecuación de alfa	Error relativo promedio
Yu y Lu	2.022
Androulakis	2.033
Mathias y Copeman	2.096
Stryjek y Vera 2	8.661

Resultados generales

Los errores relativos promedio para los alcoholes y los promedios por ecuación se pueden observar con detalle en la Tabla 2.a

Comparando la predicción general de la presión de vapor por medio del ajuste de los parámetros tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Soave 1972	31.2481
Un parámetro	Stryjek y Vera	16.631
Dos parámetros	Melhem	6.436
Tres parámetros	Yu y Lu	2.022

^{&#}x27;Sin considerar al 1-pentanol, 1-hexanol y 1-octanol

5.1.2 Cetonas/Presión de vapor

Las siguientes consideraciones se basan en la tabla 2.b

Ecuaciones sin parámetros

En la mayor parte de los casos, la ecuación de Peng Robinson predice mejor que la Soave (1972).

La suma de los ERP indica una desviación de 15.547 para Soave(1972) y de 9.734 para Peng Robinson.

Ecuaciones con un parámetro

En todos los casos, la ecuación de Stryjek y Vera predice mejor que la de Mathias. La suma de los ERP indica 2.076 para Stryjek y Vera y 2.646 para Mathias.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Soave(1980) predice mejor que Melhem y considerablemente mejor que Adachi y Lu como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Soave (1980)	0.537
Melhem	1.746
Adachi y Lu	2.953

Ecuaciones con tres parámetros

Las ecuaciones que mejor predicen las presiones de vapor son la de Yu y Lu y la de Androulakis. Les siguen las de Mathias y Copeman y en un cuarto lugar la de Stryjek y Vera2. Los ERP para cada una de estas ecuaciones se muestran a continuación:

Ecuación de alfa	Error relativo promedio
Yu y Lu	0.319
Androulakis	0.320
Mathias y Copeman	0.366
Stryjek y Vera 2	0.522

Resultados generales

Los errores relativos promedio para las cetonas y los promedios por ecuación se pueden observar con detalle en la Tabla 2.b

Comparando la predicción general de la propiedad:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Peng Robinson	9.734
Un parámetro	Stryjek y Vera	2.076
Dos parámetros	Soave 1980	0.537
Tres parámetros	Yu y Lu	0.319

Observamos que la ecuación de Soave(1980) hace predicciones tan buenas como las de tres parámetros.

5.1.3 Éteres/Presión de vapor

Las siguientes consideraciones se basan en la tabla 2.c

Ecuaciones sin parámetros

En la mayor parte de los casos, la ecuación de Peng Robinson predice mejor que la Soave (1972).

La suma de los ERP indica una desviación de 17.487 para Soave(1972) y de 11.128 para Peng Robinson.

Ecuaciones con un parámetro

En todos los casos, la ecuación de Stryjek y Vera predice mejor que la de Mathias. La suma de los ERP indica 2.425 para Stryjek y Vera y 2.974 para Mathias.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Soave(1980) predice mejor que Melhem y considerablemente mejor que Adachi y Lu como vemos a continuación:

Ecuación de alfa	Error relativo promedio	
Soave (1980)	1.324	
Melhem	1.937	
Adachi y Lu	3.077	

Ecuaciones con tres parámetros

Las ecuaciones que mejor predicen las presiones de vapor son la de Stryjek y Vera2 y la de Yu y Lu. Les siguen las de Androulakis y la de Mathias y Copeman. Los ERP para cada una de estas ecuaciones se muestran a continuación:

Ecuación de alfa	Error relativo promedio
Stryjek y Vera 2	1.024
Yu y Lu	1.029
Androulakis	1.030
Mathias y Copeman	1.045

Resultados generales

Los errores relativos promedio para las éteres y los promedios por ecuación se pueden observar con detalle en la Tabla 2.c

Comparando la predicción general de la propiedad:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Peng Robinson	11.128
Un parámetro	Stryjek y Vera	2.425
Dos parámetros	Soave 1980	1.324
Tres parámetros	Stryjek y Vera 2	1.024

5.1.4 Hidrocarburos/Presión de vapor

Las siguientes consideraciones se basan en la tabla 2.d

Ecuaciones sin parámetros

Para todos los casos salvo para el propano, la ecuación de Peng Robinson predice mejor que la Soave (1972). La suma de los ERP indica una desviación de 5.613 para Soave(1972) y de 5.524 para Peng Robinson.

Ecuaciones con un parámetro

En todos los casos, la ecuación de Stryjek y Vera predice mejor que la de Mathias. La suma de los ERP indica 3.120 para Stryjek y Vera y 3.474 para Mathias.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Soave(1980) predice mejor que Melhem y considerablemente mejor que Adachi y Lu como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Soave (1980)	2.204
Melhem	2.818
Adachi y Lu	4.403

Ecuaciones con tres parámetros

La ecuación que mejor predice las presiones de vapor es la Stryjek y Vera2 seguida de la Yu y Lu y la de Androulakis y en un cuarto lugar la de Mathias y Copeman. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio
Stryjek y Vera 2	1.121
Yu y Lu	1.211
Androulakis	1.219
Mathias y Copeman	1.395

Resultados generales

Los errores relativos promedio para los hidrocarburos y los promedios por ecuación se pueden observar con detalle en la Tabla 2.d

Comparando la predicción general de la propiedad:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Peng Robinson	5.524
Un parámetro	Stryjek y Vera	3.120
Dos parámetros	Soave 1980	2.204
Tres parámetros	Stryjek y Vera 2	1.121

5.1.5 Evaluación general de la propiedad/Presión de vapor

Para cada propuesta respecto a la ecuación de *alfa* la suma de los errores relativos promedio para las 32 sustancias estudiadas se expresa a continuación, según el resumen que se presenta en la Tabla 10:

ECUACIÓN DE ALFA	ERP
Yu y Lu	_/ 4.580
Androulakis	4.601
Mathias y Copeman	4.901
Stryjek y Vera 2	11.328
Soave (1980)	11.699
Melhem	12.937
Adachi y Lu	23.204
Stryjek y Vera	23.982
Mathias	26.307
Soave (1972)	255.610
Peng Robinson	268.487

Es de notar que el error relativo por sustancia en pocos casos supera el 1%, por lo que las propuestas de los autores se pueden considerar -en general- muy aceptables.

Los parámetros ajustados para cada una de las ecuaciones y cada sustancia se muestran en las Tablas 3.a, 3.b, 3.c y 3.d
Comparación del error relativo promedio de la predicción de presión de vapor utilizando dos ecuaciones de estado (Redlich-Kwong y Peng-Robinson)

ALEA	ADAC	HIN EU S.	N SOAY	E#1980	SLY & MEL	HENS	ANDRO	DULAKIS	MATHIAS /	COPEMAN	SA DOYU	(1 2 0		U
ECUACION DE ESTADO	SERKE	PR	RK	Mar Br Angel	RK	PR .	ARK &	PR	RK	PR	RK	PR	RK	PR
METANOL	2.3062	1.5142	0.6916	0.9183	0.5062	0.1519	0.1824	0.1654	0.1793	0.1517	0.1849	0.1570	0.1953	0.1514
ETANOL	1.4322	0.6212	1.1495	1.3393	0.3151	0.6039	0.3095	0.3058	0.2724	0.2587	0.2803	0 2690	N.C.	N.C.
1-PROPANOL	0.0314	0.0146	0.2186	0.2382	0.1224	0.1617	0.0080	0.0078	0 0070	0.0069	0.0071	0.0070	NC.	N.C.
2-PROPANOL	0.0287	0.0082	0.1799	0.1955	0.1096	0.1410	0.0041	0.0040	0.0038	0.0039	0.0037	0.0038	N.C	N.C.
1-BUTANOL	0.1029	0.1440	0.1846	0.2044	0.1115	0.1480	0.0116	0.0112	0.0101	0.0095	0.0102	0.0098	N.C.	N.C.
2-BUTANOL	0.1831	0.1859	0.3041	0.3163	0.2660	0.2866	0.1779	0.1777	0.1753	0.1751	0.1759	0.1758	N.C.	N.C.
2-METIL-1-PROPANOL	0.1259	0.1672	0.1857	0.2051	0.1201	0.1552	0.0222	0.0219	0.0208	0.0202	0.0209	0.0205	N.C.	NC.
2-METIL-2-PROPANOL	0.1091	0.1356	0.0854	0 0970	0.0555	0.0759	0.0080	0.0078	0.0077	0.0075	0.0077	0.0075	N.C.	N.C.
1-PENTANOL	2.1906	2.6498	0.3779	0.3963	0.5300	0.3704	0.3091	0.2998	0.3599	0.3411	0.3388	0.3218	0.3770	0.3545
1-HEXANOL	0.9749	1.1218	0.3891	0.4207	0 5002	0.3888	0.3225	0.3179	0.3435	0.3351	0.3316	0.3239	0.3535	0.3430
1-OCTANOL	5.2862	5.9753	3 8678	4.0277	3.7741	3.9529	0.6995	0.7136	0.7774	0.7862	0.7344	0.7258	N.C.	N.C.
ACETONA	0.4901	1.3210	0.1934	0.2816	0.6601	0.3941	0.1523	0.1757	0.1814	0.1864	0.1557	0.1746	0.1966	0 1956
2-PENTANONA	0.0807	0.1103	0.0103	0.0287	0.0716	0.0387	0.0042	0.0042	0.0045	0.0043	0.0042	0.0042	N.C.	N.C.
3-PENTANONA	0.1098	0.1476	0.0315	0.0557	0.0743	0.0324	0.0033	0.0031	0.0042	0.0035	0.0033	0.0030	0.0048	0.0038
METILBUTANONA	0.0929	0.1196	0.0168	0.0323	0.0599	0.0317	0.0115	0.0116	0.0112	0.0114	0.0115	0.0117	N.C.	N.C.
2-HEXANONA	0.5441	0.7020	0.0560	0.1345	0.5121	0.3253	0.0268	0.0242	0.0415	0,0327	0.0286	0.0242	0.0485	0.0389
3-HEXANONA	0.1104	0.1507	0.0102	0.0348	0.1008	0.0560	0.0021	0.0019	0.0035	0.0026	0.0023	0.0019	0.0042	0.0031
DIMETILBUTANONA	0.5392	0.6709	0.0781	0.1546	0.3322	0.1890	0.0157	0.0115	0.0300	0.0218	0.0157	0.0095	0.0367	0.0279
2-HEPTANONA	0.5586	0.7262	0.0816	0.1585	0.4945	0.3071	0.0600	0.0600	0.0650	0.0616	0.0602	0.0598	0.0689	0.0641
5-NONANONA	0.4272	0.6033	0.0590	0.1054	0.5742	0.3716	0.0326	0.0272	0.0533	0.0419	0.0401	0.0302	0.0606	0.0493
METILnPROPILETER	0.4189	0.5065	0.1157	0.1225	0.3012	0.2128	0.1183	0.1192	0.1153	0.1167	0.1184	0.1198	0.1146	0.1158
METILIPROPILETER	0.3209	0.4129	0.1554	0.2070	0.1622	0.0963	0.0899	0.0890	0.0920	0.0900	0.0893	0.0881	0.0937	0.0907
METILnBUTILETER	0.5176	0.6565	0.1078	0.1845	0.3873	0.2304	0.0786	0.0791	0.0783	0.0780	0.0788	0.0797	0.0790	0.0779
METILtBUTILETER	0.1271	0.1766	0.1698	0.2024	0.0889	0.1099	0.0888	0.0884	0.0886	0.0878	0.0884	0.0879	0.0885	N.C.
ETILnPROPILETER	0.5915	0.7294	0.1707	0.1072	0.6011	0.4371	0.0839	0.0812	0.0987	0.0921	0.0852	0.0807	0.1002	0.0948
DInPROPILETER	0.6730	0.7500	0.5753	0.5624	0.7417	0.6578	0.5577	0.5569	0.5611	0.5594	0.5584	0.5571	0.5613	0.5599
DIIPROPIL ETER	0.3338	0.4341	0.0261	0.0648	0.2452	0.1439	0.0152	0.0132	0.0226	0.0183	0.0159	0.0128	0.0253	0.0211
METILFENILETER	0.0942	0.1222	0.0031	0.0186	0.0805	0.0486	0.0027	0.0028	0.0028	0.0027	0.0027	0.0028	N.C.	N.C.
PROPANO	1.7509	2.8142	0.5314	0.5290	0.8157	0.6188	0.4479	0.4611	0.4964	0.4937	0.4417	0.4490	0.5019	0.5051
BUTANO	0.8682	1.4975	0.4812	0.3399	0.8391	0.6093	0.1995	0.1851	0.2538	0.2261	0.2054	0.1816	0.2273	0.2094
PENTANO	0.6908	1.3502	0.3831	0.2652	0.7809	0.5301	0.2131	0.1988	0.2594	0.2313	0.2220	0.1983	0.2530	0.2332
HEXANO	1.0930	1.7870	0.8082	0.6483	1.3594	1.0598	0.3706	0.3740	0.4643	0.4435	0.3958	0.3818	0.4132	0.4083
SUMA	23.2044	28.3265	11.6992	12.5967	15.6935	12.9370	4.6294	4.6010	5.0851	4.9015	4.7192	4.5804	3.8041	3.5477
PROMEDIO	0.7251	0.8852	0.3656	0.3936	0.4904	0.4043	0.1447	0.1438	0.1589	0.1532	0.1475	0.1431	0.1189	0.1109
N.C.= NO SE LOGRÓ LA CO	ONVERGENO	AIA	- -		_				-					-

TABLA 1

Presiones de vapor ALCOHOLES

	SIN PARÁME	TROS	UN PARÁME	TRO	DOS	S PARÁMETE	205		TRE	S PARÁMETR	os
	SOAVE	PENG ROBINSON	MATHIAS	STRYJEK y VERA	ADACHI y LU	SOAVE 1980	MELHEM	ANDROULAKIS	MATHIAS y COPEMAN	YUYLU	STRYJEK y VERA 2
			-						-	, , ,	
METANOL	6.939	5.097	0.421	0.713	2.306	0.692	0.152	0.165	0.152	0.157	0.155
ETANOL	2.634	1.166	0.660	0.886	1.432	1.149	0.604	0.306	0.259	0.269	0.197
1-PROPANOL	2.696	3.586	0.382	0.207	0.031	0.219	0.162	0.008	0.007	0.007	0.048
2-PROPANOL	2.168	2.707	0.312	0.108	0.029	0.180	0.141	0.004	0.004	0.004	0.004
1-BUTANOL	4.418	5.310	0.191	0.068	0.103	0.185	0.148	0.011	0.009	0.010	0.032
2-BUTANOL	4.195	4.897	0.318	0.238	0.183	0.304	0.287	0.178	0.175	0.176	0.123
2-METIL-1-PROPANOL	4.856	5.721	0.200	0.066	0.126	0.186	0.155	0.022	0.020	0.020	0.024
2-METIL-2-PROPANOL	3.377	3.820	0.253	0.017	0.109	0.085	0.076	0.008	0.007	0.008	0.004
1-PENTANOL	6.917	8.525	1.199	0.936	2.191	0.378	0.370	0.300	0.341	0.322	0.116
1-HEXANOL	48.082	53.739	12.141	12.009	0.975	0.389	0.389	0.318	0.335	0.324	6.938
1-OCTANOL	130.681	147.533	1.135	1.113	5.286	3.868	3.953	0.714	0.786	0.726	1.019
SUMA	216.963	242.101	17.213	16.361	12.771	7.634	6.436	2.033	2.096	2.022	8.661
PROMEDIO	19.724	22.009	1.565	1.487	1.161	0.694	0.585	0.185	0.191	0.184	0.787

TABLA 2.b

Presiones de vap	or										
CETONAS					% ERRC	OR RELAT	IVO PRO	MEDIO			
	SIN PARÁME	TROS	UN PARÁMI	ETRO	D	OS PARÁMETH	ROS		TRI	ES PARÁMET	ROS
	SOAVE	PENG ROBINSON	MATHIAS	STRYJEK	ADACHI y LU	SOAVE 1980	MELHEM	ANDROULAKIS	MATHIAS y COPEMAN	YUYLU	STRYJEK y VERA 2
										•	
ACETONA	4.268	0.681	0.392	0.311	0.490	0.193	0.394	0.176	0.186	0.175	0.174
2-PENTANONA	1.117	0.424	0.118	0.082	0.081	0.010	0.039	0.004	0.004	0.004	0.005
3-PENTANONA	0.742	1.022	0.131	0.087	0.110	0.032	0.032	0.003	0.003	0.003	0.005
METILBUTANONA	0.582	1.124	0.123	0.066	0.093	0.017	0.032	0.012	0.011	0.012	0.011
2-HEXANONA	3.060	0.704	0.406	0.351	0.544	0.056	0.325	0.024	0.033	0.024	0.024
3-HEXANONA	0.875	0.543	0.106	0.090	0.110	0.010	0.056	0.002	0.003	0.002	0.006
DIMETILBUTANONA	1.371	2.408	0.421	0.327	0.539	0.078	0.189	0.012	0.022	0.009	0.008
2-HEPTANONA	1.891	1.635	0.373	0.329	0.559	0.082	0.307	0.060	0.062	0.060	0.062
5-NONANONA	1.639	1.194	0.576	0.433	0.427	0.059	0.372	0.027	0.042	0.030	0.226
SUMA	15.547	9 734	2646	2.076	2 052	0.527	1 746	0.220	0.255	0.240	0.577
PROMEDIO	1.727	1.082	0.294	0.231	0.328	0.060	0.194	0.036	0.041	0.035	0.058

TABLA 2.c

Presiones de vapor ÉTERES

	SIN PARÁME	TROS	UN PARÁME	TRO -	DO	S PARÁMETI	ROS	1	TRES P	ARÁMETROS	
	SOAVE	PENG ROBINSON	MATHIAS	STRYJEK y VERA	ADACHIZ YLU	SOAVE 1980	MELHEM	ANDROULAKIS	MATHIAS y COPEMAN	YUYĿU.	STRYJEK y VERA 2
METILnPROPILETER	2.102	1.238	0.450	0.339	0.419	0.116	0.213	0.119	0.117	0.120	0.119
METILiPROPILETER	1.021	2.296	0.283	0.164	0.321	0.155	0.096	0.089	0.090	0.088	0.081
METILnBUTILETER	2.832	1.134	0.392	0.299	0.518	0.108	0.230	0.079	0.078	0.080	0.079
METILtBUTILETER	0.369	1.740	0.128	0.103	0.127	0.170	0.110	0.088	0.088	0.088	0.080
ETILnPROPILETER	4.759	1.188	0.602	0.518	0.591	0.171	0.437	0.081	0.092	0.081	0.068
DInPROPILETER	4.237	1.648	0.734	0.706	0.673	0.575	0.658	0.557	0.559	0.557	0.579
	0.873	1.411	0.216	0.166	0.334	0.026	0.144	0.013	0.018	0.013	0.014
METILFENILETER	1.295	0.473	0.170	0.131	0.094	0.003	0.049	0.003	0.003	0.003	0.005
TOTAL	17.487	11.128	2.974	2.425	3.077	1.324	1.937	1.030	1.045	1.029	1.024
PROMEDIO	2.186	1.391	0.372	0.303	0.385	0.165	0.242	0.129	0.131	0.129	0128

TABLA 2.d

Presiones de vapo HIDROCARBUROS	or				% ERRO	R RELAT	'IVO PRO	MEDIO			
	SIN PARÁME	TROS	UN PARÁME	ETRO	DO	S PARÁMETE	ROS		TRES P	ARÁMETROS	
	SOAVE	PENG ROBINSON	MATHIAS	STRYJEK y VERA	ADACHI	SOAVE 1980	MELHEM	ANDROULAKIS	MATHIAS	YUYLU	STRYJEK y VERA 2
PROPANO	1.032	2.403	0.821	0.706	1.751	0.531	0.619	0.461	0.494	0.449	0.522
BUTANO	1.351	0.890	0.705	0.643	0.868	0.481	0.609	0.185	0.226	0.182	0.228
PENTANO	1.341	0.894	0.693	0.630	0.691	0.383	0.530	0.199	0.231	0.198	0.106
HEXANO	1.890	1.337	1.254	1.142	1.093	0.808	1.060	0.374	0.443	0.382	0.265
TOTAL	5.613	5.524	3.474	3.120	4.403	2.204	2.818	1.219	1.395	1.211	1.121
PROMEDIO	1.403	1.381	0.869	0.780	1.101	0.551	0.705	0.305	0.349	0.303	0.280

Presiones de va	por							
ALCOHOLES			PARÁME	ETROS ES	STIMADO	ร่		
	MATHIAS	STRYJEK V VERA	ADACHIYI A	U. A.C. B	SOAVE 198	0 B	MELHEM	В
METANOL	0.23572	0.16141	1.02323	0.52348	1.23984	0.23809	1.21505	-0.55862
ETANOL	0.09272	0.02582	1.00916	0.58837	1.07315	0.45549	1.26060	-0 03080
1-PROPANOL	-0.16629	-0.21297	0.97877	0.62342	0.69350	0.69547	1.15224	0.90103
2-PROPANOL	-0.19335	-0.23370	0.97759	0.64766	0.63952	0.78717	1.19121	1.02009
1-BUTANOL	-0.29220	-0.33428	0.95429	0.64372	0.43872	0.83415	1.06074	1.51918
2-BUTANOL	-0.33878	-0.37720	0.94875	0.64827	0.35524	0.88285	1.03398	1.71898
2-METIL-1-PROPANOL	-0.33177	-0.37195	0.94834	0.65272	0.37245	0.88029	1.04588	1.68420
2-METIL-2-PROPANOL	-0.39809	-0.43119	0.94475	0.67107	0.24989	0.99573	1.04695	1.98226
1-PENTANOL	-0.29395	-0.34682	0.97010	0.61933	0.39211	0.85110	1.03819	1.61738
1-HEXANOL	-0.65796	-0.68968	0.96675	0.64672	0.74869	0.67810	1.16802	0.91331
1-OCTANOL	-0.81186	-0.83482	0.82763	0.70133	-0.32562	1.03468	0.57071	3.37419
* PARÁMETROS ESTIMADOS PO	OR EL MÉTODO	DE AJUSTE ÓP	TIMO DE LEVER	NBERG-MARQU	IARDT			

Presiones de v	apor											
ALCOHOLES				PARÁMI	ETROS ES	STIMADO	ร์					
Sampanya Karang Sang Sang Sang Sang Sang Sang Sang S	AND DOL !!	2110 (Mar)	n szar an an an an an a	1 8 4 Terr 11 /4 (m. 81/	~~~~~	No.72 Landerson State State State	1	an the second second second	1	ATDVICIZ	V/C D & E	anneriensere e.c.»
	ANDROULA	unis B	C.	A I	B	C - I	YU Y LU L	B	Ċ		B	C
METANOL	1.81662	1.00632	-1.15878	1.21570	-0.15397	-0.79359	0.41784	0.16515	-0.05579	-0.08728	-0 59914	1.16420
ETANOL	1.79657	2.16269	-1.89833	1.20864	0.73771	-2.11086	0.44672	0.29667	-0.21936	0.04955	-2.07826	0.76489
1-PROPANOL	1.49233	3.49487	-2.68339	1.03061	1.85067	-3.40521	0.45813	0.39683	-0.41041	0.85787	6.72223	0.16012
2-PROPANOL	1.53089	3.90437	-3.15340	1.05824	2.12546	-4.02912	0.44679	0.50009	-0.49014	0.38238	-1 11659	1.35105
1-BUTANOL	1.40476	3.19487	-0.95550	0.95541	1.93503	-2.59480	0.56279	0.14055	-0.28992	0.19279	-3.56807	0.44147
2-BUTANOL	1.16212	5.02090	-4.57456	0.82377	3.21097	-5.84419	0.36557	0.74495	-0.75886	-3.36632	-69.46748	0.37135
2-METIL-1-PROPANOL	1.37763	3.28996	-0.80410	0.93597	2.06245	-2.65114	0.57704	0.12543	-0.29750	0.06952	-6.32299	0.40073
2-METIL-2-PROPANOL	1.42841	3.08691	0.30302	0.95930	2.01707	-2.08536	0.64922	-0.01775	-0.21531	0.13721	-6.32551	0.41238
1-PENTANOL	1.60287	1.18806	3.46517	1.05206	0.64644	1.09737	0.80505	-0.58501	0.23975	0.03477	-4.97463	0.30338
1-HEXANOL	1.86543	0.71420	3.03595	1.20715	0.19242	0.93977	0.74835	-0.47090	0.25436	15.56774	153.66310	0.17299
1-OCTANOL	0.41976	4.62599	-0.36043	0.29524	3.92515	-3.68420	0.64439	-0.06281	-0.46703	0.89251	-0.00464	45.33313
* PARÁMETROS ESTIMADOS I	POR EL MÉTOD	O DE AJUSTE (ÓPTIMO DE LEV	ENBERG-MARC	QUARDT							-

Presiones de v	apor							
CETONAS			PARÁME	ETROS E	STIMADO	ร๋		
	MATHIAS	STRYJEK VERA	ADACHI Y L	U VB	SOAVE 198	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MELHEM	B
ACETONA	0.070769	0.009331	1.002865	0.412080	0.812177	0.209223	0.817312	0.234486
2-PENTANONA	0.047593	-0.016613	0.997837	0.442489	0.784099	0.279961	0.859847	0.350243
3-PENTANONA	0.027459	-0.035345	0.993172	0.447031	0.757893	0.294174	0.848388	0.429548
METILBUTANONA	0.022545	-0.040972	0.991041	0.431913	0.722303	0.279811	0.805327	0.460891
2-HEXANONA	0.051768	-0.009629	0.998843	0.467804	0.859412	0.287358	0.922702	0.312468
3-HEXANONA	0.040193	-0.022972	0.998334	0.460751	0.802600	0.308332	0.901201	0.357737
DIMETILBUTANONA	0.022299	-0.037421	0.987967	0.441116	0.753813	0.270185	0.817326	0.455985
2-HEPTANONA	0.034024	-0.027106	0.997411	0.488303	0.858628	0.328497	0.959315	0.359432
5-NONANONA	0.037218	-0.025007	1.006993	0.525812	0.948478	0.381414	1.085524	0.220265

Presiones de vapor CETONAS

PARÁMETROS ESTIMADOS

	ANDROUL	KIS SASS		MATHIAS y	COPEMAN		YUʻy LU			STRYJEK y	VERA 2	
	IZESA GARA	CARLAR CONT		STEPA PETE			A State of the Sta	B				
ACETONA	1.282931	0.156376	0.803114	0.848712	-0.254063	0.516429	0,444143	-0.211105	0.138537	-0.075451	-0.398216	-0.091073
2-PENTANONA	1.343765	0.280784	1.028780	0.886788	-0.155969	0.555149	0.491019	-0.255814	0.153690	-0.093682	-0.861436	0.014639
3-PENTANONA	1.310098	0.437837	0.850657	0.866113	-0 023794	0.342120	0.485854	-0.231017	0.124783	-0.072739	-0.916717	0.068428
METILBUTANONA	1.254883	0.317820	1.004828	0.827727	-0.068543	0.482960	0.481137	-0.264936	0.147337	0.096798	1.318803	0 4 18 907
2-HEXANONA	1.477906	0.108600	1.380791	0.969053	-0.306870	0.794810	0.525857	-0.303207	0.204092	-0.095082	-0.312304	-0.753390
3-HEXANONA	1.411926	0.295164	1.182233	0.931158	-0.172075	0.644375	0.517061	-0.277510	0.168658	-0.109465	-1.072431	0.037290
DIMETILBUTANONA	1.293480	0.213225	1.151674	0.849294	-0.134775	0.570874	0.490627	-0.287855	0.171868	-0.070695	-0.453189	-0.376857
2-HEPTANONA	1.527368	0.218603	1.460885	1.002920	-0.252378	0.795871	0.550932	-0.313665	0.203506	-0.047671	0.056841	5.820591
5-NONANONA	1.734613	0.206669	1.776377	1.139322	-0.389301	1.064137	0.602682	-0.342641	0.239188	-0.411239	-4.911349	0.205532

Presiones de va	por							
ÉTERES	-		PARÁME	ETROS ES	STIMADO	ร้		
	MATHIAS	STRYJEK. y VERA	ADACHI y L A	U B	SOAVE 198	0 B		B
METILnPROPILETER	0.039811	-0.021432	0.990168	0.407279	0.715325	0.230756	0.752163	0.418533
METILIPROPILETER	0.019128	-0.041103	0.986510	0.409281	0.692381	0.240258	0.740486	0.472985
METILnBUTILETER	0.044559	-0.016081	0.993307	0.429957	0.779600	0.244273	0.816668	0.370088
METILtBUTILETER	0.011216	-0.051151	0.988832	0.408020	0.672766	0.256076	0.741785	0.493964
ETILnPROPILETER	0.078986	0.016602	1.001093	0.430079	0.831209	0.231296	0.850317	0.260796
DInPROPILETER	0.096268	0.032059	1.007092	0.442338	0.873840	0.245359	0.903628	0.177011
DIIPROPIL ETER	0.024331	-0.037223	0.993718	0.439622	0.747129	0.285872	0.832422	0.431920
METILFENILETER	0.048084	-0.015854	0.996482	0.444596	0.783267	0.281496	0.859123	0.366094

.

Presiones	de	vapor	
ÉTERES			

PARÁMETROS ESTIMADOS

		KIS		MATHIAS y	COPEMAN		YUYLU			STRYJEKÝ	VERA 2	
	L AMERICAN PARTY	2012-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0					编述入强度》			SUISA HAR		
METILnPROPILETER	1.208258	0.008198	1.259341	0.791883	-0.247754	0.759093	0.466104	-0.312093	0.196129	0.000361	0.689257	0.688468
METILIPROPILETER	1.129698	0.458186	0.546284	0.747981	0.072274	0.116963	0.431503	-0.194777	0.091614	-0.134846	-1.685734	0.143095
METILnBUTILETER	1.291628	0.179239	1.019955	0.849261	-0.181116	0.537589	0.472555	-0.260044	0.161792	-0.028605	0.127246	1.909035
METILtBUTILETER	1.071846	0.925245	-0.282197	0.718573	0.382940	-0.597207	0.387621	-0.045900	-0.029606	-0.214995	-3.952217	0.300187
ETILnPROPILETER	1.405669	-0.281623	1.696817	0.915604	-0.524944	1.153253	0.505612	-0.360697	0.260698	-0.245822	-1.359359	-0.107456
DInPROPILETER	1.479816	-0.259875	1.761066	0.966876	-0.571404	1.251604	0.524154	-0.363275	0.265507	-0.350963	-2.417273	0.025811
DIIPROPIL ETER	1.313454	0.194357	1.274162	0.864564	-0.177057	0.718772	0.503097	-0.306298	0.183105	-0.061278	-0.412363	-0.444278
METILFENILETER	1.361008	0.155970	1.282856	0.894960	-0.229961	0.747530	0.505832	-0.300026	0.187675	-0.124744	-1.002544	-0.038838

TABLA 3.d

Presiones de va	por										
HIDROCARBUROS			PARÁMETROS ESTIMADOS								
	MATHIAS	STRYJEK VVERA	ADACHI y L	U B	SOAVE:198	0 B	MELHEM	B			
PROPANO	0.013373	-0.045141	0.996189	0.329187	0.557872	0.184114	0.576772	0.511481			
BUTANO	0.041600	-0.020735	1.001177	0.350972	0.643648	0.188994	0.661542	0.363435			
PENTANO	0.041219	-0.021313	1.001961	0.381504	0.702539	0.214273	0.735751	0.331036			
HEXANO	0.042412	-0.019450	1.004009	0.410289	0.766826	0.236441	0.809429	0.294126			
* PARÁMETROS ESTIMADOS PO	R EL MÉTODO	DE AJUSTE ÓP	TIMO DE LEVEN	BERG-MARQU	ARDT						

TABLA 3.d (continuación)

Presiones de	resiones de vapor											
HIDROCARBUROS			PARÁM	PARÁMETROS ESTIMADOS								
		AKIS B	C.	MATHIAS Y	COPEMAN B		YU y LU A	B	C.	STRYJEK ÿ A	VERA 2 B	C.
PROPANO	0 910562	0.062978	0.985173	0.599908	-0.105424	0.583525	0.394991	-0.291732	0.161135	-0.040213	-0.617713	0.008222
BUTANO	1.064829	-0.234738	1.622550	0.702394	-0.418049	1.287094	0.453435	-0.392413	0.247304	-0.090582	-1.061776	0.109574
PENTANO	1.165380	-0.062748	1.393472	0.770255	-0.344089	1.048170	0.464419	-0.337833	0.210624	-0.101801	-1.410031	0.189596
HEXANO	1.333910	-0.475737	2.340906	0.875588	-0.683239	1.850623	0.543298	-0.498749	0.340393	-0.186661	-1.857597	0.096319

Presiones de vapo ALCOHOLES	or	r DATOS EXPERIMENTALES						
	NP.	TC [K]	Pci[kPa]		T [K] Mintervalo	Referencias		
METANOL	43	512.58	8095.79	0.56533	288-503	1,2,3		
ETANOL	47	513.92	6148.00	0.64439	292-511	1,3		
1-PROPANOL	19	536.71	5169.55	0.62013	333-378	1		
2-PROPANOL	17	508.40	4764.25	0.66372	325-362	1		
1-BUTANOL	18	562.98	4412.66	0.59022	352-399	1		
2-BUTANOL	17	535.95	4248.52	0.58254	341-380	1		
2-METIL-1-PROPANOL	18	547.73	4295.12	0.59005	343-389	1		
2-METIL-2-PROPANOL	16	506.15	3971.90	0.61365	330-363	1		
1-PENTANOL	35	588.15	3909.00	0.57839	348-514	1		
1-HEXANOL	_14	611.00	4050.00	0.56000	332-428	4,8		
1-OCTANOL	46	684.80	2860.00	0.32420	328-554	2,3		
			· · · · · · · · · · · · · · · · · · ·					
1 Ambrose y Sparke (1970) 2 Ambros 4 Smith y Srivastava (1986) 8. Boublil	se et al. <, Fried y	(1974b) 3. Ai / Hála (1986)	mbrose et al (19	75a)				

Presiones de va CETONAS	por		DATOS EXPERIMENTALES				
	NP		(Re)[kPa]	W.	ir (K) Jatenvalo:	Referencias	
ACETONA	45	508.10	4696.00	0.30667	259-506	5,6	
2-PENTANONA	17	561.08	3694.00	0.34719	336-385	6	
3-PENTANONA	18	561.46	3729.00	0.34377	330-384	6	
METILBUTANONA	19	555.00	3790.00	0.31314	329-377	6	
2-HEXANONA	30	587.00	3320.00	0.39385	308-428	6	
3-HEXANONA	18	582.82	3319.00	0.37931	349-407	6	
DIMETILBUTANONA	30	567.00	3470.00	0.32293	300-405	6	
2-HEPTANONA	30	611.50	2990.00	0.42536	328-452	6	
5-NONANONA	28	640.00	2329.00	0.51374	358-485	6	

Presiones de vapor ÉTERES DATOS EXPERIMENTALES							
NP	TIC (K)	Pci[kPa]	w. (T [K] Intervalo	Referencias		
22	476.25	3801.00	0.27215	256-333	7		
20	464.48	3762.00	0.26600	250-325	7		
29	512.78	3371.00	0.31672	266-367	7		
16	497.10	3430.00	0.26746	288-351	7		
29	500.23	3370.00	0.33612	261-359	7		
25	530.60	3028.00	0.37070	293-388	7		
20	500.32	2832.00	0.33168	285-365	7		
17	645.60	4250.00	0.34817	383-437	7		
	 	<u></u>					
30	370.02	4261.00	0.15140	186-369	4,8		
29	425.18	3797.00	0.20000	236-418	4,8		
28	469.81	3375.00	0.25060	262-461	4,8		
32	507.68	3040.00	0.30180	274-507	4,8		
	222 200 299 16 299 255 200 177 177 300 299 255 200 177	Image: NPE T.C. IKI 22 476.25 20 464.48 29 512.78 16 497.10 29 500.23 25 530.60 20 500.32 17 645.60 30 370.02 29 425.18 28 469.81 32 507.68	DATOS DATOS NR T.C IKI PCIIKRAI 22 476.25 3801.00 20 464.48 3762.00 29 512.78 3371.00 16 497.10 3430.00 29 500.23 3370.00 29 500.23 3370.00 25 530.60 3028.00 20 500.32 2832.00 17 645.60 4250.00 17 645.60 4250.00 30 370.02 4261.00 29 425.18 3797.00 28 469.81 3375.00 32 507.68 3040.00 Hk Fried y Háta. (1986)	DATOS EXPERIM NR TGXIKI PCIIKRAJ MAX 22 476.25 3801.00 0.27215 20 464.48 3762.00 0.26600 29 512.78 3371.00 0.31672 16 497.10 3430.00 0.26746 29 500.23 3370.00 0.33612 25 530.60 3028.00 0.37070 20 500.32 2832.00 0.33168 17 645.60 4250.00 0.34817 30 370.02 4261.00 0.15140 29 425.18 3797.00 0.20000 28 469.81 3375.00 0.25060 32 507.68 3040.00 0.30180	DATOS EXPERIMENTALE DATOS EXPERIMENTALE		

5.2 Entalpía de vaporización

A partir de los parámetros estimados con el método de ajuste óptimo de Levenberg-Marquardt (con datos de presión de vapor), se predijeron entalpías de vaporización.

De acuerdo a la expresión de *alfa* que se trate, se utilizó una ecuación de estado determinada ya sea por el autor de la ecuación o por el análisis descrito en el capítulo anterior.

5.2.1 Alcoholes/Entalpía de vaporización

Las siguientes consideraciones se basan en la tabla 6.a

Ecuaciones sin parámetros

En todos los casos, salvo para el metanol y el etanol, la ecuación Soave(1972) predice considerablemente mejor que la Peng Robinson.

La suma de los ERP indica una desviación de 71.635 para Soave(1972) y de 78.916 para Peng Robinson.

En general las predicciones presentan errores promedio relativos superiores al 2%, ya hasta de un 10% por lo que dejan mucho que desear.

Ecuaciones con un parámetro

La predicción es variable para las dos ecuaciones analizadas. En algunos casos la ecuación Stryjek y Vera predice mejor que la Mathias y en otros casos sucede lo contrario. La suma de los ERP indica 27.583 para Stryjek y Vera y 28.816 para Mathias.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Melhem predice mejor que Soave(1980) y considerablemente mejor que Adachi y Lu, tal como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Melhem	27.262
Soave (1980)	46.411
Adachi y Lu	63.808

Ecuaciones con tres parámetros

Las ecuaciones que mejor predicen las presiones de vapor son la de Yu y Lu y la de Mathias y Copeman, Le sigue la de Androulakis y en un cuarto lugar la de Stryjek y Vera2. Los ERP para cada una de estas ecuaciones se muestran a continuación:

Ecuación de alfa	Error relativo promedio
Yu y Lu	25.683
Mathias y Copeman	25.745
Androulakis	26.400
Stryjek y Vera 2	50.026

Resultados generales

Los errores relativos promedio para los alcoholes y los promedios por ecuación se pueden observar con detalle en la Tabla 6.a

Comparando la predicción general de la entalpía de vaporización comparada con los datos experimentales, tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Soave 1972	71.635
Un parámetro	Stryjek y Vera	27.583
Dos parámetros	Melhem	27.262
Tres parámetros	Yu y Lu	25.683

5.2.2 Cetonas/Entalpía de vaporización

Las siguientes consideraciones se basan en la tabla 6.b

Ecuaciones sin parámetros

En algunos casos la ecuación de Peng Robinson predice mejor que la Soave (1972) y en otros ocurre lo contrario.

La suma de los ERP indica una desviación de 14.266 para Soave(1972) y de 16.690 para Peng Robinson.

Ecuaciones con un parámetro

En casi todos los casos, la ecuación de Stryjek y Vera predice mejor que la de Mathias. La suma de los ERP indica 9.841 para Stryjek y Vera y 11.214 para Mathias.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Melhem predice mejor que Soave(1980) y que Adachi y Lu como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Melhem	11.081
Soave (1980)	13.787
Adachi y Lu	16.216

Ecuaciones con tres parámetros

Las ecuaciones que mejor predicen las presiones de vapor son la de Yu y Lu y la de Androulakis. Le siguen Mathias y Copeman y en un cuarto lugar la de Stryjek y Vera2. Los ERP para cada una de estas ecuaciones se muestran a continuación:

Ecuación de alfa	Error relativo promedio
Yu y Lu	9.804
Androulakis	9.864
Mathias y Copeman	10.374
Stryjek y Vera 2	11.861

Resultados generales

Los errores relativos promedio para las cetonas y los promedios por ecuación se pueden observar con detalle en la Tabla 6.b

Comparando la predicción general de la propiedad:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Soave(1972)	14.266
Un parámetro	Stryjek y Vera	9.841
Dos parámetros	Melhem	11.081
Tres parámetros	Yu y Lu	9.804

Observamos que la ecuación de Stryjek y Vera de un parámetro hace predicciones tan buenas como cualquiera de dos o tres parámetros.

5.2.3 Hidrocarburos/Entalpía de vaporización

Las siguientes consideraciones se basan en la tabla 6.b

Ecuaciones sin parámetros

Para todos los casos la ecuación de Peng Robinson predice mejor que la Soave (1972). La suma de los ERP indica una desviación de 11.453 para Soave(1972) y de 9.791 para Peng Robinson.

Ecuaciones con un parámetro

En general la ecuación de Mathias predice algo mejor que la de Stryjek y Vera. La suma de los ERP indica 10.423 para Stryjek y Vera y 10.040 para Mathias.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Soave(1980) predice mejor que Melhem y que Adachi y Lu como vemos a continuación:

Ecuación de alfa	Error relativo promedio	
Soave (1980)	8.773	
Melhem	10.203	
Adachi y Lu	11.723	

Ecuaciones con tres parámetros

La ecuación que mejor predice las presiones de vapor es la Stryjek y Vera2 seguida de la Yu y Lu y la de Androulakis, y en un cuarto lugar la de Mathias y Copeman. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio
Stryjek y Vera 2	7.141
Yu y Lu	8.107
Androulakis	8.170
Mathias y Copeman	8.783

Resultados generales

Los errores relativos promedio para las hidrocarburos y los promedios por ecuación se pueden observar con detalle en la Tabla 6.b

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Peng Robinson	9.791
Un parámetro	Mathias	10.040
Dos parámetros	Soave 1980	8.8773
Tres parámetros	Stryjek y Vera2	7.141

Comparando la predicción general de la propiedad:

5.2.4 Evaluación general de la propiedad/Entalpía de vaporización

El resumen de la suma de los errores relativos promedio para 25 sustancias se expresa a continuación, según los cálculos presentados en la Tabla 10:

ECUACIÓN DE ALFA	ERP
Yu y Lu	43.594
Androulakis	44.435
Mathias y Copeman	44.904
Stryjek y Vera	47.847
Melhem	48.547
Mathias	50.071
Soave 1980	68.972
Stryjek y Vera 2	69.029
Adachi y Lu	91.748
Soave 1972	97.356
Peng Robinson	105.398

Aunque en el análisis anterior se compara la suma de los errores relativos promedio para 25 sustancias, el error relativo por sustancia oscila entre el 0.5 y 3%, dependiendo de la expresión de *alfa*.

En general, salvo los últimos tres modelos, los errores no superan el 3%, por lo que la predicción se puede considerar modestamente aceptable.

	TA	BLA 5			
λ de Vaporizaciór	1	D.1 700			
	1448407	DATOS	EXPERIME	NIALES*	
	NR	TC [[K]	Pe ((kRa))	WAR	intervalo
	33	512.58	8095.79	0.56533	257-497
ETANOL	29	513.92	6148.00	0.64439	279-503
1-PROPANOL	28	536.71	5169.55	0.62013	288-517
2-PROPANOL	28	508.40	4764.25	0.66372	299-487
1-BUTANOL	28	562.98	4412.66	0.59022	304-531
2-BUTANOL	28	535.95	4248.52	0.58254	288-488
2-METIL-1-PROPANOL	28	547.73	4295.12	0.59005	300-535
2-METIL-2-PROPANOL	33	506.15	3971.90	0.61365	304-435
1-PENTANOL	24	588,15	3909.00	0.57839	319-508
1-HEXANOL*	13	611.00	4050.00	0.56000	339-428
1-OCTANOL	23	684.80	2860.00	0.32420	364-549
ACETONA	33	508.10	4696.00	0.30667	253-493
2-PENTANONA	11	561.08	3694.00	0.34719	282-353
3-PENTANONA	11	561.46	3729.00	0.34377	285-347
METILBUTANONA	6	555.00	3790.00	0.31314	288-319
2-HEXANONA	11	587.00	3320.00	0.39385	299-332
3-HEXANONA	_ 11 .	582.82	3319.00	0.37931	299-324
DIMETILBUTANONA	22	567.00	3470.00	0.32293	295-353
2-HEPTANONA	35	611.50	2990.00	0.42536	290-428
5-NONANONA	13	640.00	2329.00	0.51374	301-356
PROPANO*	32	370.02	4261.00	0.15140	167-363
BUTANO*	28	425.18	3797.00	0.20000	217-392
PENTANO*	32	469.81	3375.00	0.25060	225-454
HEXANO*	32	507.68	3040.00	0.30180	252-485
 Los datos experimentales de λ son de 	e Smith y Sriv	astava (1986) y I	Boublik, Fried y Hála	a (1986)	

Los datos de Tc, Pc y w son los reportados por Stryjek y Vera (1986), salvo los del 1-hexanol, propano, butano y hexano que son de Smith y Srivastava (1986) y Boublik, Fried y Hála (1986) 121

λ de vaporización ALCOHOLES

	SIN PARÁMETROS UN PARÁMETRO			DO	DOS PARAMETROS			TRES PARAMETROS			
	SOAVE	PENG ROBINSON	MATHIAS	STRYJEK y VĚRÁ	ADACHI y LU	SOAVE	MELHEM	ANDROULAKIS	MATHIAS y COPEMAN	;ϓͶϓΊͺͶ	STRYJEK
METANOL	7 7 16	6 260	2.180	2 317	3.908	2 476	2 525	2.554	2 517	2.535	2 474
ETANOL	3 586	2.397	1.986	1.946	2.217	6 306	2.089	2.665	2.570	2.591	2.319
1-PROPANOL	2.244	3.201	2.191	2 024	2.635	3,210	2.185	2.190	1.826	1.904	4.811
2-PROPANOL	2.541	3.354	1.780	1.464	26.579	13 022	1.621	2.228	1.922	1.977	1 869
1-BUTANOL	4.707	5 858	1.670	1.711	2.174	2.909	2.376	1.657	1.591	1.600	1.525
2-BUTANOL	5.796	6.868	1.784	1 421	3.482	3.016	2 301	2.329	2.537	2 441	16.851
2-METIL-1-PROPANOL	4.941	5.994	2.628	2 607	9.685	3 183	2.758	3 122	2.893	2.934	0.872
2-METIL-2-PROPANOL	4 756	5.729	1.838	1.463	3.537	2 022	1.761	1 465	1.434	1 436	0.916
1-PENTANOL	6.224	7.193	3.345	3.071	5.374	3.992	3.432	3.370	3.547	3.455	2.447
1-HEXANOL	10.448	12.025	5.904	5.836	1.197	1.374	1.071	1.248	1.234	1.240	12.419
1-OCTANOL	18.677	20.039	3.509	3.723	3.020	4.902	5.144	3.571	3.673	3.571	3.522
SUMA	71.636	78.917	28.816	27.583	63.808	46.412	27.262	26.400	25.746	25.683	50.026
PROMEDIO	6.512	7.174	2.620	2.508	5.801	4.219	2.478	2.400	2.341	2.335	4.548

λ de vaporización CETONAS

				UN PARÁMETRO DOS PARÁMETROS				TRES PARAMETROS			
	SOAVE	PENG	MATHIAS	STRYJEK	ADACHU	SOAVE	MECHEM	ANDROULAKIS	MATHIAS	YUYLU	STRYJEK
	1972	ROBINSON		y VERA	y LU 😒	1980			ý COPEMAN	主要意識意	y VERA 2
ACETONA	5 476	4.495	4 365	4.360	4.453	4.009	4.489	3.991	4 054	3 983	3.907
2-PENTANONA	1 690	1.245	1.051	0.898	1.556	1.207	0 908	0.867	0.906	0.862	0 860
3-PENTANONA	1.112	1.233	0.242	0 292	0.798	1.680	0.487	0.896	0.967	0 870	0 664
METILBUTANONA	0.556	2.356	1 007	0.733	1.731	1.045	0 546	0.539	0.596	0 527	0 940
2-HEXANONA	1.531	0.971	0.724	0 337	0.822	1.159	0.546	0.924	0.472	0.918	0.393
3-HEXANONA	0.665	1.801	1 064	0.817	1.904	1.241	0.737	0.497	0 686	0.471	0 195
DIMETILBUTANONA	1.250	1.379	0.716	0.692	1.021	0.896	0 783	0.823	0.821	0.823	0 827
2-HEPTANONA	1.498	1.167	0.879	0.741	1.421	1.169	0.784	0.771	0.879	0.763	0.817
5-NONANONA	0.489	2.042	1.165	0.973	2.511	1.382	1.803	0.555	0.995	0 586	3 259
SUMA	14.266	16.690	11.215	9.841	16.217	13.788	11.081	9.865	10.374	9.804	11.862
PROMEDIO	1.585	1.854	1.246	1.093	1.802	1.532	1.231	1.096	1.153	1.089	1.318
HIDROCARBUROS						-					
PROPANO	3.953	3.608	3.781	3.963	4.546	3.563	3.927	3.508	3.632	3.469	3.207
BUTANO	1.891	1.354	1.559	1.318	2.017	1.300	1.305	1.022	1.159	0.998	0.865
PENTANO	2.523	2.239	2.041	2.334	2.327	1.601	2.274	1.722	1.862	1.709	1.567
HEXANO	3.086	2.590	2.658	2.808	2.834	2.310	2.698	1.919	2.131	1.931	1.503
SUMA	11.454	9.791	10.040	10,423	11.723	8.773	10.203	8,170	8.784	8.107	7.141
PROMEDIO	2.863	2.448	2.510	2.606	2.931	2.193	2.551	2.043	2.196	2.027	1.785

5.3 Segundo coeficiente virial

A partir de los parámetros estimados con el método de ajuste óptimo de Levenberg-Marquardt (con datos de presión de vapor), se predijeron segundos coeficientes viriales.

De acuerdo a la expresión de *alfa* que se trate, se utilizó una ecuación de estado determinada ya sea por el autor de la ecuación o por el análisis descrito en el capítulo 5.1

El cálculo del error relativo promedio tuvo que ser modificado debido a dos situaciones especiales:

- la existencia de valores experimentales de B cercanos menores a uno.
- el reducido número de datos experimentales.

Para realizar el cálculo de ERP para esta propiedad se realizaron dos modificaciones a la fórmula original:

- Por un lado se eliminaron los datos experimentales cuyo valor era cercano a cero. Esto sólo ocurrió para el 2-metil-2-propanol, la 3-hexanona y el butano.
- Por otro lado se modificó el denominador en el cálculo del error relativo promedio, por lo que en lugar de dividir entre el número de datos experimentales se dividió entre el número de datos experimentales menos el número de parámetros en la ecuación¹.

Se calcularon valores para el segundo coeficiente virial en el intervalo desde temperaturas reducidas de uno hasta dos punto cinco.

Adicionalmente, es necesario hacer algunas consideraciones para las ecuaciones de Stryjek y Vera y de Mathias y Copeman:

- En los casos de la ecuación de Stryjek y Vera y Stryjek y Vera 2 los autores recomiendan simplificar la ecuación de manera que se convierta en la ecuación de Peng Robinson.
- En el caso de la ecuación de Mathias y Copeman, aunque los autores no señalan ninguna forma especial para este intervalo de temperaturas, en artículos recientes (Dahl y Michelsen⁹²) aparece una propuesta en que se recomienda simplificar la ecuación, suponiendo que sus parámetros B y C valgan cero. En adelante esta propuesta se denominará Mathias-Copeman II.

^{&#}x27;El detalle del manejo estadístico se explica en el apéndice.

5.3.1 Alcoholes/Segundo coeficiente virial

Las siguientes consideraciones se basan en la tabla 7.a

Ecuaciones sin parámetros

En todos los casos la ecuación de Peng Robinson predice considerablemente mejor que la de Soave(1972). La suma de los ERP indica una desviación de 25.834 para Soave(1972) y de 56.181 para Peng Robinson.

Ecuaciones con un parámetro

La ecuación de Mathias predice de forma bastante aceptable. La suma de los ERP indica un valor de 20.848 para esta ecuación.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Melhem predice mejor que Adachi y Lu y considerablemente mejor que Soave(1980) como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Melhem	45.889
Adachi y Lu	53.546
Soave (1980)	104.389

Ecuaciones con tres parámetros

Aquí se tienen dos situaciones especiales:

La ecuación que mejor predice el segundo coeficiente virial es la Yu y Lu. Los ERP para cada una de estas ecuaciones se muestran a continuación:

Ecuación de alfa	Error relativo promedio
Yu y Lu	19.776
Mathias-Copeman II	19.976
Androulakis	30.444
Mathias y Copeman	363.188

Resultados generales

Los errores relativos promedio para los alcoholes y los promedios por ecuación se pueden observar con detalle en la Tabla 7.a

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Peng Robinson	25.834
Un parámetro	Mathias	20.848
Dos parámetros	Melhem	45.889
Tres parámetros	Yu y Lu	19.776

5.3.2 Cetonas/Segundo coeficiente virial

Las siguientes consideraciones se basan en la tabla 7.b

Ecuaciones sin parámetros

En todos los casos la ecuación de Peng Robinson predice considerablemente mejor que la de Soave(1972). La suma de los ERP indica una desviación de 13.702 para Peng Robinson y de 40.391 para Soave(1972).

Ecuaciones con un parámetro

La ecuación de Mathias predice de forma muy aceptable. La suma de los ERP indica un valor de 2.500 para esta ecuación.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Melhem predice mucho mejor que Adachi y Lu y considerablemente mejor que Soave(1980) como vemos a continuación:

Ecuación de alfa	Error relativo promedio		
Melhem	3.366		
Adachi y Lu	35.860		
Soave (1980)	128.405		

Ecuaciones con tres parámetros

La ecuación que mejor predice el segundo coeficiente virial es la Androulakis. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio
Androulakis	2.427
Yu y Lu	12.623
Mathias-Copeman II	17.536
Mathias y Copeman	45.771

Resultados generales

Los errores relativos promedio para las cetonas y los promedios por ecuación se pueden observar con detalle en la Tabla 7.b

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Peng Robinson	13.702
Un parámetro	Mathias	2.500
Dos parámetros	Melhem	3.366
Tres parámetros	Androulakis	2.427

5.3.3 Éteres/Segundo coeficiente virial

Las siguientes consideraciones se basan en la tabla 7.c

Ecuaciones sin parámetros

En todos los casos la ecuación de Peng Robinson predice considerablemente mejor que la de Soave(1972). La suma de los ERP indica una desviación de 42.613 para Soave(1972) y de 11.487 para Peng Robinson.

Ecuaciones con un parámetro

La ecuación de Mathias predice de forma muy aceptable. La suma de los ERP indica un valor de 2.832 para esta ecuación.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Melhem predice mucho mejor que Adachi y Lu y considerablemente mejor que Soave(1980) como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Melhem	5.627
Adachi y Lu	41.080
Soave (1980)	134.390

Ecuaciones con tres parámetros

La ecuación que mejor predice el segundo coeficiente virial es la Androulakis seguida de lejos por las demás. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio
Androulakis	5.388
Yu y Lu	12.452
Mathias-Copeman II	15.065
Mathias y Copeman	58.676

Resultados generales

Los errores relativos promedio para los éteres y los promedios por ecuación se pueden observar con detalle en la Tabla 7.c

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Peng Robinson	11.487
Un parámetro	Mathias	2.832
Dos parámetros	Melhem	5.627
Tres parámetros	Androulakis	5.388

5.3.4 Hidrocarburos/Segundo coeficiente virial

Las siguientes consideraciones se basan en la tabla 7.d

Ecuaciones sin parámetros

En todos los casos la ecuación de Peng Robinson predice considerablemente mejor que la de Soave(1972). La suma de los ERP indica una desviación de 14.226 para Soave(1972) y de 2.834 para Peng Robinson.

Ecuaciones con un parámetro

La ecuación de Mathias predice de forma muy aceptable. La suma de los ERP indica un valor de 1.216 para esta ecuación.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Melhem predice mucho mejor que Adachi y Lu y considerablemente mejor que Soave(1980) como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Melhem	2.926
Adachi y Lu	14.377
Soave (1980)	45.705

Ecuaciones con tres parámetros

La ecuación que mejor predice el segundo coeficiente virial es la Androulakis. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio
Androulakis	2.395
Yu y Lu	4.362
Mathias-Copeman II	5.242
Mathias y Copeman	28.415

Resultados generales

Los errores relativos promedio para los hidrocarburos y los promedios por ecuación se pueden observar con detalle en la Tabla 7.d

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

	Mejor ecuación de <i>alfa</i>	% de error relativo
Sin parámetros	Peng Robinson	2.834
Un parámetro	Mathias	1.216
Dos parámetros	Melhem	2.926
Tres parámetros	Androulakis	2.395

5.3.5 Evaluación general de la propiedad/Segundo coeficiente virial

El resumen de la suma de los errores relativos promedio para 32 sustancias se expresa a continuación:

ECUACIÓN DE ALFA	ERP
Mathias	27.39
Androulakis	40.65
Yu y Lu	49.21
Peng Robinson	53.86
Melhem	57.81
Mathias-Copeman II	57.82
Adachi y Lu	144.86
Soave 1972	153.41
Soave 1980	412.88
Mathias y Copeman	496.05

Aunque en el análisis anterior se compara la suma de los errores relativos promedio para 32 sustancias, el error relativo por sustancia pocas veces supera el 1% para las expresiones de *alfa* de Mathias, Androulakis y Yu y Lu.

TABLA 7.a

Segundo coeficiente virial ALCOHOLES

	SIN PAR	METROS	UN PARÁMETRO	DOS	S PARÁMETR	ETROS TRES PARÁMETROS			os	
	SOAVE	PENG	MATHIAS	ADACHI	SOAVE	KMELHEM	ANDROULAKIS	MATHIAS	MATHIAS	YUYLU
	1972	ROBINSON		A IY LU	1980			Y COPEMAN	COPEMAN	
								-		~
METANOL	3.749	1.717	0.854	2.173	15.096	1.737	0.256	1.638	2.317	1.235
ETANOL	3.787	1.853	0.324	2.384	12.827	3.138	0.510	5.857	1.536	0.511
1-PROPANOL	8.950	4.316	1.547	7.322	19.440	4.740	4.030	46.897	0.317	1.239
2-PROPANOL	3.038	1.492	0.653	2.418	6.072	1.459	1.530	19.244	0.153	0.590
1-BUTANOL	8.548	3.999	2.676	8.279	11.397	4.674	4.335	43.399	0.890	1.871
2-BUTANOL	5.843	2.713	2.141	5.865	6.209	3.999	5.047	76.853	2.731	3.090
2-METIL-1-PROPANOL	8.457	3.956	3.008	8.437	9.461	5.514	4.616	46.600	1.331	2.202
2-METIL-2-PROPANOL*	1.759	0.834	0.768	1.761	1.355	1.528	0.978	9.770	0.323	0.505
1-PENTANOL	5.051	2.336	1.613	4.620	5.974	3.146	1.097	0.253	0.943	0.151
1-HEXANOL	3.495	1.596	2.588	3.589	9.290	0.130	0.461	2.824	2.144	1.254
1-OCTANOL	3.504	1.024	4.675	6.698	7.268	15.824	7.584	109.855	7.292	7.127
SUMA	56.181	25.834	20.848	53.546	104.389	45.889	30.444	363.188	19.976	19.776
PROMEDIO	5.107	2.349	1.895	4.868	9.490	4.172	2.768	33.017	1.816	1.798
Se eliminó un punto experimental por ser su valor muy cercano a cero										

Segundo	coeficiente	virial
CETONAS		

.

	SIN PARA	METROS	UN PARÁMETRO	DO	S PARÁMETE	ROS	TRES PARÁMETROS			
	SOAVE 1972	PENG ROBINSON	MATHIAS	ADACHI ÿ LÜ	SOAVE 1980	MELHEM	ANDROULAKIS	MATHIAS y COPEMAN	MATHIAS COPEMAN II	YUYLU
·· ·· ·· ·			.		 				I	
ACETONA	5.250	1.423	0.414	4.753	18.209	0.431	0.160	6.527	2.131	1.702
2-PENTANONA	3.785	1.189	0.221	3.447	11.634	0.110	0.152	3.863	1.462	1.103
3-PENTANONA	3.595	1.118	0.164	3.413	10.701	0.199	0.305	2.296	4.714	0.896
METILBUTANONA	4.255	1.190	0.156	4.222	12.722	0.476	0.412	3.616	1.721	1.078
2-HEXANONA	9.510	3.482	0.668	8.155	30.879	0.708	0.498	12.671	2.967	3.356
3-HEXANONA*	1.906	0.664	0.176	1.679	5.946	0.103	0.087	2.066	1.184	0.565
DIMETILBUTANONA	3.552	1.034	0.158	3.560	10.975	0.359	0.210	3.656	1.309	1.021
2-HEPTANONA	3.500	1.364	0.231	2.956	11.011	0.207	0.151	4.248	0.812	1.148
5-NONANONA	5.037	2.238	0.311	3.675	16.327	0.773	0.454	6.826	1.237	1.755
SUMA	40.391	13.702	2.500	35.860	128.405	3.366	2.427	45.771	17.537	12.623
PROMEDIO	4.488	1.522	0.278	3.984	14.267	0.374	0.270	5.086	1.949	1.403
* Se eliminó un punto experimental por	ser su valor muy	cercano a cero.	·			·	·			

Segundo coeficiente virial ÉTERES

	SIN PARÁMETROS		UN PARÁMETRO	DOS PARÁMETROS			TRES PARÁMETROS			
	SOAVE1	PENG ROBINSON	MATHIAS	₹ADACHI RÿLÛ	SOAVE	MELHEM	ANDROULAKIS	MATHIAS Y COPEMAN	MATHIAS COPEMAN II	YUYLU
									1	
METILnPROPILETER	7.270	1.531	0.147	7.641	22.629	1.049	0.491	10.434	2.287	2.218
METILIPROPILETER	5.151	1.025	0.266	5.647	15.595	1.075	1.085	0.697	0.822	0.890
METILnBUTILETER	3.919	1,113	0.215	3.788	12.742	0.156	0.177	4.329	1.454	1.200
METILtBUTILETER	5.518	1.113	0.334	5.953	16.087	1.229	1.866	9.505	0.218	0.279
ETILnPROPILETER	3.376	1.026	0.325	2.996	11.347	0.249	0.329	6.241	1.761	1.414
DInPROPILETER	10.168	3.458	1.159	8.304	34.106	1.543	1.185	18.696	5.709	4.269
DIIPROPIL ETER	3.358	1.006	0.160	3.213	10.082	0.233	0.169	3.964	1.236	0.972
METILFENILETER	3.852	1.214	0.225	3.539	11.800	0.093	0.085	4.810	1.578	1.210
TOTAL	42.613	11.487	2.832	41.080	134.390	5.627	5.388	58.676	15.065	12.452
PROMEDIO	5.327	1.436	0.354	5.135	16.799	0.703	0.673	7.334	1.883	1.557

TABLA 7.d

Segundo coeficiente virial HIDROCARBUROS

	SIN PARÁMETROS UN PARÁMETRO			DOS PARÁMETROS			TRES PARÁMETROS			
	SOAVE 1972	PENG ROBINSON	MATHIAS	ADACHI. y LU	SOAVE- 1980	MELHEM	ANDROULAKIS	MATHIAS y COPEMAN	MATHIAS COPEMAN II	≂ YU yLU I
PROPANO	2.686	0.374	0.611	3.328	8.306	1.951	1.253	3.256	0.428	0.180
BUTANO*	1.563	0.139	0.198	1.680	5.032	0.426	0.301	3.709	0.338	0.416
PENTANO	3.361	0.576	0.161	3.324	10.738	0.287	0.326	6.252	1.043	0.984
HEXANO	6.616	1.746	0.246	6.046	21.629	0.262	0.515	15.198	3.433	2.783
TOTAL	14.226	2.834	1.216	14.377	45.705	2.926	2.395	28.415	5.242	4.362
PROMEDIO	3.556	0.709	0.304	3.594	11.426	0.732	0.599	7.104	1.311	1.091
* Se eliminó un punto experimental por	ser su valor muy	r cercano a cero.								

5.4 Segundo coeficiente virial/Modelo de Mathias

5.4.1 Alcoholes/Segundo coeficiente virial-Mathias

Las siguientes consideraciones se basan en la tabla 8.a

Ecuaciones sin parámetros

En todos los casos la ecuación de Soave predice considerablemente mejor que la de Peng Robinson. La suma de los ERP indica una desviación de 1.796 para Soave(1972) y de 33.737 para Peng Robinson.

Ecuaciones con un parámetro

La ecuación de Mathias predice considerablemente mejor que la de Stryjek y Vera. La suma de los ERP indica una desviación de 20.848 para Mathias y de 58.118 para Stryjek y Vera.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Soave(1980) predice mejor que Adachi y Lu y considerablemente mejor que Melhem como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Soave(1980)	10.440
Adachi y Lu	14.903
Melhem	50.192

Ecuaciones con tres parámetros

En el caso de la ecuación de Stryjek y Vera la ecuación resulta ser idéntica a la ecuación de Peng Robinson.

La ecuación que mejor predice el segundo coeficiente virial es la Mathias y Copeman, seguida de cerca por las otras dos. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio
Mathias y Copeman	65.833
Yu y Lu	66.574
Androulakis	68.050
Resultados generales

Los errores relativos promedio para los alcoholes y los promedios por ecuación se pueden observar con detalle en la Tabla 8.a

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Soave (1972)	1.796
Un parámetro	Mathias	20.848
Dos parámetros	Soave (1980)	10.440
Tres parámetros	Mathias y Copeman	65.833

5.4.2 Cetonas/Segundo coeficiente virial-Mathias

Las siguientes consideraciones se basan en la tabla 8.b

Ecuaciones sin parámetros

En todos los casos la ecuación de Soave predice considerablemente mejor que la de Peng Robinson. La suma de los ERP indica una desviación de 1.561 para Soave(1972) y de 28.294 para Peng Robinson.

Ecuaciones con un parámetro

La ecuación de Mathias predice considerablemente mejor que la de Stryjek y Vera. La suma de los ERP indica una desviación de 2.5 para Mathias y de 30.499 para Stryjek y Vera.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Adachi y Lu predice mejor que Soave (1980) y considerablemente mejor que Melhem como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Adachi y Lu	2.118
Soave (1980)	5.790
Melhem	32.274

Ecuaciones con tres parámetros

En el caso de la ecuación de Stryjek y Vera la ecuación resulta ser idéntica a la ecuación de Peng Robinson.

La ecuación que mejor predice el segundo coeficiente virial es la Androulakis, seguida de cerca por las otras dos. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio			
Androulakis	28.464			
Yu y Lu	28.620			
Mathias y Copeman	29.745			

Resultados generales

Los errores relativos promedio para las cetonas y los promedios por ecuación se pueden observar con detalle en la Tabla 8.b

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

· · · · · · · · · · · · · · · · · · ·	Mejor ecuación de <i>alfa</i>	% de error relativo
Sin parámetros	Soave (1972)	1.561
Un parámetro	Mathias	2.500
Dos parámetros	Adachi y Lu	2.118
Tres parámetros	Androulakis	28.464

5.4.3 Éteres/Segundo coeficiente virial-Mathias

Las siguientes consideraciones se basan en la tabla 8.c

Ecuaciones sin parámetros

En todos los casos la ecuación de Soave predice considerablemente mejor que la de Peng Robinson. La suma de los ERP indica una desviación de 2.191 para Soave(1972) y de 33.565 para Peng Robinson.

Ecuaciones con un parámetro

La ecuación de Mathias predice considerablemente mejor que la de Stryjek y Vera. La suma de los ERP indica una desviación de 2.832 para Mathias y de 35.782 para Stryjek y Vera.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Adachi y Lu predice mejor que Soave(1980) y considerablemente mejor que Melhem como vemos a continuación:

Ecuación de alfa	Error relativo promedio			
Adachi y Lu	2.621			
Soave(1980)	4.651			
Melhem	38.151			

Ecuaciones con tres parámetros

En el caso de la ecuación de Stryjek y Vera la ecuación resulta ser idéntica a la ecuación de Peng Robinson.

La ecuación que mejor predice el segundo coeficiente virial es la Androulakis, seguida de cerca por las otras dos. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio				
Androulakis	34.207				
Yu y Lu	34.231				
Mathias y Copeman	35.642				

Resultados generales

Los errores relativos promedio para los éteres y los promedios por ecuación se pueden observar con detalle en la Tabla 8.c

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Soave (1972)	2.191
Un parámetro	Mathias	2.832
Dos parámetros	Adachi y Lu	2.621
Tres parámetros	Androulakis	34.207

5.4.4 Hidrocarburos/Segundo coeficiente virial-Mathias

Las siguientes consideraciones se basan en la tabla 8.d

Ecuaciones sin parámetros

En todos los casos la ecuación de Soave predice considerablemente mejor que la de Peng Robinson. La suma de los ERP indica una desviación de 1.554 para Soave(1972) y de 13.698 para Peng Robinson.

Ecuaciones con un parámetro

La ecuación de Mathias predice considerablemente mejor que la de Stryjek y Vera. La suma de los ERP indica una desviación de 1.216 para Mathias y de 14.947 para Stryjek y Vera.

Ecuaciones con dos parámetros

La suma de los ERP indica que la ecuación de Adachi y Lu predice mejor que Soave(1980) y considerablemente mejor que Melhem como vemos a continuación:

Ecuación de alfa	Error relativo promedio
Adachi y Lu	0.959
Soave(1980)	1.716
Melhem	15.224

Ecuaciones con tres parámetros

En el caso de la ecuación de Stryjek y Vera la ecuación resulta ser idéntica a la ecuación de Peng Robinson.

La ecuación que mejor predice el segundo coeficiente virial es la Yu y Lu, seguida de cerca por las otras dos. Los ERP para cada una de estas ecuaciones se muestra a continuación:

Ecuación de alfa	Error relativo promedio				
Mathias y Copeman	12.371				
Androulakis	13.068				
Yu y Lu	13.108				

Resultados generales

Los errores relativos promedio para los hidrocarburos y los promedios por ecuación se pueden observar con detalle en la Tabla 8.d

Comparando la predicción general del segundo coeficiente virial con datos experimentales calculados con la correlación de Tsonopoulos, tenemos los siguientes resultados:

	Mejor ecuación de alfa	% de error relativo
Sin parámetros	Soave (1972)	1.554
Un parámetro	Mathias	1.216
Dos parámetros	Adachi y Lu	0.959
Tres parámetros	Mathias y Copeman	12.371

5.4.5 Evaluación general de la propiedad/Segundo coeficiente virial-Mathias

El resumen de la suma de los errores relativos promedio para 32 sustancias se expresa a continuación:

ECUACIÓN DE ALFA	ERP
Soave 1972	7.10
Adachi y Lu	20.60
Soave 1980	22.60
Mathias	27.39
Peng Robinson	109.29
Melhem	135.84
Stryjek y Vera	139.35
Yu y Lu	142.53
Mathias y Copeman	143.59
Androulakis	143.79

Aunque en el análisis anterior se compara la suma de los errores relativos promedio para 32 sustancias, el error relativo por sustancia nunca supera el 1% para la expresión de *alfa* de Soave (1972).

Segundo virial/Mathias CETONAS

ERROR RELATIVO PROMEDIO

	SIN PARÁMETROS UN PARÁME		METRO	RO DOS PARÁMETROS			TRES PARÁMETROS			
	SOAVE 1972	PENG /	MATHIAS	STRYJEK Y VERA	ADACHI I y LU	1 SOAVE	MECHEM	ANDROULAKIS	MATHIAS Y COPEMAN	YUYCU
METANOL	0.157	2.244	0.854	1.640	0.773	1.031	2.076	2.191	2.156	2.169
ETANOL	0.156	2.198	0.324	2.170	0.487	0.632	2.449	3.022	2.939	2.954
1-PROPANOL	0.161	5.165	1.547	7.509	0.664	0.165	7.104	10.390	9.695	9.831
2-PROPANOL	0.165	1.800	0.653	2.642	0.219	0.234	2.544	3.723	3.480	3.522
1-BUTANOL	0.174	5.044	2.676	8.586	1.841	1.207	7.859	10.520	10.157	10.223
2-BUTANOL	0.163	3.471	2.141	6.217	1.468	1.092	5.611	9.299	8.622	8.815
2-METIL-1-PROPANOL	0.173	4.992	3.008	8.888	2.105	1.493	8.034	10.751	10.416	10.483
2-METIL-2-PROPANOL*	0.154	1.075	0.768	2.003	0.476	0.468	1.815	2.265	2.237	2.241
1-PENTANOL	0.161	3.008	1.613	5.201	1.295	0.852	4.762	4.624	4.804	4.731
1-HEXANOL	0.157	2.091	2.588	5.206	1.078	0.728	2.210	1.760	2.018	1.895
1-OCTANOL	0.175	2.648	4.675	8.055	4.496	2.539	5.728	9.505	9.309	9.710
SUMA	1,796	33.737	20.848	58.118	14.903	10.440	50.192	68.050	65.833	66.574
PROMEDIO	0.163	3.067	1.895	5.283	1.355	0.949	4.563	6.186	5.985	6.052

Segundo coefic CETONAS	ciente v	irial/Mat	hias		ERROR RELATIVO PROMEDIO												
	SIN PAR	ÁMETROS	UN PARÁ	METRO	DC	OS PARÁMETE	ROS	TRI	ES PARÁMET	ROS							
	SOAVE 1972	PENG ROBINSON	MATHIAS	STRYJEK YVERA	ADACHI y LU	SOAVE 1980	MELHEM	ANDROULAKIS	MATHIAS	YUYLU L							
			-														
ACETONA	0.216	4.080	0.414	4.140	0.208	0.841	4.427	4.004	4.108	3.999							
2-PENTANONA	0.173	2.774	0.221	2.969	0.165	0.459	3.148	2.895	2.990	2.899							
3-PENTANONA	0.173	2.650	0.164	2.943	0.227	0.386	3.074	2.944	3.018	2.937							
METILBUTANONA	0.189	3.267	0.156	3.675	0.333	0.405	3.805	3.558	3.672	3.552							
2-HEXANONA	0.154	6.277	0.668	6.629	0.214	1.563	7.160	5.919	6.312	5.983							
3-HEXANONA*	0.155	1.346	0.176	1.461	0.167	0.282	1.547	1.414	1.464	1.420							
DIMETILBUTANONA	0.175	2.690	0.158	3.003	0.346	0.410	3.146	2.803	2.939	2.800							
2-HEPTANONA	0.159	2.247	0.231	2.457	0.185	0.550	2.612	2.213	2.343	2.241							
5-NONANONA	0.167	2.963	0.311	3.222	0.274	0.894	3.356	2.714	2.900	2.789							
SIMA	1 561	28 294	2 500	30 499	2 118	5,790	32 274	28.464	29.745	28,620							
PROMEDIO	0.173	3.144	0.278	3.389	0.235	0.643	3.586	3.163	3.305	3.180							
* Se eliminó un punto experimer	ntal por ser su va	alor muy cercano	a cero.														

Segundo coeficiente virial/Mathias ÉTERES

ERROR RELATIVO PROMEDIO

	SIN PAR	METROS	UN PARÁ	METRO	DO	S PARÁMETR	los	TR	ES PARÁMETF	ROS
	SOAVE 1972	PENG ROBINSON	MATHIAS	STRYJEK Y VERA	ADACHI y LU	SOAVE 1980	MELHEM	ANDROULAKI	MATHIAS	YUYLU
METILnPROPILETER	0.493	6.271	0.147	6.779	0.368	0.522	7.197	6.213	6.537	6.196
METILIPROPILETER	0.397	4.539	0.266	5.096	0.429	0.303	5.259	5.253	5.343	5.203
METILnBUTILETER	0.182	2.992	0.215	3.202	0.239	0.528	3.411	3.032	3.169	3.023
METILtBUTILETER	0.414	4.838	0.334	5.536	0.390	0.249	5.619	6.359	6.284	6.282
ETILnPROPILETER	0.172	2.516	0.325	2.515	0.180	0.528	2.802	2.091	2.292	2.120
DInPROPILETER	0.188	7.074	1.159	6.837	0.617	1.702	7.730	5.813	6.334	5.939
DIIPROPILETER	0.172	2.516	0.160	2.806	0.224	0.360	2.913	2.612	2.719	2.621
METILFENILETER	0.173	2.818	0.225	3.012	0.174	0.460	3.220	2.833	2.965	2.847
TOTAL	2.191	33.565	2.832	35.782	2.621	4.651	38.151	34.207	35.642	34.231
PROMEDIO	0.274	4.196	0.354	4.473	0.328	0.581	4.769	4.276	4.455	4.279

Segundo coeficiente virial/Mathias	
HIDROCARBUROS	

ERROR RELATIVO PROMEDIO

÷

	SIN PAR	ÁMETROS	UN PARÁ	METRO	DO	S PARÁMETR	ROS	TRI	ES PARÁMET	ROS
	SOAVE 1972	PENG ROBINSON	MATHIAS	STRYJEK YVERA	ADACHI Y LÜ	SOAVE 1980	MELHEM	ANDROULAKIS	MATHIAS	YÜYEU
PROPANO	0.672	3.621	0.611	4.078	0.288	0.449	4.190	3.964	4.057	3.941
BUTANO*	0.294	1.773	0.198	1.913	0.231	0.151	1.967	1.749	1.796	1.749
PENTANO	0.325	3.107	0.161	3.355	0.230	0.253	3.405	3.065	1.958	3.071
HEXANO	0.264	5.197	0.246	5.601	0.211	0.863	5.661	4.290	4.560	4.347
TOTAL	1.554	13.698	1.216	14.947	0.959	1.716	15.224	13.068	12.371	13.108
PROMEDIO	0.388	3.424	0.304	3.737	0.240	0.429	3.806	3.267	3.093	3 277
* Se eliminó un punto experimer	ntal por ser su v	alor muy cercano	a cero.		-					

5.5 Comparación del modelo normal y el modelo de Mathias

En las siguientes tablas se muestra el valor de la suma del ERP para cada tipo de sustancia utilizando el modelo normal propuesto por el autor de la expresión de alfa y el modelo adaptado de Mathias. La comparación por sustancia se muestra en las Tablas 9.a a 9.d

El detalle de los ERP para cada sustancia utilizando el modelo de Mathias se encuentra en la tabla 8.

5.5.1 Alcoholes

	Normal	Mathias
Soave (1972)	56.181	1.796
Peng Robinson	25.834	33.737
Stryjek y Vera	N.E ¹	58.118
Adachi y Lu	53.546	14.903
Soave (1980)	104.389	10.440
Melhem	45.889	50.192
Androulakis	30.444	68.050
Mathias-Copeman II	19.976	65.833 [*]
Mathias y Copeman	363.188	65.833
Yu y Lu	19.776	66.574

5.5.2 Cetonas

	Normal	Mathias
Soave (1972)	40.390	1.561
Peng Robinson	13.702	28.294
Stryjek y Vera	N.E.	30.499
Adachi y Lu	35.860	2.118
Soave (1980)	128.404	5.790
Melhem	3.366	32.274
Androulakis	2.429	28.464
Mathias-Copeman II	17.536	29.745 [*]
Mathias y Copeman	45.769	29.745
Yu y Lu	12.624	28.620

¹Expresión no existente (N.E.). El autor recomienda utilizar una ecuación igual a la de Peng Robinson.

^{*} Para la adaptación de Mathias, las expresiones de Mathias y Copeman y Mathias-Copeman II son iguales.

5.5.3 Éteres

	Normal	Mathias
Soave (1972)	42.613	2.191
Peng Robinson	11.486	33.565
Stryjek y Vera	N.E.	35.782
Adachi y Lu	41.08	2.621
Soave (1980)	134.39	4.651
Melhem	5.627	38.151
Androulakis	5.387	34.207
Mathias-Copeman II	15.065	35.642*
Mathias y Copeman	58.676	35.642
Yu y Lu	12.452	34.231

5.5.4 Hidrocarburos

	Normal	Mathias
Soave (1972)	14.226	1.554
Peng Robinson	2.835	13.698
Stryjek y Vera	N.E.	14.947
Adachi y Lu	14.378	0.959
Soave (1980)	45.705	1.716
Melhem	2.926	15.224
Androulakis	2.395	13.068
Mathias-Copeman II	5.242	12.371*
Mathias y Copeman	28.415	12.371
Yu y Lu	4.363	13.108

^{*} Para la adaptación de Mathias, las expresiones de Mathias y Copeman y Mathias-Copeman II son iguales.

5.5.5 Evaluación general

Los resultados de esta comparación son muy variados. En algunos casos la ecuación normal predice mejor que la adaptada de Mathias, y en otros casos sucede al revés.

El resumen de la suma de los errores relativos promedio para 32 sustancias se expresa a continuación:

ECUACIÓN DE ALFA	ERP ECUACIÓN NORMAL	ERP ECUACIÓN MATHIAS
Soave 1972	153.41	7.10
Adachi y Lu	144.86	20.60
Soave 1980	412.88	22.59
Mathias	27.39	27.39
Peng Robinson	53.86	109.29
Melhem	57.80	135.84
Stryjek y Vera	N.E.	139.34
Yu y Lu	49.21	142.53
Mathias-Copeman II	57.820	143.59
Mathias y Copeman	496.05	143.59
Androulakis	40.65	143.79

Los casos donde la ecuación normal predice mejor son:

Peng Robinson Melhem Yu y Lu Androulakis Mathias-Copeman II

Los casos en donde la adaptación de Mathias predice mejor son:

Soave (1972) Adachi y Lu Soave (1980) Mathias y Copeman

Segundo virial/Comparación de modelos ALCOHOLES ERROR RELATIVO PROMEDIO

		SIN PAR	ÁMETROS	UN	PARÁMEI	RO		DOS PA	RÁMETRO	S				TRES	S PARÁMET	TROS		
a la service de la composición de la co	SOAV	E 1972 🚲	PENG RC	BINSON	SÿV	ADACH	ll y LU 🔆	SOAVE	1980	MELI	HEM 🏷 👌	ANDRO	ULAKIS	🥏 MÁTH	IAS/COPE	VAN	់ ប្រ៍ប្	LU.
	Mathias	Normal	Mathlas	Normal	Mathias	Mathlas	Normal	Mathlas	Normal	Mathlas	Normal	Mathias	Normal	Mathias	Normal	Normal	Mathias	Norma
				1					A States									
METANOL	0.157	3.749	2.244	1.717	1.640	0.773	2.173	1.031	15.096	2.076	1.737	2.191	0.256	2.156	1.638	2.317	2.169	- 1.235
	0.156	3.787	2.198	1.853	2.170	0.487	2.384	0.632	12.827	2.449	3.138	3.022	0.510	2.939	5.857	1.536	2.954	0.511
I-PROPANOL	. 0.161	8.950	5.165	4.316	7.509	0.664	7.322	0.165	19.440	7.104	4.740	10.390	4.030	9.695	46.897	0.317	9.831	1.239
2-PROPANOL	0.165	3.038	1.800	1.492	2.642	0.219	2.418	0.234	6.072	2.544	1.459	3.723	1.530	3.480	19.244	0.153	3.522	0.590
1-BUTANOL	0.174	8.548	5.044	3.999	8.586	1.841	8.279	1.207	11.397	- 7.859	4.674	10.520	4.335	10.157	43.399	0.890	10.223	1.871
2-BUTANOL	0.163	5.843	3.471	2.713	6.217	1.468	5.865	1.092	6.209	<u>5.6</u> 11	3.999	9.299	5.047	8.622	76.853	2.731	8.815	3.090
2-METIL-1-PROP	0.173	8.457	4.992	3.956	8.888	2.105	8.437	1.493	9.461	8.034	5.514	10.751	4.616	10.416	46.600	1.331	10.483	2.202
2-METIL-2-PROP*	0.154	1.759	1.075	0.834	2.003	0.476	1.761	0.468	1.355	1.815	1.528	2.265	0.978	2.237	9.770	0.323	2.241	0.505
I-PENTANOL	0.161	5.051	3.008	2.336	5.201	1.295	4.620	0.852	5.974	4.762	3.146	4.624	1.097	4.804	0.253	0.943	4.731	0.151
1-HEXANOL	0.157	3.495	2.091	1.596	5.206	1.078	3.589	0.728	9.290	2.210	0.130	1.760	0.461	2.018	2.824	2.144	1.895	1.254
I-OCTANOL	0.175	3.504	2.648	1.024	8.055	4.496	6.698	2.539	7.268	5.728	15.824	9.505	7.584	9.309	109.855	7.292	9.710	7.127
SUMA	1.796	56.181	33.737	25.836	58.118	14.903	53.546	10.440	104.389	50.1 9 2	45.889	68.050	30.444	65.833	363.190	19.976	66.574	19.77
PROMEDIO	0 163	5.107	3.067	2.349	5.283	1.355	4.868	0.949	9,490	4,563	4.172	6,186	2,768	5,985	33.017	1 816	6 052	1 798

148

Segundo virial/Comparación de modelos CETONAS ERROR RELATIVO PROMEDIO

	<u></u>	SIN PARÁ	METROS	UN	PARÁMET	RO		DOS PA	RÁMETRO	s		TRES PARÁMETROS								
	SOÂVI Mathlas	E 1972 . Normal	PENG RO Mathlas	BINSON Normal	SyV Mathias	ADACH Mathias	l y LU Normal	SOAVE Mathias	1980 Normal	MELF Mathias	IEM Normal	ANDROU Mathias	ILAKIS Normal	MATHIAS/ Mathias	COPEMAN Normal	Normal MC II	YU y Mathias	LU Normal		
ACETONA	0.216	5.25	4.080	1.423	4.140	0.208	4.753	0.841	18.209	4.427	0.431	4.004	0.16	4.108	6.527	2.131	3.999	1.702		
2-PENTANONA	0.173	3.785	2.774	1.189	2.969	0.165	3.447	0.459	11.634	3.148	0.11	2.895	0.152	2.990	3.863	1.462	2.899	1.103		
3-PENTANONA	0.173	3.595	2.650	1.118	2.943	0.227	3.413	0.386	10.701	3.074	0.199	2.944	0.305	3.018	2.296	4.714	2.937	0.896		
METILBUTANONA	0.189	4.255	3.267	1.19	3.675	0.333	4.222	0.405	12.722	3.805	0.476	3.558	0.412	3.672	3.616	1.721	3.552	1.078		
2-HEXANONA	0.154	9.51	6.277	3.482	6.629	0.214	8.155	1.563	30.879	7.160	0.708	5.919	0.498	6.312	12.671	2.967	5.983	3.356		
3-HEXANONA*	0.155	1.906	1.346	0.664	1.461	0.167	1.679	0.282	5.946	1.547	0.103	1.414	0.087	1.464	2.066	1.184	1.420	0.565		
DIMETILBUTANO	0.175	3.552	2.690	1.034	3.003	0.346	3.56	0.410	10.975	3.146	0.359	2.803	0.21	2.939	3.656	1.309	2.800	1.021		
2-HEPTANONA	0.159	3.5	2.247	1.364	2.457	0.185	2.956	0.550	11.011	2.612	0.207	2.213	0.151	2.343	4.248	0.812	2.241	1.148		
5-NONANONA	0.167	5.037	2.963	2.238	3.222	0.274	3.675	0.894	16.327	3.356	0.773	2.714	0.454	2.900	6.826	1.237	2.789	1.755		
SUMA	1.561	40.390	28.294	13.702	30.499	2.118	35.860	5.790	128.404	32.274	3.366	28.464	2,429	29.745	45.769	17.537	28.620	12.624		
PROMEDIO	0.173	4.488	3.144	1.522	3.389	0.235	3.984	0.643	14.267	3.586	0.374	3.163	0.270	3.305	5.085	1.949	3.180	1.403		
* Se eliminó un nu	nto experi	mental por	ser su valo	or muy cer	cano a cere	D.														

TABLA 9.c

Segundo virial/Comparación de modelos ÉTERES ERROR RELATIVO PROMEDIO

a chuir an tha an that an that and that a		SIN PARA	METROS	UN	PARÁMET	RO		DOS PA	RÁMETRO	S		TRES PARÁMETROS								
	SOAVI Mathlas	E 1972 Normal	PENG RO Mathias	BINSON	SyV Mathlas	ADACH Mathias	ll y LU Normat	SOAVE Mathias	1980 Normal	MELI Mathias	IEM Normal	ANDROU Mathias	JLAKIS Normal	MATHIAS/ Māthiās	COPEMAN Normal	Normal MC II	YU y Mathlas	LU Normal		
METILnPROPILETER	0.493	7.27	6.271	1.531	6.779	0.368	7.641	0.522	22.629	7.197	1.049	6.213	0.491	6.537	10.434	2.287	6.196	2.218		
METILIPROPILETER	0.397	5.151	4.539	1.025	5.096	0.429	5.647	0.303	15.595	5.259	1.075	5.253	1.085	5.343	0.697	0.822	5.203	0.89		
METILnBUTILETER	0.182	3.919	2.992	1.113	3.202	0.239	3.788	0.528	12.742	3.411	0.156	3.032	0.177	3.169	4.329	1.454	3.023	1.2		
METILtBUTILETER	0.414	5.518	4.838	1.113	5.536	0.390	5.953	0.249	16.087	5.619	1.229	6.359	1.866	6.284	9.505	0.218	6.282	0.279		
ETILnPROPILETER	0.172	3.376	2.516	1.026	2.515	0.180	2.996	0.528	11.347	2.802	0.249	2.091	0.329	2.292	6.241	1.761	2.120	1.414		
DInPROPILETER	0.188	10.168	7.074	3.458	6.837	0.617	8.304	1.702	34.106	7.730	1.543	5.813	1.185	6.334	18.696	5.709	5.939	4.269		
DIIPROPILETER	0.172	3.358	2.516	1.006	2.806	0.224	3.213	0.360	10.082	2.913	0.233	2.612	0.169	2.719	3.964	1.236	2.621	0.972		
METILFENILETER	0.173	3.852	2.818	1.214	3.012	0.174	3.539	0.460	11.8	3.220	0.093	2.833	0.085	2.965	4.81	1.578	2.847	1.21		
SUMA	2.191	42.612	33.565	11.486	35.782	2.621	41.081	4.651	134.388	38.151	5.627	34.207	5.387	35.642	58.676	15.065	34.231	12.452		
PROMEDIO	0.27387	5.3265	4.195609	1.43575	4.472757	0.327643	5.135125	0.581324	16.7985	4.768831	0.703375	4.275903	0.673375	4.455274	7.3345	1 883164	4.27883	1.5565		

Segundo virial/Comparación de modelos HIDROCARBUROS ERROR RELATIVO PROMEDIO

	SIN PARÁMETROS			UN PARÁMETRO			DOS PARÁMETROS					TRES PARÁMETROS						
	SOAVI	E 1972	PENG RO	BINSON	SyV	ADACH	ll y LU	SOAVI	1980	MELI	HEM	ANDRO	ULAKIS	MATHIAS	COPEMAN	i e se	YU y	LUZE
	Mathlas	Normal	Mathias	o,Normal,	Mathlas	Mathias	Normal	Mathlas	Normal	Mathlas	Normal	Mathlas	Normal	Mathias	Normal	Normal	Mathlas	Normal
	1.00	33(1) A. 100		der B.S.		in the second	4	幕応の主義								(C MC II)		
PROFANO	0.672	2.686	3.621	0.374	4.078	0.288	3.328	0.449	8.306	4.190	1.951	3.964	1.253	4.057	3.256	0.428	3.941	0.18
		·•	~			-							· · · · ·					
BUTANO*	0.294	1.563	1.773	0.139	1.913	0.231	1.68	0.151	5.032	1.967	0.426	1.749	0.301	1.796	3.709	0.338	1.749	0.416
							ı	· · · · · · ·			 					 ++=		
PENTANO	0.325	3.361	3.107	0.576	3.355	0.230	3.324	0.253	10.738	3.405	0.287	3.065	0.326	1.958	6.252	1.043	3.071	0.984
HEXANO	0.264	6 616	5 197	1 746	5 604	0.214	5.040											
	0.204	0.010	5.137	1,740	5.601	0.211	0.040	0.863	21.629	5.661	0.262	4.290	0.515	4.560	15.198	3.433	4.347	2.783
TOTAL	1.554	14.226	13.698	2.835	14.947	0.959	14.378	1.716	45.705	15.224	2.926	13.068	2.395	12.371	28.415	5.242	13,108	4.363
PROMEDIO	0.388	3.557	3.424	0.709	3.737	0.240	3.595	0.429	11.426	3.806	0.732	3.267	0.599	3.093	7.104	1.311	3 277	1.091
		-							· · · · · · · · · · · · · · · · · · ·		•••••	·	<u> </u>		•	·	1	·

* Se eliminó un punto experimental por ser su valor muy cercano a cero.

					TABLA 10					
SUMA DE	E ERRORES C	ALCULADOS	S PARA TODA	S LAS SUS	STANCIAS					
Presión c	de vapor									
Error relati	vo promedio (%)			1	i -				1	
YUVIUI	ANDROULAKIS	MATHIAS	STRYJEK	SOAVE	MELHEM	ADACHI	STRYJEK	MATHIAS	SOAVE	PENG
		y COPEMAN	y VERA 2	1980		ylü 🔨	· y VERA		1972	ROBINSON
4.580	4.601	4.901	11.328	11.699	12.937	23.204	23.982	26.307	255.610	268 487
λ de vapo	orización									
Error relati	ivo promedio (%)				1	•			۵	Transformer and the second second
YUYLU	ANDROULAKIS	MATHIAS	STRYJEK	MELHEM	MATHIAS	SOAVE	STRYJEK	ADACH	SOAVE	PENG
43 594	44.435	44,904	47.847	48.547	50.071	68.972	69.029	91.748	97.356	105.398
10.001		1 ,	1					1		
Segundo	o vinal									
Fror relati	ivo promedio	F	1		F				1	7
MATHIAS	ANDROULAKIS	Υυγιυ	PENG	MELHEM	MATHIAS	ADACHI	SOAVE	SOAVE	MATHIAS	
		3. <u>3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</u>	ROBINSON		COPEMAN	l → Ey LU	1972		V COPEMAN	5.
27.395	40.654	49.213	53.857	57.808	57.820	144.864	153.411	412.888	496.050]
Segundo	o virial - adapta	ación de Mat	hias							
										_
Error relat	ivo promedio									
SOAVE	ADACHI	SOAVE .	MATHIAS	PENG ROBINSON	MELHEM		- YUYLU	MATHIAS	ANDROULAKIS	
7.102	20.601	22.597	27.395	109.294	135.841	139.346	142.532	143.591	143.789	X
						1	· · · · · · · · · · · · · · · · · · ·	<u>,</u>		
					152					
1										

6. Conclusiones

- En cuanto a la ecuación de estado a utilizar con cada expresión de alfa.
- ✓ De acuerdo a la expresión de *alfa* de que se trate, se tienen dos alternativas: utilizar una ecuación de estado cúbica determinada, o bien utilizar ambas ecuaciones (PR y SRK), como se muestra en la TABLA 1, de la página 100. La diferencia radica en que algunas ecuaciones de *alfa* tienen un parámetro expresado como un polinomio en función del factor acéntrico. En estos modelos es necesario utilizar la misma ecuación de estado que usó el autor para ajustar dicho polinomio.
- ✓ Para comparar la capacidad de predecir presiones de vapor con una u otra ecuación de estado (PR o SRK) se ajustaron los parámetros de cada una de las ecuaciones de *alfa* para sendas ecuaciones de estado. Este ajuste busca minimizar los errores relativos correspondientes a la predicción de presiones de vapor. En la comparación se empleó la suma de los errores relativos promedio, correspondientes a las 32 substancias analizadas. Para los análisis subsecuentes se seleccionó, para cada expresión de *alfa*, la ecuación de estado que arrojó la menor suma de errores.

En la TABLA 11 se muestra la ecuación de estado cúbica seleccionada en cada caso.

TABLA 11

ECUACIÓN DE ALFA	ECUACIÓN DE ESTADO CÚBICA						
	SELECCIONADA						
Yu y Lu (1987)	Peng Robinson						
Androulakis y col. (1989)	Peng Robinson						
Mathias y Copeman (1983)	Peng Robinson						
Melhem y col. (1989)	Peng Robinson						
Soave (1980)	Soave Redlich Kwong						
Adachi y Lu (1984)	Soave Redlich Kwong						

Ecuación de estado cúbica seleccionada

- En cuanto a la predicción de propiedades a temperaturas menores a la crítica:
 - Presión de vapor
- ✓ En general los modelos con el mismo número de parámetros arrojan resultados equivalentes y no se observa ninguna ventaja de uno sobre otro.
- ✓ La predicción de presiones de vapor mejora notablemente, sobre todo en las substancias polares, cuando se utiliza un modelo de *alfa* que contiene parámetros de ajuste.
- Al aumentar el número de parámetros se mejora la predicción de la presión de vapor y en consecuencia resulta aconsejable utilizar alguno de los modelos que contienen tres parámetros.

En este aspecto vale la pena mencionar que el modelo de Stryjek y Vera 2 (1986) utiliza adicionalmente información del factor acéntrico, con lo cual no se obtiene ninguna ventaja y hace a este modelo menos recomendable que los restantes de tres parámetros.

- Entalpías de vaporización
- ✓ Las estimaciones de entalpía de vaporización son, en todos los casos, predictivas.
- ✓ Los modelos sin parámetros arrojan, en la mayoría de los casos, errores superiores a los de los otros modelos. La mejora notable que se observa en el ajuste de la presión de vapor al aumentar el número de parámetros no se observa para el caso de la entalpía de vaporización.
- ✓ Para varias substancias los errores de todos los modelos con parámetros son equivalentes. Los modelos de Adachi y Lu (1984) y Soave (1980) de dos parámetros arrojan errores muy grandes para gran parte de las substancias, incluso mayores a la de los modelos sin parámetros. Por esta razón no son recomendables.
- ✓ Al comparar los modelos de tres parámetros se observa que Stryjek y Vera 2 (1986) es un modelo globalmente peor que los otros tres, por lo que no es recomendable. En términos generales el resto de los modelos son equivalentes, aunque sobresalen ligeramente los modelos de Yu y Lu (1987), Androulakis y col. (1989) y Mathias y Copeman (1983).

- En cuanto a la predicción de propiedades a temperaturas superiores a la crítica:
- ✓ En este intervalo se tienen las predicciones del segundo coeficiente virial.
- ✓ En términos generales, los modelos que presentan una expresión específica para este intervalo de temperaturas tienen errores de predicción más pequeños que los que utilizan la misma expresión a cualquier temperatura.
- ✓ La predicción del segundo coeficiente virial con las diferentes propuestas de *alfa* muestra claramente que la ecuación de Mathias (1983) es la que mejor predice el comportamiento de las substancias a temperaturas supercríticas. De aquí se puede inferir que el comportamiento termodinámico de las substancias después de la temperatura crítica es exponencial. De hecho los modelos de Androulakis y col. (1989) y Yu y Lu (1987) también proponen un comportamiento este tipo.
- ✓ En el trabajo de Mathias (1983) se insiste en que la expresión de *alfa* debe ser continua en primera derivada en el punto crítico para que no existan discontinuidades en la predicción de propiedades que dependen de la derivada con respecto a la temperatura como son los casos de la entalpía y la entropía. Las expresiones de Mathias (1983), Androulakis y col. (1989), Yu y Lu (1987) y Mathias-Copeman (1990) son continuas en primera derivada.
 - La adaptación de la expresión de Mathias
- ✓ Con objeto de mejorar la predicción de segundos coeficientes viriales de los modelos se probó adaptar la ecuación de Mathias (1983) a las demás propuestas de *alfa* para temperaturas superiores a la crítica.
- ✓ La expresión del parámetro c necesaria para el modelo de Mathias (1983) se obtiene al igualar la derivada de la ecuación de Mathias a la derivada de la ecuación correspondiente de alfa, en la temperatura crítica. Esto significa que a la temperatura crítica, la pendiente de ambas ecuaciones debe ser la misma para asegurar la continuidad.
- ✓ La adaptación de Mathias reduce considerablemente los errores para aquellos modelos que no cuentan con una expresión específica para este intervalo.
- Tomando en cuenta las mejoras con la adaptación del modelo de Mathias (1983) se concluye que para la predicción del segundo coeficiente virial los mejores modelos son

los de Soave (1972), Adachi y Lu (1984), Soave (1980) y Mathias (1983), todos ellos con la expresión de Mathias para temperaturas supercríticas.

- ✓ Un poco por debajo de ellos se encuentran los modelos de Androulakis y col. (1989), Yu y Lu (1987), Peng Robinson (1976), Melhem y col. (1989), Mathias y Copeman (1983) y Mathias-Copeman (1990).
- ✓ Ninguno de los modelos propuestos con la adaptación de Mathias requiere más de un parámetro.

En resumen, después de analizar globalmente los resultados de este trabajo se puede concluir lo siguiente:

- ✓ En la actualidad el tiempo de procesamiento y la capacidad de almacenamiento en la memoria de la computadora ya no son criterios fundamentales a considerar en la evaluación de la conveniencia de utilizar una ecuación en particular, por lo cual no debe tomarse como un punto negativo el utilizar un modelo con un mayor número de parámetros.
- \checkmark Las expresiones existentes para *alfa* son satisfactorias para representar las propiedades de los componentes puros, incluyendo substancias fuertemente polares. Estas expresiones pueden utilizarse con confianza en la simulación de procesos químicos. Entonces, hay poco incentivo para continuar los desarrollos teóricos en el sentido de proponer nuevas expresiones de *alfa*.
- \checkmark No existe una ventaja significativa en cuanto a utilizar una expresión de *alfa* con pocos parámetros en comparación con expresiones con más parámetros.
- ✓ No son necesarias expresiones de *alfa* con más de tres parámetros ya que se genera una alta correlación entre dichos parámetros sin una mejoría importante en su capacidad predictiva.
- ✓ Globalmente los modelos de Androulakis y col. (1989) y Yu y Lu (1987) son los más consistentes para la predicción de propiedades y se recomienda su uso.
- ✓ Los modelos de Melhem y col. (1989) y Mathias (1983) son buenas opciones si se desea un modelo con un menor número de parámetros.

Es importante destacar que esta investigación se ha desarrollado dentro del marco específico que propone la Facultad de Química de la UNAM para la realización de tesis profesionales tendientes a la obtención del título de Ingeniero Químico. Desde el punto de vista metodológico quedan vías abiertas para generalizar los alcances hasta aquí logrados:

- ✓ Aunque se podría realizar esta misma investigación utilizando otro grupo de substancias polares, sería poco probable que se obtuvieran resultados muy diferentes. Las substancias utilizadas en este estudio son las mismas que utilizaron Stryjek y Vera (1986) y son representativas de los grupos funcionales de cetonas, alcoholes y éteres. Los resultados de este trabajo son muy claros y permiten una generalización bastante confiable.
- ✓ Se puede criticar la relatividad de las predicciones del segundo coeficiente virial considerando que se compararon con propiedades calculadas con la ecuación de Tsonopoulos (1975) y no con datos experimentales. En este aspecto se debe comentar la escasez de información experimental de propiedades supercríticas y la inexistencia de desarrollos posteriores a los de Tsonopoulos (1975) en la hemerografía que estuvo a mi alcance.
- ✓ Un aspecto interesante que podría ser la base de investigaciones posteriores sería el explorar la relación existente entre los errores que resultan al calcular propiedades termodinámicas con las ecuaciones de estado y alguna propiedad de la substancia en cuestión. Por ejemplo, se podría determinar que el error que se obtiene con la ecuación de estado es función del factor acéntrico de la substancia, o bien podría ser función de su peso molecular o del número de carbonos en su estructura. Esto permitiría predecir el error de predicción para substancias con las que no se cuenta información experimental.
- ✓ Finalmente se debe comentar acerca de la importancia de predecir correctamente propiedades termodinámicas a temperaturas superiores a la crítica. Aunque en general las industrias de proceso no trabajan con corrientes a condiciones supercríticas, muchas mezclas contienen substancias que se encuentran en dichas condiciones. Un claro ejemplo de esto es el hidrógeno que se encuentra a condiciones supercríticas en las reformadoras de naftas. Otro ejemplo es el bióxido de carbono en la industria alimenticia, en donde se utiliza en el proceso de extracción de la cafeína; o en la remediación de suelos, en que se lo utiliza para extraer los difenilos policlorados.

Referencias

- 1. Clausius, R., Ann Phys. Chem., IX:337(1881).
- 2. Berthelot, D.J., J. Phys., 8:263(1899).
- 3. Onnes, H.K., Commun. Phys. Lab., Leiden, Holland, 71(1901).
- 4. Redlich, O., Kwong, J.N.S., Chem. Rev., 44:233(1949).
- 5. Wilson, G.M., Adv. Cryog. Eng., 9:168 (1964); 11:392(1966).
- 6. Barner, H.E., Pigford, R.L., Schreiner, W.C., Proc, API, 46:244(1966).
- 7. Martin, J.J., Ind. Eng. Chem., 59:34(1967).
- 8. Lee, B.I., Edminster, W.C., Ind. Eng. Chem. Fundam., 10:32(1971).
- 9. Soave Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science, 27:1197(1972).
- Dingrani y Thodos Modified van der Waals equation for the dense gaseous and liquid regions form PVT data for methane. The Canadian Journal of Chemical Engineering, 53:317(1975).
- 11. Usdin, E., McAuliffe, J.C., Chem. Eng. Sci., 31(11): 1077(1976).
- 12.Redlich On the three-parameter representation of the equation of state. Ind. Eng. Chem. Fundam., 14:257(1975).
- 13.Peng, D.Y., Robinson D.B. A new two constant equation of state. Ind. Eng. Chem. Fundam., 15:59(1976).
- 14. Fuller A modified Redlich-Kwong-Soave equation of state capable of representing the liquid state. Ind. Eng. Chem. Fundam., 15:254(1976).
- 15. Won, K. W., 69th Annual AIChE Meeting, Chicago, Ill, Nov (1976).
- 16.Abbott, M.M., AIChE J., 19:596(1973).
- 17 Martin, J.J. Ind. Eng. Fundam., 18:81(1979).
- 18.Bazúa Rueda E. "Notas del curso Equilibrio Físico", Tabla 8.2, p 8.33 Facultad de Química UNAM (1994).
- 19.Schmidt, G. Wenzel, H. Chem Eng. Sci., 35:1503(1980).
- 20.Barragan Aroche J.F. Desarrollo de programas de cálculo de equilibrio de fases en sistemas multicomponentes. Facultad de Química. UNAM (1995).
- 21. Howard, T.H., M.S. Thesis, Northwestern Univ. Evanston, Illinois (1967).
- 22.Pitzer. K.S., Lewis, Randall y Brewer "Thermodynamics", Apéndice 1, McGraw Hill, New York, (1961).
- 23.Lu, B.C. AIChE J., 19:748(1973).
- 24.Quayle, O.R. Chem. Rev., 53:439(1953).
- 25.Hamam, Chung, Elshayal y Lu Generalized temperature-dependent parameters of the Redlich-Kwong equation of state for vapor-liquid equilibrium calculations. Ind. Eng. Chem. Process Des. Dev., 16:51(1977).

- 26.Graboski y Daubert A modified Soave equation of state for phase equilibrium calculations. 1. Hydrocarbon systems. Ind. Eng. Chem. Process Des. Dev., 17:443(1978).
- 27. American Petroleum Institute "Technical Data Book Petroleum Refining, Third Edition" Washington D.C. (1977).
- 28.Harmens y Knapp Three-parameter cubic equation of state for normal substances Ind. Eng. Chem. Fundam., 19:291(1980).
- 29.Lee, B.I. Kesler, M.G. AIChE J., 21:510 (1975).
- 30 Soave Rigorous and simplified procedures for determining the pure component parameters in the Redlich-Kwong-Soave equation of state Chemical Engineering Science, 35:1725(1980).
- 31.Sandarusi, Kidnay y Yesavage, Compilation of parameters for a polar fluid Soave-Redlich-Kwong Ind. Eng. Chem. Process Des. Dev., 25:957(1986).
- 32.Chang, Rousseau y Ferrell Use of the Soave modification of the Redlich-Kwong equation of state for phase equilibrium calculations. Systems containing methanol. Ind. Eng. Chem. Process Des. Dev., 22:462(1983).
- 33.Evelin, K.A., Moore, R.G. Ind. Eng. Chem. Process Des. Dev., 15:423(1976).
- 34.Mathias A versatile phase equilibrium equation of state Ind. Eng. Chem. Process Des. Dev., 22:385(1983).
- 35.Boston, J.F. y Mathias, P.M. "Phase equilibria in a third generation process simulator" Presentada en la 2da International Conference on Phase Equilibria and Fluid Properties in the Chemical Process Industries. Berlin (West), 17-21 Mar, (1980).
- 36.Mathias y Copeman Extension of the Peng-Robinson equation of state to complex mixtures: Evaluation of the various forms of the local composition concept. Fluid Phase Equilibria, 13:91(1983).
- 37.Soave Improvement of the van der Waals equation of state Chemical Engineering Science, 39:357(1984).
- 38.Adachi y Lu Simplest equation of state for vapor-liquid equilibrium calculation: a modification of the van der Waals equation. AIChE Journal, 30(6):991(1984).
- 39.Gomez-Nieto M. Thodos, G. Generalized vapor pressure equation for nonpolar substances. Ind. Eng. Chem. Fund., 17:45(1978).
- 40.Stryjek y Vera PRSV An improved Peng-Robinson equation of state for pure compounds and mixtures The Canadian Journal of Chemical Engineering, 64:323(1986).
- 41.Stryjek y Vera PRSV An improved Peng-Robinson equation of state with new mixing rules for strongly nonideal mixtures. The Canadian Journal of Chemical Engineering, 64:334(1986).
- 42.Gibbons R.M. Laughton A.P. An equation of state for polar and non-polar substances and mixtures J.Chem Soc. Faraday Trans., 2(80):1019(1984).
- 43.Reid, R.C., Prausnitz, J.M. Sherwood, T.K. The properties of gases and liquids. 3rd edition McGraw Hill New York (1977).

- 44 Ambrose, D. Correlation and estimation of vapour-liquid critical properties Nat. Phys. Lab Taddington. NPL Rept.92 (1978).
- 45.Stryjek y Vera 2 PRSV A cubic equation of state for accurate vapor-liquid equilibria calculations. The Canadian Journal of Chemical Engineering, 64:820(1986).
- 46.Yu y Lu A three-parameter cubic equation of state for asymmetric density calculations Fluid Phase Equilibria, 34:1(1987).
- 47.Carrier, Rogalski y Péneloux Correlation and prediction of physical properties of hydrocarbon with the modified Peng-Robinson equation of state. Ind. Eng. Chem. Res., 27:1714(1988).
- 48. Proust y Vera PRSV: The Stryjek-Vera modification of the Peng-Robinson equation of state. Parameters for other pure compounds of industrial interest. The Canadian Journal of Chemical Engineering, 67:170(1989).
- 49.Androulakis, Kalospiros y Tasios Thermophysical properties of pure polar and nonpolar compounds with a modified VdW-711 equation of state. Fluid Phase Equilibria, 45:135(1989).
- 50.Melhem, Saini y Goodwin A modified Peng-Robinson equation of state Fluid Phase Equilibria, 47:189(1989).
- 51. Twu, Bluck, Cunningham y Coon A cubic equation of state with a new alpha function and a new mixing rule. Fluid Phase Equilibria, 69:33(1991).
- 52.van der Waals, J.D. Doctoral Dissertation, Leiden, (1873).
- 53.API Research Project 44. Selected values of physical and thermodynamic properties of hydrocarbons and related compounds, (1953).
- 54. American Petroleum Institute Research Project 44 Selected Values of Properties of Hydrocarbons and Related Compounds Vol. III Texas A&M University Thermodynamics Research Center
- 55.Smith, B.D. y Srivastava, R. Thermodynamic data for pure compounds. Physical Sciences data 25, 26 ELSEVIER Holland, 1986
- 56.Boublik T., Fried, V., Hála E. The vapour pressures of pure substances. Selected values of the temperature dependence of the vapour pressures of some pure substances in the normal and low pressure region. Second revised edition. Physical Sciences data 17. ELSEVIER Holland, 1986
- 57.Dymond y E.B. Smith The virial Coefficients of Pure Gases and Mixtures, A critical compilation, Oxford University Press, Oxford, 1980
- 58.Pitzer, K.S. y Curl, R.F. Journal of the American Chemical Society, 79:2369(1957)
- 59.O'Conell, J.P. y Prausnitz, J.M. Ind. Eng. Chem. Process Des. Dev. 6:245(1967)
- 60.Tsonopulos, C. AIChE Journal, 20:263(1974); 21:827(1975)
- 61. Varios autores: Doce mil grandes. Enciclopedia Biográfica Universal. Volumen 3. Editorial Promexa S.A. México, 1982.
- 62. Feldman, Anthony y Ford, Peter: Grandes científicos e inventores. Tomo 2. Ediciones HYMSA España, 1979.

- 63. Pirenne, Jacques: Historia Universal. Volumen VI. Editorial Cumbre. México, 1978.
- 64. Castellan, Gilbert W.: Físicoquímica. Segunda edición. Addison-Wesley Iberoamericana. EUA, 1987.
- 65.Smith, J.M. y Van Ness, H.C. Introducción a la termodinámica en Ingeniería Química Cuarta edición (segunda edición en español) McGraw Hill. México, 1989.
- 66. Pérez Cárdenas, Salvador: Fundamentos de termodinámica. Editorial Limusa. México, 1990.
- 67.Sandler, Stanley I. Models for Thermodynamic and Phase Equilibria calculations Marcel Deker, Inc. USA, 1994
- 68. Balzhiser, R.E. y Samuels, M.R. Termodinámica para Ingenieros. Prentice Hall. Colombia, 1979
- 69.Edgar, T.F. y Himmelblau, D.M. Optimization of chemical processes. Mc Graw Hill. International edition, 1988
- 70. Westerberg, A.W. Process Flowsheeting. Cambridge University Press Cambridge, UK
- 71. Reid, R.C., Prausnitz, J.M. y Polling, B.E. The properties of gases & liquids. Fourth Edition. McGraw Hill International Editions Singapore, 1988
- 72.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols. J. Chem. Therm. 2:631(1970)
- 73.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. XXXIII. The vapour pressure of acetone J. Chem. Therm. 6:693(1974)
- 74.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. XXXV. Vapour pressures of aliphatic alcohols J. Chem. Therm. 6:909(1974)
- 75.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. XXXVII. Vapour pressures of methanol, ethanol, pentan-1-ol, and octan-1-ol from the normal boiling temperature to the critical temperature J. Chem. Therm. 7:185(1975)
- 76.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. XXXVIII. Vapour pressures of some aliphatic ketones J. Chem. Therm. 7:453(1975)
- 77.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. XLIII. Vapour pressures of some ethers J. Chem. Therm. 8:165(1976)
- 78.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. XLVII. Pressure, volume, temperature relations and thermodynamic properties of propan-2-ol J. Chem. Therm. 10:1033(1978)
- 79. Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. L. The vapour pressures of 1,2-ethanediol (ethylene glycol) and bis(2-hidroxyethyl) ether (diethylene glycol). J. Chem. Therm. 13:61(1981)
- 80.Ambrose, D. y otros. Thermodynamic properties of organic oxygen compounds. LI. The vapour pressures of some esters and fatty acids. J. Chem. Therm. 13:795(1981)
- 81. Ambrose, D. y otros The vapour pressure of Indane. J. Chem. Therm. 8:601(1976)

- 82.Ambrose, D. y otros The vapour pressure of naphthalene. J.Chem. Therm. 7:1173(1975)
- 83.Wagner, W. y Ewers, J. New vapour-pressure measurements and a new rational vapour-pressure equation for oxigen. J. Chem. Therm. 8:1049(1976)
- 84.Colomina, M. Jimenez, P y otros XI. Vapour pressures and enthalpies of sublimation and formation of the six dimethylbenzoic acids. J. Chem. Therm. 16:1121(1984)
- 85.Stephan, K. y Hildwein, H. Recommended data of selected compounds and binary mixtures DECHEMA Chemistry Data Series VOL IV, Parts 1+2 Pags. 87,99,111 Germany, 1987
- 86.Molina, F. Romero, A. Cálculo de equilibrio líquido-líquido-vapor para sistemas multicomponentes utilizando ecuaciones de estado cúbicas. Tesis. Facultad de Química, UNAM. 1987
- 87.Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied Mathematics, 11:431(1963)
- 88.Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics, 2:164(1944)
- 89. Moré, Jorge, Burton y Kenneth (1980), User guide for MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois.
- 90.Prausnitz, J.M., Eckert, C.A., O'Conell, J.P., Computer calculations for multicomponent vapor-liquid equilibria. Prentice Hall, USA, (1967)
- 91.Moreno Molina, Luís Felipe. Comparación de 30 ecuaciones de estado para predecir propiedades de sustancias puras y mezclas. Tesis. Facultad de Química, UNAM, 1984.
- 92. Dahl, S. y Michelsen, M. High-pressure vapor-liquid equilibrium with a UNIFAC based equation of state. AIChE Journal. 36:1829(1990)

A. Error experimental

El número de cifras significativas es el número mínimo de dígitos que se necesitan para expresar científicamente un valor sin que se pierda exactitud.

Exactitud se refiere a que tan cerca está el valor "real" del valor medido.

El valor "real" se pone entre comillas por que es necesario que alguien mida el valor "real". Siempre existe un error asociado a cada medición.

El valor "real" lo obtiene mejor un científico experimentado utilizando un procedimiento perfectamente comprobado. Su resultado puede corroborarse utilizando procedimientos distintos, puesto que si cada método puede ser *preciso*, el *error sistemático* puede llevar a una concordancia deficiente entre los resultados.

Una elevada concordancia entre los resultados de varios métodos proporciona cierta confianza, aunque nunca constituye una prueba de que los resultados sean los correctos. La *precisión* es una medida de la reproducibilidad de un resultado.

El error sistemático es un error constante que se puede detectar y corregir.

B. Manejo estadístico de la información

El análisis estadístico de los datos es muy variable dependiendo del autor.

En general se hacen tres pruebas de precisión del poder predictivo en las cuales puede valuarse ya sea el error absoluto:

$$d_i = X_i^{exp} - X_i^{calc}$$

o el relativo:

$$d_{i} = \left(\frac{X_{i}^{\exp} - X_{i}^{calc}}{X_{i}^{\exp}}\right)$$

a.
$$BIAS = \frac{\sum_{i=1}^{n} d_i}{n}$$
 Ilamado según el caso **error medio** o **error relativo medio**

b.
$$AAD = \frac{\sum_{i=1}^{n} d_{i}}{n}$$

average absolute deviation, llamado según el caso error medio absoluto o error relativo medio absoluto

$$RMS = \sum_{i=1}^{n} d_i^2$$

root mean square deviation o error cuadrático medio, al

que se llamará

error absoluto promedio o error relativo promedio (ERP)

donde n es el número de puntos calculados.

Dado que la función error que se optima para el ajuste de los parámetros de las ecuaciones alfa es:

$$\beta = \sum_{i}^{M} \begin{bmatrix} P_{i}^{calc} - P_{i}^{exp} \\ P_{i}^{exp} \end{bmatrix}$$

conviene considerar un error relativo para el cálculo de los errores.

Es así como se llega a la siguiente expresión:

que es la que se utiliza en el presente trabajo para evaluar la capacidad de predicción de cada una de las ecuaciones.

Finalmente, es necesario considerar los grados de libertad del sistema.

Se tienen *n* observaciones independientes X^{exp} que permiten calcular los parámetros de las ecuaciones de *alfa*. Estas ecuaciones, con sus parámetros calculados, permiten estimar valores de X^{calc} .

Después, se calculan las desviaciones. Estas desviaciones no son todas independientes. Dado que la suma de estas cantidades debe ser cero, una vez que se toman al azar (n-1) de ellas, la enésima queda fijada.

Si se tienen muchas muestras, el dividir entre (n-1) en lugar de hacerlo entre n no genera una diferencia importante, mientras que si la muestra es pequeña si lo es.

Para efectos de este trabajo consideramos como muestra pequeña aquellas con menos de 20 elementos.

Cuando se utilizan expresiones de *alfa* con más de un parámetro, para evitar un error sistemático es necesario ajustar el denominador a los grados de libertad correspondientes según la fórmula (n-k), donde k son los parámetros de la ecuación que han sido estimados a partir de los n datos de la muestra.

C. El método de Levenberg-Marquardt

La optimización de funciones objetivo multivariables no lineales requiere de técnicas robustas y eficientes.

La eficiencia es de suma importancia debido a que estos problemas requieren emplear métodos iterativos.

Es importante utilizar una técnica robusta debido a que las ecuaciones no lineales son impredecibles en cuanto a su comportamiento, pueden tener máximos y mínimos, regiones con concavidad o convexidad, etc.

Un problema de optimización se define como encontrar un vector:

$$\boldsymbol{x}^{*} = \begin{bmatrix} \boldsymbol{x}_{1} \ \boldsymbol{x}_{2} \ \boldsymbol{x}_{3} \ \dots \ \boldsymbol{x}_{n} \end{bmatrix}^{\gamma}$$

que minimice a una función:

 $f(x_1, x_2, x_3, ..., x_n)$

En general los métodos iterativos alternan dos fases de optimización:

1. definir la dirección de búsqueda s^k

2. minimizar en dicha dirección hasta encontrar un nuevo punto:

 $x^{k+1} = x^k + \Delta x^k$ donde:

 Δx^{λ} es el tamaño del paso.

El algoritmo debe especificar

3. el vector inicial $x^0 = \begin{bmatrix} x_1^0 & x_2^0 & x_3^0 & \dots & x_n^0 \end{bmatrix}^T y$ 4. el criterio de convergencia.

El proceso funciona de la siguiente manera:

Desde un punto de inicio dado se determina un dirección de búsqueda y la función f(x) se minimiza en dicha dirección. La búsqueda termina de acuerdo a un criterio dado y entonces se determina una nueva dirección de búsqueda seguida de una nueva búsqueda.

La diferencia entre los diferentes métodos de optimización se basa en la manera en que generan las direcciones de búsqueda.

Existen métodos indirectos que requieren valuar la derivada de la función mientras que otros, los directos, sólo requieren valuar la función.

El método de Levenberg-Marquardt es un método indirecto de segundo orden que utiliza la derivada para determinar la dirección de la búsqueda.

Una correcta dirección de búsqueda es aquella que reduce el valor objetivo de la función de tal manera que si x^0 es el punto de inicio y x^1 es el nuevo punto se tiene que:

$$f(x^1) < f(x^0)$$

La dirección s se denomina dirección descendiente y satisface el siguiente requerimiento en cualquier punto:

$$\nabla^T f(x) s < 0$$

Los métodos indirectos de segundo orden hacen una aproximación cuadrática de f(x) en x^k :

$$f(x) \approx f(x^k) + \nabla^T f(x^k) \Delta x^k + \frac{1}{2} (\Delta x^k)^T H(x^k) \Delta x^k$$

donde $H(x^k)$ es la matriz Hessiana de la función f(x):

$$f(x) = h_{11}x_1^2 + h_{12}x_1x_2 + h_{22}x_2^2$$
$$H(x) \equiv \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 2h_{11} & h_{12} \\ h_{12} & 2h_{22} \end{bmatrix}$$

Marquardt⁸⁷ y Levenberg⁸⁸ propusieron que la matriz hessiana de f(x) se modifique en cada etapa de la búsqueda para asegurar que la H(x) modificada, simbolizada por $\tilde{H}(x)$, sea positiva definida y bien condicionada.

Este procedimiento corrige los elementos diagonales de H(x) de esta manera:

$$\tilde{H}(x) = \left[H(x) + \beta I\right]$$

donde β es una constante positiva lo suficientemente grande para volver a $\hat{H}(x)$ positiva definida cuando H(x) no lo sea.

Para determinar el valor de β a utilizar se debe detectar el valor propio más negativo de H(x) y tomar β > -min (α_1), en que α_1 es dicho valor propio de H(x).

El método de Levenberg-Marquardt se ejemplifica a continuación:

donde λ puede calcularse como:

$$\lambda^{opt} = -\frac{\nabla^T f(x^k) s^k}{(s^k)^T H(x^k) s^k}$$

El procedimiento utilizado en el presente trabajo es una adaptación de Moré⁸⁹ a los algoritmos originales propuestos por Levenberg y Marquardt, en que se sustituye el hessiano por un jacobiano de diferencias finitas.

D. Propuesta de Soave³⁰ para el cálculo de la presión de vapor a una temperatura dada

1. Calcular

$$\alpha = 1 + (1 - \frac{T}{Tc})(m + n\frac{Tc}{T})$$

2. Suponer un valor de P°

3. Calcular

$$T_r = T/T_c$$

 $P_r = P^o/P_c$
 $A = 0.42748 \propto P_r / T_r^2$
 $B = 0.08664 P_r / T_r$

4. Resolver la ecuación cúbica

$$Z^3 - Z^2 + Z(A - B - B^2) - AB = 0$$

dos veces, con respecto al factor de compresibilidad Z_L del estado líquido (raíz más pequeña) y Z_v de la fase vapor (raíz más grande).

5. Calcular los coeficientes de fugacidad en la fase líquida y en la fase vapor

$$\ln \frac{f_L}{p^o} = Z_L - 1 - \ln(Z_L - B) - \frac{A}{B} \ln (1 + \frac{B}{Z_L})$$
$$\ln \frac{f_V}{p_V^o} = Z_V - 1 - \ln(Z_V - B) - \frac{A}{B} \ln (1 + \frac{B}{Z_V})$$

6. Modificar el valor de la P° supuesta y repetir desde el punto 3, hasta que se logre:

$$\ln\left(\frac{f_L}{P^n}\right) - \ln\left(\frac{f_V}{P^n}\right) \le tolerancia$$

E. Propuesta de Soave³⁰ para el cálculo del valor de α que ajusta una presión de vapor dada.

1. Calcular $T_{r} = T/T_{c}$ $P_{r} = P^{o}/P_{c}$ $B = 0.08664 P_{r}/T_{r}$

2. Proponer un valor de α

- 3. Calcular $A = 0.42748 \propto P_r / T_r^2$
- 4. Resolver la ecuación cúbica

$$Z^3 - Z^2 + Z(A - B - B^2) - AB = 0$$

dos veces, con respecto al factor de compresibilidad Z_L del estado líquido (raíz más pequeña) y Z_V de la fase vapor (raíz más grande).

5. Calcular los coeficientes de fugacidad en la fase líquida y en la fase vapor

$$\ln \frac{f_L}{p''} = Z_L - 1 - \ln(Z_L - B) - \frac{A}{B} \ln(1 + \frac{B}{Z_L})$$

$$\ln \frac{f_{\nu}}{p_{\nu}^{o}} = Z_{\nu} - 1 - \ln(Z_{\nu} - B) - \frac{A}{B} \ln(1 + \frac{B}{Z_{\nu}})$$

6. Modificar el valor de la α supuesta y repetir desde el punto 3 hasta que:

$$\ln\left(\frac{f_{\iota}}{P''}\right) - \ln\left(\frac{f_{\iota'}}{P''}\right) \le tolerancia$$

en que la tolerancia debe ser muy cercana a cero.
Apéndice F

DATO	SEXF	PERIM	ENTAL	ES DE	E PRE	SIÓN [DE VA	POR			
ALCOH	OLES										
METANOL		ETANOL		1-PROPAN	IOL	2-PROPAN	IOL	1-BUTANO	L	2-BUTANO	IL.
				ти	n kDa	ן דע <u>ו</u>	n kPa	TK	n kPa	тк	n kPa
T K	p kPa	I K	р кна	1 N	20 429	325 473	26 540	351 708	20 413	340 873	26.873
288 049	9.815	292.772	7 260	333 310	20.430	320.470	33 044	357 393	26 518	345 542	33.031
292 386	12 468	290.783	· · · · · · · · · · · · · · · · · · ·	343 405	33.024	333 948	40.017	362 362	33 045	349.751	39.942
296 473	15.519	290.072	0.200	347.657	40.001	337 241	46 612	366 812	39.973	353,281	46.616
300.233	10.000	301.307	12 566	351 172	46.676	340 237	53 371	370 507	46 601	356,490	53,447
303.061	21.709	300.404	14 091	354 324	53 435	342 854	59 931	373 893	53,450	359,264	59,984
305.035	25.205	212 297	17 200	357 081	50 974	345 281	66 601	376 786	59,932	361.843	66.641
309.008	29.120	216 279	21 100	350 6401	66 638	347 522	73 286	379.517	66.630	364.217	73.284
313 /8/	30.493	220.400	25.014	362.006	73 334	349 604	79 997	382 034	73.332	366.453	80.011
318 557	40.347	20499	23.314	364 176	70 052	351 581	86 822	384 312	79.856	368.544	86.759
322.026	52 884	324.231	31.047	366 203	96 877	353 310	93 175	386 579	86 807	370 403	93 095
320.405	72 075	222 022		368 105	93 102	355 081	100.079	388 474	92 996	372 351	100 154
329.578	12.975	332.023	44.004 52.007	360.097	100 130	356 108	104 266	390 543	100 143	374 081	106.775
333.964	02.020	330.015	£0 £70	370 745	103.031	358 240	113 416	392 343	106 702	375 761	113 530
336.934	98 330	339.728	74.020	371 662	100.001	320 700	120.046	304 080	113 410	377 336	120 167
337.867	117 744	343.709	29 767	372 305	113 409	361 072	126 573	395 714	119 943	378 797	126 593
341.553	117 7 14	250 555	07 821	374 816	110 003	362 411	133 218	397 305	126 625	380 295	133 470
344 920	155.741	251 120	100 121	376 316	126 648	502 411	100.210	398.836	133 323	000.200	100.410
348 833	154.640	251.109	101.519	377 725	133 250			000.000 j	100.020		
352 //6	178.306	351,490	102.151	311125	133.239						
353 460	205 652	252 339	104.083								
300 828	200.000	255 512	119 710								
362 960	254.430	250.000	125 510								
3/3 000	309.070	350.900	155.019								
303.200	401 010	364 860	168 300								
392.000	035 110	366 631	170 321								
403 100	946 760	373 200	226 230	-							
403.360	1087 000	379 100	275 240								
413 110	1087 500	383 140	313 800								
413 170	1392 000	380 180	379.000								
423 100	1303 400	303.100	431 770								
420 190	1747 900	308 470	501 140								
432.920	1768 100	402 800	570 600								
433,100	2180 700	408.630	666 940								
443 040	2103.700	418 680	873 150								
443 100	2711 000	428 880	1129 300								
453 270	2718 700	439 1401	1440 500								
462 000	3310 800	448 380	1773.600								
463 190	3319 100	458 700	2211.300								
473 100	4025 100	468 800	2715 200								
483 200	4844 900	477 940	3243 300								
403 200	5797 100	487 810	3894 900								
502 2001	6807 400	408 320	4697 000								
503 200	0097.400	503 210	5114 500								
		508 010	5552 100								
		508.670	5615 500]
		511 080	5846.900								

DATOS	EXPE	RIMENT	ALES D	E PRES	SIÓN E	DE VAP	OR		
ALCOHO	LES					4 UEVANO		4 007410	
2-METIL-1-PRO	OPANOL	Z-METIL-Z-PF	COPANOL	TPENTANO	L	PREAMINO	-	1007=00	
		-	- LD-		n kDa	T K	n kBa	100X-33	n kDa
<u> </u>	p kPa	1 K	р кна	247.012	р кра 7 175		P NFa	328.030	0 142
343.044	20.457	329.940	33.123	256 6021	11 204	330 000	1.200	337 260	0.142
348.552	20.554	333.931	40.000	360 721	13 615	347 000	2 952	343 590	0.431
353.357	33.057	337.204	63 /31	363 018	15 825	354 000	4 343	347.060	0.544
357 674.	39,994	340.223	60.007	368 664	19.660	361 000	6,268	350,840	0.700
364 531	53 442	345 288	66 646	374,779	25.714	369 000	9.323	353.010	0.803
367 356	59 959	347 488	73,160	379.512	31.393	376.000	12.950	355.510	0.938
369.965	66,546	349,589	79.848	383.808	37,413	384.000	18.490	357.800	1.078
372 439	73.326	351.659	86.911	388.714	45.399	391.000	24.830	360.400	1.259
374 696.	79.983	353,349	93.043	392.831	53.129	398.000	32.850	362.390	1.415
376 846	86.765	355.146	99.932	397.249	62.576	406.000	44.460	364.410	1.591
378,739	93,121	356.775	106.528	401.815	73.706	413.000	57.120	368.670	2.022
380,718;	100 153	358.422	113.545	406.459	86.610	421.000	74.860	372.620	2.509
382.476	106 746	359.879	120.042	409.838	97.054	428.000	93.610	374.810	2.817
384 166	113 417	361.277	126.556	411.664	103.110			378.270	3.376
385 775	120.072	362.710	133,505	415.585	117.105			382.720	4.226
387.252	126.441			419.748	133.550			386.424	5.065
388.773	133.283			424 482	154.379			386.960	5.236
				429.127	177.156			390.868	6.261
				437.800	226.800			395.676	7.810
				443.500;	265.100			400.653	9.742
				448.300	300.000			406,314	12.400
				454.500	351.100			412.312	15.845
				463.500	436.400			420.374	21.679
				467.000	473.900			425.124	25,859
				474.000;	555.500			430.522	31.373
				481.700	655.200			435.018	30,004
				472.000	538.900			441.047	44.002 54.475
				472.000	540.700			447.131	6/ 637
				472.000	671 200			452.075	74 510
				402.000	811 000			463 176	87 866
				492 000 502 300	011.300			468 264	101 222
				512 200	1187 000			468 654	102 265
				513 8001	1220 000			474.348	119 165
				010.000	1220.000			479.273	135,431
								502.200	234,600
								507.500	263,600
								510.800	283.600
								514.000	303.300
								515.600	313.600
								521.100	351.100
								528.400	405.800
								538.000	487.300
								545.000	554.500

٦

Apéndice F

DATOS	EVDE				SIÓN		POR		
DATUS	EXPE		ALES	DEFRI	_01014				
CETONA	S							0.115VANO1	
ACETONA		2-PENTANON	NA .	3-PENTANON	ĮA	METHILBUT	ANONA	2-HEXANON	A
- 12		ן	n kPa	Г тк	n kPa	Тк	p kPa	∣тк∣	pikPa
I K	<u> </u>	226.225	26 546	320 6841	20 441	328 885	26.576	307,762	2.656
259.175	4.207	242 020	33 040	336 173	26 529	334 559	33.117	310.220	3.024
262.131	5.076	342.039	30 040	341 877	33 041	339 375	39,658	314,267	3.737
200.044	7 496	251 492	46 568	347.051	40.009	343 581	46.161	317.648	4.434
208 208	7 100	255 474	40.000 53.466	351 302	46 589	347 450	52 901	336,934	10.853
2/1 /02	0 407	358 853	59 946	355 259	53 473	350,855	59,445	341,126	12.973
273.430	10 376	362 039	66 611	358 639	59 979	353,957	65.959	345.687	15.657
270.122	10.370	364.982	73 283	361 758	66 532	356,800	72.420	350,465	18.944
270.107	10.351	367 697	79 906	364 752	73.348	359.459	78.908	355.406	22.918
278.661	12.417	370 328	86 760	367 462	79.985	362,364	86.516	359.280	26.494
270.001	14 840	372 620	93 107	370 046	86.752	364.871	93.538	364.729	32.278
282 243	14 851	374 9951	100.063	372.326	93.093	366.787	99.227	369.560	38.230
285 623	17 480	377 182	106.831	374.717	100,129	368.212	103.568	374.814	45.683
200.020	21 525	379 266	113.611	376.875	106.834	368.552	104.656	380.085	54.287
293.867	25 544	381.176	120.112	378.889	113.412	368.710	105.136	385.470	64.383
298 195'	30.867	382.984	126.533	380.835	120.059	370.975	112.517	321.183	5.277
302 425	36 912	384,8091	133.292	382 639	126.493	372.726	118.489	324.949	6.319
306.870	44.267			384.457	133.252	374.762	125.747	328.564	7,476
311,751	53.675					376.503	132.228	332.552	8.955
315 984	63.079							390.609	75.365
320.470	74.449	1						395.989	88.399
325.320	88 536							400.381	100.310
329.026	100.666							400.803	101.527
329.796	103 344							401.512	103.586
334.143	119 433							402.105	105.328
338.009	135.602							406.939	120.447
342.662,	157 101							411.184	135,072
347 092	180.024					1		416.678	156.043
350 874	201.571							422.540	181.140
355.190	228 520							427.763	206.034
359.860	260.750								
365.730	306.300								
371 490	356.680								
377.030	410.700								
382.840	473.700								
390.320	565.500								
397.450	665.470								
446.370	1768.200								
457.620	2148.400								
470.610	2662.800	1				1			
481.330	3159.900								
492.330	3722.900								
496.740	3975.900								
499.780	4166.700								
505.690	4534.100								
		1	1	1		1			

DATOS	EXPE	RIMENT	ALES	DE PR	ESIÓN	DE VA	POR
CETONA	S						
3-HEXANONA		3,3-DIMETHIL	BUTANO.	2-HEPTANC	NA	5-NONANON	A
TK	p kPa	тк	p kPa	тк	p kPa	тк	p kPa
348.755	20.424	289.190	2 627	327.837	2.818	357.839	2.782
355.630	26.550	291.266	2.951	330.226	3.180	359.074	2.950
361 627	33.046	294.634	3.546	333.292	3.697	363.174	3 568
367.020	39.939	296,355	3.887	337.363	4.500	358.120	4.458
371.534;	46.565	299.640;	4 613	340.964	5.324	371.574	5.185
375.709	53.448	301.706;	5 127	345.139	6.433	375.769	6.203
379 280	59.967	305.816	6.291	345 141	6.436	379.849	7.347
382.572	66.525	309.238	7.423	348.886	7 617	384.190	8.751
385.712	73.302	312.781	8.769	353.095	9.127	389.273	10.673
388.572	79,941	316.668	10.474	357.185	10.826	393.765	12.655
391.282	86.667	321.638	13.047	361.452	12.873	399.014	15.348
393 689	93.006	325.693	15 514	365 804	15.282	404.736	18.805
396 239;	100.122	330 386:	18.836	369.982	17.932	408.453	21.377
398.505	106.799	333.752	21.559	375 472	21.975	414.025	25.765
400.669	113.492	338.441	25.883	380 162	25.997	419.762	31.027
402.683	120 020	343.571	31.397	385.527	31.321	425.293	36.895
404 597	126.496	348.707	37.828	390.636	37 167	431.731	44.818
406 527	133.294	354.162 [,]	45.788	390.779	37.361	437.747	53.396
		358.967	53.862	396 336	44.713	443.057	62.055
1		364 1201	63.739	402 447	54.129	449.070	73.159
		368.756	73.807	407 739	63.526	455.516	86.756
		373.913	86.458	413.371	74,904	459.746	96.716
		358 062	52.257	419.473	88.989	461.047	99.959
		362 801	61.080	424.126	101.114	461.604	101.363
		368.269	72.697	425 099	103.789	467.845	118.299
		373.651	85.777	430.450	119,605	473.177	134.437
		377.7001	96 788	435.430	136.005	479.205	154.734
		378.383	98.751	441.287	157.388	485.463	178.274
{		379.0001	100.547	446.847	180.116		
		384.322	117.156	452.417	205.316		
		389.216.	134.256				
		394.974	156.807				
		399.752	177.659				
		405.222	204.081				
1							
		ŧ				-	
		1		[

DATOS EXPERIMENTALES DE PRESIÓN DE VAPOR ÉTERES

METILPROPILETER ISOPROPILMETILE BUTILMETILETER t-BUTILMETILETER ETILPROPILETER DINPROPILETER

тк	p kPa	тк	p kPa	тк	p kPa	ткі	p kPa	тк	p kPa	тк	p kPa
	- :	250 183	9.080	265.510	3.485	287 997	21.805	261.367	3.711	292.974	6 442
256 731	9 135	253.215	10.784	269 069	4.281	291.980	25.843	264.735	4.521	296.324	7.621
259 868	10.833	256.504	12.830	272.192	5.105	296.393	31,156	267.667	5.344	300.037	9.130
263 198	12.879	259 812	15.241	275.815	6 221	300.668	37.194	271.080	6.457	303.651	10.829
266 492	15.288	262.953	17.890	279.117	7.406	305.293	44.576	274.198	7.639	307.420	12.873
269 702	17.936	270.618	25.958	282 695	8.903	310.310	53.942	277.639	9.145	311.274	15.293
273 855	21.982	274.664	31.282	286.213	10.610	314.675	63.351	280 980	10.839	314.983	17.938
277 570	26.013	278.630	37.322	289.840	12.652	317.985	71.313	284.484	12.833	319.842	21.981
281 706	31 331	282.813	44.677	293.576	15.065	324.332	88.805	288.062	15.291	319.848	21.992
285.765	37 371	287.428	54 091	301.800	21.759	328 178	100 933	291.508	17.947	319.856	21.996
290.067	44 724	291.440	63.490	305.784	25.780	328 976	103.610	296.029	21.992	324.020	26.026
290 067	44.727	295.708	74.865	293.600	15.042	333.468	119.700	291.507	17.941	328.777	31.341
294 836	54.133	300.320	88.945	297.159	17.691	337.526	135.835	296.026	21.984	333.446	37.380
298 934	63.531	303 856	101.078	301.818	21 720	342.343	157.164	296.027	21.986	338.378	44.739
303 311	74.905	304.592	103.752	305 813	25.750	347.023	180.280	299.896	26.008	343.811	54.144
308.016	88.997	308.717	119.841	310.382	31.070	350.978	201.818	304.322	31.326	348.533	63.545
311.655	101.114	312.455	136 014	314 839	37.111			308.671	37.373	353.554	74.921
312 389	103.799	316.903	157.509	319.550	44.471			313.250	44.721	358.999	89.008
316 649	119.892	321.185	180.439	324.731	53 875			318.302	54.128	363.157	101.105
320.487	136 052	324.824	201.976	329.233	63 274			322.697	63.536	364.022	103.777
325.068	157 552			334.153	74.996			327.366	74.906	367.893	119.879
329.412	180.438			339.198	88.739			332.429	88.995	373.295	136.045
333.133	201.844			343.163	100.867			336.303	101.122	378.557	157.559
				343.989	103.544			337.044	103.581	383.586	180.476
				348.618	119.632			341.638	119.899	387.883	202.031
				352.801	135.801			345.729	136.059		
				357.802	157.304		1	350.624	157.564		
				362.574	180.210			355.297	180.474		
				366.657	201.725			359.295	202.029		

DATOS	EXPERIMENT	ALES DE	PRESIÓ	N DE	VAPOR
ÉTERES	HIDROCARBUR	DS			

DIIPROPILE	ETER	METILFEN	ILETER	PROPANO		BUTANO	D PENTANO HI		HEXANO		
тк	o kPa	тк	p kPa	тк	p kPa	тк	p kPa	тк	p kPa	тк	p kPa
284 779	10 662	383.030	26,547	186.000	7 740	236.000	19.430	262.000	14.320	274 000	6.288
288.403	12 712	389.411	33.024	192.000	11 800	243.000	27.870	269.000	20.150	282.000	9.487
292 095	15.122	395 203	39.966	198.000	17.480	249 000	37.270	276.000	27.770	289.000	13.300
295.639	17.778	400.014	46.587	205 000	26.760	256.000	51.270	284.000	39.190	297.000	19.130
300.265	21 812	404.429	53.424	211 000	37.590	262.000	66.350	291.000	52.020	304.000	25.800
304.237	25.839	408.242	59.950	217.000	51 680	269.000	88.140	299.000	70.550	312.000	35.610
308 776	31.160	411.805	66.614	224.000	73.140	275.000	111.000	306.000	90.730	319.000	46.480
313 230	37.199	415.086	73.266	230.000	96.630	282.000	143.100	313.000	115.200	327.000	61.990
317.928	44.561	418.171	79 992	236.000:	125.600	288.000	175.900	321.000	149.100	334.000	78.670
323.103	53.961	421.060	86.732	243,000	167.500	295.000	221.300	328.000	184.600	342.000	101.900
327 604.	63.367	423.600	93.021	249.000	211.300	301.000	266.700	336.000	232.900	350.000	130.000
332 390	74,743	426.314	100.137	255.000	263.200	308 000	328.200	343.000	282.600	357.000	159.300
337.573	88.818	428.726	106.820	262.000	335 300	314.000	389.000	350.000	339.900	365.000	198.700
341.547	100.951	430.984	113.381	268.000	407.900	321.000	470.100	358.000	415.600	372.000	239.000
342.359	103.576	433.183	120.084	274.000;	491.600	327.000	549.000	365.000	491.700	380.000	292.100
347.005	119.720	435.263	126.697	281.000	604.500	334.000	653.100	372.000	577.900	387.000	345.600
351.207	135.878	437 291	133.426	287.000	715.300	340.000	753.400	380.000	689.600	395.000	415.300
356.228	157.382	1		293.000	840.200	347.000	884.300	387.000	799.800	402.000	484.600
361.007	180.219			300 000	1005.000	353 000	1009.000	395.000	941.300	410.000	573.900
365 122	201.847			306.000	1164 000	360.000	1171.000	402.000	1080.000	417.000	661.700
				312 000	1340.000	366.000	1324.000	409.000	1233.000	425.000	774,000
				319.000	1570.000	373.000	1521.000	417.000	1427.000	432.000	883.600
				325.000	1788.000	379.000	1707.000	424.000	1615.000	440.000	1023.000
				331.000	2029.000	386.000	1945.000	432.000	1853.000	447.000	1158.000
				338.000	2338.000	392.000	2168.000	439.000	2082.000	455.000	1329.000
				344.000	2631.000	399.000	2452.000	446.000	2322.000	462.000	1494.000
				350.000	2951.000	405.000	2718.000	454.000	2647.000	470.000	1703.000
				357.000	3363.000	412.000	3056.000	461.000	2950.000	477.000	1905.000
				363.000	3752.000	418.000	3371.000			485.000	2160.000
				369.000	4176 000					492.000	2406.000
		}			1					500.000	2717.000
										507.000	3018.000

LISTA DE SÍMBOLOS

Ω	constante característica de la ecuación de estado
q	parámetro de la ecuación de estado
A, B, C	parámetros de ajuste para el modelo de <i>alfa</i>
b	parámetro de la ecuación de estado, covolumen
С	parámetro de la ecuación de Mathias
m	parámetro expresado como polinomio en función del factor acéntrico
р	presión
R	constante de los gases
Т	temperatura
₽'	volumen
ν	volumen molar
w	factor acéntrico
х	fracción mol de la fase
Ζ	factor de compresibilidad

Subíndices

a, b	índice del parámetro del parámetro $arOmega$
с	condiciones críticas
1	componente
r	condiciones reducidas

Superíndices

calc	propiedad calculada
exp	propiedad experimental
L	fase líquida
V	fase vapor